forked from MIC-DKFZ/nnUNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Task075_Fluo_C3DH_A549_ManAndSim.py
137 lines (118 loc) · 5.48 KB
/
Task075_Fluo_C3DH_A549_ManAndSim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from multiprocessing import Pool
import SimpleITK as sitk
import numpy as np
from batchgenerators.utilities.file_and_folder_operations import *
from nnunet.paths import nnUNet_raw_data
from nnunet.paths import preprocessing_output_dir
from skimage.io import imread
def load_tiff_convert_to_nifti(img_file, lab_file, img_out_base, anno_out, spacing):
img = imread(img_file)
img_itk = sitk.GetImageFromArray(img.astype(np.float32))
img_itk.SetSpacing(np.array(spacing)[::-1])
sitk.WriteImage(img_itk, join(img_out_base + "_0000.nii.gz"))
if lab_file is not None:
l = imread(lab_file)
l[l > 0] = 1
l_itk = sitk.GetImageFromArray(l.astype(np.uint8))
l_itk.SetSpacing(np.array(spacing)[::-1])
sitk.WriteImage(l_itk, anno_out)
def prepare_task(base, task_id, task_name, spacing):
p = Pool(16)
foldername = "Task%03.0d_%s" % (task_id, task_name)
out_base = join(nnUNet_raw_data, foldername)
imagestr = join(out_base, "imagesTr")
imagests = join(out_base, "imagesTs")
labelstr = join(out_base, "labelsTr")
maybe_mkdir_p(imagestr)
maybe_mkdir_p(imagests)
maybe_mkdir_p(labelstr)
train_patient_names = []
test_patient_names = []
res = []
for train_sequence in [i for i in subfolders(base + "_train", join=False) if not i.endswith("_GT")]:
train_cases = subfiles(join(base + '_train', train_sequence), suffix=".tif", join=False)
for t in train_cases:
casename = train_sequence + "_" + t[:-4]
img_file = join(base + '_train', train_sequence, t)
lab_file = join(base + '_train', train_sequence + "_GT", "SEG", "man_seg" + t[1:])
if not isfile(lab_file):
continue
img_out_base = join(imagestr, casename)
anno_out = join(labelstr, casename + ".nii.gz")
res.append(
p.starmap_async(load_tiff_convert_to_nifti, ((img_file, lab_file, img_out_base, anno_out, spacing),)))
train_patient_names.append(casename)
for test_sequence in [i for i in subfolders(base + "_test", join=False) if not i.endswith("_GT")]:
test_cases = subfiles(join(base + '_test', test_sequence), suffix=".tif", join=False)
for t in test_cases:
casename = test_sequence + "_" + t[:-4]
img_file = join(base + '_test', test_sequence, t)
lab_file = None
img_out_base = join(imagests, casename)
anno_out = None
res.append(
p.starmap_async(load_tiff_convert_to_nifti, ((img_file, lab_file, img_out_base, anno_out, spacing),)))
test_patient_names.append(casename)
_ = [i.get() for i in res]
json_dict = {}
json_dict['name'] = task_name
json_dict['description'] = ""
json_dict['tensorImageSize'] = "4D"
json_dict['reference'] = ""
json_dict['licence'] = ""
json_dict['release'] = "0.0"
json_dict['modality'] = {
"0": "BF",
}
json_dict['labels'] = {
"0": "background",
"1": "cell",
}
json_dict['numTraining'] = len(train_patient_names)
json_dict['numTest'] = len(test_patient_names)
json_dict['training'] = [{'image': "./imagesTr/%s.nii.gz" % i, "label": "./labelsTr/%s.nii.gz" % i} for i in
train_patient_names]
json_dict['test'] = ["./imagesTs/%s.nii.gz" % i for i in test_patient_names]
save_json(json_dict, os.path.join(out_base, "dataset.json"))
p.close()
p.join()
if __name__ == "__main__":
base = "/media/fabian/My Book/datasets/CellTrackingChallenge/Fluo-C3DH-A549_ManAndSim"
task_id = 75
task_name = 'Fluo_C3DH_A549_ManAndSim'
spacing = (1, 0.126, 0.126)
prepare_task(base, task_id, task_name, spacing)
task_name = "Task075_Fluo_C3DH_A549_ManAndSim"
labelsTr = join(nnUNet_raw_data, task_name, "labelsTr")
cases = subfiles(labelsTr, suffix='.nii.gz', join=False)
splits = []
splits.append(
{'train': [i[:-7] for i in cases if i.startswith('01_') or i.startswith('02_SIM')],
'val': [i[:-7] for i in cases if i.startswith('02_') and not i.startswith('02_SIM')]}
)
splits.append(
{'train': [i[:-7] for i in cases if i.startswith('02_') or i.startswith('01_SIM')],
'val': [i[:-7] for i in cases if i.startswith('01_') and not i.startswith('01_SIM')]}
)
splits.append(
{'train': [i[:-7] for i in cases if i.startswith('01_') or i.startswith('02_') and not i.startswith('02_SIM')],
'val': [i[:-7] for i in cases if i.startswith('02_SIM')]}
)
splits.append(
{'train': [i[:-7] for i in cases if i.startswith('02_') or i.startswith('01_') and not i.startswith('01_SIM')],
'val': [i[:-7] for i in cases if i.startswith('01_SIM')]}
)
save_pickle(splits, join(preprocessing_output_dir, task_name, "splits_final.pkl"))