Skip to content

PatrickBuhagiar/Person-Identification

Repository files navigation

GUIDE

  1. To train, run the function TrainHog()

eg. TrainHOG('parameters.txt', 'data', 'weights.txt');

  1. To predict one image run the function PredictHOG()

eg. PredictHOG('weghits.txt', 'data/test/neg_6370', 'parameters.txt');

3)Extra: to predict multiple images in a folder, run Predict

eg. Predict('weights.txt', 'data', 'parameters.txt');

IDEAL SET UP

1)positive images: \data\pos\

2)negative images: \data\neg\

3)testing images: \data\test\

PARAMETERS FILE

1 Image Resize Height 2 Image Resize Length 3 Cell Size 1 4 Cell Size 2 5 Number of Bins 6 Block Size 1 7 Block Size 2 8 Overlap 1 9 Overlap 2 10 Feature Vector Size (not used by default) 11 Learning Rate

must be comma separated values

e.g.: 128, 64, 9, 9, 16, 5, 5, 3, 3, 10000, 0.04

result.txt format:

Negative score, Positive score

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages