From 1c393906f87ef64408f2e0dfc99d173883ec4ec1 Mon Sep 17 00:00:00 2001 From: Felix Zimmermann Date: Sat, 28 Dec 2024 02:46:01 +0100 Subject: [PATCH] IHeader ghstack-source-id: 9ffe75f3aec3effea4429d56e9604c634b00876c ghstack-comment-id: 2559847826 Pull Request resolved: https://github.com/PTB-MR/mrpro/pull/591 --- src/mrpro/data/IHeader.py | 195 ++++++++++++++++++++++++++++---------- 1 file changed, 147 insertions(+), 48 deletions(-) diff --git a/src/mrpro/data/IHeader.py b/src/mrpro/data/IHeader.py index 54eb98e62..826aa10d9 100644 --- a/src/mrpro/data/IHeader.py +++ b/src/mrpro/data/IHeader.py @@ -2,45 +2,127 @@ import dataclasses from collections.abc import Sequence -from dataclasses import dataclass +from dataclasses import dataclass, field -import numpy as np import torch +from einops import repeat from pydicom.dataset import Dataset from pydicom.tag import Tag, TagType from typing_extensions import Self from mrpro.data.KHeader import KHeader from mrpro.data.MoveDataMixin import MoveDataMixin +from mrpro.data.Rotation import Rotation from mrpro.data.SpatialDimension import SpatialDimension +from mrpro.utils.remove_repeat import remove_repeat from mrpro.utils.summarize_tensorvalues import summarize_tensorvalues +from mrpro.utils.unit_conversion import deg_to_rad, mm_to_m, ms_to_s + +from .AcqInfo import PhysiologyTimestamps MISC_TAGS = {'TimeAfterStart': 0x00191016} +def _int_factory() -> torch.Tensor: + return torch.zeros(1, 1, dtype=torch.int64) + + +@dataclass(slots=True) +class ImageIdx(MoveDataMixin): + """Acquisition index for each readout.""" + + average: torch.Tensor = field(default_factory=_int_factory) + """Signal average.""" + + slice: torch.Tensor = field(default_factory=_int_factory) + """Slice number (multi-slice 2D).""" + + contrast: torch.Tensor = field(default_factory=_int_factory) + """Echo number in multi-echo.""" + + phase: torch.Tensor = field(default_factory=_int_factory) + """Cardiac phase.""" + + repetition: torch.Tensor = field(default_factory=_int_factory) + """Counter in repeated/dynamic acquisitions.""" + + set: torch.Tensor = field(default_factory=_int_factory) + """Sets of different preparation, e.g. flow encoding, diffusion weighting.""" + + user0: torch.Tensor = field(default_factory=_int_factory) + """User index 0.""" + + user1: torch.Tensor = field(default_factory=_int_factory) + """User index 1.""" + + user2: torch.Tensor = field(default_factory=_int_factory) + """User index 2.""" + + user3: torch.Tensor = field(default_factory=_int_factory) + """User index 3.""" + + user4: torch.Tensor = field(default_factory=_int_factory) + """User index 4.""" + + user5: torch.Tensor = field(default_factory=_int_factory) + """User index 5.""" + + user6: torch.Tensor = field(default_factory=_int_factory) + """User index 6.""" + + user7: torch.Tensor = field(default_factory=_int_factory) + """User index 7.""" + + @dataclass(slots=True) class IHeader(MoveDataMixin): """MR image data header.""" - # ToDo: decide which attributes to store in the header fov: SpatialDimension[float] """Field of view [m].""" - te: torch.Tensor | None + te: torch.Tensor | None = None """Echo time [s].""" - ti: torch.Tensor | None + ti: torch.Tensor | None = None """Inversion time [s].""" - fa: torch.Tensor | None + fa: torch.Tensor | None = None """Flip angle [rad].""" - tr: torch.Tensor | None + tr: torch.Tensor | None = None """Repetition time [s].""" - misc: dict = dataclasses.field(default_factory=dict) + _misc: dict = dataclasses.field(default_factory=dict) """Dictionary with miscellaneous parameters.""" + position: SpatialDimension[torch.Tensor] = field( + default_factory=lambda: SpatialDimension( + torch.zeros(1, 1, 1, 1, 1), + torch.zeros(1, 1, 1, 1, 1), + torch.zeros(1, 1, 1, 1, 1), + ) + ) + """Center of the excited volume""" + + orientation: Rotation = field(default_factory=lambda: Rotation.identity((1, 1, 1, 1, 1))) + """Orientation of the image""" + + patient_table_position: SpatialDimension[torch.Tensor] = field( + default_factory=lambda: SpatialDimension( + torch.zeros(1, 1, 1, 1, 1), + torch.zeros(1, 1, 1, 1, 1), + torch.zeros(1, 1, 1, 1, 1), + ) + ) + """Offset position of the patient table""" + + acquisition_time_stamp: torch.Tensor = field(default_factory=lambda: torch.zeros(1, 1, 1, 1, 1)) + + physiology_time_stamps: PhysiologyTimestamps = field(default_factory=PhysiologyTimestamps) + + ImageIdx: ImageIdx = field(default_factory=ImageIdx) + @classmethod def from_kheader(cls, kheader: KHeader) -> Self: """Create IHeader object from KHeader object. @@ -74,53 +156,70 @@ def get_item(dataset: Dataset, name: TagType): else: raise ValueError(f'Item {name} found {len(found_item)} times.') - def get_items_from_all_dicoms(name: TagType): - """Get list of items for all dataset objects in the list.""" + def get_items_from_dicom_datasets(name: TagType) -> list: + """Get list of items for all datasets in dicom_datasets.""" return [get_item(ds, name) for ds in dicom_datasets] - def get_float_items_from_all_dicoms(name: TagType): - """Convert items to float.""" - items = get_items_from_all_dicoms(name) - return [float(val) if val is not None else None for val in items] - - def make_unique_tensor(values: Sequence[float]) -> torch.Tensor | None: - """If all the values are the same only return one.""" - if any(val is None for val in values): + def get_float_items_from_dicom_datasets(name: TagType) -> list[float]: + """Get float items from all dataset in dicom_datasets.""" + items = [] + for item in get_items_from_dicom_datasets(name): + try: + items.append(float(item)) + except (TypeError, ValueError): + # None or invalid value + items.append(float('nan')) + return items + + def as_5d_tensor(values: Sequence[float]) -> torch.Tensor: + """Convert a list of values to a 5d tensor.""" + tensor = torch.as_tensor(values) + tensor = repeat(tensor, 'values-> values 1 1 1 1') + tensor = remove_repeat(tensor, 1e-12) + return tensor + + def all_nan_to_none(tensor: torch.Tensor) -> torch.Tensor | None: + """If all values are nan, return None.""" + if torch.isnan(tensor).all(): return None - elif len(np.unique(values)) == 1: - return torch.as_tensor([values[0]]) - else: - return torch.as_tensor(values) - - # Conversion functions for units - def ms_to_s(ms: torch.Tensor | None) -> torch.Tensor | None: - return None if ms is None else ms / 1000 - - def deg_to_rad(deg: torch.Tensor | None) -> torch.Tensor | None: - return None if deg is None else torch.deg2rad(deg) - - fa = deg_to_rad(make_unique_tensor(get_float_items_from_all_dicoms('FlipAngle'))) - ti = ms_to_s(make_unique_tensor(get_float_items_from_all_dicoms('InversionTime'))) - tr = ms_to_s(make_unique_tensor(get_float_items_from_all_dicoms('RepetitionTime'))) - - # get echo time(s). Some scanners use 'EchoTime', some use 'EffectiveEchoTime' - te_list = get_float_items_from_all_dicoms('EchoTime') - if all(val is None for val in te_list): # check if all entries are None - te_list = get_float_items_from_all_dicoms('EffectiveEchoTime') - te = ms_to_s(make_unique_tensor(te_list)) - - fov_x_mm = get_float_items_from_all_dicoms('Rows')[0] * float(get_items_from_all_dicoms('PixelSpacing')[0][0]) - fov_y_mm = get_float_items_from_all_dicoms('Columns')[0] * float( - get_items_from_all_dicoms('PixelSpacing')[0][1], - ) - fov_z_mm = get_float_items_from_all_dicoms('SliceThickness')[0] - fov = SpatialDimension(fov_x_mm, fov_y_mm, fov_z_mm) / 1000 # convert to m + return tensor + + fa = all_nan_to_none(deg_to_rad(as_5d_tensor(get_float_items_from_dicom_datasets('FlipAngle')))) + ti = all_nan_to_none(ms_to_s(as_5d_tensor(get_float_items_from_dicom_datasets('InversionTime')))) + tr = all_nan_to_none(ms_to_s(as_5d_tensor(get_float_items_from_dicom_datasets('RepetitionTime')))) + + te_list = get_float_items_from_dicom_datasets('EchoTime') + if all(val is None for val in te_list): + # if all 'EchoTime' entries are None, try 'EffectiveEchoTime', + # which is used by some scanners + te_list = get_float_items_from_dicom_datasets('EffectiveEchoTime') + te = all_nan_to_none(ms_to_s(as_5d_tensor(te_list))) + + try: + fov_x = mm_to_m( + get_float_items_from_dicom_datasets('Rows')[0] + * float(get_items_from_dicom_datasets('PixelSpacing')[0][0]) + ) + except (TypeError, ValueError): + fov_x = float('nan') + try: + fov_y = mm_to_m( + get_float_items_from_dicom_datasets('Columns')[0] + * float(get_items_from_dicom_datasets('PixelSpacing')[0][1]) + ) + except (TypeError, ValueError): + fov_y = float('nan') + try: + fov_z = mm_to_m(get_float_items_from_dicom_datasets('SliceThickness')[0]) + except (TypeError, ValueError): + fov_z = float('nan') + fov = SpatialDimension(fov_z, fov_y, fov_x) # Get misc parameters misc = {} for name in MISC_TAGS: - misc[name] = make_unique_tensor(get_float_items_from_all_dicoms(MISC_TAGS[name])) - return cls(fov=fov, te=te, ti=ti, fa=fa, tr=tr, misc=misc) + misc[name] = as_5d_tensor(get_float_items_from_dicom_datasets(MISC_TAGS[name])) + return cls(fov=fov, te=te, ti=ti, fa=fa, tr=tr, _misc=misc) def __repr__(self): """Representation method for IHeader class."""