-
Notifications
You must be signed in to change notification settings - Fork 0
/
linear-algebra-01.html
252 lines (147 loc) · 822 KB
/
linear-algebra-01.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<!-- iOS Safari -->
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<!-- Chrome, Firefox OS and Opera Status Bar Color -->
<meta name="theme-color" content="#FFFFFF">
<link rel="stylesheet" type="text/css" href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.11.1/katex.min.css">
<link rel="stylesheet" type="text/css"
href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.19.0/themes/prism.min.css">
<link rel="stylesheet" type="text/css" href="css/SourceSansPro.css">
<link rel="stylesheet" type="text/css" href="css/theme.css">
<link rel="stylesheet" type="text/css" href="css/notablog.css">
<!-- Favicon -->
<link rel="shortcut icon" href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Ffc9b3a94-67d3-4485-bdf3-5e0c0b341ebe%2FAA238E8485C55D168DCF034BC7482B61.png?table=collection&id=c97ea4eb-3d30-4977-8edc-ee98d0f07149">
<style>
:root {
font-size: 20px;
}
</style>
<title>[线性代数] 第1章 向量空间 | Patrick’s Blog</title>
<meta property="og:type" content="blog">
<meta property="og:title" content="[线性代数] 第1章 向量空间">
<meta name="description" content="《线性代数应该这样学》第1章:向量空间">
<meta property="og:description" content="《线性代数应该这样学》第1章:向量空间">
<meta property="og:image" content="data:image/svg+xml,<svg xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 100 100%22><text text-anchor=%22middle%22 dominant-baseline=%22middle%22 x=%2250%22 y=%2255%22 font-size=%2280%22>🗺️</text></svg>">
<style>
.DateTagBar {
margin-top: 1.0rem;
}
</style>
</head>
<body>
<nav class="Navbar">
<a href="index.html">
<div class="Navbar__Btn">
<span><img class="inline-img-icon" src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Ffc9b3a94-67d3-4485-bdf3-5e0c0b341ebe%2FAA238E8485C55D168DCF034BC7482B61.png?table=collection&id=c97ea4eb-3d30-4977-8edc-ee98d0f07149"></span>
<span>Home</span>
</div>
</a>
<span class="Navbar__Delim">·</span>
<a href="about.html">
<div class="Navbar__Btn">
<span><img class="inline-img-icon" src="data:image/svg+xml,<svg xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 100 100%22><text text-anchor=%22middle%22 dominant-baseline=%22middle%22 x=%2250%22 y=%2255%22 font-size=%2280%22>😀</text></svg>"></span>
<span>About me</span>
</div>
</a>
<span class="Navbar__Delim">·</span>
<a href="categories.html">
<div class="Navbar__Btn">
<span><img class="inline-img-icon" src="data:image/svg+xml,<svg xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 100 100%22><text text-anchor=%22middle%22 dominant-baseline=%22middle%22 x=%2250%22 y=%2255%22 font-size=%2280%22>📃</text></svg>"></span>
<span>Categories</span>
</div>
</a>
</nav>
<header class="Header">
<div class="Header__Spacer Header__Spacer--NoCover">
</div>
<div class="Header__Icon">
<span><img class="inline-img-icon" src="data:image/svg+xml,<svg xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 100 100%22><text text-anchor=%22middle%22 dominant-baseline=%22middle%22 x=%2250%22 y=%2255%22 font-size=%2280%22>🗺️</text></svg>"></span>
</div>
<h1 class="Header__Title">[线性代数] 第1章 向量空间</h1>
<div class="DateTagBar">
<span class="DateTagBar__Item DateTagBar__Date">Posted on Thu, Jun 30, 2022</span>
<span class="DateTagBar__Item DateTagBar__Tag DateTagBar__Tag--gray">
<a href="tag/📖Note.html">📖Note</a>
</span>
<span class="DateTagBar__Item DateTagBar__Tag DateTagBar__Tag--pink">
<a href="tag/Math.html">Math</a>
</span>
<span class="DateTagBar__Item DateTagBar__Tag DateTagBar__Tag--yellow">
<a href="tag/Linear Algebra.html">Linear Algebra</a>
</span>
</div>
</header>
<article id="https://www.notion.so/8c462c4a28834a9caf16f1731227360e" class="PageRoot"><h1 id="https://www.notion.so/7af4e29a60664488bebc32f13e3c6cab" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--1"><a class="Anchor" href="#https://www.notion.so/7af4e29a60664488bebc32f13e3c6cab"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">1 向量空间</span></span></h1><h2 id="https://www.notion.so/0093c9716ea54f6eaa536b2aec2b9636" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--2"><a class="Anchor" href="#https://www.notion.so/0093c9716ea54f6eaa536b2aec2b9636"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">1.A </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{R}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">与</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{C}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">C</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{C}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">C</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span></span></h2><h3 id="https://www.notion.so/f0c10d8e3d1d44c1b45e1c931ffc26ff" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--3"><a class="Anchor" href="#https://www.notion.so/f0c10d8e3d1d44c1b45e1c931ffc26ff"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">复数</span></span></h3><div id="https://www.notion.so/f5b975299e9149a4b1b356194d80f6d0" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">假定 -1 有平方根,记为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\text{i}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mtext>i</mtext></mrow><annotation encoding="application/x-tex">\text{i}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66786em;vertical-align:0em;"></span><span class="mord text"><span class="mord">i</span></span></span></span></span></span></span><span class="SemanticString">,并且遵循通常的算术法则.</span></span></p></div><div id="https://www.notion.so/6646270a5d514babba77200822062f27" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.1 定义 复数(complex number)</strong></span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/be1ec2af3ef343ceb8a852e3fed9b77f" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">一个</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">复数</strong></span><span class="SemanticString">是一个有序对 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(a,b)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a,b)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">,其中 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a,b\in\mathbf{R}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo>∈</mo><mi mathvariant="bold">R</mi></mrow><annotation encoding="application/x-tex">a,b\in\mathbf{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">R</span></span></span></span></span></span></span><span class="SemanticString">,但我们把它写成 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a+b\text{i}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>+</mo><mi>b</mi><mtext>i</mtext></mrow><annotation encoding="application/x-tex">a+b\text{i}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">a</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">b</span><span class="mord text"><span class="mord">i</span></span></span></span></span></span></span><span class="SemanticString">.</span></span></li><li id="https://www.notion.so/e31508dc23a644e59f4224ec5f4e10ec" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">所有复数构成的集合记为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{C}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">C</mi></mrow><annotation encoding="application/x-tex">\mathbf{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">C</span></span></span></span></span></span></span><span class="SemanticString">:</span></span><p id="https://www.notion.so/b358082d892745f5a19c957c2db1f528" class="Equation" data-latex="\mathbf{C}=\{a+b\text{i}:a,b\in\mathbf{R}\}."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">C</mi><mo>=</mo><mo stretchy="false">{</mo><mi>a</mi><mo>+</mo><mi>b</mi><mtext>i</mtext><mo>:</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo>∈</mo><mi mathvariant="bold">R</mi><mo stretchy="false">}</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">\mathbf{C}=\{a+b\text{i}:a,b\in\mathbf{R}\}.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">C</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord mathdefault">a</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">b</span><span class="mord text"><span class="mord">i</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathbf">R</span></span><span class="mclose">}</span><span class="mord">.</span></span></span></span></span></p></li><li id="https://www.notion.so/ab7beb0001204205b15d92ed38160aad" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{C}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">C</mi></mrow><annotation encoding="application/x-tex">\mathbf{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">C</span></span></span></span></span></span></span><span class="SemanticString"> 上的</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">加法</strong></span><span class="SemanticString">和</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">乘法</strong></span><span class="SemanticString">定义为</span></span><p id="https://www.notion.so/dd189cab2a764dc6bbc2ea4540ce5f73" class="Equation" data-latex="(a+b\text{i})+(c+d\text{i})=(a+c)+(b+d)\text{i}, \\
(a+b\text{i})(c+d\text{i}) = (ac-bd)+(ad+bc)\text{i},"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mtext>i</mtext><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><mi>c</mi><mo>+</mo><mi>d</mi><mtext>i</mtext><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>c</mi><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><mi>b</mi><mo>+</mo><mi>d</mi><mo stretchy="false">)</mo><mtext>i</mtext><mo separator="true">,</mo><mspace linebreak="newline"></mspace><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mtext>i</mtext><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>c</mi><mo>+</mo><mi>d</mi><mtext>i</mtext><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>a</mi><mi>c</mi><mo>−</mo><mi>b</mi><mi>d</mi><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><mi>a</mi><mi>d</mi><mo>+</mo><mi>b</mi><mi>c</mi><mo stretchy="false">)</mo><mtext>i</mtext><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">(a+b\text{i})+(c+d\text{i})=(a+c)+(b+d)\text{i}, \\
(a+b\text{i})(c+d\text{i}) = (ac-bd)+(ad+bc)\text{i},</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">b</span><span class="mord text"><span class="mord">i</span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">d</span><span class="mord text"><span class="mord">i</span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">b</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">d</span><span class="mclose">)</span><span class="mord text"><span class="mord">i</span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span></span><span class="mspace newline"></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">b</span><span class="mord text"><span class="mord">i</span></span><span class="mclose">)</span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">d</span><span class="mord text"><span class="mord">i</span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mord mathdefault">c</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">b</span><span class="mord mathdefault">d</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mord mathdefault">d</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">b</span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mord text"><span class="mord">i</span></span><span class="mpunct">,</span></span></span></span></span></p><div id="https://www.notion.so/34bd4c59f09f469a9badecc24d3fd0f9" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">其中 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a,b,c,d\in\mathbf{R}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo separator="true">,</mo><mi>c</mi><mo separator="true">,</mo><mi>d</mi><mo>∈</mo><mi mathvariant="bold">R</mi></mrow><annotation encoding="application/x-tex">a,b,c,d\in\mathbf{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">c</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">d</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">R</span></span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div></li></ul><div id="https://www.notion.so/fd43d12e4ed64d488911174fc73f83a4" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">可以把 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">R</mi></mrow><annotation encoding="application/x-tex">\mathbf{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">R</span></span></span></span></span></span></span><span class="SemanticString"> 看作 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{C}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">C</mi></mrow><annotation encoding="application/x-tex">\mathbf{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">C</span></span></span></span></span></span></span><span class="SemanticString"> 的一个子集. </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\text{i}^2=-1"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mtext>i</mtext><mn>2</mn></msup><mo>=</mo><mo>−</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\text{i}^2=-1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.871868em;vertical-align:0em;"></span><span class="mord"><span class="mord text"><span class="mord">i</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.871868em;"><span style="top:-3.12076em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">−</span><span class="mord">1</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/37f8034356b340258e661d4529ee9e0d" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.2 例</strong></span><span class="SemanticString"> 计算 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(2+3\text{i})(4+5\text{i})"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>+</mo><mn>3</mn><mtext>i</mtext><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mn>4</mn><mo>+</mo><mn>5</mn><mtext>i</mtext><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(2+3\text{i})(4+5\text{i})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">3</span><span class="mord text"><span class="mord">i</span></span><span class="mclose">)</span><span class="mopen">(</span><span class="mord">4</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">5</span><span class="mord text"><span class="mord">i</span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/fce353b77320489cbc6e92bd9b07bcbe" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">解</strong></span></span></p></div><p id="https://www.notion.so/50b994b5f8b04e3c99c3287364f36893" class="Equation" data-latex="\begin{aligned}
(2+3\text{i})(4+5\text{i}) &= 2\cdot4+2\cdot(5\text{i})+(3\text{i})\cdot4+(3\text{i})(5\text{i}) \\
&=8+10\text{i}+12\text{i}-15 \\
&=-7+22\text{i}
\end{aligned}"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable rowspacing="0.24999999999999992em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mo stretchy="false">(</mo><mn>2</mn><mo>+</mo><mn>3</mn><mtext>i</mtext><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mn>4</mn><mo>+</mo><mn>5</mn><mtext>i</mtext><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>2</mn><mo>⋅</mo><mn>4</mn><mo>+</mo><mn>2</mn><mo>⋅</mo><mo stretchy="false">(</mo><mn>5</mn><mtext>i</mtext><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><mn>3</mn><mtext>i</mtext><mo stretchy="false">)</mo><mo>⋅</mo><mn>4</mn><mo>+</mo><mo stretchy="false">(</mo><mn>3</mn><mtext>i</mtext><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mn>5</mn><mtext>i</mtext><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mn>8</mn><mo>+</mo><mn>10</mn><mtext>i</mtext><mo>+</mo><mn>12</mn><mtext>i</mtext><mo>−</mo><mn>15</mn></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>−</mo><mn>7</mn><mo>+</mo><mn>22</mn><mtext>i</mtext></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{aligned}
(2+3\text{i})(4+5\text{i}) &= 2\cdot4+2\cdot(5\text{i})+(3\text{i})\cdot4+(3\text{i})(5\text{i}) \\
&=8+10\text{i}+12\text{i}-15 \\
&=-7+22\text{i}
\end{aligned}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:4.500000000000002em;vertical-align:-2.000000000000001em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.5000000000000004em;"><span style="top:-4.66em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">3</span><span class="mord text"><span class="mord">i</span></span><span class="mclose">)</span><span class="mopen">(</span><span class="mord">4</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">5</span><span class="mord text"><span class="mord">i</span></span><span class="mclose">)</span></span></span><span style="top:-3.16em;"><span class="pstrut" style="height:3em;"></span><span class="mord"></span></span><span style="top:-1.6599999999999993em;"><span class="pstrut" style="height:3em;"></span><span class="mord"></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.000000000000001em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.5000000000000004em;"><span style="top:-4.66em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">4</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mopen">(</span><span class="mord">5</span><span class="mord text"><span class="mord">i</span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mopen">(</span><span class="mord">3</span><span class="mord text"><span class="mord">i</span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⋅</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">4</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mopen">(</span><span class="mord">3</span><span class="mord text"><span class="mord">i</span></span><span class="mclose">)</span><span class="mopen">(</span><span class="mord">5</span><span class="mord text"><span class="mord">i</span></span><span class="mclose">)</span></span></span><span style="top:-3.16em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord">8</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">1</span><span class="mord">0</span><span class="mord text"><span class="mord">i</span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">1</span><span class="mord">2</span><span class="mord text"><span class="mord">i</span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">1</span><span class="mord">5</span></span></span><span style="top:-1.6599999999999993em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord">−</span><span class="mord">7</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">2</span><span class="mord">2</span><span class="mord text"><span class="mord">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.000000000000001em;"><span></span></span></span></span></span></span></span></span></span></span></span></p><div id="https://www.notion.so/162da694b4c24bdab160423bdd894852" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.3 复数的算术性质</strong></span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/1b1c978773e34b1eba87125097da4f28" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">交换性(commutativity)</strong></span></span><div id="https://www.notion.so/14647506f8b841bdbc7f3bd468d1e6fd" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">对所有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\alpha,\beta\in\mathbf{C}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo separator="true">,</mo><mi>β</mi><mo>∈</mo><mi mathvariant="bold">C</mi></mrow><annotation encoding="application/x-tex">\alpha,\beta\in\mathbf{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">C</span></span></span></span></span></span></span><span class="SemanticString"> 都有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\alpha+\beta=\beta+\alpha"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>=</mo><mi>β</mi><mo>+</mo><mi>α</mi></mrow><annotation encoding="application/x-tex">\alpha+\beta=\beta+\alpha</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span></span></span></span></span></span><span class="SemanticString">,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\alpha\beta=\beta\alpha"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mi>β</mi><mo>=</mo><mi>β</mi><mi>α</mi></mrow><annotation encoding="application/x-tex">\alpha\beta=\beta\alpha</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span></span></span></span></span></span><span class="SemanticString">;</span></span></p></div></li><li id="https://www.notion.so/2db40f451eda450da98004b6a5440da0" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">结合性(associativity)</strong></span></span><div id="https://www.notion.so/642862df4b7343899dd6b2970d8a3e5b" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">对所有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\alpha,\beta,\lambda\in\mathbf{C}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo separator="true">,</mo><mi>β</mi><mo separator="true">,</mo><mi>λ</mi><mo>∈</mo><mi mathvariant="bold">C</mi></mrow><annotation encoding="application/x-tex">\alpha,\beta,\lambda\in\mathbf{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">λ</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">C</span></span></span></span></span></span></span><span class="SemanticString"> 都有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(\alpha+\beta)+\lambda=\alpha+(\beta+\lambda)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo stretchy="false">)</mo><mo>+</mo><mi>λ</mi><mo>=</mo><mi>α</mi><mo>+</mo><mo stretchy="false">(</mo><mi>β</mi><mo>+</mo><mi>λ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\alpha+\beta)+\lambda=\alpha+(\beta+\lambda)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">λ</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">λ</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(\alpha\beta)\lambda=\alpha(\beta\lambda)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>α</mi><mi>β</mi><mo stretchy="false">)</mo><mi>λ</mi><mo>=</mo><mi>α</mi><mo stretchy="false">(</mo><mi>β</mi><mi>λ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\alpha\beta)\lambda=\alpha(\beta\lambda)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mclose">)</span><span class="mord mathdefault">λ</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mord mathdefault">λ</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">;</span></span></p></div></li><li id="https://www.notion.so/d2f0518e90d44c17acab1290dd0c28c0" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">单位元(identities)</strong></span></span><div id="https://www.notion.so/1d8682dc64a54d4da4aef5d7833b38cc" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">对所有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\lambda\in\mathbf{C}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi><mo>∈</mo><mi mathvariant="bold">C</mi></mrow><annotation encoding="application/x-tex">\lambda\in\mathbf{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.73354em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">λ</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">C</span></span></span></span></span></span></span><span class="SemanticString"> 都有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\lambda+0=\lambda"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi><mo>+</mo><mn>0</mn><mo>=</mo><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda+0=\lambda</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.77777em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">λ</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">λ</span></span></span></span></span></span><span class="SemanticString">,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\lambda1=\lambda"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi><mn>1</mn><mo>=</mo><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda1=\lambda</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">λ</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">λ</span></span></span></span></span></span><span class="SemanticString">;</span></span></p></div></li><li id="https://www.notion.so/643f64ff7a2044ba95e207e6875703b0" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">加法逆元(additive inverse)</strong></span></span><div id="https://www.notion.so/c1830f48afe44d43b56f6120862b1e7a" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">对每个 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\alpha\in\mathbf{C}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo>∈</mo><mi mathvariant="bold">C</mi></mrow><annotation encoding="application/x-tex">\alpha\in\mathbf{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">C</span></span></span></span></span></span></span><span class="SemanticString"> 都存在唯一的 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\beta\in\mathbf{C}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>β</mi><mo>∈</mo><mi mathvariant="bold">C</mi></mrow><annotation encoding="application/x-tex">\beta\in\mathbf{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">C</span></span></span></span></span></span></span><span class="SemanticString"> 使得 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\alpha+\beta=0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo>+</mo><mi>β</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\alpha+\beta=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">;</span></span></p></div></li><li id="https://www.notion.so/a27d952929ae4f4b874d3e367e972ac9" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">乘法逆元(multiplicative inverse)</strong></span></span><div id="https://www.notion.so/548cfa4b5509499da06bf3db826afbda" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">对每个 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\alpha\in\mathbf{C},\;\alpha\ne0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo>∈</mo><mi mathvariant="bold">C</mi><mo separator="true">,</mo><mtext> </mtext><mi>α</mi><mo mathvariant="normal">≠</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\alpha\in\mathbf{C},\;\alpha\ne0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathbf">C</span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel"><span class="mrel"><span class="mord"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="rlap"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="inner"><span class="mrel"></span></span><span class="fix"></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span></span><span class="mrel">=</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString"> 都存在唯一的 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\beta\in\mathbf{C}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>β</mi><mo>∈</mo><mi mathvariant="bold">C</mi></mrow><annotation encoding="application/x-tex">\beta\in\mathbf{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">C</span></span></span></span></span></span></span><span class="SemanticString"> 使得 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\alpha\beta=1"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mi>β</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\alpha\beta=1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span></span></span><span class="SemanticString">;</span></span></p></div></li><li id="https://www.notion.so/639c14ebf9774d0cb29608d76754dfa6" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">分配性质(distributive property)</strong></span></span><div id="https://www.notion.so/1d2520072a0a483585f87a1bf891fe00" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">对所有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\lambda,\alpha,\beta\in\mathbf{C}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi><mo separator="true">,</mo><mi>α</mi><mo separator="true">,</mo><mi>β</mi><mo>∈</mo><mi mathvariant="bold">C</mi></mrow><annotation encoding="application/x-tex">\lambda,\alpha,\beta\in\mathbf{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">λ</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">C</span></span></span></span></span></span></span><span class="SemanticString"> 都有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\lambda(\alpha+\beta)=\lambda\alpha+\lambda\beta"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi><mo stretchy="false">(</mo><mi>α</mi><mo>+</mo><mi>β</mi><mo stretchy="false">)</mo><mo>=</mo><mi>λ</mi><mi>α</mi><mo>+</mo><mi>λ</mi><mi>β</mi></mrow><annotation encoding="application/x-tex">\lambda(\alpha+\beta)=\lambda\alpha+\lambda\beta</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">λ</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.77777em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">λ</span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">λ</span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div></li></ul><div id="https://www.notion.so/f0fb1fae74d34a96b7a38ddb68ddd007" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.4 例</strong></span><span class="SemanticString"> 证明 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\alpha\beta=\beta\alpha"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mi>β</mi><mo>=</mo><mi>β</mi><mi>α</mi></mrow><annotation encoding="application/x-tex">\alpha\beta=\beta\alpha</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span></span></span></span></span></span><span class="SemanticString"> 对所有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\alpha,\beta\in\mathbf{C}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo separator="true">,</mo><mi>β</mi><mo>∈</mo><mi mathvariant="bold">C</mi></mrow><annotation encoding="application/x-tex">\alpha,\beta\in\mathbf{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">C</span></span></span></span></span></span></span><span class="SemanticString"> 成立.</span></span></p></div><div id="https://www.notion.so/d3341cc2e80f488e96de72f029357c46" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">证明</strong></span><span class="SemanticString"> 假设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\alpha=a+b\text{i}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo>=</mo><mi>a</mi><mo>+</mo><mi>b</mi><mtext>i</mtext></mrow><annotation encoding="application/x-tex">\alpha=a+b\text{i}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">a</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">b</span><span class="mord text"><span class="mord">i</span></span></span></span></span></span></span><span class="SemanticString">,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\beta=c+d\text{i}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>β</mi><mo>=</mo><mi>c</mi><mo>+</mo><mi>d</mi><mtext>i</mtext></mrow><annotation encoding="application/x-tex">\beta=c+d\text{i}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">c</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">d</span><span class="mord text"><span class="mord">i</span></span></span></span></span></span></span><span class="SemanticString">,其中 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a,b,c,d\in\mathbf{R}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo separator="true">,</mo><mi>c</mi><mo separator="true">,</mo><mi>d</mi><mo>∈</mo><mi mathvariant="bold">R</mi></mrow><annotation encoding="application/x-tex">a,b,c,d\in\mathbf{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">c</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">d</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">R</span></span></span></span></span></span></span><span class="SemanticString">. 那么,复数乘法的定义表明</span></span></p></div><p id="https://www.notion.so/d7b60935917c41249103b5eb6b3c4d50" class="Equation" data-latex="\begin{aligned}
\alpha\beta&=(a+b\text{i})(c+d\text{i}) \\
&=(ac-bd)+(ad+bc)\text{i}
\end{aligned}"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable rowspacing="0.24999999999999992em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>α</mi><mi>β</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mtext>i</mtext><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>c</mi><mo>+</mo><mi>d</mi><mtext>i</mtext><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">(</mo><mi>a</mi><mi>c</mi><mo>−</mo><mi>b</mi><mi>d</mi><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><mi>a</mi><mi>d</mi><mo>+</mo><mi>b</mi><mi>c</mi><mo stretchy="false">)</mo><mtext>i</mtext></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{aligned}
\alpha\beta&=(a+b\text{i})(c+d\text{i}) \\
&=(ac-bd)+(ad+bc)\text{i}
\end{aligned}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.0000000000000004em;vertical-align:-1.2500000000000002em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.7500000000000002em;"><span style="top:-3.91em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2500000000000002em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.7500000000000002em;"><span style="top:-3.91em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">b</span><span class="mord text"><span class="mord">i</span></span><span class="mclose">)</span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">d</span><span class="mord text"><span class="mord">i</span></span><span class="mclose">)</span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mord mathdefault">c</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">b</span><span class="mord mathdefault">d</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mord mathdefault">d</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">b</span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mord text"><span class="mord">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2500000000000002em;"><span></span></span></span></span></span></span></span></span></span></span></span></p><div id="https://www.notion.so/8ca20178e72e48a79b9590037b21f81f" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">并且</span></span></p></div><p id="https://www.notion.so/b9c50c983e9649508bd6001199dd78b7" class="Equation" data-latex="\begin{aligned}
\beta\alpha&=(c+d\text{i})(a+b\text{i})\\
&=(ca-db)+(cb+da)\text{i}.
\end{aligned}"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable rowspacing="0.24999999999999992em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>β</mi><mi>α</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">(</mo><mi>c</mi><mo>+</mo><mi>d</mi><mtext>i</mtext><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mtext>i</mtext><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">(</mo><mi>c</mi><mi>a</mi><mo>−</mo><mi>d</mi><mi>b</mi><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><mi>c</mi><mi>b</mi><mo>+</mo><mi>d</mi><mi>a</mi><mo stretchy="false">)</mo><mtext>i</mtext><mi mathvariant="normal">.</mi></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{aligned}
\beta\alpha&=(c+d\text{i})(a+b\text{i})\\
&=(ca-db)+(cb+da)\text{i}.
\end{aligned}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:3.0000000000000004em;vertical-align:-1.2500000000000002em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.7500000000000002em;"><span style="top:-3.91em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2500000000000002em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.7500000000000002em;"><span style="top:-3.91em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">d</span><span class="mord text"><span class="mord">i</span></span><span class="mclose">)</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">b</span><span class="mord text"><span class="mord">i</span></span><span class="mclose">)</span></span></span><span style="top:-2.41em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mord mathdefault">a</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">d</span><span class="mord mathdefault">b</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mord mathdefault">b</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">d</span><span class="mord mathdefault">a</span><span class="mclose">)</span><span class="mord text"><span class="mord">i</span></span><span class="mord">.</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.2500000000000002em;"><span></span></span></span></span></span></span></span></span></span></span></span></p><div id="https://www.notion.so/a73f9ed1ef9b449499f455678f108689" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">上面这两组等式和实数的加法与乘法的交换性表明 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\alpha\beta=\beta\alpha"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mi>β</mi><mo>=</mo><mi>β</mi><mi>α</mi></mrow><annotation encoding="application/x-tex">\alpha\beta=\beta\alpha</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/f4f1b705557e4b528bbd2aa1315e4cf2" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.5 定义 </strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="-\alpha"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mi>α</mi></mrow><annotation encoding="application/x-tex">-\alpha</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord">−</span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span></span></span></span></span></strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">,减法(subtraction)、</strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="1/\alpha"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mi>α</mi></mrow><annotation encoding="application/x-tex">1/\alpha</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mord">/</span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span></span></span></span></span></strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">,除法(division)</strong></span></span></p></div><div id="https://www.notion.so/20cce95b6f9d41739d231cdb3f2795ae" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\alpha,\beta\in\mathbf{C}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo separator="true">,</mo><mi>β</mi><mo>∈</mo><mi mathvariant="bold">C</mi></mrow><annotation encoding="application/x-tex">\alpha,\beta\in\mathbf{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">C</span></span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/d317533a7ccc4c60afb33957f11bce7f" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">令 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="-\alpha"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mi>α</mi></mrow><annotation encoding="application/x-tex">-\alpha</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord">−</span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span></span></span></span></span></span><span class="SemanticString"> 表示 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\alpha"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi></mrow><annotation encoding="application/x-tex">\alpha</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span></span></span></span></span></span><span class="SemanticString"> 的加法逆元. 因此 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="-\alpha"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mi>α</mi></mrow><annotation encoding="application/x-tex">-\alpha</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord">−</span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span></span></span></span></span></span><span class="SemanticString"> 是使得</span></span><p id="https://www.notion.so/02f843194f8746458f3ee34b2afd04ab" class="Equation" data-latex="\alpha+(-\alpha)=0"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo>+</mo><mo stretchy="false">(</mo><mo>−</mo><mi>α</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\alpha+(-\alpha)=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></p><div id="https://www.notion.so/c67165c77adf48a59ce27da456f9c6e4" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">的唯一复数.</span></span></p></div></li><li id="https://www.notion.so/948e816461fb44fabdaa65a8a3495412" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{C}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">C</mi></mrow><annotation encoding="application/x-tex">\mathbf{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">C</span></span></span></span></span></span></span><span class="SemanticString"> 上的</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">减法</strong></span><span class="SemanticString">定义为</span></span><p id="https://www.notion.so/ab46300749d74607858ab75a01e587ee" class="Equation" data-latex="\beta-\alpha=\beta+(-\alpha)."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>β</mi><mo>−</mo><mi>α</mi><mo>=</mo><mi>β</mi><mo>+</mo><mo stretchy="false">(</mo><mo>−</mo><mi>α</mi><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">\beta-\alpha=\beta+(-\alpha).</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mclose">)</span><span class="mord">.</span></span></span></span></span></p></li><li id="https://www.notion.so/122e7578f6514c70ba628c0a1426c018" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">对于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\alpha\ne0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo mathvariant="normal">≠</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\alpha\ne0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel"><span class="mrel"><span class="mord"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.69444em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="rlap"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="inner"><span class="mrel"></span></span><span class="fix"></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.19444em;"><span></span></span></span></span></span></span><span class="mrel">=</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">,令 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="1/\alpha"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mi>α</mi></mrow><annotation encoding="application/x-tex">1/\alpha</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mord">/</span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span></span></span></span></span></span><span class="SemanticString"> 表示 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\alpha"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi></mrow><annotation encoding="application/x-tex">\alpha</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span></span></span></span></span></span><span class="SemanticString"> 的加法逆元. 因此 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="1/\alpha"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mi mathvariant="normal">/</mi><mi>α</mi></mrow><annotation encoding="application/x-tex">1/\alpha</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mord">/</span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span></span></span></span></span></span><span class="SemanticString"> 是使得</span></span><p id="https://www.notion.so/327d8c9aa95047a78c611cfc8a09d3b3" class="Equation" data-latex="\alpha(1/\alpha) =1"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo stretchy="false">(</mo><mn>1</mn><mi mathvariant="normal">/</mi><mi>α</mi><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\alpha(1/\alpha) =1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mopen">(</span><span class="mord">1</span><span class="mord">/</span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span></span></p><div id="https://www.notion.so/7415e2b949ac4a53a83e47e2db14550e" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">的唯一复数.</span></span></p></div></li><li id="https://www.notion.so/e4d5fa7b7c1c4760a1f5c10d363890b1" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{C}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">C</mi></mrow><annotation encoding="application/x-tex">\mathbf{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">C</span></span></span></span></span></span></span><span class="SemanticString"> 上的</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">除法</strong></span><span class="SemanticString">定义为</span></span><p id="https://www.notion.so/9527d1f9c9f6436c95b2006a63ab3d05" class="Equation" data-latex="\beta/\alpha=\beta(1/\alpha)."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>β</mi><mi mathvariant="normal">/</mi><mi>α</mi><mo>=</mo><mi>β</mi><mo stretchy="false">(</mo><mn>1</mn><mi mathvariant="normal">/</mi><mi>α</mi><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">\beta/\alpha=\beta(1/\alpha).</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mord">/</span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mopen">(</span><span class="mord">1</span><span class="mord">/</span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mclose">)</span><span class="mord">.</span></span></span></span></span></p></li></ul><div id="https://www.notion.so/bb77baed94d84fd6bb784766f2409ae3" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.6 记号 </strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></strong></span></span></p></div><div id="https://www.notion.so/71a81ca56d684004b7e1401b140fb79b" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">在本书中 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 总是表示 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">R</mi></mrow><annotation encoding="application/x-tex">\mathbf{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">R</span></span></span></span></span></span></span><span class="SemanticString"> 或 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{C}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">C</mi></mrow><annotation encoding="application/x-tex">\mathbf{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">C</span></span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><blockquote id="https://www.notion.so/2bc93d1c4fe445449f5121d0f00cbcf8" class="ColorfulBlock ColorfulBlock--ColorDefault Quote"><span class="SemanticStringArray"><span class="SemanticString">选用字母 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 是因为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">R</mi></mrow><annotation encoding="application/x-tex">\mathbf{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">R</span></span></span></span></span></span></span><span class="SemanticString"> 和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{C}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">C</mi></mrow><annotation encoding="application/x-tex">\mathbf{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">C</span></span></span></span></span></span></span><span class="SemanticString"> 都是所谓</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">域</strong></span><span class="SemanticString">(field)的例子.</span></span></blockquote><div id="https://www.notion.so/9fe1de87396e4a96ba57d0026ff2ac17" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 中的元素称为</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">标量</strong></span><span class="SemanticString">(scalar).</span></span></p></div><div id="https://www.notion.so/a573659cda6a44d4a0648a9aea0abe75" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">对 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\alpha\in\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo>∈</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\alpha\in\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 及正整数 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">m</span></span></span></span></span></span><span class="SemanticString">,我们把 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\alpha^m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>α</mi><mi>m</mi></msup></mrow><annotation encoding="application/x-tex">\alpha^m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.664392em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 定义为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">m</span></span></span></span></span></span><span class="SemanticString"> 个 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\alpha"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi></mrow><annotation encoding="application/x-tex">\alpha</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span></span></span></span></span></span><span class="SemanticString"> 的乘积:</span></span></p></div><p id="https://www.notion.so/d2eae3fa1a9d4cfebad8ac388221a040" class="Equation" data-latex="\alpha^m=\underbrace{\alpha\cdots\,\cdots\alpha}_{m个}"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>α</mi><mi>m</mi></msup><mo>=</mo><munder><munder><mrow><mi>α</mi><mo>⋯</mo><mtext> </mtext><mo>⋯</mo><mi>α</mi></mrow><mo stretchy="true">⏟</mo></munder><mrow><mi>m</mi><mtext>个</mtext></mrow></munder></mrow><annotation encoding="application/x-tex">\alpha^m=\underbrace{\alpha\cdots\,\cdots\alpha}_{m个}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7143919999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7143919999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.756891em;vertical-align:-1.3263310000000001em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.43055999999999983em;"><span style="top:-1.6736689999999999em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">m</span><span class="mord cjk_fallback mtight">个</span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord munder"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.43056000000000005em;"><span class="svg-align" style="top:-2.352em;"><span class="pstrut" style="height:3em;"></span><span class="stretchy" style="height:0.548em;min-width:1.6em;"><span class="brace-left" style="height:0.548em;"><svg width='400em' height='0.548em' viewBox='0 0 400000 548' preserveAspectRatio='xMinYMin slice'><path d='M0 6l6-6h17c12.688 0 19.313.3 20 1 4 4 7.313 8.3 10 13
35.313 51.3 80.813 93.8 136.5 127.5 55.688 33.7 117.188 55.8 184.5 66.5.688
0 2 .3 4 1 18.688 2.7 76 4.3 172 5h399450v120H429l-6-1c-124.688-8-235-61.7
-331-161C60.687 138.7 32.312 99.3 7 54L0 41V6z'/></svg></span><span class="brace-center" style="height:0.548em;"><svg width='400em' height='0.548em' viewBox='0 0 400000 548' preserveAspectRatio='xMidYMin slice'><path d='M199572 214
c100.7 8.3 195.3 44 280 108 55.3 42 101.7 93 139 153l9 14c2.7-4 5.7-8.7 9-14
53.3-86.7 123.7-153 211-199 66.7-36 137.3-56.3 212-62h199568v120H200432c-178.3
11.7-311.7 78.3-403 201-6 8-9.7 12-11 12-.7.7-6.7 1-18 1s-17.3-.3-18-1c-1.3 0
-5-4-11-12-44.7-59.3-101.3-106.3-170-141s-145.3-54.3-229-60H0V214z'/></svg></span><span class="brace-right" style="height:0.548em;"><svg width='400em' height='0.548em' viewBox='0 0 400000 548' preserveAspectRatio='xMaxYMin slice'><path d='M399994 0l6 6v35l-6 11c-56 104-135.3 181.3-238 232-57.3
28.7-117 45-179 50H-300V214h399897c43.3-7 81-15 113-26 100.7-33 179.7-91 237
-174 2.7-5 6-9 10-13 .7-1 7.3-1 20-1h17z'/></svg></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.648em;"><span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3263310000000001em;"><span></span></span></span></span></span></span></span></span></span></p><div id="https://www.notion.so/4534fb98f70548d58210992764ed64fe" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">显然,对所有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\alpha,\beta\in\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo separator="true">,</mo><mi>β</mi><mo>∈</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\alpha,\beta\in\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 及正整数 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="m,n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>m</mi><mo separator="true">,</mo><mi>n</mi></mrow><annotation encoding="application/x-tex">m,n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">m</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">n</span></span></span></span></span></span><span class="SemanticString"> 都有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(\alpha^m)^n=\alpha^{mn}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><msup><mi>α</mi><mi>m</mi></msup><msup><mo stretchy="false">)</mo><mi>n</mi></msup><mo>=</mo><msup><mi>α</mi><mrow><mi>m</mi><mi>n</mi></mrow></msup></mrow><annotation encoding="application/x-tex">(\alpha^m)^n=\alpha^{mn}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.664392em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">m</span><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(\alpha\beta)^m=\alpha^m\beta^m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>α</mi><mi>β</mi><msup><mo stretchy="false">)</mo><mi>m</mi></msup><mo>=</mo><msup><mi>α</mi><mi>m</mi></msup><msup><mi>β</mi><mi>m</mi></msup></mrow><annotation encoding="application/x-tex">(\alpha\beta)^m=\alpha^m\beta^m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.05278em;">β</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><h3 id="https://www.notion.so/5e862e890d7849fb9b70c380c387d425" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--3"><a class="Anchor" href="#https://www.notion.so/5e862e890d7849fb9b70c380c387d425"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">组</span></span></h3><div id="https://www.notion.so/6065abe0ea964e9b9835fb8f9dc66f57" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.7 例 </strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}^2"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{R}^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"> 和 </strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}^3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{R}^3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span></span></strong></span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/6417066a1b1141d8a85eda553aa0fcb2" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">集合 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}^2"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{R}^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 由全体有序实数对构成:</span></span><p id="https://www.notion.so/8aa90e69e5a54cccb5caa48354cc276b" class="Equation" data-latex="\mathbf{R}^2=\{(x,y):x,y\in\mathbf{R}\},"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mn>2</mn></msup><mo>=</mo><mo stretchy="false">{</mo><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo stretchy="false">)</mo><mo>:</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo>∈</mo><mi mathvariant="bold">R</mi><mo stretchy="false">}</mo><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">\mathbf{R}^2=\{(x,y):x,y\in\mathbf{R}\},</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8641079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathbf">R</span></span><span class="mclose">}</span><span class="mpunct">,</span></span></span></span></span></p><div id="https://www.notion.so/8ab055009a8c44beb33a67dd9ffc1cbb" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">可以把它看作一个平面.</span></span></p></div></li><li id="https://www.notion.so/f8c61e0b97864e5dafb179082173d4f2" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">集合 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}^3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{R}^3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 由全体有序三元实数组构成:</span></span><p id="https://www.notion.so/d4c441fad5744a3b8002b483d56b39bb" class="Equation" data-latex="\mathbf{R}^3=\{(x,y,z):x,y,z\in\mathbf{R}\},"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mn>3</mn></msup><mo>=</mo><mo stretchy="false">{</mo><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mi>z</mi><mo stretchy="false">)</mo><mo>:</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mi>z</mi><mo>∈</mo><mi mathvariant="bold">R</mi><mo stretchy="false">}</mo><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">\mathbf{R}^3=\{(x,y,z):x,y,z\in\mathbf{R}\},</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8641079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathbf">R</span></span><span class="mclose">}</span><span class="mpunct">,</span></span></span></span></span></p><div id="https://www.notion.so/6446005ea6684ac59c24b99305196bfd" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">可以把它看作通常的空间.</span></span></p></div></li></ul><div id="https://www.notion.so/41e28ee067dc48fe87341c9e690e9423" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.8 定义 组(list)、长度(length)</strong></span></span></p></div><div id="https://www.notion.so/7bb8a954937c4e9680e7955658046e87" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span></span><span class="SemanticString"> 是非负整数,</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">长度</strong></span><span class="SemanticString">为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span></span><span class="SemanticString"> 的</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">组</strong></span><span class="SemanticString">是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span></span><span class="SemanticString"> 个有顺序的元素,这些元素用逗号隔开并且两端用括弧括起来(这些元素可以是数、其他组或者更抽象的东西). 长度为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span></span><span class="SemanticString"> 的组具有如下形式:</span></span></p></div><p id="https://www.notion.so/329708fa72d14f7fbbc33b0e71ca466a" class="Equation" data-latex="(x_1,\dots,x_n)."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">(x_1,\dots,x_n).</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/a413a87feb5847d0a1216e4f82a54e25" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">两个组相等当且仅当它们长度相等、所含的元素相同并且元素的顺序也相同.</span></span></p></div><div id="https://www.notion.so/ae059f7505b74dedbe154f531b4e6829" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">于是,长度为 2 的组是有序对(pair),而长度为 3 的组是有序三元组(triple).</span></span></p></div><blockquote id="https://www.notion.so/84787afd92d541259e103e1993c7963d" class="ColorfulBlock ColorfulBlock--ColorDefault Quote"><span class="SemanticStringArray"><span class="SemanticString">很多数学家称长度为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span></span><span class="SemanticString"> 的组为 </span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span></strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"> 元组</strong></span><span class="SemanticString">(n-tuple).</span></span></blockquote><div id="https://www.notion.so/9fbe51254c544778991bc53d15564fdc" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">根据定义,每个组的长度都是有限的,这个长度是一个非负整数. 因此,形如</span></span></p></div><p id="https://www.notion.so/142bbaaf5b2c48d5b4e259667202264c" class="Equation" data-latex="(x_1,x_2,\dots)"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><mo separator="true">,</mo><mo>…</mo><mtext> </mtext><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(x_1,x_2,\dots)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mclose">)</span></span></span></span></span></p><div id="https://www.notion.so/a0de9d56af7441d3be3180eaacaeeb30" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">的对象不是组.</span></span></p></div><div id="https://www.notion.so/fa2aa736a4dd42c597771dcc9932728e" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">长度为 0 的组形如 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="()"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">()</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/2f01c6a199ae4ec0a411f87ee71be5f7" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">组与集合有两点不同:组中的元素是有顺序的并且允许重复,而对于集合来说,顺序和重复都无关紧要.</span></span></p></div><div id="https://www.notion.so/d07e09b00daf486f9a7156b3b49f41c2" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.9 例 组与集合</strong></span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/95963bead115407caed6c19b0ad39383" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">组 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(3,5)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>3</mn><mo separator="true">,</mo><mn>5</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(3,5)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">3</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">5</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(5,3)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>5</mn><mo separator="true">,</mo><mn>3</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(5,3)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">5</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">3</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 是不相等的,但是集合 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\{3,5\}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mn>3</mn><mo separator="true">,</mo><mn>5</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{3,5\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">3</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">5</span><span class="mclose">}</span></span></span></span></span></span><span class="SemanticString"> 和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\{5,3\}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mn>5</mn><mo separator="true">,</mo><mn>3</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{5,3\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">5</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">3</span><span class="mclose">}</span></span></span></span></span></span><span class="SemanticString"> 是相等的.</span></span></li><li id="https://www.notion.so/6a24a1355a434ed3af90d7097df40f05" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">组 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(4,4)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>4</mn><mo separator="true">,</mo><mn>4</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(4,4)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">4</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">4</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(4,4,4)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>4</mn><mo separator="true">,</mo><mn>4</mn><mo separator="true">,</mo><mn>4</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(4,4,4)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">4</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">4</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">4</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 是不相等的(它们的长度不同),而集合 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\{4,4\}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mn>4</mn><mo separator="true">,</mo><mn>4</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{4,4\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">4</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">4</span><span class="mclose">}</span></span></span></span></span></span><span class="SemanticString"> 和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\{4,4,4\}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mn>4</mn><mo separator="true">,</mo><mn>4</mn><mo separator="true">,</mo><mn>4</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{4,4,4\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">4</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">4</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">4</span><span class="mclose">}</span></span></span></span></span></span><span class="SemanticString"> 都等于集合 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\{4\}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mn>4</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{4\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">4</span><span class="mclose">}</span></span></span></span></span></span><span class="SemanticString">.</span></span></li></ul><h3 id="https://www.notion.so/3658d102c3124b81b8c8c4d1ea093d0c" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--3"><a class="Anchor" href="#https://www.notion.so/3658d102c3124b81b8c8c4d1ea093d0c"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span></span></h3><div id="https://www.notion.so/0d5f405b8ca44ab7b5fa0c9f399bf179" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.10 定义 </strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></strong></span></span></p></div><div id="https://www.notion.so/ee6978f73fc14d748a06ba6770e985bf" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 中元素组成的长度为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span></span><span class="SemanticString"> 的组的集合:</span></span></p></div><p id="https://www.notion.so/1745c465cfff4dbc9d259fd7f2141009" class="Equation" data-latex="\mathbf{F}^n=\{(x_1,\dots,x_n):x_j\in\mathbf{F},\,j=1,\dots,n\}."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup><mo>=</mo><mo stretchy="false">{</mo><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">)</mo><mo>:</mo><msub><mi>x</mi><mi>j</mi></msub><mo>∈</mo><mi mathvariant="bold">F</mi><mo separator="true">,</mo><mtext> </mtext><mi>j</mi><mo>=</mo><mn>1</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mi>n</mi><mo stretchy="false">}</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}^n=\{(x_1,\dots,x_n):x_j\in\mathbf{F},\,j=1,\dots,n\}.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7143919999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7143919999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8252079999999999em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8805499999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathbf">F</span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.05724em;">j</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">n</span><span class="mclose">}</span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/db2e1c04895f491f8a1067c09ebae66b" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">对于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(x_1,\dots,x_n)\in\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">)</mo><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">(x_1,\dots,x_n)\in\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 以及 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="j\in\{1,\dots,n\}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>j</mi><mo>∈</mo><mo stretchy="false">{</mo><mn>1</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mi>n</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">j\in\{1,\dots,n\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.85396em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.05724em;">j</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">n</span><span class="mclose">}</span></span></span></span></span></span><span class="SemanticString">,称 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x_j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">x_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.716668em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(x_1,\dots,x_n)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(x_1,\dots,x_n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 的第 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>j</mi></mrow><annotation encoding="application/x-tex">j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.85396em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.05724em;">j</span></span></span></span></span></span><span class="SemanticString"> 个</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">坐标</strong></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/5dd9e2b69198471288efb4330c29461f" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.11 例</strong></span><span class="SemanticString"> </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{C}^4"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">C</mi><mn>4</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{C}^4</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">C</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 是所有含 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="4"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>4</mn></mrow><annotation encoding="application/x-tex">4</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">4</span></span></span></span></span></span><span class="SemanticString"> 个复数的组所构成的集合:</span></span></p></div><p id="https://www.notion.so/79d0b766a52c4eafa48bb008205d53ba" class="Equation" data-latex="\mathbf{C}^4=\{(z_1,z_2,z_3,z_4):z_1,z_2,z_3,z_4\in\mathbf{C}\}."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">C</mi><mn>4</mn></msup><mo>=</mo><mo stretchy="false">{</mo><mo stretchy="false">(</mo><msub><mi>z</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>z</mi><mn>2</mn></msub><mo separator="true">,</mo><msub><mi>z</mi><mn>3</mn></msub><mo separator="true">,</mo><msub><mi>z</mi><mn>4</mn></msub><mo stretchy="false">)</mo><mo>:</mo><msub><mi>z</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>z</mi><mn>2</mn></msub><mo separator="true">,</mo><msub><mi>z</mi><mn>3</mn></msub><mo separator="true">,</mo><msub><mi>z</mi><mn>4</mn></msub><mo>∈</mo><mi mathvariant="bold">C</mi><mo stretchy="false">}</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">\mathbf{C}^4=\{(z_1,z_2,z_3,z_4):z_1,z_2,z_3,z_4\in\mathbf{C}\}.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8641079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">C</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.04398em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.04398em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.04398em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.04398em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.04398em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.04398em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.04398em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.04398em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathbf">C</span></span><span class="mclose">}</span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/41d44d45f8cd4013917b0eb05c45f6fc" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{C}^1"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">C</mi><mn>1</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{C}^1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">C</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 可以看成一个平面.</span></span></p></div><div id="https://www.notion.so/97b3c5d96b5d4b1b9cc55b9bc5cb8f80" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.12 定义 </strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"> 中的加法(addition in </strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">)</strong></span></span></p></div><div id="https://www.notion.so/d43407a9dbae4f81a63a1b2a32e16949" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中的</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">加法</strong></span><span class="SemanticString">定义为对应坐标相加:</span></span></p></div><p id="https://www.notion.so/7c63485f32044a2d98b51abc69cb01a6" class="Equation" data-latex="(x_1,\dots,x_n)+(y_1,\dots,y_n)=(x_1+y_1,\dots,x_n+y_n)."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><msub><mi>y</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>y</mi><mi>n</mi></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><msub><mi>y</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><mo>+</mo><msub><mi>y</mi><mi>n</mi></msub><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">(x_1,\dots,x_n)+(y_1,\dots,y_n)=(x_1+y_1,\dots,x_n+y_n).</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.7777700000000001em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/7e3fd2ae33f94e688cc459407770ef3f" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.13 </strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"> 中的加法交换性</strong></span></span></p></div><div id="https://www.notion.so/2d57864b52214b6193094b3707531f23" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">若 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x,y\in\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">x,y\in\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">,则 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x+y=y+x"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>=</mo><mi>y</mi><mo>+</mo><mi>x</mi></mrow><annotation encoding="application/x-tex">x+y=y+x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.7777700000000001em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/1187905d516f466b81c76be1971f38a6" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">证明</strong></span><span class="SemanticString"> 假设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x=(x_1,\dots,x_n),\;y=(y_1,\dots,y_n)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">)</mo><mo separator="true">,</mo><mtext> </mtext><mi>y</mi><mo>=</mo><mo stretchy="false">(</mo><msub><mi>y</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>y</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x=(x_1,\dots,x_n),\;y=(y_1,\dots,y_n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">. 则</span></span></p></div><p id="https://www.notion.so/870060b239754296a618f53173474b1a" class="Equation" data-latex="\begin{aligned}
x+y&=(x_1,\dots,x_n)+(y_1,\dots,y_n) \\
&=(x_1+y_1,\dots,x_n+y_n) \\
&=(y_1+x_1,\dots,y_n+x_n) \\
&=(y_1,\dots,y_n) + (x_1,\dots,x_n) \\
&=y+x.
\end{aligned}"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable rowspacing="0.24999999999999992em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><msub><mi>y</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>y</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><msub><mi>y</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><mo>+</mo><msub><mi>y</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">(</mo><msub><mi>y</mi><mn>1</mn></msub><mo>+</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>y</mi><mi>n</mi></msub><mo>+</mo><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">(</mo><msub><mi>y</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>y</mi><mi>n</mi></msub><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mi>y</mi><mo>+</mo><mi>x</mi><mi mathvariant="normal">.</mi></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{aligned}
x+y&=(x_1,\dots,x_n)+(y_1,\dots,y_n) \\
&=(x_1+y_1,\dots,x_n+y_n) \\
&=(y_1+x_1,\dots,y_n+x_n) \\
&=(y_1,\dots,y_n) + (x_1,\dots,x_n) \\
&=y+x.
\end{aligned}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:7.500000000000002em;vertical-align:-3.5000000000000018em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4em;"><span style="top:-6.16em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span><span style="top:-4.659999999999999em;"><span class="pstrut" style="height:3em;"></span><span class="mord"></span></span><span style="top:-3.1599999999999984em;"><span class="pstrut" style="height:3em;"></span><span class="mord"></span></span><span style="top:-1.6599999999999984em;"><span class="pstrut" style="height:3em;"></span><span class="mord"></span></span><span style="top:-0.15999999999999837em;"><span class="pstrut" style="height:3em;"></span><span class="mord"></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.5000000000000018em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:4em;"><span style="top:-6.16em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-4.659999999999999em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-3.1599999999999984em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-1.6599999999999984em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-0.15999999999999837em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault">x</span><span class="mord">.</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.5000000000000018em;"><span></span></span></span></span></span></span></span></span></span></span></span></p><div id="https://www.notion.so/e24ac0a9ec654017aa631017fe4df719" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">其中第二个与第四个等式成立是由于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中加法的定义,第三个等式成立是由于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 中加法的通常的交换性.</span></span></p></div><div id="https://www.notion.so/baf441730d3f45bab0ef569a47ef81e1" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.14 定义 </strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></strong></span></span></p></div><div id="https://www.notion.so/91500b8afa8b4890be28572f9ae45445" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">用 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString"> 表示长度为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span></span><span class="SemanticString"> 且所有坐标都是 0 的组:</span></span></p></div><p id="https://www.notion.so/90cf319f5bf5455c9b1f8e510d1d134b" class="Equation" data-latex="0=(0,\dots,0)."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>=</mo><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">0=(0,\dots,0).</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/a7e5abd585614d97b9efef781704986a" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.15 例</strong></span><span class="SemanticString"> 考虑陈述:</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的加法单位元,如果对于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x\in\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">x\in\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 都有</span></span></p></div><p id="https://www.notion.so/0cb88a4a09414ede8a71b611e6dfe32b" class="Equation" data-latex="x+0=x."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>+</mo><mn>0</mn><mo>=</mo><mi>x</mi><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">x+0=x.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/e0470cdec2484b16a416669ce879f3a2" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">上面的 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString"> 是数 0 还是组 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">?</span></span></p></div><div id="https://www.notion.so/6399fd4c132a447a89de2b1421874de4" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">解</strong></span><span class="SemanticString"> 这里 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString"> 是一个组,因为我们从未定义过 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中元素(即 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span></span><span class="SemanticString">)与数 0 的和.</span></span></p></div><div id="https://www.notion.so/f5ccba6d4a7e406090484f369737e816" class="ColumnList"><div id="https://www.notion.so/d2785e9e15504f5c86a27db3ad86ee98" class="Column" style="width:calc((100% - var(--column-spacing) * 1) * 0.6875)"><div id="https://www.notion.so/0609954521604762b7ada1ce4e2b9937" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}^2"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{R}^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中的典型元素是点 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x=(x_1,x_2)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x=(x_1,x_2)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">. 也可以看作一个始于原点终于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(x_1,x_2)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(x_1,x_2)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 的箭头,如右图所示. </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span></span><span class="SemanticString"> 被看作一个箭头时,称为</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">向量</strong></span><span class="SemanticString">(vector).</span></span></p></div><div id="https://www.notion.so/594503b337c247b9a4afe1e758836566" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">当把 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}^2"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{R}^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中的向量看作箭头时,我们可以把箭头平行移动(不改变它的长度和方向),并视其为同一向量. 在这样的观点下,省去坐标轴和具体的坐标而只考虑向量往往能帮助我们获得更好的理解,如右图所示.</span></span></p></div></div><div id="https://www.notion.so/2bd0fd739fe540359fc551a47035be24" class="Column" style="width:calc((100% - var(--column-spacing) * 1) * 0.31249999999999994)"><div id="https://www.notion.so/d2268a8db1684e1298bf2aa047874eb8" class="Image Image--Normal"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F42bc262d-db3f-4a1f-961c-3851e628f362%2FUntitled.png?width=332.796875&table=block&id=d2268a8d-b168-4e12-98bf-2aa047874eb8"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F42bc262d-db3f-4a1f-961c-3851e628f362%2FUntitled.png?width=332.796875&table=block&id=d2268a8d-b168-4e12-98bf-2aa047874eb8" style="width:332.796875px"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div></div></div><div id="https://www.notion.so/fb0aa3d5622f49feae1d6c5fd6e53757" class="ColumnList"><div id="https://www.notion.so/46407f9af33b4451b1675f0a1f0a7fed" class="Column" style="width:calc((100% - var(--column-spacing) * 1) * 0.6875)"><div id="https://www.notion.so/5f9b3c8ed26b487a846a9206af056d40" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">假设我们要把 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}^2"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{R}^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中的两个向量 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span></span><span class="SemanticString"> 和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="y"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span></span></span></span><span class="SemanticString"> 加起来. 如右图所示,把向量 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="y"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span></span></span></span><span class="SemanticString"> 平行移动使其始点与向量 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span></span><span class="SemanticString"> 的终点重合,那么,和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x+y"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow><annotation encoding="application/x-tex">x+y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span></span></span></span><span class="SemanticString"> 就是以 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span></span><span class="SemanticString"> 的始点为始点,以 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="y"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span></span></span></span><span class="SemanticString"> 的终点为终点的向量.</span></span></p></div></div><div id="https://www.notion.so/b0ffe2e7d1744992a5ba3a7eb8cb43a0" class="Column" style="width:calc((100% - var(--column-spacing) * 1) * 0.31250000000000006)"><div id="https://www.notion.so/1c2b454ce018403ebb025955f54ca4ba" class="Image Image--Normal"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F8a459797-99e4-4c27-a381-e69af644f2df%2FUntitled.png?width=206.859375&table=block&id=1c2b454c-e018-403e-bb02-5955f54ca4ba"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F8a459797-99e4-4c27-a381-e69af644f2df%2FUntitled.png?width=206.859375&table=block&id=1c2b454c-e018-403e-bb02-5955f54ca4ba" style="width:206.859375px"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div></div></div><div id="https://www.notion.so/0418f9b400884ab8a480f1585f6ceea5" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.16 定义 </strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"> 中的加法逆元(additive inverse in </strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">)</strong></span></span></p></div><div id="https://www.notion.so/f22102d4d4934fe99f2a063d89c702a6" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">对于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x\in\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">x\in\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span></span><span class="SemanticString"> 的</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">加法逆元</strong></span><span class="SemanticString">(记作 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="-x"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mi>x</mi></mrow><annotation encoding="application/x-tex">-x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord">−</span><span class="mord mathdefault">x</span></span></span></span></span></span><span class="SemanticString">)就是满足下面条件的向量 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="-x\in\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mi>x</mi><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">-x\in\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord">−</span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">:</span></span></p></div><p id="https://www.notion.so/4767f2147a594ddbbe419b503cfe2b80" class="Equation" data-latex="x+(-x)=0."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>+</mo><mo stretchy="false">(</mo><mo>−</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0.</mn></mrow><annotation encoding="application/x-tex">x+(-x)=0.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/de2fd7eee93a49229329d7a1d7bf96e7" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">换言之,若 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x=(x_1,\dots,x_n)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">x=(x_1,\dots,x_n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">,则 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="-x=(-x_1,\dots,-x_n)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mi>x</mi><mo>=</mo><mo stretchy="false">(</mo><mo>−</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mo>−</mo><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">-x=(-x_1,\dots,-x_n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord">−</span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">−</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/4f4c9749607046bab58db239fa96e0a9" class="ColumnList"><div id="https://www.notion.so/03a213e57fd64e119af6eaf841fb4d52" class="Column" style="width:calc((100% - var(--column-spacing) * 1) * 0.6875)"><div id="https://www.notion.so/c1cabd3a066e4831bef9cc64da8111c6" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">对于向量 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x\in\mathbf{R}^2"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><msup><mi mathvariant="bold">R</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">x\in\mathbf{R}^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">,加法逆元 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="-x"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mi>x</mi></mrow><annotation encoding="application/x-tex">-x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord">−</span><span class="mord mathdefault">x</span></span></span></span></span></span><span class="SemanticString"> 就是与 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span></span><span class="SemanticString"> 平行、长度相等但方向相反的向量,如右图所示.</span></span></p></div></div><div id="https://www.notion.so/a7f95f9522f04c37aaaab75680c95a76" class="Column" style="width:calc((100% - var(--column-spacing) * 1) * 0.31249999999999994)"><div id="https://www.notion.so/395275bfb4d14e3daabf5afe27d337b7" class="Image Image--Normal"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fe08eece5-f335-4698-922e-b13bee6adb5d%2FUntitled.png?width=206.84375&table=block&id=395275bf-b4d1-4e3d-aabf-5afe27d337b7"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fe08eece5-f335-4698-922e-b13bee6adb5d%2FUntitled.png?width=206.84375&table=block&id=395275bf-b4d1-4e3d-aabf-5afe27d337b7" style="width:206.84375px"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div></div></div><div id="https://www.notion.so/51184f3bca3343a982973ee92de19c04" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.17 定义 </strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"> 中的标量乘法(scalar multiplication in </strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">)</strong></span></span></p></div><div id="https://www.notion.so/37063c4fe06d403bb77ff655491364ff" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">一个数 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\lambda"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">λ</span></span></span></span></span></span><span class="SemanticString"> 与 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中的一个向量的</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">乘积</strong></span><span class="SemanticString">这样来计算:用 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\lambda"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">λ</span></span></span></span></span></span><span class="SemanticString"> 乘向量的每个坐标,即</span></span></p></div><p id="https://www.notion.so/78e7b6a3ee3a46a6a25c2848bb4e572b" class="Equation" data-latex="\lambda(x_1,\dots,x_n)=(\lambda x_1,\dots,\lambda x_n),"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>λ</mi><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mi>λ</mi><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">)</mo><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">\lambda(x_1,\dots,x_n)=(\lambda x_1,\dots,\lambda x_n),</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">λ</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">λ</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">λ</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mpunct">,</span></span></span></span></span></p><div id="https://www.notion.so/ef621d6f1e2a4268a14e79a1df80d11c" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">其中 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\lambda\in\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi><mo>∈</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\lambda\in\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.73354em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">λ</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString">,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(x_1,\dots,x_n)\in\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">)</mo><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">(x_1,\dots,x_n)\in\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/982115348e1145c58e2c109b8901f155" class="ColumnList"><div id="https://www.notion.so/48fa12d9839546b48fcea8935cecf5c5" class="Column" style="width:calc((100% - var(--column-spacing) * 1) * 0.6875)"><div id="https://www.notion.so/2762811963fa4a53a4236c0ac5db29bd" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}^2"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{R}^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中的标量乘法有很好的几何解释. 如果 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\lambda"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">λ</span></span></span></span></span></span><span class="SemanticString"> 是正数,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}^2"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{R}^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中的向量,则向量 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\lambda x"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">\lambda x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">λ</span><span class="mord mathdefault">x</span></span></span></span></span></span><span class="SemanticString"> 的方向与 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span></span><span class="SemanticString"> 相同,而其长度为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span></span><span class="SemanticString"> 长度的 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\lambda"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">λ</span></span></span></span></span></span><span class="SemanticString"> 倍. 如果 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\lambda"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">λ</span></span></span></span></span></span><span class="SemanticString"> 是负数,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}^2"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{R}^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中的向量,则向量 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\lambda x"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi><mi>x</mi></mrow><annotation encoding="application/x-tex">\lambda x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">λ</span><span class="mord mathdefault">x</span></span></span></span></span></span><span class="SemanticString"> 的方向与 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span></span><span class="SemanticString"> 相反,而其长度为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi></mrow><annotation encoding="application/x-tex">x</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">x</span></span></span></span></span></span><span class="SemanticString"> 长度的 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="|\lambda|"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">∣</mi><mi>λ</mi><mi mathvariant="normal">∣</mi></mrow><annotation encoding="application/x-tex">|\lambda|</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">∣</span><span class="mord mathdefault">λ</span><span class="mord">∣</span></span></span></span></span></span><span class="SemanticString"> 倍,如右图所示.</span></span></p></div></div><div id="https://www.notion.so/52d7465ca4864ffda73f22f8ff15a05a" class="Column" style="width:calc((100% - var(--column-spacing) * 1) * 0.31249999999999994)"><div id="https://www.notion.so/f9a7b6aadab54bbba92fe9dc76bed39d" class="Image Image--Normal"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F6c5c1af4-d228-4643-8d62-1f250fb1c69d%2FUntitled.png?width=206.859375&table=block&id=f9a7b6aa-dab5-4bbb-a92f-e9dc76bed39d"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F6c5c1af4-d228-4643-8d62-1f250fb1c69d%2FUntitled.png?width=206.859375&table=block&id=f9a7b6aa-dab5-4bbb-a92f-e9dc76bed39d" style="width:206.859375px"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div></div></div><h3 id="https://www.notion.so/a4082d3feec642b7a8c2178a10d18c6b" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--3"><a class="Anchor" href="#https://www.notion.so/a4082d3feec642b7a8c2178a10d18c6b"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">关于域的题外话</span></span></h3><div id="https://www.notion.so/2b578fa23e674adb9cdd939e75556925" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">一个</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">域</strong></span><span class="SemanticString">是一个集合,至少包含有两个分别称为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString"> 和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="1"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn></mrow><annotation encoding="application/x-tex">1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span></span></span><span class="SemanticString"> 的不同元素,并带有加法和乘法运算,而且这些运算满足 1.3 中列出的所有性质. 因此,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">R</mi></mrow><annotation encoding="application/x-tex">\mathbf{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">R</span></span></span></span></span></span></span><span class="SemanticString"> 和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{C}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">C</mi></mrow><annotation encoding="application/x-tex">\mathbf{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">C</span></span></span></span></span></span></span><span class="SemanticString"> 都是域,有理数集合连同通常的加法和乘法运算也是域. 域的另一个例子是集合 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\{0,1\}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{0,1\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mclose">}</span></span></span></span></span></span><span class="SemanticString">,带有通常的加法和乘法运算,但规定 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="1+1"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">1+1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span></span></span><span class="SemanticString"> 等于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><h2 id="https://www.notion.so/8c87d7319e8b4620a31f50ab73cdb28f" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--2"><a class="Anchor" href="#https://www.notion.so/8c87d7319e8b4620a31f50ab73cdb28f"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">1.B 向量空间的定义</span></span></h2><div id="https://www.notion.so/16a64cf84952416282a961242b5379f0" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.18 定义 加法(addition)、标量乘法(scalar multiplication)</strong></span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/949f9c5edefb453aa4a60625b9ff92da" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">集合 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 上的</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">加法</strong></span><span class="SemanticString">是一个函数,它把每一对 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u,v\in V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo separator="true">,</mo><mi>v</mi><mo>∈</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">u,v\in V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">u</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 都对应到 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 的一个元素 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u+v"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo>+</mo><mi>v</mi></mrow><annotation encoding="application/x-tex">u+v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">u</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></span><span class="SemanticString">.</span></span></li><li id="https://www.notion.so/5aa588cef44348489dfa1ed4848cc94a" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">集合 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 上的</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">标量乘法</strong></span><span class="SemanticString">是一个函数,它把任意 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\lambda\in\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi><mo>∈</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\lambda\in\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.73354em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">λ</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v\in V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">v\in V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 都对应到一个元素 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\lambda v\in V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi><mi>v</mi><mo>∈</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">\lambda v\in V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.73354em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">λ</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString">.</span></span></li></ul><div id="https://www.notion.so/b2eb0030570344f6b09d3621dd81ae33" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.19 定义 向量空间(vector space)</strong></span></span></p></div><div id="https://www.notion.so/c70a21050c254ea482eb0b919379bfce" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">向量空间</strong></span><span class="SemanticString">就是带有加法和标量乘法的集合 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString">,满足如下性质:</span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/fc5598a8353047578f174dc152cde5d5" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">交换性(commutativity)</strong></span></span><div id="https://www.notion.so/a98ad596f246483c97458b994302a5b1" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">对所有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u,v\in V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo separator="true">,</mo><mi>v</mi><mo>∈</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">u,v\in V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">u</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 都有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u+v=v+u"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo>+</mo><mi>v</mi><mo>=</mo><mi>v</mi><mo>+</mo><mi>u</mi></mrow><annotation encoding="application/x-tex">u+v=v+u</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">u</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">u</span></span></span></span></span></span><span class="SemanticString">;</span></span></p></div></li><li id="https://www.notion.so/0f2670e836eb414398acaa62d1534915" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">结合性(associativity)</strong></span></span><div id="https://www.notion.so/8342b813e6e647f1b3a85f8f8d42969f" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">对所有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u,v,w\in V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo separator="true">,</mo><mi>v</mi><mo separator="true">,</mo><mi>w</mi><mo>∈</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">u,v,w\in V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">u</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a,b\in\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo>∈</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">a,b\in\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 都有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(u+v)+w=u+(v+w)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo stretchy="false">)</mo><mo>+</mo><mi>w</mi><mo>=</mo><mi>u</mi><mo>+</mo><mo stretchy="false">(</mo><mi>v</mi><mo>+</mo><mi>w</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(u+v)+w=u+(v+w)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">u</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">u</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(ab)v=a(bv)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mi>b</mi><mo stretchy="false">)</mo><mi>v</mi><mo>=</mo><mi>a</mi><mo stretchy="false">(</mo><mi>b</mi><mi>v</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(ab)v=a(bv)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mord mathdefault">b</span><span class="mclose">)</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">a</span><span class="mopen">(</span><span class="mord mathdefault">b</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">;</span></span></p></div></li><li id="https://www.notion.so/55e0109fa845465f89600b4588eed3b3" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">加法单位元(additive identity)</strong></span></span><div id="https://www.notion.so/107b8bc3909945c997bf0bb3a3c70992" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">存在元素 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0\in V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>∈</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">0\in V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68354em;vertical-align:-0.0391em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 使得对所有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v\in V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">v\in V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 都有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v+0=v"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>+</mo><mn>0</mn><mo>=</mo><mi>v</mi></mrow><annotation encoding="application/x-tex">v+0=v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></span><span class="SemanticString">;</span></span></p></div></li><li id="https://www.notion.so/6fc552163b4a4758acc71a2a3c2bd25c" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">加法逆元(additive inverse)</strong></span></span><div id="https://www.notion.so/9e9e87ee035f415aa25b0e00beacc54f" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">对每个 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v\in V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">v\in V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 都存在 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="w\in V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>w</mi><mo>∈</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">w\in V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 使得 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v+w=0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>+</mo><mi>w</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">v+w=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">;</span></span></p></div></li><li id="https://www.notion.so/9de18e944d154e1fbe9993f26c6646a9" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">乘法单位元(multiplicative identity)</strong></span></span><div id="https://www.notion.so/a2f0f302bc1a42ffa84b2aa00ab262f5" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">对所有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v\in V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">v\in V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 都有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="1v=v"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mi>v</mi><mo>=</mo><mi>v</mi></mrow><annotation encoding="application/x-tex">1v=v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></span><span class="SemanticString">;</span></span></p></div></li><li id="https://www.notion.so/05cdf3ffc9164cfdba013434d190816a" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">分配性质(distributive properties)</strong></span></span><div id="https://www.notion.so/339cd39daef34441846809428bcff5aa" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">对所有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a,b\in \mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo>∈</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">a,b\in \mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u,v\in V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo separator="true">,</mo><mi>v</mi><mo>∈</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">u,v\in V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">u</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 都有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a(u+v)=au+av"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo stretchy="false">(</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi><mi>u</mi><mo>+</mo><mi>a</mi><mi>v</mi></mrow><annotation encoding="application/x-tex">a(u+v)=au+av</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">a</span><span class="mopen">(</span><span class="mord mathdefault">u</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">a</span><span class="mord mathdefault">u</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">a</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></span><span class="SemanticString"> 和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(a+b)v=av+bv"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo stretchy="false">)</mo><mi>v</mi><mo>=</mo><mi>a</mi><mi>v</mi><mo>+</mo><mi>b</mi><mi>v</mi></mrow><annotation encoding="application/x-tex">(a+b)v=av+bv</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">b</span><span class="mclose">)</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">a</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">b</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div></li></ul><div id="https://www.notion.so/baa88eab4bad42d198cca7c76a3936b6" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.20 定义 向量(vector)、点(point)</strong></span></span></p></div><div id="https://www.notion.so/aeb2e5f91da94e6280ca792e28f0c7d6" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">向量空间中的元素称为</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">向量</strong></span><span class="SemanticString">或</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">点</strong></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/b26744e9cf9a43f9a9f11b253ada1977" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">向量空间的标量乘法依赖于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString">. 因此,在需要确切指明时,我们会说 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"> 上的向量空间</strong></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/825c653cf29f4db7b9fab0d3cbd8a0c6" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.21 定义 实向量空间(real vector space)、复向量空间(complex vector space)</strong></span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/ab78daec6a014bed989b5986ac2aede9" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">R</mi></mrow><annotation encoding="application/x-tex">\mathbf{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">R</span></span></span></span></span></span></span><span class="SemanticString"> 上的向量空间称为</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">实向量空间</strong></span><span class="SemanticString">.</span></span></li><li id="https://www.notion.so/ef45f3a4b2784712a12a0f6f85e32189" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{C}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">C</mi></mrow><annotation encoding="application/x-tex">\mathbf{C}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">C</span></span></span></span></span></span></span><span class="SemanticString"> 上的向量空间称为</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">复向量空间</strong></span><span class="SemanticString">.</span></span></li></ul><blockquote id="https://www.notion.so/3687f3beb8a34523ac50017bd7d61672" class="ColorfulBlock ColorfulBlock--ColorDefault Quote"><span class="SemanticStringArray"><span class="SemanticString">最简单的向量空间只含有一个点,即 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\{0\}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{0\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">0</span><span class="mclose">}</span></span></span></span></span></span><span class="SemanticString"> 是向量空间.</span></span></blockquote><div id="https://www.notion.so/b75db42d91b64ed19da68b97b4c31cfd" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.22 例</strong></span><span class="SemanticString"> 定义 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^\infin"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi mathvariant="normal">∞</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^\infin</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 中元素的所有无穷序列构成的集合:</span></span></p></div><p id="https://www.notion.so/5cf5de7c6c6744a4885af35811a7ea33" class="Equation" data-latex="\mathbf{F}^\infin=\{(x_1,x_2,\dots):x_j\in\mathbf{F},\;j=1,2,\dots\}."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi mathvariant="normal">∞</mi></msup><mo>=</mo><mo stretchy="false">{</mo><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><mo separator="true">,</mo><mo>…</mo><mtext> </mtext><mo stretchy="false">)</mo><mo>:</mo><msub><mi>x</mi><mi>j</mi></msub><mo>∈</mo><mi mathvariant="bold">F</mi><mo separator="true">,</mo><mtext> </mtext><mi>j</mi><mo>=</mo><mn>1</mn><mo separator="true">,</mo><mn>2</mn><mo separator="true">,</mo><mo>…</mo><mtext> </mtext><mo stretchy="false">}</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}^\infin=\{(x_1,x_2,\dots):x_j\in\mathbf{F},\;j=1,2,\dots\}.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7143919999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.7143919999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8252079999999999em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8805499999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathbf">F</span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord mathdefault" style="margin-right:0.05724em;">j</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mclose">}</span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/e14f8f9ba0a24c12bfae101cb69904f1" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^\infin"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi mathvariant="normal">∞</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^\infin</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中加法和标量乘法的定义也和我们所料想的一样:</span></span></p></div><p id="https://www.notion.so/1f8dba0004dd485d98252e910776e66e" class="Equation" data-latex="(x_1,x_2,\dots)+(y_1,y_2,\dots)=(x_1+y_1,x_2+y_2,\dots) \\
\lambda(x_1,x_2,\dots)=(\lambda x_1,\lambda x_2, \dots)."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><mo separator="true">,</mo><mo>…</mo><mtext> </mtext><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><msub><mi>y</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>y</mi><mn>2</mn></msub><mo separator="true">,</mo><mo>…</mo><mtext> </mtext><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo>+</mo><msub><mi>y</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><mo>+</mo><msub><mi>y</mi><mn>2</mn></msub><mo separator="true">,</mo><mo>…</mo><mtext> </mtext><mo stretchy="false">)</mo><mspace linebreak="newline"></mspace><mi>λ</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><mo separator="true">,</mo><mo>…</mo><mtext> </mtext><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>λ</mi><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><mi>λ</mi><msub><mi>x</mi><mn>2</mn></msub><mo separator="true">,</mo><mo>…</mo><mtext> </mtext><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">(x_1,x_2,\dots)+(y_1,y_2,\dots)=(x_1+y_1,x_2+y_2,\dots) \\
\lambda(x_1,x_2,\dots)=(\lambda x_1,\lambda x_2, \dots).</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.7777700000000001em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mclose">)</span></span><span class="mspace newline"></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">λ</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">λ</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">λ</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mclose">)</span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/22ddfbdd0ac5421daf937f7177069f65" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">在此定义下 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^\infin"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi mathvariant="normal">∞</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^\infin</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 成为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 上的向量空间,其加法单位元是每个元素都为 0 的无穷序列.</span></span></p></div><div id="https://www.notion.so/9369e98ffa8e4da9b4e633e24df83162" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.23 记号 </strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^S"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>S</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8413309999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05764em;">S</span></span></span></span></span></span></span></span></span></span></span></span></strong></span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/f080e042ff6c4d9e91b5b9964a018945" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="S"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span></span></span></span></span></span><span class="SemanticString"> 是一个集合,我们用 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^S"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>S</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8413309999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05764em;">S</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 表示 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="S"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span></span></span></span></span></span><span class="SemanticString"> 到 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 的所有函数的集合.</span></span></li><li id="https://www.notion.so/c4eb56a8ab8f46b3bc6269482e6f858f" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">对于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="f,g\in\mathbf{F}^S"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo separator="true">,</mo><mi>g</mi><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mi>S</mi></msup></mrow><annotation encoding="application/x-tex">f,g\in\mathbf{F}^S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">g</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8413309999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05764em;">S</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">,规定</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">和</strong></span><span class="SemanticString"> </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="f+g\in\mathbf{F}^S"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo>+</mo><mi>g</mi><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mi>S</mi></msup></mrow><annotation encoding="application/x-tex">f+g\in\mathbf{F}^S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">g</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8413309999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05764em;">S</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 是如下函数:对所有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x\in S"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>S</mi></mrow><annotation encoding="application/x-tex">x\in S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span></span></span></span></span></span><span class="SemanticString">,</span></span><p id="https://www.notion.so/82d4a9d249de485b9b1293dde2c05d6e" class="Equation" data-latex="(f+g)(x)=f(x)+g(x)."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>f</mi><mo>+</mo><mi>g</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>+</mo><mi>g</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">(f+g)(x)=f(x)+g(x).</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">g</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">g</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mord">.</span></span></span></span></span></p></li><li id="https://www.notion.so/1431312241d64f1caa91d5f1884de483" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">对于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\lambda\in\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi><mo>∈</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\lambda\in\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.73354em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">λ</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="f\in\mathbf{F}^S"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mi>S</mi></msup></mrow><annotation encoding="application/x-tex">f\in\mathbf{F}^S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8413309999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05764em;">S</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">,规定</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">乘积</strong></span><span class="SemanticString"> </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\lambda f\in\mathbf{F}^S"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>λ</mi><mi>f</mi><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mi>S</mi></msup></mrow><annotation encoding="application/x-tex">\lambda f\in\mathbf{F}^S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">λ</span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8413309999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05764em;">S</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 是如下函数:对所有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x\in S"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>S</mi></mrow><annotation encoding="application/x-tex">x\in S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span></span></span></span></span></span><span class="SemanticString">,</span></span><p id="https://www.notion.so/ae9e761b13d94b9494943340621fa787" class="Equation" data-latex="(\lambda f)(x)=\lambda f(x)."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>λ</mi><mi>f</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi>λ</mi><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">(\lambda f)(x)=\lambda f(x).</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">λ</span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">λ</span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mord">.</span></span></span></span></span></p></li></ul><div id="https://www.notion.so/4393c95e39734851b03844cbfa6a3bcd" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">如果 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="S"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span></span></span></span></span></span><span class="SemanticString"> 是区间 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="[0,1]"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">[</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[0,1]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mclose">]</span></span></span></span></span></span><span class="SemanticString"> 且 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}=\mathbf{R}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi><mo>=</mo><mi mathvariant="bold">R</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}=\mathbf{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">R</span></span></span></span></span></span></span><span class="SemanticString">,那么 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}^{[0,1]}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mrow><mo stretchy="false">[</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo stretchy="false">]</mo></mrow></msup></mrow><annotation encoding="application/x-tex">\mathbf{R}^{[0,1]}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8879999999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">[</span><span class="mord mtight">0</span><span class="mpunct mtight">,</span><span class="mord mtight">1</span><span class="mclose mtight">]</span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 就是定义在区间 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="[0,1]"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">[</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[0,1]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mclose">]</span></span></span></span></span></span><span class="SemanticString"> 上的所有实值函数的集合.</span></span></p></div><div id="https://www.notion.so/96deb84f4a9a4dc3a5f6f7793fab2b3b" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.24 例 </strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^S"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>S</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8413309999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05764em;">S</span></span></span></span></span></span></span></span></span></span></span></span></strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"> 是向量空间</strong></span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/033f1ae850f84c349fb0efed9006b527" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">若 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="S"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span></span></span></span></span></span><span class="SemanticString"> 是非空集合,则 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^S"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>S</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8413309999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05764em;">S</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">(在上面定义的加法和标量乘法下)是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 上的向量空间.</span></span></li><li id="https://www.notion.so/22eacd043ee04936933983b841dbddce" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^S"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>S</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8413309999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05764em;">S</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的加法单位元是如下定义的函数 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0:S\rightarrow \mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>:</mo><mi>S</mi><mo>→</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">0:S\rightarrow \mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString">:对所有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x\in S"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>S</mi></mrow><annotation encoding="application/x-tex">x\in S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span></span></span></span></span></span><span class="SemanticString">,</span></span><p id="https://www.notion.so/ca2984417ef64d219ca5386cd6492f9d" class="Equation" data-latex="0(x)=0."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>0.</mn></mrow><annotation encoding="application/x-tex">0(x)=0.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">0</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mord">.</span></span></span></span></span></p></li><li id="https://www.notion.so/a9158376db6d4db4ac47f6e497b94f2e" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">对于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="f\in\mathbf{F}^S"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mi>S</mi></msup></mrow><annotation encoding="application/x-tex">f\in\mathbf{F}^S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8413309999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05764em;">S</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="f"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span></span></span></span></span></span><span class="SemanticString"> 的加法逆元是如下定义的函数 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="-f:S\rightarrow\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mi>f</mi><mo>:</mo><mi>S</mi><mo>→</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">-f:S\rightarrow\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord">−</span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString">:对所有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x\in S"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>S</mi></mrow><annotation encoding="application/x-tex">x\in S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.05764em;">S</span></span></span></span></span></span><span class="SemanticString">,</span></span><p id="https://www.notion.so/9541317194c84e9b9c889d11c8d730b0" class="Equation" data-latex="(-f)(x)=-f(x)."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mo>−</mo><mi>f</mi><mo stretchy="false">)</mo><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mo>−</mo><mi>f</mi><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">(-f)(x)=-f(x).</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mclose">)</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">−</span><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mord">.</span></span></span></span></span></p></li></ul><div id="https://www.notion.so/c01e93ec9d3d4fd8bf507138b1d4565c" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">前面的向量空间的两个例子 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^\infin"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi mathvariant="normal">∞</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^\infin</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 都是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^S"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>S</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8413309999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05764em;">S</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的特例,因为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 上长度为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span></span><span class="SemanticString"> 的组可以看作是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\{1,2,\dots,n\}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mn>1</mn><mo separator="true">,</mo><mn>2</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mi>n</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{1,2,\dots,n\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">n</span><span class="mclose">}</span></span></span></span></span></span><span class="SemanticString"> 到 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 的函数,而 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 中元素的无穷序列可以看作是正整数集到 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 的函数. 也就是说,我们可将 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 看作是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^{\{1,2,\dots,n\}}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mrow><mo stretchy="false">{</mo><mn>1</mn><mo separator="true">,</mo><mn>2</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mi>n</mi><mo stretchy="false">}</mo></mrow></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^{\{1,2,\dots,n\}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8879999999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">{</span><span class="mord mtight">1</span><span class="mpunct mtight">,</span><span class="mord mtight">2</span><span class="mpunct mtight">,</span><span class="minner mtight">…</span><span class="mpunct mtight">,</span><span class="mord mathdefault mtight">n</span><span class="mclose mtight">}</span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">,将 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^\infin"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi mathvariant="normal">∞</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^\infin</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 看作是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^{\{1,2,\dots\}}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mrow><mo stretchy="false">{</mo><mn>1</mn><mo separator="true">,</mo><mn>2</mn><mo separator="true">,</mo><mo>…</mo><mtext> </mtext><mo stretchy="false">}</mo></mrow></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^{\{1,2,\dots\}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8879999999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">{</span><span class="mord mtight">1</span><span class="mpunct mtight">,</span><span class="mord mtight">2</span><span class="mpunct mtight">,</span><span class="minner mtight">…</span><span class="mspace mtight" style="margin-right:0.19516666666666668em;"></span><span class="mclose mtight">}</span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/1dc92ac954f04d7091ae452e8f73aa59" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">先来给出向量空间的一些基本性质.</span></span></p></div><div id="https://www.notion.so/9025783418ea4de4b5d6e17ef440eba1" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.25 加法单位元唯一</strong></span></span></p></div><div id="https://www.notion.so/075752ce3e5a4b789783263e137078b6" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">向量空间有唯一的加法单位元.</span></span></p></div><div id="https://www.notion.so/90afa0e1cbc446c9a9b4740b9e628088" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">证明</strong></span><span class="SemanticString"> 设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString"> 和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0'"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mn>0</mn><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup></mrow><annotation encoding="application/x-tex">0'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.751892em;vertical-align:0em;"></span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 都是向量空间 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 的加法单位元,则</span></span></p></div><p id="https://www.notion.so/75e820ad1537416cbb577c8914ad31f8" class="Equation" data-latex="0'=0'+0=0+0'=0,"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mn>0</mn><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>=</mo><msup><mn>0</mn><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>+</mo><mn>0</mn><mo>=</mo><mn>0</mn><mo>+</mo><msup><mn>0</mn><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>=</mo><mn>0</mn><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">0'=0'+0=0+0'=0,</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.801892em;vertical-align:0em;"></span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.801892em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8852220000000001em;vertical-align:-0.08333em;"></span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.801892em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.801892em;vertical-align:0em;"></span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.801892em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8388800000000001em;vertical-align:-0.19444em;"></span><span class="mord">0</span><span class="mpunct">,</span></span></span></span></span></p><div id="https://www.notion.so/e4c87f6eb0bb48fe9e2731a24ec18158" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">其中第一个等式成立是因为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString"> 是加法单位元,第二个等式成立是因为加法交换性,第三个等式成立是因为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0'"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mn>0</mn><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup></mrow><annotation encoding="application/x-tex">0'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.751892em;vertical-align:0em;"></span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 是加法单位元. 因此 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0=0'"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>=</mo><msup><mn>0</mn><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup></mrow><annotation encoding="application/x-tex">0=0'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.751892em;vertical-align:0em;"></span><span class="mord"><span class="mord">0</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">,这就证明了 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 中只有一个加法单位元.</span></span></p></div><div id="https://www.notion.so/7f6a54b63c394ea88313d286c9441880" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.26 加法逆元唯一</strong></span></span></p></div><div id="https://www.notion.so/efd91df9445b46af98fc46248f5e1599" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">向量空间中的每个元素都有唯一的加法逆元.</span></span></p></div><div id="https://www.notion.so/60bcd4128c3a40549c0b88ba16efde00" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">证明</strong></span><span class="SemanticString"> 设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 是向量空间,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v\in V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">v\in V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString">,并设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="w"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>w</mi></mrow><annotation encoding="application/x-tex">w</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span></span></span></span></span></span><span class="SemanticString"> 和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="w'"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>w</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup></mrow><annotation encoding="application/x-tex">w'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.751892em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 都是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi></mrow><annotation encoding="application/x-tex">v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></span><span class="SemanticString"> 的加法逆元,那么</span></span></p></div><p id="https://www.notion.so/93c8a6ebf6424f9b92921318a149fa6b" class="Equation" data-latex="w=w+0=w+(v+w')=(w+v)+w'=0+w'=w'."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>w</mi><mo>=</mo><mi>w</mi><mo>+</mo><mn>0</mn><mo>=</mo><mi>w</mi><mo>+</mo><mo stretchy="false">(</mo><mi>v</mi><mo>+</mo><msup><mi>w</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>w</mi><mo>+</mo><mi>v</mi><mo stretchy="false">)</mo><mo>+</mo><msup><mi>w</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>=</mo><mn>0</mn><mo>+</mo><msup><mi>w</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo>=</mo><msup><mi>w</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">w=w+0=w+(v+w')=(w+v)+w'=0+w'=w'.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.051892em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.801892em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.801892em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.801892em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.801892em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.801892em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.801892em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.801892em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/de77a8c3462a4215a3b74b27e99c5c48" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">因此 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="w=w'"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>w</mi><mo>=</mo><msup><mi>w</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup></mrow><annotation encoding="application/x-tex">w=w'</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.751892em;vertical-align:0em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/a29fe93ba3f14b6c9f26f17f3c9215ec" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.27 记号 </strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="-v"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mi>v</mi></mrow><annotation encoding="application/x-tex">-v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord">−</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">、</strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="w-v"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>w</mi><mo>−</mo><mi>v</mi></mrow><annotation encoding="application/x-tex">w-v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></strong></span></span></p></div><div id="https://www.notion.so/1a6abcb5def64f9dab5b37dafec8327f" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v,w\in V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo separator="true">,</mo><mi>w</mi><mo>∈</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">v,w\in V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString">,则</span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/9806221cc89a46afa3b646cf48702f25" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">用 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="-v"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mi>v</mi></mrow><annotation encoding="application/x-tex">-v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord">−</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></span><span class="SemanticString"> 表示 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi></mrow><annotation encoding="application/x-tex">v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></span><span class="SemanticString"> 的加法逆元;</span></span></li><li id="https://www.notion.so/e641e55ff46d4e55875ede685a52d393" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">定义 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="w-v"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>w</mi><mo>−</mo><mi>v</mi></mrow><annotation encoding="application/x-tex">w-v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></span><span class="SemanticString"> 为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="w+(-v)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>w</mi><mo>+</mo><mo stretchy="false">(</mo><mo>−</mo><mi>v</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">w+(-v)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">.</span></span></li></ul><div id="https://www.notion.so/a9ab56d2fe684912b1d0c0e37b4e97c1" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.28 记号 </strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></strong></span></span></p></div><div id="https://www.notion.so/9be5814882f54345ab25739d14cc56f9" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">在本书的其余部分,总设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 上的向量空间.</span></span></p></div><div id="https://www.notion.so/e61418a5b9034f3684daf6a1a54a48f1" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.29 数 0 乘以向量</strong></span></span></p></div><div id="https://www.notion.so/98b2c63b706f44ed9b58e80dba52d514" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">对任意 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v\in V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">v\in V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 都有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0v=0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mi>v</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">0v=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/74349ea344024a10acaa2fe828bd9cc3" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">证明</strong></span><span class="SemanticString"> 对 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v\in V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">v\in V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString">,我们有</span></span></p></div><p id="https://www.notion.so/14cf9930d28d4c24b46ab12299f68455" class="Equation" data-latex="0v=(0+0)v=0v+0v."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mi>v</mi><mo>=</mo><mo stretchy="false">(</mo><mn>0</mn><mo>+</mo><mn>0</mn><mo stretchy="false">)</mo><mi>v</mi><mo>=</mo><mn>0</mn><mi>v</mi><mo>+</mo><mn>0</mn><mi>v</mi><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">0v=(0+0)v=0v+0v.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">0</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/613007380ee042e98f9b3157ae9c4389" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">在上面等式的两端都加上 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0v"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mi>v</mi></mrow><annotation encoding="application/x-tex">0v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></span><span class="SemanticString"> 的加法逆元,可得 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0=0v"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>=</mo><mn>0</mn><mi>v</mi></mrow><annotation encoding="application/x-tex">0=0v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/e3c3550e004a488ba4b43ad0454b269a" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.30 数乘以向量 </strong></span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></strong></span></span></p></div><div id="https://www.notion.so/4355764ef68d4c5691d50ef58b6c2c12" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">对任意 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a\in \mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">a\in \mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">a</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 都有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a0=0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mn>0</mn><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">a0=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord mathdefault">a</span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/6ff8e492b2024e6b8003b3a8506dbce3" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">证明</strong></span><span class="SemanticString"> 对 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a\in\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">a\in\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">a</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString">,我们有</span></span></p></div><p id="https://www.notion.so/fbd4e768f1884df6a659ab12905b86e6" class="Equation" data-latex="a0=a(0+0)=a0+a0."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mn>0</mn><mo>=</mo><mi>a</mi><mo stretchy="false">(</mo><mn>0</mn><mo>+</mo><mn>0</mn><mo stretchy="false">)</mo><mo>=</mo><mi>a</mi><mn>0</mn><mo>+</mo><mi>a</mi><mn>0.</mn></mrow><annotation encoding="application/x-tex">a0=a(0+0)=a0+a0.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord mathdefault">a</span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">a</span><span class="mopen">(</span><span class="mord">0</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">a</span><span class="mord">0</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord mathdefault">a</span><span class="mord">0</span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/f9e3a4a4f8b24a7eac1cd742e379d490" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">在上面等式的两端都加上 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mn>0</mn></mrow><annotation encoding="application/x-tex">a0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord mathdefault">a</span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString"> 的加法逆元,可得 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0=a0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>=</mo><mi>a</mi><mn>0</mn></mrow><annotation encoding="application/x-tex">0=a0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord mathdefault">a</span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/60e6d50279ab4606939a6d5b0e8292a0" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.31 数 -1 乘以向量</strong></span></span></p></div><div id="https://www.notion.so/d39c61e5be8c433b9e2bcd452cc657e7" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">对任意 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v\in V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">v\in V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 都有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(-1)v=-v"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mi>v</mi><mo>=</mo><mo>−</mo><mi>v</mi></mrow><annotation encoding="application/x-tex">(-1)v=-v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">−</span><span class="mord">1</span><span class="mclose">)</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord">−</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/bc061a155ee14b7ea191c734c75b1fe9" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">证明</strong></span><span class="SemanticString"> 对 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v\in V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow><annotation encoding="application/x-tex">v\in V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString">,我们有</span></span></p></div><p id="https://www.notion.so/d8475c7b79954b6188acad72ab434884" class="Equation" data-latex="v+(-1)v=1v+(-1)v=(1+(-1))v=0v=0."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>+</mo><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mi>v</mi><mo>=</mo><mn>1</mn><mi>v</mi><mo>+</mo><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mi>v</mi><mo>=</mo><mo stretchy="false">(</mo><mn>1</mn><mo>+</mo><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mo stretchy="false">)</mo><mi>v</mi><mo>=</mo><mn>0</mn><mi>v</mi><mo>=</mo><mn>0.</mn></mrow><annotation encoding="application/x-tex">v+(-1)v=1v+(-1)v=(1+(-1))v=0v=0.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">−</span><span class="mord">1</span><span class="mclose">)</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">1</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">−</span><span class="mord">1</span><span class="mclose">)</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">−</span><span class="mord">1</span><span class="mclose">)</span><span class="mclose">)</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/c2fc88a179f546a9aa12c937aac0629b" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">这个等式说明,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(-1)v"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mi>v</mi></mrow><annotation encoding="application/x-tex">(-1)v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">−</span><span class="mord">1</span><span class="mclose">)</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></span><span class="SemanticString"> 与 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi></mrow><annotation encoding="application/x-tex">v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></span><span class="SemanticString"> 相加得 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">. 因此 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(-1)v"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mi>v</mi></mrow><annotation encoding="application/x-tex">(-1)v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">−</span><span class="mord">1</span><span class="mclose">)</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></span><span class="SemanticString"> 必为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi></mrow><annotation encoding="application/x-tex">v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></span><span class="SemanticString"> 的加法逆元.</span></span></p></div><h2 id="https://www.notion.so/66cb4f8ff4f64ab4a3b11ddc43b3c5f0" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--2"><a class="Anchor" href="#https://www.notion.so/66cb4f8ff4f64ab4a3b11ddc43b3c5f0"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">1.C 子空间</span></span></h2><div id="https://www.notion.so/e0e13e39baf244f4804d8add4528aba5" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.32 定义 子空间(subspace)</strong></span></span></p></div><div id="https://www.notion.so/455a954a96fb43d6bd9a8acb37c34bfb" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">如果 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 的子集 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString">(采用与 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 相同的加法和标量乘法)也是向量空间,则称 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 的</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">子空间</strong></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/d138f15af0d8406d87e0b5a8f9faff9f" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.33 例</strong></span><span class="SemanticString"> </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\{(x_1,x_2,0):x_1,x_2\in\mathbf{F}\}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo>:</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><mo>∈</mo><mi mathvariant="bold">F</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{(x_1,x_2,0):x_1,x_2\in\mathbf{F}\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">}</span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的子空间.</span></span></p></div><blockquote id="https://www.notion.so/6cc8fa3e81de47eb8ac6c121a790f53f" class="ColorfulBlock ColorfulBlock--ColorDefault Quote"><span class="SemanticStringArray"><span class="SemanticString">有些数学家采用</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">线性子空间</strong></span><span class="SemanticString">这个术语,意思与子空间一样.</span></span></blockquote><div id="https://www.notion.so/864b0c1ed18442e79cc0261f9c8e5a85" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.34 子空间的条件</strong></span></span></p></div><div id="https://www.notion.so/0478395bd5344ea08b369adb9ceb6ab7" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 的子集 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 的子空间当且仅当 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 满足以下三个条件:</span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/6f29b8b8269e4a5487388f8e86953bc8" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">加法单位元(additive identity)</strong></span></span><div id="https://www.notion.so/1b3a81cb49a741ea98b8a6f2bafbf670" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0\in U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>∈</mo><mi>U</mi></mrow><annotation encoding="application/x-tex">0\in U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68354em;vertical-align:-0.0391em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString">;</span></span></p></div></li><li id="https://www.notion.so/99934cc1fade41e4ade1cc15220feb2d" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">加法封闭性(closed under addition)</strong></span></span><div id="https://www.notion.so/9532e43d9008448498d6bf4d7df71d68" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u,w\in U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo separator="true">,</mo><mi>w</mi><mo>∈</mo><mi>U</mi></mrow><annotation encoding="application/x-tex">u,w\in U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">u</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 蕴含 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u+w\in U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo>+</mo><mi>w</mi><mo>∈</mo><mi>U</mi></mrow><annotation encoding="application/x-tex">u+w\in U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">u</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString">;</span></span></p></div></li><li id="https://www.notion.so/bd0ecbed567f4da6b6fa872885591723" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">标量乘法封闭性(closed under scalar multiplication)</strong></span></span><div id="https://www.notion.so/fc1afdaa2a464ac599952e72404a5b89" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a\in\mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo>∈</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">a\in\mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">a</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString"> 和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u\in U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo>∈</mo><mi>U</mi></mrow><annotation encoding="application/x-tex">u\in U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">u</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 蕴含 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="au\in U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mi>u</mi><mo>∈</mo><mi>U</mi></mrow><annotation encoding="application/x-tex">au\in U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">a</span><span class="mord mathdefault">u</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div></li></ul><div id="https://www.notion.so/8b849783dd404546b04b45e114f12626" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">证明</strong></span><span class="SemanticString"> 若 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 的子空间,则由向量空间的定义,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 满足上述三个条件.</span></span></p></div><div id="https://www.notion.so/91bb63a9b327458d91969a9134c74245" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">反之,假定 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 满足上述三个条件,那么第一个条件保证了 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 的加法单位元在 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 中.</span></span></p></div><div id="https://www.notion.so/66c3262ee81d4b1f87db4582674276b9" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">第二个条件保证了加法在 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 上是有意义的. 第三个条件保证了标量乘法在 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 上是有意义的.</span></span></p></div><div id="https://www.notion.so/d14d9983bb8241119049e78d6af512e8" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">若 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u\in U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo>∈</mo><mi>U</mi></mrow><annotation encoding="application/x-tex">u\in U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">u</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString">,则由上述的第三个条件知 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="-u"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>−</mo><mi>u</mi></mrow><annotation encoding="application/x-tex">-u</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord">−</span><span class="mord mathdefault">u</span></span></span></span></span></span><span class="SemanticString">(由 1.31 知其等于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(-1)u"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mi>u</mi></mrow><annotation encoding="application/x-tex">(-1)u</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">−</span><span class="mord">1</span><span class="mclose">)</span><span class="mord mathdefault">u</span></span></span></span></span></span><span class="SemanticString">)也在 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 中. 因此 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 的每个元素在 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 中都有加法逆元.</span></span></p></div><div id="https://www.notion.so/f61e0f2d2ab143339d4928f19bde4ddb" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">向量空间定义中的其余部分(例如结合性和交换性)在 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 上自然成立,因为它们在更大的空间 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 上成立. 所以 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 是一个向量空间,从而是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 的子空间.</span></span></p></div><blockquote id="https://www.notion.so/07565be9be8a43a0b179f298fd4404b9" class="ColorfulBlock ColorfulBlock--ColorDefault Quote"><span class="SemanticStringArray"><span class="SemanticString">上述关于加法单位元的条件可以替换为条件“</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 非空”(因为此时取 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u\in U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo>∈</mo><mi>U</mi></mrow><annotation encoding="application/x-tex">u\in U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">u</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString">,用数 0 乘 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi></mrow><annotation encoding="application/x-tex">u</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">u</span></span></span></span></span></span><span class="SemanticString">,利用 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 在标量乘法下封闭可得到 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0\in U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>∈</mo><mi>U</mi></mrow><annotation encoding="application/x-tex">0\in U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68354em;vertical-align:-0.0391em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString">). 然而,若 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 的确是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 的子空间,则证明 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 非空的最简单的方法还是证明 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0\in U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>∈</mo><mi>U</mi></mrow><annotation encoding="application/x-tex">0\in U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68354em;vertical-align:-0.0391em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString">.</span></span></blockquote><div id="https://www.notion.so/5dd9b6ba9dcb4a6caf23ace3833579a9" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.35 例 子空间</strong></span></span></p></div><div id="https://www.notion.so/823630ff5f564a048c64a7322e2508f5" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">(a) 若 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="b\in \mathbf{F}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>∈</mo><mi mathvariant="bold">F</mi></mrow><annotation encoding="application/x-tex">b\in \mathbf{F}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.73354em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">b</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">F</span></span></span></span></span></span></span><span class="SemanticString">,则 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\{(x_1,x_2,x_3,x_4)\in\mathbf{F}^4:x_3=5x_4+b\}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>3</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>4</mn></msub><mo stretchy="false">)</mo><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mn>4</mn></msup><mo>:</mo><msub><mi>x</mi><mn>3</mn></msub><mo>=</mo><mn>5</mn><msub><mi>x</mi><mn>4</mn></msub><mo>+</mo><mi>b</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{(x_1,x_2,x_3,x_4)\in\mathbf{F}^4:x_3=5x_4+b\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.79444em;vertical-align:-0.15em;"></span><span class="mord">5</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">b</span><span class="mclose">}</span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^4"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mn>4</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^4</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的子空间当且仅当 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="b=0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">b=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">b</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/3a7a503722b8473babe27de6870e344a" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">(b) 区间 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="[0,1]"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">[</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[0,1]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mclose">]</span></span></span></span></span></span><span class="SemanticString"> 上的全体实值连续函数的集合是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}^{[0,1]}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mrow><mo stretchy="false">[</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo stretchy="false">]</mo></mrow></msup></mrow><annotation encoding="application/x-tex">\mathbf{R}^{[0,1]}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8879999999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">[</span><span class="mord mtight">0</span><span class="mpunct mtight">,</span><span class="mord mtight">1</span><span class="mclose mtight">]</span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的子空间.</span></span></p></div><div id="https://www.notion.so/e7f2e0b860c3482a880fd70cb28f3ad8" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">(c) </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold">R</mi></mrow><annotation encoding="application/x-tex">\mathbf{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord mathbf">R</span></span></span></span></span></span></span><span class="SemanticString"> 上的全体实值可微函数的集合是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}^\mathbf{R}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mi mathvariant="bold">R</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{R}^\mathbf{R}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8432769999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8432769999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathbf mtight">R</span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的子空间.</span></span></p></div><div id="https://www.notion.so/e736608f3fda4d089483723a06957c22" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">(d) 区间 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(0,3)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>3</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(0,3)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">3</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 上满足条件 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="f'(2)=b"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>f</mi><mo mathvariant="normal" lspace="0em" rspace="0em">′</mo></msup><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>=</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">f'(2)=b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.001892em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord">2</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">b</span></span></span></span></span></span><span class="SemanticString"> 的实值可微函数的集合是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}^{(0,3)}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mrow><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>3</mn><mo stretchy="false">)</mo></mrow></msup></mrow><annotation encoding="application/x-tex">\mathbf{R}^{(0,3)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8879999999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8879999999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mopen mtight">(</span><span class="mord mtight">0</span><span class="mpunct mtight">,</span><span class="mord mtight">3</span><span class="mclose mtight">)</span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的子空间当且仅当 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="b=0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">b=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">b</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/5093ef80a11c429faf4ff4a9edafcd9c" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">(e) 极限为 0 的复数序列组成的集合是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{C}^\infin"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">C</mi><mi mathvariant="normal">∞</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{C}^\infin</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">C</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">∞</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的子空间.</span></span></p></div><div id="https://www.notion.so/575ff301ea2d4a1db4037484b745fec3" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}^2"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{R}^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的子空间恰为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\{0\}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{0\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">0</span><span class="mclose">}</span></span></span></span></span></span><span class="SemanticString">、</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}^2"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{R}^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 以及 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}^2"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{R}^2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中所有过原点的直线. </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}^3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{R}^3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的子空间恰为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\{0\}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{0\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">0</span><span class="mclose">}</span></span></span></span></span></span><span class="SemanticString">、</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}^3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{R}^3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">、</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}^3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{R}^3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中所有过原点的直线以及 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{R}^3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">R</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{R}^3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中所有过原点的平面.</span></span></p></div><h3 id="https://www.notion.so/5fdefaae33c34d8b91addeb46424b5d4" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--3"><a class="Anchor" href="#https://www.notion.so/5fdefaae33c34d8b91addeb46424b5d4"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">子空间的和</span></span></h3><div id="https://www.notion.so/fe23d048b1964f20b7e870cd05832581" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.36 定义 子集的和(sum of subsets)</strong></span></span></p></div><div id="https://www.notion.so/b758a8bbfe9344139cd5f9aa7c6b4395" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1,\dots,U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1,\dots,U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 都是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 的子集,则 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1,\dots,U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1,\dots,U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">和</strong></span><span class="SemanticString">定义为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1,\dots,U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1,\dots,U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中元素所有可能的和所构成的集合,记作 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1+\cdots+U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1+\cdots+U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">. 更确切地说,</span></span></p></div><p id="https://www.notion.so/b5afdf4246584cbcb2531a6e885ec568" class="Equation" data-latex="U_1+\cdots+U_m=\{u_1+\cdots+u_m:u_1\in U_1,\dots,u_m\in U_m\}."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>U</mi><mi>m</mi></msub><mo>=</mo><mo stretchy="false">{</mo><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>u</mi><mi>m</mi></msub><mo>:</mo><msub><mi>u</mi><mn>1</mn></msub><mo>∈</mo><msub><mi>U</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>u</mi><mi>m</mi></msub><mo>∈</mo><msub><mi>U</mi><mi>m</mi></msub><mo stretchy="false">}</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">U_1+\cdots+U_m=\{u_1+\cdots+u_m:u_1\in U_1,\dots,u_m\in U_m\}.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.6891em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">}</span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/b2faef2786af4f83a09dc66adb226082" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.37 例</strong></span><span class="SemanticString"> 设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中第二个和第三个坐标均为 0 的那些元素构成的集合,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="W"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>W</mi></mrow><annotation encoding="application/x-tex">W</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">W</span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中第一个和第三个坐标均为 0 的那些元素构成的集合:</span></span></p></div><p id="https://www.notion.so/9da5e5d357594eeca436364503044d31" class="Equation" data-latex="U=\{(x,0,0)\in\mathbf{F}^3:x\in\mathbf{F}\},\quad W=\{(0,y,0)\in\mathbf{F}^3:y\in\mathbf{F}\}. \\
U+W=\{(x,y,0):x,y\in\mathbf{F}\}."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi><mo>=</mo><mo stretchy="false">{</mo><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mn>3</mn></msup><mo>:</mo><mi>x</mi><mo>∈</mo><mi mathvariant="bold">F</mi><mo stretchy="false">}</mo><mo separator="true">,</mo><mspace width="1em"/><mi>W</mi><mo>=</mo><mo stretchy="false">{</mo><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mn>3</mn></msup><mo>:</mo><mi>y</mi><mo>∈</mo><mi mathvariant="bold">F</mi><mo stretchy="false">}</mo><mi mathvariant="normal">.</mi><mspace linebreak="newline"></mspace><mi>U</mi><mo>+</mo><mi>W</mi><mo>=</mo><mo stretchy="false">{</mo><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo>:</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo>∈</mo><mi mathvariant="bold">F</mi><mo stretchy="false">}</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">U=\{(x,0,0)\in\mathbf{F}^3:x\in\mathbf{F}\},\quad W=\{(0,y,0)\in\mathbf{F}^3:y\in\mathbf{F}\}. \\
U+W=\{(x,y,0):x,y\in\mathbf{F}\}.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8641079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">}</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mspace" style="margin-right:1em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">W</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8641079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">}</span><span class="mord">.</span></span><span class="mspace newline"></span><span class="base"><span class="strut" style="height:0.76666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">W</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">}</span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/c504eeb0d4864d22891ae9e10e40a835" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.38 例</strong></span><span class="SemanticString"> 设</span></span></p></div><p id="https://www.notion.so/31d03f12ec3841bd967f3badfdec6e62" class="Equation" data-latex="U=\{(x,x,y,y)\in\mathbf{F}^4:x,y\in\mathbf{F}\},\quad W=\{(x,x,x,y)\in\mathbf{F}^4:s,y\in\mathbf{F}\}. \\
U+W=\{(x,x,y,z)\in\mathbf{F}^4:x,y,z\in\mathbf{F}\}."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi><mo>=</mo><mo stretchy="false">{</mo><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mi>y</mi><mo stretchy="false">)</mo><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mn>4</mn></msup><mo>:</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo>∈</mo><mi mathvariant="bold">F</mi><mo stretchy="false">}</mo><mo separator="true">,</mo><mspace width="1em"/><mi>W</mi><mo>=</mo><mo stretchy="false">{</mo><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mi>x</mi><mo separator="true">,</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo stretchy="false">)</mo><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mn>4</mn></msup><mo>:</mo><mi>s</mi><mo separator="true">,</mo><mi>y</mi><mo>∈</mo><mi mathvariant="bold">F</mi><mo stretchy="false">}</mo><mi mathvariant="normal">.</mi><mspace linebreak="newline"></mspace><mi>U</mi><mo>+</mo><mi>W</mi><mo>=</mo><mo stretchy="false">{</mo><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mi>z</mi><mo stretchy="false">)</mo><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mn>4</mn></msup><mo>:</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mi>z</mi><mo>∈</mo><mi mathvariant="bold">F</mi><mo stretchy="false">}</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">U=\{(x,x,y,y)\in\mathbf{F}^4:x,y\in\mathbf{F}\},\quad W=\{(x,x,x,y)\in\mathbf{F}^4:s,y\in\mathbf{F}\}. \\
U+W=\{(x,x,y,z)\in\mathbf{F}^4:x,y,z\in\mathbf{F}\}.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8641079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">}</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mspace" style="margin-right:1em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">W</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8641079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">s</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">}</span><span class="mord">.</span></span><span class="mspace newline"></span><span class="base"><span class="strut" style="height:0.76666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">W</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8641079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">}</span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/5af65502a8f94939b5f89ca59962e2e1" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.39 子空间的和是包含这些子空间的最小子空间</strong></span></span></p></div><div id="https://www.notion.so/40ef58fadbed45918388fe67c7108027" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1,\dots,U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1,\dots,U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 都是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 的子空间,则 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1+\cdots+U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1+\cdots+U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 的包含 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1,\dots,U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1,\dots,U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的最小子空间.</span></span></p></div><div id="https://www.notion.so/be550d7e6deb45b9b4ef19e1067fc339" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">证明</strong></span><span class="SemanticString"> 容易看出 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0\in U_1+\cdots+U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>∈</mo><msub><mi>U</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">0\in U_1+\cdots+U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68354em;vertical-align:-0.0391em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">,并且 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1+\cdots+U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1+\cdots+U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 在加法和标量乘法下是封闭的. 因此,1.34 意味着 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1+\cdots+U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1+\cdots+U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 的子空间.</span></span></p></div><div id="https://www.notion.so/28ae6d1c8e214e30a173aa3d25163caa" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">显然 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1,\dots,U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1,\dots,U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 都包含于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1+\cdots+U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1+\cdots+U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">(为说明这一点,考虑和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u_1+\cdots+u_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>u</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">u_1+\cdots+u_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">,其中除一项之外的其余项均为 0). 反之,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 中任何包含 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1,\dots,U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1,\dots,U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的子空间一定都包含 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1+\cdots+U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1+\cdots+U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">(因为子空间包含其中所有元素的所有有限和). 于是,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1+\cdots+U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1+\cdots+U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 中包含 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1,\dots,U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1,\dots,U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的最小的子空间.</span></span></p></div><blockquote id="https://www.notion.so/73fcdf6707a941a5b52c7120e1f9e91f" class="ColorfulBlock ColorfulBlock--ColorDefault Quote"><span class="SemanticStringArray"><span class="SemanticString">在向量空间理论中,子空间的和类似于集合论中子集的并. 给定一个向量空间的两个子空间,包含它们的最小子空间是它们的和. 类似地,给定一个集合的两个子集,包含它们的最小子集是它们的并集.</span></span></blockquote><h3 id="https://www.notion.so/34a4927290fc4f378c768a27f02a5f7f" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--3"><a class="Anchor" href="#https://www.notion.so/34a4927290fc4f378c768a27f02a5f7f"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">直和</span></span></h3><div id="https://www.notion.so/25ee2191190e4e58aaa5a4ae559df2c0" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.40 定义 直和(direct sum)</strong></span></span></p></div><div id="https://www.notion.so/2c39c2ec948f4addae5364e9ffdc2ce7" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1,\dots,U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1,\dots,U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 都是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 的子空间.</span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/57088edead3a4fdba4075b48fe7a9f74" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1+\cdots+U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1+\cdots+U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 称为</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">直和</strong></span><span class="SemanticString">,如果 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1+\cdots+U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1+\cdots+U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中的每个元素都可以唯一地表示成 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u_1+\dots+u_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>u</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">u_1+\dots+u_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">,其中每个 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u_j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">u_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.716668em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 属于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">U_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.969438em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">.</span></span></li><li id="https://www.notion.so/f136b576d05848f0829188cd2624983f" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">若 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1+\cdots+U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1+\cdots+U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 是直和,则用 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1\oplus\cdots\oplus U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>⊕</mo><mo>⋯</mo><mo>⊕</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1\oplus\cdots\oplus U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⊕</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⊕</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 来表示 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1+\cdots+U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1+\cdots+U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">,这里符号 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\oplus"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>⊕</mo></mrow><annotation encoding="application/x-tex">\oplus</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord">⊕</span></span></span></span></span></span><span class="SemanticString"> 表明此处的和是一个直和.</span></span></li></ul><div id="https://www.notion.so/99d6fae8f051491b820a4310a0d0f276" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.41 例</strong></span><span class="SemanticString"> 设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中最后一个坐标为 0 的那些向量组成的子空间,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="W"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>W</mi></mrow><annotation encoding="application/x-tex">W</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">W</span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中前两个坐标为 0 的那些向量组成的子空间:</span></span></p></div><p id="https://www.notion.so/286849af386f4ab1acb74793cbf41a4e" class="Equation" data-latex="U=\{(x,y,0)\in\mathbf{F}^3:x,y\in\mathbf{F}\},\quad W=\{(0,0,z)\in\mathbf{F}^3:z\in\mathbf{F}\}. \\
\mathbf{F}^3=U\oplus W."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi><mo>=</mo><mo stretchy="false">{</mo><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mn>3</mn></msup><mo>:</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo>∈</mo><mi mathvariant="bold">F</mi><mo stretchy="false">}</mo><mo separator="true">,</mo><mspace width="1em"/><mi>W</mi><mo>=</mo><mo stretchy="false">{</mo><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mi>z</mi><mo stretchy="false">)</mo><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mn>3</mn></msup><mo>:</mo><mi>z</mi><mo>∈</mo><mi mathvariant="bold">F</mi><mo stretchy="false">}</mo><mi mathvariant="normal">.</mi><mspace linebreak="newline"></mspace><msup><mi mathvariant="bold">F</mi><mn>3</mn></msup><mo>=</mo><mi>U</mi><mo>⊕</mo><mi>W</mi><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">U=\{(x,y,0)\in\mathbf{F}^3:x,y\in\mathbf{F}\},\quad W=\{(0,0,z)\in\mathbf{F}^3:z\in\mathbf{F}\}. \\
\mathbf{F}^3=U\oplus W.</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8641079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.7335400000000001em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">}</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mspace" style="margin-right:1em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">W</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8641079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">}</span><span class="mord">.</span></span><span class="mspace newline"></span><span class="base"><span class="strut" style="height:0.8641079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.76666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⊕</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">W</span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/2344d1358ef9462aa274efbe59290214" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.42 例</strong></span><span class="SemanticString"> 设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">U_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.969438em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 中除第 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>j</mi></mrow><annotation encoding="application/x-tex">j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.85396em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.05724em;">j</span></span></span></span></span></span><span class="SemanticString"> 个坐标以外其余坐标全是 0 的那些向量所组成的子空间(例如,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_2=\{(0,x,0,\dots,0)\in\mathbf{F}^n:x\in\mathbf{F}\}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>2</mn></msub><mo>=</mo><mo stretchy="false">{</mo><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mi>x</mi><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup><mo>:</mo><mi>x</mi><mo>∈</mo><mi mathvariant="bold">F</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">U_2=\{(0,x,0,\dots,0)\in\mathbf{F}^n:x\in\mathbf{F}\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">x</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">}</span></span></span></span></span></span><span class="SemanticString">). </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^n=U_1\oplus\cdots\oplus U_n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mi>n</mi></msup><mo>=</mo><msub><mi>U</mi><mn>1</mn></msub><mo>⊕</mo><mo>⋯</mo><mo>⊕</mo><msub><mi>U</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">\mathbf{F}^n=U_1\oplus\cdots\oplus U_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.664392em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⊕</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">⊕</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/211d08bc3c764244b844769eadd06b9d" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.43 例</strong></span><span class="SemanticString"> 设</span></span></p></div><p id="https://www.notion.so/baf6aa763c5648b18424b890d618a496" class="Equation" data-latex="\begin{aligned}
U_1&=\{(x,y,0)\in\mathbf{F}^3:x,y\in\mathbf{F}\}, \\
U_2&=\{(0,0,z)\in\mathbf{F}^3:z\in\mathbf{F}\}, \\
U_3&=\{(0,y,y)\in\mathbf{F}^3:y\in\mathbf{F}\}.
\end{aligned}"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable rowspacing="0.24999999999999992em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>U</mi><mn>1</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">{</mo><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mn>3</mn></msup><mo>:</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo>∈</mo><mi mathvariant="bold">F</mi><mo stretchy="false">}</mo><mo separator="true">,</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>U</mi><mn>2</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">{</mo><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mi>z</mi><mo stretchy="false">)</mo><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mn>3</mn></msup><mo>:</mo><mi>z</mi><mo>∈</mo><mi mathvariant="bold">F</mi><mo stretchy="false">}</mo><mo separator="true">,</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>U</mi><mn>3</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo stretchy="false">{</mo><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mi>y</mi><mo stretchy="false">)</mo><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mn>3</mn></msup><mo>:</mo><mi>y</mi><mo>∈</mo><mi mathvariant="bold">F</mi><mo stretchy="false">}</mo><mi mathvariant="normal">.</mi></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{aligned}
U_1&=\{(x,y,0)\in\mathbf{F}^3:x,y\in\mathbf{F}\}, \\
U_2&=\{(0,0,z)\in\mathbf{F}^3:z\in\mathbf{F}\}, \\
U_3&=\{(0,y,y)\in\mathbf{F}^3:y\in\mathbf{F}\}.
\end{aligned}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:4.572324em;vertical-align:-2.036162em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.536162em;"><span style="top:-4.672054em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.147946em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-1.6238380000000001em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.036162em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.536162em;"><span style="top:-4.672054em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mopen">{</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">}</span><span class="mpunct">,</span></span></span><span style="top:-3.147946em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mopen">{</span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">}</span><span class="mpunct">,</span></span></span><span style="top:-1.6238380000000001em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mopen">{</span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mord mathbf">F</span></span><span class="mclose">}</span><span class="mord">.</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.036162em;"><span></span></span></span></span></span></span></span></span></span></span></span></p><div id="https://www.notion.so/28cb86a472254f659e1abd629623a5b5" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">证明 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1+U_2+U_3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>+</mo><msub><mi>U</mi><mn>2</mn></msub><mo>+</mo><msub><mi>U</mi><mn>3</mn></msub></mrow><annotation encoding="application/x-tex">U_1+U_2+U_3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 不是直和.</span></span></p></div><div id="https://www.notion.so/a5cf7531ede543dc988f942ae082a931" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">证明</strong></span><span class="SemanticString"> 显然 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^3=U_1+U_2+U_3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mn>3</mn></msup><mo>=</mo><msub><mi>U</mi><mn>1</mn></msub><mo>+</mo><msub><mi>U</mi><mn>2</mn></msub><mo>+</mo><msub><mi>U</mi><mn>3</mn></msub></mrow><annotation encoding="application/x-tex">\mathbf{F}^3=U_1+U_2+U_3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">,这是因为每个向量 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(x,y,z)\in\mathbf{F}^3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mi>z</mi><mo stretchy="false">)</mo><mo>∈</mo><msup><mi mathvariant="bold">F</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">(x,y,z)\in\mathbf{F}^3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 都可以写成</span></span></p></div><p id="https://www.notion.so/fb713d289a6d42c7b35c723860089f5b" class="Equation" data-latex="(x,y,z)=(x,y,0)+(0,0,z)+(0,0,0),"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mi>z</mi><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mi>z</mi><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">(x,y,z)=(x,y,0)+(0,0,z)+(0,0,0),</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.04398em;">z</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mpunct">,</span></span></span></span></span></p><div id="https://www.notion.so/d3b96f0e193f4a2f8544d7f463da2611" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">右端第一个向量属于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub></mrow><annotation encoding="application/x-tex">U_1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">,第二个向量属于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_2"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">U_2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">,第三个向量属于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>3</mn></msub></mrow><annotation encoding="application/x-tex">U_3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/857daf21b7cf440d9222a89642f652ec" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">然而 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\mathbf{F}^3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi mathvariant="bold">F</mi><mn>3</mn></msup></mrow><annotation encoding="application/x-tex">\mathbf{F}^3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8141079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">F</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 不是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1,U_2,U_3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>U</mi><mn>2</mn></msub><mo separator="true">,</mo><msub><mi>U</mi><mn>3</mn></msub></mrow><annotation encoding="application/x-tex">U_1,U_2,U_3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 的直和,这是因为向量 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="(0,0,0)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(0,0,0)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 能用两种不同方式写成和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u_1+u_2+u_3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><msub><mi>u</mi><mn>2</mn></msub><mo>+</mo><msub><mi>u</mi><mn>3</mn></msub></mrow><annotation encoding="application/x-tex">u_1+u_2+u_3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 使得每个 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u_j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">u_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.716668em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 属于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">U_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.969438em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">. 具体来说,我们有</span></span></p></div><p id="https://www.notion.so/9fc4e695c9de4f0594d915886a964c15" class="Equation" data-latex="(0,0,0)=(0,1,0)+(0,0,1)+(0,-1,-1),"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mn>1</mn><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mo>−</mo><mn>1</mn><mo separator="true">,</mo><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">(0,0,0)=(0,1,0)+(0,0,1)+(0,-1,-1),</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord">1</span><span class="mclose">)</span><span class="mpunct">,</span></span></span></span></span></p><div id="https://www.notion.so/d1b58d29edf7420cb46a9a07d7b93f14" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">当然也有</span></span></p></div><p id="https://www.notion.so/d8eb5d7e07cc4b5e84b2708773456a59" class="Equation" data-latex="(0,0,0)=(0,0,0)+(0,0,0)+(0,0,0),"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo>=</mo><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo>+</mo><mo stretchy="false">(</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo separator="true">,</mo><mn>0</mn><mo stretchy="false">)</mo><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">(0,0,0)=(0,0,0)+(0,0,0)+(0,0,0),</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mclose">)</span><span class="mpunct">,</span></span></span></span></span></p><div id="https://www.notion.so/cdf353c1b2714cad843a8807c41ec250" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">其中每个等式右端的第一个向量属于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub></mrow><annotation encoding="application/x-tex">U_1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">,第二个向量属于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_2"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">U_2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">,第三个向量属于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_3"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>3</mn></msub></mrow><annotation encoding="application/x-tex">U_3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/ae57d6de1f5a4c1a8e9756ae84cf10c9" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.44 直和的条件</strong></span></span></p></div><div id="https://www.notion.so/f3b3d3304d6a4d79909f095c23a6310f" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1,\dots,U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1,\dots,U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 都是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 的子空间. “</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1+\cdots+U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1+\cdots+U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 是直和”当且仅当“</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString"> 表示成 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u_1+\cdots+u_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>u</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">u_1+\cdots+u_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">(其中每个 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u_j\in U_j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mi>j</mi></msub><mo>∈</mo><msub><mi>U</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">u_j\in U_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8252079999999999em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.969438em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">)的唯一方式是每个 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u_j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">u_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.716668em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 都等于 0”.</span></span></p></div><div id="https://www.notion.so/88cd05f581254573a9a0899d2e7ae607" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">证明</strong></span><span class="SemanticString"> 首先假设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1+\cdots+U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1+\cdots+U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 是直和. 那么直和的定义表明:如果 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0=u_1+\cdots+u_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>=</mo><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>u</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">0=u_1+\cdots+u_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">(其中每个 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u_j\in U_j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mi>j</mi></msub><mo>∈</mo><msub><mi>U</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">u_j\in U_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8252079999999999em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.969438em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">),则必有每个 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u_j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">u_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.716668em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 都等于0.</span></span></p></div><div id="https://www.notion.so/3f5badaa30424b309ac3f3d77047b116" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">现在假设:如果 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0=u_1+\cdots+u_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>=</mo><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>u</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">0=u_1+\cdots+u_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">(其中每个 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u_j\in U_j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mi>j</mi></msub><mo>∈</mo><msub><mi>U</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">u_j\in U_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8252079999999999em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.969438em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">),则每个 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u_j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">u_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.716668em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 都等于0. 为了证明 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1+\cdots+U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">U_1+\cdots+U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 是直和,设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v\in U_1+\cdots+U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>∈</mo><msub><mi>U</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">v\in U_1+\cdots+U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">. 把 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi></mrow><annotation encoding="application/x-tex">v</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span></span></span></span></span></span><span class="SemanticString"> 写成</span></span></p></div><p id="https://www.notion.so/d2ddd5023d364069886fa26668469529" class="Equation" data-latex="v=u_1+\cdots+u_m"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>=</mo><msub><mi>u</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>u</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">v=u_1+\cdots+u_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></p><div id="https://www.notion.so/47183de79fbf43479798d1799a49ec83" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">其中 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u_1\in U_1,\dots,u_m\in U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mn>1</mn></msub><mo>∈</mo><msub><mi>U</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>u</mi><mi>m</mi></msub><mo>∈</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">u_1\in U_1,\dots,u_m\in U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6891em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">. 为证明这个表示法唯一,假设还有一个表示</span></span></p></div><p id="https://www.notion.so/ec072cb0f5e945fea517f04b012ba53a" class="Equation" data-latex="v=v_1+\cdots+v_m,"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>=</mo><msub><mi>v</mi><mn>1</mn></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mi>v</mi><mi>m</mi></msub><mo separator="true">,</mo></mrow><annotation encoding="application/x-tex">v=v_1+\cdots+v_m,</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span></span></span></span></span></p><div id="https://www.notion.so/5fcb1f2d2cf147308726be50364679a8" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">其中 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v_1\in U_1,\dots,v_m\in U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>v</mi><mn>1</mn></msub><mo>∈</mo><msub><mi>U</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>v</mi><mi>m</mi></msub><mo>∈</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">v_1\in U_1,\dots,v_m\in U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6891em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">. 两式相减,我们有</span></span></p></div><p id="https://www.notion.so/c8ec1226bf1d400bb3376e7712041f3d" class="Equation" data-latex="0=(u_1-v_1)+\cdots+(u_m-v_m)."><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>=</mo><mo stretchy="false">(</mo><msub><mi>u</mi><mn>1</mn></msub><mo>−</mo><msub><mi>v</mi><mn>1</mn></msub><mo stretchy="false">)</mo><mo>+</mo><mo>⋯</mo><mo>+</mo><mo stretchy="false">(</mo><msub><mi>u</mi><mi>m</mi></msub><mo>−</mo><msub><mi>v</mi><mi>m</mi></msub><mo stretchy="false">)</mo><mi mathvariant="normal">.</mi></mrow><annotation encoding="application/x-tex">0=(u_1-v_1)+\cdots+(u_m-v_m).</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="minner">⋯</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord">.</span></span></span></span></span></p><div id="https://www.notion.so/0c48698188504014a477371e81aa7c33" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">由于 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u_1-v_1\in U_1,\dots,u_m-v_m\in U_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mn>1</mn></msub><mo>−</mo><msub><mi>v</mi><mn>1</mn></msub><mo>∈</mo><msub><mi>U</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>u</mi><mi>m</mi></msub><mo>−</mo><msub><mi>v</mi><mi>m</mi></msub><mo>∈</mo><msub><mi>U</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">u_1-v_1\in U_1,\dots,u_m-v_m\in U_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.73333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.6891em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.6891em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">,上式表明每个 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u_j-v_j"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mi>j</mi></msub><mo>−</mo><msub><mi>v</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">u_j-v_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8694379999999999em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.716668em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString"> 都等于 0. 于是,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u_1=v_1,\dots,u_m=v_m"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>u</mi><mn>1</mn></msub><mo>=</mo><msub><mi>v</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>u</mi><mi>m</mi></msub><mo>=</mo><msub><mi>v</mi><mi>m</mi></msub></mrow><annotation encoding="application/x-tex">u_1=v_1,\dots,u_m=v_m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">u</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/6371553b36e04620b57b85d4f105df1d" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">1.45 两个子空间的直和</strong></span></span></p></div><div id="https://www.notion.so/5a1dcf055b164983b721b68e51227157" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 和 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="W"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>W</mi></mrow><annotation encoding="application/x-tex">W</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">W</span></span></span></span></span></span><span class="SemanticString"> 都是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 的子空间,则 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U+W"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi><mo>+</mo><mi>W</mi></mrow><annotation encoding="application/x-tex">U+W</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.76666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">W</span></span></span></span></span></span><span class="SemanticString"> 是直和当且仅当 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U\cap W = \{0\}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi><mo>∩</mo><mi>W</mi><mo>=</mo><mo stretchy="false">{</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">U\cap W = \{0\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">W</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">0</span><span class="mclose">}</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/473495ae3dbd480389483275865816f2" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">证明</strong></span><span class="SemanticString"> 首先假设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U+W"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi><mo>+</mo><mi>W</mi></mrow><annotation encoding="application/x-tex">U+W</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.76666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">W</span></span></span></span></span></span><span class="SemanticString"> 是直和. 若 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v\in U\cap W"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>U</mi><mo>∩</mo><mi>W</mi></mrow><annotation encoding="application/x-tex">v\in U\cap W</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">W</span></span></span></span></span></span><span class="SemanticString">,则 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0=v+(-v)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn><mo>=</mo><mi>v</mi><mo>+</mo><mo stretchy="false">(</mo><mo>−</mo><mi>v</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">0=v+(-v)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">−</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">,其中 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v\in U,\, -v\in W"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>∈</mo><mi>U</mi><mo separator="true">,</mo><mtext> </mtext><mo>−</mo><mi>v</mi><mo>∈</mo><mi>W</mi></mrow><annotation encoding="application/x-tex">v\in U,\, -v\in W</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">−</span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">W</span></span></span></span></span></span><span class="SemanticString">. 由于 0 可唯一地表示成 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi></mrow><annotation encoding="application/x-tex">U</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span></span></span></span></span></span><span class="SemanticString"> 中向量与 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="V"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>V</mi></mrow><annotation encoding="application/x-tex">V</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">V</span></span></span></span></span></span><span class="SemanticString"> 中向量的和,我们有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="v=0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>v</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">v=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">v</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">. 于是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U\cap W = \{0\}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi><mo>∩</mo><mi>W</mi><mo>=</mo><mo stretchy="false">{</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">U\cap W = \{0\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">W</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">0</span><span class="mclose">}</span></span></span></span></span></span><span class="SemanticString">,这就证明了定理的一个方面.</span></span></p></div><div id="https://www.notion.so/5cf6946b8dab49019a46b23b11c4c6fd" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">另一方面,假设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U\cap W=\{0\}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi><mo>∩</mo><mi>W</mi><mo>=</mo><mo stretchy="false">{</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">U\cap W=\{0\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">W</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">0</span><span class="mclose">}</span></span></span></span></span></span><span class="SemanticString">. 为证明 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U+W"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>U</mi><mo>+</mo><mi>W</mi></mrow><annotation encoding="application/x-tex">U+W</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.76666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">W</span></span></span></span></span></span><span class="SemanticString"> 是直和,假设 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u\in U,\,w\in W,\, 0=u+w"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo>∈</mo><mi>U</mi><mo separator="true">,</mo><mtext> </mtext><mi>w</mi><mo>∈</mo><mi>W</mi><mo separator="true">,</mo><mtext> </mtext><mn>0</mn><mo>=</mo><mi>u</mi><mo>+</mo><mi>w</mi></mrow><annotation encoding="application/x-tex">u\in U,\,w\in W,\, 0=u+w</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">u</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">W</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">0</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord mathdefault">u</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span></span></span></span></span></span><span class="SemanticString">. 为完成证明,只需证明 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u=w=0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo>=</mo><mi>w</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">u=w=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">u</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">(由于 1.44). 由上面的等式可得 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u=-w\in W"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo>=</mo><mo>−</mo><mi>w</mi><mo>∈</mo><mi>W</mi></mrow><annotation encoding="application/x-tex">u=-w\in W</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">u</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.66666em;vertical-align:-0.08333em;"></span><span class="mord">−</span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">W</span></span></span></span></span></span><span class="SemanticString">. 于是 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u\in U\cap W"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo>∈</mo><mi>U</mi><mo>∩</mo><mi>W</mi></mrow><annotation encoding="application/x-tex">u\in U\cap W</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.5782em;vertical-align:-0.0391em;"></span><span class="mord mathdefault">u</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">W</span></span></span></span></span></span><span class="SemanticString">. 因此 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="u=0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>u</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">u=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">u</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">,由此及上面的等式可得 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="w=0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>w</mi><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">w=0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02691em;">w</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">,这就完成了证明.</span></span></p></div><blockquote id="https://www.notion.so/b67ffe1ee4374d99af12f48a4545b3b7" class="ColorfulBlock ColorfulBlock--ColorDefault Quote"><span class="SemanticStringArray"><span class="SemanticString">子空间的和类似于子集的并. 同样,子空间的直和类似于子集的不交并. 任意两个子空间都相交,因为它们都包含 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="0"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0</span></span></span></span></span></span><span class="SemanticString">. 因此要用交为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\{0\}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{0\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">0</span><span class="mclose">}</span></span></span></span></span></span><span class="SemanticString"> 代替不相交,至少在两个子空间的情形如此.</span></span></blockquote><div id="https://www.notion.so/ec42fb9ad1904c15b9b085e0c96adea2" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">上面的结果只考虑了两个子空间的情形,在考虑多于两个的子空间的和是否为直和时,只验证任意两个子空间的交为 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\{0\}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{0\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">0</span><span class="mclose">}</span></span></span></span></span></span><span class="SemanticString"> 是不够的. 为了看出这一点,考虑例 1.43,在那个非直和的例子中,我们有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="U_1\cap U_2=U_1\cap U_3=U_2\cap U_3=\{0\}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>U</mi><mn>1</mn></msub><mo>∩</mo><msub><mi>U</mi><mn>2</mn></msub><mo>=</mo><msub><mi>U</mi><mn>1</mn></msub><mo>∩</mo><msub><mi>U</mi><mn>3</mn></msub><mo>=</mo><msub><mi>U</mi><mn>2</mn></msub><mo>∩</mo><msub><mi>U</mi><mn>3</mn></msub><mo>=</mo><mo stretchy="false">{</mo><mn>0</mn><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">U_1\cap U_2=U_1\cap U_3=U_2\cap U_3=\{0\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">∩</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">U</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord">0</span><span class="mclose">}</span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div></article>
<footer class="Footer">
<div>© Patrick’s Blog 2024</div>
<div>·</div>
<div>Powered by <a href="https://github.com/dragonman225/notablog" target="_blank"
rel="noopener noreferrer">Notablog</a>.
</div>
</footer>
</body>
</html>