forked from daquang/PillowNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
315 lines (280 loc) · 11.4 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#!/usr/bin/env python
"""
Script for evaluating predictions.
Use `test.py -h` to see an auto-generated description of advanced options.
"""
import argparse
from sklearn.metrics import roc_curve, precision_recall_curve, auc, mean_squared_error
from scipy.stats import pearsonr, spearmanr
import numpy as np
from tqdm import tqdm, trange
from genomeloader.wrapper import BedWrapper, BigWigWrapper
def get_args():
parser = argparse.ArgumentParser(description="Evaluating predictions.",
epilog='\n'.join(__doc__.strip().split('\n')[1:]).strip(),
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('-p', '--predictions', required=True,
help='BigWig of predictions.', type=str)
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument('-l', '--labels', required=False,
help='BigWig of ground truth labels.', type=str)
group.add_argument('-b', '--bed', required=False,
help='BED of ground truth intervals.', type=str)
parser.add_argument('-t', '--testbed', required=False,
help='BED of intervals to perform evaluation on.', type=str)
parser.add_argument('-bl', '--blacklist', required=False,
default=None,
help='Blacklist BED file.', type=str)
parser.add_argument('-ac', '--aggregatechromosomes', action='store_true', default=False,
help='If no test BED provided, evaluate as an aggregate across all test chromosomes. Will '
'consume more memory (default: evaluate at a per-chromosome level).')
group = parser.add_mutually_exclusive_group(required=False)
group.add_argument('-c', '--chroms', type=str, nargs='+',
default=['chr1', 'chr8', 'chr21'],
help='Chromosome(s) to evaluate on.')
group.add_argument('-wg', '--wholegenome', action='store_true', default=False,
help='Evaluate on the whole genome.')
group.add_argument('-ax', '--autox', action='store_true', default=False,
help='Evaluate on autosomes and X chromosome.')
args = parser.parse_args()
return args
def main():
args = get_args()
bigwig_file = args.predictions
labels_bigwig_file = args.labels
bed_file = args.bed
aggregate = args.aggregatechromosomes
if args.labels is None and args.bed is None:
raise ValueError('You must supply ground truth BED or bigWig file')
# Load blacklist file
blacklist_file = args.blacklist
blacklist = None if blacklist_file is None else BedWrapper(blacklist_file)
# Load bigwig of predictions
bw = BigWigWrapper(bigwig_file)
if args.wholegenome:
chroms = bw.chroms()
elif args.autox:
chroms = ['chr1', 'chr10', 'chr11', 'chr12', 'chr13', 'chr14', 'chr15', 'chr16', 'chr17', 'chr18', 'chr19',
'chr2', 'chr20', 'chr21', 'chr22', 'chr3', 'chr4', 'chr5', 'chr6', 'chr7', 'chr8', 'chr9', 'chrX']
else:
chroms = args.chroms
test_over_intervals = False
if args.testbed is not None:
bed_test = BedWrapper(args.testbed)
_, _, bed_test = bed_test.train_valid_test_split(valid_chroms=[], test_chroms=chroms)
test_over_intervals = True
if labels_bigwig_file is not None:
# Load bigWig of ground truth labels
labels_bw = BigWigWrapper(labels_bigwig_file)
if test_over_intervals:
test_regression_over_intervals(bed_test, labels_bw, bw, blacklist)
else:
test_regression(chroms, labels_bw, bw, blacklist, aggregate)
else:
# Load BED file of ground truth intervals
bed = BedWrapper(bed_file)
if test_over_intervals:
test_classification_over_intervals(bed_test, bed, bw, blacklist)
else:
test_classification(chroms, bed, bw, blacklist, aggregate)
def test_regression_over_intervals(bed_test, labels_bw, bw, blacklist):
y_true = []
y_pred = []
pbar = trange(len(bed_test))
for i in pbar:
interval = bed_test.df.iloc[i]
chrom = interval.chrom
chromStart = interval.chromStart
chromEnd = interval.chromEnd
predictions = bw[chrom, chromStart:chromEnd]
labels = labels_bw[chrom, chromStart:chromEnd]
if blacklist is not None:
values_blacklist = ~ blacklist[chrom, chromStart:chromEnd]
predictions = predictions[values_blacklist]
labels = labels[values_blacklist]
y_true.append(labels)
y_pred.append(predictions)
y_true = np.concatenate(y_true)
y_pred = np.concatenate(y_pred)
mse = mean_squared_error(y_true, y_pred)
pearson, pearson_p = pearsonr(y_pred, y_true)
spearman, spearman_p = spearmanr(y_pred, y_true)
print('MSE:', mse)
print('Pearson R:', pearson)
print('Spearman R:', spearman)
def test_regression(chroms, labels_bw, bw, blacklist, aggregate):
chroms_size = bw.chroms_size()
mses = []
pearsons = []
spearmans = []
y_true = []
y_pred = []
pbar = tqdm(chroms)
for chrom in pbar:
pbar.set_description('Processing %s' % chrom)
chrom_size = chroms_size[chrom]
chrom_predictions = bw[chrom]
chrom_labels = labels_bw[chrom, 0:chrom_size]
if blacklist is not None:
chrom_blacklist = ~ blacklist[chrom, 0:chrom_size]
chrom_predictions = chrom_predictions[chrom_blacklist]
chrom_labels = chrom_labels[chrom_blacklist]
mse = mean_squared_error(chrom_labels, chrom_predictions)
pearson, pearson_p = pearsonr(chrom_predictions, chrom_labels)
spearman, spearman_p = spearmanr(chrom_predictions, chrom_labels)
mses.append(mse)
pearsons.append(pearson)
spearmans.append(spearman)
if aggregate:
y_true.append(chrom_labels)
y_pred.append(chrom_predictions)
if aggregate:
y_true = np.concatenate(y_true)
y_pred = np.concatenate(y_pred)
mse_mean = mean_squared_error(y_true, y_pred)
pearson_mean, pearson_p_mean = pearsonr(y_pred, y_true)
spearman_mean, spearman_p_mean = spearmanr(y_pred, y_true)
else:
mse_mean = np.mean(mses)
pearson_mean = np.mean(pearsons)
spearman_mean = np.mean(spearmans)
print('Chromosomes:', chroms)
print('MSEs:', mses)
print('MSE (chromosome average):', mse_mean)
print('Pearson Rs:', pearsons)
print('Pearson R (chromosome average):', pearson_mean)
print('Spearman Rs:', spearmans)
print('Spearman R (chromosome average):', spearman_mean)
def dice_coef(y_true, y_pred):
intersect = np.sum(y_true * y_pred)
denom = np.sum(y_true + y_pred)
return np.mean(2. * intersect / denom)
def test_classification_over_intervals(bed_test, bed, bw, blacklist):
y_true = []
y_pred = []
pbar = trange(len(bed_test))
for i in pbar:
interval = bed_test.df.iloc[i]
chrom = interval.chrom
chromStart = interval.chromStart
chromEnd = interval.chromEnd
predictions = bw[chrom, chromStart:chromEnd]
labels = bed[chrom, chromStart:chromEnd]
if blacklist is not None:
values_blacklist = ~ blacklist[chrom, chromStart:chromEnd]
predictions = predictions[values_blacklist]
labels = labels[values_blacklist]
y_true.append(labels)
y_pred.append(predictions)
y_true = np.concatenate(y_true)
y_pred = np.concatenate(y_pred)
frac = 1.0 * y_true.sum() / len(y_true)
fpr, tpr, _ = roc_curve(y_true, y_pred)
auroc = auc(fpr, tpr)
precision, recall, _ = precision_recall_curve(y_true, y_pred)
aupr = auc(recall, precision)
dice = dice_coef(y_true, y_pred)
bw.close()
jaccard = dice(2 - dice)
print('Positive fraction:', frac)
print('Dice coefficient:', dice)
print('Jaccard index:', jaccard)
print('auROC:', auroc)
print('auPR:', aupr)
"""
pylab.subplot(121)
pylab.plot(fpr, tpr, label=chrom + ' (auROC=%0.2f)' % auroc)
pylab.plot([0, 1], [0, 1], 'k--', label='Random')
pylab.legend(loc='lower right')
pylab.xlabel('FPR')
pylab.ylabel('TPR')
pylab.subplot(122)
pylab.plot(recall, precision, label=chrom + ' (auPR=%0.2f)' % aupr)
pylab.legend(loc='upper right')
pylab.xlabel('Recall')
pylab.ylabel('Precision')
pylab.show()
"""
def test_classification(chroms, bed, bw, blacklist, aggregate):
chroms_size = bw.chroms_size()
fracs = []
aurocs = []
fprs = []
tprs = []
precisions = []
recalls = []
auprs = []
dices = []
y_true = []
y_pred = []
pbar = tqdm(chroms)
for chrom in pbar:
pbar.set_description('Processing %s' % chrom)
chrom_size = chroms_size[chrom]
chrom_predictions = bw[chrom]
chrom_labels = bed[chrom, 0:chrom_size]
if blacklist is not None:
chrom_blacklist = ~ blacklist[chrom, 0:chrom_size]
chrom_predictions = chrom_predictions[chrom_blacklist]
chrom_labels = chrom_labels[chrom_blacklist]
frac = 1.0 * chrom_labels.sum() / len(chrom_labels)
fracs.append(frac)
fpr, tpr, _ = roc_curve(chrom_labels, chrom_predictions)
auroc = auc(fpr, tpr)
aurocs.append(auroc)
fprs.append(fpr)
tprs.append(tpr)
precision, recall, _ = precision_recall_curve(chrom_labels, chrom_predictions)
precisions.append(precision)
recalls.append(recall)
aupr = auc(recall, precision)
auprs.append(aupr)
dice = dice_coef(chrom_labels, chrom_predictions)
dices.append(dice)
if aggregate:
y_true.append(chrom_labels)
y_pred.append(chrom_predictions)
jaccards = [s / (2 - s) for s in dices]
if aggregate:
y_true = np.concatenate(y_true)
y_pred = np.concatenate(y_pred)
dice_mean = dice_coef(y_true, y_pred)
jaccard_mean = dice_mean / (2 - dice_mean)
fpr_mean, tpr_mean, _ = roc_curve(y_true, y_pred)
precision_mean, recall_mean, _ = precision_recall_curve(y_true, y_pred)
auroc_mean = auc(fpr_mean, tpr_mean)
aupr_mean = auc(recall_mean, precision_mean)
else:
dice_mean = np.mean(dices)
jaccard_mean = np.mean(jaccards)
auroc_mean = np.mean(aurocs)
aupr_mean = np.mean(auprs)
bw.close()
print('Chromosomes:', chroms)
print('Positive fractions:', fracs)
print('Dice coefficients:', dices)
print('Dice coefficient (chromosome average):', dice_mean)
print('Jaccard indexes:', jaccards)
print('Jaccard index (chromosome average):', jaccard_mean)
print('auROCs:', aurocs)
print('auROC (chromosome average):', auroc_mean)
print('auPRs:', auprs)
print('auPR (chromosome average):', aupr_mean)
"""
pylab.subplot(121)
for i, chrom in enumerate(chroms):
pylab.plot(fprs[i], tprs[i], label=chrom + ' (auROC=%0.2f)' % aurocs[i])
pylab.plot([0, 1], [0, 1], 'k--', label='Random')
pylab.legend(loc='lower right')
pylab.xlabel('FPR')
pylab.ylabel('TPR')
pylab.subplot(122)
for i, chrom in enumerate(chroms):
pylab.plot(recalls[i], precisions[i], label=chrom + ' (auPR=%0.2f)' % auprs[i])
pylab.legend(loc='upper right')
pylab.xlabel('Recall')
pylab.ylabel('Precision')
pylab.show()
"""
if __name__ == '__main__':
main()