-
Notifications
You must be signed in to change notification settings - Fork 820
/
train.py
executable file
·264 lines (217 loc) · 9.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from parl.utils import check_version_for_fluid # requires parl >= 1.4.1
check_version_for_fluid()
import gym
import numpy as np
import os
from six.moves import queue
import time
import threading
import parl
from atari_model import AtariModel
from atari_agent import AtariAgent
from parl.env.atari_wrappers import wrap_deepmind
from parl.utils import logger, summary, get_gpu_count
from parl.utils.scheduler import PiecewiseScheduler
from parl.utils.time_stat import TimeStat
from parl.utils.window_stat import WindowStat
from parl.utils import machine_info
from actor import Actor
class Learner(object):
def __init__(self, config):
self.config = config
self.sample_data_queue = queue.Queue(
maxsize=config['sample_queue_max_size'])
#=========== Create Agent ==========
env = gym.make(config['env_name'])
env = wrap_deepmind(env, dim=config['env_dim'], obs_format='NCHW')
obs_shape = env.observation_space.shape
act_dim = env.action_space.n
model = AtariModel(act_dim)
algorithm = parl.algorithms.IMPALA(
model,
sample_batch_steps=self.config['sample_batch_steps'],
gamma=self.config['gamma'],
vf_loss_coeff=self.config['vf_loss_coeff'],
clip_rho_threshold=self.config['clip_rho_threshold'],
clip_pg_rho_threshold=self.config['clip_pg_rho_threshold'])
self.agent = AtariAgent(algorithm, obs_shape, act_dim,
self.learn_data_provider)
if machine_info.is_gpu_available():
assert get_gpu_count() == 1, 'Only support training in single GPU,\
Please set environment variable: `export CUDA_VISIBLE_DEVICES=[GPU_ID_TO_USE]` .'
self.cache_params = self.agent.get_weights()
self.params_lock = threading.Lock()
self.params_updated = False
self.cache_params_sent_cnt = 0
self.total_params_sync = 0
#========== Learner ==========
self.lr, self.entropy_coeff = None, None
self.lr_scheduler = PiecewiseScheduler(config['lr_scheduler'])
self.entropy_coeff_scheduler = PiecewiseScheduler(
config['entropy_coeff_scheduler'])
self.total_loss_stat = WindowStat(100)
self.pi_loss_stat = WindowStat(100)
self.vf_loss_stat = WindowStat(100)
self.entropy_stat = WindowStat(100)
self.kl_stat = WindowStat(100)
self.learn_time_stat = TimeStat(100)
self.start_time = None
self.learn_thread = threading.Thread(target=self.run_learn)
self.learn_thread.setDaemon(True)
self.learn_thread.start()
#========== Remote Actor ===========
self.remote_count = 0
self.batch_buffer = []
self.remote_metrics_queue = queue.Queue()
self.sample_total_steps = 0
self.create_actors()
def learn_data_provider(self):
""" Data generator for fluid.layers.py_reader
"""
while True:
sample_data = self.sample_data_queue.get()
self.sample_total_steps += sample_data['obs'].shape[0]
self.batch_buffer.append(sample_data)
buffer_size = sum(
[data['obs'].shape[0] for data in self.batch_buffer])
if buffer_size >= self.config['train_batch_size']:
batch = {}
for key in self.batch_buffer[0].keys():
batch[key] = np.concatenate(
[data[key] for data in self.batch_buffer])
self.batch_buffer = []
obs_np = batch['obs'].astype('float32')
actions_np = batch['actions'].astype('int64')
behaviour_logits_np = batch['behaviour_logits'].astype(
'float32')
rewards_np = batch['rewards'].astype('float32')
dones_np = batch['dones'].astype('float32')
self.lr = self.lr_scheduler.step()
self.entropy_coeff = self.entropy_coeff_scheduler.step()
yield [
obs_np, actions_np, behaviour_logits_np, rewards_np,
dones_np,
np.float32(self.lr),
np.array([self.entropy_coeff], dtype='float32')
]
def run_learn(self):
""" Learn loop
"""
while True:
with self.learn_time_stat:
total_loss, pi_loss, vf_loss, entropy, kl = self.agent.learn()
self.params_updated = True
self.total_loss_stat.add(total_loss)
self.pi_loss_stat.add(pi_loss)
self.vf_loss_stat.add(vf_loss)
self.entropy_stat.add(entropy)
self.kl_stat.add(kl)
def create_actors(self):
""" Connect to the cluster and start sampling of the remote actor.
"""
parl.connect(self.config['master_address'])
logger.info('Waiting for {} remote actors to connect.'.format(
self.config['actor_num']))
for i in range(self.config['actor_num']):
self.remote_count += 1
logger.info('Remote actor count: {}'.format(self.remote_count))
if self.start_time is None:
self.start_time = time.time()
remote_thread = threading.Thread(target=self.run_remote_sample)
remote_thread.setDaemon(True)
remote_thread.start()
def run_remote_sample(self):
""" Sample data from remote actor and update parameters of remote actor.
"""
remote_actor = Actor(self.config)
cnt = 0
remote_actor.set_weights(self.cache_params)
while True:
batch = remote_actor.sample()
self.sample_data_queue.put(batch)
cnt += 1
if cnt % self.config['get_remote_metrics_interval'] == 0:
metrics = remote_actor.get_metrics()
if metrics:
self.remote_metrics_queue.put(metrics)
self.params_lock.acquire()
if self.params_updated and self.cache_params_sent_cnt >= self.config[
'params_broadcast_interval']:
self.params_updated = False
self.cache_params = self.agent.get_weights()
self.cache_params_sent_cnt = 0
self.cache_params_sent_cnt += 1
self.total_params_sync += 1
self.params_lock.release()
remote_actor.set_weights(self.cache_params)
def log_metrics(self):
""" Log metrics of learner and actors
"""
if self.start_time is None:
return
metrics = []
while True:
try:
metric = self.remote_metrics_queue.get_nowait()
metrics.append(metric)
except queue.Empty:
break
episode_rewards, episode_steps = [], []
for x in metrics:
episode_rewards.extend(x['episode_rewards'])
episode_steps.extend(x['episode_steps'])
max_episode_rewards, mean_episode_rewards, min_episode_rewards, \
max_episode_steps, mean_episode_steps, min_episode_steps =\
None, None, None, None, None, None
if episode_rewards:
mean_episode_rewards = np.mean(np.array(episode_rewards).flatten())
max_episode_rewards = np.max(np.array(episode_rewards).flatten())
min_episode_rewards = np.min(np.array(episode_rewards).flatten())
mean_episode_steps = np.mean(np.array(episode_steps).flatten())
max_episode_steps = np.max(np.array(episode_steps).flatten())
min_episode_steps = np.min(np.array(episode_steps).flatten())
metric = {
'sample_steps': self.sample_total_steps,
'max_episode_rewards': max_episode_rewards,
'mean_episode_rewards': mean_episode_rewards,
'min_episode_rewards': min_episode_rewards,
'max_episode_steps': max_episode_steps,
'mean_episode_steps': mean_episode_steps,
'min_episode_steps': min_episode_steps,
'sample_queue_size': self.sample_data_queue.qsize(),
'total_params_sync': self.total_params_sync,
'cache_params_sent_cnt': self.cache_params_sent_cnt,
'total_loss': self.total_loss_stat.mean,
'pi_loss': self.pi_loss_stat.mean,
'vf_loss': self.vf_loss_stat.mean,
'entropy': self.entropy_stat.mean,
'kl': self.kl_stat.mean,
'learn_time_s': self.learn_time_stat.mean,
'elapsed_time_s': int(time.time() - self.start_time),
'lr': self.lr,
'entropy_coeff': self.entropy_coeff,
}
for key, value in metric.items():
if value is not None:
summary.add_scalar(key, value, self.sample_total_steps)
logger.info(metric)
if __name__ == '__main__':
from impala_config import config
learner = Learner(config)
assert config['log_metrics_interval_s'] > 0
while True:
time.sleep(config['log_metrics_interval_s'])
learner.log_metrics()