-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathfcosr.py
124 lines (111 loc) · 3.7 KB
/
fcosr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#!/usr/bin/env python
# 旋转目标检测模型FCOSR训练示例脚本
# 执行此脚本前,请确认已正确安装PaddleRS库
import paddlers as pdrs
from paddlers import transforms as T
# 数据集存放目录
DATA_DIR = "./data/dota/"
# 数据集标签文件路径
ANNO_PATH = "trainval1024/DOTA_trainval1024.json"
# 数据集图像目录
IMAGE_DIR = "trainval1024/images"
# 实验目录,保存输出的模型权重和结果
EXP_DIR = "./output/fcosr/"
IMAGE_SIZE = [1024, 1024]
# 下载和解压SAR影像舰船检测数据集
pdrs.utils.download_and_decompress(
"https://paddlers.bj.bcebos.com/datasets/dota.zip", path="./data/")
# 对于旋转目标检测任务,需要安装自定义外部算子库,安装方式如下:
# cd paddlers/models/ppdet/ext_op
# python setup.py install
# 定义训练和验证时使用的数据变换(数据增强、预处理等)
# 使用Compose组合多种变换方式。Compose中包含的变换将按顺序串行执行
# API说明:https://github.com/PaddlePaddle/PaddleRS/blob/develop/docs/apis/data.md
train_transforms = [
# 读取影像
T.DecodeImg(),
# 将标签转换为numpy array
T.Poly2Array(),
# 随机水平翻转
T.RandomRFlip(),
# 随机旋转
T.RandomRRotate(
angle_mode='value', angle=[0, 90, 180, -90]),
# 随机旋转
T.RandomRRotate(
angle_mode='value', angle=[30, 60], rotate_prob=0.5),
# 随机缩放图片
T.RResize(
target_size=IMAGE_SIZE, keep_ratio=True, interp=2),
# 将标签转换为rotated box的格式
T.Poly2RBox(
filter_threshold=2, filter_mode='edge', rbox_type="oc"),
]
train_batch_transforms = [
# 归一化图像
T.BatchNormalizeImage(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
eval_transforms = [
T.DecodeImg(),
# 将标签转换为numpy array
T.Poly2Array(),
# 随机缩放图片
T.RResize(
target_size=IMAGE_SIZE, keep_ratio=True, interp=2),
# 归一化图像
T.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
# 分别构建训练和验证所用的数据集
train_dataset = pdrs.datasets.COCODetDataset(
data_dir=DATA_DIR,
image_dir=IMAGE_DIR,
anno_path=ANNO_PATH,
transforms=train_transforms,
batch_transforms=train_batch_transforms,
shuffle=True)
eval_dataset = pdrs.datasets.COCODetDataset(
data_dir=DATA_DIR,
image_dir=IMAGE_DIR,
anno_path=ANNO_PATH,
transforms=eval_transforms,
shuffle=False)
# 构建FCOSR模型
# 目前已支持的模型请参考:https://github.com/PaddlePaddle/PaddleRS/blob/develop/docs/intro/model_zoo.md
model = pdrs.tasks.det.FCOSR(
backbone="ResNeXt50_32x4d",
num_classes=15,
nms_score_threshold=0.1,
nms_topk=2000,
nms_keep_topk=-1,
nms_normalized=False,
nms_iou_threshold=0.1)
# 执行模型训练
model.train(
num_epochs=36,
train_dataset=train_dataset,
train_batch_size=4,
eval_dataset=eval_dataset,
# 每多少个epoch存储一次检查点
save_interval_epochs=5,
# 每多少次迭代记录一次日志
log_interval_steps=4,
metric='rbox',
save_dir=EXP_DIR,
# 初始学习率大小,请根据此公式适当调整learning_rate:(train_batch_size * gpu_nums) / (4 * 4) * 0.01
learning_rate=0.01,
# 学习率预热(learning rate warm-up)步数
warmup_steps=50,
# 初始学习率大小
warmup_start_lr=0.03333333 * 0.01,
# 学习率衰减的epoch节点
lr_decay_epochs=[24, 33],
# 学习率衰减的参数
lr_decay_gamma=0.1,
# 梯度裁剪策略的参数
clip_grad_by_norm=35.,
# 指定预训练权重
pretrain_weights="IMAGENET",
# 是否启用VisualDL日志功能
use_vdl=True)