-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathchem_scatter.py
executable file
·102 lines (92 loc) · 3.03 KB
/
chem_scatter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#!/usr/bin/env python
import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import plotly.graph_objs as go
from dash.dependencies import Input, Output
from rdkit import Chem
from rdkit.Chem.Draw import MolsToGridImage
import base64
from io import BytesIO
df = pd.read_csv("tsne.csv")
active = df.query("is_active == 1")
decoy = df.query("is_active == 0")
graph_component = dcc.Graph(
id='tsne',
config={'displayModeBar': False},
figure={
'data': [
go.Scattergl(
x=decoy.X,
y=decoy.Y,
mode='markers',
opacity=0.7,
marker={
'size': 5,
'color': 'orange',
'line': {'width': 0.5, 'color': 'white'}
},
name="Decoy"
),
go.Scattergl(
x=active.X,
y=active.Y,
mode='markers',
opacity=0.7,
marker={
'size': 10,
'color': 'blue',
'line': {'width': 0.5, 'color': 'white'}
},
name="Active"
)
],
'layout': go.Layout(
height=400,
xaxis={'title': 'X'},
yaxis={'title': 'Y'},
margin={'l': 40, 'b': 40, 't': 10, 'r': 10},
legend={'x': 1, 'y': 1},
hovermode=False,
dragmode='select'
)
}
)
image_component = html.Img(id="structure-image")
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
app.layout = html.Div([
html.Div([graph_component]),
html.Div([image_component])
])
@app.callback(
Output('structure-image', 'src'),
[Input('tsne', 'selectedData')])
def display_selected_data(selectedData):
max_structs = 12
structs_per_row = 6
empty_plot = ""
if selectedData:
if len(selectedData['points']) == 0:
return empty_plot
match_idx = [x['pointIndex'] for x in selectedData['points']]
match_df = df.iloc[match_idx]
smiles_list = list(match_df.SMILES)
name_list = list(match_df.Name)
active_list = list(df.is_active)
mol_list = [Chem.MolFromSmiles(x) for x in smiles_list]
name_list = [x + " " + str(y) for (x, y) in zip(name_list, active_list)]
img = MolsToGridImage(mol_list[0:max_structs], molsPerRow=structs_per_row, legends=name_list)
buffered = BytesIO()
img.save(buffered, format="JPEG")
encoded_image = base64.b64encode(buffered.getvalue())
src_str = 'data:image/png;base64,{}'.format(encoded_image.decode())
else:
return empty_plot
return src_str
if __name__ == '__main__':
import socket
hostname = socket.gethostname()
IPAddr = socket.gethostbyname(hostname)
app.run_server(debug=True,host=IPAddr)