forked from cp2k/cp2k
-
Notifications
You must be signed in to change notification settings - Fork 0
/
atom_energy.F
903 lines (810 loc) · 41.2 KB
/
atom_energy.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright 2000-2024 CP2K developers group <https://cp2k.org> !
! !
! SPDX-License-Identifier: GPL-2.0-or-later !
!--------------------------------------------------------------------------------------------------!
MODULE atom_energy
USE atom_admm_methods, ONLY: atom_admm
USE atom_electronic_structure, ONLY: calculate_atom
USE atom_fit, ONLY: atom_fit_density,&
atom_fit_kgpot
USE atom_grb, ONLY: atom_grb_construction
USE atom_operators, ONLY: atom_int_release,&
atom_int_setup,&
atom_ppint_release,&
atom_ppint_setup,&
atom_relint_release,&
atom_relint_setup
USE atom_output, ONLY: atom_print_basis,&
atom_print_info,&
atom_print_method,&
atom_print_orbitals,&
atom_print_potential,&
atom_write_pseudo_param
USE atom_sgp, ONLY: atom_sgp_construction
USE atom_types, ONLY: &
atom_basis_type, atom_gthpot_type, atom_integrals, atom_optimization_type, atom_orbitals, &
atom_p_type, atom_potential_type, atom_state, atom_type, create_atom_orbs, &
create_atom_type, gth_pseudo, init_atom_basis, init_atom_potential, lmat, &
read_atom_opt_section, release_atom_basis, release_atom_potential, release_atom_type, &
set_atom
USE atom_utils, ONLY: &
atom_completeness, atom_condnumber, atom_consistent_method, atom_core_density, &
atom_density, atom_local_potential, atom_read_external_density, atom_read_external_vxc, &
atom_set_occupation, atom_write_zmp_restart, get_maxl_occ, get_maxn_occ
USE atom_xc, ONLY: calculate_atom_ext_vxc,&
calculate_atom_zmp
USE cp_log_handling, ONLY: cp_get_default_logger,&
cp_logger_type
USE cp_output_handling, ONLY: cp_print_key_finished_output,&
cp_print_key_unit_nr
USE input_constants, ONLY: do_analytic
USE input_section_types, ONLY: section_vals_get,&
section_vals_get_subs_vals,&
section_vals_type,&
section_vals_val_get
USE kinds, ONLY: default_string_length,&
dp
USE mathconstants, ONLY: dfac,&
gamma1,&
pi
USE periodic_table, ONLY: nelem,&
ptable
USE physcon, ONLY: bohr
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
PUBLIC :: atom_energy_opt
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'atom_energy'
CONTAINS
! **************************************************************************************************
!> \brief Compute the atomic energy.
!> \param atom_section ATOM input section
!> \par History
!> * 11.2016 geometrical response basis set [Juerg Hutter]
!> * 07.2016 ADMM analysis [Juerg Hutter]
!> * 02.2014 non-additive kinetic energy term [Juerg Hutter]
!> * 11.2013 Zhao, Morrison, and Parr (ZMP) potential [Daniele Varsano]
!> * 02.2010 unrestricted KS and HF methods [Juerg Hutter]
!> * 05.2009 electronic density fit [Juerg Hutter]
!> * 04.2009 refactored and renamed to atom_energy_opt() [Juerg Hutter]
!> * 08.2008 created as atom_energy() [Juerg Hutter]
! **************************************************************************************************
SUBROUTINE atom_energy_opt(atom_section)
TYPE(section_vals_type), POINTER :: atom_section
CHARACTER(len=*), PARAMETER :: routineN = 'atom_energy_opt'
CHARACTER(LEN=2) :: elem
CHARACTER(LEN=default_string_length) :: filename
CHARACTER(LEN=default_string_length), &
DIMENSION(:), POINTER :: tmpstringlist
INTEGER :: do_eric, do_erie, handle, i, im, in, iw, k, maxl, mb, method, mo, n_meth, n_rep, &
nder, nr_gh, num_gau, num_gto, num_pol, reltyp, zcore, zval, zz
INTEGER, DIMENSION(0:lmat) :: maxn
INTEGER, DIMENSION(:), POINTER :: cn
LOGICAL :: dm, do_gh, do_zmp, doread, eri_c, eri_e, &
had_ae, had_pp, lcomp, lcond, pp_calc, &
read_vxc
REAL(KIND=dp) :: crad, delta, lambda
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: ext_density, ext_vxc
REAL(KIND=dp), DIMENSION(0:lmat, 10) :: pocc
TYPE(atom_basis_type), POINTER :: ae_basis, pp_basis
TYPE(atom_integrals), POINTER :: ae_int, pp_int
TYPE(atom_optimization_type) :: optimization
TYPE(atom_orbitals), POINTER :: orbitals
TYPE(atom_p_type), DIMENSION(:, :), POINTER :: atom_info
TYPE(atom_potential_type), POINTER :: ae_pot, p_pot
TYPE(atom_state), POINTER :: state
TYPE(cp_logger_type), POINTER :: logger
TYPE(section_vals_type), POINTER :: admm_section, basis_section, external_vxc_section, &
method_section, opt_section, potential_section, powell_section, sgp_section, xc_section, &
zmp_restart_section, zmp_section
CALL timeset(routineN, handle)
! What atom do we calculate
CALL section_vals_val_get(atom_section, "ATOMIC_NUMBER", i_val=zval)
CALL section_vals_val_get(atom_section, "ELEMENT", c_val=elem)
zz = 0
DO i = 1, nelem
IF (ptable(i)%symbol == elem) THEN
zz = i
EXIT
END IF
END DO
IF (zz /= 1) zval = zz
! read and set up inofrmation on the basis sets
ALLOCATE (ae_basis, pp_basis)
basis_section => section_vals_get_subs_vals(atom_section, "AE_BASIS")
NULLIFY (ae_basis%grid)
CALL init_atom_basis(ae_basis, basis_section, zval, "AE")
NULLIFY (pp_basis%grid)
basis_section => section_vals_get_subs_vals(atom_section, "PP_BASIS")
CALL init_atom_basis(pp_basis, basis_section, zval, "PP")
! print general and basis set information
logger => cp_get_default_logger()
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%PROGRAM_BANNER", extension=".log")
IF (iw > 0) CALL atom_print_info(zval, "Atomic Energy Calculation", iw)
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%PROGRAM_BANNER")
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%BASIS_SET", extension=".log")
IF (iw > 0) THEN
CALL atom_print_basis(ae_basis, iw, " All Electron Basis")
CALL atom_print_basis(pp_basis, iw, " Pseudopotential Basis")
END IF
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%BASIS_SET")
! read and setup information on the pseudopotential
NULLIFY (potential_section)
potential_section => section_vals_get_subs_vals(atom_section, "POTENTIAL")
ALLOCATE (ae_pot, p_pot)
CALL init_atom_potential(p_pot, potential_section, zval)
CALL init_atom_potential(ae_pot, potential_section, -1)
! if the ERI's are calculated analytically, we have to precalculate them
eri_c = .FALSE.
CALL section_vals_val_get(atom_section, "COULOMB_INTEGRALS", i_val=do_eric)
IF (do_eric == do_analytic) eri_c = .TRUE.
eri_e = .FALSE.
CALL section_vals_val_get(atom_section, "EXCHANGE_INTEGRALS", i_val=do_erie)
IF (do_erie == do_analytic) eri_e = .TRUE.
CALL section_vals_val_get(atom_section, "USE_GAUSS_HERMITE", l_val=do_gh)
CALL section_vals_val_get(atom_section, "GRID_POINTS_GH", i_val=nr_gh)
! information on the states to be calculated
CALL section_vals_val_get(atom_section, "MAX_ANGULAR_MOMENTUM", i_val=maxl)
maxn = 0
CALL section_vals_val_get(atom_section, "CALCULATE_STATES", i_vals=cn)
DO in = 1, MIN(SIZE(cn), 4)
maxn(in - 1) = cn(in)
END DO
DO in = 0, lmat
maxn(in) = MIN(maxn(in), ae_basis%nbas(in))
maxn(in) = MIN(maxn(in), pp_basis%nbas(in))
END DO
! read optimization section
opt_section => section_vals_get_subs_vals(atom_section, "OPTIMIZATION")
CALL read_atom_opt_section(optimization, opt_section)
had_ae = .FALSE.
had_pp = .FALSE.
! Check for the total number of electron configurations to be calculated
CALL section_vals_val_get(atom_section, "ELECTRON_CONFIGURATION", n_rep_val=n_rep)
! Check for the total number of method types to be calculated
method_section => section_vals_get_subs_vals(atom_section, "METHOD")
CALL section_vals_get(method_section, n_repetition=n_meth)
! integrals
ALLOCATE (ae_int, pp_int)
ALLOCATE (atom_info(n_rep, n_meth))
DO in = 1, n_rep
DO im = 1, n_meth
NULLIFY (atom_info(in, im)%atom)
CALL create_atom_type(atom_info(in, im)%atom)
atom_info(in, im)%atom%optimization = optimization
atom_info(in, im)%atom%z = zval
xc_section => section_vals_get_subs_vals(method_section, "XC", i_rep_section=im)
atom_info(in, im)%atom%xc_section => xc_section
! ZMP Reading input sections if they are found initialize everything
do_zmp = .FALSE.
doread = .FALSE.
read_vxc = .FALSE.
zmp_section => section_vals_get_subs_vals(method_section, "ZMP")
CALL section_vals_get(zmp_section, explicit=do_zmp)
atom_info(in, im)%atom%do_zmp = do_zmp
CALL section_vals_val_get(zmp_section, "FILE_DENSITY", c_val=filename)
atom_info(in, im)%atom%ext_file = filename
CALL section_vals_val_get(zmp_section, "GRID_TOL", &
r_val=atom_info(in, im)%atom%zmpgrid_tol)
CALL section_vals_val_get(zmp_section, "LAMBDA", r_val=lambda)
atom_info(in, im)%atom%lambda = lambda
CALL section_vals_val_get(zmp_section, "DM", l_val=dm)
atom_info(in, im)%atom%dm = dm
zmp_restart_section => section_vals_get_subs_vals(zmp_section, "RESTART")
CALL section_vals_get(zmp_restart_section, explicit=doread)
atom_info(in, im)%atom%doread = doread
CALL section_vals_val_get(zmp_restart_section, "FILE_RESTART", c_val=filename)
atom_info(in, im)%atom%zmp_restart_file = filename
! ZMP Reading external vxc section, if found initialize
external_vxc_section => section_vals_get_subs_vals(method_section, "EXTERNAL_VXC")
CALL section_vals_get(external_vxc_section, explicit=read_vxc)
atom_info(in, im)%atom%read_vxc = read_vxc
CALL section_vals_val_get(external_vxc_section, "FILE_VXC", c_val=filename)
atom_info(in, im)%atom%ext_vxc_file = filename
CALL section_vals_val_get(external_vxc_section, "GRID_TOL", &
r_val=atom_info(in, im)%atom%zmpvxcgrid_tol)
ALLOCATE (state)
! get the electronic configuration
CALL section_vals_val_get(atom_section, "ELECTRON_CONFIGURATION", i_rep_val=in, &
c_vals=tmpstringlist)
! set occupations
CALL atom_set_occupation(tmpstringlist, state%occ, state%occupation, state%multiplicity)
state%maxl_occ = get_maxl_occ(state%occ)
state%maxn_occ = get_maxn_occ(state%occ)
! set number of states to be calculated
state%maxl_calc = MAX(maxl, state%maxl_occ)
state%maxl_calc = MIN(lmat, state%maxl_calc)
state%maxn_calc = 0
DO k = 0, state%maxl_calc
state%maxn_calc(k) = MAX(maxn(k), state%maxn_occ(k))
END DO
! is there a pseudo potential
pp_calc = ANY(INDEX(tmpstringlist(1:), "CORE") /= 0)
IF (pp_calc) THEN
! get and set the core occupations
CALL section_vals_val_get(atom_section, "CORE", c_vals=tmpstringlist)
CALL atom_set_occupation(tmpstringlist, state%core, pocc)
zcore = zval - NINT(SUM(state%core))
CALL set_atom(atom_info(in, im)%atom, zcore=zcore, pp_calc=.TRUE.)
ELSE
state%core = 0._dp
CALL set_atom(atom_info(in, im)%atom, zcore=zval, pp_calc=.FALSE.)
END IF
CALL section_vals_val_get(method_section, "METHOD_TYPE", i_val=method, i_rep_section=im)
CALL section_vals_val_get(method_section, "RELATIVISTIC", i_val=reltyp, i_rep_section=im)
CALL set_atom(atom_info(in, im)%atom, method_type=method, relativistic=reltyp)
IF (atom_consistent_method(method, state%multiplicity)) THEN
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%METHOD_INFO", extension=".log")
CALL atom_print_method(atom_info(in, im)%atom, iw)
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%METHOD_INFO")
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%POTENTIAL", extension=".log")
IF (pp_calc) THEN
IF (iw > 0) CALL atom_print_potential(p_pot, iw)
ELSE
IF (iw > 0) CALL atom_print_potential(ae_pot, iw)
END IF
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%POTENTIAL")
END IF
! calculate integrals
IF (pp_calc) THEN
! general integrals
CALL atom_int_setup(pp_int, pp_basis, &
potential=p_pot, eri_coulomb=eri_c, eri_exchange=eri_e)
! potential
CALL atom_ppint_setup(pp_int, pp_basis, potential=p_pot)
!
NULLIFY (pp_int%tzora, pp_int%hdkh)
!
CALL set_atom(atom_info(in, im)%atom, basis=pp_basis, integrals=pp_int, potential=p_pot)
state%maxn_calc(:) = MIN(state%maxn_calc(:), pp_basis%nbas(:))
CPASSERT(ALL(state%maxn_calc(:) >= state%maxn_occ))
had_pp = .TRUE.
ELSE
! general integrals
CALL atom_int_setup(ae_int, ae_basis, potential=ae_pot, &
eri_coulomb=eri_c, eri_exchange=eri_e)
! potential
CALL atom_ppint_setup(ae_int, ae_basis, potential=ae_pot)
! relativistic correction terms
CALL atom_relint_setup(ae_int, ae_basis, reltyp, zcore=REAL(zval, dp))
!
CALL set_atom(atom_info(in, im)%atom, basis=ae_basis, integrals=ae_int, potential=ae_pot)
state%maxn_calc(:) = MIN(state%maxn_calc(:), ae_basis%nbas(:))
CPASSERT(ALL(state%maxn_calc(:) >= state%maxn_occ))
had_ae = .TRUE.
END IF
CALL set_atom(atom_info(in, im)%atom, state=state)
CALL set_atom(atom_info(in, im)%atom, coulomb_integral_type=do_eric, &
exchange_integral_type=do_erie)
atom_info(in, im)%atom%hfx_pot%do_gh = do_gh
atom_info(in, im)%atom%hfx_pot%nr_gh = nr_gh
NULLIFY (orbitals)
mo = MAXVAL(state%maxn_calc)
mb = MAXVAL(atom_info(in, im)%atom%basis%nbas)
CALL create_atom_orbs(orbitals, mb, mo)
CALL set_atom(atom_info(in, im)%atom, orbitals=orbitals)
IF (atom_consistent_method(method, state%multiplicity)) THEN
!Calculate the electronic structure
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%SCF_INFO", extension=".log")
CALL calculate_atom(atom_info(in, im)%atom, iw)
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%SCF_INFO")
! ZMP If we have the external density do zmp
IF (atom_info(in, im)%atom%do_zmp) THEN
CALL atom_write_zmp_restart(atom_info(in, im)%atom)
ALLOCATE (ext_density(atom_info(in, im)%atom%basis%grid%nr))
ext_density = 0._dp
CALL atom_read_external_density(ext_density, atom_info(in, im)%atom, iw)
CALL calculate_atom_zmp(ext_density=ext_density, &
atom=atom_info(in, im)%atom, &
lprint=.TRUE.)
DEALLOCATE (ext_density)
END IF
! ZMP If we have the external v_xc calculate KS quantities
IF (atom_info(in, im)%atom%read_vxc) THEN
ALLOCATE (ext_vxc(atom_info(in, im)%atom%basis%grid%nr))
ext_vxc = 0._dp
CALL atom_read_external_vxc(ext_vxc, atom_info(in, im)%atom, iw)
CALL calculate_atom_ext_vxc(vxc=ext_vxc, &
atom=atom_info(in, im)%atom, &
lprint=.TRUE.)
DEALLOCATE (ext_vxc)
END IF
! Print out the orbitals if requested
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%ORBITALS", extension=".log")
IF (iw > 0) THEN
CALL atom_print_orbitals(atom_info(in, im)%atom, iw)
END IF
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%ORBITALS")
! perform a fit of the total electronic density
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%FIT_DENSITY", extension=".log")
IF (iw > 0) THEN
CALL section_vals_val_get(atom_section, "PRINT%FIT_DENSITY%NUM_GTO", i_val=num_gto)
powell_section => section_vals_get_subs_vals(atom_section, "POWELL")
CALL atom_fit_density(atom_info(in, im)%atom, num_gto, 0, iw, powell_section=powell_section)
END IF
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%FIT_DENSITY")
! Optimize a local potential for the non-additive kinetic energy term in KG
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%FIT_KGPOT", extension=".log")
IF (iw > 0) THEN
CALL section_vals_val_get(atom_section, "PRINT%FIT_KGPOT%NUM_GAUSSIAN", i_val=num_gau)
CALL section_vals_val_get(atom_section, "PRINT%FIT_KGPOT%NUM_POLYNOM", i_val=num_pol)
powell_section => section_vals_get_subs_vals(atom_section, "POWELL")
CALL atom_fit_kgpot(atom_info(in, im)%atom, num_gau, num_pol, iw, powell_section=powell_section)
END IF
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%FIT_KGPOT")
! generate a response basis
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%RESPONSE_BASIS", extension=".log")
IF (iw > 0) THEN
CALL section_vals_val_get(atom_section, "PRINT%RESPONSE_BASIS%DELTA_CHARGE", r_val=delta)
CALL section_vals_val_get(atom_section, "PRINT%RESPONSE_BASIS%DERIVATIVES", i_val=nder)
CALL atom_response_basis(atom_info(in, im)%atom, delta, nder, iw)
END IF
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%RESPONSE_BASIS")
! generate a UPF file
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%UPF_FILE", extension=".upf", &
file_position="REWIND")
IF (iw > 0) THEN
CALL atom_write_upf(atom_info(in, im)%atom, iw)
END IF
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%UPF_FILE")
END IF
END DO
END DO
! generate a geometrical response basis (GRB)
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%GEOMETRICAL_RESPONSE_BASIS", extension=".log")
IF (iw > 0) THEN
CALL atom_grb_construction(atom_info, atom_section, iw)
END IF
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%GEOMETRICAL_RESPONSE_BASIS")
! Analyze basis sets
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%ANALYZE_BASIS", extension=".log")
IF (iw > 0) THEN
CALL section_vals_val_get(atom_section, "PRINT%ANALYZE_BASIS%OVERLAP_CONDITION_NUMBER", l_val=lcond)
CALL section_vals_val_get(atom_section, "PRINT%ANALYZE_BASIS%COMPLETENESS", l_val=lcomp)
crad = ptable(zval)%covalent_radius*bohr
IF (had_ae) THEN
IF (lcond) CALL atom_condnumber(ae_basis, crad, iw)
IF (lcomp) CALL atom_completeness(ae_basis, zval, iw)
END IF
IF (had_pp) THEN
IF (lcond) CALL atom_condnumber(pp_basis, crad, iw)
IF (lcomp) CALL atom_completeness(pp_basis, zval, iw)
END IF
END IF
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%ANALYZE_BASIS")
! Analyse ADMM approximation
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%ADMM", extension=".log")
admm_section => section_vals_get_subs_vals(atom_section, "PRINT%ADMM")
IF (iw > 0) THEN
CALL atom_admm(atom_info, admm_section, iw)
END IF
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%ADMM")
! Generate a separable form of the pseudopotential using Gaussian functions
iw = cp_print_key_unit_nr(logger, atom_section, "PRINT%SEPARABLE_GAUSSIAN_PSEUDO", extension=".log")
sgp_section => section_vals_get_subs_vals(atom_section, "PRINT%SEPARABLE_GAUSSIAN_PSEUDO")
IF (iw > 0) THEN
CALL atom_sgp_construction(atom_info, sgp_section, iw)
END IF
CALL cp_print_key_finished_output(iw, logger, atom_section, "PRINT%SEPARABLE_GAUSSIAN_PSEUDO")
! clean up
IF (had_ae) THEN
CALL atom_int_release(ae_int)
CALL atom_ppint_release(ae_int)
CALL atom_relint_release(ae_int)
END IF
IF (had_pp) THEN
CALL atom_int_release(pp_int)
CALL atom_ppint_release(pp_int)
CALL atom_relint_release(pp_int)
END IF
CALL release_atom_basis(ae_basis)
CALL release_atom_basis(pp_basis)
CALL release_atom_potential(p_pot)
CALL release_atom_potential(ae_pot)
DO in = 1, n_rep
DO im = 1, n_meth
CALL release_atom_type(atom_info(in, im)%atom)
END DO
END DO
DEALLOCATE (atom_info)
DEALLOCATE (ae_pot, p_pot, ae_basis, pp_basis, ae_int, pp_int)
CALL timestop(handle)
END SUBROUTINE atom_energy_opt
! **************************************************************************************************
!> \brief Calculate response basis contraction coefficients.
!> \param atom information about the atomic kind
!> \param delta variation of charge used in finite difference derivative calculation
!> \param nder number of wavefunction derivatives to calculate
!> \param iw output file unit
!> \par History
!> * 10.2011 Gram-Schmidt orthogonalization [Joost VandeVondele]
!> * 05.2009 created [Juerg Hutter]
! **************************************************************************************************
SUBROUTINE atom_response_basis(atom, delta, nder, iw)
TYPE(atom_type), POINTER :: atom
REAL(KIND=dp), INTENT(IN) :: delta
INTEGER, INTENT(IN) :: nder, iw
INTEGER :: i, ider, j, k, l, lhomo, m, n, nhomo, &
s1, s2
REAL(KIND=dp) :: dene, emax, expzet, fhomo, o, prefac, &
zeta
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :) :: amat
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :) :: rbasis
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :, :) :: wfn
REAL(KIND=dp), DIMENSION(:, :, :), POINTER :: ovlp
TYPE(atom_state), POINTER :: state
WRITE (iw, '(/," ",79("*"),/,T30,A,A/," ",79("*"))') "RESPONSE BASIS for ", ptable(atom%z)%symbol
state => atom%state
ovlp => atom%integrals%ovlp
! find HOMO
lhomo = -1
nhomo = -1
emax = -HUGE(1._dp)
DO l = 0, state%maxl_occ
DO i = 1, state%maxn_occ(l)
IF (atom%orbitals%ener(i, l) > emax) THEN
lhomo = l
nhomo = i
emax = atom%orbitals%ener(i, l)
fhomo = state%occupation(l, i)
END IF
END DO
END DO
s1 = SIZE(atom%orbitals%wfn, 1)
s2 = SIZE(atom%orbitals%wfn, 2)
ALLOCATE (wfn(s1, s2, 0:lmat, -nder:nder))
s2 = MAXVAL(state%maxn_occ) + nder
ALLOCATE (rbasis(s1, s2, 0:lmat))
rbasis = 0._dp
DO ider = -nder, nder
dene = REAL(ider, KIND=dp)*delta
CPASSERT(fhomo > ABS(dene))
state%occupation(lhomo, nhomo) = fhomo + dene
CALL calculate_atom(atom, iw=0, noguess=.TRUE.)
wfn(:, :, :, ider) = atom%orbitals%wfn
state%occupation(lhomo, nhomo) = fhomo
END DO
DO l = 0, state%maxl_occ
! occupied states
DO i = 1, MAX(state%maxn_occ(l), 1)
rbasis(:, i, l) = wfn(:, i, l, 0)
END DO
! differentiation
DO ider = 1, nder
i = MAX(state%maxn_occ(l), 1)
SELECT CASE (ider)
CASE (1)
rbasis(:, i + 1, l) = 0.5_dp*(wfn(:, i, l, 1) - wfn(:, i, l, -1))/delta
CASE (2)
rbasis(:, i + 2, l) = 0.25_dp*(wfn(:, i, l, 2) - 2._dp*wfn(:, i, l, 0) + wfn(:, i, l, -2))/delta**2
CASE (3)
rbasis(:, i + 3, l) = 0.125_dp*(wfn(:, i, l, 3) - 3._dp*wfn(:, i, l, 1) &
+ 3._dp*wfn(:, i, l, -1) - wfn(:, i, l, -3))/delta**3
CASE DEFAULT
CPABORT("")
END SELECT
END DO
! orthogonalization, use gram-schmidt in order to keep the natural order (semi-core, valence, response) of the wfn.
n = state%maxn_occ(l) + nder
m = atom%basis%nbas(l)
DO i = 1, n
DO j = 1, i - 1
o = DOT_PRODUCT(rbasis(1:m, j, l), RESHAPE(MATMUL(ovlp(1:m, 1:m, l), rbasis(1:m, i:i, l)), (/m/)))
rbasis(1:m, i, l) = rbasis(1:m, i, l) - o*rbasis(1:m, j, l)
END DO
o = DOT_PRODUCT(rbasis(1:m, i, l), RESHAPE(MATMUL(ovlp(1:m, 1:m, l), rbasis(1:m, i:i, l)), (/m/)))
rbasis(1:m, i, l) = rbasis(1:m, i, l)/SQRT(o)
END DO
! check
ALLOCATE (amat(n, n))
amat(1:n, 1:n) = MATMUL(TRANSPOSE(rbasis(1:m, 1:n, l)), MATMUL(ovlp(1:m, 1:m, l), rbasis(1:m, 1:n, l)))
DO i = 1, n
amat(i, i) = amat(i, i) - 1._dp
END DO
IF (MAXVAL(ABS(amat)) > 1.e-12) THEN
WRITE (iw, '(/,A,G20.10)') " Orthogonality error ", MAXVAL(ABS(amat))
END IF
DEALLOCATE (amat)
! Quickstep normalization
WRITE (iw, '(/,A,T30,I3)') " Angular momentum :", l
WRITE (iw, '(/,A,I0,A,I0,A)') " Exponent Coef.(Quickstep Normalization), first ", &
n - nder, " valence ", nder, " response"
expzet = 0.25_dp*REAL(2*l + 3, dp)
prefac = SQRT(SQRT(pi)/2._dp**(l + 2)*dfac(2*l + 1))
DO i = 1, m
zeta = (2._dp*atom%basis%am(i, l))**expzet
WRITE (iw, '(4X,F20.10,4X,15ES20.6)') atom%basis%am(i, l), ((prefac*rbasis(i, k, l)/zeta), k=1, n)
END DO
END DO
DEALLOCATE (wfn, rbasis)
WRITE (iw, '(" ",79("*"))')
END SUBROUTINE atom_response_basis
! **************************************************************************************************
!> \brief Write pseudo-potential in Quantum Espresso UPF format.
!> \param atom information about the atomic kind
!> \param iw output file unit
!> \par History
!> * 09.2012 created [Juerg Hutter]
! **************************************************************************************************
SUBROUTINE atom_write_upf(atom, iw)
TYPE(atom_type), POINTER :: atom
INTEGER, INTENT(IN) :: iw
CHARACTER(LEN=default_string_length) :: string
INTEGER :: i, ibeta, j, k, l, lmax, nbeta, nr, &
nwfc, nwfn
LOGICAL :: up
REAL(KIND=dp) :: pf, rl, rmax
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: beta, corden, dens, ef, locpot, rp
REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :) :: dij
TYPE(atom_gthpot_type), POINTER :: pot
IF (.NOT. atom%pp_calc) RETURN
IF (atom%potential%ppot_type /= gth_pseudo) RETURN
pot => atom%potential%gth_pot
CPASSERT(.NOT. pot%lsdpot)
WRITE (iw, '(A)') '<UPF version="2.0.1">'
WRITE (iw, '(T4,A)') '<PP_INFO>'
WRITE (iw, '(T8,A)') 'Converted from CP2K GTH format'
WRITE (iw, '(T8,A)') '<PP_INPUTFILE>'
CALL atom_write_pseudo_param(pot, iw)
WRITE (iw, '(T8,A)') '</PP_INPUTFILE>'
WRITE (iw, '(T4,A)') '</PP_INFO>'
WRITE (iw, '(T4,A)') '<PP_HEADER'
WRITE (iw, '(T8,A)') 'generated="Generated in analytical, separable form"'
WRITE (iw, '(T8,A)') 'author="Goedecker/Hartwigsen/Hutter/Teter"'
WRITE (iw, '(T8,A)') 'date="Phys.Rev.B58, 3641 (1998); B54, 1703 (1996)"'
WRITE (iw, '(T8,A)') 'comment="This file generated by CP2K ATOM code"'
CALL compose(string, "element", cval=pot%symbol)
WRITE (iw, '(T8,A)') TRIM(string)
WRITE (iw, '(T8,A)') 'pseudo_type="NC"'
WRITE (iw, '(T8,A)') 'relativistic="no"'
WRITE (iw, '(T8,A)') 'is_ultrasoft="F"'
WRITE (iw, '(T8,A)') 'is_paw="F"'
WRITE (iw, '(T8,A)') 'is_coulomb="F"'
WRITE (iw, '(T8,A)') 'has_so="F"'
WRITE (iw, '(T8,A)') 'has_wfc="F"'
WRITE (iw, '(T8,A)') 'has_gipaw="F"'
WRITE (iw, '(T8,A)') 'paw_as_gipaw="F"'
IF (pot%nlcc) THEN
WRITE (iw, '(T8,A)') 'core_correction="T"'
ELSE
WRITE (iw, '(T8,A)') 'core_correction="F"'
END IF
WRITE (iw, '(T8,A)') 'functional="DFT"'
CALL compose(string, "z_valence", rval=pot%zion)
WRITE (iw, '(T8,A)') TRIM(string)
CALL compose(string, "total_psenergy", rval=2._dp*atom%energy%etot)
WRITE (iw, '(T8,A)') TRIM(string)
WRITE (iw, '(T8,A)') 'wfc_cutoff="0.0E+00"'
WRITE (iw, '(T8,A)') 'rho_cutoff="0.0E+00"'
lmax = -1
DO l = 0, lmat
IF (pot%nl(l) > 0) lmax = l
END DO
CALL compose(string, "l_max", ival=lmax)
WRITE (iw, '(T8,A)') TRIM(string)
WRITE (iw, '(T8,A)') 'l_max_rho="0"'
WRITE (iw, '(T8,A)') 'l_local="-3"'
nr = atom%basis%grid%nr
CALL compose(string, "mesh_size", ival=nr)
WRITE (iw, '(T8,A)') TRIM(string)
nwfc = SUM(atom%state%maxn_occ)
CALL compose(string, "number_of_wfc", ival=nwfc)
WRITE (iw, '(T8,A)') TRIM(string)
nbeta = SUM(pot%nl)
CALL compose(string, "number_of_proj", ival=nbeta)
WRITE (iw, '(T8,A)') TRIM(string)//'/>'
! Mesh
up = atom%basis%grid%rad(1) < atom%basis%grid%rad(nr)
WRITE (iw, '(T4,A)') '<PP_MESH'
WRITE (iw, '(T8,A)') 'dx="1.E+00"'
CALL compose(string, "mesh", ival=nr)
WRITE (iw, '(T8,A)') TRIM(string)
WRITE (iw, '(T8,A)') 'xmin="1.E+00"'
rmax = MAXVAL(atom%basis%grid%rad)
CALL compose(string, "rmax", rval=rmax)
WRITE (iw, '(T8,A)') TRIM(string)
WRITE (iw, '(T8,A)') 'zmesh="1.E+00">'
WRITE (iw, '(T8,A)') '<PP_R type="real"'
CALL compose(string, "size", ival=nr)
WRITE (iw, '(T12,A)') TRIM(string)
WRITE (iw, '(T12,A)') 'columns="4">'
IF (up) THEN
WRITE (iw, '(T12,4ES25.12E3)') (atom%basis%grid%rad(i), i=1, nr)
ELSE
WRITE (iw, '(T12,4ES25.12E3)') (atom%basis%grid%rad(i), i=nr, 1, -1)
END IF
WRITE (iw, '(T8,A)') '</PP_R>'
WRITE (iw, '(T8,A)') '<PP_RAB type="real"'
CALL compose(string, "size", ival=nr)
WRITE (iw, '(T12,A)') TRIM(string)
WRITE (iw, '(T12,A)') 'columns="4">'
IF (up) THEN
WRITE (iw, '(T12,4ES25.12E3)') (atom%basis%grid%wr(i)/atom%basis%grid%rad2(i), i=1, nr)
ELSE
WRITE (iw, '(T12,4ES25.12E3)') (atom%basis%grid%wr(i)/atom%basis%grid%rad2(i), i=nr, 1, -1)
END IF
WRITE (iw, '(T8,A)') '</PP_RAB>'
WRITE (iw, '(T4,A)') '</PP_MESH>'
! NLCC
IF (pot%nlcc) THEN
WRITE (iw, '(T4,A)') '<PP_NLCC type="real"'
CALL compose(string, "size", ival=nr)
WRITE (iw, '(T8,A)') TRIM(string)
WRITE (iw, '(T8,A)') 'columns="4">'
ALLOCATE (corden(nr))
corden(:) = 0.0_dp
CALL atom_core_density(corden, atom%potential, "RHO", atom%basis%grid%rad)
IF (up) THEN
WRITE (iw, '(T8,4ES25.12E3)') (corden(i), i=1, nr)
ELSE
WRITE (iw, '(T8,4ES25.12E3)') (corden(i), i=nr, 1, -1)
END IF
DEALLOCATE (corden)
WRITE (iw, '(T4,A)') '</PP_NLCC>'
END IF
! local PP
WRITE (iw, '(T4,A)') '<PP_LOCAL type="real"'
CALL compose(string, "size", ival=nr)
WRITE (iw, '(T8,A)') TRIM(string)
WRITE (iw, '(T8,A)') 'columns="4">'
ALLOCATE (locpot(nr))
locpot(:) = 0.0_dp
CALL atom_local_potential(locpot, pot, atom%basis%grid%rad)
IF (up) THEN
WRITE (iw, '(T8,4ES25.12E3)') (2.0_dp*locpot(i), i=1, nr)
ELSE
WRITE (iw, '(T8,4ES25.12E3)') (2.0_dp*locpot(i), i=nr, 1, -1)
END IF
DEALLOCATE (locpot)
WRITE (iw, '(T4,A)') '</PP_LOCAL>'
! nonlocal PP
WRITE (iw, '(T4,A)') '<PP_NONLOCAL>'
ALLOCATE (rp(nr), ef(nr), beta(nr))
ibeta = 0
DO l = 0, lmat
IF (pot%nl(l) == 0) CYCLE
rl = pot%rcnl(l)
rp(:) = atom%basis%grid%rad
ef(:) = EXP(-0.5_dp*rp*rp/(rl*rl))
DO i = 1, pot%nl(l)
pf = rl**(l + 0.5_dp*(4._dp*i - 1._dp))
j = l + 2*i - 1
pf = SQRT(2._dp)/(pf*SQRT(gamma1(j)))
beta(:) = pf*rp**(l + 2*i - 2)*ef
ibeta = ibeta + 1
CALL compose(string, "<PP_BETA", counter=ibeta)
WRITE (iw, '(T8,A)') TRIM(string)
CALL compose(string, "angular_momentum", ival=l)
WRITE (iw, '(T12,A)') TRIM(string)
WRITE (iw, '(T12,A)') 'type="real"'
CALL compose(string, "size", ival=nr)
WRITE (iw, '(T12,A)') TRIM(string)
WRITE (iw, '(T12,A)') 'columns="4">'
beta(:) = beta*rp
IF (up) THEN
WRITE (iw, '(T12,4ES25.12E3)') (2._dp*beta(j), j=1, nr)
ELSE
WRITE (iw, '(T12,4ES25.12E3)') (2._dp*beta(j), j=nr, 1, -1)
END IF
CALL compose(string, "</PP_BETA", counter=ibeta, isfinal=.TRUE.)
WRITE (iw, '(T8,A)') TRIM(string)
END DO
END DO
DEALLOCATE (rp, ef, beta)
! nonlocal PP matrix elements
ALLOCATE (dij(nbeta, nbeta))
dij = 0._dp
DO l = 0, lmat
IF (pot%nl(l) == 0) CYCLE
ibeta = SUM(pot%nl(0:l - 1)) + 1
i = ibeta + pot%nl(l) - 1
dij(ibeta:i, ibeta:i) = pot%hnl(1:pot%nl(l), 1:pot%nl(l), l)
END DO
WRITE (iw, '(T8,A)') '<PP_DIJ type="real"'
WRITE (iw, '(T12,A)') 'columns="4">'
WRITE (iw, '(T12,4ES25.12E3)') ((0.5_dp*dij(i, j), j=1, nbeta), i=1, nbeta)
WRITE (iw, '(T8,A)') '</PP_DIJ>'
DEALLOCATE (dij)
WRITE (iw, '(T4,A)') '</PP_NONLOCAL>'
! atomic wavefunctions
ALLOCATE (beta(nr))
WRITE (iw, '(T4,A)') '<PP_PSWFC>'
nwfn = 0
DO l = 0, lmat
DO i = 1, 10
IF (ABS(atom%state%occupation(l, i)) == 0._dp) CYCLE
nwfn = nwfn + 1
CALL compose(string, "<PP_CHI", counter=nwfn)
WRITE (iw, '(T8,A)') TRIM(string)
CALL compose(string, "l", ival=l)
WRITE (iw, '(T12,A)') TRIM(string)
CALL compose(string, "occupation", rval=atom%state%occupation(l, i))
WRITE (iw, '(T12,A)') TRIM(string)
CALL compose(string, "pseudo_energy", rval=2._dp*atom%orbitals%ener(i, l))
WRITE (iw, '(T12,A)') TRIM(string)
WRITE (iw, '(T12,A)') 'columns="4">'
beta = 0._dp
DO k = 1, atom%basis%nbas(l)
beta(:) = beta(:) + atom%orbitals%wfn(k, i, l)*atom%basis%bf(:, k, l)
END DO
beta(:) = beta*atom%basis%grid%rad
IF (up) THEN
WRITE (iw, '(T12,4ES25.12E3)') (beta(j)*atom%basis%grid%rad(j), j=1, nr)
ELSE
WRITE (iw, '(T12,4ES25.12E3)') (beta(j)*atom%basis%grid%rad(j), j=nr, 1, -1)
END IF
CALL compose(string, "</PP_CHI", counter=nwfn, isfinal=.TRUE.)
WRITE (iw, '(T8,A)') TRIM(string)
END DO
END DO
WRITE (iw, '(T4,A)') '</PP_PSWFC>'
DEALLOCATE (beta)
! atomic charge
ALLOCATE (dens(nr))
WRITE (iw, '(T4,A)') '<PP_RHOATOM type="real"'
CALL compose(string, "size", ival=nr)
WRITE (iw, '(T8,A)') TRIM(string)
WRITE (iw, '(T8,A)') 'columns="4">'
CALL atom_density(dens, atom%orbitals%pmat, atom%basis, atom%state%maxl_occ, &
"RHO", atom%basis%grid%rad)
IF (up) THEN
WRITE (iw, '(T8,4ES25.12E3)') (4._dp*pi*dens(j)*atom%basis%grid%rad2(j), j=1, nr)
ELSE
WRITE (iw, '(T8,4ES25.12E3)') (4._dp*pi*dens(j)*atom%basis%grid%rad2(j), j=nr, 1, -1)
END IF
WRITE (iw, '(T4,A)') '</PP_RHOATOM>'
DEALLOCATE (dens)
WRITE (iw, '(A)') '</UPF>'
END SUBROUTINE atom_write_upf
! **************************************************************************************************
!> \brief Produce an XML attribute string 'tag="counter/rval/ival/cval"'
!> \param string composed string
!> \param tag attribute tag
!> \param counter counter
!> \param rval real variable
!> \param ival integer variable
!> \param cval string variable
!> \param isfinal close the current XML element if this is the last attribute
!> \par History
!> * 09.2012 created [Juerg Hutter]
! **************************************************************************************************
SUBROUTINE compose(string, tag, counter, rval, ival, cval, isfinal)
CHARACTER(len=*), INTENT(OUT) :: string
CHARACTER(len=*), INTENT(IN) :: tag
INTEGER, INTENT(IN), OPTIONAL :: counter
REAL(KIND=dp), INTENT(IN), OPTIONAL :: rval
INTEGER, INTENT(IN), OPTIONAL :: ival
CHARACTER(len=*), INTENT(IN), OPTIONAL :: cval
LOGICAL, INTENT(IN), OPTIONAL :: isfinal
CHARACTER(LEN=default_string_length) :: str
LOGICAL :: fin
IF (PRESENT(counter)) THEN
WRITE (str, "(I12)") counter
ELSEIF (PRESENT(rval)) THEN
WRITE (str, "(G18.8)") rval
ELSEIF (PRESENT(ival)) THEN
WRITE (str, "(I12)") ival
ELSEIF (PRESENT(cval)) THEN
WRITE (str, "(A)") TRIM(ADJUSTL(cval))
ELSE
WRITE (str, "(A)") ""
END IF
fin = .FALSE.
IF (PRESENT(isfinal)) fin = isfinal
IF (PRESENT(counter)) THEN
IF (fin) THEN
WRITE (string, "(A,A1,A,A1)") TRIM(ADJUSTL(tag)), '.', TRIM(ADJUSTL(str)), '>'
ELSE
WRITE (string, "(A,A1,A)") TRIM(ADJUSTL(tag)), '.', TRIM(ADJUSTL(str))
END IF
ELSE
IF (fin) THEN
WRITE (string, "(A,A2,A,A2)") TRIM(ADJUSTL(tag)), '="', TRIM(ADJUSTL(str)), '>"'
ELSE
WRITE (string, "(A,A2,A,A1)") TRIM(ADJUSTL(tag)), '="', TRIM(ADJUSTL(str)), '"'
END IF
END IF
END SUBROUTINE compose
END MODULE atom_energy