forked from kathrinse/TabSurvey
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattributions.py
295 lines (243 loc) · 12.6 KB
/
attributions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
"""
Module: Attribution and Benchmarking for Machine Learning Models
This module provides tools to train machine learning models, compute feature attributions, and benchmark their importance.
The key functionalities include training models, computing attributions, performing feature removal benchmarks,
and comparing computed attributions to baseline methods such as SHAP values.
## Main Components:
1. **Model Training and Validation**:
- `train_model`: Trains a machine learning model using specified parameters and returns the trained model.
- `val_model`: Validates the trained model on a test set and returns the accuracy.
2. **Feature Attribution Computation**:
- Feature attributions are numerical values that indicate the importance or contribution of each feature to the model's predictions.
- This module can compute attributions for various models and strategies.
3. **Global Feature Removal Benchmark**:
- `global_removal_benchmark`: Performs a benchmark by successively removing features based on their attributions and retraining the model.
- This process helps in understanding the robustness and reliance of the model on specific features.
4. **Spearman Correlation of Attributions**:
- `compute_spearman_corr`: Computes the Spearman rank correlation between two sets of attributions.
- Useful for comparing how different methods rank the importance of features.
5. **Comparing Attributions to SHAP Values**:
- `compare_to_shap`: Compares model-generated attributions with SHAP values, which are a standard for explaining individual predictions.
- This helps validate the model's attribution mechanism against a baseline.
6. **Visualization and Saving of Attributions**:
- `save_attributions_image`: Saves the computed attributions as a heatmap image for visualization.
- Helps in visually interpreting the importance of features.
7. **Main Execution Flow**:
- The `main` function orchestrates the loading of data, model training, computation of attributions, and optional benchmarking and comparisons.
- It is executed when the script is run as a standalone module.
## Usage:
1. Configure and pass the necessary arguments for the model and attributions using a command-line parser.
2. The script supports additional functionalities such as running global benchmarks and comparing attributions to SHAP values, based on the provided arguments.
3. Output results, including computed attributions and benchmarks, are saved in JSON format for further analysis.
## Example Command:
```shell
python script.py --model_name "YourModel" --dataset "YourDataset" --strategy "YourStrategy" --globalbenchmark --compareshap
"""
# pylint: disable=import-error
# pylint: disable=unused-import
# pylint: disable=too-many-arguments
# pylint: disable=too-many-locals
# pylint: disable=invalid-name
# pylint: disable=line-too-long
# pylint: disable=trailing-whitespace
# Run a model to compute attributions and compare them to a baseline.
import typing as tp
import types
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from utils.load_data import load_data
from utils.io_utils import save_results_to_json_file
from utils.baseline_attributions import get_shap_attributions
from utils.parser import get_attribution_parser
from models.basemodel import BaseModel
from models import str2model
def train_model(args, model: BaseModel, X_train: np.ndarray, X_val: np.ndarray,
y_train: np.ndarray, y_val: np.ndarray) -> BaseModel:
""" Train model using parameters args.
X_train, y_train: Training data and labels
X_val and y_val: Test data and
: return: Trained model.
"""
loss_history, val_loss_history = model.fit(X_train, y_train, X_val, y_val)
val_model(model, X_val, y_val)
return model
def global_removal_benchmark(args, X_train: np.ndarray, X_val: np.ndarray, y_train: np.ndarray,
y_val: np.ndarray, feature_importances: np.ndarray, order_morf=True) -> np.ndarray:
""" Perform a feature removal benchmark for the attributions.
The features that are attributed the highest overall attribution scores are successivly removed from the
dataset. The model is then retrained.
:param features_importances: A vector of D (number of features in X) values that contain the importance score for each feature.
The features will be ordered by the absolute value of the passed importance.
:param X_val: (N, D) train data (N samples, D features)
:param y_val: (N) train class labels
:param X_val: (M, D) test data (M samples, D features)
:param y_val: (M) test class labels
:param order_morf: Feature removal order. Either remove most important (morf=True) or least important (morf=False) features first
:return: array with the obtained accuracies.
"""
if X_train.shape[1] != len(feature_importances):
raise ValueError(
"Number of Features in Trainset must be equal to number of importances passed.")
ranking = np.argsort((1 if order_morf else -1)
* np.abs(feature_importances))
results = np.zeros(len(feature_importances))
old_cat_index = args.cat_idx
old_cat_dims = args.cat_dims
for i in range(len(feature_importances)):
remaining_features = len(feature_importances) - i
use_idx = ranking[:remaining_features].copy()
# make sure the neighborhood relation is not important.
np.random.shuffle(use_idx)
print(f"Using {len(use_idx)} features ...")
# Retrain the model and report acc.
X_train_bench = X_train[:, use_idx]
X_val_bench = X_val[:, use_idx]
# modify feature args accordingly
# args.num_features: points to the new number of features
# args.cat_idx: Indices of categorical features
# args.cat_dims: Number of categorical feature values
# These values have to be recomputed for the modified dataset
new_cat_idx = []
new_cat_dims = []
for j in range(len(use_idx)):
if use_idx[j] in old_cat_index:
old_index = old_cat_index.index(use_idx[j])
new_cat_idx.append(j)
new_cat_dims.append(old_cat_dims[old_index])
args.cat_idx = new_cat_idx
args.cat_dims = new_cat_dims
args.num_features = remaining_features
model_name = str2model(args.model_name)
model = model_name(arguments.parameters[args.model_name], args)
model = train_model(args, model, X_train_bench,
X_val_bench, y_train, y_val)
acc_obtained = val_model(model, X_val_bench, y_val)
results[i] = acc_obtained
res_dict = {}
res_dict["model"] = args.model_name
res_dict["order"] = "MoRF" if order_morf else "LeRF"
res_dict["accuracies"] = results.tolist()
res_dict["attributions"] = feature_importances.tolist()
save_results_to_json_file(
args, res_dict, f"global_benchmark{args.strategy}", append=True)
# reset args to their old values.
args.cat_idx = old_cat_index
args.cat_dims = old_cat_dims
return results
def compute_spearman_corr(attr1: np.ndarray, attr2: np.ndarray) -> np.ndarray:
""" Compute the spearman rank correlations between two attributions. The attributions are first ranked
by their value. Pass absolute values, if you want to rank by magnitude only.
Return a vector with the spearman correlation between all rows in the matrix.
:param attr1: (N, D) attributions by method 1 (N samples, D features)
:param attr2: (N, D) attributions by method 2 (N samples, D features)
:return: (N) array with the rank correlation of the two attributions for each sample.
"""
num_inputs = attr1.shape[0]
resmat = np.zeros(num_inputs)
ranks1 = np.argsort(np.argsort(attr1, axis=0), axis=0)
ranks2 = np.argsort(np.argsort(attr2, axis=0), axis=0)
cov = np.mean(ranks1 * ranks2, axis=0) - np.mean(ranks1,
axis=0) * np.mean(ranks2, axis=0) # E[XY]-E[Y]E[X]
corr = cov / (np.std(ranks1, axis=0) * np.std(ranks2, axis=0))
return corr
def compare_to_shap(args, attrs, model, X_val, sample_size=100):
"""
Compare feature attributions by the model to shap values on a random set of validation points.
Compute correlation and save raw output to JSON file.
:param attrs: (N, D) model feature attributions
:param model: The model to use.
:param X_val: (N, D) test data (N samples, D features)
:param sample_size: Number of points to choose
"""
use_samples = np.arange(len(X_val))
np.random.shuffle(use_samples)
use_samples = use_samples[:sample_size]
attrs = attrs[use_samples]
res_dict = {}
res_dict["model"] = args.model_name
res_dict["model_attributions"] = attrs.tolist()
shap_attrs = get_shap_attributions(model, X_val[use_samples])
# save_attributions_image(attrs, feature_names, args.model_name+"_shap")
res_dict["shap_attributions"] = shap_attrs.tolist()
rank_corrs = compute_spearman_corr(np.abs(attrs), np.abs(shap_attrs))
res_dict["rank_corr_mean"] = np.mean(rank_corrs)
res_dict["rank_corr_std"] = np.std(rank_corrs)
save_results_to_json_file(
args, res_dict, f"shap_compare{args.strategy}", append=True)
def val_model(model: BaseModel, X_val: np.ndarray, y_val: np.ndarray) -> float:
"""
Validation of a trained classification model on the test set (X_val, y_val).
:param X_val: (N, D) test data (N samples, D features)
:param y_val: (N) test class labels
:return: accuracy
"""
ypred = model.predict(X_val)
if len(ypred.shape) == 2:
ypred = ypred[:, -1]
acc = np.sum((ypred.flatten() > 0.5) == y_val) / len(y_val)
print("Accuracy: ", acc)
return acc
def save_attributions_image(
attrs: np.ndarray, namelist: tp.Optional[tp.List[str]] = None,
file_name: str = ""):
""" Save attributions in a plot.
:param attrs: (N, D) attributions (N samples, D features)
:param namelist: List of length D with column names
:return: predicted labels of test data
"""
attrs_abs = np.abs(attrs)
attrs_abs -= np.min(attrs_abs)
attrs_abs /= np.max(attrs_abs)
plt.ioff()
plt.matshow(attrs_abs)
if namelist:
plt.xticks(np.arange(len(namelist)), namelist, rotation=90)
plt.tight_layout()
plt.gcf().savefig(f"output/attributions_{file_name}.png")
def main(args):
# Use discretized version of adult dataset for TabNet attributions.
if args.model_name == "TabTransformer":
args.scale = False
# Load dataset (currently only tested for the Adult data set)
X, y = load_data(args)
X_train, X_val, y_train, y_val = train_test_split(
X, y, test_size=0.10, random_state=args.seed)
# Create the model
model_name = str2model(args.model_name)
model = model_name(arguments.parameters[args.model_name], args)
# Obtain a trained model to get attributions
modelref = train_model(args, model, X_train, X_val, y_train, y_val)
# Get attributions
attrs = modelref.attribute(X_val, y_val, args.strategy)
# Save the first 20 attributions to file.
if args.dataset == "Adult" or args.dataset == "AdultCat":
feature_names = [
'age', 'workclass', 'fnlwgt', 'education', 'education_num',
'marital-status', 'occupation', 'relationship', 'race', 'sex',
'capital-gain', 'capital-loss', 'hours-per-week', 'native-country']
else:
feature_names = None
res_dict = {}
res_dict["model"] = args.model_name
res_dict["strategy"] = str(args.strategy)
res_dict["dataset"] = args.dataset
res_dict["attributions"] = attrs.tolist()
save_results_to_json_file(
args, res_dict, f"attributions{args.strategy}", append=True)
save_attributions_image(attrs[:20, :], feature_names, args.model_name)
# Run global attribution benchmark if flag is passed.
if args.globalbenchmark:
for order in [True, False]:
for run in range(args.numruns):
global_removal_benchmark(
args, X_train, X_val, y_train, y_val, attrs.mean(
axis=0).flatten(),
order_morf=order)
# Compute Shaples values and compare to model intrinsic attribution if flag is passed.
if args.compareshap:
compare_to_shap(args, attrs, modelref, X_val, sample_size=250)
if __name__ == "__main__":
parser = get_attribution_parser()
arguments = parser.parse_args()
main(arguments)