forked from NVlabs/stylegan3
-
-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathprojector.py
executable file
·551 lines (477 loc) · 27.3 KB
/
projector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import copy
import os
from time import perf_counter
import click
from typing import List, Tuple
import imageio
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
import dnnlib
from dnnlib.util import format_time
import legacy
from torch_utils import gen_utils
from tqdm import tqdm
from pytorch_ssim import SSIM # from https://github.com/Po-Hsun-Su/pytorch-ssim
from network_features import VGG16FeaturesNVIDIA, DiscriminatorFeatures
from metrics import metric_utils
# ----------------------------------------------------------------------------
def project(
G,
target: PIL.Image.Image, # [C,H,W] and dynamic range [0,255], W & H must match G output resolution
*,
projection_seed: int,
truncation_psi: float,
num_steps: int = 1000,
w_avg_samples: int = 10000,
initial_learning_rate: float = 0.1,
initial_noise_factor: float = 0.05,
constant_learning_rate: bool = False,
lr_rampdown_length: float = 0.25,
lr_rampup_length: float = 0.05,
noise_ramp_length: float = 0.75,
regularize_noise_weight: float = 1e5,
project_in_wplus: bool = False,
loss_paper: str = 'sgan2', # ['sgan2' || Experimental: 'im2sgan' | 'clip' | 'discriminator']
normed: bool = False,
sqrt_normed: bool = False,
start_wavg: bool = True,
device: torch.device,
D = None) -> Tuple[torch.Tensor, dict]: # output shape: [num_steps, C, 512], C depending on resolution of G
"""
Projecting a 'target' image into the W latent space. The user has an option to project into W+, where all elements
in the latent vector are different. Likewise, the projection process can start from the W midpoint or from a random
point, though results have shown that starting from the midpoint (start_wavg) yields the best results.
"""
assert target.size == (G.img_resolution, G.img_resolution)
G = copy.deepcopy(G).eval().requires_grad_(False).to(device)
# Compute w stats.
z_samples = np.random.RandomState(123).randn(w_avg_samples, G.z_dim)
w_samples = G.mapping(torch.from_numpy(z_samples).to(device), None) # [N, L, C]
if project_in_wplus: # Thanks to @pbaylies for a clean way on how to do this
print('Projecting in W+ latent space...')
if start_wavg:
print(f'Starting from W midpoint using {w_avg_samples} samples...')
w_avg = torch.mean(w_samples, dim=0, keepdim=True) # [1, L, C]
else:
print(f'Starting from a random vector (seed: {projection_seed})...')
z = np.random.RandomState(projection_seed).randn(1, G.z_dim)
w_avg = G.mapping(torch.from_numpy(z).to(device), None) # [1, L, C]
w_avg = G.mapping.w_avg + truncation_psi * (w_avg - G.mapping.w_avg)
else:
print('Projecting in W latent space...')
w_samples = w_samples[:, :1, :] # [N, 1, C]
if start_wavg:
print(f'Starting from W midpoint using {w_avg_samples} samples...')
w_avg = torch.mean(w_samples, dim=0, keepdim=True) # [1, 1, C]
else:
print(f'Starting from a random vector (seed: {projection_seed})...')
z = np.random.RandomState(projection_seed).randn(1, G.z_dim)
w_avg = G.mapping(torch.from_numpy(z).to(device), None)[:, :1, :] # [1, 1, C]; fake w_avg
w_avg = G.mapping.w_avg + truncation_psi * (w_avg - G.mapping.w_avg)
w_std = (torch.sum((w_samples - w_avg) ** 2) / w_avg_samples) ** 0.5
# Setup noise inputs (only for StyleGAN2 models)
noise_buffs = {name: buf for (name, buf) in G.synthesis.named_buffers() if 'noise_const' in name}
# Features for target image. Reshape to 256x256 if it's larger to use with VGG16 (unnecessary for CLIP due to preprocess step)
if loss_paper in ['sgan2', 'im2sgan', 'discriminator']:
target = np.array(target, dtype=np.uint8)
target = torch.tensor(target.transpose([2, 0, 1]), device=device)
target = target.unsqueeze(0).to(device).to(torch.float32)
if target.shape[2] > 256:
target = F.interpolate(target, size=(256, 256), mode='area')
if loss_paper in ['sgan2', 'im2sgan']:
# Load the VGG16 feature detector.
url = 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/metrics/vgg16.pkl'
vgg16 = metric_utils.get_feature_detector(url, device=device)
# Define the target features and possible new losses
if loss_paper == 'sgan2':
target_features = vgg16(target, resize_images=False, return_lpips=True)
elif loss_paper == 'im2sgan':
# Use specific layers
vgg16_features = VGG16FeaturesNVIDIA(vgg16)
# Too cumbersome to add as command-line arg, so we leave it here; use whatever you need, as many times as needed
layers = ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2', 'conv3_1', 'conv3_2', 'conv3_3', 'conv4_1', 'conv4_2',
'conv4_3', 'conv5_1', 'conv5_2', 'conv5_3', 'fc1', 'fc2', 'fc3']
target_features = vgg16_features.get_layers_features(target, layers, normed=normed, sqrt_normed=sqrt_normed)
# Uncomment the next line if you also want to use LPIPS features
# lpips_target_features = vgg16(target_images, resize_images=False, return_lpips=True)
mse = torch.nn.MSELoss(reduction='mean')
ssim_out = SSIM() # can be used as a loss; recommended usage: ssim_loss = 1 - ssim_out(img1, img2)
elif loss_paper == 'discriminator':
disc = DiscriminatorFeatures(D).requires_grad_(False).to(device)
layers = ['b128_conv0', 'b128_conv1', 'b64_conv0', 'b64_conv1', 'b32_conv0', 'b32_conv1',
'b16_conv0', 'b16_conv1', 'b8_conv0', 'b8_conv1', 'b4_conv']
target_features = disc.get_layers_features(target, layers, normed=normed, sqrt_normed=sqrt_normed)
mse = torch.nn.MSELoss(reduction='mean')
ssim_out = SSIM()
elif loss_paper == 'clip':
import clip
model, preprocess = clip.load('ViT-B/32', device=device) # TODO: let user decide which model to use (use list given by clip.available_models()
target = preprocess(target).unsqueeze(0).to(device)
# text = either we give a target image or a text as target
target_features = model.encode_image(target)
mse = torch.nn.MSELoss(reduction='mean')
w_opt = w_avg.clone().detach().requires_grad_(True)
w_out = torch.zeros([num_steps] + list(w_opt.shape[1:]), dtype=torch.float32, device=device)
optimizer = torch.optim.Adam([w_opt] + list(noise_buffs.values()), betas=(0.9, 0.999), lr=initial_learning_rate)
# Init noise.
for buf in noise_buffs.values():
buf[:] = torch.randn_like(buf)
buf.requires_grad = True
for step in range(num_steps):
# Learning rate schedule.
t = step / num_steps
w_noise_scale = w_std * initial_noise_factor * max(0.0, 1.0 - t / noise_ramp_length) ** 2
if constant_learning_rate:
# Turn off the rampup/rampdown of the learning rate
lr_ramp = 1.0
else:
lr_ramp = min(1.0, (1.0 - t) / lr_rampdown_length)
lr_ramp = 0.5 - 0.5 * np.cos(lr_ramp * np.pi)
lr_ramp = lr_ramp * min(1.0, t / lr_rampup_length)
lr = initial_learning_rate * lr_ramp
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# Synth images from opt_w.
w_noise = torch.randn_like(w_opt) * w_noise_scale
if project_in_wplus:
ws = w_opt + w_noise
else:
ws = (w_opt + w_noise).repeat([1, G.mapping.num_ws, 1])
synth_images = G.synthesis(ws, noise_mode='const')
# Downsample image to 256x256 if it's larger than that. VGG was built for 224x224 images.
synth_images = (synth_images + 1) * (255/2)
if synth_images.shape[2] > 256:
synth_images = F.interpolate(synth_images, size=(256, 256), mode='area')
# Reshape synthetic images if G was trained with grayscale data
if synth_images.shape[1] == 1:
synth_images = synth_images.repeat(1, 3, 1, 1) # [1, 1, 256, 256] => [1, 3, 256, 256]
# Features for synth images.
if loss_paper == 'sgan2':
synth_features = vgg16(synth_images, resize_images=False, return_lpips=True)
dist = (target_features - synth_features).square().sum()
# Noise regularization.
reg_loss = 0.0
for v in noise_buffs.values():
noise = v[None, None, :, :] # must be [1,1,H,W] for F.avg_pool2d()
while True:
reg_loss += (noise * torch.roll(noise, shifts=1, dims=3)).mean() ** 2
reg_loss += (noise * torch.roll(noise, shifts=1, dims=2)).mean() ** 2
if noise.shape[2] <= 8:
break
noise = F.avg_pool2d(noise, kernel_size=2)
loss = dist + reg_loss * regularize_noise_weight
# Print in the same line (avoid cluttering the commandline)
n_digits = int(np.log10(num_steps)) + 1 if num_steps > 0 else 1
message = f'step {step + 1:{n_digits}d}/{num_steps}: dist {dist:.7e} | loss {loss.item():.7e}'
print(message, end='\r')
last_status = {'dist': dist.item(), 'loss': loss.item()}
elif loss_paper == 'im2sgan':
# Uncomment to also use LPIPS features as loss (must be better fine-tuned):
# lpips_synth_features = vgg16(synth_images, resize_images=False, return_lpips=True)
synth_features = vgg16_features.get_layers_features(synth_images, layers, normed=normed, sqrt_normed=sqrt_normed)
percept_error = sum(map(lambda x, y: mse(x, y), target_features, synth_features))
# Also uncomment to add the LPIPS loss to the perception error (to-be better fine-tuned)
# percept_error += 1e1 * (lpips_target_features - lpips_synth_features).square().sum()
# Pixel-level MSE
mse_error = mse(synth_images, target) / (G.img_channels * G.img_resolution * G.img_resolution)
ssim_loss = ssim_out(target, synth_images) # tracking SSIM (can also be added the total loss)
loss = percept_error + mse_error # + 1e-2 * (1 - ssim_loss) # needs to be fine-tuned
# Noise regularization.
reg_loss = 0.0
for v in noise_buffs.values():
noise = v[None, None, :, :] # must be [1,1,H,W] for F.avg_pool2d()
while True:
reg_loss += (noise * torch.roll(noise, shifts=1, dims=3)).mean() ** 2
reg_loss += (noise * torch.roll(noise, shifts=1, dims=2)).mean() ** 2
if noise.shape[2] <= 8:
break
noise = F.avg_pool2d(noise, kernel_size=2)
loss += reg_loss * regularize_noise_weight
# We print in the same line (avoid cluttering the commandline)
n_digits = int(np.log10(num_steps)) + 1 if num_steps > 0 else 1
message = f'step {step + 1:{n_digits}d}/{num_steps}: percept loss {percept_error.item():.7e} | ' \
f'pixel mse {mse_error.item():.7e} | ssim {ssim_loss.item():.7e} | loss {loss.item():.7e}'
print(message, end='\r')
last_status = {'percept_error': percept_error.item(),
'pixel_mse': mse_error.item(),
'ssim': ssim_loss.item(),
'loss': loss.item()}
elif loss_paper == 'discriminator':
synth_features = disc.get_layers_features(synth_images, layers, normed=normed, sqrt_normed=sqrt_normed)
percept_error = sum(map(lambda x, y: mse(x, y), target_features, synth_features))
# Also uncomment to add the LPIPS loss to the perception error (to-be better fine-tuned)
# percept_error += 1e1 * (lpips_target_features - lpips_synth_features).square().sum()
# Pixel-level MSE
mse_error = mse(synth_images, target) / (G.img_channels * G.img_resolution * G.img_resolution)
ssim_loss = ssim_out(target, synth_images) # tracking SSIM (can also be added the total loss)
loss = percept_error + mse_error # + 1e-2 * (1 - ssim_loss) # needs to be fine-tuned
# Noise regularization.
reg_loss = 0.0
for v in noise_buffs.values():
noise = v[None, None, :, :] # must be [1,1,H,W] for F.avg_pool2d()
while True:
reg_loss += (noise * torch.roll(noise, shifts=1, dims=3)).mean() ** 2
reg_loss += (noise * torch.roll(noise, shifts=1, dims=2)).mean() ** 2
if noise.shape[2] <= 8:
break
noise = F.avg_pool2d(noise, kernel_size=2)
loss += reg_loss * regularize_noise_weight
# We print in the same line (avoid cluttering the commandline)
n_digits = int(np.log10(num_steps)) + 1 if num_steps > 0 else 1
message = f'step {step + 1:{n_digits}d}/{num_steps}: percept loss {percept_error.item():.7e} | ' \
f'pixel mse {mse_error.item():.7e} | ssim {ssim_loss.item():.7e} | loss {loss.item():.7e}'
print(message, end='\r')
last_status = {'percept_error': percept_error.item(),
'pixel_mse': mse_error.item(),
'ssim': ssim_loss.item(),
'loss': loss.item()}
elif loss_paper == 'clip':
import torchvision.transforms as T
synth_img = F.interpolate(synth_images, size=(224, 224), mode='area')
prep = T.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
synth_img = prep(synth_img)
# synth_images = synth_images.permute(0, 2, 3, 1).clamp(0, 255).to(torch.uint8).cpu().numpy()[0] # NCWH => WHC
# synth_images = preprocess(PIL.Image.fromarray(synth_images, 'RGB')).unsqueeze(0).to(device)
synth_features = model.encode_image(synth_img)
dist = mse(target_features, synth_features)
# Noise regularization.
reg_loss = 0.0
for v in noise_buffs.values():
noise = v[None, None, :, :] # must be [1,1,H,W] for F.avg_pool2d()
while True:
reg_loss += (noise * torch.roll(noise, shifts=1, dims=3)).mean() ** 2
reg_loss += (noise * torch.roll(noise, shifts=1, dims=2)).mean() ** 2
if noise.shape[2] <= 8:
break
noise = F.avg_pool2d(noise, kernel_size=2)
loss = dist + reg_loss * regularize_noise_weight
# Print in the same line (avoid cluttering the commandline)
n_digits = int(np.log10(num_steps)) + 1 if num_steps > 0 else 1
message = f'step {step + 1:{n_digits}d}/{num_steps}: dist {dist:.7e}'
print(message, end='\r')
last_status = {'dist': dist.item(), 'loss': loss.item()}
# Step
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
# Save projected W for each optimization step.
w_out[step] = w_opt.detach()[0]
# Normalize noise.
with torch.no_grad():
for buf in noise_buffs.values():
buf -= buf.mean()
buf *= buf.square().mean().rsqrt()
# Save run config
run_config = {
'optimization_options': {
'num_steps': num_steps,
'initial_learning_rate': initial_learning_rate,
'constant_learning_rate': constant_learning_rate,
'regularize_noise_weight': regularize_noise_weight,
},
'projection_options': {
'w_avg_samples': w_avg_samples,
'initial_noise_factor': initial_noise_factor,
'lr_rampdown_length': lr_rampdown_length,
'lr_rampup_length': lr_rampup_length,
'noise_ramp_length': noise_ramp_length,
},
'latent_space_options': {
'project_in_wplus': project_in_wplus,
'start_wavg': start_wavg,
'projection_seed': projection_seed,
'truncation_psi': truncation_psi,
},
'loss_options': {
'loss_paper': loss_paper,
'vgg16_normed': normed,
'vgg16_sqrt_normed': sqrt_normed,
},
'elapsed_time': '',
'last_commandline_status': last_status
}
if project_in_wplus:
return w_out, run_config # [num_steps, L, C]
return w_out.repeat([1, G.mapping.num_ws, 1]), run_config # [num_steps, 1, C] => [num_steps, L, C]
# ----------------------------------------------------------------------------
@click.command()
@click.pass_context
@click.option('--network', '-net', 'network_pkl', help='Network pickle filename', required=True)
@click.option('--cfg', help='Config of the network, used only if you want to use one of the models that are in torch_utils.gen_utils.resume_specs', type=click.Choice(['stylegan2', 'stylegan3-t', 'stylegan3-r']))
@click.option('--target', '-t', 'target_fname', type=click.Path(exists=True, dir_okay=False), help='Target image file to project to', required=True, metavar='FILE')
# Optimization options
@click.option('--num-steps', '-nsteps', help='Number of optimization steps', type=click.IntRange(min=0), default=1000, show_default=True)
@click.option('--init-lr', '-lr', 'initial_learning_rate', type=float, help='Initial learning rate of the optimization process', default=0.1, show_default=True)
@click.option('--constant-lr', 'constant_learning_rate', is_flag=True, help='Add flag to use a constant learning rate throughout the optimization (turn off the rampup/rampdown)')
@click.option('--reg-noise-weight', '-regw', 'regularize_noise_weight', type=float, help='Noise weight regularization', default=1e5, show_default=True)
@click.option('--seed', type=int, help='Random seed', default=303, show_default=True)
@click.option('--stabilize-projection', is_flag=True, help='Add flag to stabilize the latent space/anchor to w_avg, making it easier to project (only for StyleGAN3 config-r/t models)')
# Video options
@click.option('--save-video', '-video', is_flag=True, help='Save an mp4 video of optimization progress')
@click.option('--compress', is_flag=True, help='Compress video with ffmpeg-python; same resolution, lower memory size')
@click.option('--fps', type=int, help='FPS for the mp4 video of optimization progress (if saved)', default=30, show_default=True)
# Options on which space to project to (W or W+) and where to start: the middle point of W (w_avg) or a specific seed
@click.option('--project-in-wplus', '-wplus', is_flag=True, help='Project in the W+ latent space')
@click.option('--start-wavg', '-wavg', type=bool, help='Start with the average W vector, ootherwise will start from a random seed (provided by user)', default=True, show_default=True)
@click.option('--projection-seed', type=int, help='Seed to start projection from', default=None, show_default=True)
@click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi to use in projection when using a projection seed', default=0.7, show_default=True)
# Decide the loss to use when projecting (all other apart from o.g. StyleGAN2's are experimental, you can select the VGG16 features/layers to use in the im2sgan loss)
@click.option('--loss-paper', '-loss', type=click.Choice(['sgan2', 'im2sgan', 'discriminator', 'clip']), help='Loss to use (if using "im2sgan", make sure to norm the VGG16 features)', default='sgan2', show_default=True)
# im2sgan loss options (try with and without them, though I've found --vgg-normed to work best for me)
@click.option('--vgg-normed', 'normed', is_flag=True, help='Add flag to norm the VGG16 features by the number of elements per layer that was used')
@click.option('--vgg-sqrt-normed', 'sqrt_normed', is_flag=True, help='Add flag to norm the VGG16 features by the square root of the number of elements per layer that was used')
# Extra parameters for saving the results
@click.option('--save-every-step', '-saveall', is_flag=True, help='Save every step taken in the projection (save both the dlatent as a.npy and its respective image).')
@click.option('--outdir', type=click.Path(file_okay=False), help='Directory path to save the results', default=os.path.join(os.getcwd(), 'out', 'projection'), show_default=True, metavar='DIR')
@click.option('--description', '-desc', type=str, help='Extra description to add to the experiment name', default='')
def run_projection(
ctx: click.Context,
network_pkl: str,
cfg: str,
target_fname: str,
num_steps: int,
initial_learning_rate: float,
constant_learning_rate: bool,
regularize_noise_weight: float,
seed: int,
stabilize_projection: bool,
save_video: bool,
compress: bool,
fps: int,
project_in_wplus: bool,
start_wavg: bool,
projection_seed: int,
truncation_psi: float,
loss_paper: str,
normed: bool,
sqrt_normed: bool,
save_every_step: bool,
outdir: str,
description: str,
):
"""Project given image to the latent space of pretrained network pickle.
Examples:
\b
python projector.py --target=~/mytarget.png --project-in-wplus --save-video --num-steps=5000 \\
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/ffhq.pkl
"""
torch.manual_seed(seed)
# If we're not starting from the W midpoint, assert the user fed a seed to start from
if not start_wavg:
if projection_seed is None:
ctx.fail('Provide a seed to start from if not starting from the midpoint. Use "--projection-seed" to do so')
# Load networks.
# If model name exists in the gen_utils.resume_specs dictionary, use it instead of the full url
try:
network_pkl = gen_utils.resume_specs[cfg][network_pkl]
except KeyError:
# Otherwise, it's a local file or an url
pass
print('Loading networks from "%s"...' % network_pkl)
device = torch.device('cuda')
with dnnlib.util.open_url(network_pkl) as fp:
G = legacy.load_network_pkl(fp)['G_ema'].requires_grad_(False).to(device)
if loss_paper == 'discriminator':
# We must also load the Discriminator
with dnnlib.util.open_url(network_pkl) as fp:
D = legacy.load_network_pkl(fp)['D'].requires_grad_(False).to(device)
# Load target image.
target_pil = PIL.Image.open(target_fname).convert('RGB')
w, h = target_pil.size
s = min(w, h)
target_pil = target_pil.crop(((w - s) // 2, (h - s) // 2, (w + s) // 2, (h + s) // 2))
target_pil = target_pil.resize((G.img_resolution, G.img_resolution), PIL.Image.LANCZOS)
target_uint8 = np.array(target_pil, dtype=np.uint8)
# Stabilize the latent space to make things easier (for StyleGAN3's config t and r models)
if stabilize_projection:
gen_utils.anchor_latent_space(G)
# Optimize projection.
start_time = perf_counter()
projected_w_steps, run_config = project(
G,
target=target_pil,
num_steps=num_steps,
initial_learning_rate=initial_learning_rate,
constant_learning_rate=constant_learning_rate,
regularize_noise_weight=regularize_noise_weight,
project_in_wplus=project_in_wplus,
start_wavg=start_wavg,
projection_seed=projection_seed,
truncation_psi=truncation_psi,
loss_paper=loss_paper,
normed=normed,
sqrt_normed=sqrt_normed,
device=device,
D=D if loss_paper == 'discriminator' else None
)
elapsed_time = format_time(perf_counter()-start_time)
print(f'\nElapsed time: {elapsed_time}')
run_config['elapsed_time'] = elapsed_time
# Make the run dir automatically
desc = 'projection-wplus' if project_in_wplus else 'projection-w'
desc = f'{desc}-wavgstart' if start_wavg else f'{desc}-seed{projection_seed}start'
desc = f'{desc}-{description}' if len(description) != 0 else desc
desc = f'{desc}-{loss_paper}'
run_dir = gen_utils.make_run_dir(outdir, desc)
# Save the configuration used
ctx.obj = {
'network_pkl': network_pkl,
'description': description,
'target_image': target_fname,
'outdir': run_dir,
'save_video': save_video,
'seed': seed,
'video_fps': fps,
'save_every_step': save_every_step,
'run_config': run_config
}
# Save the run configuration
gen_utils.save_config(ctx=ctx, run_dir=run_dir)
# Render debug output: optional video and projected image and W vector.
result_name = os.path.join(run_dir, 'proj')
npy_name = os.path.join(run_dir, 'projected')
# If we project in W+, add to the name of the results
if project_in_wplus:
result_name, npy_name = f'{result_name}_wplus', f'{npy_name}_wplus'
# Either in W or W+, we can start from the W midpoint or one given by the projection seed
if start_wavg:
result_name, npy_name = f'{result_name}_wavg', f'{npy_name}_wavg'
else:
result_name, npy_name = f'{result_name}_seed-{projection_seed}', f'{npy_name}_seed-{projection_seed}'
# Save the target image
target_pil.save(os.path.join(run_dir, 'target.png'))
if save_every_step:
# Save every projected frame and W vector. TODO: This can be optimized to be saved as training progresses
n_digits = int(np.log10(num_steps)) + 1 if num_steps > 0 else 1
for step in tqdm(range(num_steps), desc='Saving projection results', unit='steps'):
w = projected_w_steps[step]
synth_image = gen_utils.w_to_img(G, dlatents=w, noise_mode='const')[0]
PIL.Image.fromarray(synth_image, 'RGB').save(f'{result_name}_step{step:0{n_digits}d}.png')
np.save(f'{npy_name}_step{step:0{n_digits}d}.npy', w.unsqueeze(0).cpu().numpy())
else:
# Save only the final projected frame and W vector.
print('Saving projection results...')
projected_w = projected_w_steps[-1]
synth_image = gen_utils.w_to_img(G, dlatents=projected_w, noise_mode='const')[0]
PIL.Image.fromarray(synth_image, 'RGB').save(f'{result_name}_final.png')
np.save(f'{npy_name}_final.npy', projected_w.unsqueeze(0).cpu().numpy())
# Save the optimization video and compress it if so desired
if save_video:
video = imageio.get_writer(f'{result_name}.mp4', mode='I', fps=fps, codec='libx264', bitrate='16M')
print(f'Saving optimization progress video "{result_name}.mp4"')
for projected_w in projected_w_steps:
synth_image = gen_utils.w_to_img(G, dlatents=projected_w, noise_mode='const')[0]
video.append_data(np.concatenate([target_uint8, synth_image], axis=1)) # left side target, right projection
video.close()
if save_video and compress:
# Compress the video; might fail, and is a basic command that can also be better optimized
gen_utils.compress_video(original_video=f'{result_name}.mp4',
original_video_name=f'{result_name.split(os.sep)[-1]}',
outdir=run_dir,
ctx=ctx)
# ----------------------------------------------------------------------------
if __name__ == "__main__":
run_projection() # pylint: disable=no-value-for-parameter
# ----------------------------------------------------------------------------