-
Notifications
You must be signed in to change notification settings - Fork 0
/
linear-algebra-02.html
205 lines (100 loc) · 321 KB
/
linear-algebra-02.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<!-- iOS Safari -->
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<!-- Chrome, Firefox OS and Opera Status Bar Color -->
<meta name="theme-color" content="#FFFFFF">
<link rel="stylesheet" type="text/css" href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.11.1/katex.min.css">
<link rel="stylesheet" type="text/css"
href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.19.0/themes/prism.min.css">
<link rel="stylesheet" type="text/css" href="css/SourceSansPro.css">
<link rel="stylesheet" type="text/css" href="css/theme.css">
<link rel="stylesheet" type="text/css" href="css/notablog.css">
<!-- Favicon -->
<link rel="shortcut icon" href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Ffc9b3a94-67d3-4485-bdf3-5e0c0b341ebe%2FAA238E8485C55D168DCF034BC7482B61.png?table=collection&id=c97ea4eb-3d30-4977-8edc-ee98d0f07149">
<style>
:root {
font-size: 20px;
}
</style>
<title>[线性代数] 第2章 有限维向量空间 | Patrick’s Blog</title>
<meta property="og:type" content="blog">
<meta property="og:title" content="[线性代数] 第2章 有限维向量空间">
<meta name="description" content="《线性代数应该这样学》第2章:有限维向量空间">
<meta property="og:description" content="《线性代数应该这样学》第2章:有限维向量空间">
<meta property="og:image" content="data:image/svg+xml,<svg xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 100 100%22><text text-anchor=%22middle%22 dominant-baseline=%22middle%22 x=%2250%22 y=%2255%22 font-size=%2280%22>🗺️</text></svg>">
<style>
.DateTagBar {
margin-top: 1.0rem;
}
</style>
</head>
<body>
<nav class="Navbar">
<a href="index.html">
<div class="Navbar__Btn">
<span><img class="inline-img-icon" src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Ffc9b3a94-67d3-4485-bdf3-5e0c0b341ebe%2FAA238E8485C55D168DCF034BC7482B61.png?table=collection&id=c97ea4eb-3d30-4977-8edc-ee98d0f07149"></span>
<span>Home</span>
</div>
</a>
<span class="Navbar__Delim">·</span>
<a href="about.html">
<div class="Navbar__Btn">
<span><img class="inline-img-icon" src="data:image/svg+xml,<svg xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 100 100%22><text text-anchor=%22middle%22 dominant-baseline=%22middle%22 x=%2250%22 y=%2255%22 font-size=%2280%22>😀</text></svg>"></span>
<span>About me</span>
</div>
</a>
<span class="Navbar__Delim">·</span>
<a href="categories.html">
<div class="Navbar__Btn">
<span><img class="inline-img-icon" src="data:image/svg+xml,<svg xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 100 100%22><text text-anchor=%22middle%22 dominant-baseline=%22middle%22 x=%2250%22 y=%2255%22 font-size=%2280%22>📃</text></svg>"></span>
<span>Categories</span>
</div>
</a>
</nav>
<header class="Header">
<div class="Header__Spacer Header__Spacer--NoCover">
</div>
<div class="Header__Icon">
<span><img class="inline-img-icon" src="data:image/svg+xml,<svg xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 100 100%22><text text-anchor=%22middle%22 dominant-baseline=%22middle%22 x=%2250%22 y=%2255%22 font-size=%2280%22>🗺️</text></svg>"></span>
</div>
<h1 class="Header__Title">[线性代数] 第2章 有限维向量空间</h1>
<div class="DateTagBar">
<span class="DateTagBar__Item DateTagBar__Date">Posted on Sun, Jul 10, 2022</span>
<span class="DateTagBar__Item DateTagBar__Tag DateTagBar__Tag--gray">
<a href="tag/📖Note.html">📖Note</a>
</span>
<span class="DateTagBar__Item DateTagBar__Tag DateTagBar__Tag--pink">
<a href="tag/Math.html">Math</a>
</span>
<span class="DateTagBar__Item DateTagBar__Tag DateTagBar__Tag--yellow">
<a href="tag/Linear Algebra.html">Linear Algebra</a>
</span>
</div>
</header>
<article id="https://www.notion.so/7e15b69207dd47f2903ae1bb22027254" class="PageRoot"><h1 id="https://www.notion.so/8b12d56ef69844619ec70e5b9a8b89d0" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--1"><a class="Anchor" href="#https://www.notion.so/8b12d56ef69844619ec70e5b9a8b89d0"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">2 有限维向量空间</span></span></h1><div id="https://www.notion.so/7be49f58362546f88fc77e921cc3437e" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">2.1 记号 </strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">、</strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></strong></span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/743a553392f745ffbe3933f563e8e60e" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 表示 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">R</mi></mrow><annotation encoding="application/x-tex">\mathbf{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">R</span></span></span></span></span></span></span><span class="SemanticString"> 或 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{C}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">C</mi></mrow><annotation encoding="application/x-tex">\mathbf{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">C</span></span></span></span></span></span></span><span class="SemanticString">.</span></span></li><li id="https://www.notion.so/5f9eef9c17254363b79453d820312a1c" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 表示 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 上的向量空间.</span></span></li></ul><h2 id="https://www.notion.so/5b8a89cdf5004572b9f97107f0994235" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--2"><a class="Anchor" href="#https://www.notion.so/5b8a89cdf5004572b9f97107f0994235"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">2.A 张成空间与线性无关</span></span></h2><div id="https://www.notion.so/3c3721c643ae48e4a3a578dcdcd335c6" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">2.2 记号 向量组(list of vectors)</strong></span></span></p></div><div id="https://www.notion.so/ba992e0dcce04fa1b50802947a216917" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">我们表示向量组时,通常不用括号括起来.</span></span></p></div><h3 id="https://www.notion.so/40514058cdbc4fe89938c3be21733c0d" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--3"><a class="Anchor" href="#https://www.notion.so/40514058cdbc4fe89938c3be21733c0d"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">线性组合与张成空间</span></span></h3><div id="https://www.notion.so/ea49ad7c554748fa8b187b45629c766f" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">2.3 定义 线性组合(linear combination)</strong></span></span></p></div><div id="https://www.notion.so/03aa2b9480974241baba1bdbc42a21c4" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 中的一组向量 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v_1,\dots,v_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">v_1,\dots,v_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">线性组合</strong></span><span class="SemanticString">是指形如</span></span></p></div><p id="https://www.notion.so/91c8edfe2efd4749bd9a54419c437e9d" class="Equation" data-latex="a_1v_1+\cdots+a_mv_m"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mn>1</mn></msub><msub><mi>v</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>a</mi><mi>m</mi></msub><msub><mi>v</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">a_1v_1+\cdots+a_mv_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></p><div id="https://www.notion.so/128a27f0bcf541ee99385caacfacba37" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">的向量,其中 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a_1,\dots,a_m\in \mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>a</mi><mi>m</mi></msub><mo>∈</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">a_1,\dots,a_m\in \mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/84cbb82d298a461e90dd45de50c12df5" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">2.4 例</strong></span><span class="SemanticString"> 在 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中,</span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/ca0f19c537b647e6be7c41ef2ca785f0" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(17,-4,2)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>17</mn><mo separator="true">,</mo><mo>−</mo><mn>4</mn><mo separator="true">,</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(17,-4,2)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mord">7</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">4</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">2</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(2,1,-1),(1,-2,4)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo separator="true">,</mo><mn>1</mn><mo separator="true">,</mo><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mo separator="true">,</mo><mo stretchy="false">(</mo><mn>1</mn><mo separator="true">,</mo><mo>−</mo><mn>2</mn><mo separator="true">,</mo><mn>4</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(2,1,-1),(1,-2,4)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">1</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">4</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 的线性组合,因为</span></span><p id="https://www.notion.so/c67f522b36fd442886ae056c1398887f" class="Equation" data-latex="(17,-4,2)=6(2,1,-3)+5(1,-2,4)."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>17</mn><mo separator="true">,</mo><mo>−</mo><mn>4</mn><mo separator="true">,</mo><mn>2</mn><mo stretchy="false">)</mo><mo>=</mo><mn>6</mn><mo stretchy="false">(</mo><mn>2</mn><mo separator="true">,</mo><mn>1</mn><mo separator="true">,</mo><mo>−</mo><mn>3</mn><mo stretchy="false">)</mo><mo>+</mo><mn>5</mn><mo stretchy="false">(</mo><mn>1</mn><mo separator="true">,</mo><mo>−</mo><mn>2</mn><mo separator="true">,</mo><mn>4</mn><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">(17,-4,2)=6(2,1,-3)+5(1,-2,4).</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mord">7</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">4</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">2</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">6</span><span class="mopen">(</span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">3</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">5</span><span class="mopen">(</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">4</span><span class="mclose">)</span><span class="mord">.</span></span></span></span></span></p></li><li id="https://www.notion.so/c65765b8ca0b4b0f988413d620eb3aaa" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(17,-4,5)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>17</mn><mo separator="true">,</mo><mo>−</mo><mn>4</mn><mo separator="true">,</mo><mn>5</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(17,-4,5)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mord">7</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">4</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">5</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 不是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(2,1,-3),(1,-2,4)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo separator="true">,</mo><mn>1</mn><mo separator="true">,</mo><mo>−</mo><mn>3</mn><mo stretchy="false">)</mo><mo separator="true">,</mo><mo stretchy="false">(</mo><mn>1</mn><mo separator="true">,</mo><mo>−</mo><mn>2</mn><mo separator="true">,</mo><mn>4</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(2,1,-3),(1,-2,4)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">3</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">4</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 的线性组合,因为不存在数 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a_1,a_2\in\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>a</mi><mn>2</mn></msub><mo>∈</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">a_1,a_2\in\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 使得</span></span><p id="https://www.notion.so/98f9069df5e54593ad486987365cbca5" class="Equation" data-latex="(17,-4,5)=a_1(2,1,-3)+a_2(1,-2,4)."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>17</mn><mo separator="true">,</mo><mo>−</mo><mn>4</mn><mo separator="true">,</mo><mn>5</mn><mo stretchy="false">)</mo><mo>=</mo><msub><mi>a</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mn>2</mn><mo separator="true">,</mo><mn>1</mn><mo separator="true">,</mo><mo>−</mo><mn>3</mn><mo stretchy="false">)</mo><mo>+</mo><msub><mi>a</mi><mn>2</mn></msub><mo stretchy="false">(</mo><mn>1</mn><mo separator="true">,</mo><mo>−</mo><mn>2</mn><mo separator="true">,</mo><mn>4</mn><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">(17,-4,5)=a_1(2,1,-3)+a_2(1,-2,4).</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mord">7</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">4</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">5</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">3</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">4</span><span class="mclose">)</span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/2e7050a570a74966a486d5ee4e3467cf" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">也就是说,方程组</span></span></p></div><p id="https://www.notion.so/9d7b7cca0bdc4b4ab7341cba291e362e" class="Equation" data-latex="\left\{
\begin{aligned}
17&=2a_1+a_2,\\
-4&=a_1-2a_2,\\
5&=-3a_1+4a_2
\end{aligned}
\right."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo fence="true">{</mo><mtable rowspacing="0.24999999999999992em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mn>17</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><msub><mi>a</mi><mn>1</mn></msub><mo>+</mo><msub><mi>a</mi><mn>2</mn></msub><mo separator="true">,</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mo>−</mo><mn>4</mn></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>a</mi><mn>1</mn></msub><mo>−</mo><mn>2</mn><msub><mi>a</mi><mn>2</mn></msub><mo separator="true">,</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mn>5</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>−</mo><mn>3</mn><msub><mi>a</mi><mn>1</mn></msub><mo>+</mo><mn>4</mn><msub><mi>a</mi><mn>2</mn></msub></mrow></mstyle></mtd></mtr></mtable></mrow><annotation encoding="application/x-tex">\left\{
\begin{aligned}
17&=2a_1+a_2,\\
-4&=a_1-2a_2,\\
5&=-3a_1+4a_2
\end{aligned}
\right.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:4.500000000000002em;vertical-align:-2.000000000000001em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.35002em;"><span style="top:-2.19999em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎩</span></span></span><span style="top:-2.19499em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎪</span></span></span><span style="top:-2.20499em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎪</span></span></span><span style="top:-3.15001em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎨</span></span></span><span style="top:-4.2950099999999996em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎪</span></span></span><span style="top:-4.30501em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎪</span></span></span><span style="top:-4.60002em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎧</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.8500199999999998em;"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.5000000000000004em;"><span style="top:-4.66em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span><span class="mord">7</span></span></span><span style="top:-3.16em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">−</span><span class="mord">4</span></span></span><span style="top:-1.6599999999999993em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">5</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.000000000000001em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.5000000000000004em;"><span style="top:-4.66em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord">2</span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span></span></span><span style="top:-3.16em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">2</span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span></span></span><span style="top:-1.6599999999999993em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord">−</span><span class="mord">3</span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">4</span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.000000000000001em;"><span></span></span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p><div id="https://www.notion.so/99d5e1499baf43e88e479bf816f7d4cf" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">无解.</span></span></p></div></li></ul><div id="https://www.notion.so/423322f3222e44c7a575d818e042b587" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">2.5 定义 张成空间(span)</strong></span></span></p></div><div id="https://www.notion.so/8ee1f0a186994435b1973242c23b5120" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 中一组向量 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v_1,\dots,v_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">v_1,\dots,v_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的所有线性组合所构成的集合称为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v_1,\dots,v_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">v_1,\dots,v_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">张成空间</strong></span><span class="SemanticString">,记为</span></span></p></div><div id="https://www.notion.so/a1b4565d072c48fe94e75a050f1f6a13" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"> </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\text{span}(v_1,\dots,v_m)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>span</mtext><mo stretchy="false">(</mo><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\text{span}(v_1,\dots,v_m)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">span</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">. 也就是说,</span></span></p></div><p id="https://www.notion.so/d5969b66f46344fea89dd942644960fb" class="Equation" data-latex="\text{span}(v_1,\dots,v_m)=\{a_1v_1+\cdots+a_mv_m:a_1,\dots,a_m\in\mathbf{F}\}."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>span</mtext><mo stretchy="false">(</mo><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">{</mo><msub><mi>a</mi><mn>1</mn></msub><msub><mi>v</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>a</mi><mi>m</mi></msub><msub><mi>v</mi><mi>m</mi></msub><mo>:</mo><msub><mi>a</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>a</mi><mi>m</mi></msub><mo>∈</mo><mi mathvariant="bold">F</mi><mo stretchy="false">}</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">\text{span}(v_1,\dots,v_m)=\{a_1v_1+\cdots+a_mv_m:a_1,\dots,a_m\in\mathbf{F}\}.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">span</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">}</span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/d97657440ff5496d9bd7c6979bb48cff" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">空向量组 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="()"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">()</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 的张成空间定义为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\{0\}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{0\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">0</span><span class="mclose">}</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/06a825c9382d468ea4b654ef147eb6f6" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">2.6 例</strong></span><span class="SemanticString"> 前面的例子表明在 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中,</span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/4e962ef7408f4e0a99b6d247fea7cea6" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(17,-4,2)\in\text{span}\big((2,1,-3),(1,-2,4)\big)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>17</mn><mo separator="true">,</mo><mo>−</mo><mn>4</mn><mo separator="true">,</mo><mn>2</mn><mo stretchy="false">)</mo><mo>∈</mo><mtext>span</mtext><mo fence="false">(</mo><mo stretchy="false">(</mo><mn>2</mn><mo separator="true">,</mo><mn>1</mn><mo separator="true">,</mo><mo>−</mo><mn>3</mn><mo stretchy="false">)</mo><mo separator="true">,</mo><mo stretchy="false">(</mo><mn>1</mn><mo separator="true">,</mo><mo>−</mo><mn>2</mn><mo separator="true">,</mo><mn>4</mn><mo stretchy="false">)</mo><mo fence="false">)</mo></mrow><annotation encoding="application/x-tex">(17,-4,2)\in\text{span}\big((2,1,-3),(1,-2,4)\big)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mord">7</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">4</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">2</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.20001em;vertical-align:-0.35001em;"></span><span class="mord text"><span class="mord">span</span></span><span class="mord"><span class="delimsizing size1">(</span></span><span class="mopen">(</span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">3</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">4</span><span class="mclose">)</span><span class="mord"><span class="delimsizing size1">)</span></span></span></span></span></span></span><span class="SemanticString">;</span></span></li><li id="https://www.notion.so/f60fd984326a4a76af7bb247f0ff4f31" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(17,-4,5)\notin\text{span}\big((2,1,-3),(1,-2,4)\big)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>17</mn><mo separator="true">,</mo><mo>−</mo><mn>4</mn><mo separator="true">,</mo><mn>5</mn><mo stretchy="false">)</mo><mo mathvariant="normal">∉</mo><mtext>span</mtext><mo fence="false">(</mo><mo stretchy="false">(</mo><mn>2</mn><mo separator="true">,</mo><mn>1</mn><mo separator="true">,</mo><mo>−</mo><mn>3</mn><mo stretchy="false">)</mo><mo separator="true">,</mo><mo stretchy="false">(</mo><mn>1</mn><mo separator="true">,</mo><mo>−</mo><mn>2</mn><mo separator="true">,</mo><mn>4</mn><mo stretchy="false">)</mo><mo fence="false">)</mo></mrow><annotation encoding="application/x-tex">(17,-4,5)\notin\text{span}\big((2,1,-3),(1,-2,4)\big)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mord">7</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">4</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">5</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel"><span class="mord"><span class="mrel">∈</span></span><span class="mord"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.75em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="llap"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="inner"><span class="mord"><span class="mord">/</span><span class="mspace" style="margin-right:0.05555555555555555em;"></span></span></span><span class="fix"></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.25em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.20001em;vertical-align:-0.35001em;"></span><span class="mord text"><span class="mord">span</span></span><span class="mord"><span class="delimsizing size1">(</span></span><span class="mopen">(</span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">3</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">4</span><span class="mclose">)</span><span class="mord"><span class="delimsizing size1">)</span></span></span></span></span></span></span><span class="SemanticString">.</span></span></li></ul><div id="https://www.notion.so/3e1f415aa90d4a0dbaf14d1713c80f02" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">有些数学家采用术语</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">线性张成空间</strong></span><span class="SemanticString">,意思与张成空间一样.</span></span></p></div><div id="https://www.notion.so/c3cff78c241f411d99a4a1f61ff3a3c9" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">2.7 张成空间是包含这组向量的最小子空间</strong></span></span></p></div><div id="https://www.notion.so/e736db2db5ec4223a52954ae5490e6fc" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 中一组向量的张成空间是包含这组向量的最小子空间.</span></span></p></div><div id="https://www.notion.so/82595c631fcf4facbd1918657f05b915" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">证明</strong></span><span class="SemanticString"> 设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v_1,\dots,v_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">v_1,\dots,v_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 中的一组向量.</span></span></p></div><div id="https://www.notion.so/09c79871016349b884615dda8f8f3b9d" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">先证明 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\text{span}(v_1,\dots,v_m)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>span</mtext><mo stretchy="false">(</mo><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\text{span}(v_1,\dots,v_m)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">span</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 的子空间. 加法单位元属于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\text{span}(v_1,\dots,v_m)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>span</mtext><mo stretchy="false">(</mo><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\text{span}(v_1,\dots,v_m)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">span</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">,因为</span></span></p></div><p id="https://www.notion.so/455b42ebcee64ceb852fbf1a6b51fb2c" class="Equation" data-latex="0=0v_1+\cdots+0v_m."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>=</mo><mn>0</mn><msub><mi>v</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><mn>0</mn><msub><mi>v</mi><mi>m</mi></msub><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">0=0v_1+\cdots+0v_m.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.79444em;vertical-align:-0.15em;"></span><span class="mord">0</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.79444em;vertical-align:-0.15em;"></span><span class="mord">0</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/0f4641f4d9c14bf3a1757806ce7e2116" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">其次,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\text{span}(v_1,\dots,v_m)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>span</mtext><mo stretchy="false">(</mo><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\text{span}(v_1,\dots,v_m)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">span</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 在加法下封闭,因为</span></span></p></div><p id="https://www.notion.so/affd99d15e1744a2bd25bd039c8980a9" class="Equation" data-latex="(a_1v_1+\cdots+a_mv_m)+(c_1v_1+\cdots+c_mv_m)=(a_1+c_1)v_1+\cdots+(a_m+c_m)v_m."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>a</mi><mn>1</mn></msub><msub><mi>v</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>a</mi><mi>m</mi></msub><msub><mi>v</mi><mi>m</mi></msub><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><msub><mi>c</mi><mn>1</mn></msub><msub><mi>v</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>c</mi><mi>m</mi></msub><msub><mi>v</mi><mi>m</mi></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mn>1</mn></msub><mo>+</mo><msub><mi>c</mi><mn>1</mn></msub><mo stretchy="false">)</mo><msub><mi>v</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mi>m</mi></msub><mo>+</mo><msub><mi>c</mi><mi>m</mi></msub><mo stretchy="false">)</mo><msub><mi>v</mi><mi>m</mi></msub><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">(a_1v_1+\cdots+a_mv_m)+(c_1v_1+\cdots+c_mv_m)=(a_1+c_1)v_1+\cdots+(a_m+c_m)v_m.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/532d288d31e14331a0e6fc13c8962db5" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">再次,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\text{span}(v_1,\dots,v_m)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>span</mtext><mo stretchy="false">(</mo><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\text{span}(v_1,\dots,v_m)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">span</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 在标量乘法下封闭,因为</span></span></p></div><p id="https://www.notion.so/982124a887f349cdbe19013a030454dc" class="Equation" data-latex="\lambda(a_1v_1+\cdots+a_mv_m)=\lambda a_1v_1+\cdots+\lambda a_mv_m."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi><mo stretchy="false">(</mo><msub><mi>a</mi><mn>1</mn></msub><msub><mi>v</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>a</mi><mi>m</mi></msub><msub><mi>v</mi><mi>m</mi></msub><mo stretchy="false">)</mo><mo>=</mo><mi>λ</mi><msub><mi>a</mi><mn>1</mn></msub><msub><mi>v</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><mi>λ</mi><msub><mi>a</mi><mi>m</mi></msub><msub><mi>v</mi><mi>m</mi></msub><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">\lambda(a_1v_1+\cdots+a_mv_m)=\lambda a_1v_1+\cdots+\lambda a_mv_m.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">λ</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.84444em;vertical-align:-0.15em;"></span><span class="mord mathdefault">λ</span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.84444em;vertical-align:-0.15em;"></span><span class="mord mathdefault">λ</span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/fbb866f231b24256b9f0c9d6ddaa9768" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">于是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\text{span}(v_1,\dots,v_m)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>span</mtext><mo stretchy="false">(</mo><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\text{span}(v_1,\dots,v_m)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">span</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 的子空间(由于 1.34).</span></span></p></div><div id="https://www.notion.so/8c2a25cbdc0b4b0ba1bf56e703044bdc" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">每个 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v_j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>v</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">v_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.716668em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 都是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v_1,\dots,v_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">v_1,\dots,v_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的线性组合(为了证明这一点,在 2.3 中令 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a_j=1"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mi>j</mi></msub><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">a_j=1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.716668em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span></span></span><span class="SemanticString"> 并令其他 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">a</span></span></span></span></span></span><span class="SemanticString"> 都等于 0). 于是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\text{span}(v_1,\dots,v_m)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>span</mtext><mo stretchy="false">(</mo><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\text{span}(v_1,\dots,v_m)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">span</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 包含每一个 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v_j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>v</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">v_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.716668em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">. 反之,由于子空间对加法和标量乘法都封闭,从而 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 的包含所有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v_j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>v</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">v_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.716668em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的子空间必定都包含 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\text{span}(v_1,\dots,v_m)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>span</mtext><mo stretchy="false">(</mo><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\text{span}(v_1,\dots,v_m)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">span</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">. 因此 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\text{span}(v_1,\dots,v_m)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>span</mtext><mo stretchy="false">(</mo><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\text{span}(v_1,\dots,v_m)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">span</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 的包含所有向量 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v_1,\dots,v_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">v_1,\dots,v_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的最小子空间.</span></span></p></div><div id="https://www.notion.so/cb1d892b139248ffa2dc494fec9b55fe" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">2.8 定义 张成(spans)</strong></span></span></p></div><div id="https://www.notion.so/b1145a6e69854d67a5f03da09741bb21" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">若 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\text{span}(v_1,\dots,v_m)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>span</mtext><mo stretchy="false">(</mo><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\text{span}(v_1,\dots,v_m)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">span</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 等于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString">,则称 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v_1,\dots,v_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">v_1,\dots,v_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> </span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">张成</strong></span><span class="SemanticString"> </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/edc44dc8bafe4f3bba46c31466a4aa23" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">2.9 例</strong></span><span class="SemanticString"> 设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span></span><span class="SemanticString"> 是正整数. 证明</span></span></p></div><p id="https://www.notion.so/21d821d5e69c40fcad087c836e7e7938" class="Equation" data-latex="(1,0,\dots,0),(0,1,0,\dots,0),\dots,(0,\dots,0,1)"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo separator="true">,</mo><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(1,0,\dots,0),(0,1,0,\dots,0),\dots,(0,\dots,0,1)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mclose">)</span></span></span></span></span></p><div id="https://www.notion.so/c0163897b7dd4249bea7c49267bed2c4" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">张成 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">. 上面向量组中的第 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>j</mi></mrow><annotation encoding="application/x-tex">j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.85396em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.05724em;">j</span></span></span></span></span></span><span class="SemanticString"> 个向量是第 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>j</mi></mrow><annotation encoding="application/x-tex">j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.85396em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.05724em;">j</span></span></span></span></span></span><span class="SemanticString"> 个元素为 1 其余元素均为 0 的 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span></span><span class="SemanticString"> 元组.</span></span></p></div><div id="https://www.notion.so/9e71617f58944f0c8fceac539f8cb291" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">证明</strong></span><span class="SemanticString"> 设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(x_1,\dots,x_n)\in\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">)</mo><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">(x_1,\dots,x_n)\in\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">. 则</span></span></p></div><p id="https://www.notion.so/1a8771823d4a45a98afbab6d53efd04d" class="Equation" data-latex="(x_1,\dots,x_n)=x_1(1,0,\dots,0)+x_2(0,1,0,\dots,0)+\cdots+x_n(0,\dots,0,1)."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">)</mo><mo>=</mo><msub><mi>x</mi><mn>1</mn></msub><mo stretchy="false">(</mo><mn>1</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo>+</mo><msub><mi>x</mi><mn>2</mn></msub><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">(x_1,\dots,x_n)=x_1(1,0,\dots,0)+x_2(0,1,0,\dots,0)+\cdots+x_n(0,\dots,0,1).</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/167daf67b2544e1eb880f97399c33d0a" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">于是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(x_1,\dots,x_n)\in\text{span}\big((1,0,\dots,0),(0,1,0,\dots,0),\dots,(0,\dots,0,1)\big)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">)</mo><mo>∈</mo><mtext>span</mtext><mo fence="false">(</mo><mo stretchy="false">(</mo><mn>1</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo separator="true">,</mo><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo stretchy="false">)</mo><mo fence="false">)</mo></mrow><annotation encoding="application/x-tex">(x_1,\dots,x_n)\in\text{span}\big((1,0,\dots,0),(0,1,0,\dots,0),\dots,(0,\dots,0,1)\big)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.20001em;vertical-align:-0.35001em;"></span><span class="mord text"><span class="mord">span</span></span><span class="mord"><span class="delimsizing size1">(</span></span><span class="mopen">(</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mord"><span class="delimsizing size1">)</span></span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/9aa9163e86874f3bbc13ef05d8e3f2a9" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">2.10 定义 有限维向量空间(finite-dimensional vector space)</strong></span></span></p></div><div id="https://www.notion.so/1fc538db362f42c5b3f8850d1d2173be" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">如果一个向量空间可以由该空间的某个向量组张成,则称这个向量空间是</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">有限维的</strong></span><span class="SemanticString">.</span></span></p></div><blockquote id="https://www.notion.so/3768aef90cc74ba59e45083984240d26" class="ColorfulBlock ColorfulBlock--ColorDefault Quote"><span class="SemanticStringArray"><span class="SemanticString">回想一下,根据定义,每个组都具有有限长度.</span></span></blockquote><div id="https://www.notion.so/2e892be1aa3547808b7d33588c9854a5" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">上面的例 2.9 表明对任意正整数 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span></span><span class="SemanticString">,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 是有限维向量空间.</span></span></p></div><div id="https://www.notion.so/ef3de09a772f4e79be6d726aa63dd705" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">2.11 定义 多项式(polynomial),</strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathcal{P}(\mathbf{F})"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="script">P</mi><mo stretchy="false">(</mo><mi mathvariant="bold">F</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{P}(\mathbf{F})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathcal" style="margin-right:0.08222em;">P</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">)</span></span></span></span></span></strong></span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/b9618d54a53c492894c01cdb2d395b1b" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">对于函数 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="p:\mathbf{F}\rightarrow\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo>:</mo><mi mathvariant="bold">F</mi><mo>→</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">p:\mathbf{F}\rightarrow\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">p</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString">,若存在 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a_0,\dots,a_m\in\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mn>0</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>a</mi><mi>m</mi></msub><mo>∈</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">a_0,\dots,a_m\in\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 使得对任意 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="z\in\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi><mo>∈</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">z\in\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 均有</span></span><p id="https://www.notion.so/f9cf3f3139234c0f91d8404af3011021" class="Equation" data-latex="p(z)=a_0+a_1z+a_2z^2+\cdots+a_mz^m,"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>a</mi><mn>0</mn></msub><mo>+</mo><msub><mi>a</mi><mn>1</mn></msub><mi>z</mi><mo>+</mo><msub><mi>a</mi><mn>2</mn></msub><msup><mi>z</mi><mn>2</mn></msup><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>a</mi><mi>m</mi></msub><msup><mi>z</mi><mi>m</mi></msup><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">p(z)=a_0+a_1z+a_2z^2+\cdots+a_mz^m,</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.0141079999999998em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9088319999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7143919999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span></span></span></span></span><span class="mpunct">,</span></span></span></span></span></p><div id="https://www.notion.so/ba9e349188704f3eb317959a45b82dc8" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">则称 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="p"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">p</span></span></span></span></span></span><span class="SemanticString"> 为系数属于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 的</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">多项式</strong></span><span class="SemanticString">.</span></span></p></div></li><li id="https://www.notion.so/74cfe04249034c95bb10311c05638037" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathcal{P}(\mathbf{F})"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="script">P</mi><mo stretchy="false">(</mo><mi mathvariant="bold">F</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{P}(\mathbf{F})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathcal" style="margin-right:0.08222em;">P</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 是系数属于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 的全体多项式所组成的集合.</span></span></li></ul><div id="https://www.notion.so/fb5ca2b3717f413eb1e1cf55ccb52386" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">在通常的(多项式)加法和标量乘法下,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathcal{P}(\mathbf{F})"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="script">P</mi><mo stretchy="false">(</mo><mi mathvariant="bold">F</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{P}(\mathbf{F})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathcal" style="margin-right:0.08222em;">P</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 上的向量空间. 也就是说,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathcal{P}(\mathbf{F})"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="script">P</mi><mo stretchy="false">(</mo><mi mathvariant="bold">F</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{P}(\mathbf{F})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathcal" style="margin-right:0.08222em;">P</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi mathvariant="bold">F</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8432769999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8432769999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathbf mtight">F</span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">(</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 到 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 的全体函数构成的向量空间)的子空间.</span></span></p></div><div id="https://www.notion.so/530cf42944e0468fbedbc90181f2b370" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">一个多项式的系数由该多项式唯一确定. 因此,下面定义的多项式的次数是唯一确定的.</span></span></p></div><div id="https://www.notion.so/7ff8ed05dd344cbf9af9691bee0a7022" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">2.12 定义 多项式的次数(degree of a polynomial),</strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\text{deg}\,p"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>deg</mtext><mtext> </mtext><mi>p</mi></mrow><annotation encoding="application/x-tex">\text{deg}\,p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord text"><span class="mord">deg</span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">p</span></span></span></span></span></strong></span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/36841fc23b704baf9278b34ccf27c231" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">对于多项式 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="p\in\mathcal{P}(\mathbf{F})"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo>∈</mo><mi mathvariant="script">P</mi><mo stretchy="false">(</mo><mi mathvariant="bold">F</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p\in\mathcal{P}(\mathbf{F})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">p</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathcal" style="margin-right:0.08222em;">P</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">,若存在标量 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a_0,a_1,\dots,a_m\in\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mn>0</mn></msub><mo separator="true">,</mo><msub><mi>a</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>a</mi><mi>m</mi></msub><mo>∈</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">a_0,a_1,\dots,a_m\in\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString">,其中 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a_m\ne 0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mi>m</mi></msub><mo mathvariant="normal">≠</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">a_m\ne 0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel"><span class="mrel"><span class="mord"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="rlap"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="inner"><span class="mrel"></span></span><span class="fix"></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span></span><span class="mrel">=</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">,使得对任意 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="z\in\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>z</mi><mo>∈</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">z\in\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 有</span></span><p id="https://www.notion.so/b91f631a4b4447578ab0ea87ac131ff6" class="Equation" data-latex="p(z)=a_0+a_1z+\cdots+a_mz^m,"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>z</mi><mo stretchy="false">)</mo><mo>=</mo><msub><mi>a</mi><mn>0</mn></msub><mo>+</mo><msub><mi>a</mi><mn>1</mn></msub><mi>z</mi><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>a</mi><mi>m</mi></msub><msup><mi>z</mi><mi>m</mi></msup><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">p(z)=a_0+a_1z+\cdots+a_mz^m,</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.9088319999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7143919999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span></span></span></span></span><span class="mpunct">,</span></span></span></span></span></p><div id="https://www.notion.so/6db7313381d54a08941651e5ab3b3476" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">则说 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="p"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">p</span></span></span></span></span></span><span class="SemanticString"> 的</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">次数</strong></span><span class="SemanticString">为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">m</span></span></span></span></span></span><span class="SemanticString">. 若 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="p"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">p</span></span></span></span></span></span><span class="SemanticString"> 的次数为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">m</span></span></span></span></span></span><span class="SemanticString">,则记 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\text{deg}\,p=m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>deg</mtext><mtext> </mtext><mi>p</mi><mo>=</mo><mi>m</mi></mrow><annotation encoding="application/x-tex">\text{deg}\,p=m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord text"><span class="mord">deg</span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">p</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">m</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div></li><li id="https://www.notion.so/a57dcfa570654478bc46e41bdf5c6c2a" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">规定恒等于 0 的多项式的次数为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="-\infin"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mi mathvariant="normal">∞</mi></mrow><annotation encoding="application/x-tex">-\infin</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord">−</span><span class="mord">∞</span></span></span></span></span></span><span class="SemanticString">.</span></span></li></ul><div id="https://www.notion.so/cf3b8308c244491e80f52b786dfcf1d8" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">在下面的定义中,我们约定 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="-\infin<m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mi mathvariant="normal">∞</mi><mo><</mo><mi>m</mi></mrow><annotation encoding="application/x-tex">-\infin<m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord">−</span><span class="mord">∞</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">m</span></span></span></span></span></span><span class="SemanticString">,这意味着恒等于 0 的多项式属于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathcal{P}_m(\mathbf{F})"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi mathvariant="script">P</mi><mi>m</mi></msub><mo stretchy="false">(</mo><mi mathvariant="bold">F</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{P}_m(\mathbf{F})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord"><span class="mord mathcal" style="margin-right:0.08222em;">P</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/21bcf4e36aaf4e3e8259dc28ed939fca" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">2.13 定义 </strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathcal{P}_m(\mathbf{F})"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi mathvariant="script">P</mi><mi>m</mi></msub><mo stretchy="false">(</mo><mi mathvariant="bold">F</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{P}_m(\mathbf{F})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord"><span class="mord mathcal" style="margin-right:0.08222em;">P</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">)</span></span></span></span></span></strong></span></span></p></div><div id="https://www.notion.so/1c99a555a9504e109831eca68ac037bd" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">对于非负整数 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">m</span></span></span></span></span></span><span class="SemanticString">,用 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathcal{P}_m(\mathbf{F})"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi mathvariant="script">P</mi><mi>m</mi></msub><mo stretchy="false">(</mo><mi mathvariant="bold">F</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{P}_m(\mathbf{F})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord"><span class="mord mathcal" style="margin-right:0.08222em;">P</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 表示系数在 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 中且次数不超过 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">m</span></span></span></span></span></span><span class="SemanticString"> 的所有多项式构成的集合.</span></span></p></div><div id="https://www.notion.so/2555bac860c14066a6397ca983f3e527" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">要验证下面的例子,只需注意到 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathcal{P}_m(\mathbf{F})=\text{span}(1,z,\dots,z^m)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi mathvariant="script">P</mi><mi>m</mi></msub><mo stretchy="false">(</mo><mi mathvariant="bold">F</mi><mo stretchy="false">)</mo><mo>=</mo><mtext>span</mtext><mo stretchy="false">(</mo><mn>1</mn><mo separator="true">,</mo><mi>z</mi><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msup><mi>z</mi><mi>m</mi></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{P}_m(\mathbf{F})=\text{span}(1,z,\dots,z^m)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord"><span class="mord mathcal" style="margin-right:0.08222em;">P</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">span</span></span><span class="mopen">(</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">. 此处我们用 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="z^k"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>z</mi><mi>k</mi></msup></mrow><annotation encoding="application/x-tex">z^k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.849108em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.849108em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03148em;">k</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 表示函数.</span></span></p></div><div id="https://www.notion.so/532cb9a9f57d494e938156b815dddf83" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">2.14 例</strong></span><span class="SemanticString"> 对每个非负整数 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">m</span></span></span></span></span></span><span class="SemanticString">,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathcal{P}_m(\mathbf{F})"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi mathvariant="script">P</mi><mi>m</mi></msub><mo stretchy="false">(</mo><mi mathvariant="bold">F</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{P}_m(\mathbf{F})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord"><span class="mord mathcal" style="margin-right:0.08222em;">P</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 是有限维向量空间.</span></span></p></div><div id="https://www.notion.so/7b6ec63c82ad45c5b404166d6bdecbdd" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">2.15 定义 无限维向量空间(infinite-dimensional vector space)</strong></span></span></p></div><div id="https://www.notion.so/71a918cbba2442ecbc5cce44ccd5ab8c" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">一个向量空间如果不是有限维的,则称为</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">无限维的</strong></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/5100a44f9d9641cb9de19bf9fe6a4b4a" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">2.16 例</strong></span><span class="SemanticString"> 证明 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathcal{P}(\mathbf{F})"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="script">P</mi><mo stretchy="false">(</mo><mi mathvariant="bold">F</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{P}(\mathbf{F})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathcal" style="margin-right:0.08222em;">P</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 是无限维的.</span></span></p></div><div id="https://www.notion.so/bf71a7abda3f442c8e0375354220a7c5" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">证明</strong></span><span class="SemanticString"> 考虑 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathcal{P}(\mathbf{F})"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="script">P</mi><mo stretchy="false">(</mo><mi mathvariant="bold">F</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{P}(\mathbf{F})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathcal" style="margin-right:0.08222em;">P</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 中任意一组元素. 记 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">m</span></span></span></span></span></span><span class="SemanticString"> 为这组多项式的最高次数. 则这个组的张成空间中的每个多项式的次数最多为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">m</span></span></span></span></span></span><span class="SemanticString">. 因此 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="z^{m+1}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>z</mi><mrow><mi>m</mi><mo>+</mo><mn>1</mn></mrow></msup></mrow><annotation encoding="application/x-tex">z^{m+1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">m</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 不属于这个组的张成空间. 从而没有组能够张成 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathcal{P}(\mathbf{F})"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="script">P</mi><mo stretchy="false">(</mo><mi mathvariant="bold">F</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{P}(\mathbf{F})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathcal" style="margin-right:0.08222em;">P</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">. 所以 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathcal{P}(\mathbf{F})"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="script">P</mi><mo stretchy="false">(</mo><mi mathvariant="bold">F</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{P}(\mathbf{F})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathcal" style="margin-right:0.08222em;">P</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 是无限维的.</span></span></p></div><h3 id="https://www.notion.so/0f0176a369aa47358facfe66192ccd59" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--3"><a class="Anchor" href="#https://www.notion.so/0f0176a369aa47358facfe66192ccd59"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">线性无关</span></span></h3><div id="https://www.notion.so/14bb16e40e374e2184d35e2f925a80ef" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v_1,\dots,v_m\in V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub><mo>∈</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">v_1,\dots,v_m\in V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 且 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v\in\text{span}(v_1,\dots,v_m)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>∈</mo><mtext>span</mtext><mo stretchy="false">(</mo><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">v\in\text{span}(v_1,\dots,v_m)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">span</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">. 由张成空间的定义,有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a_1,\dots,a_m\in\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>a</mi><mi>m</mi></msub><mo>∈</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">a_1,\dots,a_m\in\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 使得</span></span></p></div><p id="https://www.notion.so/4599b54d900b4750b1539fd2ab46a42a" class="Equation" data-latex="v=a_1v_1+\cdots+a_mv_m."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>=</mo><msub><mi>a</mi><mn>1</mn></msub><msub><mi>v</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>a</mi><mi>m</mi></msub><msub><mi>v</mi><mi>m</mi></msub><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">v=a_1v_1+\cdots+a_mv_m.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/08a7e25308134feb9d24e28ef0a78529" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">考虑上式中标量选取的唯一性问题. 假设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="c_1,\dots,c_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>c</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>c</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">c_1,\dots,c_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 是另一组标量也使得</span></span></p></div><p id="https://www.notion.so/4ed1068f5021408c828ef34b580521f3" class="Equation" data-latex="v=c_1v_1+\cdots+c_mv_m."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>=</mo><msub><mi>c</mi><mn>1</mn></msub><msub><mi>v</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>c</mi><mi>m</mi></msub><msub><mi>v</mi><mi>m</mi></msub><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">v=c_1v_1+\cdots+c_mv_m.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/01aad60c54cd4ab6866f1299bf83c08e" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">两式相减得</span></span></p></div><p id="https://www.notion.so/d3cb0f504210497c803bf7e2d1a669ff" class="Equation" data-latex="0=(a_1-c_1)v_1+\cdots+(a_m-c_m)v_m."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>=</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mn>1</mn></msub><mo>−</mo><msub><mi>c</mi><mn>1</mn></msub><mo stretchy="false">)</mo><msub><mi>v</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><mo stretchy="false">(</mo><msub><mi>a</mi><mi>m</mi></msub><mo>−</mo><msub><mi>c</mi><mi>m</mi></msub><mo stretchy="false">)</mo><msub><mi>v</mi><mi>m</mi></msub><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">0=(a_1-c_1)v_1+\cdots+(a_m-c_m)v_m.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/2b5b594165f64c5da9c40fe813134154" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">于是我们把 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString"> 写成了 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v_1,\dots,v_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">v_1,\dots,v_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的线性组合. 如果 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString"> 只能用显然的方式(每个标量都取零)写成 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v_1,\dots,v_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">v_1,\dots,v_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的线性组合,则每个 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a_j-c_j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mi>j</mi></msub><mo>−</mo><msub><mi>c</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">a_j-c_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8694379999999999em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.716668em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 都等于 0,即每个 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a_j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">a_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.716668em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 都等于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="c_j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>c</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">c_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.716668em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault">c</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">(因此标量的取法确实是唯一的). 这种情况很重要,所以我们给它起一个特殊的名字——线性无关.</span></span></p></div><div id="https://www.notion.so/9b65cf6f56104236b1480e16e6b15063" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">2.17 定义 线性无关(linearly independent)</strong></span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/13b76bc788cd4707bdc5c481587231c6" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 中一组向量 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v_1,\dots,v_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">v_1,\dots,v_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 称为</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">线性无关</strong></span><span class="SemanticString">,如果使得 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a_1v_1+\cdots+a_mv_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mn>1</mn></msub><msub><mi>v</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>a</mi><mi>m</mi></msub><msub><mi>v</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">a_1v_1+\cdots+a_mv_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 等于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString"> 的 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a_1,\dots,a_m\in\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>a</mi><mi>m</mi></msub><mo>∈</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">a_1,\dots,a_m\in\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 只有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a_1=\cdots=a_m=0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mn>1</mn></msub><mo>=</mo><mo>⋯</mo><mo>=</mo><msub><mi>a</mi><mi>m</mi></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">a_1=\cdots=a_m=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.36687em;vertical-align:0em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">.</span></span></li><li id="https://www.notion.so/5c7d22392e524431834e1e6caca9a80b" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">规定空组 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="()"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">()</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 是线性无关的.</span></span></li></ul><div id="https://www.notion.so/ccbd280e61ea4d41b85b333f59b7f879" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">上一段的推导表明,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v_1,\dots,v_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">v_1,\dots,v_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 是线性无关的当且仅当 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\text{span}(v_1,\dots,v_m)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>span</mtext><mo stretchy="false">(</mo><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\text{span}(v_1,\dots,v_m)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">span</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 中每个向量都可以唯一地表示成 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v_1,\dots,v_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">v_1,\dots,v_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的线性组合.</span></span></p></div><div id="https://www.notion.so/9b871c873e344791a16ec2cacf8355a7" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">2.18 例 线性无关组</strong></span></span></p></div><div id="https://www.notion.so/fb30e4c5229947ad8c6585ecdfefbbb6" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">(a) </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 中一个向量 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi></mrow><annotation encoding="application/x-tex">v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></span><span class="SemanticString"> 构成的向量组 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi></mrow><annotation encoding="application/x-tex">v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></span><span class="SemanticString"> 是线性无关的当且仅当 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v\ne0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo mathvariant="normal">≠</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">v\ne0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel"><span class="mrel"><span class="mord"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="rlap"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="inner"><span class="mrel"></span></span><span class="fix"></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span></span><span class="mrel">=</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/c6e396a7314b4e5487e4c8bf429d7b91" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">(b) </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 中两个向量构成的向量组线性无关当且仅当每个向量都不能写成另一个向量的标量倍.</span></span></p></div><div id="https://www.notion.so/4f3d36739b7e4e20b4a221c27c166e82" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">(c) </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^4"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mn>4</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^4</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中的组 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(1,0,0,0),(0,1,0,0),(0,0,1,0)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>1</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo separator="true">,</mo><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo separator="true">,</mo><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(1,0,0,0),(0,1,0,0),(0,0,1,0)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 线性无关.</span></span></p></div><div id="https://www.notion.so/9cb065f056a442b18a7ba6cf441bc0d7" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">(d) 对每个非负整数 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">m</span></span></span></span></span></span><span class="SemanticString">,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathcal{P}(\mathbf{F})"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="script">P</mi><mo stretchy="false">(</mo><mi mathvariant="bold">F</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\mathcal{P}(\mathbf{F})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathcal" style="margin-right:0.08222em;">P</span></span><span class="mopen">(</span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 中的组 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="1,z,\dots,z^m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo separator="true">,</mo><mi>z</mi><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msup><mi>z</mi><mi>m</mi></msup></mrow><annotation encoding="application/x-tex">1,z,\dots,z^m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.858832em;vertical-align:-0.19444em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 线性无关.</span></span></p></div><div id="https://www.notion.so/834c60cf2b91484582674047c75327dd" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">一个线性无关组中去掉一些向量后,余下的向量构成的向量组仍然线性无关.</span></span></p></div><div id="https://www.notion.so/a850c82846904a6d897b885d03f9c610" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">2.19 定义 线性相关(linear dependent)</strong></span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/dd243dcd57f24c28b1b6b4c1760117e2" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 中的一组向量如果不是线性无关的,则称为</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">线性相关</strong></span><span class="SemanticString">.</span></span></li><li id="https://www.notion.so/c58b3d9ba4334dc4b0607c5eca6a8c92" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">也就是说,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 中一组向量 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v_1,\dots,v_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">v_1,\dots,v_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 线性相关当且仅当存在不全为零的 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a_1,\dots,a_m\in\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>a</mi><mi>m</mi></msub><mo>∈</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">a_1,\dots,a_m\in\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 使得 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a_1v_1+\cdot+a_mv_m=0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>a</mi><mn>1</mn></msub><msub><mi>v</mi><mn>1</mn></msub><mo>+</mo><mo>⋅</mo><mo>+</mo><msub><mi>a</mi><mi>m</mi></msub><msub><mi>v</mi><mi>m</mi></msub><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">a_1v_1+\cdot+a_mv_m=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">a</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">.</span></span></li></ul><div id="https://www.notion.so/93c8dbd2ccd1489c9647a4cb750fd715" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">2.20 例 线性相关组</strong></span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/e1ea4747b35d4802adad09c046abe25d" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中的向量组 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(2,3,1),(1,-1,2),(7,3,8)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo separator="true">,</mo><mn>3</mn><mo separator="true">,</mo><mn>1</mn><mo stretchy="false">)</mo><mo separator="true">,</mo><mo stretchy="false">(</mo><mn>1</mn><mo separator="true">,</mo><mo>−</mo><mn>1</mn><mo separator="true">,</mo><mn>2</mn><mo stretchy="false">)</mo><mo separator="true">,</mo><mo stretchy="false">(</mo><mn>7</mn><mo separator="true">,</mo><mn>3</mn><mo separator="true">,</mo><mn>8</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(2,3,1),(1,-1,2),(7,3,8)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">3</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">2</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mopen">(</span><span class="mord">7</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">3</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">8</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 线性相关,因为</span></span><p id="https://www.notion.so/4ef03ff3516a4d6197f972c57052690d" class="Equation" data-latex="2(2,3,1)+3(1,-1,2)+(-1)(7,3,8)=(0,0,0)."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mo stretchy="false">(</mo><mn>2</mn><mo separator="true">,</mo><mn>3</mn><mo separator="true">,</mo><mn>1</mn><mo stretchy="false">)</mo><mo>+</mo><mn>3</mn><mo stretchy="false">(</mo><mn>1</mn><mo separator="true">,</mo><mo>−</mo><mn>1</mn><mo separator="true">,</mo><mn>2</mn><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mn>7</mn><mo separator="true">,</mo><mn>3</mn><mo separator="true">,</mo><mn>8</mn><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">2(2,3,1)+3(1,-1,2)+(-1)(7,3,8)=(0,0,0).</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">2</span><span class="mopen">(</span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">3</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">3</span><span class="mopen">(</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">2</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">−</span><span class="mord">1</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord">7</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">3</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">8</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mord">.</span></span></span></span></span></p></li><li id="https://www.notion.so/2c834109d90f40719c90dda7c9b07616" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中的向量组 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(2,3,1),(1,-1,2),(7,3,c)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo separator="true">,</mo><mn>3</mn><mo separator="true">,</mo><mn>1</mn><mo stretchy="false">)</mo><mo separator="true">,</mo><mo stretchy="false">(</mo><mn>1</mn><mo separator="true">,</mo><mo>−</mo><mn>1</mn><mo separator="true">,</mo><mn>2</mn><mo stretchy="false">)</mo><mo separator="true">,</mo><mo stretchy="false">(</mo><mn>7</mn><mo separator="true">,</mo><mn>3</mn><mo separator="true">,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(2,3,1),(1,-1,2),(7,3,c)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">3</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">2</span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mopen">(</span><span class="mord">7</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">3</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">c</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 线性相关当且仅当 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="c=8"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi><mo>=</mo><mn>8</mn></mrow><annotation encoding="application/x-tex">c=8</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">c</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">8</span></span></span></span></span></span><span class="SemanticString">.</span></span></li><li id="https://www.notion.so/604cafb82b9440a6be91c1080cc617de" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">若 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 中的一组向量中的某个向量是其余向量的线性组合,则这个向量组线性相关.(证明:先将这个向量写成其余向量的线性组合,然后将这个向量移到等式的另一端,并乘以 -1.)</span></span></li><li id="https://www.notion.so/e5924e55fed14196bbe6b1bd59037b77" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">包含 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString"> 向量的向量组线性相关.(这是前一条的特殊情形.)</span></span></li></ul><div id="https://www.notion.so/e97e5b87529747a19b3ef6e91a786830" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"></span></p></div></article>
<footer class="Footer">
<div>© Patrick’s Blog 2024</div>
<div>·</div>
<div>Powered by <a href="https://github.com/dragonman225/notablog" target="_blank"
rel="noopener noreferrer">Notablog</a>.
</div>
</footer>
</body>
</html>