forked from cp2k/cp2k
-
Notifications
You must be signed in to change notification settings - Fork 0
/
core_ppnl.F
772 lines (694 loc) · 39 KB
/
core_ppnl.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
! !
! SPDX-License-Identifier: GPL-2.0-or-later !
!--------------------------------------------------------------------------------------------------!
! **************************************************************************************************
!> \brief Calculation of the non-local pseudopotential contribution to the core Hamiltonian
!> <a|V(non-local)|b> = <a|p(l,i)>*h(i,j)*<p(l,j)|b>
!> \par History
!> - refactered from qs_core_hamiltian [Joost VandeVondele, 2008-11-01]
!> - full rewrite [jhu, 2009-01-23]
!> - Extended by the derivatives for DFPT [Sandra Luber, Edward Ditler, 2021]
! **************************************************************************************************
MODULE core_ppnl
USE ai_angmom, ONLY: angmom
USE ai_overlap, ONLY: overlap
USE atomic_kind_types, ONLY: atomic_kind_type,&
get_atomic_kind_set
USE basis_set_types, ONLY: gto_basis_set_p_type,&
gto_basis_set_type
USE dbcsr_api, ONLY: dbcsr_add,&
dbcsr_get_block_p,&
dbcsr_p_type
USE external_potential_types, ONLY: gth_potential_p_type,&
gth_potential_type,&
sgp_potential_p_type,&
sgp_potential_type
USE kinds, ONLY: dp,&
int_8
USE orbital_pointers, ONLY: init_orbital_pointers,&
nco,&
ncoset
USE particle_types, ONLY: particle_type
USE qs_force_types, ONLY: qs_force_type
USE qs_kind_types, ONLY: get_qs_kind,&
get_qs_kind_set,&
qs_kind_type
USE qs_neighbor_list_types, ONLY: neighbor_list_set_p_type
USE sap_kind_types, ONLY: alist_type,&
clist_type,&
get_alist,&
release_sap_int,&
sap_int_type,&
sap_sort
USE virial_methods, ONLY: virial_pair_force
USE virial_types, ONLY: virial_type
!$ USE OMP_LIB, ONLY: omp_lock_kind, &
!$ omp_init_lock, omp_set_lock, &
!$ omp_unset_lock, omp_destroy_lock
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'core_ppnl'
PUBLIC :: build_core_ppnl
CONTAINS
! **************************************************************************************************
!> \brief ...
!> \param matrix_h ...
!> \param matrix_p ...
!> \param force ...
!> \param virial ...
!> \param calculate_forces ...
!> \param use_virial ...
!> \param nder ...
!> \param qs_kind_set ...
!> \param atomic_kind_set ...
!> \param particle_set ...
!> \param sab_orb ...
!> \param sap_ppnl ...
!> \param eps_ppnl ...
!> \param nimages ...
!> \param cell_to_index ...
!> \param basis_type ...
!> \param deltaR Weighting factors of the derivatives wrt. nuclear positions
!> \param matrix_l ...
! **************************************************************************************************
SUBROUTINE build_core_ppnl(matrix_h, matrix_p, force, virial, calculate_forces, use_virial, nder, &
qs_kind_set, atomic_kind_set, particle_set, sab_orb, sap_ppnl, eps_ppnl, &
nimages, cell_to_index, basis_type, deltaR, matrix_l)
TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: matrix_h, matrix_p
TYPE(qs_force_type), DIMENSION(:), POINTER :: force
TYPE(virial_type), POINTER :: virial
LOGICAL, INTENT(IN) :: calculate_forces
LOGICAL :: use_virial
INTEGER :: nder
TYPE(qs_kind_type), DIMENSION(:), POINTER :: qs_kind_set
TYPE(atomic_kind_type), DIMENSION(:), POINTER :: atomic_kind_set
TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
TYPE(neighbor_list_set_p_type), DIMENSION(:), &
POINTER :: sab_orb, sap_ppnl
REAL(KIND=dp), INTENT(IN) :: eps_ppnl
INTEGER, INTENT(IN) :: nimages
INTEGER, DIMENSION(:, :, :), OPTIONAL, POINTER :: cell_to_index
CHARACTER(LEN=*), INTENT(IN) :: basis_type
REAL(KIND=dp), DIMENSION(:, :), INTENT(IN), &
OPTIONAL :: deltaR
TYPE(dbcsr_p_type), DIMENSION(:, :), OPTIONAL, &
POINTER :: matrix_l
CHARACTER(LEN=*), PARAMETER :: routineN = 'build_core_ppnl'
INTEGER :: atom_a, first_col, handle, i, i_dim, iab, iac, iatom, ib, ibc, icol, ikind, &
ilist, img, irow, iset, j, jatom, jb, jkind, jneighbor, kac, katom, kbc, kkind, l, &
lc_max, lc_min, ldai, ldsab, lppnl, maxco, maxder, maxl, maxlgto, maxlppnl, maxppnl, &
maxsgf, na, natom, nb, ncoa, ncoc, nkind, nlist, nneighbor, nnl, np, nppnl, nprjc, nseta, &
nsgfa, prjc, sgfa, slot
INTEGER, ALLOCATABLE, DIMENSION(:) :: atom_of_kind, kind_of
INTEGER, DIMENSION(3) :: cell_b, cell_c
INTEGER, DIMENSION(:), POINTER :: la_max, la_min, npgfa, nprj_ppnl, &
nsgf_seta
INTEGER, DIMENSION(:, :), POINTER :: first_sgfa
LOGICAL :: do_dR, do_gth, do_kp, do_soc, found, &
ppnl_present
REAL(KIND=dp) :: dac, f0, ppnl_radius
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: radp
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :) :: sab, work
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :) :: ai_work, lab, work_l
REAL(KIND=dp), DIMENSION(1) :: rprjc, zetc
REAL(KIND=dp), DIMENSION(3) :: fa, fb, rab, rac, rbc
REAL(KIND=dp), DIMENSION(3, 3) :: pv_thread
TYPE(gto_basis_set_type), POINTER :: orb_basis_set
TYPE(gto_basis_set_p_type), DIMENSION(:), POINTER :: basis_set
TYPE(gth_potential_type), POINTER :: gth_potential
TYPE(gth_potential_p_type), DIMENSION(:), POINTER :: gpotential
TYPE(clist_type), POINTER :: clist
TYPE(alist_type), POINTER :: alist_ac, alist_bc
REAL(KIND=dp), DIMENSION(:, :, :), POINTER :: achint, acint, alkint, bchint, bcint, &
blkint
REAL(KIND=dp), DIMENSION(:, :), POINTER :: cprj, h_block, l_block_x, l_block_y, &
l_block_z, p_block, r_2block, &
r_3block, rpgfa, sphi_a, vprj_ppnl, &
wprj_ppnl, zeta
REAL(KIND=dp), DIMENSION(:), POINTER :: a_nl, alpha_ppnl, hprj, set_radius_a
REAL(KIND=dp), DIMENSION(3, SIZE(particle_set)) :: force_thread
TYPE(sap_int_type), DIMENSION(:), POINTER :: sap_int
TYPE(sgp_potential_p_type), DIMENSION(:), POINTER :: spotential
TYPE(sgp_potential_type), POINTER :: sgp_potential
!$ INTEGER(kind=omp_lock_kind), &
!$ ALLOCATABLE, DIMENSION(:) :: locks
!$ INTEGER(KIND=int_8) :: iatom8
!$ INTEGER :: lock_num, hash
!$ INTEGER, PARAMETER :: nlock = 501
MARK_USED(int_8)
do_dR = .FALSE.
IF (PRESENT(deltaR)) do_dR = .TRUE.
IF (calculate_forces) THEN
CALL timeset(routineN//"_forces", handle)
ELSE
CALL timeset(routineN, handle)
END IF
do_soc = PRESENT(matrix_l)
ppnl_present = ASSOCIATED(sap_ppnl)
IF (ppnl_present) THEN
nkind = SIZE(atomic_kind_set)
natom = SIZE(particle_set)
do_kp = (nimages > 1)
IF (do_kp) THEN
CPASSERT(PRESENT(cell_to_index) .AND. ASSOCIATED(cell_to_index))
END IF
IF (calculate_forces) THEN
IF (SIZE(matrix_p, 1) == 2) THEN
DO img = 1, nimages
CALL dbcsr_add(matrix_p(1, img)%matrix, matrix_p(2, img)%matrix, &
alpha_scalar=1.0_dp, beta_scalar=1.0_dp)
CALL dbcsr_add(matrix_p(2, img)%matrix, matrix_p(1, img)%matrix, &
alpha_scalar=-2.0_dp, beta_scalar=1.0_dp)
END DO
END IF
END IF
maxder = ncoset(nder)
CALL get_qs_kind_set(qs_kind_set, &
maxco=maxco, &
maxlgto=maxlgto, &
maxsgf=maxsgf, &
maxlppnl=maxlppnl, &
maxppnl=maxppnl, &
basis_type=basis_type)
maxl = MAX(maxlgto, maxlppnl)
CALL init_orbital_pointers(maxl + nder + 1)
ldsab = MAX(maxco, ncoset(maxlppnl), maxsgf, maxppnl)
ldai = ncoset(maxl + nder + 1)
! sap_int needs to be shared as multiple threads need to access this
ALLOCATE (sap_int(nkind*nkind))
DO i = 1, nkind*nkind
NULLIFY (sap_int(i)%alist, sap_int(i)%asort, sap_int(i)%aindex)
sap_int(i)%nalist = 0
END DO
! Set up direct access to basis and potential
ALLOCATE (basis_set(nkind), gpotential(nkind), spotential(nkind))
DO ikind = 1, nkind
CALL get_qs_kind(qs_kind_set(ikind), basis_set=orb_basis_set, basis_type=basis_type)
IF (ASSOCIATED(orb_basis_set)) THEN
basis_set(ikind)%gto_basis_set => orb_basis_set
ELSE
NULLIFY (basis_set(ikind)%gto_basis_set)
END IF
CALL get_qs_kind(qs_kind_set(ikind), gth_potential=gth_potential, sgp_potential=sgp_potential)
NULLIFY (gpotential(ikind)%gth_potential)
NULLIFY (spotential(ikind)%sgp_potential)
IF (ASSOCIATED(gth_potential)) THEN
gpotential(ikind)%gth_potential => gth_potential
IF (do_soc .AND. (.NOT. gth_potential%soc)) THEN
CPWARN("Spin-orbit coupling selected, but GTH potential without SOC parameters provided")
END IF
ELSE IF (ASSOCIATED(sgp_potential)) THEN
spotential(ikind)%sgp_potential => sgp_potential
END IF
END DO
! Allocate sap int
DO slot = 1, sap_ppnl(1)%nl_size
ikind = sap_ppnl(1)%nlist_task(slot)%ikind
kkind = sap_ppnl(1)%nlist_task(slot)%jkind
iatom = sap_ppnl(1)%nlist_task(slot)%iatom
katom = sap_ppnl(1)%nlist_task(slot)%jatom
nlist = sap_ppnl(1)%nlist_task(slot)%nlist
ilist = sap_ppnl(1)%nlist_task(slot)%ilist
nneighbor = sap_ppnl(1)%nlist_task(slot)%nnode
iac = ikind + nkind*(kkind - 1)
IF (.NOT. ASSOCIATED(basis_set(ikind)%gto_basis_set)) CYCLE
IF (.NOT. ASSOCIATED(gpotential(kkind)%gth_potential) .AND. &
.NOT. ASSOCIATED(spotential(kkind)%sgp_potential)) CYCLE
IF (.NOT. ASSOCIATED(sap_int(iac)%alist)) THEN
sap_int(iac)%a_kind = ikind
sap_int(iac)%p_kind = kkind
sap_int(iac)%nalist = nlist
ALLOCATE (sap_int(iac)%alist(nlist))
DO i = 1, nlist
NULLIFY (sap_int(iac)%alist(i)%clist)
sap_int(iac)%alist(i)%aatom = 0
sap_int(iac)%alist(i)%nclist = 0
END DO
END IF
IF (.NOT. ASSOCIATED(sap_int(iac)%alist(ilist)%clist)) THEN
sap_int(iac)%alist(ilist)%aatom = iatom
sap_int(iac)%alist(ilist)%nclist = nneighbor
ALLOCATE (sap_int(iac)%alist(ilist)%clist(nneighbor))
DO i = 1, nneighbor
sap_int(iac)%alist(ilist)%clist(i)%catom = 0
END DO
END IF
END DO
! Calculate the overlap integrals <a|p>
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP SHARED (basis_set, gpotential, spotential, maxder, ncoset, &
!$OMP sap_ppnl, sap_int, nkind, ldsab, ldai, nder, nco, do_soc ) &
!$OMP PRIVATE (ikind, kkind, iatom, katom, nlist, ilist, nneighbor, jneighbor, &
!$OMP cell_c, rac, iac, first_sgfa, la_max, la_min, npgfa, nseta, nsgfa, nsgf_seta, &
!$OMP slot, sphi_a, zeta, cprj, hprj, lppnl, nppnl, nprj_ppnl, &
!$OMP clist, iset, ncoa, sgfa, prjc, work, work_l, sab, lab, ai_work, nprjc, &
!$OMP ppnl_radius, ncoc, rpgfa, first_col, vprj_ppnl, wprj_ppnl, i, j, l, do_gth, &
!$OMP set_radius_a, rprjc, dac, lc_max, lc_min, zetc, alpha_ppnl, &
!$OMP na, nb, np, nnl, a_nl, radp, i_dim, ib, jb)
ALLOCATE (sab(ldsab, ldsab*maxder), work(ldsab, ldsab*maxder))
sab = 0.0_dp
ALLOCATE (ai_work(ldai, ldai, ncoset(nder + 1)))
ai_work = 0.0_dp
IF (do_soc) THEN
ALLOCATE (lab(ldsab, ldsab, 3), work_l(ldsab, ldsab, 3))
lab = 0.0_dp
END IF
!$OMP DO SCHEDULE(GUIDED)
DO slot = 1, sap_ppnl(1)%nl_size
ikind = sap_ppnl(1)%nlist_task(slot)%ikind
kkind = sap_ppnl(1)%nlist_task(slot)%jkind
iatom = sap_ppnl(1)%nlist_task(slot)%iatom
katom = sap_ppnl(1)%nlist_task(slot)%jatom
nlist = sap_ppnl(1)%nlist_task(slot)%nlist
ilist = sap_ppnl(1)%nlist_task(slot)%ilist
nneighbor = sap_ppnl(1)%nlist_task(slot)%nnode
jneighbor = sap_ppnl(1)%nlist_task(slot)%inode
cell_c(:) = sap_ppnl(1)%nlist_task(slot)%cell(:)
rac(1:3) = sap_ppnl(1)%nlist_task(slot)%r(1:3)
iac = ikind + nkind*(kkind - 1)
IF (.NOT. ASSOCIATED(basis_set(ikind)%gto_basis_set)) CYCLE
! Get definition of basis set
first_sgfa => basis_set(ikind)%gto_basis_set%first_sgf
la_max => basis_set(ikind)%gto_basis_set%lmax
la_min => basis_set(ikind)%gto_basis_set%lmin
npgfa => basis_set(ikind)%gto_basis_set%npgf
nseta = basis_set(ikind)%gto_basis_set%nset
nsgfa = basis_set(ikind)%gto_basis_set%nsgf
nsgf_seta => basis_set(ikind)%gto_basis_set%nsgf_set
rpgfa => basis_set(ikind)%gto_basis_set%pgf_radius
set_radius_a => basis_set(ikind)%gto_basis_set%set_radius
sphi_a => basis_set(ikind)%gto_basis_set%sphi
zeta => basis_set(ikind)%gto_basis_set%zet
! Get definition of PP projectors
IF (ASSOCIATED(gpotential(kkind)%gth_potential)) THEN
! GTH potential
do_gth = .TRUE.
alpha_ppnl => gpotential(kkind)%gth_potential%alpha_ppnl
cprj => gpotential(kkind)%gth_potential%cprj
lppnl = gpotential(kkind)%gth_potential%lppnl
nppnl = gpotential(kkind)%gth_potential%nppnl
nprj_ppnl => gpotential(kkind)%gth_potential%nprj_ppnl
ppnl_radius = gpotential(kkind)%gth_potential%ppnl_radius
vprj_ppnl => gpotential(kkind)%gth_potential%vprj_ppnl
wprj_ppnl => gpotential(kkind)%gth_potential%wprj_ppnl
ELSE IF (ASSOCIATED(spotential(kkind)%sgp_potential)) THEN
! SGP potential
do_gth = .FALSE.
nprjc = spotential(kkind)%sgp_potential%nppnl
IF (nprjc == 0) CYCLE
nnl = spotential(kkind)%sgp_potential%n_nonlocal
lppnl = spotential(kkind)%sgp_potential%lmax
a_nl => spotential(kkind)%sgp_potential%a_nonlocal
ppnl_radius = spotential(kkind)%sgp_potential%ppnl_radius
ALLOCATE (radp(nnl))
radp(:) = ppnl_radius
cprj => spotential(kkind)%sgp_potential%cprj_ppnl
hprj => spotential(kkind)%sgp_potential%vprj_ppnl
nppnl = SIZE(cprj, 2)
ELSE
CYCLE
END IF
dac = SQRT(SUM(rac*rac))
clist => sap_int(iac)%alist(ilist)%clist(jneighbor)
clist%catom = katom
clist%cell = cell_c
clist%rac = rac
ALLOCATE (clist%acint(nsgfa, nppnl, maxder), &
clist%achint(nsgfa, nppnl, maxder), &
clist%alint(nsgfa, nppnl, 3), &
clist%alkint(nsgfa, nppnl, 3))
clist%acint = 0.0_dp
clist%achint = 0.0_dp
clist%alint = 0.0_dp
clist%alkint = 0.0_dp
clist%nsgf_cnt = 0
NULLIFY (clist%sgf_list)
DO iset = 1, nseta
ncoa = npgfa(iset)*ncoset(la_max(iset))
sgfa = first_sgfa(1, iset)
IF (do_gth) THEN
! GTH potential
prjc = 1
work = 0.0_dp
DO l = 0, lppnl
nprjc = nprj_ppnl(l)*nco(l)
IF (nprjc == 0) CYCLE
rprjc(1) = ppnl_radius
IF (set_radius_a(iset) + rprjc(1) < dac) CYCLE
lc_max = l + 2*(nprj_ppnl(l) - 1)
lc_min = l
zetc(1) = alpha_ppnl(l)
ncoc = ncoset(lc_max)
! Calculate the primitive overlap integrals
CALL overlap(la_max(iset), la_min(iset), npgfa(iset), rpgfa(:, iset), zeta(:, iset), &
lc_max, lc_min, 1, rprjc, zetc, rac, dac, sab, nder, .TRUE., ai_work, ldai)
! Transformation step projector functions (Cartesian -> spherical)
na = ncoa
nb = nprjc
np = ncoc
DO i = 1, maxder
first_col = (i - 1)*ldsab
! CALL dgemm("N", "N", ncoa, nprjc, ncoc, 1.0_dp, sab(1, first_col + 1), SIZE(sab, 1), &
! cprj(1, prjc), SIZE(cprj, 1), 0.0_dp, work(1, first_col + prjc), ldsab)
work(1:na, first_col + prjc:first_col + prjc + nb - 1) = &
MATMUL(sab(1:na, first_col + 1:first_col + np), cprj(1:np, prjc:prjc + nb - 1))
END DO
IF (do_soc) THEN
! Calculate the primitive angular momentum integrals needed for spin-orbit coupling
lab = 0.0_dp
CALL angmom(la_max(iset), npgfa(iset), zeta(:, iset), rpgfa(:, iset), la_min(iset), &
lc_max, 1, zetc, rprjc, -rac, (/0._dp, 0._dp, 0._dp/), lab)
DO i_dim = 1, 3
work_l(1:na, prjc:prjc + nb - 1, i_dim) = &
MATMUL(lab(1:na, 1:np, i_dim), cprj(1:np, prjc:prjc + nb - 1))
END DO
END IF
prjc = prjc + nprjc
END DO
na = nsgf_seta(iset)
nb = nppnl
np = ncoa
DO i = 1, maxder
first_col = (i - 1)*ldsab + 1
! Contraction step (basis functions)
! CALL dgemm("T", "N", nsgf_seta(iset), nppnl, ncoa, 1.0_dp, sphi_a(1, sgfa), SIZE(sphi_a, 1), &
! work(1, first_col), ldsab, 0.0_dp, clist%acint(sgfa, 1, i), nsgfa)
clist%acint(sgfa:sgfa + na - 1, 1:nb, i) = &
MATMUL(TRANSPOSE(sphi_a(1:np, sgfa:sgfa + na - 1)), work(1:np, first_col:first_col + nb - 1))
! Multiply with interaction matrix(h)
! CALL dgemm("N", "N", nsgf_seta(iset), nppnl, nppnl, 1.0_dp, clist%acint(sgfa, 1, i), nsgfa, &
! vprj_ppnl(1, 1), SIZE(vprj_ppnl, 1), 0.0_dp, clist%achint(sgfa, 1, i), nsgfa)
clist%achint(sgfa:sgfa + na - 1, 1:nb, i) = &
MATMUL(clist%acint(sgfa:sgfa + na - 1, 1:nb, i), vprj_ppnl(1:nb, 1:nb))
END DO
IF (do_soc) THEN
DO i_dim = 1, 3
clist%alint(sgfa:sgfa + na - 1, 1:nb, i_dim) = &
MATMUL(TRANSPOSE(sphi_a(1:np, sgfa:sgfa + na - 1)), work_l(1:np, 1:nb, i_dim))
clist%alkint(sgfa:sgfa + na - 1, 1:nb, i_dim) = &
MATMUL(clist%alint(sgfa:sgfa + na - 1, 1:nb, i_dim), wprj_ppnl(1:nb, 1:nb))
END DO
END IF
ELSE
! SGP potential
! Calculate the primitive overlap integrals
CALL overlap(la_max(iset), la_min(iset), npgfa(iset), rpgfa(:, iset), zeta(:, iset), &
lppnl, 0, nnl, radp, a_nl, rac, dac, sab, nder, .TRUE., ai_work, ldai)
na = nsgf_seta(iset)
nb = nppnl
np = ncoa
DO i = 1, maxder
first_col = (i - 1)*ldsab + 1
! Transformation step projector functions (cartesian->spherical)
! CALL dgemm("N", "N", ncoa, nppnl, nprjc, 1.0_dp, sab(1, first_col), ldsab, &
! cprj(1, 1), SIZE(cprj, 1), 0.0_dp, work(1, 1), ldsab)
work(1:np, 1:nb) = MATMUL(sab(1:np, first_col:first_col + nprjc - 1), cprj(1:nprjc, 1:nb))
! Contraction step (basis functions)
! CALL dgemm("T", "N", nsgf_seta(iset), nppnl, ncoa, 1.0_dp, sphi_a(1, sgfa), SIZE(sphi_a, 1), &
! work(1, 1), ldsab, 0.0_dp, clist%acint(sgfa, 1, i), nsgfa)
clist%acint(sgfa:sgfa + na - 1, 1:nb, i) = &
MATMUL(TRANSPOSE(sphi_a(1:np, sgfa:sgfa + na - 1)), work(1:np, 1:nb))
! *** Multiply with interaction matrix(h) ***
ncoc = sgfa + nsgf_seta(iset) - 1
DO j = 1, nppnl
clist%achint(sgfa:ncoc, j, i) = clist%acint(sgfa:ncoc, j, i)*hprj(j)
END DO
END DO
END IF
END DO
clist%maxac = MAXVAL(ABS(clist%acint(:, :, 1)))
clist%maxach = MAXVAL(ABS(clist%achint(:, :, 1)))
IF (.NOT. do_gth) DEALLOCATE (radp)
END DO
DEALLOCATE (sab, ai_work, work)
IF (do_soc) DEALLOCATE (lab, work_l)
!$OMP END PARALLEL
! Set up a sorting index
CALL sap_sort(sap_int)
! All integrals needed have been calculated and stored in sap_int
! We now calculate the Hamiltonian matrix elements
force_thread = 0.0_dp
pv_thread = 0.0_dp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP SHARED (do_kp, basis_set, matrix_h, matrix_l, cell_to_index,&
!$OMP sab_orb, matrix_p, sap_int, nkind, eps_ppnl, force, &
!$OMP do_dR, deltaR, maxder, nder, &
!$OMP locks, virial, use_virial, calculate_forces, do_soc) &
!$OMP PRIVATE (ikind, jkind, iatom, jatom, cell_b, rab, &
!$OMP slot, iab, atom_a, f0, irow, icol, h_block, &
!$OMP l_block_x, l_block_y, l_block_z, &
!$OMP r_2block, r_3block, &
!$OMP found,p_block, iac, ibc, alist_ac, alist_bc, acint, bcint, &
!$OMP achint, bchint, alkint, blkint, &
!$OMP na, np, nb, katom, j, fa, fb, rbc, rac, &
!$OMP kkind, kac, kbc, i, img, hash, iatom8, natom) &
!$OMP REDUCTION (+ : pv_thread, force_thread )
!$OMP SINGLE
!$ ALLOCATE (locks(nlock))
!$OMP END SINGLE
!$OMP DO
!$ DO lock_num = 1, nlock
!$ call omp_init_lock(locks(lock_num))
!$ END DO
!$OMP END DO
!$OMP DO SCHEDULE(GUIDED)
DO slot = 1, sab_orb(1)%nl_size
ikind = sab_orb(1)%nlist_task(slot)%ikind
jkind = sab_orb(1)%nlist_task(slot)%jkind
iatom = sab_orb(1)%nlist_task(slot)%iatom
jatom = sab_orb(1)%nlist_task(slot)%jatom
cell_b(:) = sab_orb(1)%nlist_task(slot)%cell(:)
rab(1:3) = sab_orb(1)%nlist_task(slot)%r(1:3)
IF (.NOT. ASSOCIATED(basis_set(ikind)%gto_basis_set)) CYCLE
IF (.NOT. ASSOCIATED(basis_set(jkind)%gto_basis_set)) CYCLE
iab = ikind + nkind*(jkind - 1)
! Use the symmetry of the first derivatives
IF (iatom == jatom) THEN
f0 = 1.0_dp
ELSE
f0 = 2.0_dp
END IF
IF (do_kp) THEN
img = cell_to_index(cell_b(1), cell_b(2), cell_b(3))
ELSE
img = 1
END IF
! Create matrix blocks for a new matrix block column
IF (iatom <= jatom) THEN
irow = iatom
icol = jatom
ELSE
irow = jatom
icol = iatom
END IF
NULLIFY (h_block)
CALL dbcsr_get_block_p(matrix_h(1, img)%matrix, irow, icol, h_block, found)
IF (do_soc) THEN
NULLIFY (l_block_x, l_block_y, l_block_z)
CALL dbcsr_get_block_p(matrix_l(1, img)%matrix, irow, icol, l_block_x, found)
CALL dbcsr_get_block_p(matrix_l(2, img)%matrix, irow, icol, l_block_y, found)
CALL dbcsr_get_block_p(matrix_l(3, img)%matrix, irow, icol, l_block_z, found)
END IF
IF (do_dR) THEN
NULLIFY (r_2block, r_3block)
CALL dbcsr_get_block_p(matrix_h(2, img)%matrix, irow, icol, r_2block, found)
CALL dbcsr_get_block_p(matrix_h(3, img)%matrix, irow, icol, r_3block, found)
END IF
IF (calculate_forces) THEN
NULLIFY (p_block)
CALL dbcsr_get_block_p(matrix_p(1, img)%matrix, irow, icol, p_block, found)
END IF
! loop over all kinds for projector atom
IF (ASSOCIATED(h_block)) THEN
DO kkind = 1, nkind
iac = ikind + nkind*(kkind - 1)
ibc = jkind + nkind*(kkind - 1)
IF (.NOT. ASSOCIATED(sap_int(iac)%alist)) CYCLE
IF (.NOT. ASSOCIATED(sap_int(ibc)%alist)) CYCLE
CALL get_alist(sap_int(iac), alist_ac, iatom)
CALL get_alist(sap_int(ibc), alist_bc, jatom)
IF (.NOT. ASSOCIATED(alist_ac)) CYCLE
IF (.NOT. ASSOCIATED(alist_bc)) CYCLE
DO kac = 1, alist_ac%nclist
DO kbc = 1, alist_bc%nclist
IF (alist_ac%clist(kac)%catom /= alist_bc%clist(kbc)%catom) CYCLE
IF (ALL(cell_b + alist_bc%clist(kbc)%cell - alist_ac%clist(kac)%cell == 0)) THEN
IF (alist_ac%clist(kac)%maxac*alist_bc%clist(kbc)%maxach < eps_ppnl) CYCLE
acint => alist_ac%clist(kac)%acint
bcint => alist_bc%clist(kbc)%acint
achint => alist_ac%clist(kac)%achint
bchint => alist_bc%clist(kbc)%achint
IF (do_soc) THEN
alkint => alist_ac%clist(kac)%alkint
blkint => alist_bc%clist(kbc)%alkint
END IF
na = SIZE(acint, 1)
np = SIZE(acint, 2)
nb = SIZE(bcint, 1)
!$ iatom8 = INT(iatom - 1, int_8)*INT(natom, int_8) + INT(jatom, int_8)
!$ hash = INT(MOD(iatom8, INT(nlock, int_8)) + 1)
!$ CALL omp_set_lock(locks(hash))
IF (.NOT. do_dR) THEN
IF (iatom <= jatom) THEN
h_block(1:na, 1:nb) = h_block(1:na, 1:nb) + &
MATMUL(achint(1:na, 1:np, 1), TRANSPOSE(bcint(1:nb, 1:np, 1)))
ELSE
h_block(1:nb, 1:na) = h_block(1:nb, 1:na) + &
MATMUL(bchint(1:nb, 1:np, 1), TRANSPOSE(acint(1:na, 1:np, 1)))
END IF
END IF
IF (do_soc) THEN
IF (iatom <= jatom) THEN
l_block_x(1:na, 1:nb) = l_block_x(1:na, 1:nb) + &
MATMUL(alkint(1:na, 1:np, 1), TRANSPOSE(bcint(1:nb, 1:np, 1)))
l_block_y(1:na, 1:nb) = l_block_y(1:na, 1:nb) + &
MATMUL(alkint(1:na, 1:np, 2), TRANSPOSE(bcint(1:nb, 1:np, 1)))
l_block_z(1:na, 1:nb) = l_block_z(1:na, 1:nb) + &
MATMUL(alkint(1:na, 1:np, 3), TRANSPOSE(bcint(1:nb, 1:np, 1)))
ELSE
l_block_x(1:nb, 1:na) = l_block_x(1:nb, 1:na) - &
MATMUL(blkint(1:nb, 1:np, 1), TRANSPOSE(acint(1:na, 1:np, 1)))
l_block_y(1:nb, 1:na) = l_block_y(1:nb, 1:na) - &
MATMUL(blkint(1:nb, 1:np, 2), TRANSPOSE(acint(1:na, 1:np, 1)))
l_block_z(1:nb, 1:na) = l_block_z(1:nb, 1:na) - &
MATMUL(blkint(1:nb, 1:np, 3), TRANSPOSE(acint(1:na, 1:np, 1)))
END IF
END IF
!$ CALL omp_unset_lock(locks(hash))
IF (calculate_forces) THEN
IF (ASSOCIATED(p_block)) THEN
katom = alist_ac%clist(kac)%catom
DO i = 1, 3
j = i + 1
IF (iatom <= jatom) THEN
fa(i) = SUM(p_block(1:na, 1:nb)* &
MATMUL(acint(1:na, 1:np, j), TRANSPOSE(bchint(1:nb, 1:np, 1))))
fb(i) = SUM(p_block(1:na, 1:nb)* &
MATMUL(achint(1:na, 1:np, 1), TRANSPOSE(bcint(1:nb, 1:np, j))))
ELSE
fa(i) = SUM(p_block(1:nb, 1:na)* &
MATMUL(bchint(1:nb, 1:np, 1), TRANSPOSE(acint(1:na, 1:np, j))))
fb(i) = SUM(p_block(1:nb, 1:na)* &
MATMUL(bcint(1:nb, 1:np, j), TRANSPOSE(achint(1:na, 1:np, 1))))
END IF
force_thread(i, iatom) = force_thread(i, iatom) + f0*fa(i)
force_thread(i, katom) = force_thread(i, katom) - f0*fa(i)
force_thread(i, jatom) = force_thread(i, jatom) + f0*fb(i)
force_thread(i, katom) = force_thread(i, katom) - f0*fb(i)
END DO
IF (use_virial) THEN
rac = alist_ac%clist(kac)%rac
rbc = alist_bc%clist(kbc)%rac
CALL virial_pair_force(pv_thread, f0, fa, rac)
CALL virial_pair_force(pv_thread, f0, fb, rbc)
END IF
END IF
END IF
IF (do_dR) THEN
i = 1; j = 2;
katom = alist_ac%clist(kac)%catom
IF (iatom <= jatom) THEN
h_block(1:na, 1:nb) = h_block(1:na, 1:nb) + &
(deltaR(i, iatom) - deltaR(i, katom))* &
MATMUL(acint(1:na, 1:np, j), TRANSPOSE(bchint(1:nb, 1:np, 1)))
h_block(1:na, 1:nb) = h_block(1:na, 1:nb) + &
(deltaR(i, jatom) - deltaR(i, katom))* &
MATMUL(achint(1:na, 1:np, 1), TRANSPOSE(bcint(1:nb, 1:np, j)))
ELSE
h_block(1:nb, 1:na) = h_block(1:nb, 1:na) + &
(deltaR(i, iatom) - deltaR(i, katom))* &
MATMUL(bchint(1:nb, 1:np, 1), TRANSPOSE(acint(1:na, 1:np, j)))
h_block(1:nb, 1:na) = h_block(1:nb, 1:na) + &
(deltaR(i, jatom) - deltaR(i, katom))* &
MATMUL(bcint(1:nb, 1:np, j), TRANSPOSE(achint(1:na, 1:np, 1)))
END IF
i = 2; j = 3;
katom = alist_ac%clist(kac)%catom
IF (iatom <= jatom) THEN
r_2block(1:na, 1:nb) = r_2block(1:na, 1:nb) + &
(deltaR(i, iatom) - deltaR(i, katom))* &
MATMUL(acint(1:na, 1:np, j), TRANSPOSE(bchint(1:nb, 1:np, 1)))
r_2block(1:na, 1:nb) = r_2block(1:na, 1:nb) + &
(deltaR(i, jatom) - deltaR(i, katom))* &
MATMUL(achint(1:na, 1:np, 1), TRANSPOSE(bcint(1:nb, 1:np, j)))
ELSE
r_2block(1:nb, 1:na) = r_2block(1:nb, 1:na) + &
(deltaR(i, iatom) - deltaR(i, katom))* &
MATMUL(bchint(1:nb, 1:np, 1), TRANSPOSE(acint(1:na, 1:np, j)))
r_2block(1:nb, 1:na) = r_2block(1:nb, 1:na) + &
(deltaR(i, jatom) - deltaR(i, katom))* &
MATMUL(bcint(1:nb, 1:np, j), TRANSPOSE(achint(1:na, 1:np, 1)))
END IF
i = 3; j = 4;
katom = alist_ac%clist(kac)%catom
IF (iatom <= jatom) THEN
r_3block(1:na, 1:nb) = r_3block(1:na, 1:nb) + &
(deltaR(i, iatom) - deltaR(i, katom))* &
MATMUL(acint(1:na, 1:np, j), TRANSPOSE(bchint(1:nb, 1:np, 1)))
r_3block(1:na, 1:nb) = r_3block(1:na, 1:nb) + &
(deltaR(i, jatom) - deltaR(i, katom))* &
MATMUL(achint(1:na, 1:np, 1), TRANSPOSE(bcint(1:nb, 1:np, j)))
ELSE
r_3block(1:nb, 1:na) = r_3block(1:nb, 1:na) + &
(deltaR(i, iatom) - deltaR(i, katom))* &
MATMUL(bchint(1:nb, 1:np, 1), TRANSPOSE(acint(1:na, 1:np, j)))
r_3block(1:nb, 1:na) = r_3block(1:nb, 1:na) + &
(deltaR(i, jatom) - deltaR(i, katom))* &
MATMUL(bcint(1:nb, 1:np, j), TRANSPOSE(achint(1:na, 1:np, 1)))
END IF
END IF
EXIT ! We have found a match and there can be only one single match
END IF
END DO
END DO
END DO
END IF
END DO
!$OMP DO
!$ DO lock_num = 1, nlock
!$ call omp_destroy_lock(locks(lock_num))
!$ END DO
!$OMP END DO
!$OMP SINGLE
!$ DEALLOCATE (locks)
!$OMP END SINGLE NOWAIT
!$OMP END PARALLEL
CALL release_sap_int(sap_int)
DEALLOCATE (basis_set, gpotential, spotential)
IF (calculate_forces) THEN
CALL get_atomic_kind_set(atomic_kind_set, atom_of_kind=atom_of_kind, kind_of=kind_of)
!$OMP DO
DO iatom = 1, natom
atom_a = atom_of_kind(iatom)
ikind = kind_of(iatom)
force(ikind)%gth_ppnl(:, atom_a) = force(ikind)%gth_ppnl(:, atom_a) + force_thread(:, iatom)
END DO
!$OMP END DO
DEALLOCATE (atom_of_kind, kind_of)
END IF
IF (calculate_forces .AND. use_virial) THEN
virial%pv_ppnl = virial%pv_ppnl + pv_thread
virial%pv_virial = virial%pv_virial + pv_thread
END IF
IF (calculate_forces) THEN
! If LSD, then recover alpha density and beta density
! from the total density (1) and the spin density (2)
IF (SIZE(matrix_p, 1) == 2) THEN
DO img = 1, nimages
CALL dbcsr_add(matrix_p(1, img)%matrix, matrix_p(2, img)%matrix, &
alpha_scalar=0.5_dp, beta_scalar=0.5_dp)
CALL dbcsr_add(matrix_p(2, img)%matrix, matrix_p(1, img)%matrix, &
alpha_scalar=-1.0_dp, beta_scalar=1.0_dp)
END DO
END IF
END IF
END IF !ppnl_present
CALL timestop(handle)
END SUBROUTINE build_core_ppnl
END MODULE core_ppnl