forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDistributions.cpp
656 lines (569 loc) · 24.6 KB
/
Distributions.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>
#include <ATen/TensorIterator.h>
#include <ATen/TensorOperators.h>
#include <c10/util/Exception.h>
#include <c10/util/Optional.h>
#include <ATen/CPUGeneratorImpl.h>
#include <ATen/core/DistributionsHelper.h>
#include <ATen/native/Distributions.h>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/UnaryOps.h>
#include <ATen/native/DistributionTemplates.h>
#include <ATen/NamedTensorUtils.h>
#include <ATen/native/cpu/Loops.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_dirichlet_grad_native.h>
#include <ATen/ops/_sample_dirichlet_native.h>
#include <ATen/ops/_standard_gamma_grad_native.h>
#include <ATen/ops/_standard_gamma_native.h>
#include <ATen/ops/argmax.h>
#include <ATen/ops/bernoulli_native.h>
#include <ATen/ops/binomial_native.h>
#include <ATen/ops/cauchy_native.h>
#include <ATen/ops/div.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/empty_like.h>
#include <ATen/ops/exponential_native.h>
#include <ATen/ops/geometric_native.h>
#include <ATen/ops/log_normal_native.h>
#include <ATen/ops/multinomial_native.h>
#include <ATen/ops/normal_native.h>
#include <ATen/ops/poisson_native.h>
#include <ATen/ops/random_native.h>
#include <ATen/ops/topk.h>
#include <ATen/ops/uniform_native.h>
#include <ATen/ops/zeros.h>
#endif
#include <functional>
#include <type_traits>
#include <utility>
// NOLINTNEXTLINE(modernize-deprecated-headers)
#include <assert.h>
// NOLINTNEXTLINE(modernize-deprecated-headers)
#include <float.h>
namespace {
/*
* This section is a counterpart to Distributions.cu
*
*/
// The function `sample_poisson`
// is adapted from Numpy's distributions.c implementation.
// It is MIT licensed, so here is the copyright:
/* Copyright 2005 Robert Kern ([email protected])
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
int64_t sample_poisson(double lambda, at::CPUGeneratorImpl* generator) {
TORCH_CHECK(lambda >= 0, "invalid Poisson rate, expected rate to be non-negative");
at::uniform_real_distribution<double> standard_uniform(0.0, 1.0);
if (lambda >= 10) {
// transformed rejection method, (Hoermann, 1993)
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int64_t k;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
double U, V, a, b, invalpha, vr, us;
double slam = std::sqrt(lambda);
double loglam = std::log(lambda);
b = 0.931 + 2.53 * slam;
a = -0.059 + 0.02483 * b;
invalpha = 1.1239 + 1.1328 / (b - 3.4);
vr = 0.9277 - 3.6224 / (b - 2);
while (true) {
U = standard_uniform(generator) - 0.5;
V = standard_uniform(generator);
us = 0.5 - std::fabs(U);
k = (int64_t)std::floor((2 * a / us + b) * U + lambda + 0.43);
if ((us >= 0.07) && (V <= vr)) {
return k;
}
if ((k < 0) || ((us < 0.013) && (V > us))) {
continue;
}
if ((std::log(V) + std::log(invalpha) - std::log(a / (us * us) + b)) <=
(-lambda + k * loglam - std::lgamma((double)k + 1))) {
return k;
}
}
} else if (lambda == 0) {
return 0;
} else {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int64_t X;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
double prod, U, enlam;
enlam = std::exp(-lambda);
X = 0;
prod = 1.0;
while (true) {
U = standard_uniform(generator);
prod *= U;
if (prod > enlam) {
X += 1;
} else {
return X;
}
}
}
}
} // namespace
namespace at::native {
DEFINE_DISPATCH(bernoulli_tensor_stub);
DEFINE_DISPATCH(bernoulli_scalar_stub);
DEFINE_DISPATCH(cauchy_stub);
DEFINE_DISPATCH(exponential_stub);
DEFINE_DISPATCH(multinomial_with_replacement_stub);
DEFINE_DISPATCH(geometric_stub);
DEFINE_DISPATCH(log_normal_stub);
DEFINE_DISPATCH(uniform_stub);
DEFINE_DISPATCH(normal_stub);
DEFINE_DISPATCH(random_stub);
DEFINE_DISPATCH(random_from_to_stub);
DEFINE_DISPATCH(random_full_64_bits_range_stub);
// ==================================================== Bernoulli =====================================================
template<typename RNG>
struct BernoulliStub {
void operator()(Tensor& self, const Tensor& p_, c10::optional<Generator> gen) {
bernoulli_tensor_stub(self.device().type(), self, p_, gen);
}
void operator()(Tensor& self, double p, c10::optional<Generator> gen) {
bernoulli_scalar_stub(self.device().type(), self, p, gen);
}
};
Tensor bernoulli(const Tensor& self, c10::optional<Generator> gen) {
Tensor result = at::empty_like(self, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
result.bernoulli_(self, std::move(gen));
return result;
}
Tensor bernoulli(const Tensor& self, double p, c10::optional<Generator> gen) {
Tensor result = at::empty_like(self, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
result.bernoulli_(p, std::move(gen));
return result;
}
Tensor& bernoulli_out(const Tensor& self, c10::optional<Generator> gen, Tensor& result) {
return at::native::templates::bernoulli_out_impl<BernoulliStub, Generator>(result, self, std::move(gen));
}
Tensor& bernoulli_(Tensor& self, const Tensor& p_, c10::optional<Generator> gen) {
return at::native::templates::bernoulli_impl_<BernoulliStub, Generator>(self, p_, std::move(gen));
}
Tensor& bernoulli_(Tensor& self, double p, c10::optional<Generator> gen) {
return at::native::templates::bernoulli_impl_<BernoulliStub, Generator>(self, p, std::move(gen));
}
// ================================================== LogNormal =======================================================
template<typename RNG>
struct LogNormalStub {
void operator()(TensorIteratorBase& iter, double mean, double std, c10::optional<Generator> gen) {
log_normal_stub(iter.device_type(), iter, mean, std, gen);
}
};
Tensor& log_normal_(Tensor& self, double mean, double std, c10::optional<Generator> gen) {
return at::native::templates::log_normal_impl_<LogNormalStub, Generator>(self, mean, std, std::move(gen));
}
// ==================================================== Cauchy ========================================================
template<typename RNG>
struct CauchyStub {
void operator()(TensorIteratorBase& iter, double median, double sigma, c10::optional<Generator> gen) {
cauchy_stub(iter.device_type(), iter, median, sigma, gen);
}
};
Tensor& cauchy_(Tensor& self, double median, double sigma, c10::optional<Generator> gen) {
return at::native::templates::cauchy_impl_<CauchyStub, Generator>(self, median, sigma, std::move(gen));
}
// ================================================== Exponential =====================================================
template<typename RNG>
struct ExponentialStub {
void operator()(TensorIteratorBase& iter, double lambda, c10::optional<Generator> gen) {
exponential_stub(iter.device_type(), iter, lambda, gen);
}
};
Tensor& exponential_(Tensor& self, double lambda, c10::optional<Generator> gen) {
return at::native::templates::exponential_impl_<ExponentialStub, Generator>(self, lambda, std::move(gen));
}
// =================================================== Geometric ======================================================
template<typename RNG>
struct GeometricStub {
void operator()(TensorIteratorBase& iter, double p, c10::optional<Generator> gen) {
geometric_stub(iter.device_type(), iter, p, gen);
}
};
Tensor& geometric_(Tensor& self, double p, c10::optional<Generator> gen) {
return at::native::templates::geometric_impl_<GeometricStub, Generator>(self, p, std::move(gen));
}
// ==================================================== Uniform =======================================================
template<typename RNG>
struct UniformStub {
void operator()(TensorIteratorBase& iter, double from, double to, c10::optional<Generator> gen) {
uniform_stub(iter.device_type(), iter, from, to, gen);
}
};
template<typename RNG>
struct UniformMeta {
// No-op!
void operator()(TensorIteratorBase& iter, double from, double to, c10::optional<Generator> gen) {
}
};
Tensor& uniform_(Tensor& self, double from, double to, c10::optional<Generator> gen) {
return at::native::templates::uniform_impl_<UniformStub, Generator>(self, from, to, std::move(gen));
}
Tensor& uniform_meta_(Tensor& self, double from, double to, c10::optional<Generator> gen) {
return at::native::templates::uniform_impl_<UniformMeta, Generator>(self, from, to, std::move(gen));
}
// ==================================================== Normal ========================================================
template<typename RNG>
struct NormalStub {
void operator()(Tensor& self, double mean, double std, c10::optional<Generator> gen) {
normal_stub(self.device().type(), self, mean, std, gen);
}
};
template<typename RNG>
struct NormalMeta {
// No-op!
void operator()(Tensor& self, double mean, double std, c10::optional<Generator> gen) {
}
};
// inplace
Tensor& normal_(Tensor& self, double mean, double std, c10::optional<Generator> gen) {
return at::native::templates::normal_impl_<NormalStub, Generator>(self, mean, std, std::move(gen));
}
Tensor& normal_meta_(Tensor& self, double mean, double std, c10::optional<Generator> gen) {
return at::native::templates::normal_impl_<NormalMeta, Generator>(self, mean, std, std::move(gen));
}
// out tensor float
Tensor& normal_out(const Tensor& mean, double std, c10::optional<Generator> gen, Tensor& output) {
return at::native::templates::normal_out_impl<NormalStub, Generator>(output, mean, std, std::move(gen));
}
Tensor& normal_out_meta(const Tensor& mean, double std, c10::optional<Generator> gen, Tensor& output) {
return at::native::templates::normal_out_impl<NormalMeta, Generator>(output, mean, std, std::move(gen));
}
// out float tensor
Tensor& normal_out(double mean, const Tensor& std, c10::optional<Generator> gen, Tensor& output) {
return at::native::templates::normal_out_impl<NormalStub, Generator>(output, mean, std, std::move(gen));
}
Tensor& normal_out_meta(double mean, const Tensor& std, c10::optional<Generator> gen, Tensor& output) {
return at::native::templates::normal_out_impl<NormalMeta, Generator>(output, mean, std, std::move(gen));
}
// out tensor tensor
Tensor& normal_out(const Tensor& mean, const Tensor& std, c10::optional<Generator> gen, Tensor& output) {
return at::native::templates::normal_out_impl<NormalStub, Generator>(output, mean, std, std::move(gen));
}
Tensor& normal_out_meta(const Tensor& mean, const Tensor& std, c10::optional<Generator> gen, Tensor& output) {
return at::native::templates::normal_out_impl<NormalMeta, Generator>(output, mean, std, std::move(gen));
}
// functional tensor float
Tensor normal(const Tensor& mean, double std, c10::optional<Generator> gen) {
return at::native::templates::normal_impl<NormalStub, Generator>(mean, std, std::move(gen));
}
Tensor normal_meta(const Tensor& mean, double std, c10::optional<Generator> gen) {
return at::native::templates::normal_impl<NormalMeta, Generator>(mean, std, std::move(gen));
}
// functional float tensor
Tensor normal(double mean, const Tensor& std, c10::optional<Generator> gen) {
return at::native::templates::normal_impl<NormalStub, Generator>(mean, std, std::move(gen));
}
Tensor normal_meta(double mean, const Tensor& std, c10::optional<Generator> gen) {
return at::native::templates::normal_impl<NormalMeta, Generator>(mean, std, std::move(gen));
}
// functional tensor tensor
Tensor normal(const Tensor& mean, const Tensor& std, c10::optional<Generator> gen) {
return at::native::templates::normal_impl<NormalStub, Generator>(mean, std, std::move(gen));
}
Tensor normal_meta(const Tensor& mean, const Tensor& std, c10::optional<Generator> gen) {
return at::native::templates::normal_impl<NormalMeta, Generator>(mean, std, std::move(gen));
}
// functional variant, only used by the functionalization pass.
Tensor normal_functional(const Tensor& self, double mean, double std, c10::optional<at::Generator> generator) {
return self.clone().normal_(mean, std, std::move(generator));
}
// ==================================================== Random ========================================================
template<typename RNG>
struct RandomStub {
void operator()(TensorIteratorBase& iter, c10::optional<Generator> gen) {
random_stub(iter.device_type(), iter, gen);
}
};
Tensor& random_(Tensor& self, c10::optional<Generator> gen) {
return at::native::templates::random_impl<RandomStub, Generator>(self, std::move(gen));
}
template<typename RNG>
struct RandomFromToStub {
void operator()(TensorIteratorBase& iter, uint64_t range, int64_t from, c10::optional<Generator> gen) {
random_from_to_stub(iter.device_type(), iter, range, from, gen);
}
void operator()(TensorIteratorBase& iter, c10::optional<Generator> gen) {
random_full_64_bits_range_stub(iter.device_type(), iter, gen);
}
};
Tensor& random_(Tensor& self, int64_t from, optional<int64_t> to, c10::optional<Generator> gen) {
return at::native::templates::random_from_to_impl<RandomFromToStub, Generator>(self, from, to, std::move(gen));
}
Tensor& random_(Tensor& self, int64_t to, c10::optional<Generator> gen) {
return random_(self, 0, to, std::move(gen));
}
Tensor& random_meta_(Tensor& self, c10::optional<Generator> gen) {
// No error checking yay
return self;
}
Tensor& random_meta_(Tensor& self, int64_t from, optional<int64_t> to, c10::optional<Generator> gen) {
// No error checking yay
return self;
}
Tensor& random_meta_(Tensor& self, int64_t to, c10::optional<Generator> gen) {
// No error checking yay
return self;
}
// ====================================================================================================================
Tensor _standard_gamma_grad_cpu(const Tensor& self, const Tensor& output) {
Tensor ret = at::empty(self.sizes(), self.options());
auto iter = TensorIteratorConfig()
.add_output(ret)
.add_input(self)
.add_input(output)
.build();
AT_DISPATCH_FLOATING_TYPES(self.scalar_type(), "_standard_gamma_grad_cpu", [&] {
cpu_serial_kernel(iter, [](scalar_t self_val, scalar_t output_val) -> scalar_t{
return standard_gamma_grad_one<scalar_t, double>(self_val, output_val);
});
});
return ret;
}
Tensor _dirichlet_grad_cpu(const Tensor& x, const Tensor& alpha, const Tensor& total) {
Tensor ret = at::empty(x.sizes(), x.options());
auto iter = TensorIteratorConfig()
.add_output(ret)
.add_input(x)
.add_input(alpha)
.add_input(total)
.build();
AT_DISPATCH_FLOATING_TYPES(x.scalar_type(), "_dirichlet_grad_cpu", [&] {
cpu_serial_kernel(iter, [](scalar_t x_val, scalar_t alpha_val, scalar_t total_val) -> scalar_t{
return dirichlet_grad_one<scalar_t, double>(x_val, alpha_val, total_val);
});
});
return ret;
}
/*
* This section is a counterpart to Distributions.cu
*/
Tensor _s_binomial_cpu(const Tensor& count, const Tensor& prob, c10::optional<Generator> gen) {
Tensor ret = at::zeros(count.sizes(), count.options());
auto iter = TensorIteratorConfig()
.add_output(ret)
.add_input(count)
.add_input(prob)
.build();
AT_DISPATCH_FLOATING_TYPES(ret.scalar_type(), "binomial_cpu", [&] {
CPUGeneratorImpl* generator = get_generator_or_default<CPUGeneratorImpl>(gen, detail::getDefaultCPUGenerator());
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(generator->mutex_);
cpu_serial_kernel(iter, [generator](scalar_t count_val, scalar_t prob_val) -> scalar_t{
auto uniform_lambda = [generator] () {
at::uniform_real_distribution<double> standard_uniform(0.0, 1.0);
return standard_uniform(generator);
};
BaseSampler<double, decltype(uniform_lambda)> standard_uniform(uniform_lambda);
auto sample = sample_binomial<scalar_t, double, decltype(uniform_lambda)>(count_val, prob_val, standard_uniform);
return static_cast<scalar_t>(sample);
});
});
return ret;
}
Tensor _s_poisson_cpu(const Tensor& lambda, c10::optional<Generator> gen) {
Tensor ret = at::zeros(lambda.sizes(), lambda.options());
auto iter = TensorIteratorConfig()
.add_output(ret)
.add_input(lambda)
.build();
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::BFloat16, at::ScalarType::Half, ret.scalar_type(), "poisson_cpu", [&] {
CPUGeneratorImpl* generator = get_generator_or_default<CPUGeneratorImpl>(gen, detail::getDefaultCPUGenerator());
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(generator->mutex_);
cpu_serial_kernel(iter, [generator](scalar_t lambda_val) -> scalar_t{
return static_cast<scalar_t>(sample_poisson(static_cast<double>(lambda_val), generator));
});
});
return ret;
}
Tensor _s_gamma_cpu(const Tensor& alpha, c10::optional<Generator> gen) {
Tensor ret = at::zeros(alpha.sizes(), alpha.options());
auto iter = TensorIteratorConfig()
.add_output(ret)
.add_input(alpha)
.build();
AT_DISPATCH_FLOATING_TYPES(ret.scalar_type(), "gamma_cpu", [&] {
CPUGeneratorImpl* generator = get_generator_or_default<CPUGeneratorImpl>(gen, detail::getDefaultCPUGenerator());
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(generator->mutex_);
cpu_serial_kernel(iter, [generator](scalar_t alpha_val) -> scalar_t{
auto uniform_lambda = [generator] () {
at::uniform_real_distribution<double> standard_uniform(0.0, 1.0);
return standard_uniform(generator);
};
BaseSampler<double, decltype(uniform_lambda)> standard_uniform(uniform_lambda);
auto normal_lambda = [generator] () {
at::normal_distribution<double> normal(0.0, 1.0);
return normal(generator);
};
BaseSampler<double, decltype(normal_lambda)> standard_normal(normal_lambda);
auto sample = sample_gamma<scalar_t, double, decltype(uniform_lambda), decltype(normal_lambda)>(alpha_val, standard_uniform, standard_normal);
return std::max(std::numeric_limits<scalar_t>::min(), (scalar_t) sample);
});
});
return ret;
}
Tensor _s_dirichlet_cpu(const Tensor& alpha, c10::optional<Generator> gen) {
Tensor ret = at::zeros(alpha.sizes(), alpha.options());
AT_DISPATCH_FLOATING_TYPES(ret.scalar_type(), "dirichlet", [&] {
Tensor gamma = at::zeros(alpha.sizes(), alpha.options().dtype(ScalarType::Double));
CPUGeneratorImpl* generator = get_generator_or_default<CPUGeneratorImpl>(gen, detail::getDefaultCPUGenerator());
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(generator->mutex_);
/* Generate gamma sample by casting alpha to double to prevent underflow. */
auto iter1 = TensorIteratorConfig()
.add_output(gamma)
.add_input(alpha)
.check_all_same_dtype(false)
.build();
cpu_serial_kernel(iter1, [generator](scalar_t alpha_val) -> double{
auto uniform_lambda = [generator] () {
at::uniform_real_distribution<double> standard_uniform(0.0, 1.0);
return standard_uniform(generator);
};
BaseSampler<double, decltype(uniform_lambda)> standard_uniform(uniform_lambda);
auto normal_lambda = [generator] () {
at::normal_distribution<double> normal(0.0, 1.0);
return normal(generator);
};
BaseSampler<double, decltype(normal_lambda)> standard_normal(normal_lambda);
auto sample = sample_gamma<double, double, decltype(uniform_lambda), decltype(normal_lambda)>
(alpha_val, standard_uniform, standard_normal);
return std::max(std::numeric_limits<double>::min(), sample);
});
/* Normalize and cast back to scalar_t. */
Tensor gamma_sum = gamma.sum(-1, true).expand(alpha.sizes());
auto iter2 = TensorIteratorConfig()
.add_output(ret)
.add_input(gamma)
.add_input(gamma_sum)
.check_all_same_dtype(false)
.build();
cpu_serial_kernel(iter2, [](double gamma_val, double gamma_sum_val) -> scalar_t{
auto ret_val = gamma_val / gamma_sum_val;
auto min_val = std::numeric_limits<scalar_t>::min();
auto max_val = std::nexttoward(static_cast<scalar_t>(1.0f), 0.0f);
return std::min(max_val, std::max(min_val, static_cast<scalar_t>(ret_val)));
});
});
return ret;
}
/* The largest consecutive integer representable in float32 (2^24) */
constexpr int64_t FLOAT32_MAX_CONSECUTIVE_INT = 1 << (FLT_MANT_DIG);
Tensor& multinomial_out(const Tensor& self,
int64_t n_sample,
bool with_replacement,
c10::optional<Generator> gen,
Tensor& result) {
TORCH_CHECK(
result.device() == self.device(),
"multinomial arguments must have the same device");
TORCH_CHECK(
self.dim() > 0 && self.dim() <= 2, "prob_dist must be 1 or 2 dim");
TORCH_CHECK(
at::isFloatingType(self.scalar_type()),
"multinomial only supports floating-point dtypes for input, got: ",
self.scalar_type());
TORCH_CHECK(result.scalar_type() == ScalarType::Long,
"multinomial expects Long tensor out, got: ", result.scalar_type());
TORCH_CHECK(n_sample > 0, "cannot sample n_sample <= 0 samples");
int64_t n_categories = self.size(-1);
TORCH_CHECK(with_replacement || (n_sample <= n_categories),
"cannot sample n_sample > prob_dist.size(-1) samples without replacement");
// Since the index tensor is float, numCategories cannot exceed max
// float integer precision
TORCH_CHECK(
n_categories <= FLOAT32_MAX_CONSECUTIVE_INT,
"number of categories cannot exceed 2^24");
if (self.dim() == 1) {
result.resize_({n_sample});
} else {
const int64_t n_dist = self.size(0);
result.resize_({n_dist, n_sample});
}
if (result.numel() == 0) {
return result;
}
// Fast-path for no replacement or if only one sample is drawn.
// Reference:
// https://github.com/pytorch/pytorch/issues/11931#issuecomment-625882503
if (!with_replacement || n_sample == 1) {
// Sanity checks on `self`.
auto is_valid = ((self.max() < INFINITY) & (self.min() >= 0)).item();
TORCH_CHECK(
is_valid.to<bool>(),
"probability tensor contains either `inf`, `nan` or element < 0");
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
bool zero_prob_condition;
if (self.dim() == 1){
zero_prob_condition = (self.sum() == 0).item().to<bool>();
} else {
zero_prob_condition = (self.sum(1) == 0).sum().item().to<bool>();
}
TORCH_CHECK(
!zero_prob_condition,
"invalid multinomial distribution (sum of probabilities <= 0)");
// The algorithm is from gumbel softmax.
// s = argmax( logp - log(-log(eps)) ) where eps ~ U(0, 1)
// Here we can apply exp to the formula which will not affect result of
// argmax or topk. Then we have
// s = argmax( p / (-log(eps)) ) where eps ~ U(0, 1).
// We can also simplify the formula above by
// s = argmax( p / q ) where q ~ Exp(1)
Tensor q = at::empty_like(self).exponential_(1, std::move(gen));
// In theory the probability to generate 0 from exponential distribution is
// 0. However, on CUDA side there is a protection to avoid 0s, but on CPU
// side, there is a very low probability to generate 0 from
// exponential<double>. The probability is about 2^(-DBL_MANT_DIG). We just
// ignore it here, but there may be some risk to get invalid output on CPU.
at::div_out(q, self, q);
if (n_sample == 1) {
at::argmax_out(result, q, /*dim=*/-1, /*keepdim=*/true);
} else {
Tensor vals = at::empty(result.sizes(), self.options());
at::topk_out(vals, result, q, n_sample);
}
return result;
}
multinomial_with_replacement_stub(
result.device().type(), result, self, n_sample, gen);
return result;
}
Tensor multinomial(
const Tensor& self,
int64_t n_sample,
bool with_replacement,
c10::optional<Generator> gen) {
Tensor result = at::empty({0}, self.options().dtype(kLong));
native::multinomial_out(self, n_sample, with_replacement, std::move(gen), result);
return result;
}
} // namespace at::native