forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDistance.cpp
332 lines (297 loc) · 14.7 KB
/
Distance.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/core/grad_mode.h>
#include <ATen/ExpandUtils.h>
#include <ATen/NamedTensorUtils.h>
#include <ATen/TensorOperators.h>
#include <ATen/native/Distance.h>
#include <c10/util/accumulate.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/_cdist_backward_native.h>
#include <ATen/ops/_cdist_forward.h>
#include <ATen/ops/_cdist_forward_native.h>
#include <ATen/ops/_euclidean_dist.h>
#include <ATen/ops/_euclidean_dist_native.h>
#include <ATen/ops/_pdist_backward_native.h>
#include <ATen/ops/_pdist_forward.h>
#include <ATen/ops/_pdist_forward_native.h>
#include <ATen/ops/cat.h>
#include <ATen/ops/cdist_native.h>
#include <ATen/ops/cosine_similarity_native.h>
#include <ATen/ops/empty.h>
#include <ATen/ops/empty_like.h>
#include <ATen/ops/linalg_vector_norm.h>
#include <ATen/ops/norm.h>
#include <ATen/ops/ones_like.h>
#include <ATen/ops/pairwise_distance_native.h>
#include <ATen/ops/pdist_native.h>
#include <ATen/ops/pow.h>
#include <ATen/ops/result_type.h>
#include <ATen/ops/sum.h>
#include <ATen/ops/zeros.h>
#include <ATen/ops/zeros_like.h>
#include <utility>
#endif
namespace at::native {
DEFINE_DISPATCH(pdist_forward_stub);
DEFINE_DISPATCH(pdist_backward_stub);
DEFINE_DISPATCH(cdist_stub);
DEFINE_DISPATCH(cdist_backward_stub);
Tensor pairwise_distance(const Tensor& x1, const Tensor& x2, double p, double eps, bool keepdim) {
// Since either x1 or x2 could be broadcasted
auto x1_dim = x1.dim();
auto x2_dim = x2.dim();
auto output_dim = x1_dim > x2_dim ? x1_dim : x2_dim;
auto innermost_dim = output_dim - 1;
return at::norm(x1 - x2 + eps, p, innermost_dim, keepdim);
}
// This is to guarantee that the contiguous memory is passed to the backward pass
Tensor pdist(const Tensor& self, const double p) {
TORCH_CHECK(self.dim() == 2,
"pdist only supports 2D tensors, got: ", self.dim(), "D");
TORCH_CHECK(at::isFloatingType(self.scalar_type()), "pdist only supports floating-point dtypes");
TORCH_CHECK(p >= 0, "pdist only supports non-negative p values");
return at::_pdist_forward(self.contiguous(), p);
}
Tensor _euclidean_dist(const Tensor& x1, const Tensor& x2) {
/** This function does the fist part of the euclidean distance calculation
* We divide it in two steps to simplify dealing with subgradients in the
* backward step */
Tensor x1_norm = x1.pow(2).sum(-1, true);
Tensor x1_pad = at::ones_like(x1_norm, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
Tensor x2_norm = x2.pow(2).sum(-1, true);
Tensor x2_pad = at::ones_like(x2_norm, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
Tensor x1_ = at::cat({x1.mul(-2), std::move(x1_norm), std::move(x1_pad)}, -1);
Tensor x2_ = at::cat({x2, std::move(x2_pad), std::move(x2_norm)}, -1);
Tensor result = x1_.matmul(x2_.mT());
result.clamp_min_(0).sqrt_();
return result;
}
static Tensor cdist_impl(const Tensor& x1, const Tensor& x2, const double p, c10::optional<int64_t> compute_mode) {
TORCH_CHECK(at::isFloatingType(x1.scalar_type()), "cdist only supports floating-point dtypes, X1 got: ", x1.scalar_type());
auto device1 = x1.device().type();
TORCH_CHECK(at::isFloatingType(x2.scalar_type()), "cdist only supports floating-point dtypes, X2 got: ", x2.scalar_type());
auto device2 = x2.device().type();
TORCH_CHECK(p >= 0, "cdist only supports non-negative p values");
TORCH_CHECK(device1 == device2, "X1 and X2 must have the same device type. X1: ", device1, " X2: ", device2);
// TODO: This is bad; this test should apply universally
TORCH_CHECK(!x1.is_cuda() || x1.get_device() == x2.get_device(), "device of X1 (", x1.get_device(), ") must match device of X2 (", x2.get_device(), ")");
SymInt c1 = x1.sym_size(-1);
SymInt c2 = x2.sym_size(-1);
// 0 - default value. If p = 2 and r1 > 25 or r2 > 25 (these values are based on performance metrics),
// it will try to compute distance using matrix multiplication approach
// 1 - force to use matrix multiplication for p = 2
// 2 - do not use matrix multiplication for p = 2
int64_t mode = compute_mode.value_or(0);
TORCH_CHECK(mode >= 0 && mode <= 2, "possible modes: 0, 1, 2, but was: ", mode);
SymInt r1 = x1.sym_size(-2);
SymInt r2 = x2.sym_size(-2);
// See Note [cdist relies on cdist_impl redispatching]
// Keep this condition in sync with the condition at the Note
if (!(p == 2 && (mode == 1 || (mode == 0 && (r1 > 25 || r2 > 25))))) {
TORCH_CHECK(device1 == kCPU || device1 == kCUDA, "cdist only supports CPU and CUDA devices, X1 got: ", device1);
TORCH_CHECK(device2 == kCPU || device2 == kCUDA, "cdist only supports CPU and CUDA devices, X2 got: ", device2);
}
auto dim1 = x1.dim();
auto dim2 = x2.dim();
//For batch calculation we expand all dimensions(except the last two) to one, with size that equals to product of them.
//The last two dimensions will stay the same
SymIntArrayRef batch_tensor1(x1.sym_sizes().data(), dim1 - 2);
SymIntArrayRef batch_tensor2(x2.sym_sizes().data(), dim2 - 2);
std::vector<SymInt> expand_batch_portion = infer_size_symint(batch_tensor1, batch_tensor2);
std::vector<SymInt> tensor1_expand_size(expand_batch_portion);
tensor1_expand_size.insert(tensor1_expand_size.end(), {r1, c1});
std::vector<SymInt> tensor2_expand_size(expand_batch_portion);
tensor2_expand_size.insert(tensor2_expand_size.end(), {r2, c2});
const SymInt expand_batch_product = c10::multiply_integers(expand_batch_portion);
std::vector<SymInt> tensor1_view{expand_batch_product, r1, c1};
std::vector<SymInt> tensor2_view{expand_batch_product, r2, c2};
Tensor tensor1_expanded = x1.expand_symint(tensor1_expand_size).contiguous().view_symint(tensor1_view);
Tensor tensor2_expanded = x2.expand_symint(tensor2_expand_size).contiguous().view_symint(tensor2_view);
std::vector<SymInt> output_shape(std::move(expand_batch_portion));
output_shape.insert(output_shape.end(), {r1, r2});
Tensor result;
if (r1 == 0 || r2 == 0 || expand_batch_product == 0) {
result = at::empty_symint(output_shape, x1.options());
} else if (c1 == 0) {
result = at::zeros_symint(output_shape, x1.options());
} else if (p == 2 && (mode == 1 || (mode == 0 && (r1 > 25 || r2 > 25)))) {
// See Note [cdist relies on cdist_impl redispatching]
// Keep the condition above in sync with the condition at the Note
Tensor dist = (expand_batch_product == 1) ? at::_euclidean_dist(x1, x2) :
at::_euclidean_dist(tensor1_expanded, tensor2_expanded);
result = dist.view_symint(output_shape);
} else {
result = at::empty_symint(output_shape, x1.options());
cdist_stub(device1, result, tensor1_expanded, tensor2_expanded, p);
}
return result;
}
Tensor cdist(const Tensor& x1, const Tensor& x2, const double p, c10::optional<int64_t> compute_mode) {
TORCH_CHECK(x1.dim() >= 2, "cdist only supports at least 2D tensors, X1 got: ", x1.dim(), "D");
TORCH_CHECK(x2.dim() >= 2, "cdist only supports at least 2D tensors, X2 got: ", x2.dim(), "D");
TORCH_CHECK(x1.sym_size(-1) == x2.sym_size(-1), "X1 and X2 must have the same number of columns. X1: ", x1.sym_size(-1), " X2: ", x2.sym_size(-1));
auto maybe_outnames = namedinference::compute_cdist_outnames(x1, x2);
auto result = [&]() {
NoNamesGuard guard;
SymInt r1 = x1.sym_size(-2);
SymInt r2 = x2.sym_size(-2);
// Special case for empty input: always call the version with explicit autograd to ensure the graph is properly connected
if (x1.sym_numel() == 0 || x2.sym_numel() == 0) {
return at::_cdist_forward(x1, x2, p, compute_mode);
}
int64_t mode = compute_mode.value_or(0);
// Note [cdist relies on cdist_impl redispatching]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// This is for pytorch to figure the backward pass itself
// when p=2. Keep this condition in sync with the See Note reference
if (p == 2 && (mode == 1 || (mode == 0 && (r1 > 25 || r2 > 25)))) {
return cdist_impl(x1, x2, p, compute_mode);
} else {
return at::_cdist_forward(x1, x2, p, compute_mode);
}
}();
namedinference::propagate_names_if_nonempty(result, maybe_outnames);
return result;
}
Tensor _cdist_forward(const Tensor& x1, const Tensor& x2, const double p, c10::optional<int64_t> compute_mode) {
TORCH_CHECK(x1.dim() >= 2, "cdist only supports at least 2D tensors, X1 got: ", x1.dim(), "D");
TORCH_CHECK(x2.dim() >= 2, "cdist only supports at least 2D tensors, X2 got: ", x2.dim(), "D");
TORCH_CHECK(x1.size(-1) == x2.size(-1), "X1 and X2 must have the same number of columns. X1: ", x1.size(-1), " X2: ", x2.size(-1));
auto maybe_outnames = namedinference::compute_cdist_outnames(x1, x2);
auto result = [&]() {
NoNamesGuard guard;
return cdist_impl(x1, x2, p, compute_mode);
}();
namedinference::propagate_names_if_nonempty(result, maybe_outnames);
return result;
}
Tensor _cdist_backward(const Tensor& _grad, const Tensor& _x1, const Tensor& _x2, const double p, const Tensor& _cdist) {
// Broadcasting might generate non-contiguous Tensors, so handle it before doing checks
int64_t c1 = _x1.size(-1);
int64_t c2 = _x2.size(-1);
int64_t r1 = _x1.size(-2);
int64_t r2 = _x2.size(-2);
auto dim1 = _x1.dim();
auto dim2 = _x2.dim();
IntArrayRef batch_tensor1(_x1.sizes().data(), dim1 - 2);
IntArrayRef batch_tensor2(_x2.sizes().data(), dim2 - 2);
std::vector<int64_t> expand_batch_portion = infer_size(batch_tensor1, batch_tensor2);
std::vector<int64_t> tensor1_expand_size(expand_batch_portion);
tensor1_expand_size.insert(tensor1_expand_size.end(), {r1, c1});
std::vector<int64_t> tensor2_expand_size(expand_batch_portion);
tensor2_expand_size.insert(tensor2_expand_size.end(), {r2, c2});
// Compute the linearized batch size
const int64_t batch_product = c10::multiply_integers(expand_batch_portion);
// Gracefully handle empty Tensors
if (r1 == 0 || r2 == 0 || c1 == 0 || batch_product == 0) {
return at::zeros_like(_x1, _x1.options());
}
Tensor x1 = _x1;
if (tensor1_expand_size != x1.sizes()) {
x1 = x1.expand(tensor1_expand_size);
}
Tensor x2 = _x2;
if (tensor2_expand_size != x2.sizes()) {
x2 = x2.expand(tensor2_expand_size);
}
x1 = x1.contiguous();
x2 = x2.contiguous();
auto cdist = _cdist.contiguous();
auto grad = _grad.contiguous();
int64_t n = x1.size(-2);
int64_t m = x1.size(-1);
auto device1 = x1.device().type();
TORCH_CHECK(device1 == kCPU || device1 == kCUDA, "_cdist_backward only supports CPU and CUDA devices, X1 got: ", device1);
auto device2 = x2.device().type();
TORCH_CHECK(device2 == kCPU || device2 == kCUDA, "_cdist_backward only supports CPU and CUDA devices, X2 got: ", device2);
Tensor grad_x1 =
at::empty({batch_product, n, m}, x1.options(), LEGACY_CONTIGUOUS_MEMORY_FORMAT);
cdist_backward_stub(device1, grad_x1, grad, x1, x2, p, cdist);
// Use x1.size() here and not the original size of _x1.size() as this gradient is not taking broadcasting into account
// Broadcasting will be handled automatically by the autograd engine
return grad_x1.view(x1.sizes());
}
Tensor _pdist_forward(const Tensor& self, const double p) {
TORCH_CHECK(self.is_contiguous(), "_pdist_forward requires contiguous input");
auto device = self.device().type();
TORCH_CHECK(device == kCPU || device == kCUDA, "_pdist_forward only supports CPU and CUDA devices, got: ", device);
Tensor result = at::empty({0}, self.options(), LEGACY_CONTIGUOUS_MEMORY_FORMAT);
if (self.size(0) <= 1) {
result.resize_({0});
} else {
int64_t n = self.size(0);
int64_t c = n * (n - 1) / 2;
result.resize_({c});
if (self.size(1) == 0) {
result.fill_(0);
} else {
pdist_forward_stub(device, result, self, p);
}
}
return result;
}
Tensor _pdist_backward(const Tensor& grad, const Tensor& self, const double p, const Tensor& pdist) {
TORCH_CHECK(self.is_contiguous(), "_pdist_backward requires self to be contiguous");
TORCH_CHECK(pdist.is_contiguous(), "_pdist_backward requires pdist to be contiguous");
auto device = self.device().type();
TORCH_CHECK(device == kCPU || device == kCUDA, "_pdist_backward only supports CPU and CUDA devices, got: ", device);
Tensor result = at::empty_like(self, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
pdist_backward_stub(device, result, grad, self, p, pdist);
return result;
}
Tensor cosine_similarity(const Tensor& x1_, const Tensor& x2_, int64_t dim, double eps) {
/*
* cosine_similarity(x1, x2) = <x1, x2> / (||x1|| * ||x2||)
*
* The current implementation is an improvement over the previous version.
*
* Previous implementation:
* 1. Compute num = <x1, x2>,
* 2. Compute denom = ||x1|| * ||x2||,
* 3. Compute denom = max(denom, eps) to avoid division by zero,
* 4. Return num / denom.
*
* Previous implementation has the following issues:
* 1. Chance of losing precision in <x1, x2> when ||x1|| and ||x2|| are large.
* 2. Chance of losing precision in ||x1|| * ||x2|| when ||x1|| and ||x2|| are large.
* 3. Losing precision may cause |cosing_similarity(x1, x2)| > 1.0.
*
* Current implementation:
* 1. Compute x1_normalized = x1 / max(||x1||, eps),
* x2_normalized = x2 / max(||x2||, eps),
* 2. Return <x1_normalized, x2_normalized>.
*
* The current implementation improves over the previous one by:
* 1. Making sure that <x1, x2> and ||x1|| * ||x2|| are not computed explicitly,
* hence avoiding floating point overflows.
* 2. Both methods might have issues with computing ||x1|| and ||x2||, but for
* the current method this is the only source of the floating point imprecision.
* 3. Makes sure |cosing_similarity(x1, x2)| <= 1.0.
*
*/
auto commonDtype = at::result_type(x1_, x2_);
TORCH_CHECK(at::isFloatingType(commonDtype), "expected common dtype to be floating point, yet common dtype is ", commonDtype);
// We accept integral types (and bools lol) but vector_norm does not
auto x1_is_int = c10::isIntegralType(x1_.scalar_type(), /*încludeBool=*/true);
auto x2_is_int = c10::isIntegralType(x2_.scalar_type(), /*încludeBool=*/true);
auto x1_t = x1_is_int ? x1_.to(commonDtype) : x1_;
auto x2_t = x2_is_int ? x2_.to(commonDtype) : x2_;
auto [x1, x2] = expand_outplace(x1_t, x2_t);
// We want to divide each tensor by its norm first, as it's more numerically stable.
// This keeps the result between -1.0 and 1.0
// We clone them, as we're going to modify them in-place
// This allows the gradients to propagate properly all the way to x1 and x2
auto x1_norm = at::linalg_vector_norm(*x1, 2, /*dim=*/dim, /*keepdim=*/true).clone();
auto x2_norm = at::linalg_vector_norm(*x2, 2, /*dim=*/dim, /*keepdim=*/true).clone();
{
at::NoGradGuard guard;
x1_norm.clamp_min_(eps);
x2_norm.clamp_min_(eps);
}
return ((*x1 / x1_norm) * (*x2 / x2_norm)).sum(dim);
}
} // namespace at::native