-
Notifications
You must be signed in to change notification settings - Fork 0
/
bayes.html
211 lines (107 loc) · 234 KB
/
bayes.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<!-- iOS Safari -->
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<!-- Chrome, Firefox OS and Opera Status Bar Color -->
<meta name="theme-color" content="#FFFFFF">
<link rel="stylesheet" type="text/css" href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.11.1/katex.min.css">
<link rel="stylesheet" type="text/css"
href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.19.0/themes/prism.min.css">
<link rel="stylesheet" type="text/css" href="css/SourceSansPro.css">
<link rel="stylesheet" type="text/css" href="css/theme.css">
<link rel="stylesheet" type="text/css" href="css/notablog.css">
<!-- Favicon -->
<link rel="shortcut icon" href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Ffc9b3a94-67d3-4485-bdf3-5e0c0b341ebe%2FAA238E8485C55D168DCF034BC7482B61.png?table=collection&id=c97ea4eb-3d30-4977-8edc-ee98d0f07149">
<style>
:root {
font-size: 20px;
}
</style>
<title>贝叶斯模型 | Patrick’s Blog</title>
<meta property="og:type" content="blog">
<meta property="og:title" content="贝叶斯模型">
<meta name="description" content="ML Notes 02: Bayesian Model">
<meta property="og:description" content="ML Notes 02: Bayesian Model">
<meta property="og:image" content="data:image/svg+xml,<svg xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 100 100%22><text text-anchor=%22middle%22 dominant-baseline=%22middle%22 x=%2250%22 y=%2255%22 font-size=%2280%22>♠️</text></svg>">
<style>
.DateTagBar {
margin-top: 1.0rem;
}
</style>
</head>
<body>
<nav class="Navbar">
<a href="index.html">
<div class="Navbar__Btn">
<span><img class="inline-img-icon" src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Ffc9b3a94-67d3-4485-bdf3-5e0c0b341ebe%2FAA238E8485C55D168DCF034BC7482B61.png?table=collection&id=c97ea4eb-3d30-4977-8edc-ee98d0f07149"></span>
<span>Home</span>
</div>
</a>
<span class="Navbar__Delim">·</span>
<a href="about.html">
<div class="Navbar__Btn">
<span><img class="inline-img-icon" src="data:image/svg+xml,<svg xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 100 100%22><text text-anchor=%22middle%22 dominant-baseline=%22middle%22 x=%2250%22 y=%2255%22 font-size=%2280%22>😀</text></svg>"></span>
<span>About me</span>
</div>
</a>
<span class="Navbar__Delim">·</span>
<a href="categories.html">
<div class="Navbar__Btn">
<span><img class="inline-img-icon" src="data:image/svg+xml,<svg xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 100 100%22><text text-anchor=%22middle%22 dominant-baseline=%22middle%22 x=%2250%22 y=%2255%22 font-size=%2280%22>📃</text></svg>"></span>
<span>Categories</span>
</div>
</a>
</nav>
<header class="Header">
<div class="Header__Spacer Header__Spacer--NoCover">
</div>
<div class="Header__Icon">
<span><img class="inline-img-icon" src="data:image/svg+xml,<svg xmlns=%22http://www.w3.org/2000/svg%22 viewBox=%220 0 100 100%22><text text-anchor=%22middle%22 dominant-baseline=%22middle%22 x=%2250%22 y=%2255%22 font-size=%2280%22>♠️</text></svg>"></span>
</div>
<h1 class="Header__Title">贝叶斯模型</h1>
<div class="DateTagBar">
<span class="DateTagBar__Item DateTagBar__Date">Posted on Wed, Mar 30, 2022</span>
<span class="DateTagBar__Item DateTagBar__Tag DateTagBar__Tag--gray">
<a href="tag/📖Note.html">📖Note</a>
</span>
<span class="DateTagBar__Item DateTagBar__Tag DateTagBar__Tag--purple">
<a href="tag/ML.html">ML</a>
</span>
</div>
</header>
<article id="https://www.notion.so/eb68c4c62845436ea19d6feebd653bdc" class="PageRoot"><ul id="https://www.notion.so/93bee963a60042a78112edb780b1de6d" class="ColorfulBlock ColorfulBlock--ColorGray TableOfContents"><li class="TableOfContents__Item"><a href="#https://www.notion.so/88769992206c4bf9af53b22ecbb886b7"><div style="margin-left:0px"><span class="SemanticStringArray"><span class="SemanticString">贝叶斯决策论</span></span></div></a></li><li class="TableOfContents__Item"><a href="#https://www.notion.so/9f8712940d1b4a56824ec9953c744eb8"><div style="margin-left:24px"><span class="SemanticStringArray"><span class="SemanticString">基础知识</span></span></div></a></li><li class="TableOfContents__Item"><a href="#https://www.notion.so/10f22274fda443d69525f53113a673dd"><div style="margin-left:24px"><span class="SemanticStringArray"><span class="SemanticString">判别模型与生成模型</span></span></div></a></li><li class="TableOfContents__Item"><a href="#https://www.notion.so/b3e5b9a1d1274e47a64a497c675437e8"><div style="margin-left:0px"><span class="SemanticStringArray"><span class="SemanticString">朴素贝叶斯分类器</span></span></div></a></li><li class="TableOfContents__Item"><a href="#https://www.notion.so/9f7b4d50cc1e41d69f627a507175fe3a"><div style="margin-left:24px"><span class="SemanticStringArray"><span class="SemanticString">条件独立假设</span></span></div></a></li><li class="TableOfContents__Item"><a href="#https://www.notion.so/2e98563221604449a04fa3ebf3d1dfa4"><div style="margin-left:24px"><span class="SemanticStringArray"><span class="SemanticString">朴素贝叶斯分类器表达式</span></span></div></a></li><li class="TableOfContents__Item"><a href="#https://www.notion.so/6519844af81848b0af22816ad8bf8cdf"><div style="margin-left:24px"><span class="SemanticStringArray"><span class="SemanticString">拉普拉斯修正</span></span></div></a></li><li class="TableOfContents__Item"><a href="#https://www.notion.so/b10cfc69c1204468b4c6fca273beb827"><div style="margin-left:0px"><span class="SemanticStringArray"><span class="SemanticString">半朴素贝叶斯分类器</span></span></div></a></li><li class="TableOfContents__Item"><a href="#https://www.notion.so/f69ca3142d0747d6ab2c321a80377af2"><div style="margin-left:0px"><span class="SemanticStringArray"><span class="SemanticString">贝叶斯网络</span></span></div></a></li><li class="TableOfContents__Item"><a href="#https://www.notion.so/28e44ec55aa640e080a6fb3dce4c3985"><div style="margin-left:24px"><span class="SemanticStringArray"><span class="SemanticString">贝叶斯网络的结构形式</span></span></div></a></li></ul><h2 id="https://www.notion.so/88769992206c4bf9af53b22ecbb886b7" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--2"><a class="Anchor" href="#https://www.notion.so/88769992206c4bf9af53b22ecbb886b7"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">贝叶斯决策论</span></span></h2><h3 id="https://www.notion.so/9f8712940d1b4a56824ec9953c744eb8" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--3"><a class="Anchor" href="#https://www.notion.so/9f8712940d1b4a56824ec9953c744eb8"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">基础知识</span></span></h3><div id="https://www.notion.so/94f3c00bae1b41e3be442731514a8233" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">条件概率</strong></span><span class="SemanticString">:描述两个有因果关系的随机事件之间的概率关系,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="p(b|a)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>b</mi><mi mathvariant="normal">∣</mi><mi>a</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p(b|a)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">b</span><span class="mord">∣</span><span class="mord mathdefault">a</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">定义为在事件</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">a</span></span></span></span></span></span><span class="SemanticString">发生的前提下事件</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="b"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>b</mi></mrow><annotation encoding="application/x-tex">b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathdefault">b</span></span></span></span></span></span><span class="SemanticString">发生的概率。</span></span></p></div><div id="https://www.notion.so/4108964ad04744b0871e352a1287ab9b" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">贝叶斯公式</strong></span><span class="SemanticString">:两个随机事件之间的关系 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="p(b|a)=\dfrac{p(a|b)p(b)}{p(a)}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>b</mi><mi mathvariant="normal">∣</mi><mi>a</mi><mo stretchy="false">)</mo><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><mfrac><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mi mathvariant="normal">∣</mi><mi>b</mi><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo></mrow></mfrac></mstyle></mrow><annotation encoding="application/x-tex">p(b|a)=\dfrac{p(a|b)p(b)}{p(a)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">b</span><span class="mord">∣</span><span class="mord mathdefault">a</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.363em;vertical-align:-0.936em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mclose">)</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mord">∣</span><span class="mord mathdefault">b</span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">b</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></span></span></p></div><div id="https://www.notion.so/bb1afe7084c6473c8bb4d14c22e5a57d" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">分类问题</strong></span><span class="SemanticString">:特征向量取值</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\boldsymbol{x}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">x</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{x}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.44444em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span></span></span></span></span></span><span class="SemanticString">与样本所属类型</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="y"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span></span></span></span><span class="SemanticString">有因果关系。因为样本属于类型</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="y"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span></span></span></span><span class="SemanticString">,所以具有特征值</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\boldsymbol{x}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">x</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{x}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.44444em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/a00251d2b30b4849acb62aa577a63a41" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">分类器</strong></span><span class="SemanticString">:已知样本的特征向量</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\boldsymbol{x}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">x</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{x}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.44444em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span></span></span></span></span></span><span class="SemanticString">的条件下反推样本所属的类别。根据贝叶斯公式有 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="p(y|\boldsymbol{x})=\dfrac{p(\boldsymbol{x}|y)p(y)}{p(\boldsymbol{x})}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>y</mi><mi mathvariant="normal">∣</mi><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><mfrac><mrow><mi>p</mi><mo stretchy="false">(</mo><mi mathvariant="bold-italic">x</mi><mi mathvariant="normal">∣</mi><mi>y</mi><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><mrow><mi>p</mi><mo stretchy="false">(</mo><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo></mrow></mfrac></mstyle></mrow><annotation encoding="application/x-tex">p(y|\boldsymbol{x})=\dfrac{p(\boldsymbol{x}|y)p(y)}{p(\boldsymbol{x})}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mord">∣</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.363em;vertical-align:-0.936em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">)</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mord">∣</span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/8cde53c8787742be959b8ba1fb745cd7" class="Image Image--Normal"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F6ae7aed9-b387-4b8f-8092-3d2183dab2a5%2FUntitled.png?width=480&table=block&id=8cde53c8-7877-42be-959b-8ba1fb745cd7"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F6ae7aed9-b387-4b8f-8092-3d2183dab2a5%2FUntitled.png?width=480&table=block&id=8cde53c8-7877-42be-959b-8ba1fb745cd7" style="width:480px"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div><div id="https://www.notion.so/cded612cb122421db733a263f4bfdab0" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">最小化分类错误率的贝叶斯最优分类器 </span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="h^*(x)=\underset{c \in \mathcal{Y}}{\argmax}P(c|\boldsymbol{x})"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>h</mi><mo>∗</mo></msup><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mi><munder><mo><mi mathvariant="normal">arg max</mi><mo></mo></mo><mrow><mi>c</mi><mo>∈</mo><mi mathvariant="script">Y</mi></mrow></munder></mi><mi>P</mi><mo stretchy="false">(</mo><mi>c</mi><mi mathvariant="normal">∣</mi><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">h^*(x)=\underset{c \in \mathcal{Y}}{\argmax}P(c|\boldsymbol{x})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">h</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.688696em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mbin mtight">∗</span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.756825em;vertical-align:-1.006825em;"></span><span class="mord"><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.43055999999999983em;"><span style="top:-2.161229em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">c</span><span class="mrel mtight">∈</span><span class="mord mtight"><span class="mord mathcal mtight" style="margin-right:0.08222em;">Y</span></span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop"><span class="mop"><span class="mord mathrm">a</span><span class="mord mathrm">r</span><span class="mord mathrm" style="margin-right:0.01389em;">g</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathrm">m</span><span class="mord mathrm">a</span><span class="mord mathrm">x</span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.006825em;"><span></span></span></span></span></span></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mord">∣</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"> 对于每个样本</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\boldsymbol{x}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="bold-italic">x</mi></mrow><annotation encoding="application/x-tex">\boldsymbol{x}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.44444em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span></span></span></span></span></span><span class="SemanticString">,选择使后验概率</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="P(c|\boldsymbol{x})"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>c</mi><mi mathvariant="normal">∣</mi><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(c|\boldsymbol{x})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mord">∣</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">最大的类别标记。(</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="P(c|\boldsymbol{x})"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>c</mi><mi mathvariant="normal">∣</mi><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(c|\boldsymbol{x})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mord">∣</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">现实中难以直接获得)</span></span></p></div><h3 id="https://www.notion.so/10f22274fda443d69525f53113a673dd" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--3"><a class="Anchor" href="#https://www.notion.so/10f22274fda443d69525f53113a673dd"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">判别模型与生成模型</span></span></h3><div id="https://www.notion.so/dd452a9f81064f6abd84d7b4e3fb210b" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">机器学习所要实现的是</span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">基于有限的训练样本尽可能准确地估计出后验概率</mark></span><span class="SemanticString">。</span></span></p></div><div id="https://www.notion.so/45933d5b54cc49f4906d7a2b32da0e81" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">两种基本策略:</span></span></p></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/d8d02776f04f4fb887a4ad039da6e15f" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">判别式模型</strong></span></span><ul class="BulletedListWrapper"><li id="https://www.notion.so/8572a8e13ef043e9b4fef8baefe1ba60" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">直接建模</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="P(c|\boldsymbol{x})"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>c</mi><mi mathvariant="normal">∣</mi><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(c|\boldsymbol{x})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mord">∣</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">)</span></span></span></span></span></span></span></li><li id="https://www.notion.so/15603cff6b784628a9f67ffeb9ed4738" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">决策树、BP神经网络、SVM</span></span></li></ul></li><li id="https://www.notion.so/41f84b50f3084f199dc24fde1a8619b1" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">生成式模型</strong></span></span><ul class="BulletedListWrapper"><li id="https://www.notion.so/afd9bc2d37454ce5aad5a4bb20c65091" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">先建模联合概率分布</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="P(\boldsymbol{x}, c)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi mathvariant="bold-italic">x</mi><mo separator="true">,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(\boldsymbol{x}, c)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">c</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">,再计算</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="P(c|\boldsymbol{x})"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>c</mi><mi mathvariant="normal">∣</mi><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(c|\boldsymbol{x})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mord">∣</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">)</span></span></span></span></span></span></span><div id="https://www.notion.so/034a11e409394585b2b66cc9c3b84363" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="P(c|\boldsymbol{x})=\dfrac{P(\boldsymbol{x},c)}{P(\boldsymbol{x})}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>c</mi><mi mathvariant="normal">∣</mi><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><mfrac><mrow><mi>P</mi><mo stretchy="false">(</mo><mi mathvariant="bold-italic">x</mi><mo separator="true">,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><mrow><mi>P</mi><mo stretchy="false">(</mo><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo></mrow></mfrac></mstyle></mrow><annotation encoding="application/x-tex">P(c|\boldsymbol{x})=\dfrac{P(\boldsymbol{x},c)}{P(\boldsymbol{x})}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mord">∣</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.363em;vertical-align:-0.936em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">)</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">c</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></span></span></p></div></li><li id="https://www.notion.so/90b676a4e10341309b2e3133218ff5f0" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">贝叶斯分类器</span></span><div id="https://www.notion.so/f9a096eb3a7849c4b68f9dcb277e1e2d" class="Image Image--PageWidth"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F7c27fa4b-13da-4382-b948-145f88f9d451%2FUntitled.png?width=414.96875&table=block&id=f9a096eb-3a78-49c4-b68f-9dcb277e1e2d"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F7c27fa4b-13da-4382-b948-145f88f9d451%2FUntitled.png?width=414.96875&table=block&id=f9a096eb-3a78-49c4-b68f-9dcb277e1e2d" style="width:100%"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div></li></ul></li></ul><div id="https://www.notion.so/84409bc21a7c48ddb7c2c02c33cc95a7" class="Image Image--Normal"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fb15bd2ba-b843-42bb-8401-905f2cfdcf14%2FUntitled.png?width=432&table=block&id=84409bc2-1a7c-48dd-b7c2-c02c33cc95a7"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fb15bd2ba-b843-42bb-8401-905f2cfdcf14%2FUntitled.png?width=432&table=block&id=84409bc2-1a7c-48dd-b7c2-c02c33cc95a7" style="width:432px"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div><div id="https://www.notion.so/18e145cc3d1c434ca63664bf2a907888" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">假设有4个samples:</span></span></p></div><div id="https://www.notion.so/90ec380d63754dd590ad833be2caa48a" class="Image Image--PageWidth"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Ff065c292-64d7-4709-8865-aeaea3a89ca1%2FUntitled.png?width=528&table=block&id=90ec380d-6375-4dd5-90ad-833be2caa48a"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Ff065c292-64d7-4709-8865-aeaea3a89ca1%2FUntitled.png?width=528&table=block&id=90ec380d-6375-4dd5-90ad-833be2caa48a" style="width:100%"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div><div id="https://www.notion.so/2002b56123e44b3883dbc7431a49b259" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">生成模型:</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\sum P(x,y)=1"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo>∑</mo><mi>P</mi><mo stretchy="false">(</mo><mi>x</mi><mo separator="true">,</mo><mi>y</mi><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\sum P(x,y)=1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.00001em;vertical-align:-0.25001em;"></span><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em;">∑</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathdefault">x</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span></span></span></span></p></div><div id="https://www.notion.so/7e820b9fd998406c9be402f8ed2ad213" class="Image Image--Normal"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F520d3c8f-018e-461a-8001-cb39478d67d5%2FUntitled.png?width=480&table=block&id=7e820b9f-d998-406c-9be4-02f8ed2ad213"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F520d3c8f-018e-461a-8001-cb39478d67d5%2FUntitled.png?width=480&table=block&id=7e820b9f-d998-406c-9be4-02f8ed2ad213" style="width:480px"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div><div id="https://www.notion.so/4551ff5addde4e98ad8b3210284a4bac" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">判别模型:</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\sum_yP(y|x)=1"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mo>∑</mo><mi>y</mi></msub><mi>P</mi><mo stretchy="false">(</mo><mi>y</mi><mi mathvariant="normal">∣</mi><mi>x</mi><mo stretchy="false">)</mo><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">\sum_yP(y|x)=1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.185818em;vertical-align:-0.43581800000000004em;"></span><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.0016819999999999613em;"><span style="top:-2.40029em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.03588em;">y</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.43581800000000004em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mord">∣</span><span class="mord mathdefault">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span></span></span></span></p></div><div id="https://www.notion.so/0514ec13c2bd444b9a249e35e20194a2" class="Image Image--Normal"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fa66c6058-45a3-4a59-8c16-4f38e9b3e58b%2FUntitled.png?width=480&table=block&id=0514ec13-c2bd-444b-9a24-9e35e20194a2"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fa66c6058-45a3-4a59-8c16-4f38e9b3e58b%2FUntitled.png?width=480&table=block&id=0514ec13-c2bd-444b-9a24-9e35e20194a2" style="width:480px"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div><h2 id="https://www.notion.so/b3e5b9a1d1274e47a64a497c675437e8" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--2"><a class="Anchor" href="#https://www.notion.so/b3e5b9a1d1274e47a64a497c675437e8"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">朴素贝叶斯分类器</span></span></h2><h3 id="https://www.notion.so/9f7b4d50cc1e41d69f627a507175fe3a" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--3"><a class="Anchor" href="#https://www.notion.so/9f7b4d50cc1e41d69f627a507175fe3a"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">条件独立假设</span></span></h3><div id="https://www.notion.so/d5aa9ee62d2c4b18a442cab78f2fc5a8" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">给定类标号</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="y"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span></span></span></span><span class="SemanticString">,朴素贝叶斯分类器在估计类条件概率时</span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">假设属性之间条件独立</mark></span><span class="SemanticString">。</span></span></p></div><div id="https://www.notion.so/96336531e00c412490cbb2ef304716fe" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">条件独立假设可以形式化的表达如下:</span></span></p></div><p id="https://www.notion.so/8e9ea28dede0451cae6c837eaa692632" class="Equation" data-latex="P(X\,|\,Y=y)=\prod_{i=1}^nP(x_i\,|\,Y=y)"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>X</mi><mtext> </mtext><mi mathvariant="normal">∣</mi><mtext> </mtext><mi>Y</mi><mo>=</mo><mi>y</mi><mo stretchy="false">)</mo><mo>=</mo><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mi>P</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mtext> </mtext><mi mathvariant="normal">∣</mi><mtext> </mtext><mi>Y</mi><mo>=</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(X\,|\,Y=y)=\prod_{i=1}^nP(x_i\,|\,Y=y)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathdefault" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">∣</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">Y</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.929066em;vertical-align:-1.277669em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6513970000000002em;"><span style="top:-1.872331em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.050005em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∏</span></span></span><span style="top:-4.3000050000000005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.277669em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">∣</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">Y</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mclose">)</span></span></span></span></span></p><div id="https://www.notion.so/caeafe24a5c24deeaee9ce55f3f612a7" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">其中每个训练样本可用一个属性向量</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="X=(x_1,x_2,x_3,\dots,x_n)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi><mo>=</mo><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>3</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">X=(x_1,x_2,x_3,\dots,x_n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07847em;">X</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">表示,各个属性之间条件独立。</span></span></p></div><div id="https://www.notion.so/caf96c3d9af24cb28324f7f4259dbab5" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">有了条件独立假设,就不必计算</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="X"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.07847em;">X</span></span></span></span></span></span><span class="SemanticString">和</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="Y"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">Y</span></span></span></span></span></span><span class="SemanticString">的每一种组合的类条件概率,只需</span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">对给定的</mark></span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="Y"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">Y</span></span></span></span></span></mark></span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">,计算每个</mark></span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x_i"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">x_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></mark></span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">的条件概率</mark></span><span class="SemanticString">。不需要很大的训练集就能获得较好的概率估计,更实用。</span></span></p></div><div id="https://www.notion.so/a7251c11da124b74bb5ae317dc381774" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="P(x_i\,|\,Y=y)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mtext> </mtext><mi mathvariant="normal">∣</mi><mtext> </mtext><mi>Y</mi><mo>=</mo><mi>y</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(x_i\,|\,Y=y)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">∣</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.22222em;">Y</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">一般根据类别</mark></span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="y"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>y</mi></mrow><annotation encoding="application/x-tex">y</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathdefault" style="margin-right:0.03588em;">y</span></span></span></span></span></mark></span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">下包含属性</mark></span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x_i"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">x_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></mark></span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">的实例的比例来估计</mark></span><span class="SemanticString">。</span></span></p></div><h3 id="https://www.notion.so/2e98563221604449a04fa3ebf3d1dfa4" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--3"><a class="Anchor" href="#https://www.notion.so/2e98563221604449a04fa3ebf3d1dfa4"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">朴素贝叶斯分类器表达式</span></span></h3><div id="https://www.notion.so/6cd9070a2cf14224bda5a9b325292d15" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">由于对所有类别来说</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="P(\boldsymbol{x})"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(\boldsymbol{x})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">相同,因此有朴素贝叶斯分类器的表达式</span></span></p></div><p id="https://www.notion.so/42ee4c76e29d4f4baa0f4c02004a9b35" class="Equation" data-latex="h_{nb}(\boldsymbol{x})=\underset{c\in\mathcal{Y}}{\argmax}\;P(c)\prod_{i=1}^dP(x_i\,|\,c)"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>h</mi><mrow><mi>n</mi><mi>b</mi></mrow></msub><mo stretchy="false">(</mo><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo><mo>=</mo><mi><munder><mo><mi mathvariant="normal">arg max</mi><mo></mo></mo><mrow><mi>c</mi><mo>∈</mo><mi mathvariant="script">Y</mi></mrow></munder></mi><mtext> </mtext><mi>P</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>d</mi></munderover><mi>P</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mtext> </mtext><mi mathvariant="normal">∣</mi><mtext> </mtext><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">h_{nb}(\boldsymbol{x})=\underset{c\in\mathcal{Y}}{\argmax}\;P(c)\prod_{i=1}^dP(x_i\,|\,c)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">h</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">n</span><span class="mord mathdefault mtight">b</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:3.1137820000000005em;vertical-align:-1.277669em;"></span><span class="mord"><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.43055999999999983em;"><span style="top:-2.161229em;margin-left:0em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">c</span><span class="mrel mtight">∈</span><span class="mord mtight"><span class="mord mathcal mtight" style="margin-right:0.08222em;">Y</span></span></span></span></span><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span><span class="mop"><span class="mop"><span class="mord mathrm">a</span><span class="mord mathrm">r</span><span class="mord mathrm" style="margin-right:0.01389em;">g</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathrm">m</span><span class="mord mathrm">a</span><span class="mord mathrm">x</span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.006825em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8361130000000003em;"><span style="top:-1.872331em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.050005em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∏</span></span></span><span style="top:-4.3000050000000005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">d</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.277669em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">∣</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">c</span><span class="mclose">)</span></span></span></span></span></p><div id="https://www.notion.so/e2e4145a715d4ffa80eea2e5e6b1c56c" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">显然,朴素贝叶斯分类器的训练过程就是</span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">基于训练集</mark></span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="D"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02778em;">D</span></span></span></span></span></mark></span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">来估计类先验概率</mark></span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="P(c)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(c)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mclose">)</span></span></span></span></span></mark></span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">,并为每个属性估计条件概率</mark></span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="P(x_i\,|\,c)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mtext> </mtext><mi mathvariant="normal">∣</mi><mtext> </mtext><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(x_i\,|\,c)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">∣</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">c</span><span class="mclose">)</span></span></span></span></span></mark></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/c44e62fa42f54200aa4f1ce23e0a8d3a" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">令</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="D_c"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>D</mi><mi>c</mi></msub></mrow><annotation encoding="application/x-tex">D_c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02778em;">D</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">表示训练集</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="D"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02778em;">D</span></span></span></span></span></span><span class="SemanticString">中第</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="c"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi></mrow><annotation encoding="application/x-tex">c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">c</span></span></span></span></span></span><span class="SemanticString">类样本组成的集合,若有充足的独立同分布样本,则可容易地估计出类先验概率:</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="P(c)=\dfrac{|D_c|}{|D|}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><mfrac><mrow><mi mathvariant="normal">∣</mi><msub><mi>D</mi><mi>c</mi></msub><mi mathvariant="normal">∣</mi></mrow><mrow><mi mathvariant="normal">∣</mi><mi>D</mi><mi mathvariant="normal">∣</mi></mrow></mfrac></mstyle></mrow><annotation encoding="application/x-tex">P(c)=\dfrac{|D_c|}{|D|}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.363em;vertical-align:-0.936em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">∣</span><span class="mord mathdefault" style="margin-right:0.02778em;">D</span><span class="mord">∣</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">∣</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02778em;">D</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">∣</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></span><span class="SemanticString">.</span></span></p></div><div id="https://www.notion.so/f1550183f85f43af82e82e8463213787" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">估计每个属性的条件概率</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="P(x_i\,|\,c)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mtext> </mtext><mi mathvariant="normal">∣</mi><mtext> </mtext><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(x_i\,|\,c)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">∣</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">c</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">:</span></span></p></div><div id="https://www.notion.so/fd3278c430a6429a90477451f6e6099f" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">离散:</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="P(x_i\,|\,c)=\dfrac{|D_{c,x_i}|}{|D_c|}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mtext> </mtext><mi mathvariant="normal">∣</mi><mtext> </mtext><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><mfrac><mrow><mi mathvariant="normal">∣</mi><msub><mi>D</mi><mrow><mi>c</mi><mo separator="true">,</mo><msub><mi>x</mi><mi>i</mi></msub></mrow></msub><mi mathvariant="normal">∣</mi></mrow><mrow><mi mathvariant="normal">∣</mi><msub><mi>D</mi><mi>c</mi></msub><mi mathvariant="normal">∣</mi></mrow></mfrac></mstyle></mrow><annotation encoding="application/x-tex">P(x_i\,|\,c)=\dfrac{|D_{c,x_i}|}{|D_c|}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">∣</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.363em;vertical-align:-0.936em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">∣</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02778em;">D</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">∣</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">∣</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02778em;">D</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">c</span><span class="mpunct mtight">,</span><span class="mord mtight"><span class="mord mathdefault mtight">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3280857142857143em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mord">∣</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></span></span></p></div><div id="https://www.notion.so/0828ea2684144af79edcf0fcf600419b" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">连续:</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="P(x_i\,|\,c)=\dfrac{1}{\sqrt{2\pi}\sigma_{c,i}}\exp\Big(-\dfrac{(x_i-\mu_{c,i})^2}{2\sigma_{c,i}^2}\Big)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mtext> </mtext><mi mathvariant="normal">∣</mi><mtext> </mtext><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mstyle displaystyle="true" scriptlevel="0"><mfrac><mn>1</mn><mrow><msqrt><mrow><mn>2</mn><mi>π</mi></mrow></msqrt><msub><mi>σ</mi><mrow><mi>c</mi><mo separator="true">,</mo><mi>i</mi></mrow></msub></mrow></mfrac></mstyle><mi>exp</mi><mo></mo><mo fence="false">(</mo><mo>−</mo><mstyle displaystyle="true" scriptlevel="0"><mfrac><mrow><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mo>−</mo><msub><mi>μ</mi><mrow><mi>c</mi><mo separator="true">,</mo><mi>i</mi></mrow></msub><msup><mo stretchy="false">)</mo><mn>2</mn></msup></mrow><mrow><mn>2</mn><msubsup><mi>σ</mi><mrow><mi>c</mi><mo separator="true">,</mo><mi>i</mi></mrow><mn>2</mn></msubsup></mrow></mfrac></mstyle><mo fence="false">)</mo></mrow><annotation encoding="application/x-tex">P(x_i\,|\,c)=\dfrac{1}{\sqrt{2\pi}\sigma_{c,i}}\exp\Big(-\dfrac{(x_i-\mu_{c,i})^2}{2\sigma_{c,i}^2}\Big)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">∣</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.404768em;vertical-align:-1.083328em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.2027799999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord sqrt"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.90722em;"><span class="svg-align" style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord" style="padding-left:0.833em;"><span class="mord">2</span><span class="mord mathdefault" style="margin-right:0.03588em;">π</span></span></span><span style="top:-2.86722em;"><span class="pstrut" style="height:3em;"></span><span class="hide-tail" style="min-width:0.853em;height:1.08em;"><svg width='400em' height='1.08em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702
c-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14
c0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54
c44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10
s173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429
c69,-144,104.5,-217.7,106.5,-221
l0 -0
c5.3,-9.3,12,-14,20,-14
H400000v40H845.2724
s-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7
c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z
M834 80h400000v40h-400000z'/></svg></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.13278em;"><span></span></span></span></span></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">c</span><span class="mpunct mtight">,</span><span class="mord mathdefault mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.083328em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop">exp</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="delimsizing size2">(</span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:2.5900799999999995em;vertical-align:-1.0989719999999998em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.4911079999999999em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.03588em;">σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.795908em;"><span style="top:-2.4231360000000004em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">c</span><span class="mpunct mtight">,</span><span class="mord mathdefault mtight">i</span></span></span></span><span style="top:-3.0448000000000004em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.4129719999999999em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathdefault">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">c</span><span class="mpunct mtight">,</span><span class="mord mathdefault mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.0989719999999998em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="delimsizing size2">)</span></span></span></span></span></span></span></span></p></div><h3 id="https://www.notion.so/6519844af81848b0af22816ad8bf8cdf" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--3"><a class="Anchor" href="#https://www.notion.so/6519844af81848b0af22816ad8bf8cdf"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">拉普拉斯修正</span></span></h3><div id="https://www.notion.so/9e4bdc90ba694d188f602ae2f08ce735" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">若某个属性值在训练集中没有与某个类同时出现过,则直接计算连乘式的概率值为0,导致分类结果显然不合理。为了避免其他属性携带的信息被训练集中未出现的属性值“抹去”,在估计概率值时通常要进行</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">“拉普拉斯修正”</strong></span><span class="SemanticString">。</span></span></p></div><div id="https://www.notion.so/7418d27749cc4eb59551352010078b5f" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">令</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="N"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>N</mi></mrow><annotation encoding="application/x-tex">N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">N</span></span></span></span></span></span><span class="SemanticString">表示数据集</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="D"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathdefault" style="margin-right:0.02778em;">D</span></span></span></span></span></span><span class="SemanticString">中可能的类别数,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="N_i"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>N</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">N_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">表示第</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="i"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.65952em;vertical-align:0em;"></span><span class="mord mathdefault">i</span></span></span></span></span></span><span class="SemanticString">个属性可能的取值数,则</span></span></p></div><p id="https://www.notion.so/de4eaf9561d54aa690cbddc248db08b6" class="Equation" data-latex="\begin{aligned}
\hat{P}(c) &= \frac{|D_c|+1}{|D|+N} \\
\hat{P}(x_i\,|\,c) &= \frac{|D_{c,x_i}|+1}{|D_c|+N_i}
\end{aligned}"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable rowspacing="0.24999999999999992em" columnalign="right left" columnspacing="0em"><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mover accent="true"><mi>P</mi><mo>^</mo></mover><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><mi mathvariant="normal">∣</mi><msub><mi>D</mi><mi>c</mi></msub><mi mathvariant="normal">∣</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi mathvariant="normal">∣</mi><mi>D</mi><mi mathvariant="normal">∣</mi><mo>+</mo><mi>N</mi></mrow></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mover accent="true"><mi>P</mi><mo>^</mo></mover><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mtext> </mtext><mi mathvariant="normal">∣</mi><mtext> </mtext><mi>c</mi><mo stretchy="false">)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><mi mathvariant="normal">∣</mi><msub><mi>D</mi><mrow><mi>c</mi><mo separator="true">,</mo><msub><mi>x</mi><mi>i</mi></msub></mrow></msub><mi mathvariant="normal">∣</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi mathvariant="normal">∣</mi><msub><mi>D</mi><mi>c</mi></msub><mi mathvariant="normal">∣</mi><mo>+</mo><msub><mi>N</mi><mi>i</mi></msub></mrow></mfrac></mrow></mstyle></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{aligned}
\hat{P}(c) &= \frac{|D_c|+1}{|D|+N} \\
\hat{P}(x_i\,|\,c) &= \frac{|D_{c,x_i}|+1}{|D_c|+N_i}
\end{aligned}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:5.3260000000000005em;vertical-align:-2.4130000000000003em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.9130000000000003em;"><span style="top:-4.913em;"><span class="pstrut" style="height:3.427em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9467699999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.13889em;">P</span></span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.16666em;"><span class="mord">^</span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mclose">)</span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:3.427em;"></span><span class="mord"><span class="mord accent"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.9467699999999999em;"><span style="top:-3em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.13889em;">P</span></span></span><span style="top:-3.25233em;"><span class="pstrut" style="height:3em;"></span><span class="accent-body" style="left:-0.16666em;"><span class="mord">^</span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">∣</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">c</span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.4130000000000003em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.9130000000000003em;"><span style="top:-4.913em;"><span class="pstrut" style="height:3.427em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">∣</span><span class="mord mathdefault" style="margin-right:0.02778em;">D</span><span class="mord">∣</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord mathdefault" style="margin-right:0.10903em;">N</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">∣</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02778em;">D</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-2.25em;"><span class="pstrut" style="height:3.427em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">∣</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02778em;">D</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">c</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.10903em;">N</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.10903em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">∣</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.02778em;">D</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">c</span><span class="mpunct mtight">,</span><span class="mord mtight"><span class="mord mathdefault mtight">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.3280857142857143em;"><span style="top:-2.357em;margin-left:0em;margin-right:0.07142857142857144em;"><span class="pstrut" style="height:2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.143em;"><span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.936em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.4130000000000003em;"><span></span></span></span></span></span></span></span></span></span></span></span></p><div id="https://www.notion.so/c3d84c3e41b6450cbd3f3dfc3c3aa15d" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">(拉普拉斯修正,实际上是假设了属性与类别均匀分布)</span></span></p></div><div id="https://www.notion.so/e90eba55b6f64204a8ed80993c135d71" class="Divider"></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/eaf7d5607e2c4ca6823909fc63893279" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">若任务对预测速度要求较高:</span></span><div id="https://www.notion.so/362bf3698e3c4c18931490a487baaca4" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">计算所有概率估值存储,使用时“查表”。</span></span></p></div></li><li id="https://www.notion.so/a2f23cbb99324ae6a4e89259a190ffef" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">若任务数据更替频繁:</span></span><div id="https://www.notion.so/71fb74c03c0142c48c895f6ffa54c1f5" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">使用“懒惰学习”,即先不进行任务训练,收到预测请求时再估值。</span></span></p></div></li><li id="https://www.notion.so/0fef02313ecd4adfb75f4ad9d071b0dc" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">若任务数据不断增加:</span></span><div id="https://www.notion.so/d7b914f7236c4990b2c8c8d39f16b96e" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">使用“增量学习”,基于现有估值,对新样本涉及的概率估值进行修正。</span></span></p></div></li></ul><h2 id="https://www.notion.so/b10cfc69c1204468b4c6fca273beb827" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--2"><a class="Anchor" href="#https://www.notion.so/b10cfc69c1204468b4c6fca273beb827"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">半朴素贝叶斯分类器</span></span></h2><div id="https://www.notion.so/0fb199b797e24f968a639968f95d4996" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">对属性条件独立假设进行一定程度的放松,由此产生了一类称为</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">“半朴素贝叶斯分类器”</strong></span><span class="SemanticString">。</span></span></p></div><div id="https://www.notion.so/2e5a1c2232a7456cb902384a10efc572" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">半朴素贝叶斯分类器最常用的一种策略:“独依赖估计” (One-Dependent Estimator, ODE) ,假设每个属性在类别之外最多仅依赖一个其他属性,即</span></span></p></div><p id="https://www.notion.so/173fa8e5937145148911186b0940a80c" class="Equation" data-latex="P(c\,|\,\boldsymbol{x})\propto P(c)\prod_{i=1}^dP(x_i\,|\,c,{pa}_i)"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>P</mi><mo stretchy="false">(</mo><mi>c</mi><mtext> </mtext><mi mathvariant="normal">∣</mi><mtext> </mtext><mi mathvariant="bold-italic">x</mi><mo stretchy="false">)</mo><mo>∝</mo><mi>P</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>d</mi></munderover><mi>P</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mi>i</mi></msub><mtext> </mtext><mi mathvariant="normal">∣</mi><mtext> </mtext><mi>c</mi><mo separator="true">,</mo><msub><mrow><mi>p</mi><mi>a</mi></mrow><mi>i</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">P(c\,|\,\boldsymbol{x})\propto P(c)\prod_{i=1}^dP(x_i\,|\,c,{pa}_i)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">∣</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord"><span class="mord boldsymbol">x</span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∝</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:3.1137820000000005em;vertical-align:-1.277669em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8361130000000003em;"><span style="top:-1.872331em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.050005em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∏</span></span></span><span style="top:-4.3000050000000005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">d</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.277669em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">∣</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">c</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">p</span><span class="mord mathdefault">a</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.21752399999999997em;"><span style="top:-2.4558600000000004em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.24414em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></p><div id="https://www.notion.so/00f20bb38f4348a8af9c54eebcd342c4" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">其中</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="{pa}_i"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mrow><mi>p</mi><mi>a</mi></mrow><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">{pa}_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6747em;vertical-align:-0.24414em;"></span><span class="mord"><span class="mord"><span class="mord mathdefault">p</span><span class="mord mathdefault">a</span></span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.21752399999999997em;"><span style="top:-2.4558600000000004em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.24414em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">为属性</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x_i"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">x_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">所依赖的属性,称为</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x_i"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">x_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">的父属性。</span></span></p></div><div id="https://www.notion.so/f1e86eb0114f4e6580ef9acf789d6cbe" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">问题关键转化为</span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">如何确定每个属性的父属性</mark></span><span class="SemanticString">。常见方法有:</span></span></p></div><div id="https://www.notion.so/8141c8f283af4636ace8a24871c1cedc" class="Image Image--PageWidth"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F0b2502e5-3d8b-4f5b-894c-5323a41c8c05%2FUntitled.png?width=1094&table=block&id=8141c8f2-83af-4636-ace8-a24871c1cedc"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F0b2502e5-3d8b-4f5b-894c-5323a41c8c05%2FUntitled.png?width=1094&table=block&id=8141c8f2-83af-4636-ace8-a24871c1cedc" style="width:100%"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div><h2 id="https://www.notion.so/f69ca3142d0747d6ab2c321a80377af2" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--2"><a class="Anchor" href="#https://www.notion.so/f69ca3142d0747d6ab2c321a80377af2"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">贝叶斯网络</span></span></h2><div id="https://www.notion.so/45edbc091bd7452c813e45e73740cd72" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">把某个研究系统中涉及的</span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">随机变量</mark></span><span class="SemanticString">,根据是否条件独立绘制在一个</span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">有向图</mark></span><span class="SemanticString">中,就形成了贝叶斯网络。</span></span></p></div><div id="https://www.notion.so/e1d3f147125f43cb990a6960b69f6446" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">贝叶斯网络 (Bayesian Network) ,是</span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">有向无环图模型</mark></span><span class="SemanticString">,也是一种概率图模型,借由有向无环图DAG得知一组随机变量</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="\{X_1,X_2,\dots,X_n\}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="false">{</mo><msub><mi>X</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>X</mi><mn>2</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>X</mi><mi>n</mi></msub><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{X_1,X_2,\dots,X_n\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">}</span></span></span></span></span></span><span class="SemanticString">及其</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="n"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">n</span></span></span></span></span></span><span class="SemanticString">组</span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">条件概率分布</mark></span><span class="SemanticString">的性质。</span></span></p></div><div id="https://www.notion.so/7a42b0c19ea94fd3bf49d501dff71053" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">一般而言,贝叶斯网络的有向无环图中的</span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">结点表示随机变量</mark></span><span class="SemanticString">,它们是可观察到的变量,或隐变量、未知参数等。连接两个结点的箭头代表此</span><span class="SemanticString"><mark class="SemanticString__Fragment SemanticString__Fragment--HighlightedColor SemanticString__Fragment--ColorBlue">两个随机变量是具有因果关系</mark></span><span class="SemanticString">(或非条件独立)。若两个结点间以一个单箭头连接在一起,表示其中一个结点是“因 (parents)”,另一个是“果 (children)”,两结点就会产生一个条件概率值。</span></span></p></div><div id="https://www.notion.so/bde59300695b4ec7a42c5a6bcf0c960c" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">每个结点在给定其直接前驱时,条件独立于其非后继。</span></span></p></div><blockquote id="https://www.notion.so/8961a64a1c31462f84d16c71ed38b289" class="ColorfulBlock ColorfulBlock--ColorDefault Quote"><span class="SemanticStringArray"><span class="SemanticString">概率图模型:用图来表示变量概率依赖关系的理论
- 贝叶斯网络 (Bayesian Network) :有向图结构表示
- 马尔可夫网络 (Markov Network) :无向图结构表示
概率图模型包括朴素贝叶斯模型、最大熵模型、隐马尔可夫模型、条件随机场、主题模型等。</span></span></blockquote><ul class="BulletedListWrapper"><li id="https://www.notion.so/d090c2084acc4b8fa6ec475992a6d2e4" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">一个简单的贝叶斯网络</span></span></li></ul><div id="https://www.notion.so/58230b1d51554d7fb184eb125b0b999b" class="ColumnList"><div id="https://www.notion.so/11899b54183b4675a2ddf29a8b82749c" class="Column" style="width:calc((100% - var(--column-spacing) * 1) * 0.75)"><p id="https://www.notion.so/69c1911704b440768a3003e68f6d81f8" class="Equation" data-latex="p(a,b,c)=p(c|a,b)p(b|a)p(a)"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo separator="true">,</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mi>p</mi><mo stretchy="false">(</mo><mi>c</mi><mi mathvariant="normal">∣</mi><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><mi>b</mi><mi mathvariant="normal">∣</mi><mi>a</mi><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p(a,b,c)=p(c|a,b)p(b|a)p(a)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mord">∣</span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">b</span><span class="mord">∣</span><span class="mord mathdefault">a</span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mclose">)</span></span></span></span></span></p></div><div id="https://www.notion.so/01a4575bbd8a4513a6eae2beefb1972e" class="Column" style="width:calc((100% - var(--column-spacing) * 1) * 0.24999999999999994)"><div id="https://www.notion.so/4edc37e0180c41a9aa2ccad00aea2a46" class="Image Image--PageWidth"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F71fee165-7318-4f73-8a7b-15035f3fcfb8%2FUntitled.png?width=132&table=block&id=4edc37e0-180c-41a9-aa2c-cad00aea2a46"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F71fee165-7318-4f73-8a7b-15035f3fcfb8%2FUntitled.png?width=132&table=block&id=4edc37e0-180c-41a9-aa2c-cad00aea2a46" style="width:100%"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div></div></div><ul class="BulletedListWrapper"><li id="https://www.notion.so/50a9ccaddd444a98a839790798cb171a" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">全连接贝叶斯网络:每一对结点之间都有边连接</span></span><p id="https://www.notion.so/69de5f1951784b60aa9e4f59975c1aa8" class="Equation" data-latex="p(x_1,\dots,x_K)=p(x_K|x_1,\dots,x_{K-1})\dots p(x_2|x_1)p(x_1) \\
P(X_1=x_1,\dots, X_n=x_n) = \prod_{i=1}^n P(X_i=x_i|X_{i+1}=x_{i+1},\dots,X_n=x_n)"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>x</mi><mi>K</mi></msub><mo stretchy="false">)</mo><mo>=</mo><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mi>K</mi></msub><mi mathvariant="normal">∣</mi><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>x</mi><mrow><mi>K</mi><mo>−</mo><mn>1</mn></mrow></msub><mo stretchy="false">)</mo><mo>…</mo><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>2</mn></msub><mi mathvariant="normal">∣</mi><msub><mi>x</mi><mn>1</mn></msub><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo stretchy="false">)</mo><mspace linebreak="newline"></mspace><mi>P</mi><mo stretchy="false">(</mo><msub><mi>X</mi><mn>1</mn></msub><mo>=</mo><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>X</mi><mi>n</mi></msub><mo>=</mo><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">)</mo><mo>=</mo><munderover><mo>∏</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mi>P</mi><mo stretchy="false">(</mo><msub><mi>X</mi><mi>i</mi></msub><mo>=</mo><msub><mi>x</mi><mi>i</mi></msub><mi mathvariant="normal">∣</mi><msub><mi>X</mi><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>x</mi><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>X</mi><mi>n</mi></msub><mo>=</mo><msub><mi>x</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p(x_1,\dots,x_K)=p(x_K|x_1,\dots,x_{K-1})\dots p(x_2|x_1)p(x_1) \\
P(X_1=x_1,\dots, X_n=x_n) = \prod_{i=1}^n P(X_i=x_i|X_{i+1}=x_{i+1},\dots,X_n=x_n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.07153em;">K</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight" style="margin-right:0.07153em;">K</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.328331em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight" style="margin-right:0.07153em;">K</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span><span class="mspace newline"></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.929066em;vertical-align:-1.277669em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6513970000000002em;"><span style="top:-1.872331em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.050005em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∏</span></span></span><span style="top:-4.3000050000000005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.277669em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.891661em;vertical-align:-0.208331em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></p></li></ul><div id="https://www.notion.so/1cfcf8e4047f48c7bede2fff6b540188" class="ColumnList"><div id="https://www.notion.so/08f6e9af99084ab884ea6e579c75452f" class="Column" style="width:calc((100% - var(--column-spacing) * 1) * 0.6875)"><ul class="BulletedListWrapper"><li id="https://www.notion.so/05ef25da5f274294a1266b6180d6883a" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">正常的贝叶斯网络:直观上有些边缺失</span></span><ul class="BulletedListWrapper"><li id="https://www.notion.so/4e18659c796548d5b522fa1277a48459" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x_1"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mn>1</mn></msub></mrow><annotation encoding="application/x-tex">x_1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">和</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x_2"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mn>2</mn></msub></mrow><annotation encoding="application/x-tex">x_2</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">独立</span></span></li><li id="https://www.notion.so/8d464ddcd81946889f82a34ee82a6573" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x_6"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mn>6</mn></msub></mrow><annotation encoding="application/x-tex">x_6</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">6</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">和</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x_7"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mn>7</mn></msub></mrow><annotation encoding="application/x-tex">x_7</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">7</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">在</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x_4"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mn>4</mn></msub></mrow><annotation encoding="application/x-tex">x_4</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">给定的条件下独立</span></span></li><li id="https://www.notion.so/f3747674e7b444ac8f83a568138a9998" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x_1,x_2,\dots,x_7"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>x</mi><mn>7</mn></msub></mrow><annotation encoding="application/x-tex">x_1,x_2,\dots,x_7</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">7</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">的联合分布:</span></span><p id="https://www.notion.so/f96faa639d2447ba972eae7e4e726462" class="Equation" data-latex="p(x_1)p(x_2)p(x_3)p(x_4|x_1,x_2,x_3)p(x_5|x_1,x_3)p(x_6|x_4)p(x_7|x_4,x_5)"><span class="katex-display"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>1</mn></msub><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>2</mn></msub><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>3</mn></msub><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>4</mn></msub><mi mathvariant="normal">∣</mi><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>3</mn></msub><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>5</mn></msub><mi mathvariant="normal">∣</mi><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>3</mn></msub><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>6</mn></msub><mi mathvariant="normal">∣</mi><msub><mi>x</mi><mn>4</mn></msub><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><msub><mi>x</mi><mn>7</mn></msub><mi mathvariant="normal">∣</mi><msub><mi>x</mi><mn>4</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>5</mn></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p(x_1)p(x_2)p(x_3)p(x_4|x_1,x_2,x_3)p(x_5|x_1,x_3)p(x_6|x_4)p(x_7|x_4,x_5)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">5</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">6</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">7</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">4</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">5</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span></p></li></ul></li></ul></div><div id="https://www.notion.so/19fe95f132e74e0a9fa14b6376bd2448" class="Column" style="width:calc((100% - var(--column-spacing) * 1) * 0.3125)"><div id="https://www.notion.so/512a94c98ba94be5a47db4569286be00" class="Image Image--Normal"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F90dd4167-b468-406f-8c45-e5b66c9649be%2FUntitled.png?width=132.796875&table=block&id=512a94c9-8ba9-4be5-a47d-b4569286be00"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F90dd4167-b468-406f-8c45-e5b66c9649be%2FUntitled.png?width=132.796875&table=block&id=512a94c9-8ba9-4be5-a47d-b4569286be00" style="width:132.796875px"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div></div></div><h3 id="https://www.notion.so/28e44ec55aa640e080a6fb3dce4c3985" class="ColorfulBlock ColorfulBlock--ColorDefault Heading Heading--3"><a class="Anchor" href="#https://www.notion.so/28e44ec55aa640e080a6fb3dce4c3985"><svg width="16" height="16" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 9h1v1H4c-1.5 0-3-1.69-3-3.5S2.55 3 4 3h4c1.45 0 3 1.69 3 3.5 0 1.41-.91 2.72-2 3.25V8.59c.58-.45 1-1.27 1-2.09C10 5.22 8.98 4 8 4H4c-.98 0-2 1.22-2 2.5S3 9 4 9zm9-3h-1v1h1c1 0 2 1.22 2 2.5S13.98 12 13 12H9c-.98 0-2-1.22-2-2.5 0-.83.42-1.64 1-2.09V6.25c-1.09.53-2 1.84-2 3.25C6 11.31 7.55 13 9 13h4c1.45 0 3-1.69 3-3.5S14.5 6 13 6z"></path></svg></a><span class="SemanticStringArray"><span class="SemanticString">贝叶斯网络的结构形式</span></span></h3><div id="https://www.notion.so/78432b9784a84a7a8cf31da1b509c83b" class="ColumnList"><div id="https://www.notion.so/9625349dcc4b4bc19e4c5d3c00963867" class="Column" style="width:calc((100% - var(--column-spacing) * 1) * 0.75)"><ul class="BulletedListWrapper"><li id="https://www.notion.so/1da8b0314bf1438fb711c8cc0d38e9d8" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">head-to-head</span></span><div id="https://www.notion.so/202eb0fd04e640d08cf19cbb201c786d" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="p(a,b,c)=p(a)p(b)p(c|a,b)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo separator="true">,</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><mi>b</mi><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><mi>c</mi><mi mathvariant="normal">∣</mi><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p(a,b,c)=p(a)p(b)p(c|a,b)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">b</span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mord">∣</span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">成立,即在</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="c"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi></mrow><annotation encoding="application/x-tex">c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">c</span></span></span></span></span></span><span class="SemanticString">未知的条件下,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a,b"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a,b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span></span></span></span></span></span><span class="SemanticString">被阻断 (blocked) ,是独立的,称之为head-to-head条件独立。</span></span></p></div></li></ul></div><div id="https://www.notion.so/4f93b93c447247149ca8e88d35d8e80f" class="Column" style="width:calc((100% - var(--column-spacing) * 1) * 0.25)"><div id="https://www.notion.so/494e524a31254654bd40cc92d3fa632e" class="Image Image--Normal"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F59ce539c-fa39-49eb-af80-529531ad5a10%2FUntitled.png?width=144&table=block&id=494e524a-3125-4654-bd40-cc92d3fa632e"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F59ce539c-fa39-49eb-af80-529531ad5a10%2FUntitled.png?width=144&table=block&id=494e524a-3125-4654-bd40-cc92d3fa632e" style="width:144px"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div></div></div><div id="https://www.notion.so/72b573a636a1440a8a4d37adf277e6a7" class="ColumnList"><div id="https://www.notion.so/6195e0f1a16c49e288b8e523ec4240fa" class="Column" style="width:calc((100% - var(--column-spacing) * 1) * 0.75)"><ul class="BulletedListWrapper"><li id="https://www.notion.so/541603398eb34cd28c5707e1cc6f1a53" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">tail-to-tail</span></span><ul class="BulletedListWrapper"><li id="https://www.notion.so/20f2899020364671a1a263a0382e3c3b" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">在</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="c"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi></mrow><annotation encoding="application/x-tex">c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">c</span></span></span></span></span></span><span class="SemanticString">未知的条件下:</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="p(a,b,c)=p(c)p(a|c)p(b|c)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo separator="true">,</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mi>p</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mi mathvariant="normal">∣</mi><mi>c</mi><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><mi>b</mi><mi mathvariant="normal">∣</mi><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p(a,b,c)=p(c)p(a|c)p(b|c)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mord">∣</span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">b</span><span class="mord">∣</span><span class="mord mathdefault">c</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">,此时,无法得出</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="p(a,b)=p(a)p(b)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p(a,b)=p(a)p(b)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">b</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">,即</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="c"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi></mrow><annotation encoding="application/x-tex">c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">c</span></span></span></span></span></span><span class="SemanticString">未知时,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a,b"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a,b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span></span></span></span></span></span><span class="SemanticString">不独立;</span></span></li><li id="https://www.notion.so/4d0ea1d657ec4dc8ad3cbb862a3007c1" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">在</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="c"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi></mrow><annotation encoding="application/x-tex">c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">c</span></span></span></span></span></span><span class="SemanticString">已知的条件下:</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="p(a,b|c)=\frac{p(a,b,c)}{p(c)}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mi mathvariant="normal">∣</mi><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo separator="true">,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow></mfrac></mrow><annotation encoding="application/x-tex">p(a,b|c)=\frac{p(a,b,c)}{p(c)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mord">∣</span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.53em;vertical-align:-0.52em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.01em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">p</span><span class="mopen mtight">(</span><span class="mord mathdefault mtight">c</span><span class="mclose mtight">)</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">p</span><span class="mopen mtight">(</span><span class="mord mathdefault mtight">a</span><span class="mpunct mtight">,</span><span class="mord mathdefault mtight">b</span><span class="mpunct mtight">,</span><span class="mord mathdefault mtight">c</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.52em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></span><span class="SemanticString">,将</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="p(a,b,c)=p(c)p(a|c)p(b|c)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo separator="true">,</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mi>p</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mi mathvariant="normal">∣</mi><mi>c</mi><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><mi>b</mi><mi mathvariant="normal">∣</mi><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p(a,b,c)=p(c)p(a|c)p(b|c)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mord">∣</span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">b</span><span class="mord">∣</span><span class="mord mathdefault">c</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">带入式子得到:</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="p(a,b|c)=p(a|c)p(b|c)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mi mathvariant="normal">∣</mi><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mi mathvariant="normal">∣</mi><mi>c</mi><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><mi>b</mi><mi mathvariant="normal">∣</mi><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p(a,b|c)=p(a|c)p(b|c)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mord">∣</span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mord">∣</span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">b</span><span class="mord">∣</span><span class="mord mathdefault">c</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">,即</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="c"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi></mrow><annotation encoding="application/x-tex">c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">c</span></span></span></span></span></span><span class="SemanticString">已知时,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a,b"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a,b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span></span></span></span></span></span><span class="SemanticString">独立。</span></span></li></ul></li></ul></div><div id="https://www.notion.so/ecaa13e15d95426da2e7363891a38836" class="Column" style="width:calc((100% - var(--column-spacing) * 1) * 0.25000000000000006)"><div id="https://www.notion.so/6f9c7d0903fc43119e88d29bfd8b9680" class="Image Image--Normal"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F49d744e8-1759-4598-b6ee-89d8971971dc%2FUntitled.png?width=144&table=block&id=6f9c7d09-03fc-4311-9e88-d29bfd8b9680"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2F49d744e8-1759-4598-b6ee-89d8971971dc%2FUntitled.png?width=144&table=block&id=6f9c7d09-03fc-4311-9e88-d29bfd8b9680" style="width:144px"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div></div></div><div id="https://www.notion.so/a24a888bd12e4be6a07e8be86504dd4c" class="ColumnList"><div id="https://www.notion.so/56e6be29b8a547dd84ecd64ab0fb1549" class="Column" style="width:calc((100% - var(--column-spacing) * 1) * 0.6875)"><ul class="BulletedListWrapper"><li id="https://www.notion.so/c3f8654a53c1440387913246f548f4e2" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString">head-to-tail</span></span><ul class="BulletedListWrapper"><li id="https://www.notion.so/3a262be9a0784ad98c0e2e1a01d0873a" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="c"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi></mrow><annotation encoding="application/x-tex">c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">c</span></span></span></span></span></span><span class="SemanticString">未知时:</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="p(a,b,c)=p(a)p(c|a)p(b|c)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo separator="true">,</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><mi>c</mi><mi mathvariant="normal">∣</mi><mi>a</mi><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><mi>b</mi><mi mathvariant="normal">∣</mi><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p(a,b,c)=p(a)p(c|a)p(b|c)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mord">∣</span><span class="mord mathdefault">a</span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">b</span><span class="mord">∣</span><span class="mord mathdefault">c</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">,此时,无法得出</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="p(a,b)=p(a)p(b)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo stretchy="false">)</mo><mo>=</mo><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p(a,b)=p(a)p(b)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">b</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">,即</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="c"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi></mrow><annotation encoding="application/x-tex">c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">c</span></span></span></span></span></span><span class="SemanticString">未知时,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a,b"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a,b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span></span></span></span></span></span><span class="SemanticString">不独立;</span></span></li><li id="https://www.notion.so/dd43057e727d4b168e0df3ece225c8a8" class="BulletedList"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="c"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi></mrow><annotation encoding="application/x-tex">c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">c</span></span></span></span></span></span><span class="SemanticString">已知时:</span></span><div id="https://www.notion.so/0c06fbc94f154b9682faf1447ac07e9d" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="p(a,b|c)=\frac{p(a,b,c)}{p(c)}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mi mathvariant="normal">∣</mi><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo separator="true">,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow></mfrac></mrow><annotation encoding="application/x-tex">p(a,b|c)=\frac{p(a,b,c)}{p(c)}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mord">∣</span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.53em;vertical-align:-0.52em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.01em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">p</span><span class="mopen mtight">(</span><span class="mord mathdefault mtight">c</span><span class="mclose mtight">)</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">p</span><span class="mopen mtight">(</span><span class="mord mathdefault mtight">a</span><span class="mpunct mtight">,</span><span class="mord mathdefault mtight">b</span><span class="mpunct mtight">,</span><span class="mord mathdefault mtight">c</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.52em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></span><span class="SemanticString">,且根据</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="p(a,c)=p(a)p(c|a)=p(c)p(a|c)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><mi>c</mi><mi mathvariant="normal">∣</mi><mi>a</mi><mo stretchy="false">)</mo><mo>=</mo><mi>p</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mi mathvariant="normal">∣</mi><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p(a,c)=p(a)p(c|a)=p(c)p(a|c)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mord">∣</span><span class="mord mathdefault">a</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mord">∣</span><span class="mord mathdefault">c</span><span class="mclose">)</span></span></span></span></span></span><span class="SemanticString">,可得到:</span></span></p></div><div id="https://www.notion.so/e57b1a9ff41647ca9b28df491967a820" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="p(a,b|c)=\frac{p(a,b,c)}{p(c)}=\frac{p(a)p(c|a)p(b|c)}{p(c)}=\frac{p(a,c)p(b|c)}{p(c)}=p(a|c)p(b|c)"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mi mathvariant="normal">∣</mi><mi>c</mi><mo stretchy="false">)</mo><mo>=</mo><mfrac><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>b</mi><mo separator="true">,</mo><mi>c</mi><mo stretchy="false">)</mo></mrow><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><mi>c</mi><mi mathvariant="normal">∣</mi><mi>a</mi><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><mi>b</mi><mi mathvariant="normal">∣</mi><mi>c</mi><mo stretchy="false">)</mo></mrow><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow></mfrac><mo>=</mo><mfrac><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mo separator="true">,</mo><mi>c</mi><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><mi>b</mi><mi mathvariant="normal">∣</mi><mi>c</mi><mo stretchy="false">)</mo></mrow><mrow><mi>p</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mrow></mfrac><mo>=</mo><mi>p</mi><mo stretchy="false">(</mo><mi>a</mi><mi mathvariant="normal">∣</mi><mi>c</mi><mo stretchy="false">)</mo><mi>p</mi><mo stretchy="false">(</mo><mi>b</mi><mi mathvariant="normal">∣</mi><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">p(a,b|c)=\frac{p(a,b,c)}{p(c)}=\frac{p(a)p(c|a)p(b|c)}{p(c)}=\frac{p(a,c)p(b|c)}{p(c)}=p(a|c)p(b|c)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span><span class="mord">∣</span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.53em;vertical-align:-0.52em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.01em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">p</span><span class="mopen mtight">(</span><span class="mord mathdefault mtight">c</span><span class="mclose mtight">)</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">p</span><span class="mopen mtight">(</span><span class="mord mathdefault mtight">a</span><span class="mpunct mtight">,</span><span class="mord mathdefault mtight">b</span><span class="mpunct mtight">,</span><span class="mord mathdefault mtight">c</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.52em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.53em;vertical-align:-0.52em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.01em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">p</span><span class="mopen mtight">(</span><span class="mord mathdefault mtight">c</span><span class="mclose mtight">)</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">p</span><span class="mopen mtight">(</span><span class="mord mathdefault mtight">a</span><span class="mclose mtight">)</span><span class="mord mathdefault mtight">p</span><span class="mopen mtight">(</span><span class="mord mathdefault mtight">c</span><span class="mord mtight">∣</span><span class="mord mathdefault mtight">a</span><span class="mclose mtight">)</span><span class="mord mathdefault mtight">p</span><span class="mopen mtight">(</span><span class="mord mathdefault mtight">b</span><span class="mord mtight">∣</span><span class="mord mathdefault mtight">c</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.52em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.53em;vertical-align:-0.52em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.01em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">p</span><span class="mopen mtight">(</span><span class="mord mathdefault mtight">c</span><span class="mclose mtight">)</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.485em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">p</span><span class="mopen mtight">(</span><span class="mord mathdefault mtight">a</span><span class="mpunct mtight">,</span><span class="mord mathdefault mtight">c</span><span class="mclose mtight">)</span><span class="mord mathdefault mtight">p</span><span class="mopen mtight">(</span><span class="mord mathdefault mtight">b</span><span class="mord mtight">∣</span><span class="mord mathdefault mtight">c</span><span class="mclose mtight">)</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.52em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">a</span><span class="mord">∣</span><span class="mord mathdefault">c</span><span class="mclose">)</span><span class="mord mathdefault">p</span><span class="mopen">(</span><span class="mord mathdefault">b</span><span class="mord">∣</span><span class="mord mathdefault">c</span><span class="mclose">)</span></span></span></span></span></span></span></p></div><div id="https://www.notion.so/704f68b01b3b4fe4a78fc242a2381be9" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">在</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="c"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>c</mi></mrow><annotation encoding="application/x-tex">c</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathdefault">c</span></span></span></span></span></span><span class="SemanticString">给定的条件下,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="a,b"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mo separator="true">,</mo><mi>b</mi></mrow><annotation encoding="application/x-tex">a,b</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord mathdefault">a</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathdefault">b</span></span></span></span></span></span><span class="SemanticString">被阻断 (blocked) ,是独立的,称之为head-to-tail条件独立。</span></span></p></div></li></ul><div id="https://www.notion.so/f2eb6cf5c67d483280f53fb889edba10" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">head-to-tail是一个链式网络,在</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x_i"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">x_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">给定的条件下,</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x_{i+1}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">x_{i+1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.638891em;vertical-align:-0.208331em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">的分布和</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x_1,x_2,\dots,x_{i-1}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>x</mi><mn>2</mn></msub><mo separator="true">,</mo><mo>…</mo><mo separator="true">,</mo><msub><mi>x</mi><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">x_1,x_2,\dots,x_{i-1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.638891em;vertical-align:-0.208331em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="minner">…</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">条件独立。</span></span></p></div><div id="https://www.notion.so/d23c98623b9f4fcd8d1d8d14980d7b86" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x_{i+1}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">x_{i+1}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.638891em;vertical-align:-0.208331em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">i</span><span class="mbin mtight">+</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">的分布状态只和</span><span class="SemanticString"><span class="SemanticString__Fragment SemanticString__Fragment--Math" data-latex="x_i"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>x</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">x_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathdefault">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="SemanticString">有关,和其他变量条件独立。</span></span></p></div><div id="https://www.notion.so/f6ec9754821145fd80efa75b87d9c379" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"><span class="SemanticString">当前状态只跟上一状态有关,跟上上或上上之前的状态无关——</span><span class="SemanticString"><strong class="SemanticString__Fragment SemanticString__Fragment--Bold">马尔科夫链</strong></span><span class="SemanticString"> (Markov chain)</span></span></p></div></li></ul></div><div id="https://www.notion.so/26c1bbe7f5f24d189b52ca4ca3e86fd8" class="Column" style="width:calc((100% - var(--column-spacing) * 1) * 0.31250000000000006)"><div id="https://www.notion.so/4ec9599568d84cd0bacdc1d9cbe24e0c" class="Image Image--Normal"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fad1df774-5249-4649-8173-b0f52507b6bd%2FUntitled.png?width=192&table=block&id=4ec95995-68d8-4cd0-bacd-c1d9cbe24e0c"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fad1df774-5249-4649-8173-b0f52507b6bd%2FUntitled.png?width=192&table=block&id=4ec95995-68d8-4cd0-bacd-c1d9cbe24e0c" style="width:192px"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div><div id="https://www.notion.so/aeabf815e450432789984ddcdb280de2" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"></span></p></div><div id="https://www.notion.so/cad63ba2ad4e480ea7081e5adceff71c" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"></span></p></div><div id="https://www.notion.so/da9e28cceff742a4961c8ec0dc6c6f59" class="Image Image--Normal"><figure><a href="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fbaee29f5-7261-437b-be7a-3c48f61ad7ef%2FUntitled.png?width=336&table=block&id=da9e28cc-eff7-42a4-961c-8ec0dc6c6f59"><img src="https://www.notion.so/signed/https%3A%2F%2Fs3-us-west-2.amazonaws.com%2Fsecure.notion-static.com%2Fbaee29f5-7261-437b-be7a-3c48f61ad7ef%2FUntitled.png?width=336&table=block&id=da9e28cc-eff7-42a4-961c-8ec0dc6c6f59" style="width:336px"/></a><figcaption><span class="SemanticStringArray"></span></figcaption></figure></div><div id="https://www.notion.so/83e90941466343fca385fdfbf6391a0e" class="ColorfulBlock ColorfulBlock--ColorDefault Text"><p class="Text__Content"><span class="SemanticStringArray"></span></p></div></div></div></article>
<footer class="Footer">
<div>© Patrick’s Blog 2024</div>
<div>·</div>
<div>Powered by <a href="https://github.com/dragonman225/notablog" target="_blank"
rel="noopener noreferrer">Notablog</a>.
</div>
</footer>
</body>
</html>