forked from Lightning-AI/torchmetrics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpyproject.toml
117 lines (112 loc) · 4.07 KB
/
pyproject.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
[build-system]
requires = [
"setuptools",
"wheel",
]
[tool.black]
# https://github.com/psf/black
line-length = 120
exclude = "(.eggs|.git|.hg|.mypy_cache|.venv|_build|buck-out|build|dist)"
[tool.isort]
known_first_party = [
"torchmetrics",
"integrations",
"unittests",
"integrations",
]
skip_glob = []
profile = "black"
line_length = 120
[tool.autopep8]
ignore = ["E731"]
[tool.mypy]
files = [
"src/torchmetrics",
]
install_types = "True"
non_interactive = "True"
disallow_untyped_defs = "True"
ignore_missing_imports = "True"
show_error_codes = "True"
warn_redundant_casts = "True"
warn_unused_configs = "True"
warn_unused_ignores = "True"
allow_redefinition = "True"
# disable this rule as the Trainer attributes are defined in the connectors, not in its __init__
disable_error_code = "attr-defined"
# style choices
warn_no_return = "False"
# Ignore mypy errors for these files
# TODO: the goal is for this to be empty
[[tool.mypy.overrides]]
# the list can be generated with:
# mypy --no-error-summary 2>&1 | tr ':' ' ' | awk '{print $1}' | sort | uniq | sed 's/\.py//g; s|src/||g; s|\/|\.|g' | xargs -I {} echo '"{}",'
module = [
"torchmetrics.aggregation",
"torchmetrics.classification.accuracy",
"torchmetrics.classification.auroc",
"torchmetrics.classification.average_precision",
"torchmetrics.classification.binned_precision_recall",
"torchmetrics.classification.calibration_error",
"torchmetrics.classification.cohen_kappa",
"torchmetrics.classification.confusion_matrix",
"torchmetrics.classification.exact_match",
"torchmetrics.classification.f_beta",
"torchmetrics.classification.hamming",
"torchmetrics.classification.hinge",
"torchmetrics.classification.jaccard",
"torchmetrics.classification.matthews_corrcoef",
"torchmetrics.classification.precision_recall_curve",
"torchmetrics.classification.precision_recall",
"torchmetrics.classification.ranking",
"torchmetrics.classification.recall_at_fixed_precision",
"torchmetrics.classification.roc",
"torchmetrics.classification.specificity",
"torchmetrics.classification.stat_scores",
"torchmetrics.collections",
"torchmetrics.detection.mean_ap",
"torchmetrics.functional.audio.pit",
"torchmetrics.functional.classification.auroc",
"torchmetrics.functional.classification.average_precision",
"torchmetrics.functional.classification.calibration_error",
"torchmetrics.functional.classification.confusion_matrix",
"torchmetrics.functional.classification.f_beta",
"torchmetrics.functional.classification.precision_recall_curve",
"torchmetrics.functional.classification.ranking",
"torchmetrics.functional.classification.recall_at_fixed_precision",
"torchmetrics.functional.classification.roc",
"torchmetrics.functional.classification.stat_scores",
"torchmetrics.functional.image.helper",
"torchmetrics.functional.image.psnr",
"torchmetrics.functional.image.ssim",
"torchmetrics.functional.image.uqi",
"torchmetrics.functional.regression.cosine_similarity",
"torchmetrics.functional.regression.explained_variance",
"torchmetrics.functional.regression.kl_divergence",
"torchmetrics.functional.regression.r2",
"torchmetrics.functional.regression.wmape",
"torchmetrics.functional.retrieval.r_precision",
"torchmetrics.functional.text.squad",
"torchmetrics.image.fid",
"torchmetrics.image.inception",
"torchmetrics.image.lpip",
"torchmetrics.image.psnr",
"torchmetrics.image.ssim",
"torchmetrics.image.tv",
"torchmetrics.image.uqi",
"torchmetrics.metric",
"torchmetrics.regression.kl_divergence",
"torchmetrics.regression.log_mse",
"torchmetrics.regression.mae",
"torchmetrics.regression.mape",
"torchmetrics.regression.mse",
"torchmetrics.regression.symmetric_mape",
"torchmetrics.retrieval.precision_recall_curve",
"torchmetrics.text.cer",
"torchmetrics.text.mer",
"torchmetrics.text.wer",
"torchmetrics.utilities.checks",
"torchmetrics.utilities.data",
"torchmetrics.wrappers.tracker",
]
ignore_errors = "True"