forked from kathrinse/TabSurvey
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
36 lines (23 loc) · 856 Bytes
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from utils.io_utils import get_predictions_from_file, save_results_to_file
from utils.parser import get_given_parameters_parser
from utils.scorer import get_scorer
import numpy as np
def main(args):
print("Evaluate model " + args.model_name)
predictions = get_predictions_from_file(args)
scorer = get_scorer(args)
for pred in predictions:
# [:,0] is the truth and [:,1:] are the prediction probabilities
truth = pred[:, 0]
out = pred[:, 1:]
pred_label = np.argmax(out, axis=1)
scorer.eval(truth, pred_label, out)
result = scorer.get_results()
print(result)
save_results_to_file(args, result)
if __name__ == "__main__":
# Also load the best parameters
parser = get_given_parameters_parser()
arguments = parser.parse_args()
print(arguments)
main(arguments)