-
Notifications
You must be signed in to change notification settings - Fork 0
/
svm.html
235 lines (131 loc) · 236 KB
/
svm.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<!-- iOS Safari -->
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<!-- Chrome, Firefox OS and Opera Status Bar Color -->
<meta name="theme-color" content="#FFFFFF">
<link rel="stylesheet" type="text/css" href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.11.1/katex.min.css">
<link rel="stylesheet" type="text/css"
href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.19.0/themes/prism.min.css">
<link rel="stylesheet" type="text/css" href="css/SourceSansPro.css">
<link rel="stylesheet" type="text/css" href="css/theme.css">
<link rel="stylesheet" type="text/css" href="css/notablog.css">
<!-- Favicon -->
<link rel="shortcut icon" href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Ffc9b3a94-67d3-4485-bdf3-5e0c0b341ebe%2FAA238E8485C55D168DCF034BC7482B61.png?table=collection&id=c97ea4eb-3d30-4977-8edc-ee98d0f07149">
<style>
:root {
font-size: 20px;
}
</style>
<title>支持向量机 | Patrick’s Blog</title>
<meta property="og:type" content="blog">
<meta property="og:title" content="支持向量机">
<meta name="description" content="ML Notes 03: Support Vector Machine(SVM)">
<meta property="og:description" content="ML Notes 03: Support Vector Machine(SVM)">
<meta property="og:image" content="data:image/svg+xml,<svg xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 100 100%22><text text-anchor=%22middle%22 dominant-baseline=%22middle%22 x=%2250%22 y=%2255%22 font-size=%2280%22>🎽</text></svg>">
<style>
.DateTagBar {
margin-top: 1.0rem;
}
</style>
</head>
<body>
<nav class="Navbar">
<a href="index.html">
<div class="Navbar__Btn">
<span><img class="inline-img-icon" src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Ffc9b3a94-67d3-4485-bdf3-5e0c0b341ebe%2FAA238E8485C55D168DCF034BC7482B61.png?table=collection&id=c97ea4eb-3d30-4977-8edc-ee98d0f07149"></span>
<span>Home</span>
</div>
</a>
<span class="Navbar__Delim">·</span>
<a href="about.html">
<div class="Navbar__Btn">
<span><img class="inline-img-icon" src="data:image/svg+xml,<svg xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 100 100%22><text text-anchor=%22middle%22 dominant-baseline=%22middle%22 x=%2250%22 y=%2255%22 font-size=%2280%22>😀</text></svg>"></span>
<span>About me</span>
</div>
</a>
<span class="Navbar__Delim">·</span>
<a href="categories.html">
<div class="Navbar__Btn">
<span><img class="inline-img-icon" src="data:image/svg+xml,<svg xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 100 100%22><text text-anchor=%22middle%22 dominant-baseline=%22middle%22 x=%2250%22 y=%2255%22 font-size=%2280%22>📃</text></svg>"></span>
<span>Categories</span>
</div>
</a>
</nav>
<header class="Header">
<div class="Header__Spacer Header__Spacer--NoCover">
</div>
<div class="Header__Icon">
<span><img class="inline-img-icon" src="data:image/svg+xml,<svg xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 100 100%22><text text-anchor=%22middle%22 dominant-baseline=%22middle%22 x=%2250%22 y=%2255%22 font-size=%2280%22>🎽</text></svg>"></span>
</div>
<h1 class="Header__Title">支持向量机</h1>
<div class="DateTagBar">
<span class="DateTagBar__Item DateTagBar__Date">Posted on Tue, Apr 12, 2022</span>
<span class="DateTagBar__Item DateTagBar__Tag DateTagBar__Tag--gray">
<a href="tag/📖Note.html">📖Note</a>
</span>
<span class="DateTagBar__Item DateTagBar__Tag DateTagBar__Tag--purple">
<a href="tag/ML.html">ML</a>
</span>
</div>
</header>
<article id="https://www.notion.so/3c0db3a790ba4de2a2685e166b11141f" class="PageRoot"><ul id="https://www.notion.so/b7069dfb62744775bf34caba9ec8dac0" class="ColorfulBlock ColorfulBlock--ColorGray TableOfContents"><li class="TableOfContents__Item"><a href="#https://www.notion.so/1eefe3390c294617bd83e93e04a18202"><div style="margin-left:0px"><span class="SemanticStringArray"><span class="SemanticString">基本概念——线性可分类问题</span></span></div></a></li><li class="TableOfContents__Item"><a href="#https://www.notion.so/68df4417e7d443bab1b4a61a809fe01a"><div style="margin-left:24px"><span class="SemanticStringArray"><span class="SemanticString">线性可分</span></span></div></a></li><li class="TableOfContents__Item"><a href="#https://www.notion.so/84d68a214237479eb5e6f4c53288eb3c"><div style="margin-left:24px"><span class="SemanticStringArray"><span class="SemanticString">定义</span></span></div></a></li><li class="TableOfContents__Item"><a href="#https://www.notion.so/0a2ec726bb0f40b2a7bcbe370da69014"><div style="margin-left:24px"><span class="SemanticStringArray"><span class="SemanticString">优化问题</span></span></div></a></li><li class="TableOfContents__Item"><a href="#https://www.notion.so/c9ac5810e51e40a19293af9e40fd4bc8"><div style="margin-left:24px"><span class="SemanticStringArray"><span class="SemanticString">小结</span></span></div></a></li><li class="TableOfContents__Item"><a href="#https://www.notion.so/72cd14da756f413ba75faec9f86bdadc"><div style="margin-left:0px"><span class="SemanticStringArray"><span class="SemanticString">非线性问题</span></span></div></a></li><li class="TableOfContents__Item"><a href="#https://www.notion.so/37ee5cf7e9f74344889e09bb8db00bc6"><div style="margin-left:24px"><span class="SemanticStringArray"><span class="SemanticString">软间隔</span></span></div></a></li><li class="TableOfContents__Item"><a href="#https://www.notion.so/d004565952574259b5ef1b7b238fb8b1"><div style="margin-left:24px"><span class="SemanticStringArray"><span class="SemanticString">非线性可分</span></span></div></a></li><li class="TableOfContents__Item"><a href="#https://www.notion.so/4ff2014eb303462683b7fe5734a9d1ed"><div style="margin-left:24px"><span class="SemanticStringArray"><span class="SemanticString">核函数</span></span></div></a></li><li class="TableOfContents__Item"><a href="#https://www.notion.so/1dfc3708698642ee9f75defa9cc514a4"><div style="margin-left:0px"><span class="SemanticStringArray"><span class="SemanticString">对偶问题</span></span></div></a></li><li class="TableOfContents__Item"><a href="#https://www.notion.so/88d77d2c5e81400d850ae23d57995701"><div style="margin-left:24px"><span class="SemanticStringArray"><span class="SemanticString">定义</span></span></div></a></li></ul><h2 id="https://www.notion.so/1eefe3390c294617bd83e93e04a18202" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--2"><a class="Anchor" href="#https://www.notion.so/1eefe3390c294617bd83e93e04a18202"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">基本概念——线性可分类问题</span></span></h2><div id="https://www.notion.so/6ea5b41b2e784702ab2da129e21414e0" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">支持向量机是基于统计学习理论的一种实用的机器学习方法。</span></span></p></div><div id="https://www.notion.so/07b0847ce5914f8ebd8177b842634df5" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">SVM在解决</span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">小样本</mark></span><span class="SemanticString">、非线性及高维模式识别问题中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。</span></span></p></div><div id="https://www.notion.so/1d17b0d8c5f34d2393993c27f4f0777a" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">机器学习算法的时间线:</span></span></p></div><div id="https://www.notion.so/6d6b8825ca8342d1b6fdcfe314579174" class="Image Image--PageWidth"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fb2cff37f-ab82-425d-bcb6-a1d95054f3bb%2FUntitled.png?width=1793&table=block&id=6d6b8825-ca83-42d1-b6fd-cfe314579174"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fb2cff37f-ab82-425d-bcb6-a1d95054f3bb%2FUntitled.png?width=1793&table=block&id=6d6b8825-ca83-42d1-b6fd-cfe314579174" style="width:100%"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div><h3 id="https://www.notion.so/68df4417e7d443bab1b4a61a809fe01a" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--3"><a class="Anchor" href="#https://www.notion.so/68df4417e7d443bab1b4a61a809fe01a"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">线性可分</span></span></h3><div id="https://www.notion.so/91e020e7360e4c99b6b827e350be5229" class="Image Image--PageWidth"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F8c88b442-c556-4089-8127-e6963fea038f%2FUntitled.png?width=713&table=block&id=91e020e7-360e-4c99-b6b8-27e350be5229"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F8c88b442-c556-4089-8127-e6963fea038f%2FUntitled.png?width=713&table=block&id=91e020e7-360e-4c99-b6b8-27e350be5229" style="width:100%"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div><div id="https://www.notion.so/0f2d670b7f4b4c0aac1d7e8273877e10" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">问题:无数条线,哪个直线是最好的?</span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/7bd32baaed4e483d96f82710c938fa7b" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">如何定义这条线?</span></span></li><li id="https://www.notion.so/b719f93fc6db417690a7be2715122ef3" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">定义一个衡量每一条线的标准,每条线都能算出来一个性能指标。</span></span></li><li id="https://www.notion.so/5419b687716e4e4397dfcd7c3d275a64" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">哪条线能让这个性能指标最大?</span></span></li></ul><div id="https://www.notion.so/c6d5d919f6fa4214a865823966cc74fa" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">好的决策边界:间隔大</strong></span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/71ed1d38c3994baa8e94487f8d6ef981" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">决策边界离两类数据应尽可能远</span></span></li></ul><div id="https://www.notion.so/765abf2cf7c149f2a157bb0740f6f0e5" class="ColumnList"><div id="https://www.notion.so/fadd282b2a20414c8ac3053b52a16ae6" class="Column" style="width:calc((100% - var(--column-spacing) * 1) * 0.4375)"><div id="https://www.notion.so/5cd513c6be6c4e6ba8d38860ebec94ed" class="Image Image--Normal"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fbb07bbdd-b82e-4e88-84e2-8fb76350fc36%2FUntitled.png?width=298&table=block&id=5cd513c6-be6c-4e6b-a8d3-8860ebec94ed"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fbb07bbdd-b82e-4e88-84e2-8fb76350fc36%2FUntitled.png?width=298&table=block&id=5cd513c6-be6c-4e6b-a8d3-8860ebec94ed" style="width:298px"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div></div><div id="https://www.notion.so/0eae4802b551426ea02fe2cf5e295f5f" class="Column" style="width:calc((100% - var(--column-spacing) * 1) * 0.5625)"><div id="https://www.notion.so/a9539c46b68048faa0be4ff0435effbc" class="Image Image--Normal"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fddd0134b-9016-4a28-9bf0-0d6114c4b534%2FUntitled.png?width=238&table=block&id=a9539c46-b680-48fa-a0be-4ff0435effbc"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fddd0134b-9016-4a28-9bf0-0d6114c4b534%2FUntitled.png?width=238&table=block&id=a9539c46-b680-48fa-a0be-4ff0435effbc" style="width:238px"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div></div></div><div id="https://www.notion.so/ab940cb0cba848f6813ff831712a3c54" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">将平行线插到的向量称为支持向量</span></span></p></div><div id="https://www.notion.so/82fc91d3818a4f9685ef58dbe2f011f0" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">让这条线平行移动,直到能够插到某一个或几个圆圈为止</span></span></p></div><div id="https://www.notion.so/5bcd0a20d8dd45398fb07204baeb706f" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">这个距离作为性能指标,绿色线是这个距离最大的一条线</span></span></p></div><h3 id="https://www.notion.so/84d68a214237479eb5e6f4c53288eb3c" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--3"><a class="Anchor" href="#https://www.notion.so/84d68a214237479eb5e6f4c53288eb3c"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">定义</span></span></h3><ul class="BulletedListWrapper"><li id="https://www.notion.so/c18fed9bc5024a679d927ae2939e74c8" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">训练数据和标签:</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(x_1,y_1),(x_2,y_2),\dots,(x_n,y_n)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>y</mi><mn>1</mn></msub><mo stretchy="false">)</mo><mo separator="true">,</mo><mo stretchy="false">(</mo><msub><mi>x</mi><mn>2</mn></msub><mo separator="true">,</mo><msub><mi>y</mi><mn>2</mn></msub><mo stretchy="false">)</mo><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mo stretchy="false">(</mo><msub><mi>x</mi><mi>n</mi></msub><mo separator="true">,</mo><msub><mi>y</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(x_1,y_1),(x_2,y_2),\dots,(x_n,y_n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span></span></li></ul><div id="https://www.notion.so/813a9696d7c04b9ba352eb4a9946613b" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">其中</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x_i=\begin{bmatrix}
x_{i1} \\
x_{i2} \\
\dots \\
x_{im}
\end{bmatrix}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mi>i</mi></msub><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>x</mi><mrow><mi>i</mi><mn>1</mn></mrow></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>x</mi><mrow><mi>i</mi><mn>2</mn></mrow></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>x</mi><mrow><mi>i</mi><mi>m</mi></mrow></msub></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">x_i=\begin{bmatrix}
x_{i1} \\
x_{i2} \\
\dots \\
x_{im}
\end{bmatrix}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:4.80303em;vertical-align:-2.15003em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6529999999999996em;"><span style="top:-1.6499900000000003em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎣</span></span></span><span style="top:-2.79999em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-3.3959900000000003em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-3.4119800000000002em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-4.653em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎡</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.15003em;"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6500000000000004em;"><span style="top:-4.8100000000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="minner">…</span></span></span><span style="top:-1.2099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mord mathdefault mtight">m</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.1500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6529999999999996em;"><span style="top:-1.6499900000000003em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎦</span></span></span><span style="top:-2.79999em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-3.3959900000000003em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-3.4119800000000002em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-4.653em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎤</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.15003em;"><span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">为向量,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="y_i=1"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>y</mi><mi>i</mi></msub><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">y_i=1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span></span></span><span class="SemanticString">或</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="-1"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">-1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">−</span><span class="mord">1</span></span></span></span></span></span><span class="SemanticString">为标签。</span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/f3e529c4c69343038b33bdc99d260657" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">线性模型:</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(w,b)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>w</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(w,b)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> </span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="w^\text{T}x+b=0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>w</mi><mtext>T</mtext></msup><mi>x</mi><mo>+</mo><mi>b</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">w^\text{T}x+b=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.924661em;vertical-align:-0.08333em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">T</span></span></span></span></span></span></span></span></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">b</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></mark></span><span class="SemanticString">(超平面 Hyperplane)</span></span></li></ul><div id="https://www.notion.so/1cac1c9c026c48469e951fa50f83418c" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="w"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>w</mi></mrow><annotation encoding="application/x-tex">w</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span></span></span></span></span></span><span class="SemanticString">:向量,维度与</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span></span><span class="SemanticString">一样 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="w=\begin{bmatrix}
w_{1} \\
w_{2} \\
\dots \\
w_{m}
\end{bmatrix}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>w</mi><mo>=</mo><mrow><mo fence="true">[</mo><mtable rowspacing="0.15999999999999992em" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>w</mi><mn>1</mn></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>w</mi><mn>2</mn></msub></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mo lspace="0em" rspace="0em">…</mo></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><msub><mi>w</mi><mi>m</mi></msub></mstyle></mtd></mtr></mtable><mo fence="true">]</mo></mrow></mrow><annotation encoding="application/x-tex">w=\begin{bmatrix}
w_{1} \\
w_{2} \\
\dots \\
w_{m}
\end{bmatrix}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:4.80303em;vertical-align:-2.15003em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6529999999999996em;"><span style="top:-1.6499900000000003em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎣</span></span></span><span style="top:-2.79999em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-3.3959900000000003em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-3.4119800000000002em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎢</span></span></span><span style="top:-4.653em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎡</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.15003em;"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6500000000000004em;"><span style="top:-4.8100000000000005em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.02691em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.02691em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="minner">…</span></span></span><span style="top:-1.2099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.02691em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">m</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.1500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.6529999999999996em;"><span style="top:-1.6499900000000003em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎦</span></span></span><span style="top:-2.79999em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-3.3959900000000003em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-3.4119800000000002em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎥</span></span></span><span style="top:-4.653em;"><span class="pstrut" style="height:3.1550000000000002em;"></span><span class="delimsizinginner delim-size4"><span>⎤</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.15003em;"><span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="b"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">b</span></span></span></span></span></span><span class="SemanticString">:常数</span></span></p></div><div id="https://www.notion.so/7a11b9075dfb43d7ab042a635bcf6b7c" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">要找到描述这个超平面的线性方程</span></span></p></div><div id="https://www.notion.so/902d2a1aa1e34173a60bc789ca1fe323" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">通过所有</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span></span><span class="SemanticString">和</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="y"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span></span></span></span><span class="SemanticString">的取值,来算出</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="w"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>w</mi></mrow><annotation encoding="application/x-tex">w</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span></span></span></span></span></span><span class="SemanticString">和</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="b"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">b</span></span></span></span></span></span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/2e462a5c3e81401098f958f0e029d004" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">一个训练集线性可分是指:</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="{}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow></mrow><annotation encoding="application/x-tex">{}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0em;vertical-align:0em;"></span><span class="mord"></span></span></span></span></span></span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\{(x_i,y_i)\},i=1∼N"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mo separator="true">,</mo><msub><mi>y</mi><mi>i</mi></msub><mo stretchy="false">)</mo><mo stretchy="false">}</mo><mo separator="true">,</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>∼</mo><mi>N</mi></mrow><annotation encoding="application/x-tex">\{(x_i,y_i)\},i=1∼N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mclose">}</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">i</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∼</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">N</span></span></span></span></span></span></span></li></ul><div id="https://www.notion.so/125eda4fcf8b4cd78ec12ac5224ed54e" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\exists (w,b)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∃</mi><mo stretchy="false">(</mo><mi>w</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\exists (w,b)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∃</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">,使对</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\forall i=1∼N"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∀</mi><mi>i</mi><mo>=</mo><mn>1</mn><mo>∼</mo><mi>N</mi></mrow><annotation encoding="application/x-tex">\forall i=1∼N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord">∀</span><span class="mord mathdefault">i</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∼</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">N</span></span></span></span></span></span><span class="SemanticString">,有:</span></span></p></div><ol class="NumberedListWrapper"><li id="https://www.notion.so/c9a079f3da40433694e4968ba3155d6f" class="NumberedList" value="1"><span class="SemanticStringArray"><span class="SemanticString">若</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="y_i=+1"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>y</mi><mi>i</mi></msub><mo>=</mo><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">y_i=+1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">+</span><span class="mord">1</span></span></span></span></span></span><span class="SemanticString">,则</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="w^\text{T}x_i+b\ge0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>w</mi><mtext>T</mtext></msup><msub><mi>x</mi><mi>i</mi></msub><mo>+</mo><mi>b</mi><mo>≥</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">w^\text{T}x_i+b\ge0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.991331em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">T</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83041em;vertical-align:-0.13597em;"></span><span class="mord mathdefault">b</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">。</span></span></li><li id="https://www.notion.so/ec4e85082f8746bc8e8da6b12c0501dd" class="NumberedList" value="2"><span class="SemanticStringArray"><span class="SemanticString">若</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="y_i=-1"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>y</mi><mi>i</mi></msub><mo>=</mo><mo>−</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">y_i=-1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">−</span><span class="mord">1</span></span></span></span></span></span><span class="SemanticString">,则</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="w^\text{T}x_i+b\le0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>w</mi><mtext>T</mtext></msup><msub><mi>x</mi><mi>i</mi></msub><mo>+</mo><mi>b</mi><mo>≤</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">w^\text{T}x_i+b\le0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.991331em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">T</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83041em;vertical-align:-0.13597em;"></span><span class="mord mathdefault">b</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">。</span></span></li></ol><div id="https://www.notion.so/3847c5e8b0944ff2824358301e1617ec" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">统一表示为:</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="y_i[w^\text{T}x_i+b]\ge 0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>y</mi><mi>i</mi></msub><mo stretchy="false">[</mo><msup><mi>w</mi><mtext>T</mtext></msup><msub><mi>x</mi><mi>i</mi></msub><mo>+</mo><mi>b</mi><mo stretchy="false">]</mo><mo>≥</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">y_i[w^\text{T}x_i+b]\ge 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0913309999999998em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">[</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">T</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">b</span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span></span></p></div><div id="https://www.notion.so/f7a77e02a3714c0b9ea3d60b6fd3a22c" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">线性可分数据的超平面</strong></span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/efa0246fc14a40d6aecae081018ee287" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">当训练数据集线性可分时,存在无穷多个分离超平面可将两类数据正确分开。</span></span></li><li id="https://www.notion.so/258b0f04fcf54e66b1126a11858724a9" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">感知机</mark></span><span class="SemanticString">利用误分类最小的策略,求得分离超平面,但有无穷多个解。</span></span></li><li id="https://www.notion.so/0bce9efe109a495c98caf986ffbbadfa" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">支持向量机</mark></span><span class="SemanticString">利用间隔最大化求最优分离超平面,解唯一。</span></span></li></ul><h3 id="https://www.notion.so/0a2ec726bb0f40b2a7bcbe370da69014" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--3"><a class="Anchor" href="#https://www.notion.so/0a2ec726bb0f40b2a7bcbe370da69014"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">优化问题</span></span></h3><ul class="BulletedListWrapper"><li id="https://www.notion.so/7af8b7c98a274716a78fb81816eacd9d" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">如何得到间隔最大的超平面</span></span></li></ul><div id="https://www.notion.so/2e2bf81aed76437d9a1d6336e8a9c3ae" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">支持向量机做了一个优化问题:</mark></span></span></p></div><div id="https://www.notion.so/d59477fcac7b45b7b5e12c3c00c4669a" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">最小化(Minimize)</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\lVert w\rVert"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">∥</mo><mi>w</mi><mo stretchy="false">∥</mo></mrow><annotation encoding="application/x-tex">\lVert w\rVert</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">∥</span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mclose">∥</span></span></span></span></span></span></span></p></div><div id="https://www.notion.so/c325c27b833746a3931cbf088d9da5ba" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">约束条件(Subject to)</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="y_i[w^\text{T}x_i+b]\ge 1\;(i=1∼N)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>y</mi><mi>i</mi></msub><mo stretchy="false">[</mo><msup><mi>w</mi><mtext>T</mtext></msup><msub><mi>x</mi><mi>i</mi></msub><mo>+</mo><mi>b</mi><mo stretchy="false">]</mo><mo>≥</mo><mn>1</mn><mtext> </mtext><mo stretchy="false">(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>∼</mo><mi>N</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">y_i[w^\text{T}x_i+b]\ge 1\;(i=1∼N)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0913309999999998em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">[</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">T</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">b</span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mopen">(</span><span class="mord mathdefault">i</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∼</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">N</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> </span></span></p></div><div id="https://www.notion.so/cd46d3ed7c5a40c78fb4cb790777d1dd" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="w^\text{T}+b=0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>w</mi><mtext>T</mtext></msup><mo>+</mo><mi>b</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">w^\text{T}+b=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.924661em;vertical-align:-0.08333em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">T</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">b</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">与</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="aw^\text{T}+ab=0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><msup><mi>w</mi><mtext>T</mtext></msup><mo>+</mo><mi>a</mi><mi>b</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">aw^\text{T}+ab=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.924661em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">a</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">T</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">a</span><span class="mord mathdefault">b</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">是同一个平面,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a\in \R^+"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><msup><mi mathvariant="double-struck">R</mi><mo>+</mo></msup></mrow><annotation encoding="application/x-tex">a\in \R^+</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">a</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.771331em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbb">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.771331em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mbin mtight">+</span></span></span></span></span></span></span></span></span></span></span></span></span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/d077f45eae3b4d38b84655f0b5f196b2" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">点</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(x_0,y_0)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>0</mn></msub><mo separator="true">,</mo><msub><mi>y</mi><mn>0</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(x_0,y_0)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">到平面</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="w_1x+w_2x+b=0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>w</mi><mn>1</mn></msub><mi>x</mi><mo>+</mo><msub><mi>w</mi><mn>2</mn></msub><mi>x</mi><mo>+</mo><mi>b</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">w_1x+w_2x+b=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.02691em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.02691em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">b</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">的距离:</span></span><div id="https://www.notion.so/890dd5581ef14fbd9279eedc9cc2cc7f" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="d=\cfrac{|w_1x+w_2x+b|}{\sqrt{w_1^2+w_2^2}}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><mfrac><mrow><mi mathvariant="normal">∣</mi><msub><mi>w</mi><mn>1</mn></msub><mi>x</mi><mo>+</mo><msub><mi>w</mi><mn>2</mn></msub><mi>x</mi><mo>+</mo><mi>b</mi><mi mathvariant="normal">∣</mi></mrow><msqrt><mrow><msubsup><mi>w</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>w</mi><mn>2</mn><mn>2</mn></msubsup></mrow></msqrt></mfrac></mstyle></mrow><annotation encoding="application/x-tex">d=\cfrac{|w_1x+w_2x+b|}{\sqrt{w_1^2+w_2^2}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">d</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.7199999999999998em;vertical-align:-1.13em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5899999999999999em;"><span style="top:-2.1602em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9498em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7959080000000001em;"><span style="top:-2.433692em;margin-left:-0.02691em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span><span style="top:-3.0448000000000004em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.26630799999999993em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7959080000000001em;"><span style="top:-2.433692em;margin-left:-0.02691em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span><span style="top:-3.0448000000000004em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.26630799999999993em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.9098em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg width='400em' height='1.28em' viewBox='0 0 400000 1296' preserveAspectRatio='xMinYMin slice'><path d='M263,681c0.7,0,18,39.7,52,119
c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120
c340,-704.7,510.7,-1060.3,512,-1067
l0 -0
c4.7,-7.3,11,-11,19,-11
H40000v40H1012.3
s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232
c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1
s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26
c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z
M1001 80h400000v40h-400000z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2902em;"><span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.74em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">∣</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.02691em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.02691em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">b</span><span class="mord">∣</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.13em;"><span></span></span></span></span></span><span></span></span></span></span></span></span></span></span></p></div></li><li id="https://www.notion.so/cd23093aa4a64dd88584bd98625b589f" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">向量</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x_0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">x_0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">到平面</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="w^\text{T}x+b=0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>w</mi><mtext>T</mtext></msup><mi>x</mi><mo>+</mo><mi>b</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">w^\text{T}x+b=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.924661em;vertical-align:-0.08333em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">T</span></span></span></span></span></span></span></span></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">b</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">的距离:</span></span><div id="https://www.notion.so/8f336660a239467db77ba013b6f57263" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="d=\cfrac{|w^\text{T}x_0+b|}{\lVert w\rVert}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><mfrac><mrow><mi mathvariant="normal">∣</mi><msup><mi>w</mi><mtext>T</mtext></msup><msub><mi>x</mi><mn>0</mn></msub><mo>+</mo><mi>b</mi><mi mathvariant="normal">∣</mi></mrow><mrow><mo stretchy="false">∥</mo><mi>w</mi><mo stretchy="false">∥</mo></mrow></mfrac></mstyle></mrow><annotation encoding="application/x-tex">d=\cfrac{|w^\text{T}x_0+b|}{\lVert w\rVert}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">d</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.526em;vertical-align:-0.936em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5899999999999999em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">∥</span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mclose">∥</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.74em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">∣</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">T</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">b</span><span class="mord">∣</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span></span></span></span></span></span></span></span><span class="SemanticString">,其中</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\lVert w\rVert=\sqrt{w_1^2+w_2^2+\cdots+w_m^2}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">∥</mo><mi>w</mi><mo stretchy="false">∥</mo><mo>=</mo><msqrt><mrow><msubsup><mi>w</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>w</mi><mn>2</mn><mn>2</mn></msubsup><mo>+</mo><mo>⋯</mo><mo>+</mo><msubsup><mi>w</mi><mi>m</mi><mn>2</mn></msubsup></mrow></msqrt></mrow><annotation encoding="application/x-tex">\lVert w\rVert=\sqrt{w_1^2+w_2^2+\cdots+w_m^2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">∥</span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mclose">∥</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.24em;vertical-align:-0.2902em;"></span><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9498em;"><span class="svg-align" style="top:-3.2em;"><span class="pstrut" style="height:3.2em;"></span><span class="mord" style="padding-left:1em;"><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7959080000000001em;"><span style="top:-2.433692em;margin-left:-0.02691em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span><span style="top:-3.0448000000000004em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.26630799999999993em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.7959080000000001em;"><span style="top:-2.433692em;margin-left:-0.02691em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span><span style="top:-3.0448000000000004em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.26630799999999993em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.740108em;"><span style="top:-2.4530000000000003em;margin-left:-0.02691em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span><span style="top:-2.9890000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.9098em;"><span class="pstrut" style="height:3.2em;"></span><span class="hide-tail" style="min-width:1.02em;height:1.28em;"><svg width='400em' height='1.28em' viewBox='0 0 400000 1296' preserveAspectRatio='xMinYMin slice'><path d='M263,681c0.7,0,18,39.7,52,119
c34,79.3,68.167,158.7,102.5,238c34.3,79.3,51.8,119.3,52.5,120
c340,-704.7,510.7,-1060.3,512,-1067
l0 -0
c4.7,-7.3,11,-11,19,-11
H40000v40H1012.3
s-271.3,567,-271.3,567c-38.7,80.7,-84,175,-136,283c-52,108,-89.167,185.3,-111.5,232
c-22.3,46.7,-33.8,70.3,-34.5,71c-4.7,4.7,-12.3,7,-23,7s-12,-1,-12,-1
s-109,-253,-109,-253c-72.7,-168,-109.3,-252,-110,-252c-10.7,8,-22,16.7,-34,26
c-22,17.3,-33.3,26,-34,26s-26,-26,-26,-26s76,-59,76,-59s76,-60,76,-60z
M1001 80h400000v40h-400000z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.2902em;"><span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">。</span></span></p></div></li></ul><div id="https://www.notion.so/3569fb3d69dc448184719ff1c2643a1f" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">SVM是最大化间隔的分类算法</mark></span></span></p></div><div id="https://www.notion.so/3af446f2508e4919a9b9b891bfb54a19" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">用</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">a</span></span></span></span></span></span><span class="SemanticString">缩放</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(w,b)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>w</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(w,b)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">→</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(aw,ab)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mi>w</mi><mo separator="true">,</mo><mi>a</mi><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(aw,ab)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">a</span><span class="mord mathdefault">b</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">,最终使其在支持向量</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x_0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mn>0</mn></msub></mrow><annotation encoding="application/x-tex">x_0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">上有:</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="|w^\text{T}x_0+b|=1"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi><msup><mi>w</mi><mtext>T</mtext></msup><msub><mi>x</mi><mn>0</mn></msub><mo>+</mo><mi>b</mi><mi mathvariant="normal">∣</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">|w^\text{T}x_0+b|=1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0913309999999998em;vertical-align:-0.25em;"></span><span class="mord">∣</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">T</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">b</span><span class="mord">∣</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span></span></span></span></p></div><div id="https://www.notion.so/05a07648d78943cb98b533dcb2a00504" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">此时支持向量与平面的距离:</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="d=\cfrac{1}{\lVert w\rVert}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><mfrac><mn>1</mn><mrow><mo stretchy="false">∥</mo><mi>w</mi><mo stretchy="false">∥</mo></mrow></mfrac></mstyle></mrow><annotation encoding="application/x-tex">d=\cfrac{1}{\lVert w\rVert}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">d</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.526em;vertical-align:-0.936em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.5899999999999999em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">∥</span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mclose">∥</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.74em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span></span></span></span></span></span></span></span></span></p></div><div id="https://www.notion.so/295d8d8f35a54ef5909cf8fb8d69e6d5" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">最小化</mark></span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\lVert w\rVert"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">∥</mo><mi>w</mi><mo stretchy="false">∥</mo></mrow><annotation encoding="application/x-tex">\lVert w\rVert</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">∥</span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mclose">∥</span></span></span></span></span></mark></span><span class="SemanticString">,其他点大于</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="d"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">d</span></span></span></span></span></span></span></p></div><div id="https://www.notion.so/0433458c072540ed8ea3df2a9e840354" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="y_i"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>y</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">y_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">取正负1,可以协调两个类,也可以改成任意整数,差距就是</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">a</span></span></span></span></span></span></span></p></div><div id="https://www.notion.so/a177938a749247e7a03aaa4a8c64bcda" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">数据集如果线性可分</strong></span><span class="SemanticString">,就能求得</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="w"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>w</mi></mrow><annotation encoding="application/x-tex">w</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span></span></span></span></span></span><span class="SemanticString">和</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="b"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">b</span></span></span></span></span></span><span class="SemanticString">,满足条件:</span></span></p></div><div id="https://www.notion.so/624e80351eea45bea9a0b6370cf314bb" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\frac{1}{2}\lVert w\rVert^2=\frac{1}{2}(w_1^2+w_2^2+\cdots+w_m^2)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mo stretchy="false">∥</mo><mi>w</mi><msup><mo stretchy="false">∥</mo><mn>2</mn></msup><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo stretchy="false">(</mo><msubsup><mi>w</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>w</mi><mn>2</mn><mn>2</mn></msubsup><mo>+</mo><mo>⋯</mo><mo>+</mo><msubsup><mi>w</mi><mi>m</mi><mn>2</mn></msubsup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\frac{1}{2}\lVert w\rVert^2=\frac{1}{2}(w_1^2+w_2^2+\cdots+w_m^2)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.190108em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mopen">∥</span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mclose"><span class="mclose">∥</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.190108em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-2.4518920000000004em;margin-left:-0.02691em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.24810799999999997em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.0622159999999998em;vertical-align:-0.24810799999999997em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-2.4518920000000004em;margin-left:-0.02691em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.24810799999999997em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-2.4530000000000003em;margin-left:-0.02691em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\frac{1}{2}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow><annotation encoding="application/x-tex">\frac{1}{2}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.190108em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></span><span class="SemanticString">是为了求导方便</span></span></p></div><div id="https://www.notion.so/5df21cb58e3f4368a1abaf0f38edbe0c" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="y_i[w^\text{T}x_i+b]\ge 1\;(i=1∼N)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>y</mi><mi>i</mi></msub><mo stretchy="false">[</mo><msup><mi>w</mi><mtext>T</mtext></msup><msub><mi>x</mi><mi>i</mi></msub><mo>+</mo><mi>b</mi><mo stretchy="false">]</mo><mo>≥</mo><mn>1</mn><mtext> </mtext><mo stretchy="false">(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>∼</mo><mi>N</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">y_i[w^\text{T}x_i+b]\ge 1\;(i=1∼N)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0913309999999998em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">[</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">T</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">b</span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mopen">(</span><span class="mord mathdefault">i</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∼</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">N</span><span class="mclose">)</span></span></span></span></span></span></span></p></div><div id="https://www.notion.so/66a38c48f1b54936b5f48d66ba4f878b" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">优化问题</strong></span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/38ae7c7a939a4f4c97da56dc95181ff7" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">目标优化问题是一个凸优化问题中的一种二次规划问题</span></span></li><li id="https://www.notion.so/2827959451b3431a9a63b7f69de512b2" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">二次规划</mark></span><span class="SemanticString">(quantity programming)</span></span><div id="https://www.notion.so/2bedf01638c04f4ba5daec79f149cbae" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">目标函数是二次项;约束条件是一次项</span></span></p></div><div id="https://www.notion.so/956a491260014f52851910c3dfbad176" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">无解或者一个最小值</span></span></p></div><div id="https://www.notion.so/77bf5892f94a452586ce0bd625d750b9" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">二次规划是计算机已解决的问题,其局部极值就是全局极值</span></span></p></div></li><li id="https://www.notion.so/a9e01b058dad4e2395d33b290b23d92d" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">用试探方法,求极值,例如梯度下降</span></span></li><li id="https://www.notion.so/fa24509df99543deac47607d5da5f92b" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">多维情况下很困难,有时人眼无法看到所有情况</span></span></li></ul><h3 id="https://www.notion.so/c9ac5810e51e40a19293af9e40fd4bc8" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--3"><a class="Anchor" href="#https://www.notion.so/c9ac5810e51e40a19293af9e40fd4bc8"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">小结</span></span></h3><ul class="BulletedListWrapper"><li id="https://www.notion.so/ee7ca93d9a0a42358ddc485de85e149b" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">SVM是最大化间隔(margin)的分类算法</strong></span></span></li><li id="https://www.notion.so/51b03ad27ac846b586af2e251dbb28ce" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">优化问题</span></span><div id="https://www.notion.so/58f4ae825b4b4a18b35bda81d4f1d3cc" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">训练样本</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\{(x_i,y_i)\}_{i=1∼N}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mo separator="true">,</mo><msub><mi>y</mi><mi>i</mi></msub><mo stretchy="false">)</mo><msub><mo stretchy="false">}</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>∼</mo><mi>N</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\{(x_i,y_i)\}_{i=1∼N}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mclose"><span class="mclose">}</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span><span class="mrel mtight">∼</span><span class="mord mathdefault mtight" style="margin-right:0.10903em;">N</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span></span></p></div></li><li id="https://www.notion.so/aa9095e5f29c47169103da3d53e6163a" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">优化目标</span></span><div id="https://www.notion.so/a1f3b00663434edc801e1de382040a77" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\min\frac{1}{2}\|w\|^2"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>min</mi><mo></mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mi mathvariant="normal">∥</mi><mi>w</mi><msup><mi mathvariant="normal">∥</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">\min\frac{1}{2}\|w\|^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.190108em;vertical-align:-0.345em;"></span><span class="mop">min</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord">∥</span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mord"><span class="mord">∥</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span></span></p></div><div id="https://www.notion.so/8fe9b4af734f414ca905741e39643df3" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="s.t.\;\; y_i[w^\text{T}x_i+b]\ge1\;\;(i=1∼N)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>s</mi><mi mathvariant="normal">.</mi><mi>t</mi><mi mathvariant="normal">.</mi><mtext> </mtext><mtext> </mtext><msub><mi>y</mi><mi>i</mi></msub><mo stretchy="false">[</mo><msup><mi>w</mi><mtext>T</mtext></msup><msub><mi>x</mi><mi>i</mi></msub><mo>+</mo><mi>b</mi><mo stretchy="false">]</mo><mo>≥</mo><mn>1</mn><mtext> </mtext><mtext> </mtext><mo stretchy="false">(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>∼</mo><mi>N</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">s.t.\;\; y_i[w^\text{T}x_i+b]\ge1\;\;(i=1∼N)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0913309999999998em;vertical-align:-0.25em;"></span><span class="mord mathdefault">s</span><span class="mord">.</span><span class="mord mathdefault">t</span><span class="mord">.</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">[</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">T</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">b</span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mopen">(</span><span class="mord mathdefault">i</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∼</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">N</span><span class="mclose">)</span></span></span></span></span></span></span></p></div><div id="https://www.notion.so/e0b0c5e6a1504b6791212b6796fe8aa0" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">凸优化问题中的二次规划问题</span></span></p></div></li></ul><h2 id="https://www.notion.so/72cd14da756f413ba75faec9f86bdadc" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--2"><a class="Anchor" href="#https://www.notion.so/72cd14da756f413ba75faec9f86bdadc"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">非线性问题</span></span></h2><h3 id="https://www.notion.so/37ee5cf7e9f74344889e09bb8db00bc6" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--3"><a class="Anchor" href="#https://www.notion.so/37ee5cf7e9f74344889e09bb8db00bc6"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">软间隔</span></span></h3><div id="https://www.notion.so/c42930fdbe634d0e9ddcb6cbbf67e374" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">训练数据中的特异点,去掉后,剩下大部分样本点组成的集合满足线性可分</span></span></p></div><div id="https://www.notion.so/ca8ae86b786c4f1fad4801e64354cbf5" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">引入“软间隔”的概念,</span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">允许支持向量机在一些样本上不满足约束</mark></span></span></p></div><div id="https://www.notion.so/a2e42880a5044f208828ec5a9db88779" class="Image Image--Normal"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F0260d1d8-3b13-48b2-8317-88411b7ff3f5%2FUntitled.png?width=288&table=block&id=a2e42880-a504-4f20-8828-ec5a9db88779"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F0260d1d8-3b13-48b2-8317-88411b7ff3f5%2FUntitled.png?width=288&table=block&id=a2e42880-a504-4f20-8828-ec5a9db88779" style="width:288px"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div><div id="https://www.notion.so/0a7f8766e0314683b88f89bffd1434be" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">现实中,很难确定合适的核函数使得训练样本在特征空间中线性可分;一个线性可分的结果也很难断定是否是由过拟合造成的。</span></span></p></div><div id="https://www.notion.so/469058a672304b07a6f93cb4d80682c5" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">将线性不可分的学习问题转换为凸二次规划问题,即</span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">软间隔最大化</mark></span></span></p></div><div id="https://www.notion.so/14cddfa0612c4bba8746bea8e82021b8" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">线性支持向量机:</span></span></p></div><div id="https://www.notion.so/8d6c859775904c75b79bc10811e38322" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">最小化:</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\frac{1}{2}\|w\|^2+\boxed{C\sum_{i=1}^{N}\xi_i}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mn>1</mn><mn>2</mn></mfrac><mi mathvariant="normal">∥</mi><mi>w</mi><msup><mi mathvariant="normal">∥</mi><mn>2</mn></msup><mo>+</mo><menclose notation="box"><mstyle scriptlevel="0" displaystyle="false"><mstyle scriptlevel="0" displaystyle="false"><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>C</mi><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>ξ</mi><mi>i</mi></msub></mrow></mstyle></mstyle></mstyle></menclose></mrow><annotation encoding="application/x-tex">\frac{1}{2}\|w\|^2+\boxed{C\sum_{i=1}^{N}\xi_i}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.190108em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord">∥</span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mord"><span class="mord">∥</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:3.7860050000000003em;vertical-align:-1.6176689999999998em;"></span><span class="mord"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.1683360000000005em;"><span style="top:-5.786004999999999em;"><span class="pstrut" style="height:5.786005em;"></span><span class="boxpad"><span class="mord"><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8283360000000002em;"><span style="top:-1.872331em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.050005em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3000050000000005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10903em;">N</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.277669em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04601em;">ξ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.04601em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span style="top:-4.168336em;"><span class="pstrut" style="height:5.786005em;"></span><span class="stretchy fbox" style="height:3.7860050000000003em;border-style:solid;border-width:0.04em;"></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.6176689999999998em;"><span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">(</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\xi_i"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>ξ</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">\xi_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04601em;">ξ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.04601em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">为松弛变量,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="C\sum_{i=1}^{N}\xi_i"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></msubsup><msub><mi>ξ</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">C\sum_{i=1}^{N}\xi_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.2809409999999999em;vertical-align:-0.29971000000000003em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.981231em;"><span style="top:-2.40029em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.10903em;">N</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.29971000000000003em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04601em;">ξ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.04601em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">为正则项)</span></span></p></div><div id="https://www.notion.so/333970a4faf942eb9c6ff09ed6f2e436" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">约束条件:</span></span></p></div><div id="https://www.notion.so/e58a01cbb0ea416a87b22e7a9c1ff70e" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">(1)</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="y_i[w^\text{T}x_i+b]\ge1"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>y</mi><mi>i</mi></msub><mo stretchy="false">[</mo><msup><mi>w</mi><mtext>T</mtext></msup><msub><mi>x</mi><mi>i</mi></msub><mo>+</mo><mi>b</mi><mo stretchy="false">]</mo><mo>≥</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">y_i[w^\text{T}x_i+b]\ge1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0913309999999998em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">[</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">T</span></span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">b</span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span></span></span></span></p></div><div id="https://www.notion.so/6a585133513c4c64851e673e6a0d4d46" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">(2)</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\xi_i\ge0\;,i=1∼N"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>ξ</mi><mi>i</mi></msub><mo>≥</mo><mn>0</mn><mtext> </mtext><mo separator="true">,</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>∼</mo><mi>N</mi></mrow><annotation encoding="application/x-tex">\xi_i\ge0\;,i=1∼N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04601em;">ξ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.04601em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.85396em;vertical-align:-0.19444em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">i</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∼</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">N</span></span></span></span></span></span></span></p></div><div id="https://www.notion.so/0a0cfda6abb343fe9660d8d6c8054821" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">求解得到分离超平面</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="w^*x+b^*=0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>w</mi><mo>∗</mo></msup><mi>x</mi><mo>+</mo><msup><mi>b</mi><mo>∗</mo></msup><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">w^*x+b^*=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.772026em;vertical-align:-0.08333em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.688696em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mbin mtight">∗</span></span></span></span></span></span></span></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.688696em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mbin mtight">∗</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">,以及决策函数</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="f(x)=sign(w^*x+b^*)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>s</mi><mi>i</mi><mi>g</mi><mi>n</mi><mo stretchy="false">(</mo><msup><mi>w</mi><mo>∗</mo></msup><mi>x</mi><mo>+</mo><msup><mi>b</mi><mo>∗</mo></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f(x)=sign(w^*x+b^*)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">s</span><span class="mord mathdefault">i</span><span class="mord mathdefault" style="margin-right:0.03588em;">g</span><span class="mord mathdefault">n</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.688696em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mbin mtight">∗</span></span></span></span></span></span></span></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">b</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.688696em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mbin mtight">∗</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span></span></p></div><div id="https://www.notion.so/0b95da8de9934a56ab06c7197b88cb3a" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">软间隔参数</strong></span></span></p></div><div id="https://www.notion.so/cdc9b719dc7c4915ae79aa6402ab2993" class="Image Image--PageWidth"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F816113b2-e89f-4eb5-832a-05783d2fde7a%2FUntitled.png?width=1440&table=block&id=cdc9b719-dc7c-4915-ae79-aa6402ab2993"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F816113b2-e89f-4eb5-832a-05783d2fde7a%2FUntitled.png?width=1440&table=block&id=cdc9b719-dc7c-4915-ae79-aa6402ab2993" style="width:100%"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div><div id="https://www.notion.so/54ac66981ea04025b86621dd8c8a8836" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">尽可能在保持间隔宽阔或限制间隔违例之间找到一个平衡</span></span></p></div><div id="https://www.notion.so/034d85a9b9754f1692ab6b91ec619d71" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">间隔或限制间隔违例之间的关系由超参数</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="C"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">C</span></span></span></span></span></span><span class="SemanticString">控制,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="C"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">C</span></span></span></span></span></span><span class="SemanticString">越大,间隔越窄,但是违例也更少,反之则间隔越宽,但是违例也越多。</span></span></p></div><div id="https://www.notion.so/a51bf87c5fc542168a142db196a70338" class="Image Image--PageWidth"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F95c07802-f85b-466c-8290-c58a3e7b304d%2FUntitled.png?width=752&table=block&id=a51bf87c-5fc5-4216-8a14-2db196a70338"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F95c07802-f85b-466c-8290-c58a3e7b304d%2FUntitled.png?width=752&table=block&id=a51bf87c-5fc5-4216-8a14-2db196a70338" style="width:100%"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div><h3 id="https://www.notion.so/d004565952574259b5ef1b7b238fb8b1" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--3"><a class="Anchor" href="#https://www.notion.so/d004565952574259b5ef1b7b238fb8b1"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">非线性可分</span></span></h3><div id="https://www.notion.so/4b5232f23ca748078936dbf292d768c1" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">仍然找直线,但是到一个高维空间中找直线</mark></span></span></p></div><div id="https://www.notion.so/f15cb4b8a7b24dd8a1ddf4fe001455fb" class="Image Image--PageWidth"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F1df58015-25ae-454a-8e6e-3f42888fe771%2FUntitled.png?width=997&table=block&id=f15cb4b8-a7b2-4dd8-a1dd-f4fe001455fb"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F1df58015-25ae-454a-8e6e-3f42888fe771%2FUntitled.png?width=997&table=block&id=f15cb4b8-a7b2-4dd8-a1dd-f4fe001455fb" style="width:100%"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div><div id="https://www.notion.so/0c290b133e25445f8da69b752a6d4700" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">定义一个高维映射</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\phi(x)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ϕ</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\phi(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">ϕ</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">:低维</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span></span><span class="SemanticString"> → 高维</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\phi(x)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ϕ</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\phi(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">ϕ</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span></span></span></span></span></span></span></p></div><div id="https://www.notion.so/f7327cb2fdc04e939e6391d80172a9bf" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">例如,最简单的非线性可分问题:异或问题</span></span></p></div><div id="https://www.notion.so/e29cd01f034342b98569b8f577f1526c" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"></span></p></div><div id="https://www.notion.so/c17c243491e549a8947227503dbbf75a" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">线性分类器变为一个超平面,把空间分为两个部分</span></span></p></div><div id="https://www.notion.so/ec006d03f30045f08bcedaad5044d9f8" class="Image Image--Normal"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fd3846308-341a-4c47-a0c2-ce9d40747ee7%2FUntitled.png?width=565&table=block&id=ec006d03-f300-45f0-8bce-daad5044d9f8"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fd3846308-341a-4c47-a0c2-ce9d40747ee7%2FUntitled.png?width=565&table=block&id=ec006d03-f300-45f0-8bce-daad5044d9f8" style="width:565px"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div><div id="https://www.notion.so/f3aa6842157a4d08bf2b42883649a6e2" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">关键思想:</span></span></p></div><div id="https://www.notion.so/cc104ac0f7ea44a48cba105c2bfdcef7" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">为了解决非线性分割问题,将</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x_i"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">x_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">变换到一个高维空间</span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/ba874c1ed0094c4f9170eded848d179a" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">输入空间:</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x_i"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">x_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">所在的空间</span></span></li><li id="https://www.notion.so/4e3850eff28f4807a523392e7f5f4df4" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">特征空间:变换后</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\phi(x_i)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ϕ</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\phi(x_i)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">ϕ</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">的空间</span></span></li></ul><div id="https://www.notion.so/d3b2b5993eb24357a88b817a005f86f2" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">如何变换?</span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/be948e5ac27045baaa9e33120bf759cd" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">利用一个适当的变换</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\phi"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">ϕ</span></span></span></span></span></span><span class="SemanticString">,使分类变得容易</span></span></li><li id="https://www.notion.so/e25f9d2b04bf43589fdb3d976c1adfa7" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">特征空间中的线性算子等价于输入空间中的非线性算子</span></span></li></ul><div id="https://www.notion.so/2f924238a74e47efbf91780727c50d45" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">变换可能出现的问题:难以得到一个好的分类且计算开销大</span></span></p></div><div id="https://www.notion.so/c3dbaf6803624958a6bf643002cd76be" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">需要同时解决两个问题:</span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/8cf118cbe1514a97ab604ef338a522e9" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">最小化</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\|w\|"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∥</mi><mi>w</mi><mi mathvariant="normal">∥</mi></mrow><annotation encoding="application/x-tex">\|w\|</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∥</span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mord">∥</span></span></span></span></span></span><span class="SemanticString">能得到好的分类</span></span></li><li id="https://www.notion.so/784d226b0c5041c385a4807dd1472794" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">利用核函数技巧可以进行有效的计算</span></span></li></ul><div id="https://www.notion.so/36e9b47f7559468090d8067cec3c862f" class="Image Image--PageWidth"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F5c60af3a-8165-49f9-8a79-25f1499a4a7f%2FUntitled.png?width=712&table=block&id=36e9b47f-7559-4680-90d8-067cec3c862f"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F5c60af3a-8165-49f9-8a79-25f1499a4a7f%2FUntitled.png?width=712&table=block&id=36e9b47f-7559-4680-90d8-067cec3c862f" style="width:100%"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div><h3 id="https://www.notion.so/4ff2014eb303462683b7fe5734a9d1ed" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--3"><a class="Anchor" href="#https://www.notion.so/4ff2014eb303462683b7fe5734a9d1ed"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">核函数</span></span></h3><div id="https://www.notion.so/ece3ddcf26674c1a90d39cd9376789ca" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">高维映射</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x\rightarrow\phi(x)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>→</mo><mi>ϕ</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x\rightarrow\phi(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">ϕ</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span></span></span></span></span></span></span></p></div><p id="https://www.notion.so/8eaa324137ab4914a2eec5f2e17748da" class="Equation" data-latex="\begin{cases}
y_i[w^{\text{T}}\phi(x_i)+b]\ge1-\xi_i \\
\xi_i\ge 0
\end{cases}"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo fence="true">{</mo><mtable rowspacing="0.3599999999999999em" columnalign="left left" columnspacing="1em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi>y</mi><mi>i</mi></msub><mo stretchy="false">[</mo><msup><mi>w</mi><mtext>T</mtext></msup><mi>ϕ</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mo stretchy="false">)</mo><mo>+</mo><mi>b</mi><mo stretchy="false">]</mo><mo>≥</mo><mn>1</mn><mo>−</mo><msub><mi>ξ</mi><mi>i</mi></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi>ξ</mi><mi>i</mi></msub><mo>≥</mo><mn>0</mn></mrow></mstyle></mtd></mtr></mtable></mrow><annotation encoding="application/x-tex">\begin{cases}
y_i[w^{\text{T}}\phi(x_i)+b]\ge1-\xi_i \\
\xi_i\ge 0
\end{cases}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.0000299999999998em;vertical-align:-1.25003em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size4">{</span></span><span class="mord"><span class="mtable"><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.69em;"><span style="top:-3.69em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">[</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord text mtight"><span class="mord mtight">T</span></span></span></span></span></span></span></span></span></span><span class="mord mathdefault">ϕ</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">b</span><span class="mclose">]</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04601em;">ξ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.04601em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault" style="margin-right:0.04601em;">ξ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.04601em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.19em;"><span></span></span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p><div id="https://www.notion.so/49b93a0f48994167acfcc1e01f81f476" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\phi(x)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ϕ</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\phi(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">ϕ</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">是无限维,无法求整体优化</span></span></p></div><div id="https://www.notion.so/fc6898923e5e421db2f40946a4ba5901" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\phi(x_1)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ϕ</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\phi(x_1)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">ϕ</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">与</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\phi(x_2)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ϕ</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\phi(x_2)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">ϕ</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">两个无限维向量</span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">内积</mark></span><span class="SemanticString">:</span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">核函数(Kenerl Function)</mark></span></span></p></div><div id="https://www.notion.so/174d84243d93441eb0716ec0403c5e4e" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="K(x_1,x_2)=\phi(x_1)^\text{T}\phi(x_2)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mi>ϕ</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><msup><mo stretchy="false">)</mo><mtext>T</mtext></msup><mi>ϕ</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">K(x_1,x_2)=\phi(x_1)^\text{T}\phi(x_2)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">K</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.0913309999999998em;vertical-align:-0.25em;"></span><span class="mord mathdefault">ϕ</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">T</span></span></span></span></span></span></span></span></span><span class="mord mathdefault">ϕ</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></mark></span></span></p></div><div id="https://www.notion.so/e5c0ee75373043348bfb3f02206b21e7" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">只要知道一个核函数,不知道无限维映射</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\phi(x_i)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ϕ</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\phi(x_i)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">ϕ</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">的显式表达,仍然可以求解最优</span></span></p></div><div id="https://www.notion.so/cd925663a90f48c882f5371be44b06e7" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">为什么可以通过求内积代替显式</mark></span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\phi"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">ϕ</span></span></span></span></span></mark></span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">——对偶问题</mark></span></span></p></div><div id="https://www.notion.so/e687f6d1cc074893bce028c2f643d47d" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">假设知道了</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="K"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">K</span></span></span></span></span></span><span class="SemanticString">,如何求解</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\phi(x_i)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ϕ</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\phi(x_i)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">ϕ</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">,让优化问题可求解?</span></span></p></div><div id="https://www.notion.so/155c361810394c798437983e5a6a8242" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">核函数也是有限制的,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="K"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">K</span></span></span></span></span></span><span class="SemanticString">要满足某种特定条件,才能拆成内积,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="K(x_1,x_2)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">K(x_1,x_2)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">K</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">能写成</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\phi(x_1)^\text{T}\phi(x_2)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ϕ</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><msup><mo stretchy="false">)</mo><mtext>T</mtext></msup><mi>ϕ</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\phi(x_1)^\text{T}\phi(x_2)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.0913309999999998em;vertical-align:-0.25em;"></span><span class="mord mathdefault">ϕ</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord text mtight"><span class="mord mtight">T</span></span></span></span></span></span></span></span></span><span class="mord mathdefault">ϕ</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">的充要条件:</span></span></p></div><div id="https://www.notion.so/bfaa12c447f343259bdfe81d1fd0f07b" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">(1)交换性:</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="K(x_1,x_2)=K(x_2,x_1)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><mo stretchy="false">)</mo><mo>=</mo><mi>K</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>2</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>1</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">K(x_1,x_2)=K(x_2,x_1)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">K</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">K</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span></span></p></div><div id="https://www.notion.so/05a0dd7cc8bb4750b3cdbcfe657821e0" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">(2)半正定性:</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\forall C_i,x_i\;,i=1,\dots,N"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∀</mi><msub><mi>C</mi><mi>i</mi></msub><mo separator="true">,</mo><msub><mi>x</mi><mi>i</mi></msub><mtext> </mtext><mo separator="true">,</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mi>N</mi></mrow><annotation encoding="application/x-tex">\forall C_i,x_i\;,i=1,\dots,N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord">∀</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">i</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">N</span></span></span></span></span></span><span class="SemanticString">,有</span></span></p></div><p id="https://www.notion.so/723ab4750962433999f24daa33ef1ad7" class="Equation" data-latex="\sum_{i=1}^N\sum_{j=1}^NC_iC_jK(x_i,x_j)\ge0"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>C</mi><mi>i</mi></msub><msub><mi>C</mi><mi>j</mi></msub><mi>K</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mo separator="true">,</mo><msub><mi>x</mi><mi>j</mi></msub><mo stretchy="false">)</mo><mo>≥</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\sum_{i=1}^N\sum_{j=1}^NC_iC_jK(x_i,x_j)\ge0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.2421130000000007em;vertical-align:-1.4137769999999998em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8283360000000002em;"><span style="top:-1.872331em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.050005em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3000050000000005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.10903em;">N</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.277669em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8283360000000006em;"><span style="top:-1.872331em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.050005em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3000050000000005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.10903em;">N</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.4137769999999998em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07153em;">C</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.07153em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mord mathdefault" style="margin-right:0.07153em;">K</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≥</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></p><div id="https://www.notion.so/c5c6861db08f4f84a859020ef3377413" class="Image Image--PageWidth"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F45235644-a656-4ea9-a3b5-1662ecdfd86e%2FUntitled.png?width=1290&table=block&id=c5c6861d-b08f-4f84-a859-020ef3377413"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F45235644-a656-4ea9-a3b5-1662ecdfd86e%2FUntitled.png?width=1290&table=block&id=c5c6861d-b08f-4f84-a859-020ef3377413" style="width:100%"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div><div id="https://www.notion.so/47bf4273f84c44a6b336f35c1eacae8d" class="Image Image--PageWidth"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F540e3c75-0d5c-4ec2-be39-67adf52aefc0%2FUntitled.png?width=922&table=block&id=47bf4273-f84c-44a6-b336-f35c1eacae8d"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F540e3c75-0d5c-4ec2-be39-67adf52aefc0%2FUntitled.png?width=922&table=block&id=47bf4273-f84c-44a6-b336-f35c1eacae8d" style="width:100%"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div><div id="https://www.notion.so/6a735a9bbb004d9ea0aff45180635d46" class="Image Image--PageWidth"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F5ed5e7e9-248e-4b5f-88b3-5992f8b09b02%2FUntitled.png?width=1016&table=block&id=6a735a9b-bb00-4d9e-a0af-f45180635d46"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F5ed5e7e9-248e-4b5f-88b3-5992f8b09b02%2FUntitled.png?width=1016&table=block&id=6a735a9b-bb00-4d9e-a0af-f45180635d46" style="width:100%"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div><div id="https://www.notion.so/9e1c2b042a944398aa49f46075a1d1c5" class="Image Image--PageWidth"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F88150cbf-00fe-4711-8329-a9eaede3b165%2FUntitled.png?width=960&table=block&id=9e1c2b04-2a94-4398-aa49-f46075a1d1c5"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F88150cbf-00fe-4711-8329-a9eaede3b165%2FUntitled.png?width=960&table=block&id=9e1c2b04-2a94-4398-aa49-f46075a1d1c5" style="width:100%"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div><div id="https://www.notion.so/c126b026e0f241fbbd26d408d5d140e3" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">高斯核</strong></span></span></p></div><div id="https://www.notion.so/d8abfeb0836146fab461ecc8d93c69e7" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">无限维的特征变换</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\phi(x)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ϕ</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\phi(x)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">ϕ</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span></span></span></span></span></span></span></p></div><div id="https://www.notion.so/019c9b0607074fa6817dcb56160701b8" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="K(x,x')=\exp(-(x-x')^2)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><msup><mi>x</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">)</mo><mo>=</mo><mi>exp</mi><mo></mo><mo stretchy="false">(</mo><mo>−</mo><mo stretchy="false">(</mo><mi>x</mi><mo>−</mo><msup><mi>x</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><msup><mo stretchy="false">)</mo><mn>2</mn></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">K(x,x')=\exp(-(x-x')^2)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.001892em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">K</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">exp</span><span class="mopen">(</span><span class="mord">−</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span></span></p></div><div id="https://www.notion.so/f5db0103dc394c519e62963445f22c60" class="Image Image--PageWidth"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F427fdce0-1971-414c-96d0-de0c1bd13d5f%2FUntitled.png?width=807&table=block&id=f5db0103-dc39-4c51-9e62-963445f22c60"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F427fdce0-1971-414c-96d0-de0c1bd13d5f%2FUntitled.png?width=807&table=block&id=f5db0103-dc39-4c51-9e62-963445f22c60" style="width:100%"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div><div id="https://www.notion.so/90b18f069ba546f4b3a03da2fc6e9be9" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">一般形式:</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="K(x,x')=\exp(-\lambda(x-x')^2)\;,\lambda>0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>K</mi><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><msup><mi>x</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">)</mo><mo>=</mo><mi>exp</mi><mo></mo><mo stretchy="false">(</mo><mo>−</mo><mi>λ</mi><mo stretchy="false">(</mo><mi>x</mi><mo>−</mo><msup><mi>x</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><msup><mo stretchy="false">)</mo><mn>2</mn></msup><mo stretchy="false">)</mo><mtext> </mtext><mo separator="true">,</mo><mi>λ</mi><mo>></mo><mn>0</mn></mrow><annotation encoding="application/x-tex">K(x,x')=\exp(-\lambda(x-x')^2)\;,\lambda>0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.001892em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.07153em;">K</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mop">exp</span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathdefault">λ</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.064108em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">λ</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span></span></p></div><div id="https://www.notion.so/f92367ee31fa4d32a0d1b42824e4c2ef" class="Image Image--PageWidth"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F04e8056f-c842-4fcd-b0c3-51fb7a5a984f%2FUntitled.png?width=944&table=block&id=f92367ee-31fa-4d32-a0d1-b42824e4c2ef"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F04e8056f-c842-4fcd-b0c3-51fb7a5a984f%2FUntitled.png?width=944&table=block&id=f92367ee-31fa-4d32-a0d1-b42824e4c2ef" style="width:100%"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div><h2 id="https://www.notion.so/1dfc3708698642ee9f75defa9cc514a4" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--2"><a class="Anchor" href="#https://www.notion.so/1dfc3708698642ee9f75defa9cc514a4"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">对偶问题</span></span></h2><h3 id="https://www.notion.so/88d77d2c5e81400d850ae23d57995701" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--3"><a class="Anchor" href="#https://www.notion.so/88d77d2c5e81400d850ae23d57995701"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">定义</span></span></h3><div id="https://www.notion.so/8791d7263d8348d5b84902a13cc989c7" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"></span></p></div></article>
<footer class="Footer">
<div>© Patrick’s Blog 2024</div>
<div>·</div>
<div>Powered by <a href="https://github.com/dragonman225/notablog" target="_blank"
rel="noopener noreferrer">Notablog</a>.
</div>
</footer>
</body>
</html>