diff --git a/.gitmodules b/.gitmodules index c336032cb7f76..1037b8ffd5d34 100644 --- a/.gitmodules +++ b/.gitmodules @@ -7,9 +7,6 @@ [submodule "3rdparty/fmt/fmt"] path = 3rdparty/fmt/fmt url = https://github.com/fmtlib/fmt.git -[submodule "3rdparty/libchdr/libchdr"] - path = 3rdparty/libchdr/libchdr - url = https://github.com/rtissera/libchdr.git [submodule "3rdparty/wil"] path = 3rdparty/wil url = https://github.com/microsoft/wil.git diff --git a/3rdparty/libchdr/CMakeLists.txt b/3rdparty/libchdr/CMakeLists.txt index 797f2bb6f871e..c4b3e81cc4c91 100644 --- a/3rdparty/libchdr/CMakeLists.txt +++ b/3rdparty/libchdr/CMakeLists.txt @@ -1,11 +1,19 @@ -add_library(chdr-static STATIC - libchdr/src/libchdr_bitstream.c - libchdr/src/libchdr_cdrom.c - libchdr/src/libchdr_chd.c - libchdr/src/libchdr_flac.c - libchdr/src/libchdr_huffman.c +add_library(libchdr + include/dr_libs/dr_flac.h + include/libchdr/bitstream.h + include/libchdr/cdrom.h + include/libchdr/chd.h + include/libchdr/chdconfig.h + include/libchdr/coretypes.h + include/libchdr/flac.h + include/libchdr/huffman.h + src/libchdr_bitstream.c + src/libchdr_cdrom.c + src/libchdr_chd.c + src/libchdr_flac.c + src/libchdr_huffman.c ) -target_include_directories(chdr-static PUBLIC "${CMAKE_CURRENT_SOURCE_DIR}/libchdr/include") -target_link_libraries(chdr-static PRIVATE ZLIB::ZLIB LZMA::LZMA) -target_compile_options(chdr-static PRIVATE "-w") +target_include_directories(libchdr PUBLIC "${CMAKE_CURRENT_SOURCE_DIR}/include") +target_link_libraries(libchdr PRIVATE ZLIB::ZLIB LZMA::LZMA) + diff --git a/3rdparty/libchdr/LICENSE.txt b/3rdparty/libchdr/LICENSE.txt new file mode 100644 index 0000000000000..1c36e5b593498 --- /dev/null +++ b/3rdparty/libchdr/LICENSE.txt @@ -0,0 +1,24 @@ +Copyright Romain Tisserand +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + * Neither the name of the nor the + names of its contributors may be used to endorse or promote products + derived from this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND +ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL BE LIABLE FOR ANY +DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; +LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND +ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/3rdparty/libchdr/README.md b/3rdparty/libchdr/README.md new file mode 100644 index 0000000000000..940920a53624e --- /dev/null +++ b/3rdparty/libchdr/README.md @@ -0,0 +1,7 @@ +# libchdr + +libchdr is a standalone library for reading MAME's CHDv1-v5 formats. + +The code is based off of MAME's old C codebase which read up to CHDv4 with OS-dependent features removed, and CHDv5 support backported from MAME's current C++ codebase. + +libchdr is licensed under the BSD 3-Clause (see [LICENSE.txt](LICENSE.txt)) and uses third party libraries that are each distributed under their own terms (see each library's license in [deps/](deps/)). diff --git a/3rdparty/libchdr/include/dr_libs/dr_flac.h b/3rdparty/libchdr/include/dr_libs/dr_flac.h new file mode 100644 index 0000000000000..0c43eed7f5596 --- /dev/null +++ b/3rdparty/libchdr/include/dr_libs/dr_flac.h @@ -0,0 +1,12507 @@ +/* +FLAC audio decoder. Choice of public domain or MIT-0. See license statements at the end of this file. +dr_flac - v0.12.39 - 2022-09-17 + +David Reid - mackron@gmail.com + +GitHub: https://github.com/mackron/dr_libs +*/ + +/* +RELEASE NOTES - v0.12.0 +======================= +Version 0.12.0 has breaking API changes including changes to the existing API and the removal of deprecated APIs. + + +Improved Client-Defined Memory Allocation +----------------------------------------- +The main change with this release is the addition of a more flexible way of implementing custom memory allocation routines. The +existing system of DRFLAC_MALLOC, DRFLAC_REALLOC and DRFLAC_FREE are still in place and will be used by default when no custom +allocation callbacks are specified. + +To use the new system, you pass in a pointer to a drflac_allocation_callbacks object to drflac_open() and family, like this: + + void* my_malloc(size_t sz, void* pUserData) + { + return malloc(sz); + } + void* my_realloc(void* p, size_t sz, void* pUserData) + { + return realloc(p, sz); + } + void my_free(void* p, void* pUserData) + { + free(p); + } + + ... + + drflac_allocation_callbacks allocationCallbacks; + allocationCallbacks.pUserData = &myData; + allocationCallbacks.onMalloc = my_malloc; + allocationCallbacks.onRealloc = my_realloc; + allocationCallbacks.onFree = my_free; + drflac* pFlac = drflac_open_file("my_file.flac", &allocationCallbacks); + +The advantage of this new system is that it allows you to specify user data which will be passed in to the allocation routines. + +Passing in null for the allocation callbacks object will cause dr_flac to use defaults which is the same as DRFLAC_MALLOC, +DRFLAC_REALLOC and DRFLAC_FREE and the equivalent of how it worked in previous versions. + +Every API that opens a drflac object now takes this extra parameter. These include the following: + + drflac_open() + drflac_open_relaxed() + drflac_open_with_metadata() + drflac_open_with_metadata_relaxed() + drflac_open_file() + drflac_open_file_with_metadata() + drflac_open_memory() + drflac_open_memory_with_metadata() + drflac_open_and_read_pcm_frames_s32() + drflac_open_and_read_pcm_frames_s16() + drflac_open_and_read_pcm_frames_f32() + drflac_open_file_and_read_pcm_frames_s32() + drflac_open_file_and_read_pcm_frames_s16() + drflac_open_file_and_read_pcm_frames_f32() + drflac_open_memory_and_read_pcm_frames_s32() + drflac_open_memory_and_read_pcm_frames_s16() + drflac_open_memory_and_read_pcm_frames_f32() + + + +Optimizations +------------- +Seeking performance has been greatly improved. A new binary search based seeking algorithm has been introduced which significantly +improves performance over the brute force method which was used when no seek table was present. Seek table based seeking also takes +advantage of the new binary search seeking system to further improve performance there as well. Note that this depends on CRC which +means it will be disabled when DR_FLAC_NO_CRC is used. + +The SSE4.1 pipeline has been cleaned up and optimized. You should see some improvements with decoding speed of 24-bit files in +particular. 16-bit streams should also see some improvement. + +drflac_read_pcm_frames_s16() has been optimized. Previously this sat on top of drflac_read_pcm_frames_s32() and performed it's s32 +to s16 conversion in a second pass. This is now all done in a single pass. This includes SSE2 and ARM NEON optimized paths. + +A minor optimization has been implemented for drflac_read_pcm_frames_s32(). This will now use an SSE2 optimized pipeline for stereo +channel reconstruction which is the last part of the decoding process. + +The ARM build has seen a few improvements. The CLZ (count leading zeroes) and REV (byte swap) instructions are now used when +compiling with GCC and Clang which is achieved using inline assembly. The CLZ instruction requires ARM architecture version 5 at +compile time and the REV instruction requires ARM architecture version 6. + +An ARM NEON optimized pipeline has been implemented. To enable this you'll need to add -mfpu=neon to the command line when compiling. + + +Removed APIs +------------ +The following APIs were deprecated in version 0.11.0 and have been completely removed in version 0.12.0: + + drflac_read_s32() -> drflac_read_pcm_frames_s32() + drflac_read_s16() -> drflac_read_pcm_frames_s16() + drflac_read_f32() -> drflac_read_pcm_frames_f32() + drflac_seek_to_sample() -> drflac_seek_to_pcm_frame() + drflac_open_and_decode_s32() -> drflac_open_and_read_pcm_frames_s32() + drflac_open_and_decode_s16() -> drflac_open_and_read_pcm_frames_s16() + drflac_open_and_decode_f32() -> drflac_open_and_read_pcm_frames_f32() + drflac_open_and_decode_file_s32() -> drflac_open_file_and_read_pcm_frames_s32() + drflac_open_and_decode_file_s16() -> drflac_open_file_and_read_pcm_frames_s16() + drflac_open_and_decode_file_f32() -> drflac_open_file_and_read_pcm_frames_f32() + drflac_open_and_decode_memory_s32() -> drflac_open_memory_and_read_pcm_frames_s32() + drflac_open_and_decode_memory_s16() -> drflac_open_memory_and_read_pcm_frames_s16() + drflac_open_and_decode_memory_f32() -> drflac_open_memroy_and_read_pcm_frames_f32() + +Prior versions of dr_flac operated on a per-sample basis whereas now it operates on PCM frames. The removed APIs all relate +to the old per-sample APIs. You now need to use the "pcm_frame" versions. +*/ + + +/* +Introduction +============ +dr_flac is a single file library. To use it, do something like the following in one .c file. + + ```c + #define DR_FLAC_IMPLEMENTATION + #include "dr_flac.h" + ``` + +You can then #include this file in other parts of the program as you would with any other header file. To decode audio data, do something like the following: + + ```c + drflac* pFlac = drflac_open_file("MySong.flac", NULL); + if (pFlac == NULL) { + // Failed to open FLAC file + } + + drflac_int32* pSamples = malloc(pFlac->totalPCMFrameCount * pFlac->channels * sizeof(drflac_int32)); + drflac_uint64 numberOfInterleavedSamplesActuallyRead = drflac_read_pcm_frames_s32(pFlac, pFlac->totalPCMFrameCount, pSamples); + ``` + +The drflac object represents the decoder. It is a transparent type so all the information you need, such as the number of channels and the bits per sample, +should be directly accessible - just make sure you don't change their values. Samples are always output as interleaved signed 32-bit PCM. In the example above +a native FLAC stream was opened, however dr_flac has seamless support for Ogg encapsulated FLAC streams as well. + +You do not need to decode the entire stream in one go - you just specify how many samples you'd like at any given time and the decoder will give you as many +samples as it can, up to the amount requested. Later on when you need the next batch of samples, just call it again. Example: + + ```c + while (drflac_read_pcm_frames_s32(pFlac, chunkSizeInPCMFrames, pChunkSamples) > 0) { + do_something(); + } + ``` + +You can seek to a specific PCM frame with `drflac_seek_to_pcm_frame()`. + +If you just want to quickly decode an entire FLAC file in one go you can do something like this: + + ```c + unsigned int channels; + unsigned int sampleRate; + drflac_uint64 totalPCMFrameCount; + drflac_int32* pSampleData = drflac_open_file_and_read_pcm_frames_s32("MySong.flac", &channels, &sampleRate, &totalPCMFrameCount, NULL); + if (pSampleData == NULL) { + // Failed to open and decode FLAC file. + } + + ... + + drflac_free(pSampleData, NULL); + ``` + +You can read samples as signed 16-bit integer and 32-bit floating-point PCM with the *_s16() and *_f32() family of APIs respectively, but note that these +should be considered lossy. + + +If you need access to metadata (album art, etc.), use `drflac_open_with_metadata()`, `drflac_open_file_with_metdata()` or `drflac_open_memory_with_metadata()`. +The rationale for keeping these APIs separate is that they're slightly slower than the normal versions and also just a little bit harder to use. dr_flac +reports metadata to the application through the use of a callback, and every metadata block is reported before `drflac_open_with_metdata()` returns. + +The main opening APIs (`drflac_open()`, etc.) will fail if the header is not present. The presents a problem in certain scenarios such as broadcast style +streams or internet radio where the header may not be present because the user has started playback mid-stream. To handle this, use the relaxed APIs: + + `drflac_open_relaxed()` + `drflac_open_with_metadata_relaxed()` + +It is not recommended to use these APIs for file based streams because a missing header would usually indicate a corrupt or perverse file. In addition, these +APIs can take a long time to initialize because they may need to spend a lot of time finding the first frame. + + + +Build Options +============= +#define these options before including this file. + +#define DR_FLAC_NO_STDIO + Disable `drflac_open_file()` and family. + +#define DR_FLAC_NO_OGG + Disables support for Ogg/FLAC streams. + +#define DR_FLAC_BUFFER_SIZE + Defines the size of the internal buffer to store data from onRead(). This buffer is used to reduce the number of calls back to the client for more data. + Larger values means more memory, but better performance. My tests show diminishing returns after about 4KB (which is the default). Consider reducing this if + you have a very efficient implementation of onRead(), or increase it if it's very inefficient. Must be a multiple of 8. + +#define DR_FLAC_NO_CRC + Disables CRC checks. This will offer a performance boost when CRC is unnecessary. This will disable binary search seeking. When seeking, the seek table will + be used if available. Otherwise the seek will be performed using brute force. + +#define DR_FLAC_NO_SIMD + Disables SIMD optimizations (SSE on x86/x64 architectures, NEON on ARM architectures). Use this if you are having compatibility issues with your compiler. + +#define DR_FLAC_NO_WCHAR + Disables all functions ending with `_w`. Use this if your compiler does not provide wchar.h. Not required if DR_FLAC_NO_STDIO is also defined. + + + +Notes +===== +- dr_flac does not support changing the sample rate nor channel count mid stream. +- dr_flac is not thread-safe, but its APIs can be called from any thread so long as you do your own synchronization. +- When using Ogg encapsulation, a corrupted metadata block will result in `drflac_open_with_metadata()` and `drflac_open()` returning inconsistent samples due + to differences in corrupted stream recorvery logic between the two APIs. +*/ + +#ifndef dr_flac_h +#define dr_flac_h + +#ifdef __cplusplus +extern "C" { +#endif + +#define DRFLAC_STRINGIFY(x) #x +#define DRFLAC_XSTRINGIFY(x) DRFLAC_STRINGIFY(x) + +#define DRFLAC_VERSION_MAJOR 0 +#define DRFLAC_VERSION_MINOR 12 +#define DRFLAC_VERSION_REVISION 39 +#define DRFLAC_VERSION_STRING DRFLAC_XSTRINGIFY(DRFLAC_VERSION_MAJOR) "." DRFLAC_XSTRINGIFY(DRFLAC_VERSION_MINOR) "." DRFLAC_XSTRINGIFY(DRFLAC_VERSION_REVISION) + +#include /* For size_t. */ + +/* Sized types. */ +typedef signed char drflac_int8; +typedef unsigned char drflac_uint8; +typedef signed short drflac_int16; +typedef unsigned short drflac_uint16; +typedef signed int drflac_int32; +typedef unsigned int drflac_uint32; +#if defined(_MSC_VER) && !defined(__clang__) + typedef signed __int64 drflac_int64; + typedef unsigned __int64 drflac_uint64; +#else + #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) + #pragma GCC diagnostic push + #pragma GCC diagnostic ignored "-Wlong-long" + #if defined(__clang__) + #pragma GCC diagnostic ignored "-Wc++11-long-long" + #endif + #endif + typedef signed long long drflac_int64; + typedef unsigned long long drflac_uint64; + #if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) + #pragma GCC diagnostic pop + #endif +#endif +#if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__)) || defined(_M_X64) || defined(__ia64) || defined(_M_IA64) || defined(__aarch64__) || defined(_M_ARM64) || defined(__powerpc64__) + typedef drflac_uint64 drflac_uintptr; +#else + typedef drflac_uint32 drflac_uintptr; +#endif +typedef drflac_uint8 drflac_bool8; +typedef drflac_uint32 drflac_bool32; +#define DRFLAC_TRUE 1 +#define DRFLAC_FALSE 0 + +#if !defined(DRFLAC_API) + #if defined(DRFLAC_DLL) + #if defined(_WIN32) + #define DRFLAC_DLL_IMPORT __declspec(dllimport) + #define DRFLAC_DLL_EXPORT __declspec(dllexport) + #define DRFLAC_DLL_PRIVATE static + #else + #if defined(__GNUC__) && __GNUC__ >= 4 + #define DRFLAC_DLL_IMPORT __attribute__((visibility("default"))) + #define DRFLAC_DLL_EXPORT __attribute__((visibility("default"))) + #define DRFLAC_DLL_PRIVATE __attribute__((visibility("hidden"))) + #else + #define DRFLAC_DLL_IMPORT + #define DRFLAC_DLL_EXPORT + #define DRFLAC_DLL_PRIVATE static + #endif + #endif + + #if defined(DR_FLAC_IMPLEMENTATION) || defined(DRFLAC_IMPLEMENTATION) + #define DRFLAC_API DRFLAC_DLL_EXPORT + #else + #define DRFLAC_API DRFLAC_DLL_IMPORT + #endif + #define DRFLAC_PRIVATE DRFLAC_DLL_PRIVATE + #else + #define DRFLAC_API extern + #define DRFLAC_PRIVATE static + #endif +#endif + +#if defined(_MSC_VER) && _MSC_VER >= 1700 /* Visual Studio 2012 */ + #define DRFLAC_DEPRECATED __declspec(deprecated) +#elif (defined(__GNUC__) && __GNUC__ >= 4) /* GCC 4 */ + #define DRFLAC_DEPRECATED __attribute__((deprecated)) +#elif defined(__has_feature) /* Clang */ + #if __has_feature(attribute_deprecated) + #define DRFLAC_DEPRECATED __attribute__((deprecated)) + #else + #define DRFLAC_DEPRECATED + #endif +#else + #define DRFLAC_DEPRECATED +#endif + +DRFLAC_API void drflac_version(drflac_uint32* pMajor, drflac_uint32* pMinor, drflac_uint32* pRevision); +DRFLAC_API const char* drflac_version_string(void); + +/* +As data is read from the client it is placed into an internal buffer for fast access. This controls the size of that buffer. Larger values means more speed, +but also more memory. In my testing there is diminishing returns after about 4KB, but you can fiddle with this to suit your own needs. Must be a multiple of 8. +*/ +#ifndef DR_FLAC_BUFFER_SIZE +#define DR_FLAC_BUFFER_SIZE 4096 +#endif + +/* Check if we can enable 64-bit optimizations. */ +#if defined(_WIN64) || defined(_LP64) || defined(__LP64__) +#define DRFLAC_64BIT +#endif + +#ifdef DRFLAC_64BIT +typedef drflac_uint64 drflac_cache_t; +#else +typedef drflac_uint32 drflac_cache_t; +#endif + +/* The various metadata block types. */ +#define DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO 0 +#define DRFLAC_METADATA_BLOCK_TYPE_PADDING 1 +#define DRFLAC_METADATA_BLOCK_TYPE_APPLICATION 2 +#define DRFLAC_METADATA_BLOCK_TYPE_SEEKTABLE 3 +#define DRFLAC_METADATA_BLOCK_TYPE_VORBIS_COMMENT 4 +#define DRFLAC_METADATA_BLOCK_TYPE_CUESHEET 5 +#define DRFLAC_METADATA_BLOCK_TYPE_PICTURE 6 +#define DRFLAC_METADATA_BLOCK_TYPE_INVALID 127 + +/* The various picture types specified in the PICTURE block. */ +#define DRFLAC_PICTURE_TYPE_OTHER 0 +#define DRFLAC_PICTURE_TYPE_FILE_ICON 1 +#define DRFLAC_PICTURE_TYPE_OTHER_FILE_ICON 2 +#define DRFLAC_PICTURE_TYPE_COVER_FRONT 3 +#define DRFLAC_PICTURE_TYPE_COVER_BACK 4 +#define DRFLAC_PICTURE_TYPE_LEAFLET_PAGE 5 +#define DRFLAC_PICTURE_TYPE_MEDIA 6 +#define DRFLAC_PICTURE_TYPE_LEAD_ARTIST 7 +#define DRFLAC_PICTURE_TYPE_ARTIST 8 +#define DRFLAC_PICTURE_TYPE_CONDUCTOR 9 +#define DRFLAC_PICTURE_TYPE_BAND 10 +#define DRFLAC_PICTURE_TYPE_COMPOSER 11 +#define DRFLAC_PICTURE_TYPE_LYRICIST 12 +#define DRFLAC_PICTURE_TYPE_RECORDING_LOCATION 13 +#define DRFLAC_PICTURE_TYPE_DURING_RECORDING 14 +#define DRFLAC_PICTURE_TYPE_DURING_PERFORMANCE 15 +#define DRFLAC_PICTURE_TYPE_SCREEN_CAPTURE 16 +#define DRFLAC_PICTURE_TYPE_BRIGHT_COLORED_FISH 17 +#define DRFLAC_PICTURE_TYPE_ILLUSTRATION 18 +#define DRFLAC_PICTURE_TYPE_BAND_LOGOTYPE 19 +#define DRFLAC_PICTURE_TYPE_PUBLISHER_LOGOTYPE 20 + +typedef enum +{ + drflac_container_native, + drflac_container_ogg, + drflac_container_unknown +} drflac_container; + +typedef enum +{ + drflac_seek_origin_start, + drflac_seek_origin_current +} drflac_seek_origin; + +/* The order of members in this structure is important because we map this directly to the raw data within the SEEKTABLE metadata block. */ +typedef struct +{ + drflac_uint64 firstPCMFrame; + drflac_uint64 flacFrameOffset; /* The offset from the first byte of the header of the first frame. */ + drflac_uint16 pcmFrameCount; +} drflac_seekpoint; + +typedef struct +{ + drflac_uint16 minBlockSizeInPCMFrames; + drflac_uint16 maxBlockSizeInPCMFrames; + drflac_uint32 minFrameSizeInPCMFrames; + drflac_uint32 maxFrameSizeInPCMFrames; + drflac_uint32 sampleRate; + drflac_uint8 channels; + drflac_uint8 bitsPerSample; + drflac_uint64 totalPCMFrameCount; + drflac_uint8 md5[16]; +} drflac_streaminfo; + +typedef struct +{ + /* + The metadata type. Use this to know how to interpret the data below. Will be set to one of the + DRFLAC_METADATA_BLOCK_TYPE_* tokens. + */ + drflac_uint32 type; + + /* + A pointer to the raw data. This points to a temporary buffer so don't hold on to it. It's best to + not modify the contents of this buffer. Use the structures below for more meaningful and structured + information about the metadata. It's possible for this to be null. + */ + const void* pRawData; + + /* The size in bytes of the block and the buffer pointed to by pRawData if it's non-NULL. */ + drflac_uint32 rawDataSize; + + union + { + drflac_streaminfo streaminfo; + + struct + { + int unused; + } padding; + + struct + { + drflac_uint32 id; + const void* pData; + drflac_uint32 dataSize; + } application; + + struct + { + drflac_uint32 seekpointCount; + const drflac_seekpoint* pSeekpoints; + } seektable; + + struct + { + drflac_uint32 vendorLength; + const char* vendor; + drflac_uint32 commentCount; + const void* pComments; + } vorbis_comment; + + struct + { + char catalog[128]; + drflac_uint64 leadInSampleCount; + drflac_bool32 isCD; + drflac_uint8 trackCount; + const void* pTrackData; + } cuesheet; + + struct + { + drflac_uint32 type; + drflac_uint32 mimeLength; + const char* mime; + drflac_uint32 descriptionLength; + const char* description; + drflac_uint32 width; + drflac_uint32 height; + drflac_uint32 colorDepth; + drflac_uint32 indexColorCount; + drflac_uint32 pictureDataSize; + const drflac_uint8* pPictureData; + } picture; + } data; +} drflac_metadata; + + +/* +Callback for when data needs to be read from the client. + + +Parameters +---------- +pUserData (in) + The user data that was passed to drflac_open() and family. + +pBufferOut (out) + The output buffer. + +bytesToRead (in) + The number of bytes to read. + + +Return Value +------------ +The number of bytes actually read. + + +Remarks +------- +A return value of less than bytesToRead indicates the end of the stream. Do _not_ return from this callback until either the entire bytesToRead is filled or +you have reached the end of the stream. +*/ +typedef size_t (* drflac_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead); + +/* +Callback for when data needs to be seeked. + + +Parameters +---------- +pUserData (in) + The user data that was passed to drflac_open() and family. + +offset (in) + The number of bytes to move, relative to the origin. Will never be negative. + +origin (in) + The origin of the seek - the current position or the start of the stream. + + +Return Value +------------ +Whether or not the seek was successful. + + +Remarks +------- +The offset will never be negative. Whether or not it is relative to the beginning or current position is determined by the "origin" parameter which will be +either drflac_seek_origin_start or drflac_seek_origin_current. + +When seeking to a PCM frame using drflac_seek_to_pcm_frame(), dr_flac may call this with an offset beyond the end of the FLAC stream. This needs to be detected +and handled by returning DRFLAC_FALSE. +*/ +typedef drflac_bool32 (* drflac_seek_proc)(void* pUserData, int offset, drflac_seek_origin origin); + +/* +Callback for when a metadata block is read. + + +Parameters +---------- +pUserData (in) + The user data that was passed to drflac_open() and family. + +pMetadata (in) + A pointer to a structure containing the data of the metadata block. + + +Remarks +------- +Use pMetadata->type to determine which metadata block is being handled and how to read the data. This +will be set to one of the DRFLAC_METADATA_BLOCK_TYPE_* tokens. +*/ +typedef void (* drflac_meta_proc)(void* pUserData, drflac_metadata* pMetadata); + + +typedef struct +{ + void* pUserData; + void* (* onMalloc)(size_t sz, void* pUserData); + void* (* onRealloc)(void* p, size_t sz, void* pUserData); + void (* onFree)(void* p, void* pUserData); +} drflac_allocation_callbacks; + +/* Structure for internal use. Only used for decoders opened with drflac_open_memory. */ +typedef struct +{ + const drflac_uint8* data; + size_t dataSize; + size_t currentReadPos; +} drflac__memory_stream; + +/* Structure for internal use. Used for bit streaming. */ +typedef struct +{ + /* The function to call when more data needs to be read. */ + drflac_read_proc onRead; + + /* The function to call when the current read position needs to be moved. */ + drflac_seek_proc onSeek; + + /* The user data to pass around to onRead and onSeek. */ + void* pUserData; + + + /* + The number of unaligned bytes in the L2 cache. This will always be 0 until the end of the stream is hit. At the end of the + stream there will be a number of bytes that don't cleanly fit in an L1 cache line, so we use this variable to know whether + or not the bistreamer needs to run on a slower path to read those last bytes. This will never be more than sizeof(drflac_cache_t). + */ + size_t unalignedByteCount; + + /* The content of the unaligned bytes. */ + drflac_cache_t unalignedCache; + + /* The index of the next valid cache line in the "L2" cache. */ + drflac_uint32 nextL2Line; + + /* The number of bits that have been consumed by the cache. This is used to determine how many valid bits are remaining. */ + drflac_uint32 consumedBits; + + /* + The cached data which was most recently read from the client. There are two levels of cache. Data flows as such: + Client -> L2 -> L1. The L2 -> L1 movement is aligned and runs on a fast path in just a few instructions. + */ + drflac_cache_t cacheL2[DR_FLAC_BUFFER_SIZE/sizeof(drflac_cache_t)]; + drflac_cache_t cache; + + /* + CRC-16. This is updated whenever bits are read from the bit stream. Manually set this to 0 to reset the CRC. For FLAC, this + is reset to 0 at the beginning of each frame. + */ + drflac_uint16 crc16; + drflac_cache_t crc16Cache; /* A cache for optimizing CRC calculations. This is filled when when the L1 cache is reloaded. */ + drflac_uint32 crc16CacheIgnoredBytes; /* The number of bytes to ignore when updating the CRC-16 from the CRC-16 cache. */ +} drflac_bs; + +typedef struct +{ + /* The type of the subframe: SUBFRAME_CONSTANT, SUBFRAME_VERBATIM, SUBFRAME_FIXED or SUBFRAME_LPC. */ + drflac_uint8 subframeType; + + /* The number of wasted bits per sample as specified by the sub-frame header. */ + drflac_uint8 wastedBitsPerSample; + + /* The order to use for the prediction stage for SUBFRAME_FIXED and SUBFRAME_LPC. */ + drflac_uint8 lpcOrder; + + /* A pointer to the buffer containing the decoded samples in the subframe. This pointer is an offset from drflac::pExtraData. */ + drflac_int32* pSamplesS32; +} drflac_subframe; + +typedef struct +{ + /* + If the stream uses variable block sizes, this will be set to the index of the first PCM frame. If fixed block sizes are used, this will + always be set to 0. This is 64-bit because the decoded PCM frame number will be 36 bits. + */ + drflac_uint64 pcmFrameNumber; + + /* + If the stream uses fixed block sizes, this will be set to the frame number. If variable block sizes are used, this will always be 0. This + is 32-bit because in fixed block sizes, the maximum frame number will be 31 bits. + */ + drflac_uint32 flacFrameNumber; + + /* The sample rate of this frame. */ + drflac_uint32 sampleRate; + + /* The number of PCM frames in each sub-frame within this frame. */ + drflac_uint16 blockSizeInPCMFrames; + + /* + The channel assignment of this frame. This is not always set to the channel count. If interchannel decorrelation is being used this + will be set to DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE, DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE or DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE. + */ + drflac_uint8 channelAssignment; + + /* The number of bits per sample within this frame. */ + drflac_uint8 bitsPerSample; + + /* The frame's CRC. */ + drflac_uint8 crc8; +} drflac_frame_header; + +typedef struct +{ + /* The header. */ + drflac_frame_header header; + + /* + The number of PCM frames left to be read in this FLAC frame. This is initially set to the block size. As PCM frames are read, + this will be decremented. When it reaches 0, the decoder will see this frame as fully consumed and load the next frame. + */ + drflac_uint32 pcmFramesRemaining; + + /* The list of sub-frames within the frame. There is one sub-frame for each channel, and there's a maximum of 8 channels. */ + drflac_subframe subframes[8]; +} drflac_frame; + +typedef struct +{ + /* The function to call when a metadata block is read. */ + drflac_meta_proc onMeta; + + /* The user data posted to the metadata callback function. */ + void* pUserDataMD; + + /* Memory allocation callbacks. */ + drflac_allocation_callbacks allocationCallbacks; + + + /* The sample rate. Will be set to something like 44100. */ + drflac_uint32 sampleRate; + + /* + The number of channels. This will be set to 1 for monaural streams, 2 for stereo, etc. Maximum 8. This is set based on the + value specified in the STREAMINFO block. + */ + drflac_uint8 channels; + + /* The bits per sample. Will be set to something like 16, 24, etc. */ + drflac_uint8 bitsPerSample; + + /* The maximum block size, in samples. This number represents the number of samples in each channel (not combined). */ + drflac_uint16 maxBlockSizeInPCMFrames; + + /* + The total number of PCM Frames making up the stream. Can be 0 in which case it's still a valid stream, but just means + the total PCM frame count is unknown. Likely the case with streams like internet radio. + */ + drflac_uint64 totalPCMFrameCount; + + + /* The container type. This is set based on whether or not the decoder was opened from a native or Ogg stream. */ + drflac_container container; + + /* The number of seekpoints in the seektable. */ + drflac_uint32 seekpointCount; + + + /* Information about the frame the decoder is currently sitting on. */ + drflac_frame currentFLACFrame; + + + /* The index of the PCM frame the decoder is currently sitting on. This is only used for seeking. */ + drflac_uint64 currentPCMFrame; + + /* The position of the first FLAC frame in the stream. This is only ever used for seeking. */ + drflac_uint64 firstFLACFramePosInBytes; + + + /* A hack to avoid a malloc() when opening a decoder with drflac_open_memory(). */ + drflac__memory_stream memoryStream; + + + /* A pointer to the decoded sample data. This is an offset of pExtraData. */ + drflac_int32* pDecodedSamples; + + /* A pointer to the seek table. This is an offset of pExtraData, or NULL if there is no seek table. */ + drflac_seekpoint* pSeekpoints; + + /* Internal use only. Only used with Ogg containers. Points to a drflac_oggbs object. This is an offset of pExtraData. */ + void* _oggbs; + + /* Internal use only. Used for profiling and testing different seeking modes. */ + drflac_bool32 _noSeekTableSeek : 1; + drflac_bool32 _noBinarySearchSeek : 1; + drflac_bool32 _noBruteForceSeek : 1; + + /* The bit streamer. The raw FLAC data is fed through this object. */ + drflac_bs bs; + + /* Variable length extra data. We attach this to the end of the object so we can avoid unnecessary mallocs. */ + drflac_uint8 pExtraData[1]; +} drflac; + + +/* +Opens a FLAC decoder. + + +Parameters +---------- +onRead (in) + The function to call when data needs to be read from the client. + +onSeek (in) + The function to call when the read position of the client data needs to move. + +pUserData (in, optional) + A pointer to application defined data that will be passed to onRead and onSeek. + +pAllocationCallbacks (in, optional) + A pointer to application defined callbacks for managing memory allocations. + + +Return Value +------------ +Returns a pointer to an object representing the decoder. + + +Remarks +------- +Close the decoder with `drflac_close()`. + +`pAllocationCallbacks` can be NULL in which case it will use `DRFLAC_MALLOC`, `DRFLAC_REALLOC` and `DRFLAC_FREE`. + +This function will automatically detect whether or not you are attempting to open a native or Ogg encapsulated FLAC, both of which should work seamlessly +without any manual intervention. Ogg encapsulation also works with multiplexed streams which basically means it can play FLAC encoded audio tracks in videos. + +This is the lowest level function for opening a FLAC stream. You can also use `drflac_open_file()` and `drflac_open_memory()` to open the stream from a file or +from a block of memory respectively. + +The STREAMINFO block must be present for this to succeed. Use `drflac_open_relaxed()` to open a FLAC stream where the header may not be present. + +Use `drflac_open_with_metadata()` if you need access to metadata. + + +Seek Also +--------- +drflac_open_file() +drflac_open_memory() +drflac_open_with_metadata() +drflac_close() +*/ +DRFLAC_API drflac* drflac_open(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks); + +/* +Opens a FLAC stream with relaxed validation of the header block. + + +Parameters +---------- +onRead (in) + The function to call when data needs to be read from the client. + +onSeek (in) + The function to call when the read position of the client data needs to move. + +container (in) + Whether or not the FLAC stream is encapsulated using standard FLAC encapsulation or Ogg encapsulation. + +pUserData (in, optional) + A pointer to application defined data that will be passed to onRead and onSeek. + +pAllocationCallbacks (in, optional) + A pointer to application defined callbacks for managing memory allocations. + + +Return Value +------------ +A pointer to an object representing the decoder. + + +Remarks +------- +The same as drflac_open(), except attempts to open the stream even when a header block is not present. + +Because the header is not necessarily available, the caller must explicitly define the container (Native or Ogg). Do not set this to `drflac_container_unknown` +as that is for internal use only. + +Opening in relaxed mode will continue reading data from onRead until it finds a valid frame. If a frame is never found it will continue forever. To abort, +force your `onRead` callback to return 0, which dr_flac will use as an indicator that the end of the stream was found. + +Use `drflac_open_with_metadata_relaxed()` if you need access to metadata. +*/ +DRFLAC_API drflac* drflac_open_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks); + +/* +Opens a FLAC decoder and notifies the caller of the metadata chunks (album art, etc.). + + +Parameters +---------- +onRead (in) + The function to call when data needs to be read from the client. + +onSeek (in) + The function to call when the read position of the client data needs to move. + +onMeta (in) + The function to call for every metadata block. + +pUserData (in, optional) + A pointer to application defined data that will be passed to onRead, onSeek and onMeta. + +pAllocationCallbacks (in, optional) + A pointer to application defined callbacks for managing memory allocations. + + +Return Value +------------ +A pointer to an object representing the decoder. + + +Remarks +------- +Close the decoder with `drflac_close()`. + +`pAllocationCallbacks` can be NULL in which case it will use `DRFLAC_MALLOC`, `DRFLAC_REALLOC` and `DRFLAC_FREE`. + +This is slower than `drflac_open()`, so avoid this one if you don't need metadata. Internally, this will allocate and free memory on the heap for every +metadata block except for STREAMINFO and PADDING blocks. + +The caller is notified of the metadata via the `onMeta` callback. All metadata blocks will be handled before the function returns. This callback takes a +pointer to a `drflac_metadata` object which is a union containing the data of all relevant metadata blocks. Use the `type` member to discriminate against +the different metadata types. + +The STREAMINFO block must be present for this to succeed. Use `drflac_open_with_metadata_relaxed()` to open a FLAC stream where the header may not be present. + +Note that this will behave inconsistently with `drflac_open()` if the stream is an Ogg encapsulated stream and a metadata block is corrupted. This is due to +the way the Ogg stream recovers from corrupted pages. When `drflac_open_with_metadata()` is being used, the open routine will try to read the contents of the +metadata block, whereas `drflac_open()` will simply seek past it (for the sake of efficiency). This inconsistency can result in different samples being +returned depending on whether or not the stream is being opened with metadata. + + +Seek Also +--------- +drflac_open_file_with_metadata() +drflac_open_memory_with_metadata() +drflac_open() +drflac_close() +*/ +DRFLAC_API drflac* drflac_open_with_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks); + +/* +The same as drflac_open_with_metadata(), except attempts to open the stream even when a header block is not present. + +See Also +-------- +drflac_open_with_metadata() +drflac_open_relaxed() +*/ +DRFLAC_API drflac* drflac_open_with_metadata_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks); + +/* +Closes the given FLAC decoder. + + +Parameters +---------- +pFlac (in) + The decoder to close. + + +Remarks +------- +This will destroy the decoder object. + + +See Also +-------- +drflac_open() +drflac_open_with_metadata() +drflac_open_file() +drflac_open_file_w() +drflac_open_file_with_metadata() +drflac_open_file_with_metadata_w() +drflac_open_memory() +drflac_open_memory_with_metadata() +*/ +DRFLAC_API void drflac_close(drflac* pFlac); + + +/* +Reads sample data from the given FLAC decoder, output as interleaved signed 32-bit PCM. + + +Parameters +---------- +pFlac (in) + The decoder. + +framesToRead (in) + The number of PCM frames to read. + +pBufferOut (out, optional) + A pointer to the buffer that will receive the decoded samples. + + +Return Value +------------ +Returns the number of PCM frames actually read. If the return value is less than `framesToRead` it has reached the end. + + +Remarks +------- +pBufferOut can be null, in which case the call will act as a seek, and the return value will be the number of frames seeked. +*/ +DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s32(drflac* pFlac, drflac_uint64 framesToRead, drflac_int32* pBufferOut); + + +/* +Reads sample data from the given FLAC decoder, output as interleaved signed 16-bit PCM. + + +Parameters +---------- +pFlac (in) + The decoder. + +framesToRead (in) + The number of PCM frames to read. + +pBufferOut (out, optional) + A pointer to the buffer that will receive the decoded samples. + + +Return Value +------------ +Returns the number of PCM frames actually read. If the return value is less than `framesToRead` it has reached the end. + + +Remarks +------- +pBufferOut can be null, in which case the call will act as a seek, and the return value will be the number of frames seeked. + +Note that this is lossy for streams where the bits per sample is larger than 16. +*/ +DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s16(drflac* pFlac, drflac_uint64 framesToRead, drflac_int16* pBufferOut); + +/* +Reads sample data from the given FLAC decoder, output as interleaved 32-bit floating point PCM. + + +Parameters +---------- +pFlac (in) + The decoder. + +framesToRead (in) + The number of PCM frames to read. + +pBufferOut (out, optional) + A pointer to the buffer that will receive the decoded samples. + + +Return Value +------------ +Returns the number of PCM frames actually read. If the return value is less than `framesToRead` it has reached the end. + + +Remarks +------- +pBufferOut can be null, in which case the call will act as a seek, and the return value will be the number of frames seeked. + +Note that this should be considered lossy due to the nature of floating point numbers not being able to exactly represent every possible number. +*/ +DRFLAC_API drflac_uint64 drflac_read_pcm_frames_f32(drflac* pFlac, drflac_uint64 framesToRead, float* pBufferOut); + +/* +Seeks to the PCM frame at the given index. + + +Parameters +---------- +pFlac (in) + The decoder. + +pcmFrameIndex (in) + The index of the PCM frame to seek to. See notes below. + + +Return Value +------------- +`DRFLAC_TRUE` if successful; `DRFLAC_FALSE` otherwise. +*/ +DRFLAC_API drflac_bool32 drflac_seek_to_pcm_frame(drflac* pFlac, drflac_uint64 pcmFrameIndex); + + + +#ifndef DR_FLAC_NO_STDIO +/* +Opens a FLAC decoder from the file at the given path. + + +Parameters +---------- +pFileName (in) + The path of the file to open, either absolute or relative to the current directory. + +pAllocationCallbacks (in, optional) + A pointer to application defined callbacks for managing memory allocations. + + +Return Value +------------ +A pointer to an object representing the decoder. + + +Remarks +------- +Close the decoder with drflac_close(). + + +Remarks +------- +This will hold a handle to the file until the decoder is closed with drflac_close(). Some platforms will restrict the number of files a process can have open +at any given time, so keep this mind if you have many decoders open at the same time. + + +See Also +-------- +drflac_open_file_with_metadata() +drflac_open() +drflac_close() +*/ +DRFLAC_API drflac* drflac_open_file(const char* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks); +DRFLAC_API drflac* drflac_open_file_w(const wchar_t* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks); + +/* +Opens a FLAC decoder from the file at the given path and notifies the caller of the metadata chunks (album art, etc.) + + +Parameters +---------- +pFileName (in) + The path of the file to open, either absolute or relative to the current directory. + +pAllocationCallbacks (in, optional) + A pointer to application defined callbacks for managing memory allocations. + +onMeta (in) + The callback to fire for each metadata block. + +pUserData (in) + A pointer to the user data to pass to the metadata callback. + +pAllocationCallbacks (in) + A pointer to application defined callbacks for managing memory allocations. + + +Remarks +------- +Look at the documentation for drflac_open_with_metadata() for more information on how metadata is handled. + + +See Also +-------- +drflac_open_with_metadata() +drflac_open() +drflac_close() +*/ +DRFLAC_API drflac* drflac_open_file_with_metadata(const char* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks); +DRFLAC_API drflac* drflac_open_file_with_metadata_w(const wchar_t* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks); +#endif + +/* +Opens a FLAC decoder from a pre-allocated block of memory + + +Parameters +---------- +pData (in) + A pointer to the raw encoded FLAC data. + +dataSize (in) + The size in bytes of `data`. + +pAllocationCallbacks (in) + A pointer to application defined callbacks for managing memory allocations. + + +Return Value +------------ +A pointer to an object representing the decoder. + + +Remarks +------- +This does not create a copy of the data. It is up to the application to ensure the buffer remains valid for the lifetime of the decoder. + + +See Also +-------- +drflac_open() +drflac_close() +*/ +DRFLAC_API drflac* drflac_open_memory(const void* pData, size_t dataSize, const drflac_allocation_callbacks* pAllocationCallbacks); + +/* +Opens a FLAC decoder from a pre-allocated block of memory and notifies the caller of the metadata chunks (album art, etc.) + + +Parameters +---------- +pData (in) + A pointer to the raw encoded FLAC data. + +dataSize (in) + The size in bytes of `data`. + +onMeta (in) + The callback to fire for each metadata block. + +pUserData (in) + A pointer to the user data to pass to the metadata callback. + +pAllocationCallbacks (in) + A pointer to application defined callbacks for managing memory allocations. + + +Remarks +------- +Look at the documentation for drflac_open_with_metadata() for more information on how metadata is handled. + + +See Also +------- +drflac_open_with_metadata() +drflac_open() +drflac_close() +*/ +DRFLAC_API drflac* drflac_open_memory_with_metadata(const void* pData, size_t dataSize, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks); + + + +/* High Level APIs */ + +/* +Opens a FLAC stream from the given callbacks and fully decodes it in a single operation. The return value is a +pointer to the sample data as interleaved signed 32-bit PCM. The returned data must be freed with drflac_free(). + +You can pass in custom memory allocation callbacks via the pAllocationCallbacks parameter. This can be NULL in which +case it will use DRFLAC_MALLOC, DRFLAC_REALLOC and DRFLAC_FREE. + +Sometimes a FLAC file won't keep track of the total sample count. In this situation the function will continuously +read samples into a dynamically sized buffer on the heap until no samples are left. + +Do not call this function on a broadcast type of stream (like internet radio streams and whatnot). +*/ +DRFLAC_API drflac_int32* drflac_open_and_read_pcm_frames_s32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); + +/* Same as drflac_open_and_read_pcm_frames_s32(), except returns signed 16-bit integer samples. */ +DRFLAC_API drflac_int16* drflac_open_and_read_pcm_frames_s16(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); + +/* Same as drflac_open_and_read_pcm_frames_s32(), except returns 32-bit floating-point samples. */ +DRFLAC_API float* drflac_open_and_read_pcm_frames_f32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); + +#ifndef DR_FLAC_NO_STDIO +/* Same as drflac_open_and_read_pcm_frames_s32() except opens the decoder from a file. */ +DRFLAC_API drflac_int32* drflac_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); + +/* Same as drflac_open_file_and_read_pcm_frames_s32(), except returns signed 16-bit integer samples. */ +DRFLAC_API drflac_int16* drflac_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); + +/* Same as drflac_open_file_and_read_pcm_frames_s32(), except returns 32-bit floating-point samples. */ +DRFLAC_API float* drflac_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); +#endif + +/* Same as drflac_open_and_read_pcm_frames_s32() except opens the decoder from a block of memory. */ +DRFLAC_API drflac_int32* drflac_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); + +/* Same as drflac_open_memory_and_read_pcm_frames_s32(), except returns signed 16-bit integer samples. */ +DRFLAC_API drflac_int16* drflac_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); + +/* Same as drflac_open_memory_and_read_pcm_frames_s32(), except returns 32-bit floating-point samples. */ +DRFLAC_API float* drflac_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks); + +/* +Frees memory that was allocated internally by dr_flac. + +Set pAllocationCallbacks to the same object that was passed to drflac_open_*_and_read_pcm_frames_*(). If you originally passed in NULL, pass in NULL for this. +*/ +DRFLAC_API void drflac_free(void* p, const drflac_allocation_callbacks* pAllocationCallbacks); + + +/* Structure representing an iterator for vorbis comments in a VORBIS_COMMENT metadata block. */ +typedef struct +{ + drflac_uint32 countRemaining; + const char* pRunningData; +} drflac_vorbis_comment_iterator; + +/* +Initializes a vorbis comment iterator. This can be used for iterating over the vorbis comments in a VORBIS_COMMENT +metadata block. +*/ +DRFLAC_API void drflac_init_vorbis_comment_iterator(drflac_vorbis_comment_iterator* pIter, drflac_uint32 commentCount, const void* pComments); + +/* +Goes to the next vorbis comment in the given iterator. If null is returned it means there are no more comments. The +returned string is NOT null terminated. +*/ +DRFLAC_API const char* drflac_next_vorbis_comment(drflac_vorbis_comment_iterator* pIter, drflac_uint32* pCommentLengthOut); + + +/* Structure representing an iterator for cuesheet tracks in a CUESHEET metadata block. */ +typedef struct +{ + drflac_uint32 countRemaining; + const char* pRunningData; +} drflac_cuesheet_track_iterator; + +/* The order of members here is important because we map this directly to the raw data within the CUESHEET metadata block. */ +typedef struct +{ + drflac_uint64 offset; + drflac_uint8 index; + drflac_uint8 reserved[3]; +} drflac_cuesheet_track_index; + +typedef struct +{ + drflac_uint64 offset; + drflac_uint8 trackNumber; + char ISRC[12]; + drflac_bool8 isAudio; + drflac_bool8 preEmphasis; + drflac_uint8 indexCount; + const drflac_cuesheet_track_index* pIndexPoints; +} drflac_cuesheet_track; + +/* +Initializes a cuesheet track iterator. This can be used for iterating over the cuesheet tracks in a CUESHEET metadata +block. +*/ +DRFLAC_API void drflac_init_cuesheet_track_iterator(drflac_cuesheet_track_iterator* pIter, drflac_uint32 trackCount, const void* pTrackData); + +/* Goes to the next cuesheet track in the given iterator. If DRFLAC_FALSE is returned it means there are no more comments. */ +DRFLAC_API drflac_bool32 drflac_next_cuesheet_track(drflac_cuesheet_track_iterator* pIter, drflac_cuesheet_track* pCuesheetTrack); + + +#ifdef __cplusplus +} +#endif +#endif /* dr_flac_h */ + + +/************************************************************************************************************************************************************ + ************************************************************************************************************************************************************ + + IMPLEMENTATION + + ************************************************************************************************************************************************************ + ************************************************************************************************************************************************************/ +#if defined(DR_FLAC_IMPLEMENTATION) || defined(DRFLAC_IMPLEMENTATION) +#ifndef dr_flac_c +#define dr_flac_c + +/* Disable some annoying warnings. */ +#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) + #pragma GCC diagnostic push + #if __GNUC__ >= 7 + #pragma GCC diagnostic ignored "-Wimplicit-fallthrough" + #endif +#endif + +#ifdef __linux__ + #ifndef _BSD_SOURCE + #define _BSD_SOURCE + #endif + #ifndef _DEFAULT_SOURCE + #define _DEFAULT_SOURCE + #endif + #ifndef __USE_BSD + #define __USE_BSD + #endif + #include +#endif + +#include +#include + +#ifdef _MSC_VER + #define DRFLAC_INLINE __forceinline +#elif defined(__GNUC__) + /* + I've had a bug report where GCC is emitting warnings about functions possibly not being inlineable. This warning happens when + the __attribute__((always_inline)) attribute is defined without an "inline" statement. I think therefore there must be some + case where "__inline__" is not always defined, thus the compiler emitting these warnings. When using -std=c89 or -ansi on the + command line, we cannot use the "inline" keyword and instead need to use "__inline__". In an attempt to work around this issue + I am using "__inline__" only when we're compiling in strict ANSI mode. + */ + #if defined(__STRICT_ANSI__) + #define DRFLAC_GNUC_INLINE_HINT __inline__ + #else + #define DRFLAC_GNUC_INLINE_HINT inline + #endif + + #if (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 2)) || defined(__clang__) + #define DRFLAC_INLINE DRFLAC_GNUC_INLINE_HINT __attribute__((always_inline)) + #else + #define DRFLAC_INLINE DRFLAC_GNUC_INLINE_HINT + #endif +#elif defined(__WATCOMC__) + #define DRFLAC_INLINE __inline +#else + #define DRFLAC_INLINE +#endif + +/* CPU architecture. */ +#if defined(__x86_64__) || defined(_M_X64) + #define DRFLAC_X64 +#elif defined(__i386) || defined(_M_IX86) + #define DRFLAC_X86 +#elif defined(__arm__) || defined(_M_ARM) || defined(__arm64) || defined(__arm64__) || defined(__aarch64__) || defined(_M_ARM64) + #define DRFLAC_ARM +#endif + +/* +Intrinsics Support + +There's a bug in GCC 4.2.x which results in an incorrect compilation error when using _mm_slli_epi32() where it complains with + + "error: shift must be an immediate" + +Unfortuantely dr_flac depends on this for a few things so we're just going to disable SSE on GCC 4.2 and below. +*/ +#if !defined(DR_FLAC_NO_SIMD) + #if defined(DRFLAC_X64) || defined(DRFLAC_X86) + #if defined(_MSC_VER) && !defined(__clang__) + /* MSVC. */ + #if _MSC_VER >= 1400 && !defined(DRFLAC_NO_SSE2) /* 2005 */ + #define DRFLAC_SUPPORT_SSE2 + #endif + #if _MSC_VER >= 1600 && !defined(DRFLAC_NO_SSE41) /* 2010 */ + #define DRFLAC_SUPPORT_SSE41 + #endif + #elif defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))) + /* Assume GNUC-style. */ + #if defined(__SSE2__) && !defined(DRFLAC_NO_SSE2) + #define DRFLAC_SUPPORT_SSE2 + #endif + #if defined(__SSE4_1__) && !defined(DRFLAC_NO_SSE41) + #define DRFLAC_SUPPORT_SSE41 + #endif + #endif + + /* If at this point we still haven't determined compiler support for the intrinsics just fall back to __has_include. */ + #if !defined(__GNUC__) && !defined(__clang__) && defined(__has_include) + #if !defined(DRFLAC_SUPPORT_SSE2) && !defined(DRFLAC_NO_SSE2) && __has_include() + #define DRFLAC_SUPPORT_SSE2 + #endif + #if !defined(DRFLAC_SUPPORT_SSE41) && !defined(DRFLAC_NO_SSE41) && __has_include() + #define DRFLAC_SUPPORT_SSE41 + #endif + #endif + + #if defined(DRFLAC_SUPPORT_SSE41) + #include + #elif defined(DRFLAC_SUPPORT_SSE2) + #include + #endif + #endif + + #if defined(DRFLAC_ARM) + #if !defined(DRFLAC_NO_NEON) && (defined(__ARM_NEON) || defined(__aarch64__) || defined(_M_ARM64)) + #define DRFLAC_SUPPORT_NEON + #include + #endif + #endif +#endif + +/* Compile-time CPU feature support. */ +#if !defined(DR_FLAC_NO_SIMD) && (defined(DRFLAC_X86) || defined(DRFLAC_X64)) + #if defined(_MSC_VER) && !defined(__clang__) + #if _MSC_VER >= 1400 + #include + static void drflac__cpuid(int info[4], int fid) + { + __cpuid(info, fid); + } + #else + #define DRFLAC_NO_CPUID + #endif + #else + #if defined(__GNUC__) || defined(__clang__) + static void drflac__cpuid(int info[4], int fid) + { + /* + It looks like the -fPIC option uses the ebx register which GCC complains about. We can work around this by just using a different register, the + specific register of which I'm letting the compiler decide on. The "k" prefix is used to specify a 32-bit register. The {...} syntax is for + supporting different assembly dialects. + + What's basically happening is that we're saving and restoring the ebx register manually. + */ + #if defined(DRFLAC_X86) && defined(__PIC__) + __asm__ __volatile__ ( + "xchg{l} {%%}ebx, %k1;" + "cpuid;" + "xchg{l} {%%}ebx, %k1;" + : "=a"(info[0]), "=&r"(info[1]), "=c"(info[2]), "=d"(info[3]) : "a"(fid), "c"(0) + ); + #else + __asm__ __volatile__ ( + "cpuid" : "=a"(info[0]), "=b"(info[1]), "=c"(info[2]), "=d"(info[3]) : "a"(fid), "c"(0) + ); + #endif + } + #else + #define DRFLAC_NO_CPUID + #endif + #endif +#else + #define DRFLAC_NO_CPUID +#endif + +static DRFLAC_INLINE drflac_bool32 drflac_has_sse2(void) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + #if (defined(DRFLAC_X64) || defined(DRFLAC_X86)) && !defined(DRFLAC_NO_SSE2) + #if defined(DRFLAC_X64) + return DRFLAC_TRUE; /* 64-bit targets always support SSE2. */ + #elif (defined(_M_IX86_FP) && _M_IX86_FP == 2) || defined(__SSE2__) + return DRFLAC_TRUE; /* If the compiler is allowed to freely generate SSE2 code we can assume support. */ + #else + #if defined(DRFLAC_NO_CPUID) + return DRFLAC_FALSE; + #else + int info[4]; + drflac__cpuid(info, 1); + return (info[3] & (1 << 26)) != 0; + #endif + #endif + #else + return DRFLAC_FALSE; /* SSE2 is only supported on x86 and x64 architectures. */ + #endif +#else + return DRFLAC_FALSE; /* No compiler support. */ +#endif +} + +static DRFLAC_INLINE drflac_bool32 drflac_has_sse41(void) +{ +#if defined(DRFLAC_SUPPORT_SSE41) + #if (defined(DRFLAC_X64) || defined(DRFLAC_X86)) && !defined(DRFLAC_NO_SSE41) + #if defined(__SSE4_1__) || defined(__AVX__) + return DRFLAC_TRUE; /* If the compiler is allowed to freely generate SSE41 code we can assume support. */ + #else + #if defined(DRFLAC_NO_CPUID) + return DRFLAC_FALSE; + #else + int info[4]; + drflac__cpuid(info, 1); + return (info[2] & (1 << 19)) != 0; + #endif + #endif + #else + return DRFLAC_FALSE; /* SSE41 is only supported on x86 and x64 architectures. */ + #endif +#else + return DRFLAC_FALSE; /* No compiler support. */ +#endif +} + + +#if defined(_MSC_VER) && _MSC_VER >= 1500 && (defined(DRFLAC_X86) || defined(DRFLAC_X64)) && !defined(__clang__) + #define DRFLAC_HAS_LZCNT_INTRINSIC +#elif (defined(__GNUC__) && ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7))) + #define DRFLAC_HAS_LZCNT_INTRINSIC +#elif defined(__clang__) + #if defined(__has_builtin) + #if __has_builtin(__builtin_clzll) || __has_builtin(__builtin_clzl) + #define DRFLAC_HAS_LZCNT_INTRINSIC + #endif + #endif +#endif + +#if defined(_MSC_VER) && _MSC_VER >= 1400 && !defined(__clang__) + #define DRFLAC_HAS_BYTESWAP16_INTRINSIC + #define DRFLAC_HAS_BYTESWAP32_INTRINSIC + #define DRFLAC_HAS_BYTESWAP64_INTRINSIC +#elif defined(__clang__) + #if defined(__has_builtin) + #if __has_builtin(__builtin_bswap16) + #define DRFLAC_HAS_BYTESWAP16_INTRINSIC + #endif + #if __has_builtin(__builtin_bswap32) + #define DRFLAC_HAS_BYTESWAP32_INTRINSIC + #endif + #if __has_builtin(__builtin_bswap64) + #define DRFLAC_HAS_BYTESWAP64_INTRINSIC + #endif + #endif +#elif defined(__GNUC__) + #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) + #define DRFLAC_HAS_BYTESWAP32_INTRINSIC + #define DRFLAC_HAS_BYTESWAP64_INTRINSIC + #endif + #if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)) + #define DRFLAC_HAS_BYTESWAP16_INTRINSIC + #endif +#elif defined(__WATCOMC__) && defined(__386__) + #define DRFLAC_HAS_BYTESWAP16_INTRINSIC + #define DRFLAC_HAS_BYTESWAP32_INTRINSIC + #define DRFLAC_HAS_BYTESWAP64_INTRINSIC + extern __inline drflac_uint16 _watcom_bswap16(drflac_uint16); + extern __inline drflac_uint32 _watcom_bswap32(drflac_uint32); + extern __inline drflac_uint64 _watcom_bswap64(drflac_uint64); +#pragma aux _watcom_bswap16 = \ + "xchg al, ah" \ + parm [ax] \ + value [ax] \ + modify nomemory; +#pragma aux _watcom_bswap32 = \ + "bswap eax" \ + parm [eax] \ + value [eax] \ + modify nomemory; +#pragma aux _watcom_bswap64 = \ + "bswap eax" \ + "bswap edx" \ + "xchg eax,edx" \ + parm [eax edx] \ + value [eax edx] \ + modify nomemory; +#endif + + +/* Standard library stuff. */ +#ifndef DRFLAC_ASSERT +#include +#define DRFLAC_ASSERT(expression) assert(expression) +#endif +#ifndef DRFLAC_MALLOC +#define DRFLAC_MALLOC(sz) malloc((sz)) +#endif +#ifndef DRFLAC_REALLOC +#define DRFLAC_REALLOC(p, sz) realloc((p), (sz)) +#endif +#ifndef DRFLAC_FREE +#define DRFLAC_FREE(p) free((p)) +#endif +#ifndef DRFLAC_COPY_MEMORY +#define DRFLAC_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz)) +#endif +#ifndef DRFLAC_ZERO_MEMORY +#define DRFLAC_ZERO_MEMORY(p, sz) memset((p), 0, (sz)) +#endif +#ifndef DRFLAC_ZERO_OBJECT +#define DRFLAC_ZERO_OBJECT(p) DRFLAC_ZERO_MEMORY((p), sizeof(*(p))) +#endif + +#define DRFLAC_MAX_SIMD_VECTOR_SIZE 64 /* 64 for AVX-512 in the future. */ + +typedef drflac_int32 drflac_result; +#define DRFLAC_SUCCESS 0 +#define DRFLAC_ERROR -1 /* A generic error. */ +#define DRFLAC_INVALID_ARGS -2 +#define DRFLAC_INVALID_OPERATION -3 +#define DRFLAC_OUT_OF_MEMORY -4 +#define DRFLAC_OUT_OF_RANGE -5 +#define DRFLAC_ACCESS_DENIED -6 +#define DRFLAC_DOES_NOT_EXIST -7 +#define DRFLAC_ALREADY_EXISTS -8 +#define DRFLAC_TOO_MANY_OPEN_FILES -9 +#define DRFLAC_INVALID_FILE -10 +#define DRFLAC_TOO_BIG -11 +#define DRFLAC_PATH_TOO_LONG -12 +#define DRFLAC_NAME_TOO_LONG -13 +#define DRFLAC_NOT_DIRECTORY -14 +#define DRFLAC_IS_DIRECTORY -15 +#define DRFLAC_DIRECTORY_NOT_EMPTY -16 +#define DRFLAC_END_OF_FILE -17 +#define DRFLAC_NO_SPACE -18 +#define DRFLAC_BUSY -19 +#define DRFLAC_IO_ERROR -20 +#define DRFLAC_INTERRUPT -21 +#define DRFLAC_UNAVAILABLE -22 +#define DRFLAC_ALREADY_IN_USE -23 +#define DRFLAC_BAD_ADDRESS -24 +#define DRFLAC_BAD_SEEK -25 +#define DRFLAC_BAD_PIPE -26 +#define DRFLAC_DEADLOCK -27 +#define DRFLAC_TOO_MANY_LINKS -28 +#define DRFLAC_NOT_IMPLEMENTED -29 +#define DRFLAC_NO_MESSAGE -30 +#define DRFLAC_BAD_MESSAGE -31 +#define DRFLAC_NO_DATA_AVAILABLE -32 +#define DRFLAC_INVALID_DATA -33 +#define DRFLAC_TIMEOUT -34 +#define DRFLAC_NO_NETWORK -35 +#define DRFLAC_NOT_UNIQUE -36 +#define DRFLAC_NOT_SOCKET -37 +#define DRFLAC_NO_ADDRESS -38 +#define DRFLAC_BAD_PROTOCOL -39 +#define DRFLAC_PROTOCOL_UNAVAILABLE -40 +#define DRFLAC_PROTOCOL_NOT_SUPPORTED -41 +#define DRFLAC_PROTOCOL_FAMILY_NOT_SUPPORTED -42 +#define DRFLAC_ADDRESS_FAMILY_NOT_SUPPORTED -43 +#define DRFLAC_SOCKET_NOT_SUPPORTED -44 +#define DRFLAC_CONNECTION_RESET -45 +#define DRFLAC_ALREADY_CONNECTED -46 +#define DRFLAC_NOT_CONNECTED -47 +#define DRFLAC_CONNECTION_REFUSED -48 +#define DRFLAC_NO_HOST -49 +#define DRFLAC_IN_PROGRESS -50 +#define DRFLAC_CANCELLED -51 +#define DRFLAC_MEMORY_ALREADY_MAPPED -52 +#define DRFLAC_AT_END -53 +#define DRFLAC_CRC_MISMATCH -128 + +#define DRFLAC_SUBFRAME_CONSTANT 0 +#define DRFLAC_SUBFRAME_VERBATIM 1 +#define DRFLAC_SUBFRAME_FIXED 8 +#define DRFLAC_SUBFRAME_LPC 32 +#define DRFLAC_SUBFRAME_RESERVED 255 + +#define DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE 0 +#define DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2 1 + +#define DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT 0 +#define DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE 8 +#define DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE 9 +#define DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE 10 + +#define DRFLAC_SEEKPOINT_SIZE_IN_BYTES 18 +#define DRFLAC_CUESHEET_TRACK_SIZE_IN_BYTES 36 +#define DRFLAC_CUESHEET_TRACK_INDEX_SIZE_IN_BYTES 12 + +#define drflac_align(x, a) ((((x) + (a) - 1) / (a)) * (a)) + + +DRFLAC_API void drflac_version(drflac_uint32* pMajor, drflac_uint32* pMinor, drflac_uint32* pRevision) +{ + if (pMajor) { + *pMajor = DRFLAC_VERSION_MAJOR; + } + + if (pMinor) { + *pMinor = DRFLAC_VERSION_MINOR; + } + + if (pRevision) { + *pRevision = DRFLAC_VERSION_REVISION; + } +} + +DRFLAC_API const char* drflac_version_string(void) +{ + return DRFLAC_VERSION_STRING; +} + + +/* CPU caps. */ +#if defined(__has_feature) + #if __has_feature(thread_sanitizer) + #define DRFLAC_NO_THREAD_SANITIZE __attribute__((no_sanitize("thread"))) + #else + #define DRFLAC_NO_THREAD_SANITIZE + #endif +#else + #define DRFLAC_NO_THREAD_SANITIZE +#endif + +#if defined(DRFLAC_HAS_LZCNT_INTRINSIC) +static drflac_bool32 drflac__gIsLZCNTSupported = DRFLAC_FALSE; +#endif + +#ifndef DRFLAC_NO_CPUID +static drflac_bool32 drflac__gIsSSE2Supported = DRFLAC_FALSE; +static drflac_bool32 drflac__gIsSSE41Supported = DRFLAC_FALSE; + +/* +I've had a bug report that Clang's ThreadSanitizer presents a warning in this function. Having reviewed this, this does +actually make sense. However, since CPU caps should never differ for a running process, I don't think the trade off of +complicating internal API's by passing around CPU caps versus just disabling the warnings is worthwhile. I'm therefore +just going to disable these warnings. This is disabled via the DRFLAC_NO_THREAD_SANITIZE attribute. +*/ +DRFLAC_NO_THREAD_SANITIZE static void drflac__init_cpu_caps(void) +{ + static drflac_bool32 isCPUCapsInitialized = DRFLAC_FALSE; + + if (!isCPUCapsInitialized) { + /* LZCNT */ +#if defined(DRFLAC_HAS_LZCNT_INTRINSIC) + int info[4] = {0}; + drflac__cpuid(info, 0x80000001); + drflac__gIsLZCNTSupported = (info[2] & (1 << 5)) != 0; +#endif + + /* SSE2 */ + drflac__gIsSSE2Supported = drflac_has_sse2(); + + /* SSE4.1 */ + drflac__gIsSSE41Supported = drflac_has_sse41(); + + /* Initialized. */ + isCPUCapsInitialized = DRFLAC_TRUE; + } +} +#else +static drflac_bool32 drflac__gIsNEONSupported = DRFLAC_FALSE; + +static DRFLAC_INLINE drflac_bool32 drflac__has_neon(void) +{ +#if defined(DRFLAC_SUPPORT_NEON) + #if defined(DRFLAC_ARM) && !defined(DRFLAC_NO_NEON) + #if (defined(__ARM_NEON) || defined(__aarch64__) || defined(_M_ARM64)) + return DRFLAC_TRUE; /* If the compiler is allowed to freely generate NEON code we can assume support. */ + #else + /* TODO: Runtime check. */ + return DRFLAC_FALSE; + #endif + #else + return DRFLAC_FALSE; /* NEON is only supported on ARM architectures. */ + #endif +#else + return DRFLAC_FALSE; /* No compiler support. */ +#endif +} + +DRFLAC_NO_THREAD_SANITIZE static void drflac__init_cpu_caps(void) +{ + drflac__gIsNEONSupported = drflac__has_neon(); + +#if defined(DRFLAC_HAS_LZCNT_INTRINSIC) && defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 5) + drflac__gIsLZCNTSupported = DRFLAC_TRUE; +#endif +} +#endif + + +/* Endian Management */ +static DRFLAC_INLINE drflac_bool32 drflac__is_little_endian(void) +{ +#if defined(DRFLAC_X86) || defined(DRFLAC_X64) + return DRFLAC_TRUE; +#elif defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN + return DRFLAC_TRUE; +#else + int n = 1; + return (*(char*)&n) == 1; +#endif +} + +static DRFLAC_INLINE drflac_uint16 drflac__swap_endian_uint16(drflac_uint16 n) +{ +#ifdef DRFLAC_HAS_BYTESWAP16_INTRINSIC + #if defined(_MSC_VER) && !defined(__clang__) + return _byteswap_ushort(n); + #elif defined(__GNUC__) || defined(__clang__) + return __builtin_bswap16(n); + #elif defined(__WATCOMC__) && defined(__386__) + return _watcom_bswap16(n); + #else + #error "This compiler does not support the byte swap intrinsic." + #endif +#else + return ((n & 0xFF00) >> 8) | + ((n & 0x00FF) << 8); +#endif +} + +static DRFLAC_INLINE drflac_uint32 drflac__swap_endian_uint32(drflac_uint32 n) +{ +#ifdef DRFLAC_HAS_BYTESWAP32_INTRINSIC + #if defined(_MSC_VER) && !defined(__clang__) + return _byteswap_ulong(n); + #elif defined(__GNUC__) || defined(__clang__) + #if defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 6) && !defined(DRFLAC_64BIT) /* <-- 64-bit inline assembly has not been tested, so disabling for now. */ + /* Inline assembly optimized implementation for ARM. In my testing, GCC does not generate optimized code with __builtin_bswap32(). */ + drflac_uint32 r; + __asm__ __volatile__ ( + #if defined(DRFLAC_64BIT) + "rev %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(n) /* <-- This is untested. If someone in the community could test this, that would be appreciated! */ + #else + "rev %[out], %[in]" : [out]"=r"(r) : [in]"r"(n) + #endif + ); + return r; + #else + return __builtin_bswap32(n); + #endif + #elif defined(__WATCOMC__) && defined(__386__) + return _watcom_bswap32(n); + #else + #error "This compiler does not support the byte swap intrinsic." + #endif +#else + return ((n & 0xFF000000) >> 24) | + ((n & 0x00FF0000) >> 8) | + ((n & 0x0000FF00) << 8) | + ((n & 0x000000FF) << 24); +#endif +} + +static DRFLAC_INLINE drflac_uint64 drflac__swap_endian_uint64(drflac_uint64 n) +{ +#ifdef DRFLAC_HAS_BYTESWAP64_INTRINSIC + #if defined(_MSC_VER) && !defined(__clang__) + return _byteswap_uint64(n); + #elif defined(__GNUC__) || defined(__clang__) + return __builtin_bswap64(n); + #elif defined(__WATCOMC__) && defined(__386__) + return _watcom_bswap64(n); + #else + #error "This compiler does not support the byte swap intrinsic." + #endif +#else + /* Weird "<< 32" bitshift is required for C89 because it doesn't support 64-bit constants. Should be optimized out by a good compiler. */ + return ((n & ((drflac_uint64)0xFF000000 << 32)) >> 56) | + ((n & ((drflac_uint64)0x00FF0000 << 32)) >> 40) | + ((n & ((drflac_uint64)0x0000FF00 << 32)) >> 24) | + ((n & ((drflac_uint64)0x000000FF << 32)) >> 8) | + ((n & ((drflac_uint64)0xFF000000 )) << 8) | + ((n & ((drflac_uint64)0x00FF0000 )) << 24) | + ((n & ((drflac_uint64)0x0000FF00 )) << 40) | + ((n & ((drflac_uint64)0x000000FF )) << 56); +#endif +} + + +static DRFLAC_INLINE drflac_uint16 drflac__be2host_16(drflac_uint16 n) +{ + if (drflac__is_little_endian()) { + return drflac__swap_endian_uint16(n); + } + + return n; +} + +static DRFLAC_INLINE drflac_uint32 drflac__be2host_32(drflac_uint32 n) +{ + if (drflac__is_little_endian()) { + return drflac__swap_endian_uint32(n); + } + + return n; +} + +static DRFLAC_INLINE drflac_uint32 drflac__be2host_32_ptr_unaligned(const void* pData) +{ + const drflac_uint8* pNum = (drflac_uint8*)pData; + return *(pNum) << 24 | *(pNum+1) << 16 | *(pNum+2) << 8 | *(pNum+3); +} + +static DRFLAC_INLINE drflac_uint64 drflac__be2host_64(drflac_uint64 n) +{ + if (drflac__is_little_endian()) { + return drflac__swap_endian_uint64(n); + } + + return n; +} + + +static DRFLAC_INLINE drflac_uint32 drflac__le2host_32(drflac_uint32 n) +{ + if (!drflac__is_little_endian()) { + return drflac__swap_endian_uint32(n); + } + + return n; +} + +static DRFLAC_INLINE drflac_uint32 drflac__le2host_32_ptr_unaligned(const void* pData) +{ + const drflac_uint8* pNum = (drflac_uint8*)pData; + return *pNum | *(pNum+1) << 8 | *(pNum+2) << 16 | *(pNum+3) << 24; +} + + +static DRFLAC_INLINE drflac_uint32 drflac__unsynchsafe_32(drflac_uint32 n) +{ + drflac_uint32 result = 0; + result |= (n & 0x7F000000) >> 3; + result |= (n & 0x007F0000) >> 2; + result |= (n & 0x00007F00) >> 1; + result |= (n & 0x0000007F) >> 0; + + return result; +} + + + +/* The CRC code below is based on this document: http://zlib.net/crc_v3.txt */ +static drflac_uint8 drflac__crc8_table[] = { + 0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B, 0x12, 0x15, 0x38, 0x3F, 0x36, 0x31, 0x24, 0x23, 0x2A, 0x2D, + 0x70, 0x77, 0x7E, 0x79, 0x6C, 0x6B, 0x62, 0x65, 0x48, 0x4F, 0x46, 0x41, 0x54, 0x53, 0x5A, 0x5D, + 0xE0, 0xE7, 0xEE, 0xE9, 0xFC, 0xFB, 0xF2, 0xF5, 0xD8, 0xDF, 0xD6, 0xD1, 0xC4, 0xC3, 0xCA, 0xCD, + 0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B, 0x82, 0x85, 0xA8, 0xAF, 0xA6, 0xA1, 0xB4, 0xB3, 0xBA, 0xBD, + 0xC7, 0xC0, 0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2, 0xFF, 0xF8, 0xF1, 0xF6, 0xE3, 0xE4, 0xED, 0xEA, + 0xB7, 0xB0, 0xB9, 0xBE, 0xAB, 0xAC, 0xA5, 0xA2, 0x8F, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9D, 0x9A, + 0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C, 0x35, 0x32, 0x1F, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0D, 0x0A, + 0x57, 0x50, 0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42, 0x6F, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7D, 0x7A, + 0x89, 0x8E, 0x87, 0x80, 0x95, 0x92, 0x9B, 0x9C, 0xB1, 0xB6, 0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4, + 0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2, 0xEB, 0xEC, 0xC1, 0xC6, 0xCF, 0xC8, 0xDD, 0xDA, 0xD3, 0xD4, + 0x69, 0x6E, 0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C, 0x51, 0x56, 0x5F, 0x58, 0x4D, 0x4A, 0x43, 0x44, + 0x19, 0x1E, 0x17, 0x10, 0x05, 0x02, 0x0B, 0x0C, 0x21, 0x26, 0x2F, 0x28, 0x3D, 0x3A, 0x33, 0x34, + 0x4E, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5C, 0x5B, 0x76, 0x71, 0x78, 0x7F, 0x6A, 0x6D, 0x64, 0x63, + 0x3E, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2C, 0x2B, 0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D, 0x14, 0x13, + 0xAE, 0xA9, 0xA0, 0xA7, 0xB2, 0xB5, 0xBC, 0xBB, 0x96, 0x91, 0x98, 0x9F, 0x8A, 0x8D, 0x84, 0x83, + 0xDE, 0xD9, 0xD0, 0xD7, 0xC2, 0xC5, 0xCC, 0xCB, 0xE6, 0xE1, 0xE8, 0xEF, 0xFA, 0xFD, 0xF4, 0xF3 +}; + +static drflac_uint16 drflac__crc16_table[] = { + 0x0000, 0x8005, 0x800F, 0x000A, 0x801B, 0x001E, 0x0014, 0x8011, + 0x8033, 0x0036, 0x003C, 0x8039, 0x0028, 0x802D, 0x8027, 0x0022, + 0x8063, 0x0066, 0x006C, 0x8069, 0x0078, 0x807D, 0x8077, 0x0072, + 0x0050, 0x8055, 0x805F, 0x005A, 0x804B, 0x004E, 0x0044, 0x8041, + 0x80C3, 0x00C6, 0x00CC, 0x80C9, 0x00D8, 0x80DD, 0x80D7, 0x00D2, + 0x00F0, 0x80F5, 0x80FF, 0x00FA, 0x80EB, 0x00EE, 0x00E4, 0x80E1, + 0x00A0, 0x80A5, 0x80AF, 0x00AA, 0x80BB, 0x00BE, 0x00B4, 0x80B1, + 0x8093, 0x0096, 0x009C, 0x8099, 0x0088, 0x808D, 0x8087, 0x0082, + 0x8183, 0x0186, 0x018C, 0x8189, 0x0198, 0x819D, 0x8197, 0x0192, + 0x01B0, 0x81B5, 0x81BF, 0x01BA, 0x81AB, 0x01AE, 0x01A4, 0x81A1, + 0x01E0, 0x81E5, 0x81EF, 0x01EA, 0x81FB, 0x01FE, 0x01F4, 0x81F1, + 0x81D3, 0x01D6, 0x01DC, 0x81D9, 0x01C8, 0x81CD, 0x81C7, 0x01C2, + 0x0140, 0x8145, 0x814F, 0x014A, 0x815B, 0x015E, 0x0154, 0x8151, + 0x8173, 0x0176, 0x017C, 0x8179, 0x0168, 0x816D, 0x8167, 0x0162, + 0x8123, 0x0126, 0x012C, 0x8129, 0x0138, 0x813D, 0x8137, 0x0132, + 0x0110, 0x8115, 0x811F, 0x011A, 0x810B, 0x010E, 0x0104, 0x8101, + 0x8303, 0x0306, 0x030C, 0x8309, 0x0318, 0x831D, 0x8317, 0x0312, + 0x0330, 0x8335, 0x833F, 0x033A, 0x832B, 0x032E, 0x0324, 0x8321, + 0x0360, 0x8365, 0x836F, 0x036A, 0x837B, 0x037E, 0x0374, 0x8371, + 0x8353, 0x0356, 0x035C, 0x8359, 0x0348, 0x834D, 0x8347, 0x0342, + 0x03C0, 0x83C5, 0x83CF, 0x03CA, 0x83DB, 0x03DE, 0x03D4, 0x83D1, + 0x83F3, 0x03F6, 0x03FC, 0x83F9, 0x03E8, 0x83ED, 0x83E7, 0x03E2, + 0x83A3, 0x03A6, 0x03AC, 0x83A9, 0x03B8, 0x83BD, 0x83B7, 0x03B2, + 0x0390, 0x8395, 0x839F, 0x039A, 0x838B, 0x038E, 0x0384, 0x8381, + 0x0280, 0x8285, 0x828F, 0x028A, 0x829B, 0x029E, 0x0294, 0x8291, + 0x82B3, 0x02B6, 0x02BC, 0x82B9, 0x02A8, 0x82AD, 0x82A7, 0x02A2, + 0x82E3, 0x02E6, 0x02EC, 0x82E9, 0x02F8, 0x82FD, 0x82F7, 0x02F2, + 0x02D0, 0x82D5, 0x82DF, 0x02DA, 0x82CB, 0x02CE, 0x02C4, 0x82C1, + 0x8243, 0x0246, 0x024C, 0x8249, 0x0258, 0x825D, 0x8257, 0x0252, + 0x0270, 0x8275, 0x827F, 0x027A, 0x826B, 0x026E, 0x0264, 0x8261, + 0x0220, 0x8225, 0x822F, 0x022A, 0x823B, 0x023E, 0x0234, 0x8231, + 0x8213, 0x0216, 0x021C, 0x8219, 0x0208, 0x820D, 0x8207, 0x0202 +}; + +static DRFLAC_INLINE drflac_uint8 drflac_crc8_byte(drflac_uint8 crc, drflac_uint8 data) +{ + return drflac__crc8_table[crc ^ data]; +} + +static DRFLAC_INLINE drflac_uint8 drflac_crc8(drflac_uint8 crc, drflac_uint32 data, drflac_uint32 count) +{ +#ifdef DR_FLAC_NO_CRC + (void)crc; + (void)data; + (void)count; + return 0; +#else +#if 0 + /* REFERENCE (use of this implementation requires an explicit flush by doing "drflac_crc8(crc, 0, 8);") */ + drflac_uint8 p = 0x07; + for (int i = count-1; i >= 0; --i) { + drflac_uint8 bit = (data & (1 << i)) >> i; + if (crc & 0x80) { + crc = ((crc << 1) | bit) ^ p; + } else { + crc = ((crc << 1) | bit); + } + } + return crc; +#else + drflac_uint32 wholeBytes; + drflac_uint32 leftoverBits; + drflac_uint64 leftoverDataMask; + + static drflac_uint64 leftoverDataMaskTable[8] = { + 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F + }; + + DRFLAC_ASSERT(count <= 32); + + wholeBytes = count >> 3; + leftoverBits = count - (wholeBytes*8); + leftoverDataMask = leftoverDataMaskTable[leftoverBits]; + + switch (wholeBytes) { + case 4: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0xFF000000UL << leftoverBits)) >> (24 + leftoverBits))); + case 3: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x00FF0000UL << leftoverBits)) >> (16 + leftoverBits))); + case 2: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x0000FF00UL << leftoverBits)) >> ( 8 + leftoverBits))); + case 1: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x000000FFUL << leftoverBits)) >> ( 0 + leftoverBits))); + case 0: if (leftoverBits > 0) crc = (drflac_uint8)((crc << leftoverBits) ^ drflac__crc8_table[(crc >> (8 - leftoverBits)) ^ (data & leftoverDataMask)]); + } + return crc; +#endif +#endif +} + +static DRFLAC_INLINE drflac_uint16 drflac_crc16_byte(drflac_uint16 crc, drflac_uint8 data) +{ + return (crc << 8) ^ drflac__crc16_table[(drflac_uint8)(crc >> 8) ^ data]; +} + +static DRFLAC_INLINE drflac_uint16 drflac_crc16_cache(drflac_uint16 crc, drflac_cache_t data) +{ +#ifdef DRFLAC_64BIT + crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 56) & 0xFF)); + crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 48) & 0xFF)); + crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 40) & 0xFF)); + crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 32) & 0xFF)); +#endif + crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 24) & 0xFF)); + crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 16) & 0xFF)); + crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 8) & 0xFF)); + crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 0) & 0xFF)); + + return crc; +} + +static DRFLAC_INLINE drflac_uint16 drflac_crc16_bytes(drflac_uint16 crc, drflac_cache_t data, drflac_uint32 byteCount) +{ + switch (byteCount) + { +#ifdef DRFLAC_64BIT + case 8: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 56) & 0xFF)); + case 7: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 48) & 0xFF)); + case 6: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 40) & 0xFF)); + case 5: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 32) & 0xFF)); +#endif + case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 24) & 0xFF)); + case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 16) & 0xFF)); + case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 8) & 0xFF)); + case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 0) & 0xFF)); + } + + return crc; +} + +#if 0 +static DRFLAC_INLINE drflac_uint16 drflac_crc16__32bit(drflac_uint16 crc, drflac_uint32 data, drflac_uint32 count) +{ +#ifdef DR_FLAC_NO_CRC + (void)crc; + (void)data; + (void)count; + return 0; +#else +#if 0 + /* REFERENCE (use of this implementation requires an explicit flush by doing "drflac_crc16(crc, 0, 16);") */ + drflac_uint16 p = 0x8005; + for (int i = count-1; i >= 0; --i) { + drflac_uint16 bit = (data & (1ULL << i)) >> i; + if (r & 0x8000) { + r = ((r << 1) | bit) ^ p; + } else { + r = ((r << 1) | bit); + } + } + + return crc; +#else + drflac_uint32 wholeBytes; + drflac_uint32 leftoverBits; + drflac_uint64 leftoverDataMask; + + static drflac_uint64 leftoverDataMaskTable[8] = { + 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F + }; + + DRFLAC_ASSERT(count <= 64); + + wholeBytes = count >> 3; + leftoverBits = count & 7; + leftoverDataMask = leftoverDataMaskTable[leftoverBits]; + + switch (wholeBytes) { + default: + case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0xFF000000UL << leftoverBits)) >> (24 + leftoverBits))); + case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x00FF0000UL << leftoverBits)) >> (16 + leftoverBits))); + case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x0000FF00UL << leftoverBits)) >> ( 8 + leftoverBits))); + case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x000000FFUL << leftoverBits)) >> ( 0 + leftoverBits))); + case 0: if (leftoverBits > 0) crc = (crc << leftoverBits) ^ drflac__crc16_table[(crc >> (16 - leftoverBits)) ^ (data & leftoverDataMask)]; + } + return crc; +#endif +#endif +} + +static DRFLAC_INLINE drflac_uint16 drflac_crc16__64bit(drflac_uint16 crc, drflac_uint64 data, drflac_uint32 count) +{ +#ifdef DR_FLAC_NO_CRC + (void)crc; + (void)data; + (void)count; + return 0; +#else + drflac_uint32 wholeBytes; + drflac_uint32 leftoverBits; + drflac_uint64 leftoverDataMask; + + static drflac_uint64 leftoverDataMaskTable[8] = { + 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F + }; + + DRFLAC_ASSERT(count <= 64); + + wholeBytes = count >> 3; + leftoverBits = count & 7; + leftoverDataMask = leftoverDataMaskTable[leftoverBits]; + + switch (wholeBytes) { + default: + case 8: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0xFF000000 << 32) << leftoverBits)) >> (56 + leftoverBits))); /* Weird "<< 32" bitshift is required for C89 because it doesn't support 64-bit constants. Should be optimized out by a good compiler. */ + case 7: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x00FF0000 << 32) << leftoverBits)) >> (48 + leftoverBits))); + case 6: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x0000FF00 << 32) << leftoverBits)) >> (40 + leftoverBits))); + case 5: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x000000FF << 32) << leftoverBits)) >> (32 + leftoverBits))); + case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0xFF000000 ) << leftoverBits)) >> (24 + leftoverBits))); + case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x00FF0000 ) << leftoverBits)) >> (16 + leftoverBits))); + case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x0000FF00 ) << leftoverBits)) >> ( 8 + leftoverBits))); + case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x000000FF ) << leftoverBits)) >> ( 0 + leftoverBits))); + case 0: if (leftoverBits > 0) crc = (crc << leftoverBits) ^ drflac__crc16_table[(crc >> (16 - leftoverBits)) ^ (data & leftoverDataMask)]; + } + return crc; +#endif +} + + +static DRFLAC_INLINE drflac_uint16 drflac_crc16(drflac_uint16 crc, drflac_cache_t data, drflac_uint32 count) +{ +#ifdef DRFLAC_64BIT + return drflac_crc16__64bit(crc, data, count); +#else + return drflac_crc16__32bit(crc, data, count); +#endif +} +#endif + + +#ifdef DRFLAC_64BIT +#define drflac__be2host__cache_line drflac__be2host_64 +#else +#define drflac__be2host__cache_line drflac__be2host_32 +#endif + +/* +BIT READING ATTEMPT #2 + +This uses a 32- or 64-bit bit-shifted cache - as bits are read, the cache is shifted such that the first valid bit is sitting +on the most significant bit. It uses the notion of an L1 and L2 cache (borrowed from CPU architecture), where the L1 cache +is a 32- or 64-bit unsigned integer (depending on whether or not a 32- or 64-bit build is being compiled) and the L2 is an +array of "cache lines", with each cache line being the same size as the L1. The L2 is a buffer of about 4KB and is where data +from onRead() is read into. +*/ +#define DRFLAC_CACHE_L1_SIZE_BYTES(bs) (sizeof((bs)->cache)) +#define DRFLAC_CACHE_L1_SIZE_BITS(bs) (sizeof((bs)->cache)*8) +#define DRFLAC_CACHE_L1_BITS_REMAINING(bs) (DRFLAC_CACHE_L1_SIZE_BITS(bs) - (bs)->consumedBits) +#define DRFLAC_CACHE_L1_SELECTION_MASK(_bitCount) (~((~(drflac_cache_t)0) >> (_bitCount))) +#define DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, _bitCount) (DRFLAC_CACHE_L1_SIZE_BITS(bs) - (_bitCount)) +#define DRFLAC_CACHE_L1_SELECT(bs, _bitCount) (((bs)->cache) & DRFLAC_CACHE_L1_SELECTION_MASK(_bitCount)) +#define DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, _bitCount) (DRFLAC_CACHE_L1_SELECT((bs), (_bitCount)) >> DRFLAC_CACHE_L1_SELECTION_SHIFT((bs), (_bitCount))) +#define DRFLAC_CACHE_L1_SELECT_AND_SHIFT_SAFE(bs, _bitCount)(DRFLAC_CACHE_L1_SELECT((bs), (_bitCount)) >> (DRFLAC_CACHE_L1_SELECTION_SHIFT((bs), (_bitCount)) & (DRFLAC_CACHE_L1_SIZE_BITS(bs)-1))) +#define DRFLAC_CACHE_L2_SIZE_BYTES(bs) (sizeof((bs)->cacheL2)) +#define DRFLAC_CACHE_L2_LINE_COUNT(bs) (DRFLAC_CACHE_L2_SIZE_BYTES(bs) / sizeof((bs)->cacheL2[0])) +#define DRFLAC_CACHE_L2_LINES_REMAINING(bs) (DRFLAC_CACHE_L2_LINE_COUNT(bs) - (bs)->nextL2Line) + + +#ifndef DR_FLAC_NO_CRC +static DRFLAC_INLINE void drflac__reset_crc16(drflac_bs* bs) +{ + bs->crc16 = 0; + bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3; +} + +static DRFLAC_INLINE void drflac__update_crc16(drflac_bs* bs) +{ + if (bs->crc16CacheIgnoredBytes == 0) { + bs->crc16 = drflac_crc16_cache(bs->crc16, bs->crc16Cache); + } else { + bs->crc16 = drflac_crc16_bytes(bs->crc16, bs->crc16Cache, DRFLAC_CACHE_L1_SIZE_BYTES(bs) - bs->crc16CacheIgnoredBytes); + bs->crc16CacheIgnoredBytes = 0; + } +} + +static DRFLAC_INLINE drflac_uint16 drflac__flush_crc16(drflac_bs* bs) +{ + /* We should never be flushing in a situation where we are not aligned on a byte boundary. */ + DRFLAC_ASSERT((DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7) == 0); + + /* + The bits that were read from the L1 cache need to be accumulated. The number of bytes needing to be accumulated is determined + by the number of bits that have been consumed. + */ + if (DRFLAC_CACHE_L1_BITS_REMAINING(bs) == 0) { + drflac__update_crc16(bs); + } else { + /* We only accumulate the consumed bits. */ + bs->crc16 = drflac_crc16_bytes(bs->crc16, bs->crc16Cache >> DRFLAC_CACHE_L1_BITS_REMAINING(bs), (bs->consumedBits >> 3) - bs->crc16CacheIgnoredBytes); + + /* + The bits that we just accumulated should never be accumulated again. We need to keep track of how many bytes were accumulated + so we can handle that later. + */ + bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3; + } + + return bs->crc16; +} +#endif + +static DRFLAC_INLINE drflac_bool32 drflac__reload_l1_cache_from_l2(drflac_bs* bs) +{ + size_t bytesRead; + size_t alignedL1LineCount; + + /* Fast path. Try loading straight from L2. */ + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { + bs->cache = bs->cacheL2[bs->nextL2Line++]; + return DRFLAC_TRUE; + } + + /* + If we get here it means we've run out of data in the L2 cache. We'll need to fetch more from the client, if there's + any left. + */ + if (bs->unalignedByteCount > 0) { + return DRFLAC_FALSE; /* If we have any unaligned bytes it means there's no more aligned bytes left in the client. */ + } + + bytesRead = bs->onRead(bs->pUserData, bs->cacheL2, DRFLAC_CACHE_L2_SIZE_BYTES(bs)); + + bs->nextL2Line = 0; + if (bytesRead == DRFLAC_CACHE_L2_SIZE_BYTES(bs)) { + bs->cache = bs->cacheL2[bs->nextL2Line++]; + return DRFLAC_TRUE; + } + + + /* + If we get here it means we were unable to retrieve enough data to fill the entire L2 cache. It probably + means we've just reached the end of the file. We need to move the valid data down to the end of the buffer + and adjust the index of the next line accordingly. Also keep in mind that the L2 cache must be aligned to + the size of the L1 so we'll need to seek backwards by any misaligned bytes. + */ + alignedL1LineCount = bytesRead / DRFLAC_CACHE_L1_SIZE_BYTES(bs); + + /* We need to keep track of any unaligned bytes for later use. */ + bs->unalignedByteCount = bytesRead - (alignedL1LineCount * DRFLAC_CACHE_L1_SIZE_BYTES(bs)); + if (bs->unalignedByteCount > 0) { + bs->unalignedCache = bs->cacheL2[alignedL1LineCount]; + } + + if (alignedL1LineCount > 0) { + size_t offset = DRFLAC_CACHE_L2_LINE_COUNT(bs) - alignedL1LineCount; + size_t i; + for (i = alignedL1LineCount; i > 0; --i) { + bs->cacheL2[i-1 + offset] = bs->cacheL2[i-1]; + } + + bs->nextL2Line = (drflac_uint32)offset; + bs->cache = bs->cacheL2[bs->nextL2Line++]; + return DRFLAC_TRUE; + } else { + /* If we get into this branch it means we weren't able to load any L1-aligned data. */ + bs->nextL2Line = DRFLAC_CACHE_L2_LINE_COUNT(bs); + return DRFLAC_FALSE; + } +} + +static drflac_bool32 drflac__reload_cache(drflac_bs* bs) +{ + size_t bytesRead; + +#ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); +#endif + + /* Fast path. Try just moving the next value in the L2 cache to the L1 cache. */ + if (drflac__reload_l1_cache_from_l2(bs)) { + bs->cache = drflac__be2host__cache_line(bs->cache); + bs->consumedBits = 0; +#ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs->cache; +#endif + return DRFLAC_TRUE; + } + + /* Slow path. */ + + /* + If we get here it means we have failed to load the L1 cache from the L2. Likely we've just reached the end of the stream and the last + few bytes did not meet the alignment requirements for the L2 cache. In this case we need to fall back to a slower path and read the + data from the unaligned cache. + */ + bytesRead = bs->unalignedByteCount; + if (bytesRead == 0) { + bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs); /* <-- The stream has been exhausted, so marked the bits as consumed. */ + return DRFLAC_FALSE; + } + + DRFLAC_ASSERT(bytesRead < DRFLAC_CACHE_L1_SIZE_BYTES(bs)); + bs->consumedBits = (drflac_uint32)(DRFLAC_CACHE_L1_SIZE_BYTES(bs) - bytesRead) * 8; + + bs->cache = drflac__be2host__cache_line(bs->unalignedCache); + bs->cache &= DRFLAC_CACHE_L1_SELECTION_MASK(DRFLAC_CACHE_L1_BITS_REMAINING(bs)); /* <-- Make sure the consumed bits are always set to zero. Other parts of the library depend on this property. */ + bs->unalignedByteCount = 0; /* <-- At this point the unaligned bytes have been moved into the cache and we thus have no more unaligned bytes. */ + +#ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs->cache >> bs->consumedBits; + bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3; +#endif + return DRFLAC_TRUE; +} + +static void drflac__reset_cache(drflac_bs* bs) +{ + bs->nextL2Line = DRFLAC_CACHE_L2_LINE_COUNT(bs); /* <-- This clears the L2 cache. */ + bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs); /* <-- This clears the L1 cache. */ + bs->cache = 0; + bs->unalignedByteCount = 0; /* <-- This clears the trailing unaligned bytes. */ + bs->unalignedCache = 0; + +#ifndef DR_FLAC_NO_CRC + bs->crc16Cache = 0; + bs->crc16CacheIgnoredBytes = 0; +#endif +} + + +static DRFLAC_INLINE drflac_bool32 drflac__read_uint32(drflac_bs* bs, unsigned int bitCount, drflac_uint32* pResultOut) +{ + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(pResultOut != NULL); + DRFLAC_ASSERT(bitCount > 0); + DRFLAC_ASSERT(bitCount <= 32); + + if (bs->consumedBits == DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + } + + if (bitCount <= DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { + /* + If we want to load all 32-bits from a 32-bit cache we need to do it slightly differently because we can't do + a 32-bit shift on a 32-bit integer. This will never be the case on 64-bit caches, so we can have a slightly + more optimal solution for this. + */ +#ifdef DRFLAC_64BIT + *pResultOut = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCount); + bs->consumedBits += bitCount; + bs->cache <<= bitCount; +#else + if (bitCount < DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + *pResultOut = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCount); + bs->consumedBits += bitCount; + bs->cache <<= bitCount; + } else { + /* Cannot shift by 32-bits, so need to do it differently. */ + *pResultOut = (drflac_uint32)bs->cache; + bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs); + bs->cache = 0; + } +#endif + + return DRFLAC_TRUE; + } else { + /* It straddles the cached data. It will never cover more than the next chunk. We just read the number in two parts and combine them. */ + drflac_uint32 bitCountHi = DRFLAC_CACHE_L1_BITS_REMAINING(bs); + drflac_uint32 bitCountLo = bitCount - bitCountHi; + drflac_uint32 resultHi; + + DRFLAC_ASSERT(bitCountHi > 0); + DRFLAC_ASSERT(bitCountHi < 32); + resultHi = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCountHi); + + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + if (bitCountLo > DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { + /* This happens when we get to end of stream */ + return DRFLAC_FALSE; + } + + *pResultOut = (resultHi << bitCountLo) | (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCountLo); + bs->consumedBits += bitCountLo; + bs->cache <<= bitCountLo; + return DRFLAC_TRUE; + } +} + +static drflac_bool32 drflac__read_int32(drflac_bs* bs, unsigned int bitCount, drflac_int32* pResult) +{ + drflac_uint32 result; + + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(pResult != NULL); + DRFLAC_ASSERT(bitCount > 0); + DRFLAC_ASSERT(bitCount <= 32); + + if (!drflac__read_uint32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + /* Do not attempt to shift by 32 as it's undefined. */ + if (bitCount < 32) { + drflac_uint32 signbit; + signbit = ((result >> (bitCount-1)) & 0x01); + result |= (~signbit + 1) << bitCount; + } + + *pResult = (drflac_int32)result; + return DRFLAC_TRUE; +} + +#ifdef DRFLAC_64BIT +static drflac_bool32 drflac__read_uint64(drflac_bs* bs, unsigned int bitCount, drflac_uint64* pResultOut) +{ + drflac_uint32 resultHi; + drflac_uint32 resultLo; + + DRFLAC_ASSERT(bitCount <= 64); + DRFLAC_ASSERT(bitCount > 32); + + if (!drflac__read_uint32(bs, bitCount - 32, &resultHi)) { + return DRFLAC_FALSE; + } + + if (!drflac__read_uint32(bs, 32, &resultLo)) { + return DRFLAC_FALSE; + } + + *pResultOut = (((drflac_uint64)resultHi) << 32) | ((drflac_uint64)resultLo); + return DRFLAC_TRUE; +} +#endif + +/* Function below is unused, but leaving it here in case I need to quickly add it again. */ +#if 0 +static drflac_bool32 drflac__read_int64(drflac_bs* bs, unsigned int bitCount, drflac_int64* pResultOut) +{ + drflac_uint64 result; + drflac_uint64 signbit; + + DRFLAC_ASSERT(bitCount <= 64); + + if (!drflac__read_uint64(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + signbit = ((result >> (bitCount-1)) & 0x01); + result |= (~signbit + 1) << bitCount; + + *pResultOut = (drflac_int64)result; + return DRFLAC_TRUE; +} +#endif + +static drflac_bool32 drflac__read_uint16(drflac_bs* bs, unsigned int bitCount, drflac_uint16* pResult) +{ + drflac_uint32 result; + + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(pResult != NULL); + DRFLAC_ASSERT(bitCount > 0); + DRFLAC_ASSERT(bitCount <= 16); + + if (!drflac__read_uint32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + *pResult = (drflac_uint16)result; + return DRFLAC_TRUE; +} + +#if 0 +static drflac_bool32 drflac__read_int16(drflac_bs* bs, unsigned int bitCount, drflac_int16* pResult) +{ + drflac_int32 result; + + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(pResult != NULL); + DRFLAC_ASSERT(bitCount > 0); + DRFLAC_ASSERT(bitCount <= 16); + + if (!drflac__read_int32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + *pResult = (drflac_int16)result; + return DRFLAC_TRUE; +} +#endif + +static drflac_bool32 drflac__read_uint8(drflac_bs* bs, unsigned int bitCount, drflac_uint8* pResult) +{ + drflac_uint32 result; + + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(pResult != NULL); + DRFLAC_ASSERT(bitCount > 0); + DRFLAC_ASSERT(bitCount <= 8); + + if (!drflac__read_uint32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + *pResult = (drflac_uint8)result; + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__read_int8(drflac_bs* bs, unsigned int bitCount, drflac_int8* pResult) +{ + drflac_int32 result; + + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(pResult != NULL); + DRFLAC_ASSERT(bitCount > 0); + DRFLAC_ASSERT(bitCount <= 8); + + if (!drflac__read_int32(bs, bitCount, &result)) { + return DRFLAC_FALSE; + } + + *pResult = (drflac_int8)result; + return DRFLAC_TRUE; +} + + +static drflac_bool32 drflac__seek_bits(drflac_bs* bs, size_t bitsToSeek) +{ + if (bitsToSeek <= DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { + bs->consumedBits += (drflac_uint32)bitsToSeek; + bs->cache <<= bitsToSeek; + return DRFLAC_TRUE; + } else { + /* It straddles the cached data. This function isn't called too frequently so I'm favouring simplicity here. */ + bitsToSeek -= DRFLAC_CACHE_L1_BITS_REMAINING(bs); + bs->consumedBits += DRFLAC_CACHE_L1_BITS_REMAINING(bs); + bs->cache = 0; + + /* Simple case. Seek in groups of the same number as bits that fit within a cache line. */ +#ifdef DRFLAC_64BIT + while (bitsToSeek >= DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + drflac_uint64 bin; + if (!drflac__read_uint64(bs, DRFLAC_CACHE_L1_SIZE_BITS(bs), &bin)) { + return DRFLAC_FALSE; + } + bitsToSeek -= DRFLAC_CACHE_L1_SIZE_BITS(bs); + } +#else + while (bitsToSeek >= DRFLAC_CACHE_L1_SIZE_BITS(bs)) { + drflac_uint32 bin; + if (!drflac__read_uint32(bs, DRFLAC_CACHE_L1_SIZE_BITS(bs), &bin)) { + return DRFLAC_FALSE; + } + bitsToSeek -= DRFLAC_CACHE_L1_SIZE_BITS(bs); + } +#endif + + /* Whole leftover bytes. */ + while (bitsToSeek >= 8) { + drflac_uint8 bin; + if (!drflac__read_uint8(bs, 8, &bin)) { + return DRFLAC_FALSE; + } + bitsToSeek -= 8; + } + + /* Leftover bits. */ + if (bitsToSeek > 0) { + drflac_uint8 bin; + if (!drflac__read_uint8(bs, (drflac_uint32)bitsToSeek, &bin)) { + return DRFLAC_FALSE; + } + bitsToSeek = 0; /* <-- Necessary for the assert below. */ + } + + DRFLAC_ASSERT(bitsToSeek == 0); + return DRFLAC_TRUE; + } +} + + +/* This function moves the bit streamer to the first bit after the sync code (bit 15 of the of the frame header). It will also update the CRC-16. */ +static drflac_bool32 drflac__find_and_seek_to_next_sync_code(drflac_bs* bs) +{ + DRFLAC_ASSERT(bs != NULL); + + /* + The sync code is always aligned to 8 bits. This is convenient for us because it means we can do byte-aligned movements. The first + thing to do is align to the next byte. + */ + if (!drflac__seek_bits(bs, DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7)) { + return DRFLAC_FALSE; + } + + for (;;) { + drflac_uint8 hi; + +#ifndef DR_FLAC_NO_CRC + drflac__reset_crc16(bs); +#endif + + if (!drflac__read_uint8(bs, 8, &hi)) { + return DRFLAC_FALSE; + } + + if (hi == 0xFF) { + drflac_uint8 lo; + if (!drflac__read_uint8(bs, 6, &lo)) { + return DRFLAC_FALSE; + } + + if (lo == 0x3E) { + return DRFLAC_TRUE; + } else { + if (!drflac__seek_bits(bs, DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7)) { + return DRFLAC_FALSE; + } + } + } + } + + /* Should never get here. */ + /*return DRFLAC_FALSE;*/ +} + + +#if defined(DRFLAC_HAS_LZCNT_INTRINSIC) +#define DRFLAC_IMPLEMENT_CLZ_LZCNT +#endif +#if defined(_MSC_VER) && _MSC_VER >= 1400 && (defined(DRFLAC_X64) || defined(DRFLAC_X86)) && !defined(__clang__) +#define DRFLAC_IMPLEMENT_CLZ_MSVC +#endif +#if defined(__WATCOMC__) && defined(__386__) +#define DRFLAC_IMPLEMENT_CLZ_WATCOM +#endif +#ifdef __MRC__ +#include +#define DRFLAC_IMPLEMENT_CLZ_MRC +#endif + +static DRFLAC_INLINE drflac_uint32 drflac__clz_software(drflac_cache_t x) +{ + drflac_uint32 n; + static drflac_uint32 clz_table_4[] = { + 0, + 4, + 3, 3, + 2, 2, 2, 2, + 1, 1, 1, 1, 1, 1, 1, 1 + }; + + if (x == 0) { + return sizeof(x)*8; + } + + n = clz_table_4[x >> (sizeof(x)*8 - 4)]; + if (n == 0) { +#ifdef DRFLAC_64BIT + if ((x & ((drflac_uint64)0xFFFFFFFF << 32)) == 0) { n = 32; x <<= 32; } + if ((x & ((drflac_uint64)0xFFFF0000 << 32)) == 0) { n += 16; x <<= 16; } + if ((x & ((drflac_uint64)0xFF000000 << 32)) == 0) { n += 8; x <<= 8; } + if ((x & ((drflac_uint64)0xF0000000 << 32)) == 0) { n += 4; x <<= 4; } +#else + if ((x & 0xFFFF0000) == 0) { n = 16; x <<= 16; } + if ((x & 0xFF000000) == 0) { n += 8; x <<= 8; } + if ((x & 0xF0000000) == 0) { n += 4; x <<= 4; } +#endif + n += clz_table_4[x >> (sizeof(x)*8 - 4)]; + } + + return n - 1; +} + +#ifdef DRFLAC_IMPLEMENT_CLZ_LZCNT +static DRFLAC_INLINE drflac_bool32 drflac__is_lzcnt_supported(void) +{ + /* Fast compile time check for ARM. */ +#if defined(DRFLAC_HAS_LZCNT_INTRINSIC) && defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 5) + return DRFLAC_TRUE; +#elif defined(__MRC__) + return DRFLAC_TRUE; +#else + /* If the compiler itself does not support the intrinsic then we'll need to return false. */ + #ifdef DRFLAC_HAS_LZCNT_INTRINSIC + return drflac__gIsLZCNTSupported; + #else + return DRFLAC_FALSE; + #endif +#endif +} + +static DRFLAC_INLINE drflac_uint32 drflac__clz_lzcnt(drflac_cache_t x) +{ + /* + It's critical for competitive decoding performance that this function be highly optimal. With MSVC we can use the __lzcnt64() and __lzcnt() intrinsics + to achieve good performance, however on GCC and Clang it's a little bit more annoying. The __builtin_clzl() and __builtin_clzll() intrinsics leave + it undefined as to the return value when `x` is 0. We need this to be well defined as returning 32 or 64, depending on whether or not it's a 32- or + 64-bit build. To work around this we would need to add a conditional to check for the x = 0 case, but this creates unnecessary inefficiency. To work + around this problem I have written some inline assembly to emit the LZCNT (x86) or CLZ (ARM) instruction directly which removes the need to include + the conditional. This has worked well in the past, but for some reason Clang's MSVC compatible driver, clang-cl, does not seem to be handling this + in the same way as the normal Clang driver. It seems that `clang-cl` is just outputting the wrong results sometimes, maybe due to some register + getting clobbered? + + I'm not sure if this is a bug with dr_flac's inlined assembly (most likely), a bug in `clang-cl` or just a misunderstanding on my part with inline + assembly rules for `clang-cl`. If somebody can identify an error in dr_flac's inlined assembly I'm happy to get that fixed. + + Fortunately there is an easy workaround for this. Clang implements MSVC-specific intrinsics for compatibility. It also defines _MSC_VER for extra + compatibility. We can therefore just check for _MSC_VER and use the MSVC intrinsic which, fortunately for us, Clang supports. It would still be nice + to know how to fix the inlined assembly for correctness sake, however. + */ + +#if defined(_MSC_VER) /*&& !defined(__clang__)*/ /* <-- Intentionally wanting Clang to use the MSVC __lzcnt64/__lzcnt intrinsics due to above ^. */ + #ifdef DRFLAC_64BIT + return (drflac_uint32)__lzcnt64(x); + #else + return (drflac_uint32)__lzcnt(x); + #endif +#else + #if defined(__GNUC__) || defined(__clang__) + #if defined(DRFLAC_X64) + { + drflac_uint64 r; + __asm__ __volatile__ ( + "lzcnt{ %1, %0| %0, %1}" : "=r"(r) : "r"(x) : "cc" + ); + + return (drflac_uint32)r; + } + #elif defined(DRFLAC_X86) + { + drflac_uint32 r; + __asm__ __volatile__ ( + "lzcnt{l %1, %0| %0, %1}" : "=r"(r) : "r"(x) : "cc" + ); + + return r; + } + #elif defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 5) && !defined(DRFLAC_64BIT) /* <-- I haven't tested 64-bit inline assembly, so only enabling this for the 32-bit build for now. */ + { + unsigned int r; + __asm__ __volatile__ ( + #if defined(DRFLAC_64BIT) + "clz %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(x) /* <-- This is untested. If someone in the community could test this, that would be appreciated! */ + #else + "clz %[out], %[in]" : [out]"=r"(r) : [in]"r"(x) + #endif + ); + + return r; + } + #else + if (x == 0) { + return sizeof(x)*8; + } + #ifdef DRFLAC_64BIT + return (drflac_uint32)__builtin_clzll((drflac_uint64)x); + #else + return (drflac_uint32)__builtin_clzl((drflac_uint32)x); + #endif + #endif + #else + /* Unsupported compiler. */ + #error "This compiler does not support the lzcnt intrinsic." + #endif +#endif +} +#endif + +#ifdef DRFLAC_IMPLEMENT_CLZ_MSVC +#include /* For BitScanReverse(). */ + +static DRFLAC_INLINE drflac_uint32 drflac__clz_msvc(drflac_cache_t x) +{ + drflac_uint32 n; + + if (x == 0) { + return sizeof(x)*8; + } + +#ifdef DRFLAC_64BIT + _BitScanReverse64((unsigned long*)&n, x); +#else + _BitScanReverse((unsigned long*)&n, x); +#endif + return sizeof(x)*8 - n - 1; +} +#endif + +#ifdef DRFLAC_IMPLEMENT_CLZ_WATCOM +static __inline drflac_uint32 drflac__clz_watcom (drflac_uint32); +#ifdef DRFLAC_IMPLEMENT_CLZ_WATCOM_LZCNT +/* Use the LZCNT instruction (only available on some processors since the 2010s). */ +#pragma aux drflac__clz_watcom_lzcnt = \ + "db 0F3h, 0Fh, 0BDh, 0C0h" /* lzcnt eax, eax */ \ + parm [eax] \ + value [eax] \ + modify nomemory; +#else +/* Use the 386+-compatible implementation. */ +#pragma aux drflac__clz_watcom = \ + "bsr eax, eax" \ + "xor eax, 31" \ + parm [eax] nomemory \ + value [eax] \ + modify exact [eax] nomemory; +#endif +#endif + +static DRFLAC_INLINE drflac_uint32 drflac__clz(drflac_cache_t x) +{ +#ifdef DRFLAC_IMPLEMENT_CLZ_LZCNT + if (drflac__is_lzcnt_supported()) { + return drflac__clz_lzcnt(x); + } else +#endif + { +#ifdef DRFLAC_IMPLEMENT_CLZ_MSVC + return drflac__clz_msvc(x); +#elif defined(DRFLAC_IMPLEMENT_CLZ_WATCOM_LZCNT) + return drflac__clz_watcom_lzcnt(x); +#elif defined(DRFLAC_IMPLEMENT_CLZ_WATCOM) + return (x == 0) ? sizeof(x)*8 : drflac__clz_watcom(x); +#elif defined(__MRC__) + return __cntlzw(x); +#else + return drflac__clz_software(x); +#endif + } +} + + +static DRFLAC_INLINE drflac_bool32 drflac__seek_past_next_set_bit(drflac_bs* bs, unsigned int* pOffsetOut) +{ + drflac_uint32 zeroCounter = 0; + drflac_uint32 setBitOffsetPlus1; + + while (bs->cache == 0) { + zeroCounter += (drflac_uint32)DRFLAC_CACHE_L1_BITS_REMAINING(bs); + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + } + + if (bs->cache == 1) { + /* Not catching this would lead to undefined behaviour: a shift of a 32-bit number by 32 or more is undefined */ + *pOffsetOut = zeroCounter + (drflac_uint32)DRFLAC_CACHE_L1_BITS_REMAINING(bs) - 1; + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + + return DRFLAC_TRUE; + } + + setBitOffsetPlus1 = drflac__clz(bs->cache); + setBitOffsetPlus1 += 1; + + if (setBitOffsetPlus1 > DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { + /* This happens when we get to end of stream */ + return DRFLAC_FALSE; + } + + bs->consumedBits += setBitOffsetPlus1; + bs->cache <<= setBitOffsetPlus1; + + *pOffsetOut = zeroCounter + setBitOffsetPlus1 - 1; + return DRFLAC_TRUE; +} + + + +static drflac_bool32 drflac__seek_to_byte(drflac_bs* bs, drflac_uint64 offsetFromStart) +{ + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(offsetFromStart > 0); + + /* + Seeking from the start is not quite as trivial as it sounds because the onSeek callback takes a signed 32-bit integer (which + is intentional because it simplifies the implementation of the onSeek callbacks), however offsetFromStart is unsigned 64-bit. + To resolve we just need to do an initial seek from the start, and then a series of offset seeks to make up the remainder. + */ + if (offsetFromStart > 0x7FFFFFFF) { + drflac_uint64 bytesRemaining = offsetFromStart; + if (!bs->onSeek(bs->pUserData, 0x7FFFFFFF, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + bytesRemaining -= 0x7FFFFFFF; + + while (bytesRemaining > 0x7FFFFFFF) { + if (!bs->onSeek(bs->pUserData, 0x7FFFFFFF, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + bytesRemaining -= 0x7FFFFFFF; + } + + if (bytesRemaining > 0) { + if (!bs->onSeek(bs->pUserData, (int)bytesRemaining, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + } + } else { + if (!bs->onSeek(bs->pUserData, (int)offsetFromStart, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + } + + /* The cache should be reset to force a reload of fresh data from the client. */ + drflac__reset_cache(bs); + return DRFLAC_TRUE; +} + + +static drflac_result drflac__read_utf8_coded_number(drflac_bs* bs, drflac_uint64* pNumberOut, drflac_uint8* pCRCOut) +{ + drflac_uint8 crc; + drflac_uint64 result; + drflac_uint8 utf8[7] = {0}; + int byteCount; + int i; + + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(pNumberOut != NULL); + DRFLAC_ASSERT(pCRCOut != NULL); + + crc = *pCRCOut; + + if (!drflac__read_uint8(bs, 8, utf8)) { + *pNumberOut = 0; + return DRFLAC_AT_END; + } + crc = drflac_crc8(crc, utf8[0], 8); + + if ((utf8[0] & 0x80) == 0) { + *pNumberOut = utf8[0]; + *pCRCOut = crc; + return DRFLAC_SUCCESS; + } + + /*byteCount = 1;*/ + if ((utf8[0] & 0xE0) == 0xC0) { + byteCount = 2; + } else if ((utf8[0] & 0xF0) == 0xE0) { + byteCount = 3; + } else if ((utf8[0] & 0xF8) == 0xF0) { + byteCount = 4; + } else if ((utf8[0] & 0xFC) == 0xF8) { + byteCount = 5; + } else if ((utf8[0] & 0xFE) == 0xFC) { + byteCount = 6; + } else if ((utf8[0] & 0xFF) == 0xFE) { + byteCount = 7; + } else { + *pNumberOut = 0; + return DRFLAC_CRC_MISMATCH; /* Bad UTF-8 encoding. */ + } + + /* Read extra bytes. */ + DRFLAC_ASSERT(byteCount > 1); + + result = (drflac_uint64)(utf8[0] & (0xFF >> (byteCount + 1))); + for (i = 1; i < byteCount; ++i) { + if (!drflac__read_uint8(bs, 8, utf8 + i)) { + *pNumberOut = 0; + return DRFLAC_AT_END; + } + crc = drflac_crc8(crc, utf8[i], 8); + + result = (result << 6) | (utf8[i] & 0x3F); + } + + *pNumberOut = result; + *pCRCOut = crc; + return DRFLAC_SUCCESS; +} + + +static DRFLAC_INLINE drflac_uint32 drflac__ilog2_u32(drflac_uint32 x) +{ +#if 1 /* Needs optimizing. */ + drflac_uint32 result = 0; + while (x > 0) { + result += 1; + x >>= 1; + } + + return result; +#endif +} + +static DRFLAC_INLINE drflac_bool32 drflac__use_64_bit_prediction(drflac_uint32 bitsPerSample, drflac_uint32 order, drflac_uint32 precision) +{ + /* https://web.archive.org/web/20220205005724/https://github.com/ietf-wg-cellar/flac-specification/blob/37a49aa48ba4ba12e8757badfc59c0df35435fec/rfc_backmatter.md */ + return bitsPerSample + precision + drflac__ilog2_u32(order) > 32; +} + + +/* +The next two functions are responsible for calculating the prediction. + +When the bits per sample is >16 we need to use 64-bit integer arithmetic because otherwise we'll run out of precision. It's +safe to assume this will be slower on 32-bit platforms so we use a more optimal solution when the bits per sample is <=16. +*/ +#if defined(__clang__) +__attribute__((no_sanitize("signed-integer-overflow"))) +#endif +static DRFLAC_INLINE drflac_int32 drflac__calculate_prediction_32(drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples) +{ + drflac_int32 prediction = 0; + + DRFLAC_ASSERT(order <= 32); + + /* 32-bit version. */ + + /* VC++ optimizes this to a single jmp. I've not yet verified this for other compilers. */ + switch (order) + { + case 32: prediction += coefficients[31] * pDecodedSamples[-32]; + case 31: prediction += coefficients[30] * pDecodedSamples[-31]; + case 30: prediction += coefficients[29] * pDecodedSamples[-30]; + case 29: prediction += coefficients[28] * pDecodedSamples[-29]; + case 28: prediction += coefficients[27] * pDecodedSamples[-28]; + case 27: prediction += coefficients[26] * pDecodedSamples[-27]; + case 26: prediction += coefficients[25] * pDecodedSamples[-26]; + case 25: prediction += coefficients[24] * pDecodedSamples[-25]; + case 24: prediction += coefficients[23] * pDecodedSamples[-24]; + case 23: prediction += coefficients[22] * pDecodedSamples[-23]; + case 22: prediction += coefficients[21] * pDecodedSamples[-22]; + case 21: prediction += coefficients[20] * pDecodedSamples[-21]; + case 20: prediction += coefficients[19] * pDecodedSamples[-20]; + case 19: prediction += coefficients[18] * pDecodedSamples[-19]; + case 18: prediction += coefficients[17] * pDecodedSamples[-18]; + case 17: prediction += coefficients[16] * pDecodedSamples[-17]; + case 16: prediction += coefficients[15] * pDecodedSamples[-16]; + case 15: prediction += coefficients[14] * pDecodedSamples[-15]; + case 14: prediction += coefficients[13] * pDecodedSamples[-14]; + case 13: prediction += coefficients[12] * pDecodedSamples[-13]; + case 12: prediction += coefficients[11] * pDecodedSamples[-12]; + case 11: prediction += coefficients[10] * pDecodedSamples[-11]; + case 10: prediction += coefficients[ 9] * pDecodedSamples[-10]; + case 9: prediction += coefficients[ 8] * pDecodedSamples[- 9]; + case 8: prediction += coefficients[ 7] * pDecodedSamples[- 8]; + case 7: prediction += coefficients[ 6] * pDecodedSamples[- 7]; + case 6: prediction += coefficients[ 5] * pDecodedSamples[- 6]; + case 5: prediction += coefficients[ 4] * pDecodedSamples[- 5]; + case 4: prediction += coefficients[ 3] * pDecodedSamples[- 4]; + case 3: prediction += coefficients[ 2] * pDecodedSamples[- 3]; + case 2: prediction += coefficients[ 1] * pDecodedSamples[- 2]; + case 1: prediction += coefficients[ 0] * pDecodedSamples[- 1]; + } + + return (drflac_int32)(prediction >> shift); +} + +static DRFLAC_INLINE drflac_int32 drflac__calculate_prediction_64(drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples) +{ + drflac_int64 prediction; + + DRFLAC_ASSERT(order <= 32); + + /* 64-bit version. */ + + /* This method is faster on the 32-bit build when compiling with VC++. See note below. */ +#ifndef DRFLAC_64BIT + if (order == 8) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + } + else if (order == 7) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + } + else if (order == 3) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + } + else if (order == 6) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + } + else if (order == 5) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + } + else if (order == 4) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + } + else if (order == 12) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; + prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10]; + prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11]; + prediction += coefficients[11] * (drflac_int64)pDecodedSamples[-12]; + } + else if (order == 2) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + } + else if (order == 1) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + } + else if (order == 10) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; + prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10]; + } + else if (order == 9) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; + } + else if (order == 11) + { + prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1]; + prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2]; + prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3]; + prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4]; + prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5]; + prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6]; + prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7]; + prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8]; + prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9]; + prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10]; + prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11]; + } + else + { + int j; + + prediction = 0; + for (j = 0; j < (int)order; ++j) { + prediction += coefficients[j] * (drflac_int64)pDecodedSamples[-j-1]; + } + } +#endif + + /* + VC++ optimizes this to a single jmp instruction, but only the 64-bit build. The 32-bit build generates less efficient code for some + reason. The ugly version above is faster so we'll just switch between the two depending on the target platform. + */ +#ifdef DRFLAC_64BIT + prediction = 0; + switch (order) + { + case 32: prediction += coefficients[31] * (drflac_int64)pDecodedSamples[-32]; + case 31: prediction += coefficients[30] * (drflac_int64)pDecodedSamples[-31]; + case 30: prediction += coefficients[29] * (drflac_int64)pDecodedSamples[-30]; + case 29: prediction += coefficients[28] * (drflac_int64)pDecodedSamples[-29]; + case 28: prediction += coefficients[27] * (drflac_int64)pDecodedSamples[-28]; + case 27: prediction += coefficients[26] * (drflac_int64)pDecodedSamples[-27]; + case 26: prediction += coefficients[25] * (drflac_int64)pDecodedSamples[-26]; + case 25: prediction += coefficients[24] * (drflac_int64)pDecodedSamples[-25]; + case 24: prediction += coefficients[23] * (drflac_int64)pDecodedSamples[-24]; + case 23: prediction += coefficients[22] * (drflac_int64)pDecodedSamples[-23]; + case 22: prediction += coefficients[21] * (drflac_int64)pDecodedSamples[-22]; + case 21: prediction += coefficients[20] * (drflac_int64)pDecodedSamples[-21]; + case 20: prediction += coefficients[19] * (drflac_int64)pDecodedSamples[-20]; + case 19: prediction += coefficients[18] * (drflac_int64)pDecodedSamples[-19]; + case 18: prediction += coefficients[17] * (drflac_int64)pDecodedSamples[-18]; + case 17: prediction += coefficients[16] * (drflac_int64)pDecodedSamples[-17]; + case 16: prediction += coefficients[15] * (drflac_int64)pDecodedSamples[-16]; + case 15: prediction += coefficients[14] * (drflac_int64)pDecodedSamples[-15]; + case 14: prediction += coefficients[13] * (drflac_int64)pDecodedSamples[-14]; + case 13: prediction += coefficients[12] * (drflac_int64)pDecodedSamples[-13]; + case 12: prediction += coefficients[11] * (drflac_int64)pDecodedSamples[-12]; + case 11: prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11]; + case 10: prediction += coefficients[ 9] * (drflac_int64)pDecodedSamples[-10]; + case 9: prediction += coefficients[ 8] * (drflac_int64)pDecodedSamples[- 9]; + case 8: prediction += coefficients[ 7] * (drflac_int64)pDecodedSamples[- 8]; + case 7: prediction += coefficients[ 6] * (drflac_int64)pDecodedSamples[- 7]; + case 6: prediction += coefficients[ 5] * (drflac_int64)pDecodedSamples[- 6]; + case 5: prediction += coefficients[ 4] * (drflac_int64)pDecodedSamples[- 5]; + case 4: prediction += coefficients[ 3] * (drflac_int64)pDecodedSamples[- 4]; + case 3: prediction += coefficients[ 2] * (drflac_int64)pDecodedSamples[- 3]; + case 2: prediction += coefficients[ 1] * (drflac_int64)pDecodedSamples[- 2]; + case 1: prediction += coefficients[ 0] * (drflac_int64)pDecodedSamples[- 1]; + } +#endif + + return (drflac_int32)(prediction >> shift); +} + + +#if 0 +/* +Reference implementation for reading and decoding samples with residual. This is intentionally left unoptimized for the +sake of readability and should only be used as a reference. +*/ +static drflac_bool32 drflac__decode_samples_with_residual__rice__reference(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 lpcOrder, drflac_int32 lpcShift, drflac_uint32 lpcPrecision, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + drflac_uint32 i; + + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(pSamplesOut != NULL); + + for (i = 0; i < count; ++i) { + drflac_uint32 zeroCounter = 0; + for (;;) { + drflac_uint8 bit; + if (!drflac__read_uint8(bs, 1, &bit)) { + return DRFLAC_FALSE; + } + + if (bit == 0) { + zeroCounter += 1; + } else { + break; + } + } + + drflac_uint32 decodedRice; + if (riceParam > 0) { + if (!drflac__read_uint32(bs, riceParam, &decodedRice)) { + return DRFLAC_FALSE; + } + } else { + decodedRice = 0; + } + + decodedRice |= (zeroCounter << riceParam); + if ((decodedRice & 0x01)) { + decodedRice = ~(decodedRice >> 1); + } else { + decodedRice = (decodedRice >> 1); + } + + + if (drflac__use_64_bit_prediction(bitsPerSample, lpcOrder, lpcPrecision)) { + pSamplesOut[i] = decodedRice + drflac__calculate_prediction_64(lpcOrder, lpcShift, coefficients, pSamplesOut + i); + } else { + pSamplesOut[i] = decodedRice + drflac__calculate_prediction_32(lpcOrder, lpcShift, coefficients, pSamplesOut + i); + } + } + + return DRFLAC_TRUE; +} +#endif + +#if 0 +static drflac_bool32 drflac__read_rice_parts__reference(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut) +{ + drflac_uint32 zeroCounter = 0; + drflac_uint32 decodedRice; + + for (;;) { + drflac_uint8 bit; + if (!drflac__read_uint8(bs, 1, &bit)) { + return DRFLAC_FALSE; + } + + if (bit == 0) { + zeroCounter += 1; + } else { + break; + } + } + + if (riceParam > 0) { + if (!drflac__read_uint32(bs, riceParam, &decodedRice)) { + return DRFLAC_FALSE; + } + } else { + decodedRice = 0; + } + + *pZeroCounterOut = zeroCounter; + *pRiceParamPartOut = decodedRice; + return DRFLAC_TRUE; +} +#endif + +#if 0 +static DRFLAC_INLINE drflac_bool32 drflac__read_rice_parts(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut) +{ + drflac_cache_t riceParamMask; + drflac_uint32 zeroCounter; + drflac_uint32 setBitOffsetPlus1; + drflac_uint32 riceParamPart; + drflac_uint32 riceLength; + + DRFLAC_ASSERT(riceParam > 0); /* <-- riceParam should never be 0. drflac__read_rice_parts__param_equals_zero() should be used instead for this case. */ + + riceParamMask = DRFLAC_CACHE_L1_SELECTION_MASK(riceParam); + + zeroCounter = 0; + while (bs->cache == 0) { + zeroCounter += (drflac_uint32)DRFLAC_CACHE_L1_BITS_REMAINING(bs); + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + } + + setBitOffsetPlus1 = drflac__clz(bs->cache); + zeroCounter += setBitOffsetPlus1; + setBitOffsetPlus1 += 1; + + riceLength = setBitOffsetPlus1 + riceParam; + if (riceLength < DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { + riceParamPart = (drflac_uint32)((bs->cache & (riceParamMask >> setBitOffsetPlus1)) >> DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceLength)); + + bs->consumedBits += riceLength; + bs->cache <<= riceLength; + } else { + drflac_uint32 bitCountLo; + drflac_cache_t resultHi; + + bs->consumedBits += riceLength; + bs->cache <<= setBitOffsetPlus1 & (DRFLAC_CACHE_L1_SIZE_BITS(bs)-1); /* <-- Equivalent to "if (setBitOffsetPlus1 < DRFLAC_CACHE_L1_SIZE_BITS(bs)) { bs->cache <<= setBitOffsetPlus1; }" */ + + /* It straddles the cached data. It will never cover more than the next chunk. We just read the number in two parts and combine them. */ + bitCountLo = bs->consumedBits - DRFLAC_CACHE_L1_SIZE_BITS(bs); + resultHi = DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, riceParam); /* <-- Use DRFLAC_CACHE_L1_SELECT_AND_SHIFT_SAFE() if ever this function allows riceParam=0. */ + + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { +#ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); +#endif + bs->cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); + bs->consumedBits = 0; +#ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs->cache; +#endif + } else { + /* Slow path. We need to fetch more data from the client. */ + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + if (bitCountLo > DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { + /* This happens when we get to end of stream */ + return DRFLAC_FALSE; + } + } + + riceParamPart = (drflac_uint32)(resultHi | DRFLAC_CACHE_L1_SELECT_AND_SHIFT_SAFE(bs, bitCountLo)); + + bs->consumedBits += bitCountLo; + bs->cache <<= bitCountLo; + } + + pZeroCounterOut[0] = zeroCounter; + pRiceParamPartOut[0] = riceParamPart; + + return DRFLAC_TRUE; +} +#endif + +static DRFLAC_INLINE drflac_bool32 drflac__read_rice_parts_x1(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut) +{ + drflac_uint32 riceParamPlus1 = riceParam + 1; + /*drflac_cache_t riceParamPlus1Mask = DRFLAC_CACHE_L1_SELECTION_MASK(riceParamPlus1);*/ + drflac_uint32 riceParamPlus1Shift = DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceParamPlus1); + drflac_uint32 riceParamPlus1MaxConsumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs) - riceParamPlus1; + + /* + The idea here is to use local variables for the cache in an attempt to encourage the compiler to store them in registers. I have + no idea how this will work in practice... + */ + drflac_cache_t bs_cache = bs->cache; + drflac_uint32 bs_consumedBits = bs->consumedBits; + + /* The first thing to do is find the first unset bit. Most likely a bit will be set in the current cache line. */ + drflac_uint32 lzcount = drflac__clz(bs_cache); + if (lzcount < sizeof(bs_cache)*8) { + pZeroCounterOut[0] = lzcount; + + /* + It is most likely that the riceParam part (which comes after the zero counter) is also on this cache line. When extracting + this, we include the set bit from the unary coded part because it simplifies cache management. This bit will be handled + outside of this function at a higher level. + */ + extract_rice_param_part: + bs_cache <<= lzcount; + bs_consumedBits += lzcount; + + if (bs_consumedBits <= riceParamPlus1MaxConsumedBits) { + /* Getting here means the rice parameter part is wholly contained within the current cache line. */ + pRiceParamPartOut[0] = (drflac_uint32)(bs_cache >> riceParamPlus1Shift); + bs_cache <<= riceParamPlus1; + bs_consumedBits += riceParamPlus1; + } else { + drflac_uint32 riceParamPartHi; + drflac_uint32 riceParamPartLo; + drflac_uint32 riceParamPartLoBitCount; + + /* + Getting here means the rice parameter part straddles the cache line. We need to read from the tail of the current cache + line, reload the cache, and then combine it with the head of the next cache line. + */ + + /* Grab the high part of the rice parameter part. */ + riceParamPartHi = (drflac_uint32)(bs_cache >> riceParamPlus1Shift); + + /* Before reloading the cache we need to grab the size in bits of the low part. */ + riceParamPartLoBitCount = bs_consumedBits - riceParamPlus1MaxConsumedBits; + DRFLAC_ASSERT(riceParamPartLoBitCount > 0 && riceParamPartLoBitCount < 32); + + /* Now reload the cache. */ + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { + #ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); + #endif + bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); + bs_consumedBits = riceParamPartLoBitCount; + #ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs_cache; + #endif + } else { + /* Slow path. We need to fetch more data from the client. */ + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + if (riceParamPartLoBitCount > DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { + /* This happens when we get to end of stream */ + return DRFLAC_FALSE; + } + + bs_cache = bs->cache; + bs_consumedBits = bs->consumedBits + riceParamPartLoBitCount; + } + + /* We should now have enough information to construct the rice parameter part. */ + riceParamPartLo = (drflac_uint32)(bs_cache >> (DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceParamPartLoBitCount))); + pRiceParamPartOut[0] = riceParamPartHi | riceParamPartLo; + + bs_cache <<= riceParamPartLoBitCount; + } + } else { + /* + Getting here means there are no bits set on the cache line. This is a less optimal case because we just wasted a call + to drflac__clz() and we need to reload the cache. + */ + drflac_uint32 zeroCounter = (drflac_uint32)(DRFLAC_CACHE_L1_SIZE_BITS(bs) - bs_consumedBits); + for (;;) { + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { + #ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); + #endif + bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); + bs_consumedBits = 0; + #ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs_cache; + #endif + } else { + /* Slow path. We need to fetch more data from the client. */ + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + + bs_cache = bs->cache; + bs_consumedBits = bs->consumedBits; + } + + lzcount = drflac__clz(bs_cache); + zeroCounter += lzcount; + + if (lzcount < sizeof(bs_cache)*8) { + break; + } + } + + pZeroCounterOut[0] = zeroCounter; + goto extract_rice_param_part; + } + + /* Make sure the cache is restored at the end of it all. */ + bs->cache = bs_cache; + bs->consumedBits = bs_consumedBits; + + return DRFLAC_TRUE; +} + +static DRFLAC_INLINE drflac_bool32 drflac__seek_rice_parts(drflac_bs* bs, drflac_uint8 riceParam) +{ + drflac_uint32 riceParamPlus1 = riceParam + 1; + drflac_uint32 riceParamPlus1MaxConsumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs) - riceParamPlus1; + + /* + The idea here is to use local variables for the cache in an attempt to encourage the compiler to store them in registers. I have + no idea how this will work in practice... + */ + drflac_cache_t bs_cache = bs->cache; + drflac_uint32 bs_consumedBits = bs->consumedBits; + + /* The first thing to do is find the first unset bit. Most likely a bit will be set in the current cache line. */ + drflac_uint32 lzcount = drflac__clz(bs_cache); + if (lzcount < sizeof(bs_cache)*8) { + /* + It is most likely that the riceParam part (which comes after the zero counter) is also on this cache line. When extracting + this, we include the set bit from the unary coded part because it simplifies cache management. This bit will be handled + outside of this function at a higher level. + */ + extract_rice_param_part: + bs_cache <<= lzcount; + bs_consumedBits += lzcount; + + if (bs_consumedBits <= riceParamPlus1MaxConsumedBits) { + /* Getting here means the rice parameter part is wholly contained within the current cache line. */ + bs_cache <<= riceParamPlus1; + bs_consumedBits += riceParamPlus1; + } else { + /* + Getting here means the rice parameter part straddles the cache line. We need to read from the tail of the current cache + line, reload the cache, and then combine it with the head of the next cache line. + */ + + /* Before reloading the cache we need to grab the size in bits of the low part. */ + drflac_uint32 riceParamPartLoBitCount = bs_consumedBits - riceParamPlus1MaxConsumedBits; + DRFLAC_ASSERT(riceParamPartLoBitCount > 0 && riceParamPartLoBitCount < 32); + + /* Now reload the cache. */ + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { + #ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); + #endif + bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); + bs_consumedBits = riceParamPartLoBitCount; + #ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs_cache; + #endif + } else { + /* Slow path. We need to fetch more data from the client. */ + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + + if (riceParamPartLoBitCount > DRFLAC_CACHE_L1_BITS_REMAINING(bs)) { + /* This happens when we get to end of stream */ + return DRFLAC_FALSE; + } + + bs_cache = bs->cache; + bs_consumedBits = bs->consumedBits + riceParamPartLoBitCount; + } + + bs_cache <<= riceParamPartLoBitCount; + } + } else { + /* + Getting here means there are no bits set on the cache line. This is a less optimal case because we just wasted a call + to drflac__clz() and we need to reload the cache. + */ + for (;;) { + if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) { + #ifndef DR_FLAC_NO_CRC + drflac__update_crc16(bs); + #endif + bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]); + bs_consumedBits = 0; + #ifndef DR_FLAC_NO_CRC + bs->crc16Cache = bs_cache; + #endif + } else { + /* Slow path. We need to fetch more data from the client. */ + if (!drflac__reload_cache(bs)) { + return DRFLAC_FALSE; + } + + bs_cache = bs->cache; + bs_consumedBits = bs->consumedBits; + } + + lzcount = drflac__clz(bs_cache); + if (lzcount < sizeof(bs_cache)*8) { + break; + } + } + + goto extract_rice_param_part; + } + + /* Make sure the cache is restored at the end of it all. */ + bs->cache = bs_cache; + bs->consumedBits = bs_consumedBits; + + return DRFLAC_TRUE; +} + + +static drflac_bool32 drflac__decode_samples_with_residual__rice__scalar_zeroorder(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; + drflac_uint32 zeroCountPart0; + drflac_uint32 riceParamPart0; + drflac_uint32 riceParamMask; + drflac_uint32 i; + + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(pSamplesOut != NULL); + + (void)bitsPerSample; + (void)order; + (void)shift; + (void)coefficients; + + riceParamMask = (drflac_uint32)~((~0UL) << riceParam); + + i = 0; + while (i < count) { + /* Rice extraction. */ + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0)) { + return DRFLAC_FALSE; + } + + /* Rice reconstruction. */ + riceParamPart0 &= riceParamMask; + riceParamPart0 |= (zeroCountPart0 << riceParam); + riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01]; + + pSamplesOut[i] = riceParamPart0; + + i += 1; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples_with_residual__rice__scalar(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 lpcOrder, drflac_int32 lpcShift, drflac_uint32 lpcPrecision, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; + drflac_uint32 zeroCountPart0 = 0; + drflac_uint32 zeroCountPart1 = 0; + drflac_uint32 zeroCountPart2 = 0; + drflac_uint32 zeroCountPart3 = 0; + drflac_uint32 riceParamPart0 = 0; + drflac_uint32 riceParamPart1 = 0; + drflac_uint32 riceParamPart2 = 0; + drflac_uint32 riceParamPart3 = 0; + drflac_uint32 riceParamMask; + const drflac_int32* pSamplesOutEnd; + drflac_uint32 i; + + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(pSamplesOut != NULL); + + if (lpcOrder == 0) { + return drflac__decode_samples_with_residual__rice__scalar_zeroorder(bs, bitsPerSample, count, riceParam, lpcOrder, lpcShift, coefficients, pSamplesOut); + } + + riceParamMask = (drflac_uint32)~((~0UL) << riceParam); + pSamplesOutEnd = pSamplesOut + (count & ~3); + + if (drflac__use_64_bit_prediction(bitsPerSample, lpcOrder, lpcPrecision)) { + while (pSamplesOut < pSamplesOutEnd) { + /* + Rice extraction. It's faster to do this one at a time against local variables than it is to use the x4 version + against an array. Not sure why, but perhaps it's making more efficient use of registers? + */ + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart1, &riceParamPart1) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart2, &riceParamPart2) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart3, &riceParamPart3)) { + return DRFLAC_FALSE; + } + + riceParamPart0 &= riceParamMask; + riceParamPart1 &= riceParamMask; + riceParamPart2 &= riceParamMask; + riceParamPart3 &= riceParamMask; + + riceParamPart0 |= (zeroCountPart0 << riceParam); + riceParamPart1 |= (zeroCountPart1 << riceParam); + riceParamPart2 |= (zeroCountPart2 << riceParam); + riceParamPart3 |= (zeroCountPart3 << riceParam); + + riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01]; + riceParamPart1 = (riceParamPart1 >> 1) ^ t[riceParamPart1 & 0x01]; + riceParamPart2 = (riceParamPart2 >> 1) ^ t[riceParamPart2 & 0x01]; + riceParamPart3 = (riceParamPart3 >> 1) ^ t[riceParamPart3 & 0x01]; + + pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_64(lpcOrder, lpcShift, coefficients, pSamplesOut + 0); + pSamplesOut[1] = riceParamPart1 + drflac__calculate_prediction_64(lpcOrder, lpcShift, coefficients, pSamplesOut + 1); + pSamplesOut[2] = riceParamPart2 + drflac__calculate_prediction_64(lpcOrder, lpcShift, coefficients, pSamplesOut + 2); + pSamplesOut[3] = riceParamPart3 + drflac__calculate_prediction_64(lpcOrder, lpcShift, coefficients, pSamplesOut + 3); + + pSamplesOut += 4; + } + } else { + while (pSamplesOut < pSamplesOutEnd) { + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart1, &riceParamPart1) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart2, &riceParamPart2) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart3, &riceParamPart3)) { + return DRFLAC_FALSE; + } + + riceParamPart0 &= riceParamMask; + riceParamPart1 &= riceParamMask; + riceParamPart2 &= riceParamMask; + riceParamPart3 &= riceParamMask; + + riceParamPart0 |= (zeroCountPart0 << riceParam); + riceParamPart1 |= (zeroCountPart1 << riceParam); + riceParamPart2 |= (zeroCountPart2 << riceParam); + riceParamPart3 |= (zeroCountPart3 << riceParam); + + riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01]; + riceParamPart1 = (riceParamPart1 >> 1) ^ t[riceParamPart1 & 0x01]; + riceParamPart2 = (riceParamPart2 >> 1) ^ t[riceParamPart2 & 0x01]; + riceParamPart3 = (riceParamPart3 >> 1) ^ t[riceParamPart3 & 0x01]; + + pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_32(lpcOrder, lpcShift, coefficients, pSamplesOut + 0); + pSamplesOut[1] = riceParamPart1 + drflac__calculate_prediction_32(lpcOrder, lpcShift, coefficients, pSamplesOut + 1); + pSamplesOut[2] = riceParamPart2 + drflac__calculate_prediction_32(lpcOrder, lpcShift, coefficients, pSamplesOut + 2); + pSamplesOut[3] = riceParamPart3 + drflac__calculate_prediction_32(lpcOrder, lpcShift, coefficients, pSamplesOut + 3); + + pSamplesOut += 4; + } + } + + i = (count & ~3); + while (i < count) { + /* Rice extraction. */ + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0)) { + return DRFLAC_FALSE; + } + + /* Rice reconstruction. */ + riceParamPart0 &= riceParamMask; + riceParamPart0 |= (zeroCountPart0 << riceParam); + riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01]; + /*riceParamPart0 = (riceParamPart0 >> 1) ^ (~(riceParamPart0 & 0x01) + 1);*/ + + /* Sample reconstruction. */ + if (drflac__use_64_bit_prediction(bitsPerSample, lpcOrder, lpcPrecision)) { + pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_64(lpcOrder, lpcShift, coefficients, pSamplesOut + 0); + } else { + pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_32(lpcOrder, lpcShift, coefficients, pSamplesOut + 0); + } + + i += 1; + pSamplesOut += 1; + } + + return DRFLAC_TRUE; +} + +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE __m128i drflac__mm_packs_interleaved_epi32(__m128i a, __m128i b) +{ + __m128i r; + + /* Pack. */ + r = _mm_packs_epi32(a, b); + + /* a3a2 a1a0 b3b2 b1b0 -> a3a2 b3b2 a1a0 b1b0 */ + r = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 1, 2, 0)); + + /* a3a2 b3b2 a1a0 b1b0 -> a3b3 a2b2 a1b1 a0b0 */ + r = _mm_shufflehi_epi16(r, _MM_SHUFFLE(3, 1, 2, 0)); + r = _mm_shufflelo_epi16(r, _MM_SHUFFLE(3, 1, 2, 0)); + + return r; +} +#endif + +#if defined(DRFLAC_SUPPORT_SSE41) +static DRFLAC_INLINE __m128i drflac__mm_not_si128(__m128i a) +{ + return _mm_xor_si128(a, _mm_cmpeq_epi32(_mm_setzero_si128(), _mm_setzero_si128())); +} + +static DRFLAC_INLINE __m128i drflac__mm_hadd_epi32(__m128i x) +{ + __m128i x64 = _mm_add_epi32(x, _mm_shuffle_epi32(x, _MM_SHUFFLE(1, 0, 3, 2))); + __m128i x32 = _mm_shufflelo_epi16(x64, _MM_SHUFFLE(1, 0, 3, 2)); + return _mm_add_epi32(x64, x32); +} + +static DRFLAC_INLINE __m128i drflac__mm_hadd_epi64(__m128i x) +{ + return _mm_add_epi64(x, _mm_shuffle_epi32(x, _MM_SHUFFLE(1, 0, 3, 2))); +} + +static DRFLAC_INLINE __m128i drflac__mm_srai_epi64(__m128i x, int count) +{ + /* + To simplify this we are assuming count < 32. This restriction allows us to work on a low side and a high side. The low side + is shifted with zero bits, whereas the right side is shifted with sign bits. + */ + __m128i lo = _mm_srli_epi64(x, count); + __m128i hi = _mm_srai_epi32(x, count); + + hi = _mm_and_si128(hi, _mm_set_epi32(0xFFFFFFFF, 0, 0xFFFFFFFF, 0)); /* The high part needs to have the low part cleared. */ + + return _mm_or_si128(lo, hi); +} + +static drflac_bool32 drflac__decode_samples_with_residual__rice__sse41_32(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + int i; + drflac_uint32 riceParamMask; + drflac_int32* pDecodedSamples = pSamplesOut; + drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3); + drflac_uint32 zeroCountParts0 = 0; + drflac_uint32 zeroCountParts1 = 0; + drflac_uint32 zeroCountParts2 = 0; + drflac_uint32 zeroCountParts3 = 0; + drflac_uint32 riceParamParts0 = 0; + drflac_uint32 riceParamParts1 = 0; + drflac_uint32 riceParamParts2 = 0; + drflac_uint32 riceParamParts3 = 0; + __m128i coefficients128_0; + __m128i coefficients128_4; + __m128i coefficients128_8; + __m128i samples128_0; + __m128i samples128_4; + __m128i samples128_8; + __m128i riceParamMask128; + + const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; + + riceParamMask = (drflac_uint32)~((~0UL) << riceParam); + riceParamMask128 = _mm_set1_epi32(riceParamMask); + + /* Pre-load. */ + coefficients128_0 = _mm_setzero_si128(); + coefficients128_4 = _mm_setzero_si128(); + coefficients128_8 = _mm_setzero_si128(); + + samples128_0 = _mm_setzero_si128(); + samples128_4 = _mm_setzero_si128(); + samples128_8 = _mm_setzero_si128(); + + /* + Pre-loading the coefficients and prior samples is annoying because we need to ensure we don't try reading more than + what's available in the input buffers. It would be convenient to use a fall-through switch to do this, but this results + in strict aliasing warnings with GCC. To work around this I'm just doing something hacky. This feels a bit convoluted + so I think there's opportunity for this to be simplified. + */ +#if 1 + { + int runningOrder = order; + + /* 0 - 3. */ + if (runningOrder >= 4) { + coefficients128_0 = _mm_loadu_si128((const __m128i*)(coefficients + 0)); + samples128_0 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 4)); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: coefficients128_0 = _mm_set_epi32(0, coefficients[2], coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], pSamplesOut[-3], 0); break; + case 2: coefficients128_0 = _mm_set_epi32(0, 0, coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], 0, 0); break; + case 1: coefficients128_0 = _mm_set_epi32(0, 0, 0, coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], 0, 0, 0); break; + } + runningOrder = 0; + } + + /* 4 - 7 */ + if (runningOrder >= 4) { + coefficients128_4 = _mm_loadu_si128((const __m128i*)(coefficients + 4)); + samples128_4 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 8)); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: coefficients128_4 = _mm_set_epi32(0, coefficients[6], coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], pSamplesOut[-7], 0); break; + case 2: coefficients128_4 = _mm_set_epi32(0, 0, coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], 0, 0); break; + case 1: coefficients128_4 = _mm_set_epi32(0, 0, 0, coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], 0, 0, 0); break; + } + runningOrder = 0; + } + + /* 8 - 11 */ + if (runningOrder == 4) { + coefficients128_8 = _mm_loadu_si128((const __m128i*)(coefficients + 8)); + samples128_8 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 12)); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: coefficients128_8 = _mm_set_epi32(0, coefficients[10], coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], pSamplesOut[-11], 0); break; + case 2: coefficients128_8 = _mm_set_epi32(0, 0, coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], 0, 0); break; + case 1: coefficients128_8 = _mm_set_epi32(0, 0, 0, coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], 0, 0, 0); break; + } + runningOrder = 0; + } + + /* Coefficients need to be shuffled for our streaming algorithm below to work. Samples are already in the correct order from the loading routine above. */ + coefficients128_0 = _mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(0, 1, 2, 3)); + coefficients128_4 = _mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(0, 1, 2, 3)); + coefficients128_8 = _mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(0, 1, 2, 3)); + } +#else + /* This causes strict-aliasing warnings with GCC. */ + switch (order) + { + case 12: ((drflac_int32*)&coefficients128_8)[0] = coefficients[11]; ((drflac_int32*)&samples128_8)[0] = pDecodedSamples[-12]; + case 11: ((drflac_int32*)&coefficients128_8)[1] = coefficients[10]; ((drflac_int32*)&samples128_8)[1] = pDecodedSamples[-11]; + case 10: ((drflac_int32*)&coefficients128_8)[2] = coefficients[ 9]; ((drflac_int32*)&samples128_8)[2] = pDecodedSamples[-10]; + case 9: ((drflac_int32*)&coefficients128_8)[3] = coefficients[ 8]; ((drflac_int32*)&samples128_8)[3] = pDecodedSamples[- 9]; + case 8: ((drflac_int32*)&coefficients128_4)[0] = coefficients[ 7]; ((drflac_int32*)&samples128_4)[0] = pDecodedSamples[- 8]; + case 7: ((drflac_int32*)&coefficients128_4)[1] = coefficients[ 6]; ((drflac_int32*)&samples128_4)[1] = pDecodedSamples[- 7]; + case 6: ((drflac_int32*)&coefficients128_4)[2] = coefficients[ 5]; ((drflac_int32*)&samples128_4)[2] = pDecodedSamples[- 6]; + case 5: ((drflac_int32*)&coefficients128_4)[3] = coefficients[ 4]; ((drflac_int32*)&samples128_4)[3] = pDecodedSamples[- 5]; + case 4: ((drflac_int32*)&coefficients128_0)[0] = coefficients[ 3]; ((drflac_int32*)&samples128_0)[0] = pDecodedSamples[- 4]; + case 3: ((drflac_int32*)&coefficients128_0)[1] = coefficients[ 2]; ((drflac_int32*)&samples128_0)[1] = pDecodedSamples[- 3]; + case 2: ((drflac_int32*)&coefficients128_0)[2] = coefficients[ 1]; ((drflac_int32*)&samples128_0)[2] = pDecodedSamples[- 2]; + case 1: ((drflac_int32*)&coefficients128_0)[3] = coefficients[ 0]; ((drflac_int32*)&samples128_0)[3] = pDecodedSamples[- 1]; + } +#endif + + /* For this version we are doing one sample at a time. */ + while (pDecodedSamples < pDecodedSamplesEnd) { + __m128i prediction128; + __m128i zeroCountPart128; + __m128i riceParamPart128; + + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts1, &riceParamParts1) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts2, &riceParamParts2) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts3, &riceParamParts3)) { + return DRFLAC_FALSE; + } + + zeroCountPart128 = _mm_set_epi32(zeroCountParts3, zeroCountParts2, zeroCountParts1, zeroCountParts0); + riceParamPart128 = _mm_set_epi32(riceParamParts3, riceParamParts2, riceParamParts1, riceParamParts0); + + riceParamPart128 = _mm_and_si128(riceParamPart128, riceParamMask128); + riceParamPart128 = _mm_or_si128(riceParamPart128, _mm_slli_epi32(zeroCountPart128, riceParam)); + riceParamPart128 = _mm_xor_si128(_mm_srli_epi32(riceParamPart128, 1), _mm_add_epi32(drflac__mm_not_si128(_mm_and_si128(riceParamPart128, _mm_set1_epi32(0x01))), _mm_set1_epi32(0x01))); /* <-- SSE2 compatible */ + /*riceParamPart128 = _mm_xor_si128(_mm_srli_epi32(riceParamPart128, 1), _mm_mullo_epi32(_mm_and_si128(riceParamPart128, _mm_set1_epi32(0x01)), _mm_set1_epi32(0xFFFFFFFF)));*/ /* <-- Only supported from SSE4.1 and is slower in my testing... */ + + if (order <= 4) { + for (i = 0; i < 4; i += 1) { + prediction128 = _mm_mullo_epi32(coefficients128_0, samples128_0); + + /* Horizontal add and shift. */ + prediction128 = drflac__mm_hadd_epi32(prediction128); + prediction128 = _mm_srai_epi32(prediction128, shift); + prediction128 = _mm_add_epi32(riceParamPart128, prediction128); + + samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4); + riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4); + } + } else if (order <= 8) { + for (i = 0; i < 4; i += 1) { + prediction128 = _mm_mullo_epi32(coefficients128_4, samples128_4); + prediction128 = _mm_add_epi32(prediction128, _mm_mullo_epi32(coefficients128_0, samples128_0)); + + /* Horizontal add and shift. */ + prediction128 = drflac__mm_hadd_epi32(prediction128); + prediction128 = _mm_srai_epi32(prediction128, shift); + prediction128 = _mm_add_epi32(riceParamPart128, prediction128); + + samples128_4 = _mm_alignr_epi8(samples128_0, samples128_4, 4); + samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4); + riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4); + } + } else { + for (i = 0; i < 4; i += 1) { + prediction128 = _mm_mullo_epi32(coefficients128_8, samples128_8); + prediction128 = _mm_add_epi32(prediction128, _mm_mullo_epi32(coefficients128_4, samples128_4)); + prediction128 = _mm_add_epi32(prediction128, _mm_mullo_epi32(coefficients128_0, samples128_0)); + + /* Horizontal add and shift. */ + prediction128 = drflac__mm_hadd_epi32(prediction128); + prediction128 = _mm_srai_epi32(prediction128, shift); + prediction128 = _mm_add_epi32(riceParamPart128, prediction128); + + samples128_8 = _mm_alignr_epi8(samples128_4, samples128_8, 4); + samples128_4 = _mm_alignr_epi8(samples128_0, samples128_4, 4); + samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4); + riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4); + } + } + + /* We store samples in groups of 4. */ + _mm_storeu_si128((__m128i*)pDecodedSamples, samples128_0); + pDecodedSamples += 4; + } + + /* Make sure we process the last few samples. */ + i = (count & ~3); + while (i < (int)count) { + /* Rice extraction. */ + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0)) { + return DRFLAC_FALSE; + } + + /* Rice reconstruction. */ + riceParamParts0 &= riceParamMask; + riceParamParts0 |= (zeroCountParts0 << riceParam); + riceParamParts0 = (riceParamParts0 >> 1) ^ t[riceParamParts0 & 0x01]; + + /* Sample reconstruction. */ + pDecodedSamples[0] = riceParamParts0 + drflac__calculate_prediction_32(order, shift, coefficients, pDecodedSamples); + + i += 1; + pDecodedSamples += 1; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples_with_residual__rice__sse41_64(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + int i; + drflac_uint32 riceParamMask; + drflac_int32* pDecodedSamples = pSamplesOut; + drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3); + drflac_uint32 zeroCountParts0 = 0; + drflac_uint32 zeroCountParts1 = 0; + drflac_uint32 zeroCountParts2 = 0; + drflac_uint32 zeroCountParts3 = 0; + drflac_uint32 riceParamParts0 = 0; + drflac_uint32 riceParamParts1 = 0; + drflac_uint32 riceParamParts2 = 0; + drflac_uint32 riceParamParts3 = 0; + __m128i coefficients128_0; + __m128i coefficients128_4; + __m128i coefficients128_8; + __m128i samples128_0; + __m128i samples128_4; + __m128i samples128_8; + __m128i prediction128; + __m128i riceParamMask128; + + const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; + + DRFLAC_ASSERT(order <= 12); + + riceParamMask = (drflac_uint32)~((~0UL) << riceParam); + riceParamMask128 = _mm_set1_epi32(riceParamMask); + + prediction128 = _mm_setzero_si128(); + + /* Pre-load. */ + coefficients128_0 = _mm_setzero_si128(); + coefficients128_4 = _mm_setzero_si128(); + coefficients128_8 = _mm_setzero_si128(); + + samples128_0 = _mm_setzero_si128(); + samples128_4 = _mm_setzero_si128(); + samples128_8 = _mm_setzero_si128(); + +#if 1 + { + int runningOrder = order; + + /* 0 - 3. */ + if (runningOrder >= 4) { + coefficients128_0 = _mm_loadu_si128((const __m128i*)(coefficients + 0)); + samples128_0 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 4)); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: coefficients128_0 = _mm_set_epi32(0, coefficients[2], coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], pSamplesOut[-3], 0); break; + case 2: coefficients128_0 = _mm_set_epi32(0, 0, coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], 0, 0); break; + case 1: coefficients128_0 = _mm_set_epi32(0, 0, 0, coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], 0, 0, 0); break; + } + runningOrder = 0; + } + + /* 4 - 7 */ + if (runningOrder >= 4) { + coefficients128_4 = _mm_loadu_si128((const __m128i*)(coefficients + 4)); + samples128_4 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 8)); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: coefficients128_4 = _mm_set_epi32(0, coefficients[6], coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], pSamplesOut[-7], 0); break; + case 2: coefficients128_4 = _mm_set_epi32(0, 0, coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], 0, 0); break; + case 1: coefficients128_4 = _mm_set_epi32(0, 0, 0, coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], 0, 0, 0); break; + } + runningOrder = 0; + } + + /* 8 - 11 */ + if (runningOrder == 4) { + coefficients128_8 = _mm_loadu_si128((const __m128i*)(coefficients + 8)); + samples128_8 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 12)); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: coefficients128_8 = _mm_set_epi32(0, coefficients[10], coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], pSamplesOut[-11], 0); break; + case 2: coefficients128_8 = _mm_set_epi32(0, 0, coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], 0, 0); break; + case 1: coefficients128_8 = _mm_set_epi32(0, 0, 0, coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], 0, 0, 0); break; + } + runningOrder = 0; + } + + /* Coefficients need to be shuffled for our streaming algorithm below to work. Samples are already in the correct order from the loading routine above. */ + coefficients128_0 = _mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(0, 1, 2, 3)); + coefficients128_4 = _mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(0, 1, 2, 3)); + coefficients128_8 = _mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(0, 1, 2, 3)); + } +#else + switch (order) + { + case 12: ((drflac_int32*)&coefficients128_8)[0] = coefficients[11]; ((drflac_int32*)&samples128_8)[0] = pDecodedSamples[-12]; + case 11: ((drflac_int32*)&coefficients128_8)[1] = coefficients[10]; ((drflac_int32*)&samples128_8)[1] = pDecodedSamples[-11]; + case 10: ((drflac_int32*)&coefficients128_8)[2] = coefficients[ 9]; ((drflac_int32*)&samples128_8)[2] = pDecodedSamples[-10]; + case 9: ((drflac_int32*)&coefficients128_8)[3] = coefficients[ 8]; ((drflac_int32*)&samples128_8)[3] = pDecodedSamples[- 9]; + case 8: ((drflac_int32*)&coefficients128_4)[0] = coefficients[ 7]; ((drflac_int32*)&samples128_4)[0] = pDecodedSamples[- 8]; + case 7: ((drflac_int32*)&coefficients128_4)[1] = coefficients[ 6]; ((drflac_int32*)&samples128_4)[1] = pDecodedSamples[- 7]; + case 6: ((drflac_int32*)&coefficients128_4)[2] = coefficients[ 5]; ((drflac_int32*)&samples128_4)[2] = pDecodedSamples[- 6]; + case 5: ((drflac_int32*)&coefficients128_4)[3] = coefficients[ 4]; ((drflac_int32*)&samples128_4)[3] = pDecodedSamples[- 5]; + case 4: ((drflac_int32*)&coefficients128_0)[0] = coefficients[ 3]; ((drflac_int32*)&samples128_0)[0] = pDecodedSamples[- 4]; + case 3: ((drflac_int32*)&coefficients128_0)[1] = coefficients[ 2]; ((drflac_int32*)&samples128_0)[1] = pDecodedSamples[- 3]; + case 2: ((drflac_int32*)&coefficients128_0)[2] = coefficients[ 1]; ((drflac_int32*)&samples128_0)[2] = pDecodedSamples[- 2]; + case 1: ((drflac_int32*)&coefficients128_0)[3] = coefficients[ 0]; ((drflac_int32*)&samples128_0)[3] = pDecodedSamples[- 1]; + } +#endif + + /* For this version we are doing one sample at a time. */ + while (pDecodedSamples < pDecodedSamplesEnd) { + __m128i zeroCountPart128; + __m128i riceParamPart128; + + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts1, &riceParamParts1) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts2, &riceParamParts2) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts3, &riceParamParts3)) { + return DRFLAC_FALSE; + } + + zeroCountPart128 = _mm_set_epi32(zeroCountParts3, zeroCountParts2, zeroCountParts1, zeroCountParts0); + riceParamPart128 = _mm_set_epi32(riceParamParts3, riceParamParts2, riceParamParts1, riceParamParts0); + + riceParamPart128 = _mm_and_si128(riceParamPart128, riceParamMask128); + riceParamPart128 = _mm_or_si128(riceParamPart128, _mm_slli_epi32(zeroCountPart128, riceParam)); + riceParamPart128 = _mm_xor_si128(_mm_srli_epi32(riceParamPart128, 1), _mm_add_epi32(drflac__mm_not_si128(_mm_and_si128(riceParamPart128, _mm_set1_epi32(1))), _mm_set1_epi32(1))); + + for (i = 0; i < 4; i += 1) { + prediction128 = _mm_xor_si128(prediction128, prediction128); /* Reset to 0. */ + + switch (order) + { + case 12: + case 11: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(1, 1, 0, 0)), _mm_shuffle_epi32(samples128_8, _MM_SHUFFLE(1, 1, 0, 0)))); + case 10: + case 9: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(3, 3, 2, 2)), _mm_shuffle_epi32(samples128_8, _MM_SHUFFLE(3, 3, 2, 2)))); + case 8: + case 7: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(1, 1, 0, 0)), _mm_shuffle_epi32(samples128_4, _MM_SHUFFLE(1, 1, 0, 0)))); + case 6: + case 5: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(3, 3, 2, 2)), _mm_shuffle_epi32(samples128_4, _MM_SHUFFLE(3, 3, 2, 2)))); + case 4: + case 3: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(1, 1, 0, 0)), _mm_shuffle_epi32(samples128_0, _MM_SHUFFLE(1, 1, 0, 0)))); + case 2: + case 1: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(3, 3, 2, 2)), _mm_shuffle_epi32(samples128_0, _MM_SHUFFLE(3, 3, 2, 2)))); + } + + /* Horizontal add and shift. */ + prediction128 = drflac__mm_hadd_epi64(prediction128); + prediction128 = drflac__mm_srai_epi64(prediction128, shift); + prediction128 = _mm_add_epi32(riceParamPart128, prediction128); + + /* Our value should be sitting in prediction128[0]. We need to combine this with our SSE samples. */ + samples128_8 = _mm_alignr_epi8(samples128_4, samples128_8, 4); + samples128_4 = _mm_alignr_epi8(samples128_0, samples128_4, 4); + samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4); + + /* Slide our rice parameter down so that the value in position 0 contains the next one to process. */ + riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4); + } + + /* We store samples in groups of 4. */ + _mm_storeu_si128((__m128i*)pDecodedSamples, samples128_0); + pDecodedSamples += 4; + } + + /* Make sure we process the last few samples. */ + i = (count & ~3); + while (i < (int)count) { + /* Rice extraction. */ + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0)) { + return DRFLAC_FALSE; + } + + /* Rice reconstruction. */ + riceParamParts0 &= riceParamMask; + riceParamParts0 |= (zeroCountParts0 << riceParam); + riceParamParts0 = (riceParamParts0 >> 1) ^ t[riceParamParts0 & 0x01]; + + /* Sample reconstruction. */ + pDecodedSamples[0] = riceParamParts0 + drflac__calculate_prediction_64(order, shift, coefficients, pDecodedSamples); + + i += 1; + pDecodedSamples += 1; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples_with_residual__rice__sse41(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 lpcOrder, drflac_int32 lpcShift, drflac_uint32 lpcPrecision, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(pSamplesOut != NULL); + + /* In my testing the order is rarely > 12, so in this case I'm going to simplify the SSE implementation by only handling order <= 12. */ + if (lpcOrder > 0 && lpcOrder <= 12) { + if (drflac__use_64_bit_prediction(bitsPerSample, lpcOrder, lpcPrecision)) { + return drflac__decode_samples_with_residual__rice__sse41_64(bs, count, riceParam, lpcOrder, lpcShift, coefficients, pSamplesOut); + } else { + return drflac__decode_samples_with_residual__rice__sse41_32(bs, count, riceParam, lpcOrder, lpcShift, coefficients, pSamplesOut); + } + } else { + return drflac__decode_samples_with_residual__rice__scalar(bs, bitsPerSample, count, riceParam, lpcOrder, lpcShift, lpcPrecision, coefficients, pSamplesOut); + } +} +#endif + +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac__vst2q_s32(drflac_int32* p, int32x4x2_t x) +{ + vst1q_s32(p+0, x.val[0]); + vst1q_s32(p+4, x.val[1]); +} + +static DRFLAC_INLINE void drflac__vst2q_u32(drflac_uint32* p, uint32x4x2_t x) +{ + vst1q_u32(p+0, x.val[0]); + vst1q_u32(p+4, x.val[1]); +} + +static DRFLAC_INLINE void drflac__vst2q_f32(float* p, float32x4x2_t x) +{ + vst1q_f32(p+0, x.val[0]); + vst1q_f32(p+4, x.val[1]); +} + +static DRFLAC_INLINE void drflac__vst2q_s16(drflac_int16* p, int16x4x2_t x) +{ + vst1q_s16(p, vcombine_s16(x.val[0], x.val[1])); +} + +static DRFLAC_INLINE void drflac__vst2q_u16(drflac_uint16* p, uint16x4x2_t x) +{ + vst1q_u16(p, vcombine_u16(x.val[0], x.val[1])); +} + +static DRFLAC_INLINE int32x4_t drflac__vdupq_n_s32x4(drflac_int32 x3, drflac_int32 x2, drflac_int32 x1, drflac_int32 x0) +{ + drflac_int32 x[4]; + x[3] = x3; + x[2] = x2; + x[1] = x1; + x[0] = x0; + return vld1q_s32(x); +} + +static DRFLAC_INLINE int32x4_t drflac__valignrq_s32_1(int32x4_t a, int32x4_t b) +{ + /* Equivalent to SSE's _mm_alignr_epi8(a, b, 4) */ + + /* Reference */ + /*return drflac__vdupq_n_s32x4( + vgetq_lane_s32(a, 0), + vgetq_lane_s32(b, 3), + vgetq_lane_s32(b, 2), + vgetq_lane_s32(b, 1) + );*/ + + return vextq_s32(b, a, 1); +} + +static DRFLAC_INLINE uint32x4_t drflac__valignrq_u32_1(uint32x4_t a, uint32x4_t b) +{ + /* Equivalent to SSE's _mm_alignr_epi8(a, b, 4) */ + + /* Reference */ + /*return drflac__vdupq_n_s32x4( + vgetq_lane_s32(a, 0), + vgetq_lane_s32(b, 3), + vgetq_lane_s32(b, 2), + vgetq_lane_s32(b, 1) + );*/ + + return vextq_u32(b, a, 1); +} + +static DRFLAC_INLINE int32x2_t drflac__vhaddq_s32(int32x4_t x) +{ + /* The sum must end up in position 0. */ + + /* Reference */ + /*return vdupq_n_s32( + vgetq_lane_s32(x, 3) + + vgetq_lane_s32(x, 2) + + vgetq_lane_s32(x, 1) + + vgetq_lane_s32(x, 0) + );*/ + + int32x2_t r = vadd_s32(vget_high_s32(x), vget_low_s32(x)); + return vpadd_s32(r, r); +} + +static DRFLAC_INLINE int64x1_t drflac__vhaddq_s64(int64x2_t x) +{ + return vadd_s64(vget_high_s64(x), vget_low_s64(x)); +} + +static DRFLAC_INLINE int32x4_t drflac__vrevq_s32(int32x4_t x) +{ + /* Reference */ + /*return drflac__vdupq_n_s32x4( + vgetq_lane_s32(x, 0), + vgetq_lane_s32(x, 1), + vgetq_lane_s32(x, 2), + vgetq_lane_s32(x, 3) + );*/ + + return vrev64q_s32(vcombine_s32(vget_high_s32(x), vget_low_s32(x))); +} + +static DRFLAC_INLINE int32x4_t drflac__vnotq_s32(int32x4_t x) +{ + return veorq_s32(x, vdupq_n_s32(0xFFFFFFFF)); +} + +static DRFLAC_INLINE uint32x4_t drflac__vnotq_u32(uint32x4_t x) +{ + return veorq_u32(x, vdupq_n_u32(0xFFFFFFFF)); +} + +static drflac_bool32 drflac__decode_samples_with_residual__rice__neon_32(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + int i; + drflac_uint32 riceParamMask; + drflac_int32* pDecodedSamples = pSamplesOut; + drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3); + drflac_uint32 zeroCountParts[4]; + drflac_uint32 riceParamParts[4]; + int32x4_t coefficients128_0; + int32x4_t coefficients128_4; + int32x4_t coefficients128_8; + int32x4_t samples128_0; + int32x4_t samples128_4; + int32x4_t samples128_8; + uint32x4_t riceParamMask128; + int32x4_t riceParam128; + int32x2_t shift64; + uint32x4_t one128; + + const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; + + riceParamMask = (drflac_uint32)~((~0UL) << riceParam); + riceParamMask128 = vdupq_n_u32(riceParamMask); + + riceParam128 = vdupq_n_s32(riceParam); + shift64 = vdup_n_s32(-shift); /* Negate the shift because we'll be doing a variable shift using vshlq_s32(). */ + one128 = vdupq_n_u32(1); + + /* + Pre-loading the coefficients and prior samples is annoying because we need to ensure we don't try reading more than + what's available in the input buffers. It would be conenient to use a fall-through switch to do this, but this results + in strict aliasing warnings with GCC. To work around this I'm just doing something hacky. This feels a bit convoluted + so I think there's opportunity for this to be simplified. + */ + { + int runningOrder = order; + drflac_int32 tempC[4] = {0, 0, 0, 0}; + drflac_int32 tempS[4] = {0, 0, 0, 0}; + + /* 0 - 3. */ + if (runningOrder >= 4) { + coefficients128_0 = vld1q_s32(coefficients + 0); + samples128_0 = vld1q_s32(pSamplesOut - 4); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: tempC[2] = coefficients[2]; tempS[1] = pSamplesOut[-3]; /* fallthrough */ + case 2: tempC[1] = coefficients[1]; tempS[2] = pSamplesOut[-2]; /* fallthrough */ + case 1: tempC[0] = coefficients[0]; tempS[3] = pSamplesOut[-1]; /* fallthrough */ + } + + coefficients128_0 = vld1q_s32(tempC); + samples128_0 = vld1q_s32(tempS); + runningOrder = 0; + } + + /* 4 - 7 */ + if (runningOrder >= 4) { + coefficients128_4 = vld1q_s32(coefficients + 4); + samples128_4 = vld1q_s32(pSamplesOut - 8); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: tempC[2] = coefficients[6]; tempS[1] = pSamplesOut[-7]; /* fallthrough */ + case 2: tempC[1] = coefficients[5]; tempS[2] = pSamplesOut[-6]; /* fallthrough */ + case 1: tempC[0] = coefficients[4]; tempS[3] = pSamplesOut[-5]; /* fallthrough */ + } + + coefficients128_4 = vld1q_s32(tempC); + samples128_4 = vld1q_s32(tempS); + runningOrder = 0; + } + + /* 8 - 11 */ + if (runningOrder == 4) { + coefficients128_8 = vld1q_s32(coefficients + 8); + samples128_8 = vld1q_s32(pSamplesOut - 12); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: tempC[2] = coefficients[10]; tempS[1] = pSamplesOut[-11]; /* fallthrough */ + case 2: tempC[1] = coefficients[ 9]; tempS[2] = pSamplesOut[-10]; /* fallthrough */ + case 1: tempC[0] = coefficients[ 8]; tempS[3] = pSamplesOut[- 9]; /* fallthrough */ + } + + coefficients128_8 = vld1q_s32(tempC); + samples128_8 = vld1q_s32(tempS); + runningOrder = 0; + } + + /* Coefficients need to be shuffled for our streaming algorithm below to work. Samples are already in the correct order from the loading routine above. */ + coefficients128_0 = drflac__vrevq_s32(coefficients128_0); + coefficients128_4 = drflac__vrevq_s32(coefficients128_4); + coefficients128_8 = drflac__vrevq_s32(coefficients128_8); + } + + /* For this version we are doing one sample at a time. */ + while (pDecodedSamples < pDecodedSamplesEnd) { + int32x4_t prediction128; + int32x2_t prediction64; + uint32x4_t zeroCountPart128; + uint32x4_t riceParamPart128; + + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0]) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[1], &riceParamParts[1]) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[2], &riceParamParts[2]) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[3], &riceParamParts[3])) { + return DRFLAC_FALSE; + } + + zeroCountPart128 = vld1q_u32(zeroCountParts); + riceParamPart128 = vld1q_u32(riceParamParts); + + riceParamPart128 = vandq_u32(riceParamPart128, riceParamMask128); + riceParamPart128 = vorrq_u32(riceParamPart128, vshlq_u32(zeroCountPart128, riceParam128)); + riceParamPart128 = veorq_u32(vshrq_n_u32(riceParamPart128, 1), vaddq_u32(drflac__vnotq_u32(vandq_u32(riceParamPart128, one128)), one128)); + + if (order <= 4) { + for (i = 0; i < 4; i += 1) { + prediction128 = vmulq_s32(coefficients128_0, samples128_0); + + /* Horizontal add and shift. */ + prediction64 = drflac__vhaddq_s32(prediction128); + prediction64 = vshl_s32(prediction64, shift64); + prediction64 = vadd_s32(prediction64, vget_low_s32(vreinterpretq_s32_u32(riceParamPart128))); + + samples128_0 = drflac__valignrq_s32_1(vcombine_s32(prediction64, vdup_n_s32(0)), samples128_0); + riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128); + } + } else if (order <= 8) { + for (i = 0; i < 4; i += 1) { + prediction128 = vmulq_s32(coefficients128_4, samples128_4); + prediction128 = vmlaq_s32(prediction128, coefficients128_0, samples128_0); + + /* Horizontal add and shift. */ + prediction64 = drflac__vhaddq_s32(prediction128); + prediction64 = vshl_s32(prediction64, shift64); + prediction64 = vadd_s32(prediction64, vget_low_s32(vreinterpretq_s32_u32(riceParamPart128))); + + samples128_4 = drflac__valignrq_s32_1(samples128_0, samples128_4); + samples128_0 = drflac__valignrq_s32_1(vcombine_s32(prediction64, vdup_n_s32(0)), samples128_0); + riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128); + } + } else { + for (i = 0; i < 4; i += 1) { + prediction128 = vmulq_s32(coefficients128_8, samples128_8); + prediction128 = vmlaq_s32(prediction128, coefficients128_4, samples128_4); + prediction128 = vmlaq_s32(prediction128, coefficients128_0, samples128_0); + + /* Horizontal add and shift. */ + prediction64 = drflac__vhaddq_s32(prediction128); + prediction64 = vshl_s32(prediction64, shift64); + prediction64 = vadd_s32(prediction64, vget_low_s32(vreinterpretq_s32_u32(riceParamPart128))); + + samples128_8 = drflac__valignrq_s32_1(samples128_4, samples128_8); + samples128_4 = drflac__valignrq_s32_1(samples128_0, samples128_4); + samples128_0 = drflac__valignrq_s32_1(vcombine_s32(prediction64, vdup_n_s32(0)), samples128_0); + riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128); + } + } + + /* We store samples in groups of 4. */ + vst1q_s32(pDecodedSamples, samples128_0); + pDecodedSamples += 4; + } + + /* Make sure we process the last few samples. */ + i = (count & ~3); + while (i < (int)count) { + /* Rice extraction. */ + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0])) { + return DRFLAC_FALSE; + } + + /* Rice reconstruction. */ + riceParamParts[0] &= riceParamMask; + riceParamParts[0] |= (zeroCountParts[0] << riceParam); + riceParamParts[0] = (riceParamParts[0] >> 1) ^ t[riceParamParts[0] & 0x01]; + + /* Sample reconstruction. */ + pDecodedSamples[0] = riceParamParts[0] + drflac__calculate_prediction_32(order, shift, coefficients, pDecodedSamples); + + i += 1; + pDecodedSamples += 1; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples_with_residual__rice__neon_64(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + int i; + drflac_uint32 riceParamMask; + drflac_int32* pDecodedSamples = pSamplesOut; + drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3); + drflac_uint32 zeroCountParts[4]; + drflac_uint32 riceParamParts[4]; + int32x4_t coefficients128_0; + int32x4_t coefficients128_4; + int32x4_t coefficients128_8; + int32x4_t samples128_0; + int32x4_t samples128_4; + int32x4_t samples128_8; + uint32x4_t riceParamMask128; + int32x4_t riceParam128; + int64x1_t shift64; + uint32x4_t one128; + int64x2_t prediction128 = { 0 }; + uint32x4_t zeroCountPart128; + uint32x4_t riceParamPart128; + + const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF}; + + riceParamMask = (drflac_uint32)~((~0UL) << riceParam); + riceParamMask128 = vdupq_n_u32(riceParamMask); + + riceParam128 = vdupq_n_s32(riceParam); + shift64 = vdup_n_s64(-shift); /* Negate the shift because we'll be doing a variable shift using vshlq_s32(). */ + one128 = vdupq_n_u32(1); + + /* + Pre-loading the coefficients and prior samples is annoying because we need to ensure we don't try reading more than + what's available in the input buffers. It would be convenient to use a fall-through switch to do this, but this results + in strict aliasing warnings with GCC. To work around this I'm just doing something hacky. This feels a bit convoluted + so I think there's opportunity for this to be simplified. + */ + { + int runningOrder = order; + drflac_int32 tempC[4] = {0, 0, 0, 0}; + drflac_int32 tempS[4] = {0, 0, 0, 0}; + + /* 0 - 3. */ + if (runningOrder >= 4) { + coefficients128_0 = vld1q_s32(coefficients + 0); + samples128_0 = vld1q_s32(pSamplesOut - 4); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: tempC[2] = coefficients[2]; tempS[1] = pSamplesOut[-3]; /* fallthrough */ + case 2: tempC[1] = coefficients[1]; tempS[2] = pSamplesOut[-2]; /* fallthrough */ + case 1: tempC[0] = coefficients[0]; tempS[3] = pSamplesOut[-1]; /* fallthrough */ + } + + coefficients128_0 = vld1q_s32(tempC); + samples128_0 = vld1q_s32(tempS); + runningOrder = 0; + } + + /* 4 - 7 */ + if (runningOrder >= 4) { + coefficients128_4 = vld1q_s32(coefficients + 4); + samples128_4 = vld1q_s32(pSamplesOut - 8); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: tempC[2] = coefficients[6]; tempS[1] = pSamplesOut[-7]; /* fallthrough */ + case 2: tempC[1] = coefficients[5]; tempS[2] = pSamplesOut[-6]; /* fallthrough */ + case 1: tempC[0] = coefficients[4]; tempS[3] = pSamplesOut[-5]; /* fallthrough */ + } + + coefficients128_4 = vld1q_s32(tempC); + samples128_4 = vld1q_s32(tempS); + runningOrder = 0; + } + + /* 8 - 11 */ + if (runningOrder == 4) { + coefficients128_8 = vld1q_s32(coefficients + 8); + samples128_8 = vld1q_s32(pSamplesOut - 12); + runningOrder -= 4; + } else { + switch (runningOrder) { + case 3: tempC[2] = coefficients[10]; tempS[1] = pSamplesOut[-11]; /* fallthrough */ + case 2: tempC[1] = coefficients[ 9]; tempS[2] = pSamplesOut[-10]; /* fallthrough */ + case 1: tempC[0] = coefficients[ 8]; tempS[3] = pSamplesOut[- 9]; /* fallthrough */ + } + + coefficients128_8 = vld1q_s32(tempC); + samples128_8 = vld1q_s32(tempS); + runningOrder = 0; + } + + /* Coefficients need to be shuffled for our streaming algorithm below to work. Samples are already in the correct order from the loading routine above. */ + coefficients128_0 = drflac__vrevq_s32(coefficients128_0); + coefficients128_4 = drflac__vrevq_s32(coefficients128_4); + coefficients128_8 = drflac__vrevq_s32(coefficients128_8); + } + + /* For this version we are doing one sample at a time. */ + while (pDecodedSamples < pDecodedSamplesEnd) { + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0]) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[1], &riceParamParts[1]) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[2], &riceParamParts[2]) || + !drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[3], &riceParamParts[3])) { + return DRFLAC_FALSE; + } + + zeroCountPart128 = vld1q_u32(zeroCountParts); + riceParamPart128 = vld1q_u32(riceParamParts); + + riceParamPart128 = vandq_u32(riceParamPart128, riceParamMask128); + riceParamPart128 = vorrq_u32(riceParamPart128, vshlq_u32(zeroCountPart128, riceParam128)); + riceParamPart128 = veorq_u32(vshrq_n_u32(riceParamPart128, 1), vaddq_u32(drflac__vnotq_u32(vandq_u32(riceParamPart128, one128)), one128)); + + for (i = 0; i < 4; i += 1) { + int64x1_t prediction64; + + prediction128 = veorq_s64(prediction128, prediction128); /* Reset to 0. */ + switch (order) + { + case 12: + case 11: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_low_s32(coefficients128_8), vget_low_s32(samples128_8))); + case 10: + case 9: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_high_s32(coefficients128_8), vget_high_s32(samples128_8))); + case 8: + case 7: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_low_s32(coefficients128_4), vget_low_s32(samples128_4))); + case 6: + case 5: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_high_s32(coefficients128_4), vget_high_s32(samples128_4))); + case 4: + case 3: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_low_s32(coefficients128_0), vget_low_s32(samples128_0))); + case 2: + case 1: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_high_s32(coefficients128_0), vget_high_s32(samples128_0))); + } + + /* Horizontal add and shift. */ + prediction64 = drflac__vhaddq_s64(prediction128); + prediction64 = vshl_s64(prediction64, shift64); + prediction64 = vadd_s64(prediction64, vdup_n_s64(vgetq_lane_u32(riceParamPart128, 0))); + + /* Our value should be sitting in prediction64[0]. We need to combine this with our SSE samples. */ + samples128_8 = drflac__valignrq_s32_1(samples128_4, samples128_8); + samples128_4 = drflac__valignrq_s32_1(samples128_0, samples128_4); + samples128_0 = drflac__valignrq_s32_1(vcombine_s32(vreinterpret_s32_s64(prediction64), vdup_n_s32(0)), samples128_0); + + /* Slide our rice parameter down so that the value in position 0 contains the next one to process. */ + riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128); + } + + /* We store samples in groups of 4. */ + vst1q_s32(pDecodedSamples, samples128_0); + pDecodedSamples += 4; + } + + /* Make sure we process the last few samples. */ + i = (count & ~3); + while (i < (int)count) { + /* Rice extraction. */ + if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0])) { + return DRFLAC_FALSE; + } + + /* Rice reconstruction. */ + riceParamParts[0] &= riceParamMask; + riceParamParts[0] |= (zeroCountParts[0] << riceParam); + riceParamParts[0] = (riceParamParts[0] >> 1) ^ t[riceParamParts[0] & 0x01]; + + /* Sample reconstruction. */ + pDecodedSamples[0] = riceParamParts[0] + drflac__calculate_prediction_64(order, shift, coefficients, pDecodedSamples); + + i += 1; + pDecodedSamples += 1; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples_with_residual__rice__neon(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 lpcOrder, drflac_int32 lpcShift, drflac_uint32 lpcPrecision, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(pSamplesOut != NULL); + + /* In my testing the order is rarely > 12, so in this case I'm going to simplify the NEON implementation by only handling order <= 12. */ + if (lpcOrder > 0 && lpcOrder <= 12) { + if (drflac__use_64_bit_prediction(bitsPerSample, lpcOrder, lpcPrecision)) { + return drflac__decode_samples_with_residual__rice__neon_64(bs, count, riceParam, lpcOrder, lpcShift, coefficients, pSamplesOut); + } else { + return drflac__decode_samples_with_residual__rice__neon_32(bs, count, riceParam, lpcOrder, lpcShift, coefficients, pSamplesOut); + } + } else { + return drflac__decode_samples_with_residual__rice__scalar(bs, bitsPerSample, count, riceParam, lpcOrder, lpcShift, lpcPrecision, coefficients, pSamplesOut); + } +} +#endif + +static drflac_bool32 drflac__decode_samples_with_residual__rice(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 lpcOrder, drflac_int32 lpcShift, drflac_uint32 lpcPrecision, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ +#if defined(DRFLAC_SUPPORT_SSE41) + if (drflac__gIsSSE41Supported) { + return drflac__decode_samples_with_residual__rice__sse41(bs, bitsPerSample, count, riceParam, lpcOrder, lpcShift, lpcPrecision, coefficients, pSamplesOut); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported) { + return drflac__decode_samples_with_residual__rice__neon(bs, bitsPerSample, count, riceParam, lpcOrder, lpcShift, lpcPrecision, coefficients, pSamplesOut); + } else +#endif + { + /* Scalar fallback. */ + #if 0 + return drflac__decode_samples_with_residual__rice__reference(bs, bitsPerSample, count, riceParam, lpcOrder, lpcShift, lpcPrecision, coefficients, pSamplesOut); + #else + return drflac__decode_samples_with_residual__rice__scalar(bs, bitsPerSample, count, riceParam, lpcOrder, lpcShift, lpcPrecision, coefficients, pSamplesOut); + #endif + } +} + +/* Reads and seeks past a string of residual values as Rice codes. The decoder should be sitting on the first bit of the Rice codes. */ +static drflac_bool32 drflac__read_and_seek_residual__rice(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam) +{ + drflac_uint32 i; + + DRFLAC_ASSERT(bs != NULL); + + for (i = 0; i < count; ++i) { + if (!drflac__seek_rice_parts(bs, riceParam)) { + return DRFLAC_FALSE; + } + } + + return DRFLAC_TRUE; +} + +#if defined(__clang__) +__attribute__((no_sanitize("signed-integer-overflow"))) +#endif +static drflac_bool32 drflac__decode_samples_with_residual__unencoded(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 unencodedBitsPerSample, drflac_uint32 lpcOrder, drflac_int32 lpcShift, drflac_uint32 lpcPrecision, const drflac_int32* coefficients, drflac_int32* pSamplesOut) +{ + drflac_uint32 i; + + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(unencodedBitsPerSample <= 31); /* <-- unencodedBitsPerSample is a 5 bit number, so cannot exceed 31. */ + DRFLAC_ASSERT(pSamplesOut != NULL); + + for (i = 0; i < count; ++i) { + if (unencodedBitsPerSample > 0) { + if (!drflac__read_int32(bs, unencodedBitsPerSample, pSamplesOut + i)) { + return DRFLAC_FALSE; + } + } else { + pSamplesOut[i] = 0; + } + + if (drflac__use_64_bit_prediction(bitsPerSample, lpcOrder, lpcPrecision)) { + pSamplesOut[i] += drflac__calculate_prediction_64(lpcOrder, lpcShift, coefficients, pSamplesOut + i); + } else { + pSamplesOut[i] += drflac__calculate_prediction_32(lpcOrder, lpcShift, coefficients, pSamplesOut + i); + } + } + + return DRFLAC_TRUE; +} + + +/* +Reads and decodes the residual for the sub-frame the decoder is currently sitting on. This function should be called +when the decoder is sitting at the very start of the RESIDUAL block. The first residuals will be ignored. The + and parameters are used to determine how many residual values need to be decoded. +*/ +static drflac_bool32 drflac__decode_samples_with_residual(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 blockSize, drflac_uint32 lpcOrder, drflac_int32 lpcShift, drflac_uint32 lpcPrecision, const drflac_int32* coefficients, drflac_int32* pDecodedSamples) +{ + drflac_uint8 residualMethod; + drflac_uint8 partitionOrder; + drflac_uint32 samplesInPartition; + drflac_uint32 partitionsRemaining; + + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(blockSize != 0); + DRFLAC_ASSERT(pDecodedSamples != NULL); /* <-- Should we allow NULL, in which case we just seek past the residual rather than do a full decode? */ + + if (!drflac__read_uint8(bs, 2, &residualMethod)) { + return DRFLAC_FALSE; + } + + if (residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE && residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + return DRFLAC_FALSE; /* Unknown or unsupported residual coding method. */ + } + + /* Ignore the first values. */ + pDecodedSamples += lpcOrder; + + if (!drflac__read_uint8(bs, 4, &partitionOrder)) { + return DRFLAC_FALSE; + } + + /* + From the FLAC spec: + The Rice partition order in a Rice-coded residual section must be less than or equal to 8. + */ + if (partitionOrder > 8) { + return DRFLAC_FALSE; + } + + /* Validation check. */ + if ((blockSize / (1 << partitionOrder)) < lpcOrder) { + return DRFLAC_FALSE; + } + + samplesInPartition = (blockSize / (1 << partitionOrder)) - lpcOrder; + partitionsRemaining = (1 << partitionOrder); + for (;;) { + drflac_uint8 riceParam = 0; + if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE) { + if (!drflac__read_uint8(bs, 4, &riceParam)) { + return DRFLAC_FALSE; + } + if (riceParam == 15) { + riceParam = 0xFF; + } + } else if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + if (!drflac__read_uint8(bs, 5, &riceParam)) { + return DRFLAC_FALSE; + } + if (riceParam == 31) { + riceParam = 0xFF; + } + } + + if (riceParam != 0xFF) { + if (!drflac__decode_samples_with_residual__rice(bs, bitsPerSample, samplesInPartition, riceParam, lpcOrder, lpcShift, lpcPrecision, coefficients, pDecodedSamples)) { + return DRFLAC_FALSE; + } + } else { + drflac_uint8 unencodedBitsPerSample = 0; + if (!drflac__read_uint8(bs, 5, &unencodedBitsPerSample)) { + return DRFLAC_FALSE; + } + + if (!drflac__decode_samples_with_residual__unencoded(bs, bitsPerSample, samplesInPartition, unencodedBitsPerSample, lpcOrder, lpcShift, lpcPrecision, coefficients, pDecodedSamples)) { + return DRFLAC_FALSE; + } + } + + pDecodedSamples += samplesInPartition; + + if (partitionsRemaining == 1) { + break; + } + + partitionsRemaining -= 1; + + if (partitionOrder != 0) { + samplesInPartition = blockSize / (1 << partitionOrder); + } + } + + return DRFLAC_TRUE; +} + +/* +Reads and seeks past the residual for the sub-frame the decoder is currently sitting on. This function should be called +when the decoder is sitting at the very start of the RESIDUAL block. The first residuals will be set to 0. The + and parameters are used to determine how many residual values need to be decoded. +*/ +static drflac_bool32 drflac__read_and_seek_residual(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 order) +{ + drflac_uint8 residualMethod; + drflac_uint8 partitionOrder; + drflac_uint32 samplesInPartition; + drflac_uint32 partitionsRemaining; + + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(blockSize != 0); + + if (!drflac__read_uint8(bs, 2, &residualMethod)) { + return DRFLAC_FALSE; + } + + if (residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE && residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + return DRFLAC_FALSE; /* Unknown or unsupported residual coding method. */ + } + + if (!drflac__read_uint8(bs, 4, &partitionOrder)) { + return DRFLAC_FALSE; + } + + /* + From the FLAC spec: + The Rice partition order in a Rice-coded residual section must be less than or equal to 8. + */ + if (partitionOrder > 8) { + return DRFLAC_FALSE; + } + + /* Validation check. */ + if ((blockSize / (1 << partitionOrder)) <= order) { + return DRFLAC_FALSE; + } + + samplesInPartition = (blockSize / (1 << partitionOrder)) - order; + partitionsRemaining = (1 << partitionOrder); + for (;;) + { + drflac_uint8 riceParam = 0; + if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE) { + if (!drflac__read_uint8(bs, 4, &riceParam)) { + return DRFLAC_FALSE; + } + if (riceParam == 15) { + riceParam = 0xFF; + } + } else if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) { + if (!drflac__read_uint8(bs, 5, &riceParam)) { + return DRFLAC_FALSE; + } + if (riceParam == 31) { + riceParam = 0xFF; + } + } + + if (riceParam != 0xFF) { + if (!drflac__read_and_seek_residual__rice(bs, samplesInPartition, riceParam)) { + return DRFLAC_FALSE; + } + } else { + drflac_uint8 unencodedBitsPerSample = 0; + if (!drflac__read_uint8(bs, 5, &unencodedBitsPerSample)) { + return DRFLAC_FALSE; + } + + if (!drflac__seek_bits(bs, unencodedBitsPerSample * samplesInPartition)) { + return DRFLAC_FALSE; + } + } + + + if (partitionsRemaining == 1) { + break; + } + + partitionsRemaining -= 1; + samplesInPartition = blockSize / (1 << partitionOrder); + } + + return DRFLAC_TRUE; +} + + +static drflac_bool32 drflac__decode_samples__constant(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 subframeBitsPerSample, drflac_int32* pDecodedSamples) +{ + drflac_uint32 i; + + /* Only a single sample needs to be decoded here. */ + drflac_int32 sample; + if (!drflac__read_int32(bs, subframeBitsPerSample, &sample)) { + return DRFLAC_FALSE; + } + + /* + We don't really need to expand this, but it does simplify the process of reading samples. If this becomes a performance issue (unlikely) + we'll want to look at a more efficient way. + */ + for (i = 0; i < blockSize; ++i) { + pDecodedSamples[i] = sample; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples__verbatim(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 subframeBitsPerSample, drflac_int32* pDecodedSamples) +{ + drflac_uint32 i; + + for (i = 0; i < blockSize; ++i) { + drflac_int32 sample; + if (!drflac__read_int32(bs, subframeBitsPerSample, &sample)) { + return DRFLAC_FALSE; + } + + pDecodedSamples[i] = sample; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples__fixed(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 subframeBitsPerSample, drflac_uint8 lpcOrder, drflac_int32* pDecodedSamples) +{ + drflac_uint32 i; + + static drflac_int32 lpcCoefficientsTable[5][4] = { + {0, 0, 0, 0}, + {1, 0, 0, 0}, + {2, -1, 0, 0}, + {3, -3, 1, 0}, + {4, -6, 4, -1} + }; + + /* Warm up samples and coefficients. */ + for (i = 0; i < lpcOrder; ++i) { + drflac_int32 sample; + if (!drflac__read_int32(bs, subframeBitsPerSample, &sample)) { + return DRFLAC_FALSE; + } + + pDecodedSamples[i] = sample; + } + + if (!drflac__decode_samples_with_residual(bs, subframeBitsPerSample, blockSize, lpcOrder, 0, 4, lpcCoefficientsTable[lpcOrder], pDecodedSamples)) { + return DRFLAC_FALSE; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_samples__lpc(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 bitsPerSample, drflac_uint8 lpcOrder, drflac_int32* pDecodedSamples) +{ + drflac_uint8 i; + drflac_uint8 lpcPrecision; + drflac_int8 lpcShift; + drflac_int32 coefficients[32]; + + /* Warm up samples. */ + for (i = 0; i < lpcOrder; ++i) { + drflac_int32 sample; + if (!drflac__read_int32(bs, bitsPerSample, &sample)) { + return DRFLAC_FALSE; + } + + pDecodedSamples[i] = sample; + } + + if (!drflac__read_uint8(bs, 4, &lpcPrecision)) { + return DRFLAC_FALSE; + } + if (lpcPrecision == 15) { + return DRFLAC_FALSE; /* Invalid. */ + } + lpcPrecision += 1; + + if (!drflac__read_int8(bs, 5, &lpcShift)) { + return DRFLAC_FALSE; + } + + /* + From the FLAC specification: + + Quantized linear predictor coefficient shift needed in bits (NOTE: this number is signed two's-complement) + + Emphasis on the "signed two's-complement". In practice there does not seem to be any encoders nor decoders supporting negative shifts. For now dr_flac is + not going to support negative shifts as I don't have any reference files. However, when a reference file comes through I will consider adding support. + */ + if (lpcShift < 0) { + return DRFLAC_FALSE; + } + + DRFLAC_ZERO_MEMORY(coefficients, sizeof(coefficients)); + for (i = 0; i < lpcOrder; ++i) { + if (!drflac__read_int32(bs, lpcPrecision, coefficients + i)) { + return DRFLAC_FALSE; + } + } + + if (!drflac__decode_samples_with_residual(bs, bitsPerSample, blockSize, lpcOrder, lpcShift, lpcPrecision, coefficients, pDecodedSamples)) { + return DRFLAC_FALSE; + } + + return DRFLAC_TRUE; +} + + +static drflac_bool32 drflac__read_next_flac_frame_header(drflac_bs* bs, drflac_uint8 streaminfoBitsPerSample, drflac_frame_header* header) +{ + const drflac_uint32 sampleRateTable[12] = {0, 88200, 176400, 192000, 8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000}; + const drflac_uint8 bitsPerSampleTable[8] = {0, 8, 12, (drflac_uint8)-1, 16, 20, 24, (drflac_uint8)-1}; /* -1 = reserved. */ + + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(header != NULL); + + /* Keep looping until we find a valid sync code. */ + for (;;) { + drflac_uint8 crc8 = 0xCE; /* 0xCE = drflac_crc8(0, 0x3FFE, 14); */ + drflac_uint8 reserved = 0; + drflac_uint8 blockingStrategy = 0; + drflac_uint8 blockSize = 0; + drflac_uint8 sampleRate = 0; + drflac_uint8 channelAssignment = 0; + drflac_uint8 bitsPerSample = 0; + drflac_bool32 isVariableBlockSize; + + if (!drflac__find_and_seek_to_next_sync_code(bs)) { + return DRFLAC_FALSE; + } + + if (!drflac__read_uint8(bs, 1, &reserved)) { + return DRFLAC_FALSE; + } + if (reserved == 1) { + continue; + } + crc8 = drflac_crc8(crc8, reserved, 1); + + if (!drflac__read_uint8(bs, 1, &blockingStrategy)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, blockingStrategy, 1); + + if (!drflac__read_uint8(bs, 4, &blockSize)) { + return DRFLAC_FALSE; + } + if (blockSize == 0) { + continue; + } + crc8 = drflac_crc8(crc8, blockSize, 4); + + if (!drflac__read_uint8(bs, 4, &sampleRate)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, sampleRate, 4); + + if (!drflac__read_uint8(bs, 4, &channelAssignment)) { + return DRFLAC_FALSE; + } + if (channelAssignment > 10) { + continue; + } + crc8 = drflac_crc8(crc8, channelAssignment, 4); + + if (!drflac__read_uint8(bs, 3, &bitsPerSample)) { + return DRFLAC_FALSE; + } + if (bitsPerSample == 3 || bitsPerSample == 7) { + continue; + } + crc8 = drflac_crc8(crc8, bitsPerSample, 3); + + + if (!drflac__read_uint8(bs, 1, &reserved)) { + return DRFLAC_FALSE; + } + if (reserved == 1) { + continue; + } + crc8 = drflac_crc8(crc8, reserved, 1); + + + isVariableBlockSize = blockingStrategy == 1; + if (isVariableBlockSize) { + drflac_uint64 pcmFrameNumber; + drflac_result result = drflac__read_utf8_coded_number(bs, &pcmFrameNumber, &crc8); + if (result != DRFLAC_SUCCESS) { + if (result == DRFLAC_AT_END) { + return DRFLAC_FALSE; + } else { + continue; + } + } + header->flacFrameNumber = 0; + header->pcmFrameNumber = pcmFrameNumber; + } else { + drflac_uint64 flacFrameNumber = 0; + drflac_result result = drflac__read_utf8_coded_number(bs, &flacFrameNumber, &crc8); + if (result != DRFLAC_SUCCESS) { + if (result == DRFLAC_AT_END) { + return DRFLAC_FALSE; + } else { + continue; + } + } + header->flacFrameNumber = (drflac_uint32)flacFrameNumber; /* <-- Safe cast. */ + header->pcmFrameNumber = 0; + } + + + DRFLAC_ASSERT(blockSize > 0); + if (blockSize == 1) { + header->blockSizeInPCMFrames = 192; + } else if (blockSize <= 5) { + DRFLAC_ASSERT(blockSize >= 2); + header->blockSizeInPCMFrames = 576 * (1 << (blockSize - 2)); + } else if (blockSize == 6) { + if (!drflac__read_uint16(bs, 8, &header->blockSizeInPCMFrames)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->blockSizeInPCMFrames, 8); + header->blockSizeInPCMFrames += 1; + } else if (blockSize == 7) { + if (!drflac__read_uint16(bs, 16, &header->blockSizeInPCMFrames)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->blockSizeInPCMFrames, 16); + if (header->blockSizeInPCMFrames == 0xFFFF) { + return DRFLAC_FALSE; /* Frame is too big. This is the size of the frame minus 1. The STREAMINFO block defines the max block size which is 16-bits. Adding one will make it 17 bits and therefore too big. */ + } + header->blockSizeInPCMFrames += 1; + } else { + DRFLAC_ASSERT(blockSize >= 8); + header->blockSizeInPCMFrames = 256 * (1 << (blockSize - 8)); + } + + + if (sampleRate <= 11) { + header->sampleRate = sampleRateTable[sampleRate]; + } else if (sampleRate == 12) { + if (!drflac__read_uint32(bs, 8, &header->sampleRate)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->sampleRate, 8); + header->sampleRate *= 1000; + } else if (sampleRate == 13) { + if (!drflac__read_uint32(bs, 16, &header->sampleRate)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->sampleRate, 16); + } else if (sampleRate == 14) { + if (!drflac__read_uint32(bs, 16, &header->sampleRate)) { + return DRFLAC_FALSE; + } + crc8 = drflac_crc8(crc8, header->sampleRate, 16); + header->sampleRate *= 10; + } else { + continue; /* Invalid. Assume an invalid block. */ + } + + + header->channelAssignment = channelAssignment; + + header->bitsPerSample = bitsPerSampleTable[bitsPerSample]; + if (header->bitsPerSample == 0) { + header->bitsPerSample = streaminfoBitsPerSample; + } + + if (header->bitsPerSample != streaminfoBitsPerSample) { + /* If this subframe has a different bitsPerSample then streaminfo or the first frame, reject it */ + return DRFLAC_FALSE; + } + + if (!drflac__read_uint8(bs, 8, &header->crc8)) { + return DRFLAC_FALSE; + } + +#ifndef DR_FLAC_NO_CRC + if (header->crc8 != crc8) { + continue; /* CRC mismatch. Loop back to the top and find the next sync code. */ + } +#endif + return DRFLAC_TRUE; + } +} + +static drflac_bool32 drflac__read_subframe_header(drflac_bs* bs, drflac_subframe* pSubframe) +{ + drflac_uint8 header; + int type; + + if (!drflac__read_uint8(bs, 8, &header)) { + return DRFLAC_FALSE; + } + + /* First bit should always be 0. */ + if ((header & 0x80) != 0) { + return DRFLAC_FALSE; + } + + type = (header & 0x7E) >> 1; + if (type == 0) { + pSubframe->subframeType = DRFLAC_SUBFRAME_CONSTANT; + } else if (type == 1) { + pSubframe->subframeType = DRFLAC_SUBFRAME_VERBATIM; + } else { + if ((type & 0x20) != 0) { + pSubframe->subframeType = DRFLAC_SUBFRAME_LPC; + pSubframe->lpcOrder = (drflac_uint8)(type & 0x1F) + 1; + } else if ((type & 0x08) != 0) { + pSubframe->subframeType = DRFLAC_SUBFRAME_FIXED; + pSubframe->lpcOrder = (drflac_uint8)(type & 0x07); + if (pSubframe->lpcOrder > 4) { + pSubframe->subframeType = DRFLAC_SUBFRAME_RESERVED; + pSubframe->lpcOrder = 0; + } + } else { + pSubframe->subframeType = DRFLAC_SUBFRAME_RESERVED; + } + } + + if (pSubframe->subframeType == DRFLAC_SUBFRAME_RESERVED) { + return DRFLAC_FALSE; + } + + /* Wasted bits per sample. */ + pSubframe->wastedBitsPerSample = 0; + if ((header & 0x01) == 1) { + unsigned int wastedBitsPerSample; + if (!drflac__seek_past_next_set_bit(bs, &wastedBitsPerSample)) { + return DRFLAC_FALSE; + } + pSubframe->wastedBitsPerSample = (drflac_uint8)wastedBitsPerSample + 1; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_subframe(drflac_bs* bs, drflac_frame* frame, int subframeIndex, drflac_int32* pDecodedSamplesOut) +{ + drflac_subframe* pSubframe; + drflac_uint32 subframeBitsPerSample; + + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(frame != NULL); + + pSubframe = frame->subframes + subframeIndex; + if (!drflac__read_subframe_header(bs, pSubframe)) { + return DRFLAC_FALSE; + } + + /* Side channels require an extra bit per sample. Took a while to figure that one out... */ + subframeBitsPerSample = frame->header.bitsPerSample; + if ((frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE || frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE) && subframeIndex == 1) { + subframeBitsPerSample += 1; + } else if (frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE && subframeIndex == 0) { + subframeBitsPerSample += 1; + } + + if (subframeBitsPerSample > 32) { + /* libFLAC and ffmpeg reject 33-bit subframes as well */ + return DRFLAC_FALSE; + } + + /* Need to handle wasted bits per sample. */ + if (pSubframe->wastedBitsPerSample >= subframeBitsPerSample) { + return DRFLAC_FALSE; + } + subframeBitsPerSample -= pSubframe->wastedBitsPerSample; + + pSubframe->pSamplesS32 = pDecodedSamplesOut; + + switch (pSubframe->subframeType) + { + case DRFLAC_SUBFRAME_CONSTANT: + { + drflac__decode_samples__constant(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->pSamplesS32); + } break; + + case DRFLAC_SUBFRAME_VERBATIM: + { + drflac__decode_samples__verbatim(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->pSamplesS32); + } break; + + case DRFLAC_SUBFRAME_FIXED: + { + drflac__decode_samples__fixed(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->lpcOrder, pSubframe->pSamplesS32); + } break; + + case DRFLAC_SUBFRAME_LPC: + { + drflac__decode_samples__lpc(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->lpcOrder, pSubframe->pSamplesS32); + } break; + + default: return DRFLAC_FALSE; + } + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__seek_subframe(drflac_bs* bs, drflac_frame* frame, int subframeIndex) +{ + drflac_subframe* pSubframe; + drflac_uint32 subframeBitsPerSample; + + DRFLAC_ASSERT(bs != NULL); + DRFLAC_ASSERT(frame != NULL); + + pSubframe = frame->subframes + subframeIndex; + if (!drflac__read_subframe_header(bs, pSubframe)) { + return DRFLAC_FALSE; + } + + /* Side channels require an extra bit per sample. Took a while to figure that one out... */ + subframeBitsPerSample = frame->header.bitsPerSample; + if ((frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE || frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE) && subframeIndex == 1) { + subframeBitsPerSample += 1; + } else if (frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE && subframeIndex == 0) { + subframeBitsPerSample += 1; + } + + /* Need to handle wasted bits per sample. */ + if (pSubframe->wastedBitsPerSample >= subframeBitsPerSample) { + return DRFLAC_FALSE; + } + subframeBitsPerSample -= pSubframe->wastedBitsPerSample; + + pSubframe->pSamplesS32 = NULL; + + switch (pSubframe->subframeType) + { + case DRFLAC_SUBFRAME_CONSTANT: + { + if (!drflac__seek_bits(bs, subframeBitsPerSample)) { + return DRFLAC_FALSE; + } + } break; + + case DRFLAC_SUBFRAME_VERBATIM: + { + unsigned int bitsToSeek = frame->header.blockSizeInPCMFrames * subframeBitsPerSample; + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DRFLAC_FALSE; + } + } break; + + case DRFLAC_SUBFRAME_FIXED: + { + unsigned int bitsToSeek = pSubframe->lpcOrder * subframeBitsPerSample; + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DRFLAC_FALSE; + } + + if (!drflac__read_and_seek_residual(bs, frame->header.blockSizeInPCMFrames, pSubframe->lpcOrder)) { + return DRFLAC_FALSE; + } + } break; + + case DRFLAC_SUBFRAME_LPC: + { + drflac_uint8 lpcPrecision; + + unsigned int bitsToSeek = pSubframe->lpcOrder * subframeBitsPerSample; + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DRFLAC_FALSE; + } + + if (!drflac__read_uint8(bs, 4, &lpcPrecision)) { + return DRFLAC_FALSE; + } + if (lpcPrecision == 15) { + return DRFLAC_FALSE; /* Invalid. */ + } + lpcPrecision += 1; + + + bitsToSeek = (pSubframe->lpcOrder * lpcPrecision) + 5; /* +5 for shift. */ + if (!drflac__seek_bits(bs, bitsToSeek)) { + return DRFLAC_FALSE; + } + + if (!drflac__read_and_seek_residual(bs, frame->header.blockSizeInPCMFrames, pSubframe->lpcOrder)) { + return DRFLAC_FALSE; + } + } break; + + default: return DRFLAC_FALSE; + } + + return DRFLAC_TRUE; +} + + +static DRFLAC_INLINE drflac_uint8 drflac__get_channel_count_from_channel_assignment(drflac_int8 channelAssignment) +{ + drflac_uint8 lookup[] = {1, 2, 3, 4, 5, 6, 7, 8, 2, 2, 2}; + + DRFLAC_ASSERT(channelAssignment <= 10); + return lookup[channelAssignment]; +} + +static drflac_result drflac__decode_flac_frame(drflac* pFlac) +{ + int channelCount; + int i; + drflac_uint8 paddingSizeInBits; + drflac_uint16 desiredCRC16; +#ifndef DR_FLAC_NO_CRC + drflac_uint16 actualCRC16; +#endif + + /* This function should be called while the stream is sitting on the first byte after the frame header. */ + DRFLAC_ZERO_MEMORY(pFlac->currentFLACFrame.subframes, sizeof(pFlac->currentFLACFrame.subframes)); + + /* The frame block size must never be larger than the maximum block size defined by the FLAC stream. */ + if (pFlac->currentFLACFrame.header.blockSizeInPCMFrames > pFlac->maxBlockSizeInPCMFrames) { + return DRFLAC_ERROR; + } + + /* The number of channels in the frame must match the channel count from the STREAMINFO block. */ + channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment); + if (channelCount != (int)pFlac->channels) { + return DRFLAC_ERROR; + } + + for (i = 0; i < channelCount; ++i) { + if (!drflac__decode_subframe(&pFlac->bs, &pFlac->currentFLACFrame, i, pFlac->pDecodedSamples + (pFlac->currentFLACFrame.header.blockSizeInPCMFrames * i))) { + return DRFLAC_ERROR; + } + } + + paddingSizeInBits = (drflac_uint8)(DRFLAC_CACHE_L1_BITS_REMAINING(&pFlac->bs) & 7); + if (paddingSizeInBits > 0) { + drflac_uint8 padding = 0; + if (!drflac__read_uint8(&pFlac->bs, paddingSizeInBits, &padding)) { + return DRFLAC_AT_END; + } + } + +#ifndef DR_FLAC_NO_CRC + actualCRC16 = drflac__flush_crc16(&pFlac->bs); +#endif + if (!drflac__read_uint16(&pFlac->bs, 16, &desiredCRC16)) { + return DRFLAC_AT_END; + } + +#ifndef DR_FLAC_NO_CRC + if (actualCRC16 != desiredCRC16) { + return DRFLAC_CRC_MISMATCH; /* CRC mismatch. */ + } +#endif + + pFlac->currentFLACFrame.pcmFramesRemaining = pFlac->currentFLACFrame.header.blockSizeInPCMFrames; + + return DRFLAC_SUCCESS; +} + +static drflac_result drflac__seek_flac_frame(drflac* pFlac) +{ + int channelCount; + int i; + drflac_uint16 desiredCRC16; +#ifndef DR_FLAC_NO_CRC + drflac_uint16 actualCRC16; +#endif + + channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment); + for (i = 0; i < channelCount; ++i) { + if (!drflac__seek_subframe(&pFlac->bs, &pFlac->currentFLACFrame, i)) { + return DRFLAC_ERROR; + } + } + + /* Padding. */ + if (!drflac__seek_bits(&pFlac->bs, DRFLAC_CACHE_L1_BITS_REMAINING(&pFlac->bs) & 7)) { + return DRFLAC_ERROR; + } + + /* CRC. */ +#ifndef DR_FLAC_NO_CRC + actualCRC16 = drflac__flush_crc16(&pFlac->bs); +#endif + if (!drflac__read_uint16(&pFlac->bs, 16, &desiredCRC16)) { + return DRFLAC_AT_END; + } + +#ifndef DR_FLAC_NO_CRC + if (actualCRC16 != desiredCRC16) { + return DRFLAC_CRC_MISMATCH; /* CRC mismatch. */ + } +#endif + + return DRFLAC_SUCCESS; +} + +static drflac_bool32 drflac__read_and_decode_next_flac_frame(drflac* pFlac) +{ + DRFLAC_ASSERT(pFlac != NULL); + + for (;;) { + drflac_result result; + + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { + return DRFLAC_FALSE; + } + + result = drflac__decode_flac_frame(pFlac); + if (result != DRFLAC_SUCCESS) { + if (result == DRFLAC_CRC_MISMATCH) { + continue; /* CRC mismatch. Skip to the next frame. */ + } else { + return DRFLAC_FALSE; + } + } + + return DRFLAC_TRUE; + } +} + +static void drflac__get_pcm_frame_range_of_current_flac_frame(drflac* pFlac, drflac_uint64* pFirstPCMFrame, drflac_uint64* pLastPCMFrame) +{ + drflac_uint64 firstPCMFrame; + drflac_uint64 lastPCMFrame; + + DRFLAC_ASSERT(pFlac != NULL); + + firstPCMFrame = pFlac->currentFLACFrame.header.pcmFrameNumber; + if (firstPCMFrame == 0) { + firstPCMFrame = ((drflac_uint64)pFlac->currentFLACFrame.header.flacFrameNumber) * pFlac->maxBlockSizeInPCMFrames; + } + + lastPCMFrame = firstPCMFrame + pFlac->currentFLACFrame.header.blockSizeInPCMFrames; + if (lastPCMFrame > 0) { + lastPCMFrame -= 1; /* Needs to be zero based. */ + } + + if (pFirstPCMFrame) { + *pFirstPCMFrame = firstPCMFrame; + } + if (pLastPCMFrame) { + *pLastPCMFrame = lastPCMFrame; + } +} + +static drflac_bool32 drflac__seek_to_first_frame(drflac* pFlac) +{ + drflac_bool32 result; + + DRFLAC_ASSERT(pFlac != NULL); + + result = drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes); + + DRFLAC_ZERO_MEMORY(&pFlac->currentFLACFrame, sizeof(pFlac->currentFLACFrame)); + pFlac->currentPCMFrame = 0; + + return result; +} + +static DRFLAC_INLINE drflac_result drflac__seek_to_next_flac_frame(drflac* pFlac) +{ + /* This function should only ever be called while the decoder is sitting on the first byte past the FRAME_HEADER section. */ + DRFLAC_ASSERT(pFlac != NULL); + return drflac__seek_flac_frame(pFlac); +} + + +static drflac_uint64 drflac__seek_forward_by_pcm_frames(drflac* pFlac, drflac_uint64 pcmFramesToSeek) +{ + drflac_uint64 pcmFramesRead = 0; + while (pcmFramesToSeek > 0) { + if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) { + if (!drflac__read_and_decode_next_flac_frame(pFlac)) { + break; /* Couldn't read the next frame, so just break from the loop and return. */ + } + } else { + if (pFlac->currentFLACFrame.pcmFramesRemaining > pcmFramesToSeek) { + pcmFramesRead += pcmFramesToSeek; + pFlac->currentFLACFrame.pcmFramesRemaining -= (drflac_uint32)pcmFramesToSeek; /* <-- Safe cast. Will always be < currentFrame.pcmFramesRemaining < 65536. */ + pcmFramesToSeek = 0; + } else { + pcmFramesRead += pFlac->currentFLACFrame.pcmFramesRemaining; + pcmFramesToSeek -= pFlac->currentFLACFrame.pcmFramesRemaining; + pFlac->currentFLACFrame.pcmFramesRemaining = 0; + } + } + } + + pFlac->currentPCMFrame += pcmFramesRead; + return pcmFramesRead; +} + + +static drflac_bool32 drflac__seek_to_pcm_frame__brute_force(drflac* pFlac, drflac_uint64 pcmFrameIndex) +{ + drflac_bool32 isMidFrame = DRFLAC_FALSE; + drflac_uint64 runningPCMFrameCount; + + DRFLAC_ASSERT(pFlac != NULL); + + /* If we are seeking forward we start from the current position. Otherwise we need to start all the way from the start of the file. */ + if (pcmFrameIndex >= pFlac->currentPCMFrame) { + /* Seeking forward. Need to seek from the current position. */ + runningPCMFrameCount = pFlac->currentPCMFrame; + + /* The frame header for the first frame may not yet have been read. We need to do that if necessary. */ + if (pFlac->currentPCMFrame == 0 && pFlac->currentFLACFrame.pcmFramesRemaining == 0) { + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { + return DRFLAC_FALSE; + } + } else { + isMidFrame = DRFLAC_TRUE; + } + } else { + /* Seeking backwards. Need to seek from the start of the file. */ + runningPCMFrameCount = 0; + + /* Move back to the start. */ + if (!drflac__seek_to_first_frame(pFlac)) { + return DRFLAC_FALSE; + } + + /* Decode the first frame in preparation for sample-exact seeking below. */ + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { + return DRFLAC_FALSE; + } + } + + /* + We need to as quickly as possible find the frame that contains the target sample. To do this, we iterate over each frame and inspect its + header. If based on the header we can determine that the frame contains the sample, we do a full decode of that frame. + */ + for (;;) { + drflac_uint64 pcmFrameCountInThisFLACFrame; + drflac_uint64 firstPCMFrameInFLACFrame = 0; + drflac_uint64 lastPCMFrameInFLACFrame = 0; + + drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &firstPCMFrameInFLACFrame, &lastPCMFrameInFLACFrame); + + pcmFrameCountInThisFLACFrame = (lastPCMFrameInFLACFrame - firstPCMFrameInFLACFrame) + 1; + if (pcmFrameIndex < (runningPCMFrameCount + pcmFrameCountInThisFLACFrame)) { + /* + The sample should be in this frame. We need to fully decode it, however if it's an invalid frame (a CRC mismatch), we need to pretend + it never existed and keep iterating. + */ + drflac_uint64 pcmFramesToDecode = pcmFrameIndex - runningPCMFrameCount; + + if (!isMidFrame) { + drflac_result result = drflac__decode_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + /* The frame is valid. We just need to skip over some samples to ensure it's sample-exact. */ + return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode; /* <-- If this fails, something bad has happened (it should never fail). */ + } else { + if (result == DRFLAC_CRC_MISMATCH) { + goto next_iteration; /* CRC mismatch. Pretend this frame never existed. */ + } else { + return DRFLAC_FALSE; + } + } + } else { + /* We started seeking mid-frame which means we need to skip the frame decoding part. */ + return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode; + } + } else { + /* + It's not in this frame. We need to seek past the frame, but check if there was a CRC mismatch. If so, we pretend this + frame never existed and leave the running sample count untouched. + */ + if (!isMidFrame) { + drflac_result result = drflac__seek_to_next_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + runningPCMFrameCount += pcmFrameCountInThisFLACFrame; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + goto next_iteration; /* CRC mismatch. Pretend this frame never existed. */ + } else { + return DRFLAC_FALSE; + } + } + } else { + /* + We started seeking mid-frame which means we need to seek by reading to the end of the frame instead of with + drflac__seek_to_next_flac_frame() which only works if the decoder is sitting on the byte just after the frame header. + */ + runningPCMFrameCount += pFlac->currentFLACFrame.pcmFramesRemaining; + pFlac->currentFLACFrame.pcmFramesRemaining = 0; + isMidFrame = DRFLAC_FALSE; + } + + /* If we are seeking to the end of the file and we've just hit it, we're done. */ + if (pcmFrameIndex == pFlac->totalPCMFrameCount && runningPCMFrameCount == pFlac->totalPCMFrameCount) { + return DRFLAC_TRUE; + } + } + + next_iteration: + /* Grab the next frame in preparation for the next iteration. */ + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { + return DRFLAC_FALSE; + } + } +} + + +#if !defined(DR_FLAC_NO_CRC) +/* +We use an average compression ratio to determine our approximate start location. FLAC files are generally about 50%-70% the size of their +uncompressed counterparts so we'll use this as a basis. I'm going to split the middle and use a factor of 0.6 to determine the starting +location. +*/ +#define DRFLAC_BINARY_SEARCH_APPROX_COMPRESSION_RATIO 0.6f + +static drflac_bool32 drflac__seek_to_approximate_flac_frame_to_byte(drflac* pFlac, drflac_uint64 targetByte, drflac_uint64 rangeLo, drflac_uint64 rangeHi, drflac_uint64* pLastSuccessfulSeekOffset) +{ + DRFLAC_ASSERT(pFlac != NULL); + DRFLAC_ASSERT(pLastSuccessfulSeekOffset != NULL); + DRFLAC_ASSERT(targetByte >= rangeLo); + DRFLAC_ASSERT(targetByte <= rangeHi); + + *pLastSuccessfulSeekOffset = pFlac->firstFLACFramePosInBytes; + + for (;;) { + /* After rangeLo == rangeHi == targetByte fails, we need to break out. */ + drflac_uint64 lastTargetByte = targetByte; + + /* When seeking to a byte, failure probably means we've attempted to seek beyond the end of the stream. To counter this we just halve it each attempt. */ + if (!drflac__seek_to_byte(&pFlac->bs, targetByte)) { + /* If we couldn't even seek to the first byte in the stream we have a problem. Just abandon the whole thing. */ + if (targetByte == 0) { + drflac__seek_to_first_frame(pFlac); /* Try to recover. */ + return DRFLAC_FALSE; + } + + /* Halve the byte location and continue. */ + targetByte = rangeLo + ((rangeHi - rangeLo)/2); + rangeHi = targetByte; + } else { + /* Getting here should mean that we have seeked to an appropriate byte. */ + + /* Clear the details of the FLAC frame so we don't misreport data. */ + DRFLAC_ZERO_MEMORY(&pFlac->currentFLACFrame, sizeof(pFlac->currentFLACFrame)); + + /* + Now seek to the next FLAC frame. We need to decode the entire frame (not just the header) because it's possible for the header to incorrectly pass the + CRC check and return bad data. We need to decode the entire frame to be more certain. Although this seems unlikely, this has happened to me in testing + so it needs to stay this way for now. + */ +#if 1 + if (!drflac__read_and_decode_next_flac_frame(pFlac)) { + /* Halve the byte location and continue. */ + targetByte = rangeLo + ((rangeHi - rangeLo)/2); + rangeHi = targetByte; + } else { + break; + } +#else + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { + /* Halve the byte location and continue. */ + targetByte = rangeLo + ((rangeHi - rangeLo)/2); + rangeHi = targetByte; + } else { + break; + } +#endif + } + + /* We already tried this byte and there are no more to try, break out. */ + if(targetByte == lastTargetByte) { + return DRFLAC_FALSE; + } + } + + /* The current PCM frame needs to be updated based on the frame we just seeked to. */ + drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &pFlac->currentPCMFrame, NULL); + + DRFLAC_ASSERT(targetByte <= rangeHi); + + *pLastSuccessfulSeekOffset = targetByte; + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(drflac* pFlac, drflac_uint64 offset) +{ + /* This section of code would be used if we were only decoding the FLAC frame header when calling drflac__seek_to_approximate_flac_frame_to_byte(). */ +#if 0 + if (drflac__decode_flac_frame(pFlac) != DRFLAC_SUCCESS) { + /* We failed to decode this frame which may be due to it being corrupt. We'll just use the next valid FLAC frame. */ + if (drflac__read_and_decode_next_flac_frame(pFlac) == DRFLAC_FALSE) { + return DRFLAC_FALSE; + } + } +#endif + + return drflac__seek_forward_by_pcm_frames(pFlac, offset) == offset; +} + + +static drflac_bool32 drflac__seek_to_pcm_frame__binary_search_internal(drflac* pFlac, drflac_uint64 pcmFrameIndex, drflac_uint64 byteRangeLo, drflac_uint64 byteRangeHi) +{ + /* This assumes pFlac->currentPCMFrame is sitting on byteRangeLo upon entry. */ + + drflac_uint64 targetByte; + drflac_uint64 pcmRangeLo = pFlac->totalPCMFrameCount; + drflac_uint64 pcmRangeHi = 0; + drflac_uint64 lastSuccessfulSeekOffset = (drflac_uint64)-1; + drflac_uint64 closestSeekOffsetBeforeTargetPCMFrame = byteRangeLo; + drflac_uint32 seekForwardThreshold = (pFlac->maxBlockSizeInPCMFrames != 0) ? pFlac->maxBlockSizeInPCMFrames*2 : 4096; + + targetByte = byteRangeLo + (drflac_uint64)(((drflac_int64)((pcmFrameIndex - pFlac->currentPCMFrame) * pFlac->channels * pFlac->bitsPerSample)/8.0f) * DRFLAC_BINARY_SEARCH_APPROX_COMPRESSION_RATIO); + if (targetByte > byteRangeHi) { + targetByte = byteRangeHi; + } + + for (;;) { + if (drflac__seek_to_approximate_flac_frame_to_byte(pFlac, targetByte, byteRangeLo, byteRangeHi, &lastSuccessfulSeekOffset)) { + /* We found a FLAC frame. We need to check if it contains the sample we're looking for. */ + drflac_uint64 newPCMRangeLo; + drflac_uint64 newPCMRangeHi; + drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &newPCMRangeLo, &newPCMRangeHi); + + /* If we selected the same frame, it means we should be pretty close. Just decode the rest. */ + if (pcmRangeLo == newPCMRangeLo) { + if (!drflac__seek_to_approximate_flac_frame_to_byte(pFlac, closestSeekOffsetBeforeTargetPCMFrame, closestSeekOffsetBeforeTargetPCMFrame, byteRangeHi, &lastSuccessfulSeekOffset)) { + break; /* Failed to seek to closest frame. */ + } + + if (drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(pFlac, pcmFrameIndex - pFlac->currentPCMFrame)) { + return DRFLAC_TRUE; + } else { + break; /* Failed to seek forward. */ + } + } + + pcmRangeLo = newPCMRangeLo; + pcmRangeHi = newPCMRangeHi; + + if (pcmRangeLo <= pcmFrameIndex && pcmRangeHi >= pcmFrameIndex) { + /* The target PCM frame is in this FLAC frame. */ + if (drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(pFlac, pcmFrameIndex - pFlac->currentPCMFrame) ) { + return DRFLAC_TRUE; + } else { + break; /* Failed to seek to FLAC frame. */ + } + } else { + const float approxCompressionRatio = (drflac_int64)(lastSuccessfulSeekOffset - pFlac->firstFLACFramePosInBytes) / ((drflac_int64)(pcmRangeLo * pFlac->channels * pFlac->bitsPerSample)/8.0f); + + if (pcmRangeLo > pcmFrameIndex) { + /* We seeked too far forward. We need to move our target byte backward and try again. */ + byteRangeHi = lastSuccessfulSeekOffset; + if (byteRangeLo > byteRangeHi) { + byteRangeLo = byteRangeHi; + } + + targetByte = byteRangeLo + ((byteRangeHi - byteRangeLo) / 2); + if (targetByte < byteRangeLo) { + targetByte = byteRangeLo; + } + } else /*if (pcmRangeHi < pcmFrameIndex)*/ { + /* We didn't seek far enough. We need to move our target byte forward and try again. */ + + /* If we're close enough we can just seek forward. */ + if ((pcmFrameIndex - pcmRangeLo) < seekForwardThreshold) { + if (drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(pFlac, pcmFrameIndex - pFlac->currentPCMFrame)) { + return DRFLAC_TRUE; + } else { + break; /* Failed to seek to FLAC frame. */ + } + } else { + byteRangeLo = lastSuccessfulSeekOffset; + if (byteRangeHi < byteRangeLo) { + byteRangeHi = byteRangeLo; + } + + targetByte = lastSuccessfulSeekOffset + (drflac_uint64)(((drflac_int64)((pcmFrameIndex-pcmRangeLo) * pFlac->channels * pFlac->bitsPerSample)/8.0f) * approxCompressionRatio); + if (targetByte > byteRangeHi) { + targetByte = byteRangeHi; + } + + if (closestSeekOffsetBeforeTargetPCMFrame < lastSuccessfulSeekOffset) { + closestSeekOffsetBeforeTargetPCMFrame = lastSuccessfulSeekOffset; + } + } + } + } + } else { + /* Getting here is really bad. We just recover as best we can, but moving to the first frame in the stream, and then abort. */ + break; + } + } + + drflac__seek_to_first_frame(pFlac); /* <-- Try to recover. */ + return DRFLAC_FALSE; +} + +static drflac_bool32 drflac__seek_to_pcm_frame__binary_search(drflac* pFlac, drflac_uint64 pcmFrameIndex) +{ + drflac_uint64 byteRangeLo; + drflac_uint64 byteRangeHi; + drflac_uint32 seekForwardThreshold = (pFlac->maxBlockSizeInPCMFrames != 0) ? pFlac->maxBlockSizeInPCMFrames*2 : 4096; + + /* Our algorithm currently assumes the FLAC stream is currently sitting at the start. */ + if (drflac__seek_to_first_frame(pFlac) == DRFLAC_FALSE) { + return DRFLAC_FALSE; + } + + /* If we're close enough to the start, just move to the start and seek forward. */ + if (pcmFrameIndex < seekForwardThreshold) { + return drflac__seek_forward_by_pcm_frames(pFlac, pcmFrameIndex) == pcmFrameIndex; + } + + /* + Our starting byte range is the byte position of the first FLAC frame and the approximate end of the file as if it were completely uncompressed. This ensures + the entire file is included, even though most of the time it'll exceed the end of the actual stream. This is OK as the frame searching logic will handle it. + */ + byteRangeLo = pFlac->firstFLACFramePosInBytes; + byteRangeHi = pFlac->firstFLACFramePosInBytes + (drflac_uint64)((drflac_int64)(pFlac->totalPCMFrameCount * pFlac->channels * pFlac->bitsPerSample)/8.0f); + + return drflac__seek_to_pcm_frame__binary_search_internal(pFlac, pcmFrameIndex, byteRangeLo, byteRangeHi); +} +#endif /* !DR_FLAC_NO_CRC */ + +static drflac_bool32 drflac__seek_to_pcm_frame__seek_table(drflac* pFlac, drflac_uint64 pcmFrameIndex) +{ + drflac_uint32 iClosestSeekpoint = 0; + drflac_bool32 isMidFrame = DRFLAC_FALSE; + drflac_uint64 runningPCMFrameCount; + drflac_uint32 iSeekpoint; + + + DRFLAC_ASSERT(pFlac != NULL); + + if (pFlac->pSeekpoints == NULL || pFlac->seekpointCount == 0) { + return DRFLAC_FALSE; + } + + /* Do not use the seektable if pcmFramIndex is not coverd by it. */ + if (pFlac->pSeekpoints[0].firstPCMFrame > pcmFrameIndex) { + return DRFLAC_FALSE; + } + + for (iSeekpoint = 0; iSeekpoint < pFlac->seekpointCount; ++iSeekpoint) { + if (pFlac->pSeekpoints[iSeekpoint].firstPCMFrame >= pcmFrameIndex) { + break; + } + + iClosestSeekpoint = iSeekpoint; + } + + /* There's been cases where the seek table contains only zeros. We need to do some basic validation on the closest seekpoint. */ + if (pFlac->pSeekpoints[iClosestSeekpoint].pcmFrameCount == 0 || pFlac->pSeekpoints[iClosestSeekpoint].pcmFrameCount > pFlac->maxBlockSizeInPCMFrames) { + return DRFLAC_FALSE; + } + if (pFlac->pSeekpoints[iClosestSeekpoint].firstPCMFrame > pFlac->totalPCMFrameCount && pFlac->totalPCMFrameCount > 0) { + return DRFLAC_FALSE; + } + +#if !defined(DR_FLAC_NO_CRC) + /* At this point we should know the closest seek point. We can use a binary search for this. We need to know the total sample count for this. */ + if (pFlac->totalPCMFrameCount > 0) { + drflac_uint64 byteRangeLo; + drflac_uint64 byteRangeHi; + + byteRangeHi = pFlac->firstFLACFramePosInBytes + (drflac_uint64)((drflac_int64)(pFlac->totalPCMFrameCount * pFlac->channels * pFlac->bitsPerSample)/8.0f); + byteRangeLo = pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset; + + /* + If our closest seek point is not the last one, we only need to search between it and the next one. The section below calculates an appropriate starting + value for byteRangeHi which will clamp it appropriately. + + Note that the next seekpoint must have an offset greater than the closest seekpoint because otherwise our binary search algorithm will break down. There + have been cases where a seektable consists of seek points where every byte offset is set to 0 which causes problems. If this happens we need to abort. + */ + if (iClosestSeekpoint < pFlac->seekpointCount-1) { + drflac_uint32 iNextSeekpoint = iClosestSeekpoint + 1; + + /* Basic validation on the seekpoints to ensure they're usable. */ + if (pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset >= pFlac->pSeekpoints[iNextSeekpoint].flacFrameOffset || pFlac->pSeekpoints[iNextSeekpoint].pcmFrameCount == 0) { + return DRFLAC_FALSE; /* The next seekpoint doesn't look right. The seek table cannot be trusted from here. Abort. */ + } + + if (pFlac->pSeekpoints[iNextSeekpoint].firstPCMFrame != (((drflac_uint64)0xFFFFFFFF << 32) | 0xFFFFFFFF)) { /* Make sure it's not a placeholder seekpoint. */ + byteRangeHi = pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iNextSeekpoint].flacFrameOffset - 1; /* byteRangeHi must be zero based. */ + } + } + + if (drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset)) { + if (drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { + drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &pFlac->currentPCMFrame, NULL); + + if (drflac__seek_to_pcm_frame__binary_search_internal(pFlac, pcmFrameIndex, byteRangeLo, byteRangeHi)) { + return DRFLAC_TRUE; + } + } + } + } +#endif /* !DR_FLAC_NO_CRC */ + + /* Getting here means we need to use a slower algorithm because the binary search method failed or cannot be used. */ + + /* + If we are seeking forward and the closest seekpoint is _before_ the current sample, we just seek forward from where we are. Otherwise we start seeking + from the seekpoint's first sample. + */ + if (pcmFrameIndex >= pFlac->currentPCMFrame && pFlac->pSeekpoints[iClosestSeekpoint].firstPCMFrame <= pFlac->currentPCMFrame) { + /* Optimized case. Just seek forward from where we are. */ + runningPCMFrameCount = pFlac->currentPCMFrame; + + /* The frame header for the first frame may not yet have been read. We need to do that if necessary. */ + if (pFlac->currentPCMFrame == 0 && pFlac->currentFLACFrame.pcmFramesRemaining == 0) { + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { + return DRFLAC_FALSE; + } + } else { + isMidFrame = DRFLAC_TRUE; + } + } else { + /* Slower case. Seek to the start of the seekpoint and then seek forward from there. */ + runningPCMFrameCount = pFlac->pSeekpoints[iClosestSeekpoint].firstPCMFrame; + + if (!drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset)) { + return DRFLAC_FALSE; + } + + /* Grab the frame the seekpoint is sitting on in preparation for the sample-exact seeking below. */ + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { + return DRFLAC_FALSE; + } + } + + for (;;) { + drflac_uint64 pcmFrameCountInThisFLACFrame; + drflac_uint64 firstPCMFrameInFLACFrame = 0; + drflac_uint64 lastPCMFrameInFLACFrame = 0; + + drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &firstPCMFrameInFLACFrame, &lastPCMFrameInFLACFrame); + + pcmFrameCountInThisFLACFrame = (lastPCMFrameInFLACFrame - firstPCMFrameInFLACFrame) + 1; + if (pcmFrameIndex < (runningPCMFrameCount + pcmFrameCountInThisFLACFrame)) { + /* + The sample should be in this frame. We need to fully decode it, but if it's an invalid frame (a CRC mismatch) we need to pretend + it never existed and keep iterating. + */ + drflac_uint64 pcmFramesToDecode = pcmFrameIndex - runningPCMFrameCount; + + if (!isMidFrame) { + drflac_result result = drflac__decode_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + /* The frame is valid. We just need to skip over some samples to ensure it's sample-exact. */ + return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode; /* <-- If this fails, something bad has happened (it should never fail). */ + } else { + if (result == DRFLAC_CRC_MISMATCH) { + goto next_iteration; /* CRC mismatch. Pretend this frame never existed. */ + } else { + return DRFLAC_FALSE; + } + } + } else { + /* We started seeking mid-frame which means we need to skip the frame decoding part. */ + return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode; + } + } else { + /* + It's not in this frame. We need to seek past the frame, but check if there was a CRC mismatch. If so, we pretend this + frame never existed and leave the running sample count untouched. + */ + if (!isMidFrame) { + drflac_result result = drflac__seek_to_next_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + runningPCMFrameCount += pcmFrameCountInThisFLACFrame; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + goto next_iteration; /* CRC mismatch. Pretend this frame never existed. */ + } else { + return DRFLAC_FALSE; + } + } + } else { + /* + We started seeking mid-frame which means we need to seek by reading to the end of the frame instead of with + drflac__seek_to_next_flac_frame() which only works if the decoder is sitting on the byte just after the frame header. + */ + runningPCMFrameCount += pFlac->currentFLACFrame.pcmFramesRemaining; + pFlac->currentFLACFrame.pcmFramesRemaining = 0; + isMidFrame = DRFLAC_FALSE; + } + + /* If we are seeking to the end of the file and we've just hit it, we're done. */ + if (pcmFrameIndex == pFlac->totalPCMFrameCount && runningPCMFrameCount == pFlac->totalPCMFrameCount) { + return DRFLAC_TRUE; + } + } + + next_iteration: + /* Grab the next frame in preparation for the next iteration. */ + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { + return DRFLAC_FALSE; + } + } +} + + +#ifndef DR_FLAC_NO_OGG +typedef struct +{ + drflac_uint8 capturePattern[4]; /* Should be "OggS" */ + drflac_uint8 structureVersion; /* Always 0. */ + drflac_uint8 headerType; + drflac_uint64 granulePosition; + drflac_uint32 serialNumber; + drflac_uint32 sequenceNumber; + drflac_uint32 checksum; + drflac_uint8 segmentCount; + drflac_uint8 segmentTable[255]; +} drflac_ogg_page_header; +#endif + +typedef struct +{ + drflac_read_proc onRead; + drflac_seek_proc onSeek; + drflac_meta_proc onMeta; + drflac_container container; + void* pUserData; + void* pUserDataMD; + drflac_uint32 sampleRate; + drflac_uint8 channels; + drflac_uint8 bitsPerSample; + drflac_uint64 totalPCMFrameCount; + drflac_uint16 maxBlockSizeInPCMFrames; + drflac_uint64 runningFilePos; + drflac_bool32 hasStreamInfoBlock; + drflac_bool32 hasMetadataBlocks; + drflac_bs bs; /* <-- A bit streamer is required for loading data during initialization. */ + drflac_frame_header firstFrameHeader; /* <-- The header of the first frame that was read during relaxed initalization. Only set if there is no STREAMINFO block. */ + +#ifndef DR_FLAC_NO_OGG + drflac_uint32 oggSerial; + drflac_uint64 oggFirstBytePos; + drflac_ogg_page_header oggBosHeader; +#endif +} drflac_init_info; + +static DRFLAC_INLINE void drflac__decode_block_header(drflac_uint32 blockHeader, drflac_uint8* isLastBlock, drflac_uint8* blockType, drflac_uint32* blockSize) +{ + blockHeader = drflac__be2host_32(blockHeader); + *isLastBlock = (drflac_uint8)((blockHeader & 0x80000000UL) >> 31); + *blockType = (drflac_uint8)((blockHeader & 0x7F000000UL) >> 24); + *blockSize = (blockHeader & 0x00FFFFFFUL); +} + +static DRFLAC_INLINE drflac_bool32 drflac__read_and_decode_block_header(drflac_read_proc onRead, void* pUserData, drflac_uint8* isLastBlock, drflac_uint8* blockType, drflac_uint32* blockSize) +{ + drflac_uint32 blockHeader; + + *blockSize = 0; + if (onRead(pUserData, &blockHeader, 4) != 4) { + return DRFLAC_FALSE; + } + + drflac__decode_block_header(blockHeader, isLastBlock, blockType, blockSize); + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__read_streaminfo(drflac_read_proc onRead, void* pUserData, drflac_streaminfo* pStreamInfo) +{ + drflac_uint32 blockSizes; + drflac_uint64 frameSizes = 0; + drflac_uint64 importantProps; + drflac_uint8 md5[16]; + + /* min/max block size. */ + if (onRead(pUserData, &blockSizes, 4) != 4) { + return DRFLAC_FALSE; + } + + /* min/max frame size. */ + if (onRead(pUserData, &frameSizes, 6) != 6) { + return DRFLAC_FALSE; + } + + /* Sample rate, channels, bits per sample and total sample count. */ + if (onRead(pUserData, &importantProps, 8) != 8) { + return DRFLAC_FALSE; + } + + /* MD5 */ + if (onRead(pUserData, md5, sizeof(md5)) != sizeof(md5)) { + return DRFLAC_FALSE; + } + + blockSizes = drflac__be2host_32(blockSizes); + frameSizes = drflac__be2host_64(frameSizes); + importantProps = drflac__be2host_64(importantProps); + + pStreamInfo->minBlockSizeInPCMFrames = (drflac_uint16)((blockSizes & 0xFFFF0000) >> 16); + pStreamInfo->maxBlockSizeInPCMFrames = (drflac_uint16) (blockSizes & 0x0000FFFF); + pStreamInfo->minFrameSizeInPCMFrames = (drflac_uint32)((frameSizes & (((drflac_uint64)0x00FFFFFF << 16) << 24)) >> 40); + pStreamInfo->maxFrameSizeInPCMFrames = (drflac_uint32)((frameSizes & (((drflac_uint64)0x00FFFFFF << 16) << 0)) >> 16); + pStreamInfo->sampleRate = (drflac_uint32)((importantProps & (((drflac_uint64)0x000FFFFF << 16) << 28)) >> 44); + pStreamInfo->channels = (drflac_uint8 )((importantProps & (((drflac_uint64)0x0000000E << 16) << 24)) >> 41) + 1; + pStreamInfo->bitsPerSample = (drflac_uint8 )((importantProps & (((drflac_uint64)0x0000001F << 16) << 20)) >> 36) + 1; + pStreamInfo->totalPCMFrameCount = ((importantProps & ((((drflac_uint64)0x0000000F << 16) << 16) | 0xFFFFFFFF))); + DRFLAC_COPY_MEMORY(pStreamInfo->md5, md5, sizeof(md5)); + + return DRFLAC_TRUE; +} + + +static void* drflac__malloc_default(size_t sz, void* pUserData) +{ + (void)pUserData; + return DRFLAC_MALLOC(sz); +} + +static void* drflac__realloc_default(void* p, size_t sz, void* pUserData) +{ + (void)pUserData; + return DRFLAC_REALLOC(p, sz); +} + +static void drflac__free_default(void* p, void* pUserData) +{ + (void)pUserData; + DRFLAC_FREE(p); +} + + +static void* drflac__malloc_from_callbacks(size_t sz, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + if (pAllocationCallbacks == NULL) { + return NULL; + } + + if (pAllocationCallbacks->onMalloc != NULL) { + return pAllocationCallbacks->onMalloc(sz, pAllocationCallbacks->pUserData); + } + + /* Try using realloc(). */ + if (pAllocationCallbacks->onRealloc != NULL) { + return pAllocationCallbacks->onRealloc(NULL, sz, pAllocationCallbacks->pUserData); + } + + return NULL; +} + +static void* drflac__realloc_from_callbacks(void* p, size_t szNew, size_t szOld, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + if (pAllocationCallbacks == NULL) { + return NULL; + } + + if (pAllocationCallbacks->onRealloc != NULL) { + return pAllocationCallbacks->onRealloc(p, szNew, pAllocationCallbacks->pUserData); + } + + /* Try emulating realloc() in terms of malloc()/free(). */ + if (pAllocationCallbacks->onMalloc != NULL && pAllocationCallbacks->onFree != NULL) { + void* p2; + + p2 = pAllocationCallbacks->onMalloc(szNew, pAllocationCallbacks->pUserData); + if (p2 == NULL) { + return NULL; + } + + if (p != NULL) { + DRFLAC_COPY_MEMORY(p2, p, szOld); + pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData); + } + + return p2; + } + + return NULL; +} + +static void drflac__free_from_callbacks(void* p, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + if (p == NULL || pAllocationCallbacks == NULL) { + return; + } + + if (pAllocationCallbacks->onFree != NULL) { + pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData); + } +} + + +static drflac_bool32 drflac__read_and_decode_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_uint64* pFirstFramePos, drflac_uint64* pSeektablePos, drflac_uint32* pSeekpointCount, drflac_allocation_callbacks* pAllocationCallbacks) +{ + /* + We want to keep track of the byte position in the stream of the seektable. At the time of calling this function we know that + we'll be sitting on byte 42. + */ + drflac_uint64 runningFilePos = 42; + drflac_uint64 seektablePos = 0; + drflac_uint32 seektableSize = 0; + + for (;;) { + drflac_metadata metadata; + drflac_uint8 isLastBlock = 0; + drflac_uint8 blockType; + drflac_uint32 blockSize; + if (drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize) == DRFLAC_FALSE) { + return DRFLAC_FALSE; + } + runningFilePos += 4; + + metadata.type = blockType; + metadata.pRawData = NULL; + metadata.rawDataSize = 0; + + switch (blockType) + { + case DRFLAC_METADATA_BLOCK_TYPE_APPLICATION: + { + if (blockSize < 4) { + return DRFLAC_FALSE; + } + + if (onMeta) { + void* pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + metadata.data.application.id = drflac__be2host_32(*(drflac_uint32*)pRawData); + metadata.data.application.pData = (const void*)((drflac_uint8*)pRawData + sizeof(drflac_uint32)); + metadata.data.application.dataSize = blockSize - sizeof(drflac_uint32); + onMeta(pUserDataMD, &metadata); + + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_SEEKTABLE: + { + seektablePos = runningFilePos; + seektableSize = blockSize; + + if (onMeta) { + drflac_uint32 seekpointCount; + drflac_uint32 iSeekpoint; + void* pRawData; + + seekpointCount = blockSize/DRFLAC_SEEKPOINT_SIZE_IN_BYTES; + + pRawData = drflac__malloc_from_callbacks(seekpointCount * sizeof(drflac_seekpoint), pAllocationCallbacks); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + /* We need to read seekpoint by seekpoint and do some processing. */ + for (iSeekpoint = 0; iSeekpoint < seekpointCount; ++iSeekpoint) { + drflac_seekpoint* pSeekpoint = (drflac_seekpoint*)pRawData + iSeekpoint; + + if (onRead(pUserData, pSeekpoint, DRFLAC_SEEKPOINT_SIZE_IN_BYTES) != DRFLAC_SEEKPOINT_SIZE_IN_BYTES) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + + /* Endian swap. */ + pSeekpoint->firstPCMFrame = drflac__be2host_64(pSeekpoint->firstPCMFrame); + pSeekpoint->flacFrameOffset = drflac__be2host_64(pSeekpoint->flacFrameOffset); + pSeekpoint->pcmFrameCount = drflac__be2host_16(pSeekpoint->pcmFrameCount); + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + metadata.data.seektable.seekpointCount = seekpointCount; + metadata.data.seektable.pSeekpoints = (const drflac_seekpoint*)pRawData; + + onMeta(pUserDataMD, &metadata); + + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_VORBIS_COMMENT: + { + if (blockSize < 8) { + return DRFLAC_FALSE; + } + + if (onMeta) { + void* pRawData; + const char* pRunningData; + const char* pRunningDataEnd; + drflac_uint32 i; + + pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + + pRunningData = (const char*)pRawData; + pRunningDataEnd = (const char*)pRawData + blockSize; + + metadata.data.vorbis_comment.vendorLength = drflac__le2host_32_ptr_unaligned(pRunningData); pRunningData += 4; + + /* Need space for the rest of the block */ + if ((pRunningDataEnd - pRunningData) - 4 < (drflac_int64)metadata.data.vorbis_comment.vendorLength) { /* <-- Note the order of operations to avoid overflow to a valid value */ + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + metadata.data.vorbis_comment.vendor = pRunningData; pRunningData += metadata.data.vorbis_comment.vendorLength; + metadata.data.vorbis_comment.commentCount = drflac__le2host_32_ptr_unaligned(pRunningData); pRunningData += 4; + + /* Need space for 'commentCount' comments after the block, which at minimum is a drflac_uint32 per comment */ + if ((pRunningDataEnd - pRunningData) / sizeof(drflac_uint32) < metadata.data.vorbis_comment.commentCount) { /* <-- Note the order of operations to avoid overflow to a valid value */ + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + metadata.data.vorbis_comment.pComments = pRunningData; + + /* Check that the comments section is valid before passing it to the callback */ + for (i = 0; i < metadata.data.vorbis_comment.commentCount; ++i) { + drflac_uint32 commentLength; + + if (pRunningDataEnd - pRunningData < 4) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + + commentLength = drflac__le2host_32_ptr_unaligned(pRunningData); pRunningData += 4; + if (pRunningDataEnd - pRunningData < (drflac_int64)commentLength) { /* <-- Note the order of operations to avoid overflow to a valid value */ + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + pRunningData += commentLength; + } + + onMeta(pUserDataMD, &metadata); + + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_CUESHEET: + { + if (blockSize < 396) { + return DRFLAC_FALSE; + } + + if (onMeta) { + void* pRawData; + const char* pRunningData; + const char* pRunningDataEnd; + size_t bufferSize; + drflac_uint8 iTrack; + drflac_uint8 iIndex; + void* pTrackData; + + /* + This needs to be loaded in two passes. The first pass is used to calculate the size of the memory allocation + we need for storing the necessary data. The second pass will fill that buffer with usable data. + */ + pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + + pRunningData = (const char*)pRawData; + pRunningDataEnd = (const char*)pRawData + blockSize; + + DRFLAC_COPY_MEMORY(metadata.data.cuesheet.catalog, pRunningData, 128); pRunningData += 128; + metadata.data.cuesheet.leadInSampleCount = drflac__be2host_64(*(const drflac_uint64*)pRunningData); pRunningData += 8; + metadata.data.cuesheet.isCD = (pRunningData[0] & 0x80) != 0; pRunningData += 259; + metadata.data.cuesheet.trackCount = pRunningData[0]; pRunningData += 1; + metadata.data.cuesheet.pTrackData = NULL; /* Will be filled later. */ + + /* Pass 1: Calculate the size of the buffer for the track data. */ + { + const char* pRunningDataSaved = pRunningData; /* Will be restored at the end in preparation for the second pass. */ + + bufferSize = metadata.data.cuesheet.trackCount * DRFLAC_CUESHEET_TRACK_SIZE_IN_BYTES; + + for (iTrack = 0; iTrack < metadata.data.cuesheet.trackCount; ++iTrack) { + drflac_uint8 indexCount; + drflac_uint32 indexPointSize; + + if (pRunningDataEnd - pRunningData < DRFLAC_CUESHEET_TRACK_SIZE_IN_BYTES) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + + /* Skip to the index point count */ + pRunningData += 35; + + indexCount = pRunningData[0]; + pRunningData += 1; + + bufferSize += indexCount * sizeof(drflac_cuesheet_track_index); + + /* Quick validation check. */ + indexPointSize = indexCount * DRFLAC_CUESHEET_TRACK_INDEX_SIZE_IN_BYTES; + if (pRunningDataEnd - pRunningData < (drflac_int64)indexPointSize) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + + pRunningData += indexPointSize; + } + + pRunningData = pRunningDataSaved; + } + + /* Pass 2: Allocate a buffer and fill the data. Validation was done in the step above so can be skipped. */ + { + char* pRunningTrackData; + + pTrackData = drflac__malloc_from_callbacks(bufferSize, pAllocationCallbacks); + if (pTrackData == NULL) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + + pRunningTrackData = (char*)pTrackData; + + for (iTrack = 0; iTrack < metadata.data.cuesheet.trackCount; ++iTrack) { + drflac_uint8 indexCount; + + DRFLAC_COPY_MEMORY(pRunningTrackData, pRunningData, DRFLAC_CUESHEET_TRACK_SIZE_IN_BYTES); + pRunningData += DRFLAC_CUESHEET_TRACK_SIZE_IN_BYTES-1; /* Skip forward, but not beyond the last byte in the CUESHEET_TRACK block which is the index count. */ + pRunningTrackData += DRFLAC_CUESHEET_TRACK_SIZE_IN_BYTES-1; + + /* Grab the index count for the next part. */ + indexCount = pRunningData[0]; + pRunningData += 1; + pRunningTrackData += 1; + + /* Extract each track index. */ + for (iIndex = 0; iIndex < indexCount; ++iIndex) { + drflac_cuesheet_track_index* pTrackIndex = (drflac_cuesheet_track_index*)pRunningTrackData; + + DRFLAC_COPY_MEMORY(pRunningTrackData, pRunningData, DRFLAC_CUESHEET_TRACK_INDEX_SIZE_IN_BYTES); + pRunningData += DRFLAC_CUESHEET_TRACK_INDEX_SIZE_IN_BYTES; + pRunningTrackData += sizeof(drflac_cuesheet_track_index); + + pTrackIndex->offset = drflac__be2host_64(pTrackIndex->offset); + } + } + + metadata.data.cuesheet.pTrackData = pTrackData; + } + + /* The original data is no longer needed. */ + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + pRawData = NULL; + + onMeta(pUserDataMD, &metadata); + + drflac__free_from_callbacks(pTrackData, pAllocationCallbacks); + pTrackData = NULL; + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_PICTURE: + { + if (blockSize < 32) { + return DRFLAC_FALSE; + } + + if (onMeta) { + void* pRawData; + const char* pRunningData; + const char* pRunningDataEnd; + + pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + + pRunningData = (const char*)pRawData; + pRunningDataEnd = (const char*)pRawData + blockSize; + + metadata.data.picture.type = drflac__be2host_32_ptr_unaligned(pRunningData); pRunningData += 4; + metadata.data.picture.mimeLength = drflac__be2host_32_ptr_unaligned(pRunningData); pRunningData += 4; + + /* Need space for the rest of the block */ + if ((pRunningDataEnd - pRunningData) - 24 < (drflac_int64)metadata.data.picture.mimeLength) { /* <-- Note the order of operations to avoid overflow to a valid value */ + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + metadata.data.picture.mime = pRunningData; pRunningData += metadata.data.picture.mimeLength; + metadata.data.picture.descriptionLength = drflac__be2host_32_ptr_unaligned(pRunningData); pRunningData += 4; + + /* Need space for the rest of the block */ + if ((pRunningDataEnd - pRunningData) - 20 < (drflac_int64)metadata.data.picture.descriptionLength) { /* <-- Note the order of operations to avoid overflow to a valid value */ + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + metadata.data.picture.description = pRunningData; pRunningData += metadata.data.picture.descriptionLength; + metadata.data.picture.width = drflac__be2host_32_ptr_unaligned(pRunningData); pRunningData += 4; + metadata.data.picture.height = drflac__be2host_32_ptr_unaligned(pRunningData); pRunningData += 4; + metadata.data.picture.colorDepth = drflac__be2host_32_ptr_unaligned(pRunningData); pRunningData += 4; + metadata.data.picture.indexColorCount = drflac__be2host_32_ptr_unaligned(pRunningData); pRunningData += 4; + metadata.data.picture.pictureDataSize = drflac__be2host_32_ptr_unaligned(pRunningData); pRunningData += 4; + metadata.data.picture.pPictureData = (const drflac_uint8*)pRunningData; + + /* Need space for the picture after the block */ + if (pRunningDataEnd - pRunningData < (drflac_int64)metadata.data.picture.pictureDataSize) { /* <-- Note the order of operations to avoid overflow to a valid value */ + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + + onMeta(pUserDataMD, &metadata); + + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_PADDING: + { + if (onMeta) { + metadata.data.padding.unused = 0; + + /* Padding doesn't have anything meaningful in it, so just skip over it, but make sure the caller is aware of it by firing the callback. */ + if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) { + isLastBlock = DRFLAC_TRUE; /* An error occurred while seeking. Attempt to recover by treating this as the last block which will in turn terminate the loop. */ + } else { + onMeta(pUserDataMD, &metadata); + } + } + } break; + + case DRFLAC_METADATA_BLOCK_TYPE_INVALID: + { + /* Invalid chunk. Just skip over this one. */ + if (onMeta) { + if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) { + isLastBlock = DRFLAC_TRUE; /* An error occurred while seeking. Attempt to recover by treating this as the last block which will in turn terminate the loop. */ + } + } + } break; + + default: + { + /* + It's an unknown chunk, but not necessarily invalid. There's a chance more metadata blocks might be defined later on, so we + can at the very least report the chunk to the application and let it look at the raw data. + */ + if (onMeta) { + void* pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks); + if (pRawData == NULL) { + return DRFLAC_FALSE; + } + + if (onRead(pUserData, pRawData, blockSize) != blockSize) { + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + return DRFLAC_FALSE; + } + + metadata.pRawData = pRawData; + metadata.rawDataSize = blockSize; + onMeta(pUserDataMD, &metadata); + + drflac__free_from_callbacks(pRawData, pAllocationCallbacks); + } + } break; + } + + /* If we're not handling metadata, just skip over the block. If we are, it will have been handled earlier in the switch statement above. */ + if (onMeta == NULL && blockSize > 0) { + if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) { + isLastBlock = DRFLAC_TRUE; + } + } + + runningFilePos += blockSize; + if (isLastBlock) { + break; + } + } + + *pSeektablePos = seektablePos; + *pSeekpointCount = seektableSize / DRFLAC_SEEKPOINT_SIZE_IN_BYTES; + *pFirstFramePos = runningFilePos; + + return DRFLAC_TRUE; +} + +static drflac_bool32 drflac__init_private__native(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_bool32 relaxed) +{ + /* Pre Condition: The bit stream should be sitting just past the 4-byte id header. */ + + drflac_uint8 isLastBlock; + drflac_uint8 blockType; + drflac_uint32 blockSize; + + (void)onSeek; + + pInit->container = drflac_container_native; + + /* The first metadata block should be the STREAMINFO block. */ + if (!drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize)) { + return DRFLAC_FALSE; + } + + if (blockType != DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO || blockSize != 34) { + if (!relaxed) { + /* We're opening in strict mode and the first block is not the STREAMINFO block. Error. */ + return DRFLAC_FALSE; + } else { + /* + Relaxed mode. To open from here we need to just find the first frame and set the sample rate, etc. to whatever is defined + for that frame. + */ + pInit->hasStreamInfoBlock = DRFLAC_FALSE; + pInit->hasMetadataBlocks = DRFLAC_FALSE; + + if (!drflac__read_next_flac_frame_header(&pInit->bs, 0, &pInit->firstFrameHeader)) { + return DRFLAC_FALSE; /* Couldn't find a frame. */ + } + + if (pInit->firstFrameHeader.bitsPerSample == 0) { + return DRFLAC_FALSE; /* Failed to initialize because the first frame depends on the STREAMINFO block, which does not exist. */ + } + + pInit->sampleRate = pInit->firstFrameHeader.sampleRate; + pInit->channels = drflac__get_channel_count_from_channel_assignment(pInit->firstFrameHeader.channelAssignment); + pInit->bitsPerSample = pInit->firstFrameHeader.bitsPerSample; + pInit->maxBlockSizeInPCMFrames = 65535; /* <-- See notes here: https://xiph.org/flac/format.html#metadata_block_streaminfo */ + return DRFLAC_TRUE; + } + } else { + drflac_streaminfo streaminfo; + if (!drflac__read_streaminfo(onRead, pUserData, &streaminfo)) { + return DRFLAC_FALSE; + } + + pInit->hasStreamInfoBlock = DRFLAC_TRUE; + pInit->sampleRate = streaminfo.sampleRate; + pInit->channels = streaminfo.channels; + pInit->bitsPerSample = streaminfo.bitsPerSample; + pInit->totalPCMFrameCount = streaminfo.totalPCMFrameCount; + pInit->maxBlockSizeInPCMFrames = streaminfo.maxBlockSizeInPCMFrames; /* Don't care about the min block size - only the max (used for determining the size of the memory allocation). */ + pInit->hasMetadataBlocks = !isLastBlock; + + if (onMeta) { + drflac_metadata metadata; + metadata.type = DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO; + metadata.pRawData = NULL; + metadata.rawDataSize = 0; + metadata.data.streaminfo = streaminfo; + onMeta(pUserDataMD, &metadata); + } + + return DRFLAC_TRUE; + } +} + +#ifndef DR_FLAC_NO_OGG +#define DRFLAC_OGG_MAX_PAGE_SIZE 65307 +#define DRFLAC_OGG_CAPTURE_PATTERN_CRC32 1605413199 /* CRC-32 of "OggS". */ + +typedef enum +{ + drflac_ogg_recover_on_crc_mismatch, + drflac_ogg_fail_on_crc_mismatch +} drflac_ogg_crc_mismatch_recovery; + +#ifndef DR_FLAC_NO_CRC +static drflac_uint32 drflac__crc32_table[] = { + 0x00000000L, 0x04C11DB7L, 0x09823B6EL, 0x0D4326D9L, + 0x130476DCL, 0x17C56B6BL, 0x1A864DB2L, 0x1E475005L, + 0x2608EDB8L, 0x22C9F00FL, 0x2F8AD6D6L, 0x2B4BCB61L, + 0x350C9B64L, 0x31CD86D3L, 0x3C8EA00AL, 0x384FBDBDL, + 0x4C11DB70L, 0x48D0C6C7L, 0x4593E01EL, 0x4152FDA9L, + 0x5F15ADACL, 0x5BD4B01BL, 0x569796C2L, 0x52568B75L, + 0x6A1936C8L, 0x6ED82B7FL, 0x639B0DA6L, 0x675A1011L, + 0x791D4014L, 0x7DDC5DA3L, 0x709F7B7AL, 0x745E66CDL, + 0x9823B6E0L, 0x9CE2AB57L, 0x91A18D8EL, 0x95609039L, + 0x8B27C03CL, 0x8FE6DD8BL, 0x82A5FB52L, 0x8664E6E5L, + 0xBE2B5B58L, 0xBAEA46EFL, 0xB7A96036L, 0xB3687D81L, + 0xAD2F2D84L, 0xA9EE3033L, 0xA4AD16EAL, 0xA06C0B5DL, + 0xD4326D90L, 0xD0F37027L, 0xDDB056FEL, 0xD9714B49L, + 0xC7361B4CL, 0xC3F706FBL, 0xCEB42022L, 0xCA753D95L, + 0xF23A8028L, 0xF6FB9D9FL, 0xFBB8BB46L, 0xFF79A6F1L, + 0xE13EF6F4L, 0xE5FFEB43L, 0xE8BCCD9AL, 0xEC7DD02DL, + 0x34867077L, 0x30476DC0L, 0x3D044B19L, 0x39C556AEL, + 0x278206ABL, 0x23431B1CL, 0x2E003DC5L, 0x2AC12072L, + 0x128E9DCFL, 0x164F8078L, 0x1B0CA6A1L, 0x1FCDBB16L, + 0x018AEB13L, 0x054BF6A4L, 0x0808D07DL, 0x0CC9CDCAL, + 0x7897AB07L, 0x7C56B6B0L, 0x71159069L, 0x75D48DDEL, + 0x6B93DDDBL, 0x6F52C06CL, 0x6211E6B5L, 0x66D0FB02L, + 0x5E9F46BFL, 0x5A5E5B08L, 0x571D7DD1L, 0x53DC6066L, + 0x4D9B3063L, 0x495A2DD4L, 0x44190B0DL, 0x40D816BAL, + 0xACA5C697L, 0xA864DB20L, 0xA527FDF9L, 0xA1E6E04EL, + 0xBFA1B04BL, 0xBB60ADFCL, 0xB6238B25L, 0xB2E29692L, + 0x8AAD2B2FL, 0x8E6C3698L, 0x832F1041L, 0x87EE0DF6L, + 0x99A95DF3L, 0x9D684044L, 0x902B669DL, 0x94EA7B2AL, + 0xE0B41DE7L, 0xE4750050L, 0xE9362689L, 0xEDF73B3EL, + 0xF3B06B3BL, 0xF771768CL, 0xFA325055L, 0xFEF34DE2L, + 0xC6BCF05FL, 0xC27DEDE8L, 0xCF3ECB31L, 0xCBFFD686L, + 0xD5B88683L, 0xD1799B34L, 0xDC3ABDEDL, 0xD8FBA05AL, + 0x690CE0EEL, 0x6DCDFD59L, 0x608EDB80L, 0x644FC637L, + 0x7A089632L, 0x7EC98B85L, 0x738AAD5CL, 0x774BB0EBL, + 0x4F040D56L, 0x4BC510E1L, 0x46863638L, 0x42472B8FL, + 0x5C007B8AL, 0x58C1663DL, 0x558240E4L, 0x51435D53L, + 0x251D3B9EL, 0x21DC2629L, 0x2C9F00F0L, 0x285E1D47L, + 0x36194D42L, 0x32D850F5L, 0x3F9B762CL, 0x3B5A6B9BL, + 0x0315D626L, 0x07D4CB91L, 0x0A97ED48L, 0x0E56F0FFL, + 0x1011A0FAL, 0x14D0BD4DL, 0x19939B94L, 0x1D528623L, + 0xF12F560EL, 0xF5EE4BB9L, 0xF8AD6D60L, 0xFC6C70D7L, + 0xE22B20D2L, 0xE6EA3D65L, 0xEBA91BBCL, 0xEF68060BL, + 0xD727BBB6L, 0xD3E6A601L, 0xDEA580D8L, 0xDA649D6FL, + 0xC423CD6AL, 0xC0E2D0DDL, 0xCDA1F604L, 0xC960EBB3L, + 0xBD3E8D7EL, 0xB9FF90C9L, 0xB4BCB610L, 0xB07DABA7L, + 0xAE3AFBA2L, 0xAAFBE615L, 0xA7B8C0CCL, 0xA379DD7BL, + 0x9B3660C6L, 0x9FF77D71L, 0x92B45BA8L, 0x9675461FL, + 0x8832161AL, 0x8CF30BADL, 0x81B02D74L, 0x857130C3L, + 0x5D8A9099L, 0x594B8D2EL, 0x5408ABF7L, 0x50C9B640L, + 0x4E8EE645L, 0x4A4FFBF2L, 0x470CDD2BL, 0x43CDC09CL, + 0x7B827D21L, 0x7F436096L, 0x7200464FL, 0x76C15BF8L, + 0x68860BFDL, 0x6C47164AL, 0x61043093L, 0x65C52D24L, + 0x119B4BE9L, 0x155A565EL, 0x18197087L, 0x1CD86D30L, + 0x029F3D35L, 0x065E2082L, 0x0B1D065BL, 0x0FDC1BECL, + 0x3793A651L, 0x3352BBE6L, 0x3E119D3FL, 0x3AD08088L, + 0x2497D08DL, 0x2056CD3AL, 0x2D15EBE3L, 0x29D4F654L, + 0xC5A92679L, 0xC1683BCEL, 0xCC2B1D17L, 0xC8EA00A0L, + 0xD6AD50A5L, 0xD26C4D12L, 0xDF2F6BCBL, 0xDBEE767CL, + 0xE3A1CBC1L, 0xE760D676L, 0xEA23F0AFL, 0xEEE2ED18L, + 0xF0A5BD1DL, 0xF464A0AAL, 0xF9278673L, 0xFDE69BC4L, + 0x89B8FD09L, 0x8D79E0BEL, 0x803AC667L, 0x84FBDBD0L, + 0x9ABC8BD5L, 0x9E7D9662L, 0x933EB0BBL, 0x97FFAD0CL, + 0xAFB010B1L, 0xAB710D06L, 0xA6322BDFL, 0xA2F33668L, + 0xBCB4666DL, 0xB8757BDAL, 0xB5365D03L, 0xB1F740B4L +}; +#endif + +static DRFLAC_INLINE drflac_uint32 drflac_crc32_byte(drflac_uint32 crc32, drflac_uint8 data) +{ +#ifndef DR_FLAC_NO_CRC + return (crc32 << 8) ^ drflac__crc32_table[(drflac_uint8)((crc32 >> 24) & 0xFF) ^ data]; +#else + (void)data; + return crc32; +#endif +} + +#if 0 +static DRFLAC_INLINE drflac_uint32 drflac_crc32_uint32(drflac_uint32 crc32, drflac_uint32 data) +{ + crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 24) & 0xFF)); + crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 16) & 0xFF)); + crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 8) & 0xFF)); + crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 0) & 0xFF)); + return crc32; +} + +static DRFLAC_INLINE drflac_uint32 drflac_crc32_uint64(drflac_uint32 crc32, drflac_uint64 data) +{ + crc32 = drflac_crc32_uint32(crc32, (drflac_uint32)((data >> 32) & 0xFFFFFFFF)); + crc32 = drflac_crc32_uint32(crc32, (drflac_uint32)((data >> 0) & 0xFFFFFFFF)); + return crc32; +} +#endif + +static DRFLAC_INLINE drflac_uint32 drflac_crc32_buffer(drflac_uint32 crc32, drflac_uint8* pData, drflac_uint32 dataSize) +{ + /* This can be optimized. */ + drflac_uint32 i; + for (i = 0; i < dataSize; ++i) { + crc32 = drflac_crc32_byte(crc32, pData[i]); + } + return crc32; +} + + +static DRFLAC_INLINE drflac_bool32 drflac_ogg__is_capture_pattern(drflac_uint8 pattern[4]) +{ + return pattern[0] == 'O' && pattern[1] == 'g' && pattern[2] == 'g' && pattern[3] == 'S'; +} + +static DRFLAC_INLINE drflac_uint32 drflac_ogg__get_page_header_size(drflac_ogg_page_header* pHeader) +{ + return 27 + pHeader->segmentCount; +} + +static DRFLAC_INLINE drflac_uint32 drflac_ogg__get_page_body_size(drflac_ogg_page_header* pHeader) +{ + drflac_uint32 pageBodySize = 0; + int i; + + for (i = 0; i < pHeader->segmentCount; ++i) { + pageBodySize += pHeader->segmentTable[i]; + } + + return pageBodySize; +} + +static drflac_result drflac_ogg__read_page_header_after_capture_pattern(drflac_read_proc onRead, void* pUserData, drflac_ogg_page_header* pHeader, drflac_uint32* pBytesRead, drflac_uint32* pCRC32) +{ + drflac_uint8 data[23]; + drflac_uint32 i; + + DRFLAC_ASSERT(*pCRC32 == DRFLAC_OGG_CAPTURE_PATTERN_CRC32); + + if (onRead(pUserData, data, 23) != 23) { + return DRFLAC_AT_END; + } + *pBytesRead += 23; + + /* + It's not actually used, but set the capture pattern to 'OggS' for completeness. Not doing this will cause static analysers to complain about + us trying to access uninitialized data. We could alternatively just comment out this member of the drflac_ogg_page_header structure, but I + like to have it map to the structure of the underlying data. + */ + pHeader->capturePattern[0] = 'O'; + pHeader->capturePattern[1] = 'g'; + pHeader->capturePattern[2] = 'g'; + pHeader->capturePattern[3] = 'S'; + + pHeader->structureVersion = data[0]; + pHeader->headerType = data[1]; + DRFLAC_COPY_MEMORY(&pHeader->granulePosition, &data[ 2], 8); + DRFLAC_COPY_MEMORY(&pHeader->serialNumber, &data[10], 4); + DRFLAC_COPY_MEMORY(&pHeader->sequenceNumber, &data[14], 4); + DRFLAC_COPY_MEMORY(&pHeader->checksum, &data[18], 4); + pHeader->segmentCount = data[22]; + + /* Calculate the CRC. Note that for the calculation the checksum part of the page needs to be set to 0. */ + data[18] = 0; + data[19] = 0; + data[20] = 0; + data[21] = 0; + + for (i = 0; i < 23; ++i) { + *pCRC32 = drflac_crc32_byte(*pCRC32, data[i]); + } + + + if (onRead(pUserData, pHeader->segmentTable, pHeader->segmentCount) != pHeader->segmentCount) { + return DRFLAC_AT_END; + } + *pBytesRead += pHeader->segmentCount; + + for (i = 0; i < pHeader->segmentCount; ++i) { + *pCRC32 = drflac_crc32_byte(*pCRC32, pHeader->segmentTable[i]); + } + + return DRFLAC_SUCCESS; +} + +static drflac_result drflac_ogg__read_page_header(drflac_read_proc onRead, void* pUserData, drflac_ogg_page_header* pHeader, drflac_uint32* pBytesRead, drflac_uint32* pCRC32) +{ + drflac_uint8 id[4]; + + *pBytesRead = 0; + + if (onRead(pUserData, id, 4) != 4) { + return DRFLAC_AT_END; + } + *pBytesRead += 4; + + /* We need to read byte-by-byte until we find the OggS capture pattern. */ + for (;;) { + if (drflac_ogg__is_capture_pattern(id)) { + drflac_result result; + + *pCRC32 = DRFLAC_OGG_CAPTURE_PATTERN_CRC32; + + result = drflac_ogg__read_page_header_after_capture_pattern(onRead, pUserData, pHeader, pBytesRead, pCRC32); + if (result == DRFLAC_SUCCESS) { + return DRFLAC_SUCCESS; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + continue; + } else { + return result; + } + } + } else { + /* The first 4 bytes did not equal the capture pattern. Read the next byte and try again. */ + id[0] = id[1]; + id[1] = id[2]; + id[2] = id[3]; + if (onRead(pUserData, &id[3], 1) != 1) { + return DRFLAC_AT_END; + } + *pBytesRead += 1; + } + } +} + + +/* +The main part of the Ogg encapsulation is the conversion from the physical Ogg bitstream to the native FLAC bitstream. It works +in three general stages: Ogg Physical Bitstream -> Ogg/FLAC Logical Bitstream -> FLAC Native Bitstream. dr_flac is designed +in such a way that the core sections assume everything is delivered in native format. Therefore, for each encapsulation type +dr_flac is supporting there needs to be a layer sitting on top of the onRead and onSeek callbacks that ensures the bits read from +the physical Ogg bitstream are converted and delivered in native FLAC format. +*/ +typedef struct +{ + drflac_read_proc onRead; /* The original onRead callback from drflac_open() and family. */ + drflac_seek_proc onSeek; /* The original onSeek callback from drflac_open() and family. */ + void* pUserData; /* The user data passed on onRead and onSeek. This is the user data that was passed on drflac_open() and family. */ + drflac_uint64 currentBytePos; /* The position of the byte we are sitting on in the physical byte stream. Used for efficient seeking. */ + drflac_uint64 firstBytePos; /* The position of the first byte in the physical bitstream. Points to the start of the "OggS" identifier of the FLAC bos page. */ + drflac_uint32 serialNumber; /* The serial number of the FLAC audio pages. This is determined by the initial header page that was read during initialization. */ + drflac_ogg_page_header bosPageHeader; /* Used for seeking. */ + drflac_ogg_page_header currentPageHeader; + drflac_uint32 bytesRemainingInPage; + drflac_uint32 pageDataSize; + drflac_uint8 pageData[DRFLAC_OGG_MAX_PAGE_SIZE]; +} drflac_oggbs; /* oggbs = Ogg Bitstream */ + +static size_t drflac_oggbs__read_physical(drflac_oggbs* oggbs, void* bufferOut, size_t bytesToRead) +{ + size_t bytesActuallyRead = oggbs->onRead(oggbs->pUserData, bufferOut, bytesToRead); + oggbs->currentBytePos += bytesActuallyRead; + + return bytesActuallyRead; +} + +static drflac_bool32 drflac_oggbs__seek_physical(drflac_oggbs* oggbs, drflac_uint64 offset, drflac_seek_origin origin) +{ + if (origin == drflac_seek_origin_start) { + if (offset <= 0x7FFFFFFF) { + if (!oggbs->onSeek(oggbs->pUserData, (int)offset, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + oggbs->currentBytePos = offset; + + return DRFLAC_TRUE; + } else { + if (!oggbs->onSeek(oggbs->pUserData, 0x7FFFFFFF, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + oggbs->currentBytePos = offset; + + return drflac_oggbs__seek_physical(oggbs, offset - 0x7FFFFFFF, drflac_seek_origin_current); + } + } else { + while (offset > 0x7FFFFFFF) { + if (!oggbs->onSeek(oggbs->pUserData, 0x7FFFFFFF, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + oggbs->currentBytePos += 0x7FFFFFFF; + offset -= 0x7FFFFFFF; + } + + if (!oggbs->onSeek(oggbs->pUserData, (int)offset, drflac_seek_origin_current)) { /* <-- Safe cast thanks to the loop above. */ + return DRFLAC_FALSE; + } + oggbs->currentBytePos += offset; + + return DRFLAC_TRUE; + } +} + +static drflac_bool32 drflac_oggbs__goto_next_page(drflac_oggbs* oggbs, drflac_ogg_crc_mismatch_recovery recoveryMethod) +{ + drflac_ogg_page_header header; + for (;;) { + drflac_uint32 crc32 = 0; + drflac_uint32 bytesRead; + drflac_uint32 pageBodySize; +#ifndef DR_FLAC_NO_CRC + drflac_uint32 actualCRC32; +#endif + + if (drflac_ogg__read_page_header(oggbs->onRead, oggbs->pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) { + return DRFLAC_FALSE; + } + oggbs->currentBytePos += bytesRead; + + pageBodySize = drflac_ogg__get_page_body_size(&header); + if (pageBodySize > DRFLAC_OGG_MAX_PAGE_SIZE) { + continue; /* Invalid page size. Assume it's corrupted and just move to the next page. */ + } + + if (header.serialNumber != oggbs->serialNumber) { + /* It's not a FLAC page. Skip it. */ + if (pageBodySize > 0 && !drflac_oggbs__seek_physical(oggbs, pageBodySize, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + continue; + } + + + /* We need to read the entire page and then do a CRC check on it. If there's a CRC mismatch we need to skip this page. */ + if (drflac_oggbs__read_physical(oggbs, oggbs->pageData, pageBodySize) != pageBodySize) { + return DRFLAC_FALSE; + } + oggbs->pageDataSize = pageBodySize; + +#ifndef DR_FLAC_NO_CRC + actualCRC32 = drflac_crc32_buffer(crc32, oggbs->pageData, oggbs->pageDataSize); + if (actualCRC32 != header.checksum) { + if (recoveryMethod == drflac_ogg_recover_on_crc_mismatch) { + continue; /* CRC mismatch. Skip this page. */ + } else { + /* + Even though we are failing on a CRC mismatch, we still want our stream to be in a good state. Therefore we + go to the next valid page to ensure we're in a good state, but return false to let the caller know that the + seek did not fully complete. + */ + drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch); + return DRFLAC_FALSE; + } + } +#else + (void)recoveryMethod; /* <-- Silence a warning. */ +#endif + + oggbs->currentPageHeader = header; + oggbs->bytesRemainingInPage = pageBodySize; + return DRFLAC_TRUE; + } +} + +/* Function below is unused at the moment, but I might be re-adding it later. */ +#if 0 +static drflac_uint8 drflac_oggbs__get_current_segment_index(drflac_oggbs* oggbs, drflac_uint8* pBytesRemainingInSeg) +{ + drflac_uint32 bytesConsumedInPage = drflac_ogg__get_page_body_size(&oggbs->currentPageHeader) - oggbs->bytesRemainingInPage; + drflac_uint8 iSeg = 0; + drflac_uint32 iByte = 0; + while (iByte < bytesConsumedInPage) { + drflac_uint8 segmentSize = oggbs->currentPageHeader.segmentTable[iSeg]; + if (iByte + segmentSize > bytesConsumedInPage) { + break; + } else { + iSeg += 1; + iByte += segmentSize; + } + } + + *pBytesRemainingInSeg = oggbs->currentPageHeader.segmentTable[iSeg] - (drflac_uint8)(bytesConsumedInPage - iByte); + return iSeg; +} + +static drflac_bool32 drflac_oggbs__seek_to_next_packet(drflac_oggbs* oggbs) +{ + /* The current packet ends when we get to the segment with a lacing value of < 255 which is not at the end of a page. */ + for (;;) { + drflac_bool32 atEndOfPage = DRFLAC_FALSE; + + drflac_uint8 bytesRemainingInSeg; + drflac_uint8 iFirstSeg = drflac_oggbs__get_current_segment_index(oggbs, &bytesRemainingInSeg); + + drflac_uint32 bytesToEndOfPacketOrPage = bytesRemainingInSeg; + for (drflac_uint8 iSeg = iFirstSeg; iSeg < oggbs->currentPageHeader.segmentCount; ++iSeg) { + drflac_uint8 segmentSize = oggbs->currentPageHeader.segmentTable[iSeg]; + if (segmentSize < 255) { + if (iSeg == oggbs->currentPageHeader.segmentCount-1) { + atEndOfPage = DRFLAC_TRUE; + } + + break; + } + + bytesToEndOfPacketOrPage += segmentSize; + } + + /* + At this point we will have found either the packet or the end of the page. If were at the end of the page we'll + want to load the next page and keep searching for the end of the packet. + */ + drflac_oggbs__seek_physical(oggbs, bytesToEndOfPacketOrPage, drflac_seek_origin_current); + oggbs->bytesRemainingInPage -= bytesToEndOfPacketOrPage; + + if (atEndOfPage) { + /* + We're potentially at the next packet, but we need to check the next page first to be sure because the packet may + straddle pages. + */ + if (!drflac_oggbs__goto_next_page(oggbs)) { + return DRFLAC_FALSE; + } + + /* If it's a fresh packet it most likely means we're at the next packet. */ + if ((oggbs->currentPageHeader.headerType & 0x01) == 0) { + return DRFLAC_TRUE; + } + } else { + /* We're at the next packet. */ + return DRFLAC_TRUE; + } + } +} + +static drflac_bool32 drflac_oggbs__seek_to_next_frame(drflac_oggbs* oggbs) +{ + /* The bitstream should be sitting on the first byte just after the header of the frame. */ + + /* What we're actually doing here is seeking to the start of the next packet. */ + return drflac_oggbs__seek_to_next_packet(oggbs); +} +#endif + +static size_t drflac__on_read_ogg(void* pUserData, void* bufferOut, size_t bytesToRead) +{ + drflac_oggbs* oggbs = (drflac_oggbs*)pUserData; + drflac_uint8* pRunningBufferOut = (drflac_uint8*)bufferOut; + size_t bytesRead = 0; + + DRFLAC_ASSERT(oggbs != NULL); + DRFLAC_ASSERT(pRunningBufferOut != NULL); + + /* Reading is done page-by-page. If we've run out of bytes in the page we need to move to the next one. */ + while (bytesRead < bytesToRead) { + size_t bytesRemainingToRead = bytesToRead - bytesRead; + + if (oggbs->bytesRemainingInPage >= bytesRemainingToRead) { + DRFLAC_COPY_MEMORY(pRunningBufferOut, oggbs->pageData + (oggbs->pageDataSize - oggbs->bytesRemainingInPage), bytesRemainingToRead); + bytesRead += bytesRemainingToRead; + oggbs->bytesRemainingInPage -= (drflac_uint32)bytesRemainingToRead; + break; + } + + /* If we get here it means some of the requested data is contained in the next pages. */ + if (oggbs->bytesRemainingInPage > 0) { + DRFLAC_COPY_MEMORY(pRunningBufferOut, oggbs->pageData + (oggbs->pageDataSize - oggbs->bytesRemainingInPage), oggbs->bytesRemainingInPage); + bytesRead += oggbs->bytesRemainingInPage; + pRunningBufferOut += oggbs->bytesRemainingInPage; + oggbs->bytesRemainingInPage = 0; + } + + DRFLAC_ASSERT(bytesRemainingToRead > 0); + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) { + break; /* Failed to go to the next page. Might have simply hit the end of the stream. */ + } + } + + return bytesRead; +} + +static drflac_bool32 drflac__on_seek_ogg(void* pUserData, int offset, drflac_seek_origin origin) +{ + drflac_oggbs* oggbs = (drflac_oggbs*)pUserData; + int bytesSeeked = 0; + + DRFLAC_ASSERT(oggbs != NULL); + DRFLAC_ASSERT(offset >= 0); /* <-- Never seek backwards. */ + + /* Seeking is always forward which makes things a lot simpler. */ + if (origin == drflac_seek_origin_start) { + if (!drflac_oggbs__seek_physical(oggbs, (int)oggbs->firstBytePos, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_fail_on_crc_mismatch)) { + return DRFLAC_FALSE; + } + + return drflac__on_seek_ogg(pUserData, offset, drflac_seek_origin_current); + } + + DRFLAC_ASSERT(origin == drflac_seek_origin_current); + + while (bytesSeeked < offset) { + int bytesRemainingToSeek = offset - bytesSeeked; + DRFLAC_ASSERT(bytesRemainingToSeek >= 0); + + if (oggbs->bytesRemainingInPage >= (size_t)bytesRemainingToSeek) { + bytesSeeked += bytesRemainingToSeek; + (void)bytesSeeked; /* <-- Silence a dead store warning emitted by Clang Static Analyzer. */ + oggbs->bytesRemainingInPage -= bytesRemainingToSeek; + break; + } + + /* If we get here it means some of the requested data is contained in the next pages. */ + if (oggbs->bytesRemainingInPage > 0) { + bytesSeeked += (int)oggbs->bytesRemainingInPage; + oggbs->bytesRemainingInPage = 0; + } + + DRFLAC_ASSERT(bytesRemainingToSeek > 0); + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_fail_on_crc_mismatch)) { + /* Failed to go to the next page. We either hit the end of the stream or had a CRC mismatch. */ + return DRFLAC_FALSE; + } + } + + return DRFLAC_TRUE; +} + + +static drflac_bool32 drflac_ogg__seek_to_pcm_frame(drflac* pFlac, drflac_uint64 pcmFrameIndex) +{ + drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; + drflac_uint64 originalBytePos; + drflac_uint64 runningGranulePosition; + drflac_uint64 runningFrameBytePos; + drflac_uint64 runningPCMFrameCount; + + DRFLAC_ASSERT(oggbs != NULL); + + originalBytePos = oggbs->currentBytePos; /* For recovery. Points to the OggS identifier. */ + + /* First seek to the first frame. */ + if (!drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes)) { + return DRFLAC_FALSE; + } + oggbs->bytesRemainingInPage = 0; + + runningGranulePosition = 0; + for (;;) { + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) { + drflac_oggbs__seek_physical(oggbs, originalBytePos, drflac_seek_origin_start); + return DRFLAC_FALSE; /* Never did find that sample... */ + } + + runningFrameBytePos = oggbs->currentBytePos - drflac_ogg__get_page_header_size(&oggbs->currentPageHeader) - oggbs->pageDataSize; + if (oggbs->currentPageHeader.granulePosition >= pcmFrameIndex) { + break; /* The sample is somewhere in the previous page. */ + } + + /* + At this point we know the sample is not in the previous page. It could possibly be in this page. For simplicity we + disregard any pages that do not begin a fresh packet. + */ + if ((oggbs->currentPageHeader.headerType & 0x01) == 0) { /* <-- Is it a fresh page? */ + if (oggbs->currentPageHeader.segmentTable[0] >= 2) { + drflac_uint8 firstBytesInPage[2]; + firstBytesInPage[0] = oggbs->pageData[0]; + firstBytesInPage[1] = oggbs->pageData[1]; + + if ((firstBytesInPage[0] == 0xFF) && (firstBytesInPage[1] & 0xFC) == 0xF8) { /* <-- Does the page begin with a frame's sync code? */ + runningGranulePosition = oggbs->currentPageHeader.granulePosition; + } + + continue; + } + } + } + + /* + We found the page that that is closest to the sample, so now we need to find it. The first thing to do is seek to the + start of that page. In the loop above we checked that it was a fresh page which means this page is also the start of + a new frame. This property means that after we've seeked to the page we can immediately start looping over frames until + we find the one containing the target sample. + */ + if (!drflac_oggbs__seek_physical(oggbs, runningFrameBytePos, drflac_seek_origin_start)) { + return DRFLAC_FALSE; + } + if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) { + return DRFLAC_FALSE; + } + + /* + At this point we'll be sitting on the first byte of the frame header of the first frame in the page. We just keep + looping over these frames until we find the one containing the sample we're after. + */ + runningPCMFrameCount = runningGranulePosition; + for (;;) { + /* + There are two ways to find the sample and seek past irrelevant frames: + 1) Use the native FLAC decoder. + 2) Use Ogg's framing system. + + Both of these options have their own pros and cons. Using the native FLAC decoder is slower because it needs to + do a full decode of the frame. Using Ogg's framing system is faster, but more complicated and involves some code + duplication for the decoding of frame headers. + + Another thing to consider is that using the Ogg framing system will perform direct seeking of the physical Ogg + bitstream. This is important to consider because it means we cannot read data from the drflac_bs object using the + standard drflac__*() APIs because that will read in extra data for its own internal caching which in turn breaks + the positioning of the read pointer of the physical Ogg bitstream. Therefore, anything that would normally be read + using the native FLAC decoding APIs, such as drflac__read_next_flac_frame_header(), need to be re-implemented so as to + avoid the use of the drflac_bs object. + + Considering these issues, I have decided to use the slower native FLAC decoding method for the following reasons: + 1) Seeking is already partially accelerated using Ogg's paging system in the code block above. + 2) Seeking in an Ogg encapsulated FLAC stream is probably quite uncommon. + 3) Simplicity. + */ + drflac_uint64 firstPCMFrameInFLACFrame = 0; + drflac_uint64 lastPCMFrameInFLACFrame = 0; + drflac_uint64 pcmFrameCountInThisFrame; + + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { + return DRFLAC_FALSE; + } + + drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &firstPCMFrameInFLACFrame, &lastPCMFrameInFLACFrame); + + pcmFrameCountInThisFrame = (lastPCMFrameInFLACFrame - firstPCMFrameInFLACFrame) + 1; + + /* If we are seeking to the end of the file and we've just hit it, we're done. */ + if (pcmFrameIndex == pFlac->totalPCMFrameCount && (runningPCMFrameCount + pcmFrameCountInThisFrame) == pFlac->totalPCMFrameCount) { + drflac_result result = drflac__decode_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + pFlac->currentPCMFrame = pcmFrameIndex; + pFlac->currentFLACFrame.pcmFramesRemaining = 0; + return DRFLAC_TRUE; + } else { + return DRFLAC_FALSE; + } + } + + if (pcmFrameIndex < (runningPCMFrameCount + pcmFrameCountInThisFrame)) { + /* + The sample should be in this FLAC frame. We need to fully decode it, however if it's an invalid frame (a CRC mismatch), we need to pretend + it never existed and keep iterating. + */ + drflac_result result = drflac__decode_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + /* The frame is valid. We just need to skip over some samples to ensure it's sample-exact. */ + drflac_uint64 pcmFramesToDecode = (size_t)(pcmFrameIndex - runningPCMFrameCount); /* <-- Safe cast because the maximum number of samples in a frame is 65535. */ + if (pcmFramesToDecode == 0) { + return DRFLAC_TRUE; + } + + pFlac->currentPCMFrame = runningPCMFrameCount; + + return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode; /* <-- If this fails, something bad has happened (it should never fail). */ + } else { + if (result == DRFLAC_CRC_MISMATCH) { + continue; /* CRC mismatch. Pretend this frame never existed. */ + } else { + return DRFLAC_FALSE; + } + } + } else { + /* + It's not in this frame. We need to seek past the frame, but check if there was a CRC mismatch. If so, we pretend this + frame never existed and leave the running sample count untouched. + */ + drflac_result result = drflac__seek_to_next_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + runningPCMFrameCount += pcmFrameCountInThisFrame; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + continue; /* CRC mismatch. Pretend this frame never existed. */ + } else { + return DRFLAC_FALSE; + } + } + } + } +} + + + +static drflac_bool32 drflac__init_private__ogg(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_bool32 relaxed) +{ + drflac_ogg_page_header header; + drflac_uint32 crc32 = DRFLAC_OGG_CAPTURE_PATTERN_CRC32; + drflac_uint32 bytesRead = 0; + + /* Pre Condition: The bit stream should be sitting just past the 4-byte OggS capture pattern. */ + (void)relaxed; + + pInit->container = drflac_container_ogg; + pInit->oggFirstBytePos = 0; + + /* + We'll get here if the first 4 bytes of the stream were the OggS capture pattern, however it doesn't necessarily mean the + stream includes FLAC encoded audio. To check for this we need to scan the beginning-of-stream page markers and check if + any match the FLAC specification. Important to keep in mind that the stream may be multiplexed. + */ + if (drflac_ogg__read_page_header_after_capture_pattern(onRead, pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) { + return DRFLAC_FALSE; + } + pInit->runningFilePos += bytesRead; + + for (;;) { + int pageBodySize; + + /* Break if we're past the beginning of stream page. */ + if ((header.headerType & 0x02) == 0) { + return DRFLAC_FALSE; + } + + /* Check if it's a FLAC header. */ + pageBodySize = drflac_ogg__get_page_body_size(&header); + if (pageBodySize == 51) { /* 51 = the lacing value of the FLAC header packet. */ + /* It could be a FLAC page... */ + drflac_uint32 bytesRemainingInPage = pageBodySize; + drflac_uint8 packetType; + + if (onRead(pUserData, &packetType, 1) != 1) { + return DRFLAC_FALSE; + } + + bytesRemainingInPage -= 1; + if (packetType == 0x7F) { + /* Increasingly more likely to be a FLAC page... */ + drflac_uint8 sig[4]; + if (onRead(pUserData, sig, 4) != 4) { + return DRFLAC_FALSE; + } + + bytesRemainingInPage -= 4; + if (sig[0] == 'F' && sig[1] == 'L' && sig[2] == 'A' && sig[3] == 'C') { + /* Almost certainly a FLAC page... */ + drflac_uint8 mappingVersion[2]; + if (onRead(pUserData, mappingVersion, 2) != 2) { + return DRFLAC_FALSE; + } + + if (mappingVersion[0] != 1) { + return DRFLAC_FALSE; /* Only supporting version 1.x of the Ogg mapping. */ + } + + /* + The next 2 bytes are the non-audio packets, not including this one. We don't care about this because we're going to + be handling it in a generic way based on the serial number and packet types. + */ + if (!onSeek(pUserData, 2, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + + /* Expecting the native FLAC signature "fLaC". */ + if (onRead(pUserData, sig, 4) != 4) { + return DRFLAC_FALSE; + } + + if (sig[0] == 'f' && sig[1] == 'L' && sig[2] == 'a' && sig[3] == 'C') { + /* The remaining data in the page should be the STREAMINFO block. */ + drflac_streaminfo streaminfo; + drflac_uint8 isLastBlock; + drflac_uint8 blockType; + drflac_uint32 blockSize; + if (!drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize)) { + return DRFLAC_FALSE; + } + + if (blockType != DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO || blockSize != 34) { + return DRFLAC_FALSE; /* Invalid block type. First block must be the STREAMINFO block. */ + } + + if (drflac__read_streaminfo(onRead, pUserData, &streaminfo)) { + /* Success! */ + pInit->hasStreamInfoBlock = DRFLAC_TRUE; + pInit->sampleRate = streaminfo.sampleRate; + pInit->channels = streaminfo.channels; + pInit->bitsPerSample = streaminfo.bitsPerSample; + pInit->totalPCMFrameCount = streaminfo.totalPCMFrameCount; + pInit->maxBlockSizeInPCMFrames = streaminfo.maxBlockSizeInPCMFrames; + pInit->hasMetadataBlocks = !isLastBlock; + + if (onMeta) { + drflac_metadata metadata; + metadata.type = DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO; + metadata.pRawData = NULL; + metadata.rawDataSize = 0; + metadata.data.streaminfo = streaminfo; + onMeta(pUserDataMD, &metadata); + } + + pInit->runningFilePos += pageBodySize; + pInit->oggFirstBytePos = pInit->runningFilePos - 79; /* Subtracting 79 will place us right on top of the "OggS" identifier of the FLAC bos page. */ + pInit->oggSerial = header.serialNumber; + pInit->oggBosHeader = header; + break; + } else { + /* Failed to read STREAMINFO block. Aww, so close... */ + return DRFLAC_FALSE; + } + } else { + /* Invalid file. */ + return DRFLAC_FALSE; + } + } else { + /* Not a FLAC header. Skip it. */ + if (!onSeek(pUserData, bytesRemainingInPage, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + } + } else { + /* Not a FLAC header. Seek past the entire page and move on to the next. */ + if (!onSeek(pUserData, bytesRemainingInPage, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + } + } else { + if (!onSeek(pUserData, pageBodySize, drflac_seek_origin_current)) { + return DRFLAC_FALSE; + } + } + + pInit->runningFilePos += pageBodySize; + + + /* Read the header of the next page. */ + if (drflac_ogg__read_page_header(onRead, pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) { + return DRFLAC_FALSE; + } + pInit->runningFilePos += bytesRead; + } + + /* + If we get here it means we found a FLAC audio stream. We should be sitting on the first byte of the header of the next page. The next + packets in the FLAC logical stream contain the metadata. The only thing left to do in the initialization phase for Ogg is to create the + Ogg bistream object. + */ + pInit->hasMetadataBlocks = DRFLAC_TRUE; /* <-- Always have at least VORBIS_COMMENT metadata block. */ + return DRFLAC_TRUE; +} +#endif + +static drflac_bool32 drflac__init_private(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, void* pUserDataMD) +{ + drflac_bool32 relaxed; + drflac_uint8 id[4]; + + if (pInit == NULL || onRead == NULL || onSeek == NULL) { + return DRFLAC_FALSE; + } + + DRFLAC_ZERO_MEMORY(pInit, sizeof(*pInit)); + pInit->onRead = onRead; + pInit->onSeek = onSeek; + pInit->onMeta = onMeta; + pInit->container = container; + pInit->pUserData = pUserData; + pInit->pUserDataMD = pUserDataMD; + + pInit->bs.onRead = onRead; + pInit->bs.onSeek = onSeek; + pInit->bs.pUserData = pUserData; + drflac__reset_cache(&pInit->bs); + + + /* If the container is explicitly defined then we can try opening in relaxed mode. */ + relaxed = container != drflac_container_unknown; + + /* Skip over any ID3 tags. */ + for (;;) { + if (onRead(pUserData, id, 4) != 4) { + return DRFLAC_FALSE; /* Ran out of data. */ + } + pInit->runningFilePos += 4; + + if (id[0] == 'I' && id[1] == 'D' && id[2] == '3') { + drflac_uint8 header[6]; + drflac_uint8 flags; + drflac_uint32 headerSize; + + if (onRead(pUserData, header, 6) != 6) { + return DRFLAC_FALSE; /* Ran out of data. */ + } + pInit->runningFilePos += 6; + + flags = header[1]; + + DRFLAC_COPY_MEMORY(&headerSize, header+2, 4); + headerSize = drflac__unsynchsafe_32(drflac__be2host_32(headerSize)); + if (flags & 0x10) { + headerSize += 10; + } + + if (!onSeek(pUserData, headerSize, drflac_seek_origin_current)) { + return DRFLAC_FALSE; /* Failed to seek past the tag. */ + } + pInit->runningFilePos += headerSize; + } else { + break; + } + } + + if (id[0] == 'f' && id[1] == 'L' && id[2] == 'a' && id[3] == 'C') { + return drflac__init_private__native(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); + } +#ifndef DR_FLAC_NO_OGG + if (id[0] == 'O' && id[1] == 'g' && id[2] == 'g' && id[3] == 'S') { + return drflac__init_private__ogg(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); + } +#endif + + /* If we get here it means we likely don't have a header. Try opening in relaxed mode, if applicable. */ + if (relaxed) { + if (container == drflac_container_native) { + return drflac__init_private__native(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); + } +#ifndef DR_FLAC_NO_OGG + if (container == drflac_container_ogg) { + return drflac__init_private__ogg(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed); + } +#endif + } + + /* Unsupported container. */ + return DRFLAC_FALSE; +} + +static void drflac__init_from_info(drflac* pFlac, const drflac_init_info* pInit) +{ + DRFLAC_ASSERT(pFlac != NULL); + DRFLAC_ASSERT(pInit != NULL); + + DRFLAC_ZERO_MEMORY(pFlac, sizeof(*pFlac)); + pFlac->bs = pInit->bs; + pFlac->onMeta = pInit->onMeta; + pFlac->pUserDataMD = pInit->pUserDataMD; + pFlac->maxBlockSizeInPCMFrames = pInit->maxBlockSizeInPCMFrames; + pFlac->sampleRate = pInit->sampleRate; + pFlac->channels = (drflac_uint8)pInit->channels; + pFlac->bitsPerSample = (drflac_uint8)pInit->bitsPerSample; + pFlac->totalPCMFrameCount = pInit->totalPCMFrameCount; + pFlac->container = pInit->container; +} + + +static drflac* drflac_open_with_metadata_private(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, void* pUserDataMD, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac_init_info init; + drflac_uint32 allocationSize; + drflac_uint32 wholeSIMDVectorCountPerChannel; + drflac_uint32 decodedSamplesAllocationSize; +#ifndef DR_FLAC_NO_OGG + drflac_oggbs* pOggbs = NULL; +#endif + drflac_uint64 firstFramePos; + drflac_uint64 seektablePos; + drflac_uint32 seekpointCount; + drflac_allocation_callbacks allocationCallbacks; + drflac* pFlac; + + /* CPU support first. */ + drflac__init_cpu_caps(); + + if (!drflac__init_private(&init, onRead, onSeek, onMeta, container, pUserData, pUserDataMD)) { + return NULL; + } + + if (pAllocationCallbacks != NULL) { + allocationCallbacks = *pAllocationCallbacks; + if (allocationCallbacks.onFree == NULL || (allocationCallbacks.onMalloc == NULL && allocationCallbacks.onRealloc == NULL)) { + return NULL; /* Invalid allocation callbacks. */ + } + } else { + allocationCallbacks.pUserData = NULL; + allocationCallbacks.onMalloc = drflac__malloc_default; + allocationCallbacks.onRealloc = drflac__realloc_default; + allocationCallbacks.onFree = drflac__free_default; + } + + + /* + The size of the allocation for the drflac object needs to be large enough to fit the following: + 1) The main members of the drflac structure + 2) A block of memory large enough to store the decoded samples of the largest frame in the stream + 3) If the container is Ogg, a drflac_oggbs object + + The complicated part of the allocation is making sure there's enough room the decoded samples, taking into consideration + the different SIMD instruction sets. + */ + allocationSize = sizeof(drflac); + + /* + The allocation size for decoded frames depends on the number of 32-bit integers that fit inside the largest SIMD vector + we are supporting. + */ + if ((init.maxBlockSizeInPCMFrames % (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))) == 0) { + wholeSIMDVectorCountPerChannel = (init.maxBlockSizeInPCMFrames / (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))); + } else { + wholeSIMDVectorCountPerChannel = (init.maxBlockSizeInPCMFrames / (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))) + 1; + } + + decodedSamplesAllocationSize = wholeSIMDVectorCountPerChannel * DRFLAC_MAX_SIMD_VECTOR_SIZE * init.channels; + + allocationSize += decodedSamplesAllocationSize; + allocationSize += DRFLAC_MAX_SIMD_VECTOR_SIZE; /* Allocate extra bytes to ensure we have enough for alignment. */ + +#ifndef DR_FLAC_NO_OGG + /* There's additional data required for Ogg streams. */ + if (init.container == drflac_container_ogg) { + allocationSize += sizeof(drflac_oggbs); + + pOggbs = (drflac_oggbs*)drflac__malloc_from_callbacks(sizeof(*pOggbs), &allocationCallbacks); + if (pOggbs == NULL) { + return NULL; /*DRFLAC_OUT_OF_MEMORY;*/ + } + + DRFLAC_ZERO_MEMORY(pOggbs, sizeof(*pOggbs)); + pOggbs->onRead = onRead; + pOggbs->onSeek = onSeek; + pOggbs->pUserData = pUserData; + pOggbs->currentBytePos = init.oggFirstBytePos; + pOggbs->firstBytePos = init.oggFirstBytePos; + pOggbs->serialNumber = init.oggSerial; + pOggbs->bosPageHeader = init.oggBosHeader; + pOggbs->bytesRemainingInPage = 0; + } +#endif + + /* + This part is a bit awkward. We need to load the seektable so that it can be referenced in-memory, but I want the drflac object to + consist of only a single heap allocation. To this, the size of the seek table needs to be known, which we determine when reading + and decoding the metadata. + */ + firstFramePos = 42; /* <-- We know we are at byte 42 at this point. */ + seektablePos = 0; + seekpointCount = 0; + if (init.hasMetadataBlocks) { + drflac_read_proc onReadOverride = onRead; + drflac_seek_proc onSeekOverride = onSeek; + void* pUserDataOverride = pUserData; + +#ifndef DR_FLAC_NO_OGG + if (init.container == drflac_container_ogg) { + onReadOverride = drflac__on_read_ogg; + onSeekOverride = drflac__on_seek_ogg; + pUserDataOverride = (void*)pOggbs; + } +#endif + + if (!drflac__read_and_decode_metadata(onReadOverride, onSeekOverride, onMeta, pUserDataOverride, pUserDataMD, &firstFramePos, &seektablePos, &seekpointCount, &allocationCallbacks)) { + #ifndef DR_FLAC_NO_OGG + drflac__free_from_callbacks(pOggbs, &allocationCallbacks); + #endif + return NULL; + } + + allocationSize += seekpointCount * sizeof(drflac_seekpoint); + } + + + pFlac = (drflac*)drflac__malloc_from_callbacks(allocationSize, &allocationCallbacks); + if (pFlac == NULL) { + #ifndef DR_FLAC_NO_OGG + drflac__free_from_callbacks(pOggbs, &allocationCallbacks); + #endif + return NULL; + } + + drflac__init_from_info(pFlac, &init); + pFlac->allocationCallbacks = allocationCallbacks; + pFlac->pDecodedSamples = (drflac_int32*)drflac_align((size_t)pFlac->pExtraData, DRFLAC_MAX_SIMD_VECTOR_SIZE); + +#ifndef DR_FLAC_NO_OGG + if (init.container == drflac_container_ogg) { + drflac_oggbs* pInternalOggbs = (drflac_oggbs*)((drflac_uint8*)pFlac->pDecodedSamples + decodedSamplesAllocationSize + (seekpointCount * sizeof(drflac_seekpoint))); + DRFLAC_COPY_MEMORY(pInternalOggbs, pOggbs, sizeof(*pOggbs)); + + /* At this point the pOggbs object has been handed over to pInternalOggbs and can be freed. */ + drflac__free_from_callbacks(pOggbs, &allocationCallbacks); + pOggbs = NULL; + + /* The Ogg bistream needs to be layered on top of the original bitstream. */ + pFlac->bs.onRead = drflac__on_read_ogg; + pFlac->bs.onSeek = drflac__on_seek_ogg; + pFlac->bs.pUserData = (void*)pInternalOggbs; + pFlac->_oggbs = (void*)pInternalOggbs; + } +#endif + + pFlac->firstFLACFramePosInBytes = firstFramePos; + + /* NOTE: Seektables are not currently compatible with Ogg encapsulation (Ogg has its own accelerated seeking system). I may change this later, so I'm leaving this here for now. */ +#ifndef DR_FLAC_NO_OGG + if (init.container == drflac_container_ogg) + { + pFlac->pSeekpoints = NULL; + pFlac->seekpointCount = 0; + } + else +#endif + { + /* If we have a seektable we need to load it now, making sure we move back to where we were previously. */ + if (seektablePos != 0) { + pFlac->seekpointCount = seekpointCount; + pFlac->pSeekpoints = (drflac_seekpoint*)((drflac_uint8*)pFlac->pDecodedSamples + decodedSamplesAllocationSize); + + DRFLAC_ASSERT(pFlac->bs.onSeek != NULL); + DRFLAC_ASSERT(pFlac->bs.onRead != NULL); + + /* Seek to the seektable, then just read directly into our seektable buffer. */ + if (pFlac->bs.onSeek(pFlac->bs.pUserData, (int)seektablePos, drflac_seek_origin_start)) { + drflac_uint32 iSeekpoint; + + for (iSeekpoint = 0; iSeekpoint < seekpointCount; iSeekpoint += 1) { + if (pFlac->bs.onRead(pFlac->bs.pUserData, pFlac->pSeekpoints + iSeekpoint, DRFLAC_SEEKPOINT_SIZE_IN_BYTES) == DRFLAC_SEEKPOINT_SIZE_IN_BYTES) { + /* Endian swap. */ + pFlac->pSeekpoints[iSeekpoint].firstPCMFrame = drflac__be2host_64(pFlac->pSeekpoints[iSeekpoint].firstPCMFrame); + pFlac->pSeekpoints[iSeekpoint].flacFrameOffset = drflac__be2host_64(pFlac->pSeekpoints[iSeekpoint].flacFrameOffset); + pFlac->pSeekpoints[iSeekpoint].pcmFrameCount = drflac__be2host_16(pFlac->pSeekpoints[iSeekpoint].pcmFrameCount); + } else { + /* Failed to read the seektable. Pretend we don't have one. */ + pFlac->pSeekpoints = NULL; + pFlac->seekpointCount = 0; + break; + } + } + + /* We need to seek back to where we were. If this fails it's a critical error. */ + if (!pFlac->bs.onSeek(pFlac->bs.pUserData, (int)pFlac->firstFLACFramePosInBytes, drflac_seek_origin_start)) { + drflac__free_from_callbacks(pFlac, &allocationCallbacks); + return NULL; + } + } else { + /* Failed to seek to the seektable. Ominous sign, but for now we can just pretend we don't have one. */ + pFlac->pSeekpoints = NULL; + pFlac->seekpointCount = 0; + } + } + } + + + /* + If we get here, but don't have a STREAMINFO block, it means we've opened the stream in relaxed mode and need to decode + the first frame. + */ + if (!init.hasStreamInfoBlock) { + pFlac->currentFLACFrame.header = init.firstFrameHeader; + for (;;) { + drflac_result result = drflac__decode_flac_frame(pFlac); + if (result == DRFLAC_SUCCESS) { + break; + } else { + if (result == DRFLAC_CRC_MISMATCH) { + if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) { + drflac__free_from_callbacks(pFlac, &allocationCallbacks); + return NULL; + } + continue; + } else { + drflac__free_from_callbacks(pFlac, &allocationCallbacks); + return NULL; + } + } + } + } + + return pFlac; +} + + + +#ifndef DR_FLAC_NO_STDIO +#include +#ifndef DR_FLAC_NO_WCHAR +#include /* For wcslen(), wcsrtombs() */ +#endif + +/* drflac_result_from_errno() is only used for fopen() and wfopen() so putting it inside DR_WAV_NO_STDIO for now. If something else needs this later we can move it out. */ +#include +static drflac_result drflac_result_from_errno(int e) +{ + switch (e) + { + case 0: return DRFLAC_SUCCESS; + #ifdef EPERM + case EPERM: return DRFLAC_INVALID_OPERATION; + #endif + #ifdef ENOENT + case ENOENT: return DRFLAC_DOES_NOT_EXIST; + #endif + #ifdef ESRCH + case ESRCH: return DRFLAC_DOES_NOT_EXIST; + #endif + #ifdef EINTR + case EINTR: return DRFLAC_INTERRUPT; + #endif + #ifdef EIO + case EIO: return DRFLAC_IO_ERROR; + #endif + #ifdef ENXIO + case ENXIO: return DRFLAC_DOES_NOT_EXIST; + #endif + #ifdef E2BIG + case E2BIG: return DRFLAC_INVALID_ARGS; + #endif + #ifdef ENOEXEC + case ENOEXEC: return DRFLAC_INVALID_FILE; + #endif + #ifdef EBADF + case EBADF: return DRFLAC_INVALID_FILE; + #endif + #ifdef ECHILD + case ECHILD: return DRFLAC_ERROR; + #endif + #ifdef EAGAIN + case EAGAIN: return DRFLAC_UNAVAILABLE; + #endif + #ifdef ENOMEM + case ENOMEM: return DRFLAC_OUT_OF_MEMORY; + #endif + #ifdef EACCES + case EACCES: return DRFLAC_ACCESS_DENIED; + #endif + #ifdef EFAULT + case EFAULT: return DRFLAC_BAD_ADDRESS; + #endif + #ifdef ENOTBLK + case ENOTBLK: return DRFLAC_ERROR; + #endif + #ifdef EBUSY + case EBUSY: return DRFLAC_BUSY; + #endif + #ifdef EEXIST + case EEXIST: return DRFLAC_ALREADY_EXISTS; + #endif + #ifdef EXDEV + case EXDEV: return DRFLAC_ERROR; + #endif + #ifdef ENODEV + case ENODEV: return DRFLAC_DOES_NOT_EXIST; + #endif + #ifdef ENOTDIR + case ENOTDIR: return DRFLAC_NOT_DIRECTORY; + #endif + #ifdef EISDIR + case EISDIR: return DRFLAC_IS_DIRECTORY; + #endif + #ifdef EINVAL + case EINVAL: return DRFLAC_INVALID_ARGS; + #endif + #ifdef ENFILE + case ENFILE: return DRFLAC_TOO_MANY_OPEN_FILES; + #endif + #ifdef EMFILE + case EMFILE: return DRFLAC_TOO_MANY_OPEN_FILES; + #endif + #ifdef ENOTTY + case ENOTTY: return DRFLAC_INVALID_OPERATION; + #endif + #ifdef ETXTBSY + case ETXTBSY: return DRFLAC_BUSY; + #endif + #ifdef EFBIG + case EFBIG: return DRFLAC_TOO_BIG; + #endif + #ifdef ENOSPC + case ENOSPC: return DRFLAC_NO_SPACE; + #endif + #ifdef ESPIPE + case ESPIPE: return DRFLAC_BAD_SEEK; + #endif + #ifdef EROFS + case EROFS: return DRFLAC_ACCESS_DENIED; + #endif + #ifdef EMLINK + case EMLINK: return DRFLAC_TOO_MANY_LINKS; + #endif + #ifdef EPIPE + case EPIPE: return DRFLAC_BAD_PIPE; + #endif + #ifdef EDOM + case EDOM: return DRFLAC_OUT_OF_RANGE; + #endif + #ifdef ERANGE + case ERANGE: return DRFLAC_OUT_OF_RANGE; + #endif + #ifdef EDEADLK + case EDEADLK: return DRFLAC_DEADLOCK; + #endif + #ifdef ENAMETOOLONG + case ENAMETOOLONG: return DRFLAC_PATH_TOO_LONG; + #endif + #ifdef ENOLCK + case ENOLCK: return DRFLAC_ERROR; + #endif + #ifdef ENOSYS + case ENOSYS: return DRFLAC_NOT_IMPLEMENTED; + #endif + #ifdef ENOTEMPTY + case ENOTEMPTY: return DRFLAC_DIRECTORY_NOT_EMPTY; + #endif + #ifdef ELOOP + case ELOOP: return DRFLAC_TOO_MANY_LINKS; + #endif + #ifdef ENOMSG + case ENOMSG: return DRFLAC_NO_MESSAGE; + #endif + #ifdef EIDRM + case EIDRM: return DRFLAC_ERROR; + #endif + #ifdef ECHRNG + case ECHRNG: return DRFLAC_ERROR; + #endif + #ifdef EL2NSYNC + case EL2NSYNC: return DRFLAC_ERROR; + #endif + #ifdef EL3HLT + case EL3HLT: return DRFLAC_ERROR; + #endif + #ifdef EL3RST + case EL3RST: return DRFLAC_ERROR; + #endif + #ifdef ELNRNG + case ELNRNG: return DRFLAC_OUT_OF_RANGE; + #endif + #ifdef EUNATCH + case EUNATCH: return DRFLAC_ERROR; + #endif + #ifdef ENOCSI + case ENOCSI: return DRFLAC_ERROR; + #endif + #ifdef EL2HLT + case EL2HLT: return DRFLAC_ERROR; + #endif + #ifdef EBADE + case EBADE: return DRFLAC_ERROR; + #endif + #ifdef EBADR + case EBADR: return DRFLAC_ERROR; + #endif + #ifdef EXFULL + case EXFULL: return DRFLAC_ERROR; + #endif + #ifdef ENOANO + case ENOANO: return DRFLAC_ERROR; + #endif + #ifdef EBADRQC + case EBADRQC: return DRFLAC_ERROR; + #endif + #ifdef EBADSLT + case EBADSLT: return DRFLAC_ERROR; + #endif + #ifdef EBFONT + case EBFONT: return DRFLAC_INVALID_FILE; + #endif + #ifdef ENOSTR + case ENOSTR: return DRFLAC_ERROR; + #endif + #ifdef ENODATA + case ENODATA: return DRFLAC_NO_DATA_AVAILABLE; + #endif + #ifdef ETIME + case ETIME: return DRFLAC_TIMEOUT; + #endif + #ifdef ENOSR + case ENOSR: return DRFLAC_NO_DATA_AVAILABLE; + #endif + #ifdef ENONET + case ENONET: return DRFLAC_NO_NETWORK; + #endif + #ifdef ENOPKG + case ENOPKG: return DRFLAC_ERROR; + #endif + #ifdef EREMOTE + case EREMOTE: return DRFLAC_ERROR; + #endif + #ifdef ENOLINK + case ENOLINK: return DRFLAC_ERROR; + #endif + #ifdef EADV + case EADV: return DRFLAC_ERROR; + #endif + #ifdef ESRMNT + case ESRMNT: return DRFLAC_ERROR; + #endif + #ifdef ECOMM + case ECOMM: return DRFLAC_ERROR; + #endif + #ifdef EPROTO + case EPROTO: return DRFLAC_ERROR; + #endif + #ifdef EMULTIHOP + case EMULTIHOP: return DRFLAC_ERROR; + #endif + #ifdef EDOTDOT + case EDOTDOT: return DRFLAC_ERROR; + #endif + #ifdef EBADMSG + case EBADMSG: return DRFLAC_BAD_MESSAGE; + #endif + #ifdef EOVERFLOW + case EOVERFLOW: return DRFLAC_TOO_BIG; + #endif + #ifdef ENOTUNIQ + case ENOTUNIQ: return DRFLAC_NOT_UNIQUE; + #endif + #ifdef EBADFD + case EBADFD: return DRFLAC_ERROR; + #endif + #ifdef EREMCHG + case EREMCHG: return DRFLAC_ERROR; + #endif + #ifdef ELIBACC + case ELIBACC: return DRFLAC_ACCESS_DENIED; + #endif + #ifdef ELIBBAD + case ELIBBAD: return DRFLAC_INVALID_FILE; + #endif + #ifdef ELIBSCN + case ELIBSCN: return DRFLAC_INVALID_FILE; + #endif + #ifdef ELIBMAX + case ELIBMAX: return DRFLAC_ERROR; + #endif + #ifdef ELIBEXEC + case ELIBEXEC: return DRFLAC_ERROR; + #endif + #ifdef EILSEQ + case EILSEQ: return DRFLAC_INVALID_DATA; + #endif + #ifdef ERESTART + case ERESTART: return DRFLAC_ERROR; + #endif + #ifdef ESTRPIPE + case ESTRPIPE: return DRFLAC_ERROR; + #endif + #ifdef EUSERS + case EUSERS: return DRFLAC_ERROR; + #endif + #ifdef ENOTSOCK + case ENOTSOCK: return DRFLAC_NOT_SOCKET; + #endif + #ifdef EDESTADDRREQ + case EDESTADDRREQ: return DRFLAC_NO_ADDRESS; + #endif + #ifdef EMSGSIZE + case EMSGSIZE: return DRFLAC_TOO_BIG; + #endif + #ifdef EPROTOTYPE + case EPROTOTYPE: return DRFLAC_BAD_PROTOCOL; + #endif + #ifdef ENOPROTOOPT + case ENOPROTOOPT: return DRFLAC_PROTOCOL_UNAVAILABLE; + #endif + #ifdef EPROTONOSUPPORT + case EPROTONOSUPPORT: return DRFLAC_PROTOCOL_NOT_SUPPORTED; + #endif + #ifdef ESOCKTNOSUPPORT + case ESOCKTNOSUPPORT: return DRFLAC_SOCKET_NOT_SUPPORTED; + #endif + #ifdef EOPNOTSUPP + case EOPNOTSUPP: return DRFLAC_INVALID_OPERATION; + #endif + #ifdef EPFNOSUPPORT + case EPFNOSUPPORT: return DRFLAC_PROTOCOL_FAMILY_NOT_SUPPORTED; + #endif + #ifdef EAFNOSUPPORT + case EAFNOSUPPORT: return DRFLAC_ADDRESS_FAMILY_NOT_SUPPORTED; + #endif + #ifdef EADDRINUSE + case EADDRINUSE: return DRFLAC_ALREADY_IN_USE; + #endif + #ifdef EADDRNOTAVAIL + case EADDRNOTAVAIL: return DRFLAC_ERROR; + #endif + #ifdef ENETDOWN + case ENETDOWN: return DRFLAC_NO_NETWORK; + #endif + #ifdef ENETUNREACH + case ENETUNREACH: return DRFLAC_NO_NETWORK; + #endif + #ifdef ENETRESET + case ENETRESET: return DRFLAC_NO_NETWORK; + #endif + #ifdef ECONNABORTED + case ECONNABORTED: return DRFLAC_NO_NETWORK; + #endif + #ifdef ECONNRESET + case ECONNRESET: return DRFLAC_CONNECTION_RESET; + #endif + #ifdef ENOBUFS + case ENOBUFS: return DRFLAC_NO_SPACE; + #endif + #ifdef EISCONN + case EISCONN: return DRFLAC_ALREADY_CONNECTED; + #endif + #ifdef ENOTCONN + case ENOTCONN: return DRFLAC_NOT_CONNECTED; + #endif + #ifdef ESHUTDOWN + case ESHUTDOWN: return DRFLAC_ERROR; + #endif + #ifdef ETOOMANYREFS + case ETOOMANYREFS: return DRFLAC_ERROR; + #endif + #ifdef ETIMEDOUT + case ETIMEDOUT: return DRFLAC_TIMEOUT; + #endif + #ifdef ECONNREFUSED + case ECONNREFUSED: return DRFLAC_CONNECTION_REFUSED; + #endif + #ifdef EHOSTDOWN + case EHOSTDOWN: return DRFLAC_NO_HOST; + #endif + #ifdef EHOSTUNREACH + case EHOSTUNREACH: return DRFLAC_NO_HOST; + #endif + #ifdef EALREADY + case EALREADY: return DRFLAC_IN_PROGRESS; + #endif + #ifdef EINPROGRESS + case EINPROGRESS: return DRFLAC_IN_PROGRESS; + #endif + #ifdef ESTALE + case ESTALE: return DRFLAC_INVALID_FILE; + #endif + #ifdef EUCLEAN + case EUCLEAN: return DRFLAC_ERROR; + #endif + #ifdef ENOTNAM + case ENOTNAM: return DRFLAC_ERROR; + #endif + #ifdef ENAVAIL + case ENAVAIL: return DRFLAC_ERROR; + #endif + #ifdef EISNAM + case EISNAM: return DRFLAC_ERROR; + #endif + #ifdef EREMOTEIO + case EREMOTEIO: return DRFLAC_IO_ERROR; + #endif + #ifdef EDQUOT + case EDQUOT: return DRFLAC_NO_SPACE; + #endif + #ifdef ENOMEDIUM + case ENOMEDIUM: return DRFLAC_DOES_NOT_EXIST; + #endif + #ifdef EMEDIUMTYPE + case EMEDIUMTYPE: return DRFLAC_ERROR; + #endif + #ifdef ECANCELED + case ECANCELED: return DRFLAC_CANCELLED; + #endif + #ifdef ENOKEY + case ENOKEY: return DRFLAC_ERROR; + #endif + #ifdef EKEYEXPIRED + case EKEYEXPIRED: return DRFLAC_ERROR; + #endif + #ifdef EKEYREVOKED + case EKEYREVOKED: return DRFLAC_ERROR; + #endif + #ifdef EKEYREJECTED + case EKEYREJECTED: return DRFLAC_ERROR; + #endif + #ifdef EOWNERDEAD + case EOWNERDEAD: return DRFLAC_ERROR; + #endif + #ifdef ENOTRECOVERABLE + case ENOTRECOVERABLE: return DRFLAC_ERROR; + #endif + #ifdef ERFKILL + case ERFKILL: return DRFLAC_ERROR; + #endif + #ifdef EHWPOISON + case EHWPOISON: return DRFLAC_ERROR; + #endif + default: return DRFLAC_ERROR; + } +} + +static drflac_result drflac_fopen(FILE** ppFile, const char* pFilePath, const char* pOpenMode) +{ +#if defined(_MSC_VER) && _MSC_VER >= 1400 + errno_t err; +#endif + + if (ppFile != NULL) { + *ppFile = NULL; /* Safety. */ + } + + if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) { + return DRFLAC_INVALID_ARGS; + } + +#if defined(_MSC_VER) && _MSC_VER >= 1400 + err = fopen_s(ppFile, pFilePath, pOpenMode); + if (err != 0) { + return drflac_result_from_errno(err); + } +#else +#if defined(_WIN32) || defined(__APPLE__) + *ppFile = fopen(pFilePath, pOpenMode); +#else + #if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64 && defined(_LARGEFILE64_SOURCE) + *ppFile = fopen64(pFilePath, pOpenMode); + #else + *ppFile = fopen(pFilePath, pOpenMode); + #endif +#endif + if (*ppFile == NULL) { + drflac_result result = drflac_result_from_errno(errno); + if (result == DRFLAC_SUCCESS) { + result = DRFLAC_ERROR; /* Just a safety check to make sure we never ever return success when pFile == NULL. */ + } + + return result; + } +#endif + + return DRFLAC_SUCCESS; +} + +/* +_wfopen() isn't always available in all compilation environments. + + * Windows only. + * MSVC seems to support it universally as far back as VC6 from what I can tell (haven't checked further back). + * MinGW-64 (both 32- and 64-bit) seems to support it. + * MinGW wraps it in !defined(__STRICT_ANSI__). + * OpenWatcom wraps it in !defined(_NO_EXT_KEYS). + +This can be reviewed as compatibility issues arise. The preference is to use _wfopen_s() and _wfopen() as opposed to the wcsrtombs() +fallback, so if you notice your compiler not detecting this properly I'm happy to look at adding support. +*/ +#if defined(_WIN32) + #if defined(_MSC_VER) || defined(__MINGW64__) || (!defined(__STRICT_ANSI__) && !defined(_NO_EXT_KEYS)) + #define DRFLAC_HAS_WFOPEN + #endif +#endif + +#ifndef DR_FLAC_NO_WCHAR +static drflac_result drflac_wfopen(FILE** ppFile, const wchar_t* pFilePath, const wchar_t* pOpenMode, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + if (ppFile != NULL) { + *ppFile = NULL; /* Safety. */ + } + + if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) { + return DRFLAC_INVALID_ARGS; + } + +#if defined(DRFLAC_HAS_WFOPEN) + { + /* Use _wfopen() on Windows. */ + #if defined(_MSC_VER) && _MSC_VER >= 1400 + errno_t err = _wfopen_s(ppFile, pFilePath, pOpenMode); + if (err != 0) { + return drflac_result_from_errno(err); + } + #else + *ppFile = _wfopen(pFilePath, pOpenMode); + if (*ppFile == NULL) { + return drflac_result_from_errno(errno); + } + #endif + (void)pAllocationCallbacks; + } +#else + /* + Use fopen() on anything other than Windows. Requires a conversion. This is annoying because + fopen() is locale specific. The only real way I can think of to do this is with wcsrtombs(). Note + that wcstombs() is apparently not thread-safe because it uses a static global mbstate_t object for + maintaining state. I've checked this with -std=c89 and it works, but if somebody get's a compiler + error I'll look into improving compatibility. + */ + + /* + Some compilers don't support wchar_t or wcsrtombs() which we're using below. In this case we just + need to abort with an error. If you encounter a compiler lacking such support, add it to this list + and submit a bug report and it'll be added to the library upstream. + */ + #if defined(__DJGPP__) + { + /* Nothing to do here. This will fall through to the error check below. */ + } + #else + { + mbstate_t mbs; + size_t lenMB; + const wchar_t* pFilePathTemp = pFilePath; + char* pFilePathMB = NULL; + char pOpenModeMB[32] = {0}; + + /* Get the length first. */ + DRFLAC_ZERO_OBJECT(&mbs); + lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs); + if (lenMB == (size_t)-1) { + return drflac_result_from_errno(errno); + } + + pFilePathMB = (char*)drflac__malloc_from_callbacks(lenMB + 1, pAllocationCallbacks); + if (pFilePathMB == NULL) { + return DRFLAC_OUT_OF_MEMORY; + } + + pFilePathTemp = pFilePath; + DRFLAC_ZERO_OBJECT(&mbs); + wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs); + + /* The open mode should always consist of ASCII characters so we should be able to do a trivial conversion. */ + { + size_t i = 0; + for (;;) { + if (pOpenMode[i] == 0) { + pOpenModeMB[i] = '\0'; + break; + } + + pOpenModeMB[i] = (char)pOpenMode[i]; + i += 1; + } + } + + *ppFile = fopen(pFilePathMB, pOpenModeMB); + + drflac__free_from_callbacks(pFilePathMB, pAllocationCallbacks); + } + #endif + + if (*ppFile == NULL) { + return DRFLAC_ERROR; + } +#endif + + return DRFLAC_SUCCESS; +} +#endif + +static size_t drflac__on_read_stdio(void* pUserData, void* bufferOut, size_t bytesToRead) +{ + return fread(bufferOut, 1, bytesToRead, (FILE*)pUserData); +} + +static drflac_bool32 drflac__on_seek_stdio(void* pUserData, int offset, drflac_seek_origin origin) +{ + DRFLAC_ASSERT(offset >= 0); /* <-- Never seek backwards. */ + + return fseek((FILE*)pUserData, offset, (origin == drflac_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0; +} + + +DRFLAC_API drflac* drflac_open_file(const char* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + FILE* pFile; + + if (drflac_fopen(&pFile, pFileName, "rb") != DRFLAC_SUCCESS) { + return NULL; + } + + pFlac = drflac_open(drflac__on_read_stdio, drflac__on_seek_stdio, (void*)pFile, pAllocationCallbacks); + if (pFlac == NULL) { + fclose(pFile); + return NULL; + } + + return pFlac; +} + +#ifndef DR_FLAC_NO_WCHAR +DRFLAC_API drflac* drflac_open_file_w(const wchar_t* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + FILE* pFile; + + if (drflac_wfopen(&pFile, pFileName, L"rb", pAllocationCallbacks) != DRFLAC_SUCCESS) { + return NULL; + } + + pFlac = drflac_open(drflac__on_read_stdio, drflac__on_seek_stdio, (void*)pFile, pAllocationCallbacks); + if (pFlac == NULL) { + fclose(pFile); + return NULL; + } + + return pFlac; +} +#endif + +DRFLAC_API drflac* drflac_open_file_with_metadata(const char* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + FILE* pFile; + + if (drflac_fopen(&pFile, pFileName, "rb") != DRFLAC_SUCCESS) { + return NULL; + } + + pFlac = drflac_open_with_metadata_private(drflac__on_read_stdio, drflac__on_seek_stdio, onMeta, drflac_container_unknown, (void*)pFile, pUserData, pAllocationCallbacks); + if (pFlac == NULL) { + fclose(pFile); + return pFlac; + } + + return pFlac; +} + +#ifndef DR_FLAC_NO_WCHAR +DRFLAC_API drflac* drflac_open_file_with_metadata_w(const wchar_t* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + FILE* pFile; + + if (drflac_wfopen(&pFile, pFileName, L"rb", pAllocationCallbacks) != DRFLAC_SUCCESS) { + return NULL; + } + + pFlac = drflac_open_with_metadata_private(drflac__on_read_stdio, drflac__on_seek_stdio, onMeta, drflac_container_unknown, (void*)pFile, pUserData, pAllocationCallbacks); + if (pFlac == NULL) { + fclose(pFile); + return pFlac; + } + + return pFlac; +} +#endif +#endif /* DR_FLAC_NO_STDIO */ + +static size_t drflac__on_read_memory(void* pUserData, void* bufferOut, size_t bytesToRead) +{ + drflac__memory_stream* memoryStream = (drflac__memory_stream*)pUserData; + size_t bytesRemaining; + + DRFLAC_ASSERT(memoryStream != NULL); + DRFLAC_ASSERT(memoryStream->dataSize >= memoryStream->currentReadPos); + + bytesRemaining = memoryStream->dataSize - memoryStream->currentReadPos; + if (bytesToRead > bytesRemaining) { + bytesToRead = bytesRemaining; + } + + if (bytesToRead > 0) { + DRFLAC_COPY_MEMORY(bufferOut, memoryStream->data + memoryStream->currentReadPos, bytesToRead); + memoryStream->currentReadPos += bytesToRead; + } + + return bytesToRead; +} + +static drflac_bool32 drflac__on_seek_memory(void* pUserData, int offset, drflac_seek_origin origin) +{ + drflac__memory_stream* memoryStream = (drflac__memory_stream*)pUserData; + + DRFLAC_ASSERT(memoryStream != NULL); + DRFLAC_ASSERT(offset >= 0); /* <-- Never seek backwards. */ + + if (offset > (drflac_int64)memoryStream->dataSize) { + return DRFLAC_FALSE; + } + + if (origin == drflac_seek_origin_current) { + if (memoryStream->currentReadPos + offset <= memoryStream->dataSize) { + memoryStream->currentReadPos += offset; + } else { + return DRFLAC_FALSE; /* Trying to seek too far forward. */ + } + } else { + if ((drflac_uint32)offset <= memoryStream->dataSize) { + memoryStream->currentReadPos = offset; + } else { + return DRFLAC_FALSE; /* Trying to seek too far forward. */ + } + } + + return DRFLAC_TRUE; +} + +DRFLAC_API drflac* drflac_open_memory(const void* pData, size_t dataSize, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac__memory_stream memoryStream; + drflac* pFlac; + + memoryStream.data = (const drflac_uint8*)pData; + memoryStream.dataSize = dataSize; + memoryStream.currentReadPos = 0; + pFlac = drflac_open(drflac__on_read_memory, drflac__on_seek_memory, &memoryStream, pAllocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + + pFlac->memoryStream = memoryStream; + + /* This is an awful hack... */ +#ifndef DR_FLAC_NO_OGG + if (pFlac->container == drflac_container_ogg) + { + drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; + oggbs->pUserData = &pFlac->memoryStream; + } + else +#endif + { + pFlac->bs.pUserData = &pFlac->memoryStream; + } + + return pFlac; +} + +DRFLAC_API drflac* drflac_open_memory_with_metadata(const void* pData, size_t dataSize, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac__memory_stream memoryStream; + drflac* pFlac; + + memoryStream.data = (const drflac_uint8*)pData; + memoryStream.dataSize = dataSize; + memoryStream.currentReadPos = 0; + pFlac = drflac_open_with_metadata_private(drflac__on_read_memory, drflac__on_seek_memory, onMeta, drflac_container_unknown, &memoryStream, pUserData, pAllocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + + pFlac->memoryStream = memoryStream; + + /* This is an awful hack... */ +#ifndef DR_FLAC_NO_OGG + if (pFlac->container == drflac_container_ogg) + { + drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; + oggbs->pUserData = &pFlac->memoryStream; + } + else +#endif + { + pFlac->bs.pUserData = &pFlac->memoryStream; + } + + return pFlac; +} + + + +DRFLAC_API drflac* drflac_open(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + return drflac_open_with_metadata_private(onRead, onSeek, NULL, drflac_container_unknown, pUserData, pUserData, pAllocationCallbacks); +} +DRFLAC_API drflac* drflac_open_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + return drflac_open_with_metadata_private(onRead, onSeek, NULL, container, pUserData, pUserData, pAllocationCallbacks); +} + +DRFLAC_API drflac* drflac_open_with_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + return drflac_open_with_metadata_private(onRead, onSeek, onMeta, drflac_container_unknown, pUserData, pUserData, pAllocationCallbacks); +} +DRFLAC_API drflac* drflac_open_with_metadata_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + return drflac_open_with_metadata_private(onRead, onSeek, onMeta, container, pUserData, pUserData, pAllocationCallbacks); +} + +DRFLAC_API void drflac_close(drflac* pFlac) +{ + if (pFlac == NULL) { + return; + } + +#ifndef DR_FLAC_NO_STDIO + /* + If we opened the file with drflac_open_file() we will want to close the file handle. We can know whether or not drflac_open_file() + was used by looking at the callbacks. + */ + if (pFlac->bs.onRead == drflac__on_read_stdio) { + fclose((FILE*)pFlac->bs.pUserData); + } + +#ifndef DR_FLAC_NO_OGG + /* Need to clean up Ogg streams a bit differently due to the way the bit streaming is chained. */ + if (pFlac->container == drflac_container_ogg) { + drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs; + DRFLAC_ASSERT(pFlac->bs.onRead == drflac__on_read_ogg); + + if (oggbs->onRead == drflac__on_read_stdio) { + fclose((FILE*)oggbs->pUserData); + } + } +#endif +#endif + + drflac__free_from_callbacks(pFlac, &pFlac->allocationCallbacks); +} + + +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + for (i = 0; i < frameCount; ++i) { + drflac_uint32 left = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + drflac_uint32 right = left - side; + + pOutputSamples[i*2+0] = (drflac_int32)left; + pOutputSamples[i*2+1] = (drflac_int32)right; + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 left0 = pInputSamples0U32[i*4+0] << shift0; + drflac_uint32 left1 = pInputSamples0U32[i*4+1] << shift0; + drflac_uint32 left2 = pInputSamples0U32[i*4+2] << shift0; + drflac_uint32 left3 = pInputSamples0U32[i*4+3] << shift0; + + drflac_uint32 side0 = pInputSamples1U32[i*4+0] << shift1; + drflac_uint32 side1 = pInputSamples1U32[i*4+1] << shift1; + drflac_uint32 side2 = pInputSamples1U32[i*4+2] << shift1; + drflac_uint32 side3 = pInputSamples1U32[i*4+3] << shift1; + + drflac_uint32 right0 = left0 - side0; + drflac_uint32 right1 = left1 - side1; + drflac_uint32 right2 = left2 - side2; + drflac_uint32 right3 = left3 - side3; + + pOutputSamples[i*8+0] = (drflac_int32)left0; + pOutputSamples[i*8+1] = (drflac_int32)right0; + pOutputSamples[i*8+2] = (drflac_int32)left1; + pOutputSamples[i*8+3] = (drflac_int32)right1; + pOutputSamples[i*8+4] = (drflac_int32)left2; + pOutputSamples[i*8+5] = (drflac_int32)right2; + pOutputSamples[i*8+6] = (drflac_int32)left3; + pOutputSamples[i*8+7] = (drflac_int32)right3; + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 left = pInputSamples0U32[i] << shift0; + drflac_uint32 side = pInputSamples1U32[i] << shift1; + drflac_uint32 right = left - side; + + pOutputSamples[i*2+0] = (drflac_int32)left; + pOutputSamples[i*2+1] = (drflac_int32)right; + } +} + +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + + for (i = 0; i < frameCount4; ++i) { + __m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); + __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); + __m128i right = _mm_sub_epi32(left, side); + + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right)); + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 left = pInputSamples0U32[i] << shift0; + drflac_uint32 side = pInputSamples1U32[i] << shift1; + drflac_uint32 right = left - side; + + pOutputSamples[i*2+0] = (drflac_int32)left; + pOutputSamples[i*2+1] = (drflac_int32)right; + } +} +#endif + +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + int32x4_t shift0_4; + int32x4_t shift1_4; + + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + + shift0_4 = vdupq_n_s32(shift0); + shift1_4 = vdupq_n_s32(shift1); + + for (i = 0; i < frameCount4; ++i) { + uint32x4_t left; + uint32x4_t side; + uint32x4_t right; + + left = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4); + side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4); + right = vsubq_u32(left, side); + + drflac__vst2q_u32((drflac_uint32*)pOutputSamples + i*8, vzipq_u32(left, right)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 left = pInputSamples0U32[i] << shift0; + drflac_uint32 side = pInputSamples1U32[i] << shift1; + drflac_uint32 right = left - side; + + pOutputSamples[i*2+0] = (drflac_int32)left; + pOutputSamples[i*2+1] = (drflac_int32)right; + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s32__decode_left_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s32__decode_left_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { + /* Scalar fallback. */ +#if 0 + drflac_read_pcm_frames_s32__decode_left_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_s32__decode_left_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} + + +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + for (i = 0; i < frameCount; ++i) { + drflac_uint32 side = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + drflac_uint32 right = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + drflac_uint32 left = right + side; + + pOutputSamples[i*2+0] = (drflac_int32)left; + pOutputSamples[i*2+1] = (drflac_int32)right; + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 side0 = pInputSamples0U32[i*4+0] << shift0; + drflac_uint32 side1 = pInputSamples0U32[i*4+1] << shift0; + drflac_uint32 side2 = pInputSamples0U32[i*4+2] << shift0; + drflac_uint32 side3 = pInputSamples0U32[i*4+3] << shift0; + + drflac_uint32 right0 = pInputSamples1U32[i*4+0] << shift1; + drflac_uint32 right1 = pInputSamples1U32[i*4+1] << shift1; + drflac_uint32 right2 = pInputSamples1U32[i*4+2] << shift1; + drflac_uint32 right3 = pInputSamples1U32[i*4+3] << shift1; + + drflac_uint32 left0 = right0 + side0; + drflac_uint32 left1 = right1 + side1; + drflac_uint32 left2 = right2 + side2; + drflac_uint32 left3 = right3 + side3; + + pOutputSamples[i*8+0] = (drflac_int32)left0; + pOutputSamples[i*8+1] = (drflac_int32)right0; + pOutputSamples[i*8+2] = (drflac_int32)left1; + pOutputSamples[i*8+3] = (drflac_int32)right1; + pOutputSamples[i*8+4] = (drflac_int32)left2; + pOutputSamples[i*8+5] = (drflac_int32)right2; + pOutputSamples[i*8+6] = (drflac_int32)left3; + pOutputSamples[i*8+7] = (drflac_int32)right3; + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 side = pInputSamples0U32[i] << shift0; + drflac_uint32 right = pInputSamples1U32[i] << shift1; + drflac_uint32 left = right + side; + + pOutputSamples[i*2+0] = (drflac_int32)left; + pOutputSamples[i*2+1] = (drflac_int32)right; + } +} + +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + + for (i = 0; i < frameCount4; ++i) { + __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); + __m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); + __m128i left = _mm_add_epi32(right, side); + + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right)); + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 side = pInputSamples0U32[i] << shift0; + drflac_uint32 right = pInputSamples1U32[i] << shift1; + drflac_uint32 left = right + side; + + pOutputSamples[i*2+0] = (drflac_int32)left; + pOutputSamples[i*2+1] = (drflac_int32)right; + } +} +#endif + +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + int32x4_t shift0_4; + int32x4_t shift1_4; + + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + + shift0_4 = vdupq_n_s32(shift0); + shift1_4 = vdupq_n_s32(shift1); + + for (i = 0; i < frameCount4; ++i) { + uint32x4_t side; + uint32x4_t right; + uint32x4_t left; + + side = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4); + right = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4); + left = vaddq_u32(right, side); + + drflac__vst2q_u32((drflac_uint32*)pOutputSamples + i*8, vzipq_u32(left, right)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 side = pInputSamples0U32[i] << shift0; + drflac_uint32 right = pInputSamples1U32[i] << shift1; + drflac_uint32 left = right + side; + + pOutputSamples[i*2+0] = (drflac_int32)left; + pOutputSamples[i*2+1] = (drflac_int32)right; + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s32__decode_right_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s32__decode_right_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { + /* Scalar fallback. */ +#if 0 + drflac_read_pcm_frames_s32__decode_right_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_s32__decode_right_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} + + +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + for (drflac_uint64 i = 0; i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid = (mid << 1) | (side & 0x01); + + pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample); + pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample); + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_int32 shift = unusedBitsPerSample; + + if (shift > 0) { + shift -= 1; + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 temp0L; + drflac_uint32 temp1L; + drflac_uint32 temp2L; + drflac_uint32 temp3L; + drflac_uint32 temp0R; + drflac_uint32 temp1R; + drflac_uint32 temp2R; + drflac_uint32 temp3R; + + drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + + drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid0 = (mid0 << 1) | (side0 & 0x01); + mid1 = (mid1 << 1) | (side1 & 0x01); + mid2 = (mid2 << 1) | (side2 & 0x01); + mid3 = (mid3 << 1) | (side3 & 0x01); + + temp0L = (mid0 + side0) << shift; + temp1L = (mid1 + side1) << shift; + temp2L = (mid2 + side2) << shift; + temp3L = (mid3 + side3) << shift; + + temp0R = (mid0 - side0) << shift; + temp1R = (mid1 - side1) << shift; + temp2R = (mid2 - side2) << shift; + temp3R = (mid3 - side3) << shift; + + pOutputSamples[i*8+0] = (drflac_int32)temp0L; + pOutputSamples[i*8+1] = (drflac_int32)temp0R; + pOutputSamples[i*8+2] = (drflac_int32)temp1L; + pOutputSamples[i*8+3] = (drflac_int32)temp1R; + pOutputSamples[i*8+4] = (drflac_int32)temp2L; + pOutputSamples[i*8+5] = (drflac_int32)temp2R; + pOutputSamples[i*8+6] = (drflac_int32)temp3L; + pOutputSamples[i*8+7] = (drflac_int32)temp3R; + } + } else { + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 temp0L; + drflac_uint32 temp1L; + drflac_uint32 temp2L; + drflac_uint32 temp3L; + drflac_uint32 temp0R; + drflac_uint32 temp1R; + drflac_uint32 temp2R; + drflac_uint32 temp3R; + + drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + + drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid0 = (mid0 << 1) | (side0 & 0x01); + mid1 = (mid1 << 1) | (side1 & 0x01); + mid2 = (mid2 << 1) | (side2 & 0x01); + mid3 = (mid3 << 1) | (side3 & 0x01); + + temp0L = (drflac_uint32)((drflac_int32)(mid0 + side0) >> 1); + temp1L = (drflac_uint32)((drflac_int32)(mid1 + side1) >> 1); + temp2L = (drflac_uint32)((drflac_int32)(mid2 + side2) >> 1); + temp3L = (drflac_uint32)((drflac_int32)(mid3 + side3) >> 1); + + temp0R = (drflac_uint32)((drflac_int32)(mid0 - side0) >> 1); + temp1R = (drflac_uint32)((drflac_int32)(mid1 - side1) >> 1); + temp2R = (drflac_uint32)((drflac_int32)(mid2 - side2) >> 1); + temp3R = (drflac_uint32)((drflac_int32)(mid3 - side3) >> 1); + + pOutputSamples[i*8+0] = (drflac_int32)temp0L; + pOutputSamples[i*8+1] = (drflac_int32)temp0R; + pOutputSamples[i*8+2] = (drflac_int32)temp1L; + pOutputSamples[i*8+3] = (drflac_int32)temp1R; + pOutputSamples[i*8+4] = (drflac_int32)temp2L; + pOutputSamples[i*8+5] = (drflac_int32)temp2R; + pOutputSamples[i*8+6] = (drflac_int32)temp3L; + pOutputSamples[i*8+7] = (drflac_int32)temp3R; + } + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid = (mid << 1) | (side & 0x01); + + pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample); + pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample); + } +} + +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_int32 shift = unusedBitsPerSample; + + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + + if (shift == 0) { + for (i = 0; i < frameCount4; ++i) { + __m128i mid; + __m128i side; + __m128i left; + __m128i right; + + mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + + mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01))); + + left = _mm_srai_epi32(_mm_add_epi32(mid, side), 1); + right = _mm_srai_epi32(_mm_sub_epi32(mid, side), 1); + + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right)); + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid = (mid << 1) | (side & 0x01); + + pOutputSamples[i*2+0] = (drflac_int32)(mid + side) >> 1; + pOutputSamples[i*2+1] = (drflac_int32)(mid - side) >> 1; + } + } else { + shift -= 1; + for (i = 0; i < frameCount4; ++i) { + __m128i mid; + __m128i side; + __m128i left; + __m128i right; + + mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + + mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01))); + + left = _mm_slli_epi32(_mm_add_epi32(mid, side), shift); + right = _mm_slli_epi32(_mm_sub_epi32(mid, side), shift); + + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right)); + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid = (mid << 1) | (side & 0x01); + + pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift); + pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift); + } + } +} +#endif + +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_int32 shift = unusedBitsPerSample; + int32x4_t wbpsShift0_4; /* wbps = Wasted Bits Per Sample */ + int32x4_t wbpsShift1_4; /* wbps = Wasted Bits Per Sample */ + uint32x4_t one4; + + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + + wbpsShift0_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + wbpsShift1_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + one4 = vdupq_n_u32(1); + + if (shift == 0) { + for (i = 0; i < frameCount4; ++i) { + uint32x4_t mid; + uint32x4_t side; + int32x4_t left; + int32x4_t right; + + mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4); + side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4); + + mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, one4)); + + left = vshrq_n_s32(vreinterpretq_s32_u32(vaddq_u32(mid, side)), 1); + right = vshrq_n_s32(vreinterpretq_s32_u32(vsubq_u32(mid, side)), 1); + + drflac__vst2q_s32(pOutputSamples + i*8, vzipq_s32(left, right)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid = (mid << 1) | (side & 0x01); + + pOutputSamples[i*2+0] = (drflac_int32)(mid + side) >> 1; + pOutputSamples[i*2+1] = (drflac_int32)(mid - side) >> 1; + } + } else { + int32x4_t shift4; + + shift -= 1; + shift4 = vdupq_n_s32(shift); + + for (i = 0; i < frameCount4; ++i) { + uint32x4_t mid; + uint32x4_t side; + int32x4_t left; + int32x4_t right; + + mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4); + side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4); + + mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, one4)); + + left = vreinterpretq_s32_u32(vshlq_u32(vaddq_u32(mid, side), shift4)); + right = vreinterpretq_s32_u32(vshlq_u32(vsubq_u32(mid, side), shift4)); + + drflac__vst2q_s32(pOutputSamples + i*8, vzipq_s32(left, right)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid = (mid << 1) | (side & 0x01); + + pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift); + pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift); + } + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s32__decode_mid_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s32__decode_mid_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { + /* Scalar fallback. */ +#if 0 + drflac_read_pcm_frames_s32__decode_mid_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_s32__decode_mid_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} + + +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + for (drflac_uint64 i = 0; i < frameCount; ++i) { + pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample)); + pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample)); + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 tempL0 = pInputSamples0U32[i*4+0] << shift0; + drflac_uint32 tempL1 = pInputSamples0U32[i*4+1] << shift0; + drflac_uint32 tempL2 = pInputSamples0U32[i*4+2] << shift0; + drflac_uint32 tempL3 = pInputSamples0U32[i*4+3] << shift0; + + drflac_uint32 tempR0 = pInputSamples1U32[i*4+0] << shift1; + drflac_uint32 tempR1 = pInputSamples1U32[i*4+1] << shift1; + drflac_uint32 tempR2 = pInputSamples1U32[i*4+2] << shift1; + drflac_uint32 tempR3 = pInputSamples1U32[i*4+3] << shift1; + + pOutputSamples[i*8+0] = (drflac_int32)tempL0; + pOutputSamples[i*8+1] = (drflac_int32)tempR0; + pOutputSamples[i*8+2] = (drflac_int32)tempL1; + pOutputSamples[i*8+3] = (drflac_int32)tempR1; + pOutputSamples[i*8+4] = (drflac_int32)tempL2; + pOutputSamples[i*8+5] = (drflac_int32)tempR2; + pOutputSamples[i*8+6] = (drflac_int32)tempL3; + pOutputSamples[i*8+7] = (drflac_int32)tempR3; + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0); + pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1); + } +} + +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + for (i = 0; i < frameCount4; ++i) { + __m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); + __m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); + + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right)); + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0); + pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1); + } +} +#endif + +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + int32x4_t shift4_0 = vdupq_n_s32(shift0); + int32x4_t shift4_1 = vdupq_n_s32(shift1); + + for (i = 0; i < frameCount4; ++i) { + int32x4_t left; + int32x4_t right; + + left = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift4_0)); + right = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift4_1)); + + drflac__vst2q_s32(pOutputSamples + i*8, vzipq_s32(left, right)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0); + pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1); + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s32__decode_independent_stereo__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s32__decode_independent_stereo__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { + /* Scalar fallback. */ +#if 0 + drflac_read_pcm_frames_s32__decode_independent_stereo__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_s32__decode_independent_stereo__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} + + +DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s32(drflac* pFlac, drflac_uint64 framesToRead, drflac_int32* pBufferOut) +{ + drflac_uint64 framesRead; + drflac_uint32 unusedBitsPerSample; + + if (pFlac == NULL || framesToRead == 0) { + return 0; + } + + if (pBufferOut == NULL) { + return drflac__seek_forward_by_pcm_frames(pFlac, framesToRead); + } + + DRFLAC_ASSERT(pFlac->bitsPerSample <= 32); + unusedBitsPerSample = 32 - pFlac->bitsPerSample; + + framesRead = 0; + while (framesToRead > 0) { + /* If we've run out of samples in this frame, go to the next. */ + if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) { + if (!drflac__read_and_decode_next_flac_frame(pFlac)) { + break; /* Couldn't read the next frame, so just break from the loop and return. */ + } + } else { + unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment); + drflac_uint64 iFirstPCMFrame = pFlac->currentFLACFrame.header.blockSizeInPCMFrames - pFlac->currentFLACFrame.pcmFramesRemaining; + drflac_uint64 frameCountThisIteration = framesToRead; + + if (frameCountThisIteration > pFlac->currentFLACFrame.pcmFramesRemaining) { + frameCountThisIteration = pFlac->currentFLACFrame.pcmFramesRemaining; + } + + if (channelCount == 2) { + const drflac_int32* pDecodedSamples0 = pFlac->currentFLACFrame.subframes[0].pSamplesS32 + iFirstPCMFrame; + const drflac_int32* pDecodedSamples1 = pFlac->currentFLACFrame.subframes[1].pSamplesS32 + iFirstPCMFrame; + + switch (pFlac->currentFLACFrame.header.channelAssignment) + { + case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE: + { + drflac_read_pcm_frames_s32__decode_left_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE: + { + drflac_read_pcm_frames_s32__decode_right_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE: + { + drflac_read_pcm_frames_s32__decode_mid_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT: + default: + { + drflac_read_pcm_frames_s32__decode_independent_stereo(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + } + } else { + /* Generic interleaving. */ + drflac_uint64 i; + for (i = 0; i < frameCountThisIteration; ++i) { + unsigned int j; + for (j = 0; j < channelCount; ++j) { + pBufferOut[(i*channelCount)+j] = (drflac_int32)((drflac_uint32)(pFlac->currentFLACFrame.subframes[j].pSamplesS32[iFirstPCMFrame + i]) << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[j].wastedBitsPerSample)); + } + } + } + + framesRead += frameCountThisIteration; + pBufferOut += frameCountThisIteration * channelCount; + framesToRead -= frameCountThisIteration; + pFlac->currentPCMFrame += frameCountThisIteration; + pFlac->currentFLACFrame.pcmFramesRemaining -= (drflac_uint32)frameCountThisIteration; + } + } + + return framesRead; +} + + +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + for (i = 0; i < frameCount; ++i) { + drflac_uint32 left = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + drflac_uint32 right = left - side; + + left >>= 16; + right >>= 16; + + pOutputSamples[i*2+0] = (drflac_int16)left; + pOutputSamples[i*2+1] = (drflac_int16)right; + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 left0 = pInputSamples0U32[i*4+0] << shift0; + drflac_uint32 left1 = pInputSamples0U32[i*4+1] << shift0; + drflac_uint32 left2 = pInputSamples0U32[i*4+2] << shift0; + drflac_uint32 left3 = pInputSamples0U32[i*4+3] << shift0; + + drflac_uint32 side0 = pInputSamples1U32[i*4+0] << shift1; + drflac_uint32 side1 = pInputSamples1U32[i*4+1] << shift1; + drflac_uint32 side2 = pInputSamples1U32[i*4+2] << shift1; + drflac_uint32 side3 = pInputSamples1U32[i*4+3] << shift1; + + drflac_uint32 right0 = left0 - side0; + drflac_uint32 right1 = left1 - side1; + drflac_uint32 right2 = left2 - side2; + drflac_uint32 right3 = left3 - side3; + + left0 >>= 16; + left1 >>= 16; + left2 >>= 16; + left3 >>= 16; + + right0 >>= 16; + right1 >>= 16; + right2 >>= 16; + right3 >>= 16; + + pOutputSamples[i*8+0] = (drflac_int16)left0; + pOutputSamples[i*8+1] = (drflac_int16)right0; + pOutputSamples[i*8+2] = (drflac_int16)left1; + pOutputSamples[i*8+3] = (drflac_int16)right1; + pOutputSamples[i*8+4] = (drflac_int16)left2; + pOutputSamples[i*8+5] = (drflac_int16)right2; + pOutputSamples[i*8+6] = (drflac_int16)left3; + pOutputSamples[i*8+7] = (drflac_int16)right3; + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 left = pInputSamples0U32[i] << shift0; + drflac_uint32 side = pInputSamples1U32[i] << shift1; + drflac_uint32 right = left - side; + + left >>= 16; + right >>= 16; + + pOutputSamples[i*2+0] = (drflac_int16)left; + pOutputSamples[i*2+1] = (drflac_int16)right; + } +} + +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + + for (i = 0; i < frameCount4; ++i) { + __m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); + __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); + __m128i right = _mm_sub_epi32(left, side); + + left = _mm_srai_epi32(left, 16); + right = _mm_srai_epi32(right, 16); + + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 left = pInputSamples0U32[i] << shift0; + drflac_uint32 side = pInputSamples1U32[i] << shift1; + drflac_uint32 right = left - side; + + left >>= 16; + right >>= 16; + + pOutputSamples[i*2+0] = (drflac_int16)left; + pOutputSamples[i*2+1] = (drflac_int16)right; + } +} +#endif + +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + int32x4_t shift0_4; + int32x4_t shift1_4; + + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + + shift0_4 = vdupq_n_s32(shift0); + shift1_4 = vdupq_n_s32(shift1); + + for (i = 0; i < frameCount4; ++i) { + uint32x4_t left; + uint32x4_t side; + uint32x4_t right; + + left = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4); + side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4); + right = vsubq_u32(left, side); + + left = vshrq_n_u32(left, 16); + right = vshrq_n_u32(right, 16); + + drflac__vst2q_u16((drflac_uint16*)pOutputSamples + i*8, vzip_u16(vmovn_u32(left), vmovn_u32(right))); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 left = pInputSamples0U32[i] << shift0; + drflac_uint32 side = pInputSamples1U32[i] << shift1; + drflac_uint32 right = left - side; + + left >>= 16; + right >>= 16; + + pOutputSamples[i*2+0] = (drflac_int16)left; + pOutputSamples[i*2+1] = (drflac_int16)right; + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s16__decode_left_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s16__decode_left_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { + /* Scalar fallback. */ +#if 0 + drflac_read_pcm_frames_s16__decode_left_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_s16__decode_left_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} + + +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + for (i = 0; i < frameCount; ++i) { + drflac_uint32 side = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + drflac_uint32 right = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + drflac_uint32 left = right + side; + + left >>= 16; + right >>= 16; + + pOutputSamples[i*2+0] = (drflac_int16)left; + pOutputSamples[i*2+1] = (drflac_int16)right; + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 side0 = pInputSamples0U32[i*4+0] << shift0; + drflac_uint32 side1 = pInputSamples0U32[i*4+1] << shift0; + drflac_uint32 side2 = pInputSamples0U32[i*4+2] << shift0; + drflac_uint32 side3 = pInputSamples0U32[i*4+3] << shift0; + + drflac_uint32 right0 = pInputSamples1U32[i*4+0] << shift1; + drflac_uint32 right1 = pInputSamples1U32[i*4+1] << shift1; + drflac_uint32 right2 = pInputSamples1U32[i*4+2] << shift1; + drflac_uint32 right3 = pInputSamples1U32[i*4+3] << shift1; + + drflac_uint32 left0 = right0 + side0; + drflac_uint32 left1 = right1 + side1; + drflac_uint32 left2 = right2 + side2; + drflac_uint32 left3 = right3 + side3; + + left0 >>= 16; + left1 >>= 16; + left2 >>= 16; + left3 >>= 16; + + right0 >>= 16; + right1 >>= 16; + right2 >>= 16; + right3 >>= 16; + + pOutputSamples[i*8+0] = (drflac_int16)left0; + pOutputSamples[i*8+1] = (drflac_int16)right0; + pOutputSamples[i*8+2] = (drflac_int16)left1; + pOutputSamples[i*8+3] = (drflac_int16)right1; + pOutputSamples[i*8+4] = (drflac_int16)left2; + pOutputSamples[i*8+5] = (drflac_int16)right2; + pOutputSamples[i*8+6] = (drflac_int16)left3; + pOutputSamples[i*8+7] = (drflac_int16)right3; + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 side = pInputSamples0U32[i] << shift0; + drflac_uint32 right = pInputSamples1U32[i] << shift1; + drflac_uint32 left = right + side; + + left >>= 16; + right >>= 16; + + pOutputSamples[i*2+0] = (drflac_int16)left; + pOutputSamples[i*2+1] = (drflac_int16)right; + } +} + +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + + for (i = 0; i < frameCount4; ++i) { + __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); + __m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); + __m128i left = _mm_add_epi32(right, side); + + left = _mm_srai_epi32(left, 16); + right = _mm_srai_epi32(right, 16); + + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 side = pInputSamples0U32[i] << shift0; + drflac_uint32 right = pInputSamples1U32[i] << shift1; + drflac_uint32 left = right + side; + + left >>= 16; + right >>= 16; + + pOutputSamples[i*2+0] = (drflac_int16)left; + pOutputSamples[i*2+1] = (drflac_int16)right; + } +} +#endif + +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + int32x4_t shift0_4; + int32x4_t shift1_4; + + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + + shift0_4 = vdupq_n_s32(shift0); + shift1_4 = vdupq_n_s32(shift1); + + for (i = 0; i < frameCount4; ++i) { + uint32x4_t side; + uint32x4_t right; + uint32x4_t left; + + side = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4); + right = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4); + left = vaddq_u32(right, side); + + left = vshrq_n_u32(left, 16); + right = vshrq_n_u32(right, 16); + + drflac__vst2q_u16((drflac_uint16*)pOutputSamples + i*8, vzip_u16(vmovn_u32(left), vmovn_u32(right))); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 side = pInputSamples0U32[i] << shift0; + drflac_uint32 right = pInputSamples1U32[i] << shift1; + drflac_uint32 left = right + side; + + left >>= 16; + right >>= 16; + + pOutputSamples[i*2+0] = (drflac_int16)left; + pOutputSamples[i*2+1] = (drflac_int16)right; + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s16__decode_right_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s16__decode_right_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { + /* Scalar fallback. */ +#if 0 + drflac_read_pcm_frames_s16__decode_right_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_s16__decode_right_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} + + +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + for (drflac_uint64 i = 0; i < frameCount; ++i) { + drflac_uint32 mid = (drflac_uint32)pInputSamples0[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid = (mid << 1) | (side & 0x01); + + pOutputSamples[i*2+0] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample) >> 16); + pOutputSamples[i*2+1] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample) >> 16); + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift = unusedBitsPerSample; + + if (shift > 0) { + shift -= 1; + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 temp0L; + drflac_uint32 temp1L; + drflac_uint32 temp2L; + drflac_uint32 temp3L; + drflac_uint32 temp0R; + drflac_uint32 temp1R; + drflac_uint32 temp2R; + drflac_uint32 temp3R; + + drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + + drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid0 = (mid0 << 1) | (side0 & 0x01); + mid1 = (mid1 << 1) | (side1 & 0x01); + mid2 = (mid2 << 1) | (side2 & 0x01); + mid3 = (mid3 << 1) | (side3 & 0x01); + + temp0L = (mid0 + side0) << shift; + temp1L = (mid1 + side1) << shift; + temp2L = (mid2 + side2) << shift; + temp3L = (mid3 + side3) << shift; + + temp0R = (mid0 - side0) << shift; + temp1R = (mid1 - side1) << shift; + temp2R = (mid2 - side2) << shift; + temp3R = (mid3 - side3) << shift; + + temp0L >>= 16; + temp1L >>= 16; + temp2L >>= 16; + temp3L >>= 16; + + temp0R >>= 16; + temp1R >>= 16; + temp2R >>= 16; + temp3R >>= 16; + + pOutputSamples[i*8+0] = (drflac_int16)temp0L; + pOutputSamples[i*8+1] = (drflac_int16)temp0R; + pOutputSamples[i*8+2] = (drflac_int16)temp1L; + pOutputSamples[i*8+3] = (drflac_int16)temp1R; + pOutputSamples[i*8+4] = (drflac_int16)temp2L; + pOutputSamples[i*8+5] = (drflac_int16)temp2R; + pOutputSamples[i*8+6] = (drflac_int16)temp3L; + pOutputSamples[i*8+7] = (drflac_int16)temp3R; + } + } else { + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 temp0L; + drflac_uint32 temp1L; + drflac_uint32 temp2L; + drflac_uint32 temp3L; + drflac_uint32 temp0R; + drflac_uint32 temp1R; + drflac_uint32 temp2R; + drflac_uint32 temp3R; + + drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + + drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid0 = (mid0 << 1) | (side0 & 0x01); + mid1 = (mid1 << 1) | (side1 & 0x01); + mid2 = (mid2 << 1) | (side2 & 0x01); + mid3 = (mid3 << 1) | (side3 & 0x01); + + temp0L = ((drflac_int32)(mid0 + side0) >> 1); + temp1L = ((drflac_int32)(mid1 + side1) >> 1); + temp2L = ((drflac_int32)(mid2 + side2) >> 1); + temp3L = ((drflac_int32)(mid3 + side3) >> 1); + + temp0R = ((drflac_int32)(mid0 - side0) >> 1); + temp1R = ((drflac_int32)(mid1 - side1) >> 1); + temp2R = ((drflac_int32)(mid2 - side2) >> 1); + temp3R = ((drflac_int32)(mid3 - side3) >> 1); + + temp0L >>= 16; + temp1L >>= 16; + temp2L >>= 16; + temp3L >>= 16; + + temp0R >>= 16; + temp1R >>= 16; + temp2R >>= 16; + temp3R >>= 16; + + pOutputSamples[i*8+0] = (drflac_int16)temp0L; + pOutputSamples[i*8+1] = (drflac_int16)temp0R; + pOutputSamples[i*8+2] = (drflac_int16)temp1L; + pOutputSamples[i*8+3] = (drflac_int16)temp1R; + pOutputSamples[i*8+4] = (drflac_int16)temp2L; + pOutputSamples[i*8+5] = (drflac_int16)temp2R; + pOutputSamples[i*8+6] = (drflac_int16)temp3L; + pOutputSamples[i*8+7] = (drflac_int16)temp3R; + } + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid = (mid << 1) | (side & 0x01); + + pOutputSamples[i*2+0] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample) >> 16); + pOutputSamples[i*2+1] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample) >> 16); + } +} + +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift = unusedBitsPerSample; + + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + + if (shift == 0) { + for (i = 0; i < frameCount4; ++i) { + __m128i mid; + __m128i side; + __m128i left; + __m128i right; + + mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + + mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01))); + + left = _mm_srai_epi32(_mm_add_epi32(mid, side), 1); + right = _mm_srai_epi32(_mm_sub_epi32(mid, side), 1); + + left = _mm_srai_epi32(left, 16); + right = _mm_srai_epi32(right, 16); + + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid = (mid << 1) | (side & 0x01); + + pOutputSamples[i*2+0] = (drflac_int16)(((drflac_int32)(mid + side) >> 1) >> 16); + pOutputSamples[i*2+1] = (drflac_int16)(((drflac_int32)(mid - side) >> 1) >> 16); + } + } else { + shift -= 1; + for (i = 0; i < frameCount4; ++i) { + __m128i mid; + __m128i side; + __m128i left; + __m128i right; + + mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + + mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01))); + + left = _mm_slli_epi32(_mm_add_epi32(mid, side), shift); + right = _mm_slli_epi32(_mm_sub_epi32(mid, side), shift); + + left = _mm_srai_epi32(left, 16); + right = _mm_srai_epi32(right, 16); + + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid = (mid << 1) | (side & 0x01); + + pOutputSamples[i*2+0] = (drflac_int16)(((mid + side) << shift) >> 16); + pOutputSamples[i*2+1] = (drflac_int16)(((mid - side) << shift) >> 16); + } + } +} +#endif + +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift = unusedBitsPerSample; + int32x4_t wbpsShift0_4; /* wbps = Wasted Bits Per Sample */ + int32x4_t wbpsShift1_4; /* wbps = Wasted Bits Per Sample */ + + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + + wbpsShift0_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + wbpsShift1_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + + if (shift == 0) { + for (i = 0; i < frameCount4; ++i) { + uint32x4_t mid; + uint32x4_t side; + int32x4_t left; + int32x4_t right; + + mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4); + side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4); + + mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1))); + + left = vshrq_n_s32(vreinterpretq_s32_u32(vaddq_u32(mid, side)), 1); + right = vshrq_n_s32(vreinterpretq_s32_u32(vsubq_u32(mid, side)), 1); + + left = vshrq_n_s32(left, 16); + right = vshrq_n_s32(right, 16); + + drflac__vst2q_s16(pOutputSamples + i*8, vzip_s16(vmovn_s32(left), vmovn_s32(right))); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid = (mid << 1) | (side & 0x01); + + pOutputSamples[i*2+0] = (drflac_int16)(((drflac_int32)(mid + side) >> 1) >> 16); + pOutputSamples[i*2+1] = (drflac_int16)(((drflac_int32)(mid - side) >> 1) >> 16); + } + } else { + int32x4_t shift4; + + shift -= 1; + shift4 = vdupq_n_s32(shift); + + for (i = 0; i < frameCount4; ++i) { + uint32x4_t mid; + uint32x4_t side; + int32x4_t left; + int32x4_t right; + + mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4); + side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4); + + mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1))); + + left = vreinterpretq_s32_u32(vshlq_u32(vaddq_u32(mid, side), shift4)); + right = vreinterpretq_s32_u32(vshlq_u32(vsubq_u32(mid, side), shift4)); + + left = vshrq_n_s32(left, 16); + right = vshrq_n_s32(right, 16); + + drflac__vst2q_s16(pOutputSamples + i*8, vzip_s16(vmovn_s32(left), vmovn_s32(right))); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid = (mid << 1) | (side & 0x01); + + pOutputSamples[i*2+0] = (drflac_int16)(((mid + side) << shift) >> 16); + pOutputSamples[i*2+1] = (drflac_int16)(((mid - side) << shift) >> 16); + } + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s16__decode_mid_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s16__decode_mid_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { + /* Scalar fallback. */ +#if 0 + drflac_read_pcm_frames_s16__decode_mid_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_s16__decode_mid_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} + + +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + for (drflac_uint64 i = 0; i < frameCount; ++i) { + pOutputSamples[i*2+0] = (drflac_int16)((drflac_int32)((drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample)) >> 16); + pOutputSamples[i*2+1] = (drflac_int16)((drflac_int32)((drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample)) >> 16); + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 tempL0 = pInputSamples0U32[i*4+0] << shift0; + drflac_uint32 tempL1 = pInputSamples0U32[i*4+1] << shift0; + drflac_uint32 tempL2 = pInputSamples0U32[i*4+2] << shift0; + drflac_uint32 tempL3 = pInputSamples0U32[i*4+3] << shift0; + + drflac_uint32 tempR0 = pInputSamples1U32[i*4+0] << shift1; + drflac_uint32 tempR1 = pInputSamples1U32[i*4+1] << shift1; + drflac_uint32 tempR2 = pInputSamples1U32[i*4+2] << shift1; + drflac_uint32 tempR3 = pInputSamples1U32[i*4+3] << shift1; + + tempL0 >>= 16; + tempL1 >>= 16; + tempL2 >>= 16; + tempL3 >>= 16; + + tempR0 >>= 16; + tempR1 >>= 16; + tempR2 >>= 16; + tempR3 >>= 16; + + pOutputSamples[i*8+0] = (drflac_int16)tempL0; + pOutputSamples[i*8+1] = (drflac_int16)tempR0; + pOutputSamples[i*8+2] = (drflac_int16)tempL1; + pOutputSamples[i*8+3] = (drflac_int16)tempR1; + pOutputSamples[i*8+4] = (drflac_int16)tempL2; + pOutputSamples[i*8+5] = (drflac_int16)tempR2; + pOutputSamples[i*8+6] = (drflac_int16)tempL3; + pOutputSamples[i*8+7] = (drflac_int16)tempR3; + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + pOutputSamples[i*2+0] = (drflac_int16)((pInputSamples0U32[i] << shift0) >> 16); + pOutputSamples[i*2+1] = (drflac_int16)((pInputSamples1U32[i] << shift1) >> 16); + } +} + +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + for (i = 0; i < frameCount4; ++i) { + __m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); + __m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); + + left = _mm_srai_epi32(left, 16); + right = _mm_srai_epi32(right, 16); + + /* At this point we have results. We can now pack and interleave these into a single __m128i object and then store the in the output buffer. */ + _mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + pOutputSamples[i*2+0] = (drflac_int16)((pInputSamples0U32[i] << shift0) >> 16); + pOutputSamples[i*2+1] = (drflac_int16)((pInputSamples1U32[i] << shift1) >> 16); + } +} +#endif + +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + int32x4_t shift0_4 = vdupq_n_s32(shift0); + int32x4_t shift1_4 = vdupq_n_s32(shift1); + + for (i = 0; i < frameCount4; ++i) { + int32x4_t left; + int32x4_t right; + + left = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4)); + right = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4)); + + left = vshrq_n_s32(left, 16); + right = vshrq_n_s32(right, 16); + + drflac__vst2q_s16(pOutputSamples + i*8, vzip_s16(vmovn_s32(left), vmovn_s32(right))); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + pOutputSamples[i*2+0] = (drflac_int16)((pInputSamples0U32[i] << shift0) >> 16); + pOutputSamples[i*2+1] = (drflac_int16)((pInputSamples1U32[i] << shift1) >> 16); + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s16__decode_independent_stereo__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_s16__decode_independent_stereo__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { + /* Scalar fallback. */ +#if 0 + drflac_read_pcm_frames_s16__decode_independent_stereo__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_s16__decode_independent_stereo__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} + +DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s16(drflac* pFlac, drflac_uint64 framesToRead, drflac_int16* pBufferOut) +{ + drflac_uint64 framesRead; + drflac_uint32 unusedBitsPerSample; + + if (pFlac == NULL || framesToRead == 0) { + return 0; + } + + if (pBufferOut == NULL) { + return drflac__seek_forward_by_pcm_frames(pFlac, framesToRead); + } + + DRFLAC_ASSERT(pFlac->bitsPerSample <= 32); + unusedBitsPerSample = 32 - pFlac->bitsPerSample; + + framesRead = 0; + while (framesToRead > 0) { + /* If we've run out of samples in this frame, go to the next. */ + if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) { + if (!drflac__read_and_decode_next_flac_frame(pFlac)) { + break; /* Couldn't read the next frame, so just break from the loop and return. */ + } + } else { + unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment); + drflac_uint64 iFirstPCMFrame = pFlac->currentFLACFrame.header.blockSizeInPCMFrames - pFlac->currentFLACFrame.pcmFramesRemaining; + drflac_uint64 frameCountThisIteration = framesToRead; + + if (frameCountThisIteration > pFlac->currentFLACFrame.pcmFramesRemaining) { + frameCountThisIteration = pFlac->currentFLACFrame.pcmFramesRemaining; + } + + if (channelCount == 2) { + const drflac_int32* pDecodedSamples0 = pFlac->currentFLACFrame.subframes[0].pSamplesS32 + iFirstPCMFrame; + const drflac_int32* pDecodedSamples1 = pFlac->currentFLACFrame.subframes[1].pSamplesS32 + iFirstPCMFrame; + + switch (pFlac->currentFLACFrame.header.channelAssignment) + { + case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE: + { + drflac_read_pcm_frames_s16__decode_left_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE: + { + drflac_read_pcm_frames_s16__decode_right_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE: + { + drflac_read_pcm_frames_s16__decode_mid_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT: + default: + { + drflac_read_pcm_frames_s16__decode_independent_stereo(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + } + } else { + /* Generic interleaving. */ + drflac_uint64 i; + for (i = 0; i < frameCountThisIteration; ++i) { + unsigned int j; + for (j = 0; j < channelCount; ++j) { + drflac_int32 sampleS32 = (drflac_int32)((drflac_uint32)(pFlac->currentFLACFrame.subframes[j].pSamplesS32[iFirstPCMFrame + i]) << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[j].wastedBitsPerSample)); + pBufferOut[(i*channelCount)+j] = (drflac_int16)(sampleS32 >> 16); + } + } + } + + framesRead += frameCountThisIteration; + pBufferOut += frameCountThisIteration * channelCount; + framesToRead -= frameCountThisIteration; + pFlac->currentPCMFrame += frameCountThisIteration; + pFlac->currentFLACFrame.pcmFramesRemaining -= (drflac_uint32)frameCountThisIteration; + } + } + + return framesRead; +} + + +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + for (i = 0; i < frameCount; ++i) { + drflac_uint32 left = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + drflac_uint32 right = left - side; + + pOutputSamples[i*2+0] = (float)((drflac_int32)left / 2147483648.0); + pOutputSamples[i*2+1] = (float)((drflac_int32)right / 2147483648.0); + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + float factor = 1 / 2147483648.0; + + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 left0 = pInputSamples0U32[i*4+0] << shift0; + drflac_uint32 left1 = pInputSamples0U32[i*4+1] << shift0; + drflac_uint32 left2 = pInputSamples0U32[i*4+2] << shift0; + drflac_uint32 left3 = pInputSamples0U32[i*4+3] << shift0; + + drflac_uint32 side0 = pInputSamples1U32[i*4+0] << shift1; + drflac_uint32 side1 = pInputSamples1U32[i*4+1] << shift1; + drflac_uint32 side2 = pInputSamples1U32[i*4+2] << shift1; + drflac_uint32 side3 = pInputSamples1U32[i*4+3] << shift1; + + drflac_uint32 right0 = left0 - side0; + drflac_uint32 right1 = left1 - side1; + drflac_uint32 right2 = left2 - side2; + drflac_uint32 right3 = left3 - side3; + + pOutputSamples[i*8+0] = (drflac_int32)left0 * factor; + pOutputSamples[i*8+1] = (drflac_int32)right0 * factor; + pOutputSamples[i*8+2] = (drflac_int32)left1 * factor; + pOutputSamples[i*8+3] = (drflac_int32)right1 * factor; + pOutputSamples[i*8+4] = (drflac_int32)left2 * factor; + pOutputSamples[i*8+5] = (drflac_int32)right2 * factor; + pOutputSamples[i*8+6] = (drflac_int32)left3 * factor; + pOutputSamples[i*8+7] = (drflac_int32)right3 * factor; + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 left = pInputSamples0U32[i] << shift0; + drflac_uint32 side = pInputSamples1U32[i] << shift1; + drflac_uint32 right = left - side; + + pOutputSamples[i*2+0] = (drflac_int32)left * factor; + pOutputSamples[i*2+1] = (drflac_int32)right * factor; + } +} + +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8; + drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8; + __m128 factor; + + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + + factor = _mm_set1_ps(1.0f / 8388608.0f); + + for (i = 0; i < frameCount4; ++i) { + __m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); + __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); + __m128i right = _mm_sub_epi32(left, side); + __m128 leftf = _mm_mul_ps(_mm_cvtepi32_ps(left), factor); + __m128 rightf = _mm_mul_ps(_mm_cvtepi32_ps(right), factor); + + _mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf)); + _mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 left = pInputSamples0U32[i] << shift0; + drflac_uint32 side = pInputSamples1U32[i] << shift1; + drflac_uint32 right = left - side; + + pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f; + pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f; + } +} +#endif + +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8; + drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8; + float32x4_t factor4; + int32x4_t shift0_4; + int32x4_t shift1_4; + + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + + factor4 = vdupq_n_f32(1.0f / 8388608.0f); + shift0_4 = vdupq_n_s32(shift0); + shift1_4 = vdupq_n_s32(shift1); + + for (i = 0; i < frameCount4; ++i) { + uint32x4_t left; + uint32x4_t side; + uint32x4_t right; + float32x4_t leftf; + float32x4_t rightf; + + left = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4); + side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4); + right = vsubq_u32(left, side); + leftf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(left)), factor4); + rightf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(right)), factor4); + + drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 left = pInputSamples0U32[i] << shift0; + drflac_uint32 side = pInputSamples1U32[i] << shift1; + drflac_uint32 right = left - side; + + pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f; + pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f; + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_f32__decode_left_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_f32__decode_left_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { + /* Scalar fallback. */ +#if 0 + drflac_read_pcm_frames_f32__decode_left_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_f32__decode_left_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} + + +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + for (i = 0; i < frameCount; ++i) { + drflac_uint32 side = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + drflac_uint32 right = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + drflac_uint32 left = right + side; + + pOutputSamples[i*2+0] = (float)((drflac_int32)left / 2147483648.0); + pOutputSamples[i*2+1] = (float)((drflac_int32)right / 2147483648.0); + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + float factor = 1 / 2147483648.0; + + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 side0 = pInputSamples0U32[i*4+0] << shift0; + drflac_uint32 side1 = pInputSamples0U32[i*4+1] << shift0; + drflac_uint32 side2 = pInputSamples0U32[i*4+2] << shift0; + drflac_uint32 side3 = pInputSamples0U32[i*4+3] << shift0; + + drflac_uint32 right0 = pInputSamples1U32[i*4+0] << shift1; + drflac_uint32 right1 = pInputSamples1U32[i*4+1] << shift1; + drflac_uint32 right2 = pInputSamples1U32[i*4+2] << shift1; + drflac_uint32 right3 = pInputSamples1U32[i*4+3] << shift1; + + drflac_uint32 left0 = right0 + side0; + drflac_uint32 left1 = right1 + side1; + drflac_uint32 left2 = right2 + side2; + drflac_uint32 left3 = right3 + side3; + + pOutputSamples[i*8+0] = (drflac_int32)left0 * factor; + pOutputSamples[i*8+1] = (drflac_int32)right0 * factor; + pOutputSamples[i*8+2] = (drflac_int32)left1 * factor; + pOutputSamples[i*8+3] = (drflac_int32)right1 * factor; + pOutputSamples[i*8+4] = (drflac_int32)left2 * factor; + pOutputSamples[i*8+5] = (drflac_int32)right2 * factor; + pOutputSamples[i*8+6] = (drflac_int32)left3 * factor; + pOutputSamples[i*8+7] = (drflac_int32)right3 * factor; + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 side = pInputSamples0U32[i] << shift0; + drflac_uint32 right = pInputSamples1U32[i] << shift1; + drflac_uint32 left = right + side; + + pOutputSamples[i*2+0] = (drflac_int32)left * factor; + pOutputSamples[i*2+1] = (drflac_int32)right * factor; + } +} + +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8; + drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8; + __m128 factor; + + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + + factor = _mm_set1_ps(1.0f / 8388608.0f); + + for (i = 0; i < frameCount4; ++i) { + __m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); + __m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); + __m128i left = _mm_add_epi32(right, side); + __m128 leftf = _mm_mul_ps(_mm_cvtepi32_ps(left), factor); + __m128 rightf = _mm_mul_ps(_mm_cvtepi32_ps(right), factor); + + _mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf)); + _mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 side = pInputSamples0U32[i] << shift0; + drflac_uint32 right = pInputSamples1U32[i] << shift1; + drflac_uint32 left = right + side; + + pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f; + pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f; + } +} +#endif + +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8; + drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8; + float32x4_t factor4; + int32x4_t shift0_4; + int32x4_t shift1_4; + + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + + factor4 = vdupq_n_f32(1.0f / 8388608.0f); + shift0_4 = vdupq_n_s32(shift0); + shift1_4 = vdupq_n_s32(shift1); + + for (i = 0; i < frameCount4; ++i) { + uint32x4_t side; + uint32x4_t right; + uint32x4_t left; + float32x4_t leftf; + float32x4_t rightf; + + side = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4); + right = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4); + left = vaddq_u32(right, side); + leftf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(left)), factor4); + rightf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(right)), factor4); + + drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 side = pInputSamples0U32[i] << shift0; + drflac_uint32 right = pInputSamples1U32[i] << shift1; + drflac_uint32 left = right + side; + + pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f; + pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f; + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_f32__decode_right_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_f32__decode_right_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { + /* Scalar fallback. */ +#if 0 + drflac_read_pcm_frames_f32__decode_right_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_f32__decode_right_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} + + +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + for (drflac_uint64 i = 0; i < frameCount; ++i) { + drflac_uint32 mid = (drflac_uint32)pInputSamples0[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid = (mid << 1) | (side & 0x01); + + pOutputSamples[i*2+0] = (float)((((drflac_int32)(mid + side) >> 1) << (unusedBitsPerSample)) / 2147483648.0); + pOutputSamples[i*2+1] = (float)((((drflac_int32)(mid - side) >> 1) << (unusedBitsPerSample)) / 2147483648.0); + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift = unusedBitsPerSample; + float factor = 1 / 2147483648.0; + + if (shift > 0) { + shift -= 1; + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 temp0L; + drflac_uint32 temp1L; + drflac_uint32 temp2L; + drflac_uint32 temp3L; + drflac_uint32 temp0R; + drflac_uint32 temp1R; + drflac_uint32 temp2R; + drflac_uint32 temp3R; + + drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + + drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid0 = (mid0 << 1) | (side0 & 0x01); + mid1 = (mid1 << 1) | (side1 & 0x01); + mid2 = (mid2 << 1) | (side2 & 0x01); + mid3 = (mid3 << 1) | (side3 & 0x01); + + temp0L = (mid0 + side0) << shift; + temp1L = (mid1 + side1) << shift; + temp2L = (mid2 + side2) << shift; + temp3L = (mid3 + side3) << shift; + + temp0R = (mid0 - side0) << shift; + temp1R = (mid1 - side1) << shift; + temp2R = (mid2 - side2) << shift; + temp3R = (mid3 - side3) << shift; + + pOutputSamples[i*8+0] = (drflac_int32)temp0L * factor; + pOutputSamples[i*8+1] = (drflac_int32)temp0R * factor; + pOutputSamples[i*8+2] = (drflac_int32)temp1L * factor; + pOutputSamples[i*8+3] = (drflac_int32)temp1R * factor; + pOutputSamples[i*8+4] = (drflac_int32)temp2L * factor; + pOutputSamples[i*8+5] = (drflac_int32)temp2R * factor; + pOutputSamples[i*8+6] = (drflac_int32)temp3L * factor; + pOutputSamples[i*8+7] = (drflac_int32)temp3R * factor; + } + } else { + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 temp0L; + drflac_uint32 temp1L; + drflac_uint32 temp2L; + drflac_uint32 temp3L; + drflac_uint32 temp0R; + drflac_uint32 temp1R; + drflac_uint32 temp2R; + drflac_uint32 temp3R; + + drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + + drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid0 = (mid0 << 1) | (side0 & 0x01); + mid1 = (mid1 << 1) | (side1 & 0x01); + mid2 = (mid2 << 1) | (side2 & 0x01); + mid3 = (mid3 << 1) | (side3 & 0x01); + + temp0L = (drflac_uint32)((drflac_int32)(mid0 + side0) >> 1); + temp1L = (drflac_uint32)((drflac_int32)(mid1 + side1) >> 1); + temp2L = (drflac_uint32)((drflac_int32)(mid2 + side2) >> 1); + temp3L = (drflac_uint32)((drflac_int32)(mid3 + side3) >> 1); + + temp0R = (drflac_uint32)((drflac_int32)(mid0 - side0) >> 1); + temp1R = (drflac_uint32)((drflac_int32)(mid1 - side1) >> 1); + temp2R = (drflac_uint32)((drflac_int32)(mid2 - side2) >> 1); + temp3R = (drflac_uint32)((drflac_int32)(mid3 - side3) >> 1); + + pOutputSamples[i*8+0] = (drflac_int32)temp0L * factor; + pOutputSamples[i*8+1] = (drflac_int32)temp0R * factor; + pOutputSamples[i*8+2] = (drflac_int32)temp1L * factor; + pOutputSamples[i*8+3] = (drflac_int32)temp1R * factor; + pOutputSamples[i*8+4] = (drflac_int32)temp2L * factor; + pOutputSamples[i*8+5] = (drflac_int32)temp2R * factor; + pOutputSamples[i*8+6] = (drflac_int32)temp3L * factor; + pOutputSamples[i*8+7] = (drflac_int32)temp3R * factor; + } + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid = (mid << 1) | (side & 0x01); + + pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample) * factor; + pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample) * factor; + } +} + +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift = unusedBitsPerSample - 8; + float factor; + __m128 factor128; + + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + + factor = 1.0f / 8388608.0f; + factor128 = _mm_set1_ps(factor); + + if (shift == 0) { + for (i = 0; i < frameCount4; ++i) { + __m128i mid; + __m128i side; + __m128i tempL; + __m128i tempR; + __m128 leftf; + __m128 rightf; + + mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + + mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01))); + + tempL = _mm_srai_epi32(_mm_add_epi32(mid, side), 1); + tempR = _mm_srai_epi32(_mm_sub_epi32(mid, side), 1); + + leftf = _mm_mul_ps(_mm_cvtepi32_ps(tempL), factor128); + rightf = _mm_mul_ps(_mm_cvtepi32_ps(tempR), factor128); + + _mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf)); + _mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid = (mid << 1) | (side & 0x01); + + pOutputSamples[i*2+0] = ((drflac_int32)(mid + side) >> 1) * factor; + pOutputSamples[i*2+1] = ((drflac_int32)(mid - side) >> 1) * factor; + } + } else { + shift -= 1; + for (i = 0; i < frameCount4; ++i) { + __m128i mid; + __m128i side; + __m128i tempL; + __m128i tempR; + __m128 leftf; + __m128 rightf; + + mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + + mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01))); + + tempL = _mm_slli_epi32(_mm_add_epi32(mid, side), shift); + tempR = _mm_slli_epi32(_mm_sub_epi32(mid, side), shift); + + leftf = _mm_mul_ps(_mm_cvtepi32_ps(tempL), factor128); + rightf = _mm_mul_ps(_mm_cvtepi32_ps(tempR), factor128); + + _mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf)); + _mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid = (mid << 1) | (side & 0x01); + + pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift) * factor; + pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift) * factor; + } + } +} +#endif + +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift = unusedBitsPerSample - 8; + float factor; + float32x4_t factor4; + int32x4_t shift4; + int32x4_t wbps0_4; /* Wasted Bits Per Sample */ + int32x4_t wbps1_4; /* Wasted Bits Per Sample */ + + DRFLAC_ASSERT(pFlac->bitsPerSample <= 24); + + factor = 1.0f / 8388608.0f; + factor4 = vdupq_n_f32(factor); + wbps0_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample); + wbps1_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample); + + if (shift == 0) { + for (i = 0; i < frameCount4; ++i) { + int32x4_t lefti; + int32x4_t righti; + float32x4_t leftf; + float32x4_t rightf; + + uint32x4_t mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbps0_4); + uint32x4_t side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbps1_4); + + mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1))); + + lefti = vshrq_n_s32(vreinterpretq_s32_u32(vaddq_u32(mid, side)), 1); + righti = vshrq_n_s32(vreinterpretq_s32_u32(vsubq_u32(mid, side)), 1); + + leftf = vmulq_f32(vcvtq_f32_s32(lefti), factor4); + rightf = vmulq_f32(vcvtq_f32_s32(righti), factor4); + + drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid = (mid << 1) | (side & 0x01); + + pOutputSamples[i*2+0] = ((drflac_int32)(mid + side) >> 1) * factor; + pOutputSamples[i*2+1] = ((drflac_int32)(mid - side) >> 1) * factor; + } + } else { + shift -= 1; + shift4 = vdupq_n_s32(shift); + for (i = 0; i < frameCount4; ++i) { + uint32x4_t mid; + uint32x4_t side; + int32x4_t lefti; + int32x4_t righti; + float32x4_t leftf; + float32x4_t rightf; + + mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbps0_4); + side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbps1_4); + + mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1))); + + lefti = vreinterpretq_s32_u32(vshlq_u32(vaddq_u32(mid, side), shift4)); + righti = vreinterpretq_s32_u32(vshlq_u32(vsubq_u32(mid, side), shift4)); + + leftf = vmulq_f32(vcvtq_f32_s32(lefti), factor4); + rightf = vmulq_f32(vcvtq_f32_s32(righti), factor4); + + drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + + mid = (mid << 1) | (side & 0x01); + + pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift) * factor; + pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift) * factor; + } + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_f32__decode_mid_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_f32__decode_mid_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { + /* Scalar fallback. */ +#if 0 + drflac_read_pcm_frames_f32__decode_mid_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_f32__decode_mid_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} + +#if 0 +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + for (drflac_uint64 i = 0; i < frameCount; ++i) { + pOutputSamples[i*2+0] = (float)((drflac_int32)((drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample)) / 2147483648.0); + pOutputSamples[i*2+1] = (float)((drflac_int32)((drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample)) / 2147483648.0); + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample; + drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample; + float factor = 1 / 2147483648.0; + + for (i = 0; i < frameCount4; ++i) { + drflac_uint32 tempL0 = pInputSamples0U32[i*4+0] << shift0; + drflac_uint32 tempL1 = pInputSamples0U32[i*4+1] << shift0; + drflac_uint32 tempL2 = pInputSamples0U32[i*4+2] << shift0; + drflac_uint32 tempL3 = pInputSamples0U32[i*4+3] << shift0; + + drflac_uint32 tempR0 = pInputSamples1U32[i*4+0] << shift1; + drflac_uint32 tempR1 = pInputSamples1U32[i*4+1] << shift1; + drflac_uint32 tempR2 = pInputSamples1U32[i*4+2] << shift1; + drflac_uint32 tempR3 = pInputSamples1U32[i*4+3] << shift1; + + pOutputSamples[i*8+0] = (drflac_int32)tempL0 * factor; + pOutputSamples[i*8+1] = (drflac_int32)tempR0 * factor; + pOutputSamples[i*8+2] = (drflac_int32)tempL1 * factor; + pOutputSamples[i*8+3] = (drflac_int32)tempR1 * factor; + pOutputSamples[i*8+4] = (drflac_int32)tempL2 * factor; + pOutputSamples[i*8+5] = (drflac_int32)tempR2 * factor; + pOutputSamples[i*8+6] = (drflac_int32)tempL3 * factor; + pOutputSamples[i*8+7] = (drflac_int32)tempR3 * factor; + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0) * factor; + pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1) * factor; + } +} + +#if defined(DRFLAC_SUPPORT_SSE2) +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8; + drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8; + + float factor = 1.0f / 8388608.0f; + __m128 factor128 = _mm_set1_ps(factor); + + for (i = 0; i < frameCount4; ++i) { + __m128i lefti; + __m128i righti; + __m128 leftf; + __m128 rightf; + + lefti = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0); + righti = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1); + + leftf = _mm_mul_ps(_mm_cvtepi32_ps(lefti), factor128); + rightf = _mm_mul_ps(_mm_cvtepi32_ps(righti), factor128); + + _mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf)); + _mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0) * factor; + pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1) * factor; + } +} +#endif + +#if defined(DRFLAC_SUPPORT_NEON) +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ + drflac_uint64 i; + drflac_uint64 frameCount4 = frameCount >> 2; + const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0; + const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1; + drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8; + drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8; + + float factor = 1.0f / 8388608.0f; + float32x4_t factor4 = vdupq_n_f32(factor); + int32x4_t shift0_4 = vdupq_n_s32(shift0); + int32x4_t shift1_4 = vdupq_n_s32(shift1); + + for (i = 0; i < frameCount4; ++i) { + int32x4_t lefti; + int32x4_t righti; + float32x4_t leftf; + float32x4_t rightf; + + lefti = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4)); + righti = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4)); + + leftf = vmulq_f32(vcvtq_f32_s32(lefti), factor4); + rightf = vmulq_f32(vcvtq_f32_s32(righti), factor4); + + drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf)); + } + + for (i = (frameCount4 << 2); i < frameCount; ++i) { + pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0) * factor; + pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1) * factor; + } +} +#endif + +static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples) +{ +#if defined(DRFLAC_SUPPORT_SSE2) + if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_f32__decode_independent_stereo__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#elif defined(DRFLAC_SUPPORT_NEON) + if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) { + drflac_read_pcm_frames_f32__decode_independent_stereo__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); + } else +#endif + { + /* Scalar fallback. */ +#if 0 + drflac_read_pcm_frames_f32__decode_independent_stereo__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#else + drflac_read_pcm_frames_f32__decode_independent_stereo__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples); +#endif + } +} + +DRFLAC_API drflac_uint64 drflac_read_pcm_frames_f32(drflac* pFlac, drflac_uint64 framesToRead, float* pBufferOut) +{ + drflac_uint64 framesRead; + drflac_uint32 unusedBitsPerSample; + + if (pFlac == NULL || framesToRead == 0) { + return 0; + } + + if (pBufferOut == NULL) { + return drflac__seek_forward_by_pcm_frames(pFlac, framesToRead); + } + + DRFLAC_ASSERT(pFlac->bitsPerSample <= 32); + unusedBitsPerSample = 32 - pFlac->bitsPerSample; + + framesRead = 0; + while (framesToRead > 0) { + /* If we've run out of samples in this frame, go to the next. */ + if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) { + if (!drflac__read_and_decode_next_flac_frame(pFlac)) { + break; /* Couldn't read the next frame, so just break from the loop and return. */ + } + } else { + unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment); + drflac_uint64 iFirstPCMFrame = pFlac->currentFLACFrame.header.blockSizeInPCMFrames - pFlac->currentFLACFrame.pcmFramesRemaining; + drflac_uint64 frameCountThisIteration = framesToRead; + + if (frameCountThisIteration > pFlac->currentFLACFrame.pcmFramesRemaining) { + frameCountThisIteration = pFlac->currentFLACFrame.pcmFramesRemaining; + } + + if (channelCount == 2) { + const drflac_int32* pDecodedSamples0 = pFlac->currentFLACFrame.subframes[0].pSamplesS32 + iFirstPCMFrame; + const drflac_int32* pDecodedSamples1 = pFlac->currentFLACFrame.subframes[1].pSamplesS32 + iFirstPCMFrame; + + switch (pFlac->currentFLACFrame.header.channelAssignment) + { + case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE: + { + drflac_read_pcm_frames_f32__decode_left_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE: + { + drflac_read_pcm_frames_f32__decode_right_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE: + { + drflac_read_pcm_frames_f32__decode_mid_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + + case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT: + default: + { + drflac_read_pcm_frames_f32__decode_independent_stereo(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut); + } break; + } + } else { + /* Generic interleaving. */ + drflac_uint64 i; + for (i = 0; i < frameCountThisIteration; ++i) { + unsigned int j; + for (j = 0; j < channelCount; ++j) { + drflac_int32 sampleS32 = (drflac_int32)((drflac_uint32)(pFlac->currentFLACFrame.subframes[j].pSamplesS32[iFirstPCMFrame + i]) << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[j].wastedBitsPerSample)); + pBufferOut[(i*channelCount)+j] = (float)(sampleS32 / 2147483648.0); + } + } + } + + framesRead += frameCountThisIteration; + pBufferOut += frameCountThisIteration * channelCount; + framesToRead -= frameCountThisIteration; + pFlac->currentPCMFrame += frameCountThisIteration; + pFlac->currentFLACFrame.pcmFramesRemaining -= (unsigned int)frameCountThisIteration; + } + } + + return framesRead; +} + + +DRFLAC_API drflac_bool32 drflac_seek_to_pcm_frame(drflac* pFlac, drflac_uint64 pcmFrameIndex) +{ + if (pFlac == NULL) { + return DRFLAC_FALSE; + } + + /* Don't do anything if we're already on the seek point. */ + if (pFlac->currentPCMFrame == pcmFrameIndex) { + return DRFLAC_TRUE; + } + + /* + If we don't know where the first frame begins then we can't seek. This will happen when the STREAMINFO block was not present + when the decoder was opened. + */ + if (pFlac->firstFLACFramePosInBytes == 0) { + return DRFLAC_FALSE; + } + + if (pcmFrameIndex == 0) { + pFlac->currentPCMFrame = 0; + return drflac__seek_to_first_frame(pFlac); + } else { + drflac_bool32 wasSuccessful = DRFLAC_FALSE; + drflac_uint64 originalPCMFrame = pFlac->currentPCMFrame; + + /* Clamp the sample to the end. */ + if (pcmFrameIndex > pFlac->totalPCMFrameCount) { + pcmFrameIndex = pFlac->totalPCMFrameCount; + } + + /* If the target sample and the current sample are in the same frame we just move the position forward. */ + if (pcmFrameIndex > pFlac->currentPCMFrame) { + /* Forward. */ + drflac_uint32 offset = (drflac_uint32)(pcmFrameIndex - pFlac->currentPCMFrame); + if (pFlac->currentFLACFrame.pcmFramesRemaining > offset) { + pFlac->currentFLACFrame.pcmFramesRemaining -= offset; + pFlac->currentPCMFrame = pcmFrameIndex; + return DRFLAC_TRUE; + } + } else { + /* Backward. */ + drflac_uint32 offsetAbs = (drflac_uint32)(pFlac->currentPCMFrame - pcmFrameIndex); + drflac_uint32 currentFLACFramePCMFrameCount = pFlac->currentFLACFrame.header.blockSizeInPCMFrames; + drflac_uint32 currentFLACFramePCMFramesConsumed = currentFLACFramePCMFrameCount - pFlac->currentFLACFrame.pcmFramesRemaining; + if (currentFLACFramePCMFramesConsumed > offsetAbs) { + pFlac->currentFLACFrame.pcmFramesRemaining += offsetAbs; + pFlac->currentPCMFrame = pcmFrameIndex; + return DRFLAC_TRUE; + } + } + + /* + Different techniques depending on encapsulation. Using the native FLAC seektable with Ogg encapsulation is a bit awkward so + we'll instead use Ogg's natural seeking facility. + */ +#ifndef DR_FLAC_NO_OGG + if (pFlac->container == drflac_container_ogg) + { + wasSuccessful = drflac_ogg__seek_to_pcm_frame(pFlac, pcmFrameIndex); + } + else +#endif + { + /* First try seeking via the seek table. If this fails, fall back to a brute force seek which is much slower. */ + if (/*!wasSuccessful && */!pFlac->_noSeekTableSeek) { + wasSuccessful = drflac__seek_to_pcm_frame__seek_table(pFlac, pcmFrameIndex); + } + +#if !defined(DR_FLAC_NO_CRC) + /* Fall back to binary search if seek table seeking fails. This requires the length of the stream to be known. */ + if (!wasSuccessful && !pFlac->_noBinarySearchSeek && pFlac->totalPCMFrameCount > 0) { + wasSuccessful = drflac__seek_to_pcm_frame__binary_search(pFlac, pcmFrameIndex); + } +#endif + + /* Fall back to brute force if all else fails. */ + if (!wasSuccessful && !pFlac->_noBruteForceSeek) { + wasSuccessful = drflac__seek_to_pcm_frame__brute_force(pFlac, pcmFrameIndex); + } + } + + if (wasSuccessful) { + pFlac->currentPCMFrame = pcmFrameIndex; + } else { + /* Seek failed. Try putting the decoder back to it's original state. */ + if (drflac_seek_to_pcm_frame(pFlac, originalPCMFrame) == DRFLAC_FALSE) { + /* Failed to seek back to the original PCM frame. Fall back to 0. */ + drflac_seek_to_pcm_frame(pFlac, 0); + } + } + + return wasSuccessful; + } +} + + + +/* High Level APIs */ + +#if defined(SIZE_MAX) + #define DRFLAC_SIZE_MAX SIZE_MAX +#else + #if defined(DRFLAC_64BIT) + #define DRFLAC_SIZE_MAX ((drflac_uint64)0xFFFFFFFFFFFFFFFF) + #else + #define DRFLAC_SIZE_MAX 0xFFFFFFFF + #endif +#endif + + +/* Using a macro as the definition of the drflac__full_decode_and_close_*() API family. Sue me. */ +#define DRFLAC_DEFINE_FULL_READ_AND_CLOSE(extension, type) \ +static type* drflac__full_read_and_close_ ## extension (drflac* pFlac, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut)\ +{ \ + type* pSampleData = NULL; \ + drflac_uint64 totalPCMFrameCount; \ + \ + DRFLAC_ASSERT(pFlac != NULL); \ + \ + totalPCMFrameCount = pFlac->totalPCMFrameCount; \ + \ + if (totalPCMFrameCount == 0) { \ + type buffer[4096]; \ + drflac_uint64 pcmFramesRead; \ + size_t sampleDataBufferSize = sizeof(buffer); \ + \ + pSampleData = (type*)drflac__malloc_from_callbacks(sampleDataBufferSize, &pFlac->allocationCallbacks); \ + if (pSampleData == NULL) { \ + goto on_error; \ + } \ + \ + while ((pcmFramesRead = (drflac_uint64)drflac_read_pcm_frames_##extension(pFlac, sizeof(buffer)/sizeof(buffer[0])/pFlac->channels, buffer)) > 0) { \ + if (((totalPCMFrameCount + pcmFramesRead) * pFlac->channels * sizeof(type)) > sampleDataBufferSize) { \ + type* pNewSampleData; \ + size_t newSampleDataBufferSize; \ + \ + newSampleDataBufferSize = sampleDataBufferSize * 2; \ + pNewSampleData = (type*)drflac__realloc_from_callbacks(pSampleData, newSampleDataBufferSize, sampleDataBufferSize, &pFlac->allocationCallbacks); \ + if (pNewSampleData == NULL) { \ + drflac__free_from_callbacks(pSampleData, &pFlac->allocationCallbacks); \ + goto on_error; \ + } \ + \ + sampleDataBufferSize = newSampleDataBufferSize; \ + pSampleData = pNewSampleData; \ + } \ + \ + DRFLAC_COPY_MEMORY(pSampleData + (totalPCMFrameCount*pFlac->channels), buffer, (size_t)(pcmFramesRead*pFlac->channels*sizeof(type))); \ + totalPCMFrameCount += pcmFramesRead; \ + } \ + \ + /* At this point everything should be decoded, but we just want to fill the unused part buffer with silence - need to \ + protect those ears from random noise! */ \ + DRFLAC_ZERO_MEMORY(pSampleData + (totalPCMFrameCount*pFlac->channels), (size_t)(sampleDataBufferSize - totalPCMFrameCount*pFlac->channels*sizeof(type))); \ + } else { \ + drflac_uint64 dataSize = totalPCMFrameCount*pFlac->channels*sizeof(type); \ + if (dataSize > (drflac_uint64)DRFLAC_SIZE_MAX) { \ + goto on_error; /* The decoded data is too big. */ \ + } \ + \ + pSampleData = (type*)drflac__malloc_from_callbacks((size_t)dataSize, &pFlac->allocationCallbacks); /* <-- Safe cast as per the check above. */ \ + if (pSampleData == NULL) { \ + goto on_error; \ + } \ + \ + totalPCMFrameCount = drflac_read_pcm_frames_##extension(pFlac, pFlac->totalPCMFrameCount, pSampleData); \ + } \ + \ + if (sampleRateOut) *sampleRateOut = pFlac->sampleRate; \ + if (channelsOut) *channelsOut = pFlac->channels; \ + if (totalPCMFrameCountOut) *totalPCMFrameCountOut = totalPCMFrameCount; \ + \ + drflac_close(pFlac); \ + return pSampleData; \ + \ +on_error: \ + drflac_close(pFlac); \ + return NULL; \ +} + +DRFLAC_DEFINE_FULL_READ_AND_CLOSE(s32, drflac_int32) +DRFLAC_DEFINE_FULL_READ_AND_CLOSE(s16, drflac_int16) +DRFLAC_DEFINE_FULL_READ_AND_CLOSE(f32, float) + +DRFLAC_API drflac_int32* drflac_open_and_read_pcm_frames_s32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalPCMFrameCountOut) { + *totalPCMFrameCountOut = 0; + } + + pFlac = drflac_open(onRead, onSeek, pUserData, pAllocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_read_and_close_s32(pFlac, channelsOut, sampleRateOut, totalPCMFrameCountOut); +} + +DRFLAC_API drflac_int16* drflac_open_and_read_pcm_frames_s16(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalPCMFrameCountOut) { + *totalPCMFrameCountOut = 0; + } + + pFlac = drflac_open(onRead, onSeek, pUserData, pAllocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_read_and_close_s16(pFlac, channelsOut, sampleRateOut, totalPCMFrameCountOut); +} + +DRFLAC_API float* drflac_open_and_read_pcm_frames_f32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + + if (channelsOut) { + *channelsOut = 0; + } + if (sampleRateOut) { + *sampleRateOut = 0; + } + if (totalPCMFrameCountOut) { + *totalPCMFrameCountOut = 0; + } + + pFlac = drflac_open(onRead, onSeek, pUserData, pAllocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_read_and_close_f32(pFlac, channelsOut, sampleRateOut, totalPCMFrameCountOut); +} + +#ifndef DR_FLAC_NO_STDIO +DRFLAC_API drflac_int32* drflac_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + + if (sampleRate) { + *sampleRate = 0; + } + if (channels) { + *channels = 0; + } + if (totalPCMFrameCount) { + *totalPCMFrameCount = 0; + } + + pFlac = drflac_open_file(filename, pAllocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_read_and_close_s32(pFlac, channels, sampleRate, totalPCMFrameCount); +} + +DRFLAC_API drflac_int16* drflac_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + + if (sampleRate) { + *sampleRate = 0; + } + if (channels) { + *channels = 0; + } + if (totalPCMFrameCount) { + *totalPCMFrameCount = 0; + } + + pFlac = drflac_open_file(filename, pAllocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_read_and_close_s16(pFlac, channels, sampleRate, totalPCMFrameCount); +} + +DRFLAC_API float* drflac_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + + if (sampleRate) { + *sampleRate = 0; + } + if (channels) { + *channels = 0; + } + if (totalPCMFrameCount) { + *totalPCMFrameCount = 0; + } + + pFlac = drflac_open_file(filename, pAllocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_read_and_close_f32(pFlac, channels, sampleRate, totalPCMFrameCount); +} +#endif + +DRFLAC_API drflac_int32* drflac_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + + if (sampleRate) { + *sampleRate = 0; + } + if (channels) { + *channels = 0; + } + if (totalPCMFrameCount) { + *totalPCMFrameCount = 0; + } + + pFlac = drflac_open_memory(data, dataSize, pAllocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_read_and_close_s32(pFlac, channels, sampleRate, totalPCMFrameCount); +} + +DRFLAC_API drflac_int16* drflac_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + + if (sampleRate) { + *sampleRate = 0; + } + if (channels) { + *channels = 0; + } + if (totalPCMFrameCount) { + *totalPCMFrameCount = 0; + } + + pFlac = drflac_open_memory(data, dataSize, pAllocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_read_and_close_s16(pFlac, channels, sampleRate, totalPCMFrameCount); +} + +DRFLAC_API float* drflac_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + drflac* pFlac; + + if (sampleRate) { + *sampleRate = 0; + } + if (channels) { + *channels = 0; + } + if (totalPCMFrameCount) { + *totalPCMFrameCount = 0; + } + + pFlac = drflac_open_memory(data, dataSize, pAllocationCallbacks); + if (pFlac == NULL) { + return NULL; + } + + return drflac__full_read_and_close_f32(pFlac, channels, sampleRate, totalPCMFrameCount); +} + + +DRFLAC_API void drflac_free(void* p, const drflac_allocation_callbacks* pAllocationCallbacks) +{ + if (pAllocationCallbacks != NULL) { + drflac__free_from_callbacks(p, pAllocationCallbacks); + } else { + drflac__free_default(p, NULL); + } +} + + + + +DRFLAC_API void drflac_init_vorbis_comment_iterator(drflac_vorbis_comment_iterator* pIter, drflac_uint32 commentCount, const void* pComments) +{ + if (pIter == NULL) { + return; + } + + pIter->countRemaining = commentCount; + pIter->pRunningData = (const char*)pComments; +} + +DRFLAC_API const char* drflac_next_vorbis_comment(drflac_vorbis_comment_iterator* pIter, drflac_uint32* pCommentLengthOut) +{ + drflac_int32 length; + const char* pComment; + + /* Safety. */ + if (pCommentLengthOut) { + *pCommentLengthOut = 0; + } + + if (pIter == NULL || pIter->countRemaining == 0 || pIter->pRunningData == NULL) { + return NULL; + } + + length = drflac__le2host_32_ptr_unaligned(pIter->pRunningData); + pIter->pRunningData += 4; + + pComment = pIter->pRunningData; + pIter->pRunningData += length; + pIter->countRemaining -= 1; + + if (pCommentLengthOut) { + *pCommentLengthOut = length; + } + + return pComment; +} + + + + +DRFLAC_API void drflac_init_cuesheet_track_iterator(drflac_cuesheet_track_iterator* pIter, drflac_uint32 trackCount, const void* pTrackData) +{ + if (pIter == NULL) { + return; + } + + pIter->countRemaining = trackCount; + pIter->pRunningData = (const char*)pTrackData; +} + +DRFLAC_API drflac_bool32 drflac_next_cuesheet_track(drflac_cuesheet_track_iterator* pIter, drflac_cuesheet_track* pCuesheetTrack) +{ + drflac_cuesheet_track cuesheetTrack; + const char* pRunningData; + drflac_uint64 offsetHi; + drflac_uint64 offsetLo; + + if (pIter == NULL || pIter->countRemaining == 0 || pIter->pRunningData == NULL) { + return DRFLAC_FALSE; + } + + pRunningData = pIter->pRunningData; + + offsetHi = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + offsetLo = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4; + cuesheetTrack.offset = offsetLo | (offsetHi << 32); + cuesheetTrack.trackNumber = pRunningData[0]; pRunningData += 1; + DRFLAC_COPY_MEMORY(cuesheetTrack.ISRC, pRunningData, sizeof(cuesheetTrack.ISRC)); pRunningData += 12; + cuesheetTrack.isAudio = (pRunningData[0] & 0x80) != 0; + cuesheetTrack.preEmphasis = (pRunningData[0] & 0x40) != 0; pRunningData += 14; + cuesheetTrack.indexCount = pRunningData[0]; pRunningData += 1; + cuesheetTrack.pIndexPoints = (const drflac_cuesheet_track_index*)pRunningData; pRunningData += cuesheetTrack.indexCount * sizeof(drflac_cuesheet_track_index); + + pIter->pRunningData = pRunningData; + pIter->countRemaining -= 1; + + if (pCuesheetTrack) { + *pCuesheetTrack = cuesheetTrack; + } + + return DRFLAC_TRUE; +} + +#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))) + #pragma GCC diagnostic pop +#endif +#endif /* dr_flac_c */ +#endif /* DR_FLAC_IMPLEMENTATION */ + + +/* +REVISION HISTORY +================ +v0.12.39 - 2022-09-17 + - Fix compilation with DJGPP. + - Fix compilation error with Visual Studio 2019 and the ARM build. + - Fix an error with SSE 4.1 detection. + - Add support for disabling wchar_t with DR_WAV_NO_WCHAR. + - Improve compatibility with compilers which lack support for explicit struct packing. + - Improve compatibility with low-end and embedded hardware by reducing the amount of stack + allocation when loading an Ogg encapsulated file. + +v0.12.38 - 2022-04-10 + - Fix compilation error on older versions of GCC. + +v0.12.37 - 2022-02-12 + - Improve ARM detection. + +v0.12.36 - 2022-02-07 + - Fix a compilation error with the ARM build. + +v0.12.35 - 2022-02-06 + - Fix a bug due to underestimating the amount of precision required for the prediction stage. + - Fix some bugs found from fuzz testing. + +v0.12.34 - 2022-01-07 + - Fix some misalignment bugs when reading metadata. + +v0.12.33 - 2021-12-22 + - Fix a bug with seeking when the seek table does not start at PCM frame 0. + +v0.12.32 - 2021-12-11 + - Fix a warning with Clang. + +v0.12.31 - 2021-08-16 + - Silence some warnings. + +v0.12.30 - 2021-07-31 + - Fix platform detection for ARM64. + +v0.12.29 - 2021-04-02 + - Fix a bug where the running PCM frame index is set to an invalid value when over-seeking. + - Fix a decoding error due to an incorrect validation check. + +v0.12.28 - 2021-02-21 + - Fix a warning due to referencing _MSC_VER when it is undefined. + +v0.12.27 - 2021-01-31 + - Fix a static analysis warning. + +v0.12.26 - 2021-01-17 + - Fix a compilation warning due to _BSD_SOURCE being deprecated. + +v0.12.25 - 2020-12-26 + - Update documentation. + +v0.12.24 - 2020-11-29 + - Fix ARM64/NEON detection when compiling with MSVC. + +v0.12.23 - 2020-11-21 + - Fix compilation with OpenWatcom. + +v0.12.22 - 2020-11-01 + - Fix an error with the previous release. + +v0.12.21 - 2020-11-01 + - Fix a possible deadlock when seeking. + - Improve compiler support for older versions of GCC. + +v0.12.20 - 2020-09-08 + - Fix a compilation error on older compilers. + +v0.12.19 - 2020-08-30 + - Fix a bug due to an undefined 32-bit shift. + +v0.12.18 - 2020-08-14 + - Fix a crash when compiling with clang-cl. + +v0.12.17 - 2020-08-02 + - Simplify sized types. + +v0.12.16 - 2020-07-25 + - Fix a compilation warning. + +v0.12.15 - 2020-07-06 + - Check for negative LPC shifts and return an error. + +v0.12.14 - 2020-06-23 + - Add include guard for the implementation section. + +v0.12.13 - 2020-05-16 + - Add compile-time and run-time version querying. + - DRFLAC_VERSION_MINOR + - DRFLAC_VERSION_MAJOR + - DRFLAC_VERSION_REVISION + - DRFLAC_VERSION_STRING + - drflac_version() + - drflac_version_string() + +v0.12.12 - 2020-04-30 + - Fix compilation errors with VC6. + +v0.12.11 - 2020-04-19 + - Fix some pedantic warnings. + - Fix some undefined behaviour warnings. + +v0.12.10 - 2020-04-10 + - Fix some bugs when trying to seek with an invalid seek table. + +v0.12.9 - 2020-04-05 + - Fix warnings. + +v0.12.8 - 2020-04-04 + - Add drflac_open_file_w() and drflac_open_file_with_metadata_w(). + - Fix some static analysis warnings. + - Minor documentation updates. + +v0.12.7 - 2020-03-14 + - Fix compilation errors with VC6. + +v0.12.6 - 2020-03-07 + - Fix compilation error with Visual Studio .NET 2003. + +v0.12.5 - 2020-01-30 + - Silence some static analysis warnings. + +v0.12.4 - 2020-01-29 + - Silence some static analysis warnings. + +v0.12.3 - 2019-12-02 + - Fix some warnings when compiling with GCC and the -Og flag. + - Fix a crash in out-of-memory situations. + - Fix potential integer overflow bug. + - Fix some static analysis warnings. + - Fix a possible crash when using custom memory allocators without a custom realloc() implementation. + - Fix a bug with binary search seeking where the bits per sample is not a multiple of 8. + +v0.12.2 - 2019-10-07 + - Internal code clean up. + +v0.12.1 - 2019-09-29 + - Fix some Clang Static Analyzer warnings. + - Fix an unused variable warning. + +v0.12.0 - 2019-09-23 + - API CHANGE: Add support for user defined memory allocation routines. This system allows the program to specify their own memory allocation + routines with a user data pointer for client-specific contextual data. This adds an extra parameter to the end of the following APIs: + - drflac_open() + - drflac_open_relaxed() + - drflac_open_with_metadata() + - drflac_open_with_metadata_relaxed() + - drflac_open_file() + - drflac_open_file_with_metadata() + - drflac_open_memory() + - drflac_open_memory_with_metadata() + - drflac_open_and_read_pcm_frames_s32() + - drflac_open_and_read_pcm_frames_s16() + - drflac_open_and_read_pcm_frames_f32() + - drflac_open_file_and_read_pcm_frames_s32() + - drflac_open_file_and_read_pcm_frames_s16() + - drflac_open_file_and_read_pcm_frames_f32() + - drflac_open_memory_and_read_pcm_frames_s32() + - drflac_open_memory_and_read_pcm_frames_s16() + - drflac_open_memory_and_read_pcm_frames_f32() + Set this extra parameter to NULL to use defaults which is the same as the previous behaviour. Setting this NULL will use + DRFLAC_MALLOC, DRFLAC_REALLOC and DRFLAC_FREE. + - Remove deprecated APIs: + - drflac_read_s32() + - drflac_read_s16() + - drflac_read_f32() + - drflac_seek_to_sample() + - drflac_open_and_decode_s32() + - drflac_open_and_decode_s16() + - drflac_open_and_decode_f32() + - drflac_open_and_decode_file_s32() + - drflac_open_and_decode_file_s16() + - drflac_open_and_decode_file_f32() + - drflac_open_and_decode_memory_s32() + - drflac_open_and_decode_memory_s16() + - drflac_open_and_decode_memory_f32() + - Remove drflac.totalSampleCount which is now replaced with drflac.totalPCMFrameCount. You can emulate drflac.totalSampleCount + by doing pFlac->totalPCMFrameCount*pFlac->channels. + - Rename drflac.currentFrame to drflac.currentFLACFrame to remove ambiguity with PCM frames. + - Fix errors when seeking to the end of a stream. + - Optimizations to seeking. + - SSE improvements and optimizations. + - ARM NEON optimizations. + - Optimizations to drflac_read_pcm_frames_s16(). + - Optimizations to drflac_read_pcm_frames_s32(). + +v0.11.10 - 2019-06-26 + - Fix a compiler error. + +v0.11.9 - 2019-06-16 + - Silence some ThreadSanitizer warnings. + +v0.11.8 - 2019-05-21 + - Fix warnings. + +v0.11.7 - 2019-05-06 + - C89 fixes. + +v0.11.6 - 2019-05-05 + - Add support for C89. + - Fix a compiler warning when CRC is disabled. + - Change license to choice of public domain or MIT-0. + +v0.11.5 - 2019-04-19 + - Fix a compiler error with GCC. + +v0.11.4 - 2019-04-17 + - Fix some warnings with GCC when compiling with -std=c99. + +v0.11.3 - 2019-04-07 + - Silence warnings with GCC. + +v0.11.2 - 2019-03-10 + - Fix a warning. + +v0.11.1 - 2019-02-17 + - Fix a potential bug with seeking. + +v0.11.0 - 2018-12-16 + - API CHANGE: Deprecated drflac_read_s32(), drflac_read_s16() and drflac_read_f32() and replaced them with + drflac_read_pcm_frames_s32(), drflac_read_pcm_frames_s16() and drflac_read_pcm_frames_f32(). The new APIs take + and return PCM frame counts instead of sample counts. To upgrade you will need to change the input count by + dividing it by the channel count, and then do the same with the return value. + - API_CHANGE: Deprecated drflac_seek_to_sample() and replaced with drflac_seek_to_pcm_frame(). Same rules as + the changes to drflac_read_*() apply. + - API CHANGE: Deprecated drflac_open_and_decode_*() and replaced with drflac_open_*_and_read_*(). Same rules as + the changes to drflac_read_*() apply. + - Optimizations. + +v0.10.0 - 2018-09-11 + - Remove the DR_FLAC_NO_WIN32_IO option and the Win32 file IO functionality. If you need to use Win32 file IO you + need to do it yourself via the callback API. + - Fix the clang build. + - Fix undefined behavior. + - Fix errors with CUESHEET metdata blocks. + - Add an API for iterating over each cuesheet track in the CUESHEET metadata block. This works the same way as the + Vorbis comment API. + - Other miscellaneous bug fixes, mostly relating to invalid FLAC streams. + - Minor optimizations. + +v0.9.11 - 2018-08-29 + - Fix a bug with sample reconstruction. + +v0.9.10 - 2018-08-07 + - Improve 64-bit detection. + +v0.9.9 - 2018-08-05 + - Fix C++ build on older versions of GCC. + +v0.9.8 - 2018-07-24 + - Fix compilation errors. + +v0.9.7 - 2018-07-05 + - Fix a warning. + +v0.9.6 - 2018-06-29 + - Fix some typos. + +v0.9.5 - 2018-06-23 + - Fix some warnings. + +v0.9.4 - 2018-06-14 + - Optimizations to seeking. + - Clean up. + +v0.9.3 - 2018-05-22 + - Bug fix. + +v0.9.2 - 2018-05-12 + - Fix a compilation error due to a missing break statement. + +v0.9.1 - 2018-04-29 + - Fix compilation error with Clang. + +v0.9 - 2018-04-24 + - Fix Clang build. + - Start using major.minor.revision versioning. + +v0.8g - 2018-04-19 + - Fix build on non-x86/x64 architectures. + +v0.8f - 2018-02-02 + - Stop pretending to support changing rate/channels mid stream. + +v0.8e - 2018-02-01 + - Fix a crash when the block size of a frame is larger than the maximum block size defined by the FLAC stream. + - Fix a crash the the Rice partition order is invalid. + +v0.8d - 2017-09-22 + - Add support for decoding streams with ID3 tags. ID3 tags are just skipped. + +v0.8c - 2017-09-07 + - Fix warning on non-x86/x64 architectures. + +v0.8b - 2017-08-19 + - Fix build on non-x86/x64 architectures. + +v0.8a - 2017-08-13 + - A small optimization for the Clang build. + +v0.8 - 2017-08-12 + - API CHANGE: Rename dr_* types to drflac_*. + - Optimizations. This brings dr_flac back to about the same class of efficiency as the reference implementation. + - Add support for custom implementations of malloc(), realloc(), etc. + - Add CRC checking to Ogg encapsulated streams. + - Fix VC++ 6 build. This is only for the C++ compiler. The C compiler is not currently supported. + - Bug fixes. + +v0.7 - 2017-07-23 + - Add support for opening a stream without a header block. To do this, use drflac_open_relaxed() / drflac_open_with_metadata_relaxed(). + +v0.6 - 2017-07-22 + - Add support for recovering from invalid frames. With this change, dr_flac will simply skip over invalid frames as if they + never existed. Frames are checked against their sync code, the CRC-8 of the frame header and the CRC-16 of the whole frame. + +v0.5 - 2017-07-16 + - Fix typos. + - Change drflac_bool* types to unsigned. + - Add CRC checking. This makes dr_flac slower, but can be disabled with #define DR_FLAC_NO_CRC. + +v0.4f - 2017-03-10 + - Fix a couple of bugs with the bitstreaming code. + +v0.4e - 2017-02-17 + - Fix some warnings. + +v0.4d - 2016-12-26 + - Add support for 32-bit floating-point PCM decoding. + - Use drflac_int* and drflac_uint* sized types to improve compiler support. + - Minor improvements to documentation. + +v0.4c - 2016-12-26 + - Add support for signed 16-bit integer PCM decoding. + +v0.4b - 2016-10-23 + - A minor change to drflac_bool8 and drflac_bool32 types. + +v0.4a - 2016-10-11 + - Rename drBool32 to drflac_bool32 for styling consistency. + +v0.4 - 2016-09-29 + - API/ABI CHANGE: Use fixed size 32-bit booleans instead of the built-in bool type. + - API CHANGE: Rename drflac_open_and_decode*() to drflac_open_and_decode*_s32(). + - API CHANGE: Swap the order of "channels" and "sampleRate" parameters in drflac_open_and_decode*(). Rationale for this is to + keep it consistent with drflac_audio. + +v0.3f - 2016-09-21 + - Fix a warning with GCC. + +v0.3e - 2016-09-18 + - Fixed a bug where GCC 4.3+ was not getting properly identified. + - Fixed a few typos. + - Changed date formats to ISO 8601 (YYYY-MM-DD). + +v0.3d - 2016-06-11 + - Minor clean up. + +v0.3c - 2016-05-28 + - Fixed compilation error. + +v0.3b - 2016-05-16 + - Fixed Linux/GCC build. + - Updated documentation. + +v0.3a - 2016-05-15 + - Minor fixes to documentation. + +v0.3 - 2016-05-11 + - Optimizations. Now at about parity with the reference implementation on 32-bit builds. + - Lots of clean up. + +v0.2b - 2016-05-10 + - Bug fixes. + +v0.2a - 2016-05-10 + - Made drflac_open_and_decode() more robust. + - Removed an unused debugging variable + +v0.2 - 2016-05-09 + - Added support for Ogg encapsulation. + - API CHANGE. Have the onSeek callback take a third argument which specifies whether or not the seek + should be relative to the start or the current position. Also changes the seeking rules such that + seeking offsets will never be negative. + - Have drflac_open_and_decode() fail gracefully if the stream has an unknown total sample count. + +v0.1b - 2016-05-07 + - Properly close the file handle in drflac_open_file() and family when the decoder fails to initialize. + - Removed a stale comment. + +v0.1a - 2016-05-05 + - Minor formatting changes. + - Fixed a warning on the GCC build. + +v0.1 - 2016-05-03 + - Initial versioned release. +*/ + +/* +This software is available as a choice of the following licenses. Choose +whichever you prefer. + +=============================================================================== +ALTERNATIVE 1 - Public Domain (www.unlicense.org) +=============================================================================== +This is free and unencumbered software released into the public domain. + +Anyone is free to copy, modify, publish, use, compile, sell, or distribute this +software, either in source code form or as a compiled binary, for any purpose, +commercial or non-commercial, and by any means. + +In jurisdictions that recognize copyright laws, the author or authors of this +software dedicate any and all copyright interest in the software to the public +domain. We make this dedication for the benefit of the public at large and to +the detriment of our heirs and successors. We intend this dedication to be an +overt act of relinquishment in perpetuity of all present and future rights to +this software under copyright law. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +For more information, please refer to + +=============================================================================== +ALTERNATIVE 2 - MIT No Attribution +=============================================================================== +Copyright 2020 David Reid + +Permission is hereby granted, free of charge, to any person obtaining a copy of +this software and associated documentation files (the "Software"), to deal in +the Software without restriction, including without limitation the rights to +use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies +of the Software, and to permit persons to whom the Software is furnished to do +so. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. +*/ diff --git a/3rdparty/libchdr/include/libchdr/bitstream.h b/3rdparty/libchdr/include/libchdr/bitstream.h new file mode 100644 index 0000000000000..d376373b76341 --- /dev/null +++ b/3rdparty/libchdr/include/libchdr/bitstream.h @@ -0,0 +1,43 @@ +/* license:BSD-3-Clause + * copyright-holders:Aaron Giles +*************************************************************************** + + bitstream.h + + Helper classes for reading/writing at the bit level. + +***************************************************************************/ + +#pragma once + +#ifndef __BITSTREAM_H__ +#define __BITSTREAM_H__ + +#include + +/*************************************************************************** + * TYPE DEFINITIONS + *************************************************************************** + */ + +/* helper class for reading from a bit buffer */ +struct bitstream +{ + uint32_t buffer; /* current bit accumulator */ + int bits; /* number of bits in the accumulator */ + const uint8_t * read; /* read pointer */ + uint32_t doffset; /* byte offset within the data */ + uint32_t dlength; /* length of the data */ +}; + +struct bitstream* create_bitstream(const void *src, uint32_t srclength); +int bitstream_overflow(struct bitstream* bitstream); +uint32_t bitstream_read_offset(struct bitstream* bitstream); + +uint32_t bitstream_read(struct bitstream* bitstream, int numbits); +uint32_t bitstream_peek(struct bitstream* bitstream, int numbits); +void bitstream_remove(struct bitstream* bitstream, int numbits); +uint32_t bitstream_flush(struct bitstream* bitstream); + + +#endif diff --git a/3rdparty/libchdr/include/libchdr/cdrom.h b/3rdparty/libchdr/include/libchdr/cdrom.h new file mode 100644 index 0000000000000..816e6a5c4fe9e --- /dev/null +++ b/3rdparty/libchdr/include/libchdr/cdrom.h @@ -0,0 +1,110 @@ +/* license:BSD-3-Clause + * copyright-holders:Aaron Giles +*************************************************************************** + + cdrom.h + + Generic MAME cd-rom implementation + +***************************************************************************/ + +#pragma once + +#ifndef __CDROM_H__ +#define __CDROM_H__ + +#include +#include + +/*************************************************************************** + CONSTANTS +***************************************************************************/ + +/* tracks are padded to a multiple of this many frames */ +#define CD_TRACK_PADDING (4) +#define CD_MAX_TRACKS (99) /* AFAIK the theoretical limit */ +#define CD_MAX_SECTOR_DATA (2352) +#define CD_MAX_SUBCODE_DATA (96) + +#define CD_FRAME_SIZE (CD_MAX_SECTOR_DATA + CD_MAX_SUBCODE_DATA) +#define CD_FRAMES_PER_HUNK (8) + +#define CD_METADATA_WORDS (1+(CD_MAX_TRACKS * 6)) + +enum +{ + CD_TRACK_MODE1 = 0, /* mode 1 2048 bytes/sector */ + CD_TRACK_MODE1_RAW, /* mode 1 2352 bytes/sector */ + CD_TRACK_MODE2, /* mode 2 2336 bytes/sector */ + CD_TRACK_MODE2_FORM1, /* mode 2 2048 bytes/sector */ + CD_TRACK_MODE2_FORM2, /* mode 2 2324 bytes/sector */ + CD_TRACK_MODE2_FORM_MIX, /* mode 2 2336 bytes/sector */ + CD_TRACK_MODE2_RAW, /* mode 2 2352 bytes / sector */ + CD_TRACK_AUDIO, /* redbook audio track 2352 bytes/sector (588 samples) */ + + CD_TRACK_RAW_DONTCARE /* special flag for cdrom_read_data: just return me whatever is there */ +}; + +enum +{ + CD_SUB_NORMAL = 0, /* "cooked" 96 bytes per sector */ + CD_SUB_RAW, /* raw uninterleaved 96 bytes per sector */ + CD_SUB_NONE /* no subcode data stored */ +}; + +#define CD_FLAG_GDROM 0x00000001 /* disc is a GD-ROM, all tracks should be stored with GD-ROM metadata */ +#define CD_FLAG_GDROMLE 0x00000002 /* legacy GD-ROM, with little-endian CDDA data */ + +/*************************************************************************** + FUNCTION PROTOTYPES +***************************************************************************/ + +#ifdef WANT_RAW_DATA_SECTOR +/* ECC utilities */ +int ecc_verify(const uint8_t *sector); +void ecc_generate(uint8_t *sector); +void ecc_clear(uint8_t *sector); +#endif + + + +/*************************************************************************** + INLINE FUNCTIONS +***************************************************************************/ + +static inline uint32_t msf_to_lba(uint32_t msf) +{ + return ( ((msf&0x00ff0000)>>16) * 60 * 75) + (((msf&0x0000ff00)>>8) * 75) + ((msf&0x000000ff)>>0); +} + +static inline uint32_t lba_to_msf(uint32_t lba) +{ + uint8_t m, s, f; + + m = lba / (60 * 75); + lba -= m * (60 * 75); + s = lba / 75; + f = lba % 75; + + return ((m / 10) << 20) | ((m % 10) << 16) | + ((s / 10) << 12) | ((s % 10) << 8) | + ((f / 10) << 4) | ((f % 10) << 0); +} + +/** + * segacd needs it like this.. investigate + * Angelo also says PCE tracks often start playing at the + * wrong address.. related? + **/ +static inline uint32_t lba_to_msf_alt(int lba) +{ + uint32_t ret = 0; + + ret |= ((lba / (60 * 75))&0xff)<<16; + ret |= (((lba / 75) % 60)&0xff)<<8; + ret |= ((lba % 75)&0xff)<<0; + + return ret; +} + +#endif /* __CDROM_H__ */ diff --git a/3rdparty/libchdr/include/libchdr/chd.h b/3rdparty/libchdr/include/libchdr/chd.h new file mode 100644 index 0000000000000..0beed490359d0 --- /dev/null +++ b/3rdparty/libchdr/include/libchdr/chd.h @@ -0,0 +1,437 @@ +/*************************************************************************** + + chd.h + + MAME Compressed Hunks of Data file format + +**************************************************************************** + + Copyright Aaron Giles + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in + the documentation and/or other materials provided with the + distribution. + * Neither the name 'MAME' nor the names of its contributors may be + used to endorse or promote products derived from this software + without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY AARON GILES ''AS IS'' AND ANY EXPRESS OR + IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL AARON GILES BE LIABLE FOR ANY DIRECT, + INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, + STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING + IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#pragma once + +#ifndef __CHD_H__ +#define __CHD_H__ + +#ifdef __cplusplus +extern "C" { +#endif + +#include +#include +#include + +/*************************************************************************** + + Compressed Hunks of Data header format. All numbers are stored in + Motorola (big-endian) byte ordering. The header is 76 (V1) or 80 (V2) + bytes long. + + V1 header: + + [ 0] char tag[8]; // 'MComprHD' + [ 8] UINT32 length; // length of header (including tag and length fields) + [ 12] UINT32 version; // drive format version + [ 16] UINT32 flags; // flags (see below) + [ 20] UINT32 compression; // compression type + [ 24] UINT32 hunksize; // 512-byte sectors per hunk + [ 28] UINT32 totalhunks; // total # of hunks represented + [ 32] UINT32 cylinders; // number of cylinders on hard disk + [ 36] UINT32 heads; // number of heads on hard disk + [ 40] UINT32 sectors; // number of sectors on hard disk + [ 44] UINT8 md5[16]; // MD5 checksum of raw data + [ 60] UINT8 parentmd5[16]; // MD5 checksum of parent file + [ 76] (V1 header length) + + V2 header: + + [ 0] char tag[8]; // 'MComprHD' + [ 8] UINT32 length; // length of header (including tag and length fields) + [ 12] UINT32 version; // drive format version + [ 16] UINT32 flags; // flags (see below) + [ 20] UINT32 compression; // compression type + [ 24] UINT32 hunksize; // seclen-byte sectors per hunk + [ 28] UINT32 totalhunks; // total # of hunks represented + [ 32] UINT32 cylinders; // number of cylinders on hard disk + [ 36] UINT32 heads; // number of heads on hard disk + [ 40] UINT32 sectors; // number of sectors on hard disk + [ 44] UINT8 md5[16]; // MD5 checksum of raw data + [ 60] UINT8 parentmd5[16]; // MD5 checksum of parent file + [ 76] UINT32 seclen; // number of bytes per sector + [ 80] (V2 header length) + + V3 header: + + [ 0] char tag[8]; // 'MComprHD' + [ 8] UINT32 length; // length of header (including tag and length fields) + [ 12] UINT32 version; // drive format version + [ 16] UINT32 flags; // flags (see below) + [ 20] UINT32 compression; // compression type + [ 24] UINT32 totalhunks; // total # of hunks represented + [ 28] UINT64 logicalbytes; // logical size of the data (in bytes) + [ 36] UINT64 metaoffset; // offset to the first blob of metadata + [ 44] UINT8 md5[16]; // MD5 checksum of raw data + [ 60] UINT8 parentmd5[16]; // MD5 checksum of parent file + [ 76] UINT32 hunkbytes; // number of bytes per hunk + [ 80] UINT8 sha1[20]; // SHA1 checksum of raw data + [100] UINT8 parentsha1[20];// SHA1 checksum of parent file + [120] (V3 header length) + + V4 header: + + [ 0] char tag[8]; // 'MComprHD' + [ 8] UINT32 length; // length of header (including tag and length fields) + [ 12] UINT32 version; // drive format version + [ 16] UINT32 flags; // flags (see below) + [ 20] UINT32 compression; // compression type + [ 24] UINT32 totalhunks; // total # of hunks represented + [ 28] UINT64 logicalbytes; // logical size of the data (in bytes) + [ 36] UINT64 metaoffset; // offset to the first blob of metadata + [ 44] UINT32 hunkbytes; // number of bytes per hunk + [ 48] UINT8 sha1[20]; // combined raw+meta SHA1 + [ 68] UINT8 parentsha1[20];// combined raw+meta SHA1 of parent + [ 88] UINT8 rawsha1[20]; // raw data SHA1 + [108] (V4 header length) + + Flags: + 0x00000001 - set if this drive has a parent + 0x00000002 - set if this drive allows writes + + ========================================================================= + + V5 header: + + [ 0] char tag[8]; // 'MComprHD' + [ 8] uint32_t length; // length of header (including tag and length fields) + [ 12] uint32_t version; // drive format version + [ 16] uint32_t compressors[4];// which custom compressors are used? + [ 32] uint64_t logicalbytes; // logical size of the data (in bytes) + [ 40] uint64_t mapoffset; // offset to the map + [ 48] uint64_t metaoffset; // offset to the first blob of metadata + [ 56] uint32_t hunkbytes; // number of bytes per hunk (512k maximum) + [ 60] uint32_t unitbytes; // number of bytes per unit within each hunk + [ 64] uint8_t rawsha1[20]; // raw data SHA1 + [ 84] uint8_t sha1[20]; // combined raw+meta SHA1 + [104] uint8_t parentsha1[20];// combined raw+meta SHA1 of parent + [124] (V5 header length) + + If parentsha1 != 0, we have a parent (no need for flags) + If compressors[0] == 0, we are uncompressed (including maps) + + V5 uncompressed map format: + + [ 0] uint32_t offset; // starting offset / hunk size + + V5 compressed map format header: + + [ 0] uint32_t length; // length of compressed map + [ 4] UINT48 datastart; // offset of first block + [ 10] uint16_t crc; // crc-16 of the map + [ 12] uint8_t lengthbits; // bits used to encode complength + [ 13] uint8_t hunkbits; // bits used to encode self-refs + [ 14] uint8_t parentunitbits; // bits used to encode parent unit refs + [ 15] uint8_t reserved; // future use + [ 16] (compressed header length) + + Each compressed map entry, once expanded, looks like: + + [ 0] uint8_t compression; // compression type + [ 1] UINT24 complength; // compressed length + [ 4] UINT48 offset; // offset + [ 10] uint16_t crc; // crc-16 of the data + +***************************************************************************/ + + +/*************************************************************************** + CONSTANTS +***************************************************************************/ + +/* header information */ +#define CHD_HEADER_VERSION 5 +#define CHD_V1_HEADER_SIZE 76 +#define CHD_V2_HEADER_SIZE 80 +#define CHD_V3_HEADER_SIZE 120 +#define CHD_V4_HEADER_SIZE 108 +#define CHD_V5_HEADER_SIZE 124 + +#define CHD_MAX_HEADER_SIZE CHD_V5_HEADER_SIZE + +/* checksumming information */ +#define CHD_MD5_BYTES 16 +#define CHD_SHA1_BYTES 20 + +/* CHD global flags */ +#define CHDFLAGS_HAS_PARENT 0x00000001 +#define CHDFLAGS_IS_WRITEABLE 0x00000002 +#define CHDFLAGS_UNDEFINED 0xfffffffc + +#define CHD_MAKE_TAG(a,b,c,d) (((a) << 24) | ((b) << 16) | ((c) << 8) | (d)) + +/* compression types */ +#define CHDCOMPRESSION_NONE 0 +#define CHDCOMPRESSION_ZLIB 1 +#define CHDCOMPRESSION_ZLIB_PLUS 2 +#define CHDCOMPRESSION_AV 3 + +#define CHD_CODEC_NONE 0 +#define CHD_CODEC_ZLIB CHD_MAKE_TAG('z','l','i','b') +#define CHD_CODEC_LZMA CHD_MAKE_TAG('l','z','m','a') +#define CHD_CODEC_HUFFMAN CHD_MAKE_TAG('h','u','f','f') +#define CHD_CODEC_FLAC CHD_MAKE_TAG('f','l','a','c') +/* general codecs with CD frontend */ +#define CHD_CODEC_CD_ZLIB CHD_MAKE_TAG('c','d','z','l') +#define CHD_CODEC_CD_LZMA CHD_MAKE_TAG('c','d','l','z') +#define CHD_CODEC_CD_FLAC CHD_MAKE_TAG('c','d','f','l') + +/* A/V codec configuration parameters */ +#define AV_CODEC_COMPRESS_CONFIG 1 +#define AV_CODEC_DECOMPRESS_CONFIG 2 + +/* metadata parameters */ +#define CHDMETATAG_WILDCARD 0 +#define CHD_METAINDEX_APPEND ((UINT32)-1) + +/* metadata flags */ +#define CHD_MDFLAGS_CHECKSUM 0x01 /* indicates data is checksummed */ + +/* standard hard disk metadata */ +#define HARD_DISK_METADATA_TAG CHD_MAKE_TAG('G','D','D','D') +#define HARD_DISK_METADATA_FORMAT "CYLS:%d,HEADS:%d,SECS:%d,BPS:%d" + +/* hard disk identify information */ +#define HARD_DISK_IDENT_METADATA_TAG CHD_MAKE_TAG('I','D','N','T') + +/* hard disk key information */ +#define HARD_DISK_KEY_METADATA_TAG CHD_MAKE_TAG('K','E','Y',' ') + +/* pcmcia CIS information */ +#define PCMCIA_CIS_METADATA_TAG CHD_MAKE_TAG('C','I','S',' ') + +/* standard CD-ROM metadata */ +#define CDROM_OLD_METADATA_TAG CHD_MAKE_TAG('C','H','C','D') +#define CDROM_TRACK_METADATA_TAG CHD_MAKE_TAG('C','H','T','R') +#define CDROM_TRACK_METADATA_FORMAT "TRACK:%d TYPE:%s SUBTYPE:%s FRAMES:%d" +#define CDROM_TRACK_METADATA2_TAG CHD_MAKE_TAG('C','H','T','2') +#define CDROM_TRACK_METADATA2_FORMAT "TRACK:%d TYPE:%s SUBTYPE:%s FRAMES:%d PREGAP:%d PGTYPE:%s PGSUB:%s POSTGAP:%d" +#define GDROM_OLD_METADATA_TAG CHD_MAKE_TAG('C','H','G','T') +#define GDROM_TRACK_METADATA_TAG CHD_MAKE_TAG('C', 'H', 'G', 'D') +#define GDROM_TRACK_METADATA_FORMAT "TRACK:%d TYPE:%s SUBTYPE:%s FRAMES:%d PAD:%d PREGAP:%d PGTYPE:%s PGSUB:%s POSTGAP:%d" + +/* standard A/V metadata */ +#define AV_METADATA_TAG CHD_MAKE_TAG('A','V','A','V') +#define AV_METADATA_FORMAT "FPS:%d.%06d WIDTH:%d HEIGHT:%d INTERLACED:%d CHANNELS:%d SAMPLERATE:%d" + +/* A/V laserdisc frame metadata */ +#define AV_LD_METADATA_TAG CHD_MAKE_TAG('A','V','L','D') + +/* CHD open values */ +#define CHD_OPEN_READ 1 +#define CHD_OPEN_READWRITE 2 +#define CHD_OPEN_TRANSFER_FILE 4 /* Freeing of the FILE* is now libchdr's responsibility if open was successful */ + +/* error types */ +enum _chd_error +{ + CHDERR_NONE, + CHDERR_NO_INTERFACE, + CHDERR_OUT_OF_MEMORY, + CHDERR_INVALID_FILE, + CHDERR_INVALID_PARAMETER, + CHDERR_INVALID_DATA, + CHDERR_FILE_NOT_FOUND, + CHDERR_REQUIRES_PARENT, + CHDERR_FILE_NOT_WRITEABLE, + CHDERR_READ_ERROR, + CHDERR_WRITE_ERROR, + CHDERR_CODEC_ERROR, + CHDERR_INVALID_PARENT, + CHDERR_HUNK_OUT_OF_RANGE, + CHDERR_DECOMPRESSION_ERROR, + CHDERR_COMPRESSION_ERROR, + CHDERR_CANT_CREATE_FILE, + CHDERR_CANT_VERIFY, + CHDERR_NOT_SUPPORTED, + CHDERR_METADATA_NOT_FOUND, + CHDERR_INVALID_METADATA_SIZE, + CHDERR_UNSUPPORTED_VERSION, + CHDERR_VERIFY_INCOMPLETE, + CHDERR_INVALID_METADATA, + CHDERR_INVALID_STATE, + CHDERR_OPERATION_PENDING, + CHDERR_NO_ASYNC_OPERATION, + CHDERR_UNSUPPORTED_FORMAT +}; +typedef enum _chd_error chd_error; + + + +/*************************************************************************** + TYPE DEFINITIONS +***************************************************************************/ + +/* opaque types */ +typedef struct _chd_file chd_file; + + +/* extract header structure (NOT the on-disk header structure) */ +typedef struct _chd_header chd_header; +struct _chd_header +{ + UINT32 length; /* length of header data */ + UINT32 version; /* drive format version */ + UINT32 flags; /* flags field */ + UINT32 compression[4]; /* compression type */ + UINT32 hunkbytes; /* number of bytes per hunk */ + UINT32 totalhunks; /* total # of hunks represented */ + UINT64 logicalbytes; /* logical size of the data */ + UINT64 metaoffset; /* offset in file of first metadata */ + UINT64 mapoffset; /* TOOD V5 */ + UINT8 md5[CHD_MD5_BYTES]; /* overall MD5 checksum */ + UINT8 parentmd5[CHD_MD5_BYTES]; /* overall MD5 checksum of parent */ + UINT8 sha1[CHD_SHA1_BYTES]; /* overall SHA1 checksum */ + UINT8 rawsha1[CHD_SHA1_BYTES]; /* SHA1 checksum of raw data */ + UINT8 parentsha1[CHD_SHA1_BYTES]; /* overall SHA1 checksum of parent */ + UINT32 unitbytes; /* TODO V5 */ + UINT64 unitcount; /* TODO V5 */ + UINT32 hunkcount; /* TODO V5 */ + + /* map information */ + UINT32 mapentrybytes; /* length of each entry in a map (V5) */ + UINT8* rawmap; /* raw map data */ + + UINT32 obsolete_cylinders; /* obsolete field -- do not use! */ + UINT32 obsolete_sectors; /* obsolete field -- do not use! */ + UINT32 obsolete_heads; /* obsolete field -- do not use! */ + UINT32 obsolete_hunksize; /* obsolete field -- do not use! */ +}; + + +/* structure for returning information about a verification pass */ +typedef struct _chd_verify_result chd_verify_result; +struct _chd_verify_result +{ + UINT8 md5[CHD_MD5_BYTES]; /* overall MD5 checksum */ + UINT8 sha1[CHD_SHA1_BYTES]; /* overall SHA1 checksum */ + UINT8 rawsha1[CHD_SHA1_BYTES]; /* SHA1 checksum of raw data */ + UINT8 metasha1[CHD_SHA1_BYTES]; /* SHA1 checksum of metadata */ +}; + + + +/*************************************************************************** + FUNCTION PROTOTYPES +***************************************************************************/ + +#ifdef _MSC_VER +#ifdef CHD_DLL +#ifdef CHD_DLL_EXPORTS +#define CHD_EXPORT __declspec(dllexport) +#else +#define CHD_EXPORT __declspec(dllimport) +#endif +#else +#define CHD_EXPORT +#endif +#else +#define CHD_EXPORT __attribute__ ((visibility("default"))) +#endif + +/* ----- CHD file management ----- */ + +/* create a new CHD file fitting the given description */ +/* chd_error chd_create(const char *filename, UINT64 logicalbytes, UINT32 hunkbytes, UINT32 compression, chd_file *parent); */ + +/* same as chd_create(), but accepts an already-opened core_file object */ +/* chd_error chd_create_file(core_file *file, UINT64 logicalbytes, UINT32 hunkbytes, UINT32 compression, chd_file *parent); */ + +/* open an existing CHD file */ +CHD_EXPORT chd_error chd_open_core_file(core_file *file, int mode, chd_file *parent, chd_file **chd); +CHD_EXPORT chd_error chd_open_file(FILE *file, int mode, chd_file *parent, chd_file **chd); +CHD_EXPORT chd_error chd_open(const char *filename, int mode, chd_file *parent, chd_file **chd); + +/* precache underlying file */ +CHD_EXPORT chd_error chd_precache(chd_file *chd); +CHD_EXPORT chd_error chd_precache_progress(chd_file* chd, void(*progress)(size_t pos, size_t total, void* param), void* param); + +/* close a CHD file */ +CHD_EXPORT void chd_close(chd_file *chd); + +/* return the associated core_file */ +CHD_EXPORT core_file *chd_core_file(chd_file *chd); + +/* return an error string for the given CHD error */ +CHD_EXPORT const char *chd_error_string(chd_error err); + + + +/* ----- CHD header management ----- */ + +/* return a pointer to the extracted CHD header data */ +CHD_EXPORT const chd_header *chd_get_header(chd_file *chd); + +/* read CHD header data from file into the pointed struct */ +CHD_EXPORT chd_error chd_read_header_core_file(core_file *file, chd_header *header); +CHD_EXPORT chd_error chd_read_header_file(FILE *file, chd_header *header); +CHD_EXPORT chd_error chd_read_header(const char *filename, chd_header *header); +CHD_EXPORT bool chd_is_matching_parent(const chd_header* header, const chd_header* parent_header); + + + +/* ----- core data read/write ----- */ + +/* read one hunk from the CHD file */ +CHD_EXPORT chd_error chd_read(chd_file *chd, UINT32 hunknum, void *buffer); + + + +/* ----- metadata management ----- */ + +/* get indexed metadata of a particular sort */ +CHD_EXPORT chd_error chd_get_metadata(chd_file *chd, UINT32 searchtag, UINT32 searchindex, void *output, UINT32 outputlen, UINT32 *resultlen, UINT32 *resulttag, UINT8 *resultflags); + + + + +/* ----- codec interfaces ----- */ + +/* set internal codec parameters */ +CHD_EXPORT chd_error chd_codec_config(chd_file *chd, int param, void *config); + +/* return a string description of a codec */ +CHD_EXPORT const char *chd_get_codec_name(UINT32 codec); + +#ifdef __cplusplus +} +#endif + +#endif /* __CHD_H__ */ diff --git a/3rdparty/libchdr/include/libchdr/chdconfig.h b/3rdparty/libchdr/include/libchdr/chdconfig.h new file mode 100644 index 0000000000000..752038b48df2d --- /dev/null +++ b/3rdparty/libchdr/include/libchdr/chdconfig.h @@ -0,0 +1,10 @@ +#ifndef __CHDCONFIG_H__ +#define __CHDCONFIG_H__ + +/* Configure CHDR features here */ +#define WANT_RAW_DATA_SECTOR 1 +#define WANT_SUBCODE 1 +#define NEED_CACHE_HUNK 1 +#define VERIFY_BLOCK_CRC 1 + +#endif diff --git a/3rdparty/libchdr/include/libchdr/coretypes.h b/3rdparty/libchdr/include/libchdr/coretypes.h new file mode 100644 index 0000000000000..805359b5ab92f --- /dev/null +++ b/3rdparty/libchdr/include/libchdr/coretypes.h @@ -0,0 +1,78 @@ +#ifndef __CORETYPES_H__ +#define __CORETYPES_H__ + +#include +#include + +#ifdef USE_LIBRETRO_VFS +#include +#endif + +#define ARRAY_LENGTH(x) (sizeof(x)/sizeof(x[0])) + +#if defined(__PS3__) || defined(__PSL1GHT__) +#undef UINT32 +#undef UINT16 +#undef UINT8 +#undef INT32 +#undef INT16 +#undef INT8 +#endif + +typedef uint64_t UINT64; +typedef uint32_t UINT32; +typedef uint16_t UINT16; +typedef uint8_t UINT8; + +typedef int64_t INT64; +typedef int32_t INT32; +typedef int16_t INT16; +typedef int8_t INT8; + +typedef struct chd_core_file { + /* + * arbitrary pointer to data the implementation uses to implement the below functions + */ + void *argp; + + /* + * return the size of a given file as a 64-bit unsigned integer. + * the position of the file pointer after calling this function is + * undefined because many implementations will seek to the end of the + * file and call ftell. + * + * on error, (UINT64)-1 is returned. + */ + UINT64(*fsize)(struct chd_core_file*); + + /* + * should match the behavior of fread, except the FILE* argument at the end + * will be replaced with a struct chd_core_file*. + */ + size_t(*fread)(void*,size_t,size_t,struct chd_core_file*); + + // closes the given file. + int (*fclose)(struct chd_core_file*); + + // fseek clone + int (*fseek)(struct chd_core_file*, INT64, int); +} core_file; + +static inline int core_fclose(core_file *fp) { + return fp->fclose(fp); +} + +static inline size_t core_fread(core_file *fp, void *ptr, size_t len) { + return fp->fread(ptr, 1, len, fp); +} + +static inline int core_fseek(core_file* fp, INT64 offset, int whence) { + return fp->fseek(fp, offset, whence); +} + +static inline UINT64 core_fsize(core_file *fp) +{ + return fp->fsize(fp); +} + +#endif diff --git a/3rdparty/libchdr/include/libchdr/flac.h b/3rdparty/libchdr/include/libchdr/flac.h new file mode 100644 index 0000000000000..bff255b21a7d4 --- /dev/null +++ b/3rdparty/libchdr/include/libchdr/flac.h @@ -0,0 +1,50 @@ +/* license:BSD-3-Clause + * copyright-holders:Aaron Giles + *************************************************************************** + + flac.h + + FLAC compression wrappers + +***************************************************************************/ + +#pragma once + +#ifndef __FLAC_H__ +#define __FLAC_H__ + +#include + +/*************************************************************************** + * TYPE DEFINITIONS + *************************************************************************** + */ + +typedef struct _flac_decoder flac_decoder; +struct _flac_decoder { + /* output state */ + void * decoder; /* actual encoder */ + uint32_t sample_rate; /* decoded sample rate */ + uint8_t channels; /* decoded number of channels */ + uint8_t bits_per_sample; /* decoded bits per sample */ + uint32_t compressed_offset; /* current offset in compressed data */ + const uint8_t * compressed_start; /* start of compressed data */ + uint32_t compressed_length; /* length of compressed data */ + const uint8_t * compressed2_start; /* start of compressed data */ + uint32_t compressed2_length; /* length of compressed data */ + int16_t * uncompressed_start[8]; /* pointer to start of uncompressed data (up to 8 streams) */ + uint32_t uncompressed_offset; /* current position in uncompressed data */ + uint32_t uncompressed_length; /* length of uncompressed data */ + int uncompressed_swap; /* swap uncompressed sample data */ + uint8_t custom_header[0x2a]; /* custom header */ +}; + +/* ======================> flac_decoder */ + +int flac_decoder_init(flac_decoder* decoder); +void flac_decoder_free(flac_decoder* decoder); +int flac_decoder_reset(flac_decoder* decoder, uint32_t sample_rate, uint8_t num_channels, uint32_t block_size, const void *buffer, uint32_t length); +int flac_decoder_decode_interleaved(flac_decoder* decoder, int16_t *samples, uint32_t num_samples, int swap_endian); +uint32_t flac_decoder_finish(flac_decoder* decoder); + +#endif /* __FLAC_H__ */ diff --git a/3rdparty/libchdr/include/libchdr/huffman.h b/3rdparty/libchdr/include/libchdr/huffman.h new file mode 100644 index 0000000000000..6c9f511368c51 --- /dev/null +++ b/3rdparty/libchdr/include/libchdr/huffman.h @@ -0,0 +1,90 @@ +/* license:BSD-3-Clause + * copyright-holders:Aaron Giles + *************************************************************************** + + huffman.h + + Static Huffman compression and decompression helpers. + +***************************************************************************/ + +#pragma once + +#ifndef __HUFFMAN_H__ +#define __HUFFMAN_H__ + +#include + + +/*************************************************************************** + * CONSTANTS + *************************************************************************** + */ + +enum huffman_error +{ + HUFFERR_NONE = 0, + HUFFERR_TOO_MANY_BITS, + HUFFERR_INVALID_DATA, + HUFFERR_INPUT_BUFFER_TOO_SMALL, + HUFFERR_OUTPUT_BUFFER_TOO_SMALL, + HUFFERR_INTERNAL_INCONSISTENCY, + HUFFERR_TOO_MANY_CONTEXTS +}; + +/*************************************************************************** + * TYPE DEFINITIONS + *************************************************************************** + */ + +typedef uint16_t lookup_value; + +/* a node in the huffman tree */ +struct node_t +{ + struct node_t* parent; /* pointer to parent node */ + uint32_t count; /* number of hits on this node */ + uint32_t weight; /* assigned weight of this node */ + uint32_t bits; /* bits used to encode the node */ + uint8_t numbits; /* number of bits needed for this node */ +}; + +/* ======================> huffman_context_base */ + +/* context class for decoding */ +struct huffman_decoder +{ + /* internal state */ + uint32_t numcodes; /* number of total codes being processed */ + uint8_t maxbits; /* maximum bits per code */ + uint8_t prevdata; /* value of the previous data (for delta-RLE encoding) */ + int rleremaining; /* number of RLE bytes remaining (for delta-RLE encoding) */ + lookup_value * lookup; /* pointer to the lookup table */ + struct node_t * huffnode; /* array of nodes */ + uint32_t * datahisto; /* histogram of data values */ + + /* array versions of the info we need */ +#if 0 + node_t* huffnode_array; /* [_NumCodes]; */ + lookup_value* lookup_array; /* [1 << _MaxBits]; */ +#endif +}; + +/* ======================> huffman_decoder */ + +struct huffman_decoder* create_huffman_decoder(int numcodes, int maxbits); +void delete_huffman_decoder(struct huffman_decoder* decoder); + +/* single item operations */ +uint32_t huffman_decode_one(struct huffman_decoder* decoder, struct bitstream* bitbuf); + +enum huffman_error huffman_import_tree_rle(struct huffman_decoder* decoder, struct bitstream* bitbuf); +enum huffman_error huffman_import_tree_huffman(struct huffman_decoder* decoder, struct bitstream* bitbuf); + +int huffman_build_tree(struct huffman_decoder* decoder, uint32_t totaldata, uint32_t totalweight); +enum huffman_error huffman_assign_canonical_codes(struct huffman_decoder* decoder); +enum huffman_error huffman_compute_tree_from_histo(struct huffman_decoder* decoder); + +void huffman_build_lookup_table(struct huffman_decoder* decoder); + +#endif diff --git a/3rdparty/libchdr/libchdr b/3rdparty/libchdr/libchdr deleted file mode 160000 index fec8ab94212cc..0000000000000 --- a/3rdparty/libchdr/libchdr +++ /dev/null @@ -1 +0,0 @@ -Subproject commit fec8ab94212cc65d9d9a62cb3da924f5830c04b0 diff --git a/3rdparty/libchdr/libchdr.vcxproj b/3rdparty/libchdr/libchdr.vcxproj index 8df37168dc9f9..42893fbd1cf09 100644 --- a/3rdparty/libchdr/libchdr.vcxproj +++ b/3rdparty/libchdr/libchdr.vcxproj @@ -34,16 +34,16 @@ %(PreprocessorDefinitions);_7ZIP_ST TurnOffAllWarnings - $(ProjectDir)libchdr\include;$(ProjectDir)\libchdr\src;$(SolutionDir)3rdparty\lzma\include;$(SolutionDir)3rdparty\zlib;%(AdditionalIncludeDirectories) + $(ProjectDir)include;$(ProjectDir)src;$(SolutionDir)3rdparty\lzma\include;$(SolutionDir)3rdparty\zlib;%(AdditionalIncludeDirectories) stdcpp17 - - - - - + + + + + diff --git a/3rdparty/libchdr/src/libchdr_bitstream.c b/3rdparty/libchdr/src/libchdr_bitstream.c new file mode 100644 index 0000000000000..c82a67ddc5f9d --- /dev/null +++ b/3rdparty/libchdr/src/libchdr_bitstream.c @@ -0,0 +1,125 @@ +/* license:BSD-3-Clause + * copyright-holders:Aaron Giles +*************************************************************************** + + bitstream.c + + Helper classes for reading/writing at the bit level. + +***************************************************************************/ + +#include +#include + +/*************************************************************************** + * INLINE FUNCTIONS + *************************************************************************** + */ + +int bitstream_overflow(struct bitstream* bitstream) { return ((bitstream->doffset - bitstream->bits / 8) > bitstream->dlength); } + +/*------------------------------------------------- + * create_bitstream - constructor + *------------------------------------------------- + */ + +struct bitstream* create_bitstream(const void *src, uint32_t srclength) +{ + struct bitstream* bitstream = (struct bitstream*)malloc(sizeof(struct bitstream)); + bitstream->buffer = 0; + bitstream->bits = 0; + bitstream->read = (const uint8_t*)src; + bitstream->doffset = 0; + bitstream->dlength = srclength; + return bitstream; +} + + +/*----------------------------------------------------- + * bitstream_peek - fetch the requested number of bits + * but don't advance the input pointer + *----------------------------------------------------- + */ + +uint32_t bitstream_peek(struct bitstream* bitstream, int numbits) +{ + if (numbits == 0) + return 0; + + /* fetch data if we need more */ + if (numbits > bitstream->bits) + { + while (bitstream->bits <= 24) + { + if (bitstream->doffset < bitstream->dlength) + bitstream->buffer |= bitstream->read[bitstream->doffset] << (24 - bitstream->bits); + bitstream->doffset++; + bitstream->bits += 8; + } + } + + /* return the data */ + return bitstream->buffer >> (32 - numbits); +} + + +/*----------------------------------------------------- + * bitstream_remove - advance the input pointer by the + * specified number of bits + *----------------------------------------------------- + */ + +void bitstream_remove(struct bitstream* bitstream, int numbits) +{ + bitstream->buffer <<= numbits; + bitstream->bits -= numbits; +} + + +/*----------------------------------------------------- + * bitstream_read - fetch the requested number of bits + *----------------------------------------------------- + */ + +uint32_t bitstream_read(struct bitstream* bitstream, int numbits) +{ + uint32_t result = bitstream_peek(bitstream, numbits); + bitstream_remove(bitstream, numbits); + return result; +} + + +/*------------------------------------------------- + * read_offset - return the current read offset + *------------------------------------------------- + */ + +uint32_t bitstream_read_offset(struct bitstream* bitstream) +{ + uint32_t result = bitstream->doffset; + int bits = bitstream->bits; + while (bits >= 8) + { + result--; + bits -= 8; + } + return result; +} + + +/*------------------------------------------------- + * flush - flush to the nearest byte + *------------------------------------------------- + */ + +uint32_t bitstream_flush(struct bitstream* bitstream) +{ + while (bitstream->bits >= 8) + { + bitstream->doffset--; + bitstream->bits -= 8; + } + bitstream->bits = bitstream->buffer = 0; + return bitstream->doffset; +} + diff --git a/3rdparty/libchdr/src/libchdr_cdrom.c b/3rdparty/libchdr/src/libchdr_cdrom.c new file mode 100644 index 0000000000000..112ea2e147557 --- /dev/null +++ b/3rdparty/libchdr/src/libchdr_cdrom.c @@ -0,0 +1,415 @@ +/* license:BSD-3-Clause + * copyright-holders:Aaron Giles +*************************************************************************** + + cdrom.c + + Generic MAME CD-ROM utilties - build IDE and SCSI CD-ROMs on top of this + +**************************************************************************** + + IMPORTANT: + "physical" block addresses are the actual addresses on the emulated CD. + "chd" block addresses are the block addresses in the CHD file. + Because we pad each track to a 4-frame boundary, these addressing + schemes will differ after track 1! + +***************************************************************************/ + +#include + +#include + +#ifdef WANT_RAW_DATA_SECTOR + +/*************************************************************************** + DEBUGGING +***************************************************************************/ + +/** @brief The verbose. */ +#define VERBOSE (0) +#if VERBOSE + +/** + * @def LOG(x) do + * + * @brief A macro that defines log. + * + * @param x The void to process. + */ + +#define LOG(x) do { if (VERBOSE) logerror x; } while (0) + +/** + * @fn void CLIB_DECL logerror(const char *text, ...) ATTR_PRINTF(1,2); + * + * @brief Logerrors the given text. + * + * @param text The text. + * + * @return A CLIB_DECL. + */ + +void CLIB_DECL logerror(const char *text, ...) ATTR_PRINTF(1,2); +#else + +/** + * @def LOG(x); + * + * @brief A macro that defines log. + * + * @param x The void to process. + */ + +#define LOG(x) +#endif + +/*************************************************************************** + CONSTANTS +***************************************************************************/ + +/** @brief offset within sector. */ +#define SYNC_OFFSET 0x000 +/** @brief 12 bytes. */ +#define SYNC_NUM_BYTES 12 + +/** @brief offset within sector. */ +#define MODE_OFFSET 0x00f + +/** @brief offset within sector. */ +#define ECC_P_OFFSET 0x81c +/** @brief 2 lots of 86. */ +#define ECC_P_NUM_BYTES 86 +/** @brief 24 bytes each. */ +#define ECC_P_COMP 24 + +/** @brief The ECC q offset. */ +#define ECC_Q_OFFSET (ECC_P_OFFSET + 2 * ECC_P_NUM_BYTES) +/** @brief 2 lots of 52. */ +#define ECC_Q_NUM_BYTES 52 +/** @brief 43 bytes each. */ +#define ECC_Q_COMP 43 + +/** + * @brief ------------------------------------------------- + * ECC lookup tables pre-calculated tables for ECC data calcs + * -------------------------------------------------. + */ + +static const uint8_t ecclow[256] = +{ + 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e, + 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e, + 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e, + 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e, + 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e, + 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe, + 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde, + 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe, + 0x1d, 0x1f, 0x19, 0x1b, 0x15, 0x17, 0x11, 0x13, 0x0d, 0x0f, 0x09, 0x0b, 0x05, 0x07, 0x01, 0x03, + 0x3d, 0x3f, 0x39, 0x3b, 0x35, 0x37, 0x31, 0x33, 0x2d, 0x2f, 0x29, 0x2b, 0x25, 0x27, 0x21, 0x23, + 0x5d, 0x5f, 0x59, 0x5b, 0x55, 0x57, 0x51, 0x53, 0x4d, 0x4f, 0x49, 0x4b, 0x45, 0x47, 0x41, 0x43, + 0x7d, 0x7f, 0x79, 0x7b, 0x75, 0x77, 0x71, 0x73, 0x6d, 0x6f, 0x69, 0x6b, 0x65, 0x67, 0x61, 0x63, + 0x9d, 0x9f, 0x99, 0x9b, 0x95, 0x97, 0x91, 0x93, 0x8d, 0x8f, 0x89, 0x8b, 0x85, 0x87, 0x81, 0x83, + 0xbd, 0xbf, 0xb9, 0xbb, 0xb5, 0xb7, 0xb1, 0xb3, 0xad, 0xaf, 0xa9, 0xab, 0xa5, 0xa7, 0xa1, 0xa3, + 0xdd, 0xdf, 0xd9, 0xdb, 0xd5, 0xd7, 0xd1, 0xd3, 0xcd, 0xcf, 0xc9, 0xcb, 0xc5, 0xc7, 0xc1, 0xc3, + 0xfd, 0xff, 0xf9, 0xfb, 0xf5, 0xf7, 0xf1, 0xf3, 0xed, 0xef, 0xe9, 0xeb, 0xe5, 0xe7, 0xe1, 0xe3 +}; + +/** @brief The ecchigh[ 256]. */ +static const uint8_t ecchigh[256] = +{ + 0x00, 0xf4, 0xf5, 0x01, 0xf7, 0x03, 0x02, 0xf6, 0xf3, 0x07, 0x06, 0xf2, 0x04, 0xf0, 0xf1, 0x05, + 0xfb, 0x0f, 0x0e, 0xfa, 0x0c, 0xf8, 0xf9, 0x0d, 0x08, 0xfc, 0xfd, 0x09, 0xff, 0x0b, 0x0a, 0xfe, + 0xeb, 0x1f, 0x1e, 0xea, 0x1c, 0xe8, 0xe9, 0x1d, 0x18, 0xec, 0xed, 0x19, 0xef, 0x1b, 0x1a, 0xee, + 0x10, 0xe4, 0xe5, 0x11, 0xe7, 0x13, 0x12, 0xe6, 0xe3, 0x17, 0x16, 0xe2, 0x14, 0xe0, 0xe1, 0x15, + 0xcb, 0x3f, 0x3e, 0xca, 0x3c, 0xc8, 0xc9, 0x3d, 0x38, 0xcc, 0xcd, 0x39, 0xcf, 0x3b, 0x3a, 0xce, + 0x30, 0xc4, 0xc5, 0x31, 0xc7, 0x33, 0x32, 0xc6, 0xc3, 0x37, 0x36, 0xc2, 0x34, 0xc0, 0xc1, 0x35, + 0x20, 0xd4, 0xd5, 0x21, 0xd7, 0x23, 0x22, 0xd6, 0xd3, 0x27, 0x26, 0xd2, 0x24, 0xd0, 0xd1, 0x25, + 0xdb, 0x2f, 0x2e, 0xda, 0x2c, 0xd8, 0xd9, 0x2d, 0x28, 0xdc, 0xdd, 0x29, 0xdf, 0x2b, 0x2a, 0xde, + 0x8b, 0x7f, 0x7e, 0x8a, 0x7c, 0x88, 0x89, 0x7d, 0x78, 0x8c, 0x8d, 0x79, 0x8f, 0x7b, 0x7a, 0x8e, + 0x70, 0x84, 0x85, 0x71, 0x87, 0x73, 0x72, 0x86, 0x83, 0x77, 0x76, 0x82, 0x74, 0x80, 0x81, 0x75, + 0x60, 0x94, 0x95, 0x61, 0x97, 0x63, 0x62, 0x96, 0x93, 0x67, 0x66, 0x92, 0x64, 0x90, 0x91, 0x65, + 0x9b, 0x6f, 0x6e, 0x9a, 0x6c, 0x98, 0x99, 0x6d, 0x68, 0x9c, 0x9d, 0x69, 0x9f, 0x6b, 0x6a, 0x9e, + 0x40, 0xb4, 0xb5, 0x41, 0xb7, 0x43, 0x42, 0xb6, 0xb3, 0x47, 0x46, 0xb2, 0x44, 0xb0, 0xb1, 0x45, + 0xbb, 0x4f, 0x4e, 0xba, 0x4c, 0xb8, 0xb9, 0x4d, 0x48, 0xbc, 0xbd, 0x49, 0xbf, 0x4b, 0x4a, 0xbe, + 0xab, 0x5f, 0x5e, 0xaa, 0x5c, 0xa8, 0xa9, 0x5d, 0x58, 0xac, 0xad, 0x59, 0xaf, 0x5b, 0x5a, 0xae, + 0x50, 0xa4, 0xa5, 0x51, 0xa7, 0x53, 0x52, 0xa6, 0xa3, 0x57, 0x56, 0xa2, 0x54, 0xa0, 0xa1, 0x55 +}; + +/** + * @brief ------------------------------------------------- + * poffsets - each row represents the addresses used to calculate a byte of the ECC P + * data 86 (*2) ECC P bytes, 24 values represented by each + * -------------------------------------------------. + */ + +static const uint16_t poffsets[ECC_P_NUM_BYTES][ECC_P_COMP] = +{ + { 0x000,0x056,0x0ac,0x102,0x158,0x1ae,0x204,0x25a,0x2b0,0x306,0x35c,0x3b2,0x408,0x45e,0x4b4,0x50a,0x560,0x5b6,0x60c,0x662,0x6b8,0x70e,0x764,0x7ba }, + { 0x001,0x057,0x0ad,0x103,0x159,0x1af,0x205,0x25b,0x2b1,0x307,0x35d,0x3b3,0x409,0x45f,0x4b5,0x50b,0x561,0x5b7,0x60d,0x663,0x6b9,0x70f,0x765,0x7bb }, + { 0x002,0x058,0x0ae,0x104,0x15a,0x1b0,0x206,0x25c,0x2b2,0x308,0x35e,0x3b4,0x40a,0x460,0x4b6,0x50c,0x562,0x5b8,0x60e,0x664,0x6ba,0x710,0x766,0x7bc }, + { 0x003,0x059,0x0af,0x105,0x15b,0x1b1,0x207,0x25d,0x2b3,0x309,0x35f,0x3b5,0x40b,0x461,0x4b7,0x50d,0x563,0x5b9,0x60f,0x665,0x6bb,0x711,0x767,0x7bd }, + { 0x004,0x05a,0x0b0,0x106,0x15c,0x1b2,0x208,0x25e,0x2b4,0x30a,0x360,0x3b6,0x40c,0x462,0x4b8,0x50e,0x564,0x5ba,0x610,0x666,0x6bc,0x712,0x768,0x7be }, + { 0x005,0x05b,0x0b1,0x107,0x15d,0x1b3,0x209,0x25f,0x2b5,0x30b,0x361,0x3b7,0x40d,0x463,0x4b9,0x50f,0x565,0x5bb,0x611,0x667,0x6bd,0x713,0x769,0x7bf }, + { 0x006,0x05c,0x0b2,0x108,0x15e,0x1b4,0x20a,0x260,0x2b6,0x30c,0x362,0x3b8,0x40e,0x464,0x4ba,0x510,0x566,0x5bc,0x612,0x668,0x6be,0x714,0x76a,0x7c0 }, + { 0x007,0x05d,0x0b3,0x109,0x15f,0x1b5,0x20b,0x261,0x2b7,0x30d,0x363,0x3b9,0x40f,0x465,0x4bb,0x511,0x567,0x5bd,0x613,0x669,0x6bf,0x715,0x76b,0x7c1 }, + { 0x008,0x05e,0x0b4,0x10a,0x160,0x1b6,0x20c,0x262,0x2b8,0x30e,0x364,0x3ba,0x410,0x466,0x4bc,0x512,0x568,0x5be,0x614,0x66a,0x6c0,0x716,0x76c,0x7c2 }, + { 0x009,0x05f,0x0b5,0x10b,0x161,0x1b7,0x20d,0x263,0x2b9,0x30f,0x365,0x3bb,0x411,0x467,0x4bd,0x513,0x569,0x5bf,0x615,0x66b,0x6c1,0x717,0x76d,0x7c3 }, + { 0x00a,0x060,0x0b6,0x10c,0x162,0x1b8,0x20e,0x264,0x2ba,0x310,0x366,0x3bc,0x412,0x468,0x4be,0x514,0x56a,0x5c0,0x616,0x66c,0x6c2,0x718,0x76e,0x7c4 }, + { 0x00b,0x061,0x0b7,0x10d,0x163,0x1b9,0x20f,0x265,0x2bb,0x311,0x367,0x3bd,0x413,0x469,0x4bf,0x515,0x56b,0x5c1,0x617,0x66d,0x6c3,0x719,0x76f,0x7c5 }, + { 0x00c,0x062,0x0b8,0x10e,0x164,0x1ba,0x210,0x266,0x2bc,0x312,0x368,0x3be,0x414,0x46a,0x4c0,0x516,0x56c,0x5c2,0x618,0x66e,0x6c4,0x71a,0x770,0x7c6 }, + { 0x00d,0x063,0x0b9,0x10f,0x165,0x1bb,0x211,0x267,0x2bd,0x313,0x369,0x3bf,0x415,0x46b,0x4c1,0x517,0x56d,0x5c3,0x619,0x66f,0x6c5,0x71b,0x771,0x7c7 }, + { 0x00e,0x064,0x0ba,0x110,0x166,0x1bc,0x212,0x268,0x2be,0x314,0x36a,0x3c0,0x416,0x46c,0x4c2,0x518,0x56e,0x5c4,0x61a,0x670,0x6c6,0x71c,0x772,0x7c8 }, + { 0x00f,0x065,0x0bb,0x111,0x167,0x1bd,0x213,0x269,0x2bf,0x315,0x36b,0x3c1,0x417,0x46d,0x4c3,0x519,0x56f,0x5c5,0x61b,0x671,0x6c7,0x71d,0x773,0x7c9 }, + { 0x010,0x066,0x0bc,0x112,0x168,0x1be,0x214,0x26a,0x2c0,0x316,0x36c,0x3c2,0x418,0x46e,0x4c4,0x51a,0x570,0x5c6,0x61c,0x672,0x6c8,0x71e,0x774,0x7ca }, + { 0x011,0x067,0x0bd,0x113,0x169,0x1bf,0x215,0x26b,0x2c1,0x317,0x36d,0x3c3,0x419,0x46f,0x4c5,0x51b,0x571,0x5c7,0x61d,0x673,0x6c9,0x71f,0x775,0x7cb }, + { 0x012,0x068,0x0be,0x114,0x16a,0x1c0,0x216,0x26c,0x2c2,0x318,0x36e,0x3c4,0x41a,0x470,0x4c6,0x51c,0x572,0x5c8,0x61e,0x674,0x6ca,0x720,0x776,0x7cc }, + { 0x013,0x069,0x0bf,0x115,0x16b,0x1c1,0x217,0x26d,0x2c3,0x319,0x36f,0x3c5,0x41b,0x471,0x4c7,0x51d,0x573,0x5c9,0x61f,0x675,0x6cb,0x721,0x777,0x7cd }, + { 0x014,0x06a,0x0c0,0x116,0x16c,0x1c2,0x218,0x26e,0x2c4,0x31a,0x370,0x3c6,0x41c,0x472,0x4c8,0x51e,0x574,0x5ca,0x620,0x676,0x6cc,0x722,0x778,0x7ce }, + { 0x015,0x06b,0x0c1,0x117,0x16d,0x1c3,0x219,0x26f,0x2c5,0x31b,0x371,0x3c7,0x41d,0x473,0x4c9,0x51f,0x575,0x5cb,0x621,0x677,0x6cd,0x723,0x779,0x7cf }, + { 0x016,0x06c,0x0c2,0x118,0x16e,0x1c4,0x21a,0x270,0x2c6,0x31c,0x372,0x3c8,0x41e,0x474,0x4ca,0x520,0x576,0x5cc,0x622,0x678,0x6ce,0x724,0x77a,0x7d0 }, + { 0x017,0x06d,0x0c3,0x119,0x16f,0x1c5,0x21b,0x271,0x2c7,0x31d,0x373,0x3c9,0x41f,0x475,0x4cb,0x521,0x577,0x5cd,0x623,0x679,0x6cf,0x725,0x77b,0x7d1 }, + { 0x018,0x06e,0x0c4,0x11a,0x170,0x1c6,0x21c,0x272,0x2c8,0x31e,0x374,0x3ca,0x420,0x476,0x4cc,0x522,0x578,0x5ce,0x624,0x67a,0x6d0,0x726,0x77c,0x7d2 }, + { 0x019,0x06f,0x0c5,0x11b,0x171,0x1c7,0x21d,0x273,0x2c9,0x31f,0x375,0x3cb,0x421,0x477,0x4cd,0x523,0x579,0x5cf,0x625,0x67b,0x6d1,0x727,0x77d,0x7d3 }, + { 0x01a,0x070,0x0c6,0x11c,0x172,0x1c8,0x21e,0x274,0x2ca,0x320,0x376,0x3cc,0x422,0x478,0x4ce,0x524,0x57a,0x5d0,0x626,0x67c,0x6d2,0x728,0x77e,0x7d4 }, + { 0x01b,0x071,0x0c7,0x11d,0x173,0x1c9,0x21f,0x275,0x2cb,0x321,0x377,0x3cd,0x423,0x479,0x4cf,0x525,0x57b,0x5d1,0x627,0x67d,0x6d3,0x729,0x77f,0x7d5 }, + { 0x01c,0x072,0x0c8,0x11e,0x174,0x1ca,0x220,0x276,0x2cc,0x322,0x378,0x3ce,0x424,0x47a,0x4d0,0x526,0x57c,0x5d2,0x628,0x67e,0x6d4,0x72a,0x780,0x7d6 }, + { 0x01d,0x073,0x0c9,0x11f,0x175,0x1cb,0x221,0x277,0x2cd,0x323,0x379,0x3cf,0x425,0x47b,0x4d1,0x527,0x57d,0x5d3,0x629,0x67f,0x6d5,0x72b,0x781,0x7d7 }, + { 0x01e,0x074,0x0ca,0x120,0x176,0x1cc,0x222,0x278,0x2ce,0x324,0x37a,0x3d0,0x426,0x47c,0x4d2,0x528,0x57e,0x5d4,0x62a,0x680,0x6d6,0x72c,0x782,0x7d8 }, + { 0x01f,0x075,0x0cb,0x121,0x177,0x1cd,0x223,0x279,0x2cf,0x325,0x37b,0x3d1,0x427,0x47d,0x4d3,0x529,0x57f,0x5d5,0x62b,0x681,0x6d7,0x72d,0x783,0x7d9 }, + { 0x020,0x076,0x0cc,0x122,0x178,0x1ce,0x224,0x27a,0x2d0,0x326,0x37c,0x3d2,0x428,0x47e,0x4d4,0x52a,0x580,0x5d6,0x62c,0x682,0x6d8,0x72e,0x784,0x7da }, + { 0x021,0x077,0x0cd,0x123,0x179,0x1cf,0x225,0x27b,0x2d1,0x327,0x37d,0x3d3,0x429,0x47f,0x4d5,0x52b,0x581,0x5d7,0x62d,0x683,0x6d9,0x72f,0x785,0x7db }, + { 0x022,0x078,0x0ce,0x124,0x17a,0x1d0,0x226,0x27c,0x2d2,0x328,0x37e,0x3d4,0x42a,0x480,0x4d6,0x52c,0x582,0x5d8,0x62e,0x684,0x6da,0x730,0x786,0x7dc }, + { 0x023,0x079,0x0cf,0x125,0x17b,0x1d1,0x227,0x27d,0x2d3,0x329,0x37f,0x3d5,0x42b,0x481,0x4d7,0x52d,0x583,0x5d9,0x62f,0x685,0x6db,0x731,0x787,0x7dd }, + { 0x024,0x07a,0x0d0,0x126,0x17c,0x1d2,0x228,0x27e,0x2d4,0x32a,0x380,0x3d6,0x42c,0x482,0x4d8,0x52e,0x584,0x5da,0x630,0x686,0x6dc,0x732,0x788,0x7de }, + { 0x025,0x07b,0x0d1,0x127,0x17d,0x1d3,0x229,0x27f,0x2d5,0x32b,0x381,0x3d7,0x42d,0x483,0x4d9,0x52f,0x585,0x5db,0x631,0x687,0x6dd,0x733,0x789,0x7df }, + { 0x026,0x07c,0x0d2,0x128,0x17e,0x1d4,0x22a,0x280,0x2d6,0x32c,0x382,0x3d8,0x42e,0x484,0x4da,0x530,0x586,0x5dc,0x632,0x688,0x6de,0x734,0x78a,0x7e0 }, + { 0x027,0x07d,0x0d3,0x129,0x17f,0x1d5,0x22b,0x281,0x2d7,0x32d,0x383,0x3d9,0x42f,0x485,0x4db,0x531,0x587,0x5dd,0x633,0x689,0x6df,0x735,0x78b,0x7e1 }, + { 0x028,0x07e,0x0d4,0x12a,0x180,0x1d6,0x22c,0x282,0x2d8,0x32e,0x384,0x3da,0x430,0x486,0x4dc,0x532,0x588,0x5de,0x634,0x68a,0x6e0,0x736,0x78c,0x7e2 }, + { 0x029,0x07f,0x0d5,0x12b,0x181,0x1d7,0x22d,0x283,0x2d9,0x32f,0x385,0x3db,0x431,0x487,0x4dd,0x533,0x589,0x5df,0x635,0x68b,0x6e1,0x737,0x78d,0x7e3 }, + { 0x02a,0x080,0x0d6,0x12c,0x182,0x1d8,0x22e,0x284,0x2da,0x330,0x386,0x3dc,0x432,0x488,0x4de,0x534,0x58a,0x5e0,0x636,0x68c,0x6e2,0x738,0x78e,0x7e4 }, + { 0x02b,0x081,0x0d7,0x12d,0x183,0x1d9,0x22f,0x285,0x2db,0x331,0x387,0x3dd,0x433,0x489,0x4df,0x535,0x58b,0x5e1,0x637,0x68d,0x6e3,0x739,0x78f,0x7e5 }, + { 0x02c,0x082,0x0d8,0x12e,0x184,0x1da,0x230,0x286,0x2dc,0x332,0x388,0x3de,0x434,0x48a,0x4e0,0x536,0x58c,0x5e2,0x638,0x68e,0x6e4,0x73a,0x790,0x7e6 }, + { 0x02d,0x083,0x0d9,0x12f,0x185,0x1db,0x231,0x287,0x2dd,0x333,0x389,0x3df,0x435,0x48b,0x4e1,0x537,0x58d,0x5e3,0x639,0x68f,0x6e5,0x73b,0x791,0x7e7 }, + { 0x02e,0x084,0x0da,0x130,0x186,0x1dc,0x232,0x288,0x2de,0x334,0x38a,0x3e0,0x436,0x48c,0x4e2,0x538,0x58e,0x5e4,0x63a,0x690,0x6e6,0x73c,0x792,0x7e8 }, + { 0x02f,0x085,0x0db,0x131,0x187,0x1dd,0x233,0x289,0x2df,0x335,0x38b,0x3e1,0x437,0x48d,0x4e3,0x539,0x58f,0x5e5,0x63b,0x691,0x6e7,0x73d,0x793,0x7e9 }, + { 0x030,0x086,0x0dc,0x132,0x188,0x1de,0x234,0x28a,0x2e0,0x336,0x38c,0x3e2,0x438,0x48e,0x4e4,0x53a,0x590,0x5e6,0x63c,0x692,0x6e8,0x73e,0x794,0x7ea }, + { 0x031,0x087,0x0dd,0x133,0x189,0x1df,0x235,0x28b,0x2e1,0x337,0x38d,0x3e3,0x439,0x48f,0x4e5,0x53b,0x591,0x5e7,0x63d,0x693,0x6e9,0x73f,0x795,0x7eb }, + { 0x032,0x088,0x0de,0x134,0x18a,0x1e0,0x236,0x28c,0x2e2,0x338,0x38e,0x3e4,0x43a,0x490,0x4e6,0x53c,0x592,0x5e8,0x63e,0x694,0x6ea,0x740,0x796,0x7ec }, + { 0x033,0x089,0x0df,0x135,0x18b,0x1e1,0x237,0x28d,0x2e3,0x339,0x38f,0x3e5,0x43b,0x491,0x4e7,0x53d,0x593,0x5e9,0x63f,0x695,0x6eb,0x741,0x797,0x7ed }, + { 0x034,0x08a,0x0e0,0x136,0x18c,0x1e2,0x238,0x28e,0x2e4,0x33a,0x390,0x3e6,0x43c,0x492,0x4e8,0x53e,0x594,0x5ea,0x640,0x696,0x6ec,0x742,0x798,0x7ee }, + { 0x035,0x08b,0x0e1,0x137,0x18d,0x1e3,0x239,0x28f,0x2e5,0x33b,0x391,0x3e7,0x43d,0x493,0x4e9,0x53f,0x595,0x5eb,0x641,0x697,0x6ed,0x743,0x799,0x7ef }, + { 0x036,0x08c,0x0e2,0x138,0x18e,0x1e4,0x23a,0x290,0x2e6,0x33c,0x392,0x3e8,0x43e,0x494,0x4ea,0x540,0x596,0x5ec,0x642,0x698,0x6ee,0x744,0x79a,0x7f0 }, + { 0x037,0x08d,0x0e3,0x139,0x18f,0x1e5,0x23b,0x291,0x2e7,0x33d,0x393,0x3e9,0x43f,0x495,0x4eb,0x541,0x597,0x5ed,0x643,0x699,0x6ef,0x745,0x79b,0x7f1 }, + { 0x038,0x08e,0x0e4,0x13a,0x190,0x1e6,0x23c,0x292,0x2e8,0x33e,0x394,0x3ea,0x440,0x496,0x4ec,0x542,0x598,0x5ee,0x644,0x69a,0x6f0,0x746,0x79c,0x7f2 }, + { 0x039,0x08f,0x0e5,0x13b,0x191,0x1e7,0x23d,0x293,0x2e9,0x33f,0x395,0x3eb,0x441,0x497,0x4ed,0x543,0x599,0x5ef,0x645,0x69b,0x6f1,0x747,0x79d,0x7f3 }, + { 0x03a,0x090,0x0e6,0x13c,0x192,0x1e8,0x23e,0x294,0x2ea,0x340,0x396,0x3ec,0x442,0x498,0x4ee,0x544,0x59a,0x5f0,0x646,0x69c,0x6f2,0x748,0x79e,0x7f4 }, + { 0x03b,0x091,0x0e7,0x13d,0x193,0x1e9,0x23f,0x295,0x2eb,0x341,0x397,0x3ed,0x443,0x499,0x4ef,0x545,0x59b,0x5f1,0x647,0x69d,0x6f3,0x749,0x79f,0x7f5 }, + { 0x03c,0x092,0x0e8,0x13e,0x194,0x1ea,0x240,0x296,0x2ec,0x342,0x398,0x3ee,0x444,0x49a,0x4f0,0x546,0x59c,0x5f2,0x648,0x69e,0x6f4,0x74a,0x7a0,0x7f6 }, + { 0x03d,0x093,0x0e9,0x13f,0x195,0x1eb,0x241,0x297,0x2ed,0x343,0x399,0x3ef,0x445,0x49b,0x4f1,0x547,0x59d,0x5f3,0x649,0x69f,0x6f5,0x74b,0x7a1,0x7f7 }, + { 0x03e,0x094,0x0ea,0x140,0x196,0x1ec,0x242,0x298,0x2ee,0x344,0x39a,0x3f0,0x446,0x49c,0x4f2,0x548,0x59e,0x5f4,0x64a,0x6a0,0x6f6,0x74c,0x7a2,0x7f8 }, + { 0x03f,0x095,0x0eb,0x141,0x197,0x1ed,0x243,0x299,0x2ef,0x345,0x39b,0x3f1,0x447,0x49d,0x4f3,0x549,0x59f,0x5f5,0x64b,0x6a1,0x6f7,0x74d,0x7a3,0x7f9 }, + { 0x040,0x096,0x0ec,0x142,0x198,0x1ee,0x244,0x29a,0x2f0,0x346,0x39c,0x3f2,0x448,0x49e,0x4f4,0x54a,0x5a0,0x5f6,0x64c,0x6a2,0x6f8,0x74e,0x7a4,0x7fa }, + { 0x041,0x097,0x0ed,0x143,0x199,0x1ef,0x245,0x29b,0x2f1,0x347,0x39d,0x3f3,0x449,0x49f,0x4f5,0x54b,0x5a1,0x5f7,0x64d,0x6a3,0x6f9,0x74f,0x7a5,0x7fb }, + { 0x042,0x098,0x0ee,0x144,0x19a,0x1f0,0x246,0x29c,0x2f2,0x348,0x39e,0x3f4,0x44a,0x4a0,0x4f6,0x54c,0x5a2,0x5f8,0x64e,0x6a4,0x6fa,0x750,0x7a6,0x7fc }, + { 0x043,0x099,0x0ef,0x145,0x19b,0x1f1,0x247,0x29d,0x2f3,0x349,0x39f,0x3f5,0x44b,0x4a1,0x4f7,0x54d,0x5a3,0x5f9,0x64f,0x6a5,0x6fb,0x751,0x7a7,0x7fd }, + { 0x044,0x09a,0x0f0,0x146,0x19c,0x1f2,0x248,0x29e,0x2f4,0x34a,0x3a0,0x3f6,0x44c,0x4a2,0x4f8,0x54e,0x5a4,0x5fa,0x650,0x6a6,0x6fc,0x752,0x7a8,0x7fe }, + { 0x045,0x09b,0x0f1,0x147,0x19d,0x1f3,0x249,0x29f,0x2f5,0x34b,0x3a1,0x3f7,0x44d,0x4a3,0x4f9,0x54f,0x5a5,0x5fb,0x651,0x6a7,0x6fd,0x753,0x7a9,0x7ff }, + { 0x046,0x09c,0x0f2,0x148,0x19e,0x1f4,0x24a,0x2a0,0x2f6,0x34c,0x3a2,0x3f8,0x44e,0x4a4,0x4fa,0x550,0x5a6,0x5fc,0x652,0x6a8,0x6fe,0x754,0x7aa,0x800 }, + { 0x047,0x09d,0x0f3,0x149,0x19f,0x1f5,0x24b,0x2a1,0x2f7,0x34d,0x3a3,0x3f9,0x44f,0x4a5,0x4fb,0x551,0x5a7,0x5fd,0x653,0x6a9,0x6ff,0x755,0x7ab,0x801 }, + { 0x048,0x09e,0x0f4,0x14a,0x1a0,0x1f6,0x24c,0x2a2,0x2f8,0x34e,0x3a4,0x3fa,0x450,0x4a6,0x4fc,0x552,0x5a8,0x5fe,0x654,0x6aa,0x700,0x756,0x7ac,0x802 }, + { 0x049,0x09f,0x0f5,0x14b,0x1a1,0x1f7,0x24d,0x2a3,0x2f9,0x34f,0x3a5,0x3fb,0x451,0x4a7,0x4fd,0x553,0x5a9,0x5ff,0x655,0x6ab,0x701,0x757,0x7ad,0x803 }, + { 0x04a,0x0a0,0x0f6,0x14c,0x1a2,0x1f8,0x24e,0x2a4,0x2fa,0x350,0x3a6,0x3fc,0x452,0x4a8,0x4fe,0x554,0x5aa,0x600,0x656,0x6ac,0x702,0x758,0x7ae,0x804 }, + { 0x04b,0x0a1,0x0f7,0x14d,0x1a3,0x1f9,0x24f,0x2a5,0x2fb,0x351,0x3a7,0x3fd,0x453,0x4a9,0x4ff,0x555,0x5ab,0x601,0x657,0x6ad,0x703,0x759,0x7af,0x805 }, + { 0x04c,0x0a2,0x0f8,0x14e,0x1a4,0x1fa,0x250,0x2a6,0x2fc,0x352,0x3a8,0x3fe,0x454,0x4aa,0x500,0x556,0x5ac,0x602,0x658,0x6ae,0x704,0x75a,0x7b0,0x806 }, + { 0x04d,0x0a3,0x0f9,0x14f,0x1a5,0x1fb,0x251,0x2a7,0x2fd,0x353,0x3a9,0x3ff,0x455,0x4ab,0x501,0x557,0x5ad,0x603,0x659,0x6af,0x705,0x75b,0x7b1,0x807 }, + { 0x04e,0x0a4,0x0fa,0x150,0x1a6,0x1fc,0x252,0x2a8,0x2fe,0x354,0x3aa,0x400,0x456,0x4ac,0x502,0x558,0x5ae,0x604,0x65a,0x6b0,0x706,0x75c,0x7b2,0x808 }, + { 0x04f,0x0a5,0x0fb,0x151,0x1a7,0x1fd,0x253,0x2a9,0x2ff,0x355,0x3ab,0x401,0x457,0x4ad,0x503,0x559,0x5af,0x605,0x65b,0x6b1,0x707,0x75d,0x7b3,0x809 }, + { 0x050,0x0a6,0x0fc,0x152,0x1a8,0x1fe,0x254,0x2aa,0x300,0x356,0x3ac,0x402,0x458,0x4ae,0x504,0x55a,0x5b0,0x606,0x65c,0x6b2,0x708,0x75e,0x7b4,0x80a }, + { 0x051,0x0a7,0x0fd,0x153,0x1a9,0x1ff,0x255,0x2ab,0x301,0x357,0x3ad,0x403,0x459,0x4af,0x505,0x55b,0x5b1,0x607,0x65d,0x6b3,0x709,0x75f,0x7b5,0x80b }, + { 0x052,0x0a8,0x0fe,0x154,0x1aa,0x200,0x256,0x2ac,0x302,0x358,0x3ae,0x404,0x45a,0x4b0,0x506,0x55c,0x5b2,0x608,0x65e,0x6b4,0x70a,0x760,0x7b6,0x80c }, + { 0x053,0x0a9,0x0ff,0x155,0x1ab,0x201,0x257,0x2ad,0x303,0x359,0x3af,0x405,0x45b,0x4b1,0x507,0x55d,0x5b3,0x609,0x65f,0x6b5,0x70b,0x761,0x7b7,0x80d }, + { 0x054,0x0aa,0x100,0x156,0x1ac,0x202,0x258,0x2ae,0x304,0x35a,0x3b0,0x406,0x45c,0x4b2,0x508,0x55e,0x5b4,0x60a,0x660,0x6b6,0x70c,0x762,0x7b8,0x80e }, + { 0x055,0x0ab,0x101,0x157,0x1ad,0x203,0x259,0x2af,0x305,0x35b,0x3b1,0x407,0x45d,0x4b3,0x509,0x55f,0x5b5,0x60b,0x661,0x6b7,0x70d,0x763,0x7b9,0x80f } +}; + +/** + * @brief ------------------------------------------------- + * qoffsets - each row represents the addresses used to calculate a byte of the ECC Q + * data 52 (*2) ECC Q bytes, 43 values represented by each + * -------------------------------------------------. + */ + +static const uint16_t qoffsets[ECC_Q_NUM_BYTES][ECC_Q_COMP] = +{ + { 0x000,0x058,0x0b0,0x108,0x160,0x1b8,0x210,0x268,0x2c0,0x318,0x370,0x3c8,0x420,0x478,0x4d0,0x528,0x580,0x5d8,0x630,0x688,0x6e0,0x738,0x790,0x7e8,0x840,0x898,0x034,0x08c,0x0e4,0x13c,0x194,0x1ec,0x244,0x29c,0x2f4,0x34c,0x3a4,0x3fc,0x454,0x4ac,0x504,0x55c,0x5b4 }, + { 0x001,0x059,0x0b1,0x109,0x161,0x1b9,0x211,0x269,0x2c1,0x319,0x371,0x3c9,0x421,0x479,0x4d1,0x529,0x581,0x5d9,0x631,0x689,0x6e1,0x739,0x791,0x7e9,0x841,0x899,0x035,0x08d,0x0e5,0x13d,0x195,0x1ed,0x245,0x29d,0x2f5,0x34d,0x3a5,0x3fd,0x455,0x4ad,0x505,0x55d,0x5b5 }, + { 0x056,0x0ae,0x106,0x15e,0x1b6,0x20e,0x266,0x2be,0x316,0x36e,0x3c6,0x41e,0x476,0x4ce,0x526,0x57e,0x5d6,0x62e,0x686,0x6de,0x736,0x78e,0x7e6,0x83e,0x896,0x032,0x08a,0x0e2,0x13a,0x192,0x1ea,0x242,0x29a,0x2f2,0x34a,0x3a2,0x3fa,0x452,0x4aa,0x502,0x55a,0x5b2,0x60a }, + { 0x057,0x0af,0x107,0x15f,0x1b7,0x20f,0x267,0x2bf,0x317,0x36f,0x3c7,0x41f,0x477,0x4cf,0x527,0x57f,0x5d7,0x62f,0x687,0x6df,0x737,0x78f,0x7e7,0x83f,0x897,0x033,0x08b,0x0e3,0x13b,0x193,0x1eb,0x243,0x29b,0x2f3,0x34b,0x3a3,0x3fb,0x453,0x4ab,0x503,0x55b,0x5b3,0x60b }, + { 0x0ac,0x104,0x15c,0x1b4,0x20c,0x264,0x2bc,0x314,0x36c,0x3c4,0x41c,0x474,0x4cc,0x524,0x57c,0x5d4,0x62c,0x684,0x6dc,0x734,0x78c,0x7e4,0x83c,0x894,0x030,0x088,0x0e0,0x138,0x190,0x1e8,0x240,0x298,0x2f0,0x348,0x3a0,0x3f8,0x450,0x4a8,0x500,0x558,0x5b0,0x608,0x660 }, + { 0x0ad,0x105,0x15d,0x1b5,0x20d,0x265,0x2bd,0x315,0x36d,0x3c5,0x41d,0x475,0x4cd,0x525,0x57d,0x5d5,0x62d,0x685,0x6dd,0x735,0x78d,0x7e5,0x83d,0x895,0x031,0x089,0x0e1,0x139,0x191,0x1e9,0x241,0x299,0x2f1,0x349,0x3a1,0x3f9,0x451,0x4a9,0x501,0x559,0x5b1,0x609,0x661 }, + { 0x102,0x15a,0x1b2,0x20a,0x262,0x2ba,0x312,0x36a,0x3c2,0x41a,0x472,0x4ca,0x522,0x57a,0x5d2,0x62a,0x682,0x6da,0x732,0x78a,0x7e2,0x83a,0x892,0x02e,0x086,0x0de,0x136,0x18e,0x1e6,0x23e,0x296,0x2ee,0x346,0x39e,0x3f6,0x44e,0x4a6,0x4fe,0x556,0x5ae,0x606,0x65e,0x6b6 }, + { 0x103,0x15b,0x1b3,0x20b,0x263,0x2bb,0x313,0x36b,0x3c3,0x41b,0x473,0x4cb,0x523,0x57b,0x5d3,0x62b,0x683,0x6db,0x733,0x78b,0x7e3,0x83b,0x893,0x02f,0x087,0x0df,0x137,0x18f,0x1e7,0x23f,0x297,0x2ef,0x347,0x39f,0x3f7,0x44f,0x4a7,0x4ff,0x557,0x5af,0x607,0x65f,0x6b7 }, + { 0x158,0x1b0,0x208,0x260,0x2b8,0x310,0x368,0x3c0,0x418,0x470,0x4c8,0x520,0x578,0x5d0,0x628,0x680,0x6d8,0x730,0x788,0x7e0,0x838,0x890,0x02c,0x084,0x0dc,0x134,0x18c,0x1e4,0x23c,0x294,0x2ec,0x344,0x39c,0x3f4,0x44c,0x4a4,0x4fc,0x554,0x5ac,0x604,0x65c,0x6b4,0x70c }, + { 0x159,0x1b1,0x209,0x261,0x2b9,0x311,0x369,0x3c1,0x419,0x471,0x4c9,0x521,0x579,0x5d1,0x629,0x681,0x6d9,0x731,0x789,0x7e1,0x839,0x891,0x02d,0x085,0x0dd,0x135,0x18d,0x1e5,0x23d,0x295,0x2ed,0x345,0x39d,0x3f5,0x44d,0x4a5,0x4fd,0x555,0x5ad,0x605,0x65d,0x6b5,0x70d }, + { 0x1ae,0x206,0x25e,0x2b6,0x30e,0x366,0x3be,0x416,0x46e,0x4c6,0x51e,0x576,0x5ce,0x626,0x67e,0x6d6,0x72e,0x786,0x7de,0x836,0x88e,0x02a,0x082,0x0da,0x132,0x18a,0x1e2,0x23a,0x292,0x2ea,0x342,0x39a,0x3f2,0x44a,0x4a2,0x4fa,0x552,0x5aa,0x602,0x65a,0x6b2,0x70a,0x762 }, + { 0x1af,0x207,0x25f,0x2b7,0x30f,0x367,0x3bf,0x417,0x46f,0x4c7,0x51f,0x577,0x5cf,0x627,0x67f,0x6d7,0x72f,0x787,0x7df,0x837,0x88f,0x02b,0x083,0x0db,0x133,0x18b,0x1e3,0x23b,0x293,0x2eb,0x343,0x39b,0x3f3,0x44b,0x4a3,0x4fb,0x553,0x5ab,0x603,0x65b,0x6b3,0x70b,0x763 }, + { 0x204,0x25c,0x2b4,0x30c,0x364,0x3bc,0x414,0x46c,0x4c4,0x51c,0x574,0x5cc,0x624,0x67c,0x6d4,0x72c,0x784,0x7dc,0x834,0x88c,0x028,0x080,0x0d8,0x130,0x188,0x1e0,0x238,0x290,0x2e8,0x340,0x398,0x3f0,0x448,0x4a0,0x4f8,0x550,0x5a8,0x600,0x658,0x6b0,0x708,0x760,0x7b8 }, + { 0x205,0x25d,0x2b5,0x30d,0x365,0x3bd,0x415,0x46d,0x4c5,0x51d,0x575,0x5cd,0x625,0x67d,0x6d5,0x72d,0x785,0x7dd,0x835,0x88d,0x029,0x081,0x0d9,0x131,0x189,0x1e1,0x239,0x291,0x2e9,0x341,0x399,0x3f1,0x449,0x4a1,0x4f9,0x551,0x5a9,0x601,0x659,0x6b1,0x709,0x761,0x7b9 }, + { 0x25a,0x2b2,0x30a,0x362,0x3ba,0x412,0x46a,0x4c2,0x51a,0x572,0x5ca,0x622,0x67a,0x6d2,0x72a,0x782,0x7da,0x832,0x88a,0x026,0x07e,0x0d6,0x12e,0x186,0x1de,0x236,0x28e,0x2e6,0x33e,0x396,0x3ee,0x446,0x49e,0x4f6,0x54e,0x5a6,0x5fe,0x656,0x6ae,0x706,0x75e,0x7b6,0x80e }, + { 0x25b,0x2b3,0x30b,0x363,0x3bb,0x413,0x46b,0x4c3,0x51b,0x573,0x5cb,0x623,0x67b,0x6d3,0x72b,0x783,0x7db,0x833,0x88b,0x027,0x07f,0x0d7,0x12f,0x187,0x1df,0x237,0x28f,0x2e7,0x33f,0x397,0x3ef,0x447,0x49f,0x4f7,0x54f,0x5a7,0x5ff,0x657,0x6af,0x707,0x75f,0x7b7,0x80f }, + { 0x2b0,0x308,0x360,0x3b8,0x410,0x468,0x4c0,0x518,0x570,0x5c8,0x620,0x678,0x6d0,0x728,0x780,0x7d8,0x830,0x888,0x024,0x07c,0x0d4,0x12c,0x184,0x1dc,0x234,0x28c,0x2e4,0x33c,0x394,0x3ec,0x444,0x49c,0x4f4,0x54c,0x5a4,0x5fc,0x654,0x6ac,0x704,0x75c,0x7b4,0x80c,0x864 }, + { 0x2b1,0x309,0x361,0x3b9,0x411,0x469,0x4c1,0x519,0x571,0x5c9,0x621,0x679,0x6d1,0x729,0x781,0x7d9,0x831,0x889,0x025,0x07d,0x0d5,0x12d,0x185,0x1dd,0x235,0x28d,0x2e5,0x33d,0x395,0x3ed,0x445,0x49d,0x4f5,0x54d,0x5a5,0x5fd,0x655,0x6ad,0x705,0x75d,0x7b5,0x80d,0x865 }, + { 0x306,0x35e,0x3b6,0x40e,0x466,0x4be,0x516,0x56e,0x5c6,0x61e,0x676,0x6ce,0x726,0x77e,0x7d6,0x82e,0x886,0x022,0x07a,0x0d2,0x12a,0x182,0x1da,0x232,0x28a,0x2e2,0x33a,0x392,0x3ea,0x442,0x49a,0x4f2,0x54a,0x5a2,0x5fa,0x652,0x6aa,0x702,0x75a,0x7b2,0x80a,0x862,0x8ba }, + { 0x307,0x35f,0x3b7,0x40f,0x467,0x4bf,0x517,0x56f,0x5c7,0x61f,0x677,0x6cf,0x727,0x77f,0x7d7,0x82f,0x887,0x023,0x07b,0x0d3,0x12b,0x183,0x1db,0x233,0x28b,0x2e3,0x33b,0x393,0x3eb,0x443,0x49b,0x4f3,0x54b,0x5a3,0x5fb,0x653,0x6ab,0x703,0x75b,0x7b3,0x80b,0x863,0x8bb }, + { 0x35c,0x3b4,0x40c,0x464,0x4bc,0x514,0x56c,0x5c4,0x61c,0x674,0x6cc,0x724,0x77c,0x7d4,0x82c,0x884,0x020,0x078,0x0d0,0x128,0x180,0x1d8,0x230,0x288,0x2e0,0x338,0x390,0x3e8,0x440,0x498,0x4f0,0x548,0x5a0,0x5f8,0x650,0x6a8,0x700,0x758,0x7b0,0x808,0x860,0x8b8,0x054 }, + { 0x35d,0x3b5,0x40d,0x465,0x4bd,0x515,0x56d,0x5c5,0x61d,0x675,0x6cd,0x725,0x77d,0x7d5,0x82d,0x885,0x021,0x079,0x0d1,0x129,0x181,0x1d9,0x231,0x289,0x2e1,0x339,0x391,0x3e9,0x441,0x499,0x4f1,0x549,0x5a1,0x5f9,0x651,0x6a9,0x701,0x759,0x7b1,0x809,0x861,0x8b9,0x055 }, + { 0x3b2,0x40a,0x462,0x4ba,0x512,0x56a,0x5c2,0x61a,0x672,0x6ca,0x722,0x77a,0x7d2,0x82a,0x882,0x01e,0x076,0x0ce,0x126,0x17e,0x1d6,0x22e,0x286,0x2de,0x336,0x38e,0x3e6,0x43e,0x496,0x4ee,0x546,0x59e,0x5f6,0x64e,0x6a6,0x6fe,0x756,0x7ae,0x806,0x85e,0x8b6,0x052,0x0aa }, + { 0x3b3,0x40b,0x463,0x4bb,0x513,0x56b,0x5c3,0x61b,0x673,0x6cb,0x723,0x77b,0x7d3,0x82b,0x883,0x01f,0x077,0x0cf,0x127,0x17f,0x1d7,0x22f,0x287,0x2df,0x337,0x38f,0x3e7,0x43f,0x497,0x4ef,0x547,0x59f,0x5f7,0x64f,0x6a7,0x6ff,0x757,0x7af,0x807,0x85f,0x8b7,0x053,0x0ab }, + { 0x408,0x460,0x4b8,0x510,0x568,0x5c0,0x618,0x670,0x6c8,0x720,0x778,0x7d0,0x828,0x880,0x01c,0x074,0x0cc,0x124,0x17c,0x1d4,0x22c,0x284,0x2dc,0x334,0x38c,0x3e4,0x43c,0x494,0x4ec,0x544,0x59c,0x5f4,0x64c,0x6a4,0x6fc,0x754,0x7ac,0x804,0x85c,0x8b4,0x050,0x0a8,0x100 }, + { 0x409,0x461,0x4b9,0x511,0x569,0x5c1,0x619,0x671,0x6c9,0x721,0x779,0x7d1,0x829,0x881,0x01d,0x075,0x0cd,0x125,0x17d,0x1d5,0x22d,0x285,0x2dd,0x335,0x38d,0x3e5,0x43d,0x495,0x4ed,0x545,0x59d,0x5f5,0x64d,0x6a5,0x6fd,0x755,0x7ad,0x805,0x85d,0x8b5,0x051,0x0a9,0x101 }, + { 0x45e,0x4b6,0x50e,0x566,0x5be,0x616,0x66e,0x6c6,0x71e,0x776,0x7ce,0x826,0x87e,0x01a,0x072,0x0ca,0x122,0x17a,0x1d2,0x22a,0x282,0x2da,0x332,0x38a,0x3e2,0x43a,0x492,0x4ea,0x542,0x59a,0x5f2,0x64a,0x6a2,0x6fa,0x752,0x7aa,0x802,0x85a,0x8b2,0x04e,0x0a6,0x0fe,0x156 }, + { 0x45f,0x4b7,0x50f,0x567,0x5bf,0x617,0x66f,0x6c7,0x71f,0x777,0x7cf,0x827,0x87f,0x01b,0x073,0x0cb,0x123,0x17b,0x1d3,0x22b,0x283,0x2db,0x333,0x38b,0x3e3,0x43b,0x493,0x4eb,0x543,0x59b,0x5f3,0x64b,0x6a3,0x6fb,0x753,0x7ab,0x803,0x85b,0x8b3,0x04f,0x0a7,0x0ff,0x157 }, + { 0x4b4,0x50c,0x564,0x5bc,0x614,0x66c,0x6c4,0x71c,0x774,0x7cc,0x824,0x87c,0x018,0x070,0x0c8,0x120,0x178,0x1d0,0x228,0x280,0x2d8,0x330,0x388,0x3e0,0x438,0x490,0x4e8,0x540,0x598,0x5f0,0x648,0x6a0,0x6f8,0x750,0x7a8,0x800,0x858,0x8b0,0x04c,0x0a4,0x0fc,0x154,0x1ac }, + { 0x4b5,0x50d,0x565,0x5bd,0x615,0x66d,0x6c5,0x71d,0x775,0x7cd,0x825,0x87d,0x019,0x071,0x0c9,0x121,0x179,0x1d1,0x229,0x281,0x2d9,0x331,0x389,0x3e1,0x439,0x491,0x4e9,0x541,0x599,0x5f1,0x649,0x6a1,0x6f9,0x751,0x7a9,0x801,0x859,0x8b1,0x04d,0x0a5,0x0fd,0x155,0x1ad }, + { 0x50a,0x562,0x5ba,0x612,0x66a,0x6c2,0x71a,0x772,0x7ca,0x822,0x87a,0x016,0x06e,0x0c6,0x11e,0x176,0x1ce,0x226,0x27e,0x2d6,0x32e,0x386,0x3de,0x436,0x48e,0x4e6,0x53e,0x596,0x5ee,0x646,0x69e,0x6f6,0x74e,0x7a6,0x7fe,0x856,0x8ae,0x04a,0x0a2,0x0fa,0x152,0x1aa,0x202 }, + { 0x50b,0x563,0x5bb,0x613,0x66b,0x6c3,0x71b,0x773,0x7cb,0x823,0x87b,0x017,0x06f,0x0c7,0x11f,0x177,0x1cf,0x227,0x27f,0x2d7,0x32f,0x387,0x3df,0x437,0x48f,0x4e7,0x53f,0x597,0x5ef,0x647,0x69f,0x6f7,0x74f,0x7a7,0x7ff,0x857,0x8af,0x04b,0x0a3,0x0fb,0x153,0x1ab,0x203 }, + { 0x560,0x5b8,0x610,0x668,0x6c0,0x718,0x770,0x7c8,0x820,0x878,0x014,0x06c,0x0c4,0x11c,0x174,0x1cc,0x224,0x27c,0x2d4,0x32c,0x384,0x3dc,0x434,0x48c,0x4e4,0x53c,0x594,0x5ec,0x644,0x69c,0x6f4,0x74c,0x7a4,0x7fc,0x854,0x8ac,0x048,0x0a0,0x0f8,0x150,0x1a8,0x200,0x258 }, + { 0x561,0x5b9,0x611,0x669,0x6c1,0x719,0x771,0x7c9,0x821,0x879,0x015,0x06d,0x0c5,0x11d,0x175,0x1cd,0x225,0x27d,0x2d5,0x32d,0x385,0x3dd,0x435,0x48d,0x4e5,0x53d,0x595,0x5ed,0x645,0x69d,0x6f5,0x74d,0x7a5,0x7fd,0x855,0x8ad,0x049,0x0a1,0x0f9,0x151,0x1a9,0x201,0x259 }, + { 0x5b6,0x60e,0x666,0x6be,0x716,0x76e,0x7c6,0x81e,0x876,0x012,0x06a,0x0c2,0x11a,0x172,0x1ca,0x222,0x27a,0x2d2,0x32a,0x382,0x3da,0x432,0x48a,0x4e2,0x53a,0x592,0x5ea,0x642,0x69a,0x6f2,0x74a,0x7a2,0x7fa,0x852,0x8aa,0x046,0x09e,0x0f6,0x14e,0x1a6,0x1fe,0x256,0x2ae }, + { 0x5b7,0x60f,0x667,0x6bf,0x717,0x76f,0x7c7,0x81f,0x877,0x013,0x06b,0x0c3,0x11b,0x173,0x1cb,0x223,0x27b,0x2d3,0x32b,0x383,0x3db,0x433,0x48b,0x4e3,0x53b,0x593,0x5eb,0x643,0x69b,0x6f3,0x74b,0x7a3,0x7fb,0x853,0x8ab,0x047,0x09f,0x0f7,0x14f,0x1a7,0x1ff,0x257,0x2af }, + { 0x60c,0x664,0x6bc,0x714,0x76c,0x7c4,0x81c,0x874,0x010,0x068,0x0c0,0x118,0x170,0x1c8,0x220,0x278,0x2d0,0x328,0x380,0x3d8,0x430,0x488,0x4e0,0x538,0x590,0x5e8,0x640,0x698,0x6f0,0x748,0x7a0,0x7f8,0x850,0x8a8,0x044,0x09c,0x0f4,0x14c,0x1a4,0x1fc,0x254,0x2ac,0x304 }, + { 0x60d,0x665,0x6bd,0x715,0x76d,0x7c5,0x81d,0x875,0x011,0x069,0x0c1,0x119,0x171,0x1c9,0x221,0x279,0x2d1,0x329,0x381,0x3d9,0x431,0x489,0x4e1,0x539,0x591,0x5e9,0x641,0x699,0x6f1,0x749,0x7a1,0x7f9,0x851,0x8a9,0x045,0x09d,0x0f5,0x14d,0x1a5,0x1fd,0x255,0x2ad,0x305 }, + { 0x662,0x6ba,0x712,0x76a,0x7c2,0x81a,0x872,0x00e,0x066,0x0be,0x116,0x16e,0x1c6,0x21e,0x276,0x2ce,0x326,0x37e,0x3d6,0x42e,0x486,0x4de,0x536,0x58e,0x5e6,0x63e,0x696,0x6ee,0x746,0x79e,0x7f6,0x84e,0x8a6,0x042,0x09a,0x0f2,0x14a,0x1a2,0x1fa,0x252,0x2aa,0x302,0x35a }, + { 0x663,0x6bb,0x713,0x76b,0x7c3,0x81b,0x873,0x00f,0x067,0x0bf,0x117,0x16f,0x1c7,0x21f,0x277,0x2cf,0x327,0x37f,0x3d7,0x42f,0x487,0x4df,0x537,0x58f,0x5e7,0x63f,0x697,0x6ef,0x747,0x79f,0x7f7,0x84f,0x8a7,0x043,0x09b,0x0f3,0x14b,0x1a3,0x1fb,0x253,0x2ab,0x303,0x35b }, + { 0x6b8,0x710,0x768,0x7c0,0x818,0x870,0x00c,0x064,0x0bc,0x114,0x16c,0x1c4,0x21c,0x274,0x2cc,0x324,0x37c,0x3d4,0x42c,0x484,0x4dc,0x534,0x58c,0x5e4,0x63c,0x694,0x6ec,0x744,0x79c,0x7f4,0x84c,0x8a4,0x040,0x098,0x0f0,0x148,0x1a0,0x1f8,0x250,0x2a8,0x300,0x358,0x3b0 }, + { 0x6b9,0x711,0x769,0x7c1,0x819,0x871,0x00d,0x065,0x0bd,0x115,0x16d,0x1c5,0x21d,0x275,0x2cd,0x325,0x37d,0x3d5,0x42d,0x485,0x4dd,0x535,0x58d,0x5e5,0x63d,0x695,0x6ed,0x745,0x79d,0x7f5,0x84d,0x8a5,0x041,0x099,0x0f1,0x149,0x1a1,0x1f9,0x251,0x2a9,0x301,0x359,0x3b1 }, + { 0x70e,0x766,0x7be,0x816,0x86e,0x00a,0x062,0x0ba,0x112,0x16a,0x1c2,0x21a,0x272,0x2ca,0x322,0x37a,0x3d2,0x42a,0x482,0x4da,0x532,0x58a,0x5e2,0x63a,0x692,0x6ea,0x742,0x79a,0x7f2,0x84a,0x8a2,0x03e,0x096,0x0ee,0x146,0x19e,0x1f6,0x24e,0x2a6,0x2fe,0x356,0x3ae,0x406 }, + { 0x70f,0x767,0x7bf,0x817,0x86f,0x00b,0x063,0x0bb,0x113,0x16b,0x1c3,0x21b,0x273,0x2cb,0x323,0x37b,0x3d3,0x42b,0x483,0x4db,0x533,0x58b,0x5e3,0x63b,0x693,0x6eb,0x743,0x79b,0x7f3,0x84b,0x8a3,0x03f,0x097,0x0ef,0x147,0x19f,0x1f7,0x24f,0x2a7,0x2ff,0x357,0x3af,0x407 }, + { 0x764,0x7bc,0x814,0x86c,0x008,0x060,0x0b8,0x110,0x168,0x1c0,0x218,0x270,0x2c8,0x320,0x378,0x3d0,0x428,0x480,0x4d8,0x530,0x588,0x5e0,0x638,0x690,0x6e8,0x740,0x798,0x7f0,0x848,0x8a0,0x03c,0x094,0x0ec,0x144,0x19c,0x1f4,0x24c,0x2a4,0x2fc,0x354,0x3ac,0x404,0x45c }, + { 0x765,0x7bd,0x815,0x86d,0x009,0x061,0x0b9,0x111,0x169,0x1c1,0x219,0x271,0x2c9,0x321,0x379,0x3d1,0x429,0x481,0x4d9,0x531,0x589,0x5e1,0x639,0x691,0x6e9,0x741,0x799,0x7f1,0x849,0x8a1,0x03d,0x095,0x0ed,0x145,0x19d,0x1f5,0x24d,0x2a5,0x2fd,0x355,0x3ad,0x405,0x45d }, + { 0x7ba,0x812,0x86a,0x006,0x05e,0x0b6,0x10e,0x166,0x1be,0x216,0x26e,0x2c6,0x31e,0x376,0x3ce,0x426,0x47e,0x4d6,0x52e,0x586,0x5de,0x636,0x68e,0x6e6,0x73e,0x796,0x7ee,0x846,0x89e,0x03a,0x092,0x0ea,0x142,0x19a,0x1f2,0x24a,0x2a2,0x2fa,0x352,0x3aa,0x402,0x45a,0x4b2 }, + { 0x7bb,0x813,0x86b,0x007,0x05f,0x0b7,0x10f,0x167,0x1bf,0x217,0x26f,0x2c7,0x31f,0x377,0x3cf,0x427,0x47f,0x4d7,0x52f,0x587,0x5df,0x637,0x68f,0x6e7,0x73f,0x797,0x7ef,0x847,0x89f,0x03b,0x093,0x0eb,0x143,0x19b,0x1f3,0x24b,0x2a3,0x2fb,0x353,0x3ab,0x403,0x45b,0x4b3 }, + { 0x810,0x868,0x004,0x05c,0x0b4,0x10c,0x164,0x1bc,0x214,0x26c,0x2c4,0x31c,0x374,0x3cc,0x424,0x47c,0x4d4,0x52c,0x584,0x5dc,0x634,0x68c,0x6e4,0x73c,0x794,0x7ec,0x844,0x89c,0x038,0x090,0x0e8,0x140,0x198,0x1f0,0x248,0x2a0,0x2f8,0x350,0x3a8,0x400,0x458,0x4b0,0x508 }, + { 0x811,0x869,0x005,0x05d,0x0b5,0x10d,0x165,0x1bd,0x215,0x26d,0x2c5,0x31d,0x375,0x3cd,0x425,0x47d,0x4d5,0x52d,0x585,0x5dd,0x635,0x68d,0x6e5,0x73d,0x795,0x7ed,0x845,0x89d,0x039,0x091,0x0e9,0x141,0x199,0x1f1,0x249,0x2a1,0x2f9,0x351,0x3a9,0x401,0x459,0x4b1,0x509 }, + { 0x866,0x002,0x05a,0x0b2,0x10a,0x162,0x1ba,0x212,0x26a,0x2c2,0x31a,0x372,0x3ca,0x422,0x47a,0x4d2,0x52a,0x582,0x5da,0x632,0x68a,0x6e2,0x73a,0x792,0x7ea,0x842,0x89a,0x036,0x08e,0x0e6,0x13e,0x196,0x1ee,0x246,0x29e,0x2f6,0x34e,0x3a6,0x3fe,0x456,0x4ae,0x506,0x55e }, + { 0x867,0x003,0x05b,0x0b3,0x10b,0x163,0x1bb,0x213,0x26b,0x2c3,0x31b,0x373,0x3cb,0x423,0x47b,0x4d3,0x52b,0x583,0x5db,0x633,0x68b,0x6e3,0x73b,0x793,0x7eb,0x843,0x89b,0x037,0x08f,0x0e7,0x13f,0x197,0x1ef,0x247,0x29f,0x2f7,0x34f,0x3a7,0x3ff,0x457,0x4af,0x507,0x55f } +}; + +/*------------------------------------------------- + * ecc_source_byte - return data from the sector + * at the given offset, masking anything + * particular to a mode + *------------------------------------------------- + */ + +static inline uint8_t ecc_source_byte(const uint8_t *sector, uint32_t offset) +{ + /* in mode 2 always treat these as 0 bytes */ + return (sector[MODE_OFFSET] == 2 && offset < 4) ? 0x00 : sector[SYNC_OFFSET + SYNC_NUM_BYTES + offset]; +} + +/** + * @fn void ecc_compute_bytes(const uint8_t *sector, const uint16_t *row, int rowlen, uint8_t &val1, uint8_t &val2) + * + * @brief ------------------------------------------------- + * ecc_compute_bytes - calculate an ECC value (P or Q) + * -------------------------------------------------. + * + * @param sector The sector. + * @param row The row. + * @param rowlen The rowlen. + * @param [in,out] val1 The first value. + * @param [in,out] val2 The second value. + */ + +void ecc_compute_bytes(const uint8_t *sector, const uint16_t *row, int rowlen, uint8_t *val1, uint8_t *val2) +{ + int component; + *val1 = *val2 = 0; + for (component = 0; component < rowlen; component++) + { + *val1 ^= ecc_source_byte(sector, row[component]); + *val2 ^= ecc_source_byte(sector, row[component]); + *val1 = ecclow[*val1]; + } + *val1 = ecchigh[ecclow[*val1] ^ *val2]; + *val2 ^= *val1; +} + +/** + * @fn int ecc_verify(const uint8_t *sector) + * + * @brief ------------------------------------------------- + * ecc_verify - verify the P and Q ECC codes in a sector + * -------------------------------------------------. + * + * @param sector The sector. + * + * @return true if it succeeds, false if it fails. + */ + +int ecc_verify(const uint8_t *sector) +{ + int byte; + /* first verify P bytes */ + for (byte = 0; byte < ECC_P_NUM_BYTES; byte++) + { + uint8_t val1, val2; + ecc_compute_bytes(sector, poffsets[byte], ECC_P_COMP, &val1, &val2); + if (sector[ECC_P_OFFSET + byte] != val1 || sector[ECC_P_OFFSET + ECC_P_NUM_BYTES + byte] != val2) + return 0; + } + + /* then verify Q bytes */ + for (byte = 0; byte < ECC_Q_NUM_BYTES; byte++) + { + uint8_t val1, val2; + ecc_compute_bytes(sector, qoffsets[byte], ECC_Q_COMP, &val1, &val2); + if (sector[ECC_Q_OFFSET + byte] != val1 || sector[ECC_Q_OFFSET + ECC_Q_NUM_BYTES + byte] != val2) + return 0; + } + return 1; +} + +/** + * @fn void ecc_generate(uint8_t *sector) + * + * @brief ------------------------------------------------- + * ecc_generate - generate the P and Q ECC codes for a sector, overwriting any + * existing codes + * -------------------------------------------------. + * + * @param [in,out] sector If non-null, the sector. + */ + +void ecc_generate(uint8_t *sector) +{ + int byte; + /* first verify P bytes */ + for (byte = 0; byte < ECC_P_NUM_BYTES; byte++) + ecc_compute_bytes(sector, poffsets[byte], ECC_P_COMP, §or[ECC_P_OFFSET + byte], §or[ECC_P_OFFSET + ECC_P_NUM_BYTES + byte]); + + /* then verify Q bytes */ + for (byte = 0; byte < ECC_Q_NUM_BYTES; byte++) + ecc_compute_bytes(sector, qoffsets[byte], ECC_Q_COMP, §or[ECC_Q_OFFSET + byte], §or[ECC_Q_OFFSET + ECC_Q_NUM_BYTES + byte]); +} + +/** + * @fn void ecc_clear(uint8_t *sector) + * + * @brief ------------------------------------------------- + * ecc_clear - erase the ECC P and Q cods to 0 within a sector + * -------------------------------------------------. + * + * @param [in,out] sector If non-null, the sector. + */ + +void ecc_clear(uint8_t *sector) +{ + memset(§or[ECC_P_OFFSET], 0, 2 * ECC_P_NUM_BYTES); + memset(§or[ECC_Q_OFFSET], 0, 2 * ECC_Q_NUM_BYTES); +} + +#endif /* WANT_RAW_DATA_SECTOR */ diff --git a/3rdparty/libchdr/src/libchdr_chd.c b/3rdparty/libchdr/src/libchdr_chd.c new file mode 100644 index 0000000000000..8c65d74597183 --- /dev/null +++ b/3rdparty/libchdr/src/libchdr_chd.c @@ -0,0 +1,3120 @@ +/*************************************************************************** + + chd.c + + MAME Compressed Hunks of Data file format + +**************************************************************************** + + Copyright Aaron Giles + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + * Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in + the documentation and/or other materials provided with the + distribution. + * Neither the name 'MAME' nor the names of its contributors may be + used to endorse or promote products derived from this software + without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY AARON GILES ''AS IS'' AND ANY EXPRESS OR + IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL AARON GILES BE LIABLE FOR ANY DIRECT, + INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, + STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING + IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + +***************************************************************************/ + +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include + +#include "LzmaEnc.h" +#include "LzmaDec.h" +#if defined(__PS3__) || defined(__PSL1GHT__) +#define __MACTYPES__ +#endif +#include "zlib.h" + +#undef TRUE +#undef FALSE +#define TRUE 1 +#define FALSE 0 + +#undef MAX +#undef MIN +#define MAX(x, y) (((x) > (y)) ? (x) : (y)) +#define MIN(x, y) (((x) < (y)) ? (x) : (y)) + +#define SHA1_DIGEST_SIZE 20 + +/*************************************************************************** + DEBUGGING +***************************************************************************/ + +#define PRINTF_MAX_HUNK (0) + +/*************************************************************************** + CONSTANTS +***************************************************************************/ + +#define MAP_STACK_ENTRIES 512 /* max number of entries to use on the stack */ +#define MAP_ENTRY_SIZE 16 /* V3 and later */ +#define OLD_MAP_ENTRY_SIZE 8 /* V1-V2 */ +#define METADATA_HEADER_SIZE 16 /* metadata header size */ + +#define MAP_ENTRY_FLAG_TYPE_MASK 0x0f /* what type of hunk */ +#define MAP_ENTRY_FLAG_NO_CRC 0x10 /* no CRC is present */ + +#define CHD_V1_SECTOR_SIZE 512 /* size of a "sector" in the V1 header */ + +#define COOKIE_VALUE 0xbaadf00d +#define MAX_ZLIB_ALLOCS 64 + +#define END_OF_LIST_COOKIE "EndOfListCookie" + +#define NO_MATCH (~0) + +#ifdef WANT_RAW_DATA_SECTOR +static const uint8_t s_cd_sync_header[12] = { 0x00,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0x00 }; +#endif + +/* V3-V4 entry types */ +enum +{ + V34_MAP_ENTRY_TYPE_INVALID = 0, /* invalid type */ + V34_MAP_ENTRY_TYPE_COMPRESSED = 1, /* standard compression */ + V34_MAP_ENTRY_TYPE_UNCOMPRESSED = 2, /* uncompressed data */ + V34_MAP_ENTRY_TYPE_MINI = 3, /* mini: use offset as raw data */ + V34_MAP_ENTRY_TYPE_SELF_HUNK = 4, /* same as another hunk in this file */ + V34_MAP_ENTRY_TYPE_PARENT_HUNK = 5, /* same as a hunk in the parent file */ + V34_MAP_ENTRY_TYPE_2ND_COMPRESSED = 6 /* compressed with secondary algorithm (usually FLAC CDDA) */ +}; + +/* V5 compression types */ +enum +{ + /* codec #0 + * these types are live when running */ + COMPRESSION_TYPE_0 = 0, + /* codec #1 */ + COMPRESSION_TYPE_1 = 1, + /* codec #2 */ + COMPRESSION_TYPE_2 = 2, + /* codec #3 */ + COMPRESSION_TYPE_3 = 3, + /* no compression; implicit length = hunkbytes */ + COMPRESSION_NONE = 4, + /* same as another block in this chd */ + COMPRESSION_SELF = 5, + /* same as a hunk's worth of units in the parent chd */ + COMPRESSION_PARENT = 6, + + /* start of small RLE run (4-bit length) + * these additional pseudo-types are used for compressed encodings: */ + COMPRESSION_RLE_SMALL, + /* start of large RLE run (8-bit length) */ + COMPRESSION_RLE_LARGE, + /* same as the last COMPRESSION_SELF block */ + COMPRESSION_SELF_0, + /* same as the last COMPRESSION_SELF block + 1 */ + COMPRESSION_SELF_1, + /* same block in the parent */ + COMPRESSION_PARENT_SELF, + /* same as the last COMPRESSION_PARENT block */ + COMPRESSION_PARENT_0, + /* same as the last COMPRESSION_PARENT block + 1 */ + COMPRESSION_PARENT_1 +}; + +/*************************************************************************** + MACROS +***************************************************************************/ + +#define EARLY_EXIT(x) do { (void)(x); goto cleanup; } while (0) + +/*************************************************************************** + TYPE DEFINITIONS +***************************************************************************/ + +/* interface to a codec */ +typedef struct _codec_interface codec_interface; +struct _codec_interface +{ + UINT32 compression; /* type of compression */ + const char *compname; /* name of the algorithm */ + UINT8 lossy; /* is this a lossy algorithm? */ + chd_error (*init)(void *codec, UINT32 hunkbytes); /* codec initialize */ + void (*free)(void *codec); /* codec free */ + chd_error (*decompress)(void *codec, const uint8_t *src, uint32_t complen, uint8_t *dest, uint32_t destlen); /* decompress data */ + chd_error (*config)(void *codec, int param, void *config); /* configure */ +}; + +/* a single map entry */ +typedef struct _map_entry map_entry; +struct _map_entry +{ + UINT64 offset; /* offset within the file of the data */ + UINT32 crc; /* 32-bit CRC of the data */ + UINT32 length; /* length of the data */ + UINT8 flags; /* misc flags */ +}; + +/* a single metadata entry */ +typedef struct _metadata_entry metadata_entry; +struct _metadata_entry +{ + UINT64 offset; /* offset within the file of the header */ + UINT64 next; /* offset within the file of the next header */ + UINT64 prev; /* offset within the file of the previous header */ + UINT32 length; /* length of the metadata */ + UINT32 metatag; /* metadata tag */ + UINT8 flags; /* flag bits */ +}; + +/* codec-private data for the ZLIB codec */ + +typedef struct _zlib_allocator zlib_allocator; +struct _zlib_allocator +{ + UINT32 * allocptr[MAX_ZLIB_ALLOCS]; + UINT32 * allocptr2[MAX_ZLIB_ALLOCS]; +}; + +typedef struct _zlib_codec_data zlib_codec_data; +struct _zlib_codec_data +{ + z_stream inflater; + zlib_allocator allocator; +}; + +/* codec-private data for the LZMA codec */ +#define MAX_LZMA_ALLOCS 64 + +typedef struct _lzma_allocator lzma_allocator; +struct _lzma_allocator +{ + void *(*Alloc)(void *p, size_t size); + void (*Free)(void *p, void *address); /* address can be 0 */ + void (*FreeSz)(void *p, void *address, size_t size); /* address can be 0 */ + uint32_t* allocptr[MAX_LZMA_ALLOCS]; + uint32_t* allocptr2[MAX_LZMA_ALLOCS]; +}; + +typedef struct _lzma_codec_data lzma_codec_data; +struct _lzma_codec_data +{ + CLzmaDec decoder; + lzma_allocator allocator; +}; + +typedef struct _huff_codec_data huff_codec_data; +struct _huff_codec_data +{ + struct huffman_decoder* decoder; +}; + +/* codec-private data for the CDZL codec */ +typedef struct _cdzl_codec_data cdzl_codec_data; +struct _cdzl_codec_data { + /* internal state */ + zlib_codec_data base_decompressor; +#ifdef WANT_SUBCODE + zlib_codec_data subcode_decompressor; +#endif + uint8_t* buffer; +}; + +/* codec-private data for the CDLZ codec */ +typedef struct _cdlz_codec_data cdlz_codec_data; +struct _cdlz_codec_data { + /* internal state */ + lzma_codec_data base_decompressor; +#ifdef WANT_SUBCODE + zlib_codec_data subcode_decompressor; +#endif + uint8_t* buffer; +}; + +/* codec-private data for the FLAC codec */ +typedef struct _flac_codec_data flac_codec_data; +struct _flac_codec_data { + /* internal state */ + int native_endian; + flac_decoder decoder; +}; + +/* codec-private data for the CDFL codec */ +typedef struct _cdfl_codec_data cdfl_codec_data; +struct _cdfl_codec_data { + /* internal state */ + int swap_endian; + flac_decoder decoder; +#ifdef WANT_SUBCODE + zlib_codec_data subcode_decompressor; +#endif + uint8_t* buffer; +}; + +/* internal representation of an open CHD file */ +struct _chd_file +{ + UINT32 cookie; /* cookie, should equal COOKIE_VALUE */ + + core_file * file; /* handle to the open core file */ + chd_header header; /* header, extracted from file */ + + chd_file * parent; /* pointer to parent file, or NULL */ + + map_entry * map; /* array of map entries */ + +#ifdef NEED_CACHE_HUNK + UINT8 * cache; /* hunk cache pointer */ + UINT32 cachehunk; /* index of currently cached hunk */ + + UINT8 * compare; /* hunk compare pointer */ + UINT32 comparehunk; /* index of current compare data */ +#endif + + UINT8 * compressed; /* pointer to buffer for compressed data */ + const codec_interface * codecintf[4]; /* interface to the codec */ + + zlib_codec_data zlib_codec_data; /* zlib codec data */ + lzma_codec_data lzma_codec_data; /* lzma codec data */ + huff_codec_data huff_codec_data; /* huff codec data */ + flac_codec_data flac_codec_data; /* flac codec data */ + cdzl_codec_data cdzl_codec_data; /* cdzl codec data */ + cdlz_codec_data cdlz_codec_data; /* cdlz codec data */ + cdfl_codec_data cdfl_codec_data; /* cdfl codec data */ + +#ifdef NEED_CACHE_HUNK + UINT32 maxhunk; /* maximum hunk accessed */ +#endif + + UINT8 * file_cache; /* cache of underlying file */ +}; + + +/*************************************************************************** + GLOBAL VARIABLES +***************************************************************************/ + +static const UINT8 nullmd5[CHD_MD5_BYTES] = { 0 }; +static const UINT8 nullsha1[CHD_SHA1_BYTES] = { 0 }; + +/*************************************************************************** + PROTOTYPES +***************************************************************************/ + +/* core_file wrappers over stdio */ +static core_file *core_stdio_fopen(char const *path); +static UINT64 core_stdio_fsize(core_file *file); +static size_t core_stdio_fread(void *ptr, size_t size, size_t nmemb, core_file *file); +static int core_stdio_fclose(core_file *file); +static int core_stdio_fclose_nonowner(core_file *file); // alternate fclose used by chd_open_file +static int core_stdio_fseek(core_file* file, INT64 offset, int whence); + +/* internal header operations */ +static chd_error header_validate(const chd_header *header); +static chd_error header_read(chd_file *chd, chd_header *header); + +/* internal hunk read/write */ +#ifdef NEED_CACHE_HUNK +static chd_error hunk_read_into_cache(chd_file *chd, UINT32 hunknum); +#endif +static chd_error hunk_read_into_memory(chd_file *chd, UINT32 hunknum, UINT8 *dest); + +/* internal map access */ +static chd_error map_read(chd_file *chd); + +/* metadata management */ +static chd_error metadata_find_entry(chd_file *chd, UINT32 metatag, UINT32 metaindex, metadata_entry *metaentry); + +/* zlib compression codec */ +static chd_error zlib_codec_init(void *codec, uint32_t hunkbytes); +static void zlib_codec_free(void *codec); +static chd_error zlib_codec_decompress(void *codec, const uint8_t *src, uint32_t complen, uint8_t *dest, uint32_t destlen); +static voidpf zlib_fast_alloc(voidpf opaque, uInt items, uInt size); +static void zlib_fast_free(voidpf opaque, voidpf address); +static void zlib_allocator_free(voidpf opaque); + +/* lzma compression codec */ +static chd_error lzma_codec_init(void *codec, uint32_t hunkbytes); +static void lzma_codec_free(void *codec); +static chd_error lzma_codec_decompress(void *codec, const uint8_t *src, uint32_t complen, uint8_t *dest, uint32_t destlen); + +/* huff compression codec */ +static chd_error huff_codec_init(void *codec, uint32_t hunkbytes); +static void huff_codec_free(void *codec); +static chd_error huff_codec_decompress(void *codec, const uint8_t *src, uint32_t complen, uint8_t *dest, uint32_t destlen); + +/* flac compression codec */ +static chd_error flac_codec_init(void *codec, uint32_t hunkbytes); +static void flac_codec_free(void *codec); +static chd_error flac_codec_decompress(void *codec, const uint8_t *src, uint32_t complen, uint8_t *dest, uint32_t destlen); + +/* cdzl compression codec */ +static chd_error cdzl_codec_init(void* codec, uint32_t hunkbytes); +static void cdzl_codec_free(void* codec); +static chd_error cdzl_codec_decompress(void *codec, const uint8_t *src, uint32_t complen, uint8_t *dest, uint32_t destlen); + +/* cdlz compression codec */ +static chd_error cdlz_codec_init(void* codec, uint32_t hunkbytes); +static void cdlz_codec_free(void* codec); +static chd_error cdlz_codec_decompress(void *codec, const uint8_t *src, uint32_t complen, uint8_t *dest, uint32_t destlen); + +/* cdfl compression codec */ +static chd_error cdfl_codec_init(void* codec, uint32_t hunkbytes); +static void cdfl_codec_free(void* codec); +static chd_error cdfl_codec_decompress(void *codec, const uint8_t *src, uint32_t complen, uint8_t *dest, uint32_t destlen); + +/*************************************************************************** + * LZMA ALLOCATOR HELPER + *************************************************************************** + */ + +static void *lzma_fast_alloc(void *p, size_t size); +static void lzma_fast_free(void *p, void *address); + +/*------------------------------------------------- + * lzma_allocator_init + *------------------------------------------------- + */ + +static void lzma_allocator_init(void* p) +{ + lzma_allocator *codec = (lzma_allocator *)(p); + + /* reset pointer list */ + memset(codec->allocptr, 0, sizeof(codec->allocptr)); + memset(codec->allocptr2, 0, sizeof(codec->allocptr2)); + codec->Alloc = lzma_fast_alloc; + codec->Free = lzma_fast_free; +} + +/*------------------------------------------------- + * lzma_allocator_free + *------------------------------------------------- + */ + +static void lzma_allocator_free(void* p ) +{ + int i; + lzma_allocator *codec = (lzma_allocator *)(p); + + /* free our memory */ + for (i = 0 ; i < MAX_LZMA_ALLOCS ; i++) + { + if (codec->allocptr[i] != NULL) + free(codec->allocptr[i]); + } +} + +/*------------------------------------------------- + * lzma_fast_alloc - fast malloc for lzma, which + * allocates and frees memory frequently + *------------------------------------------------- + */ + +/* Huge alignment values for possible SIMD optimization by compiler (NEON, SSE, AVX) */ +#define LZMA_MIN_ALIGNMENT_BITS 512 +#define LZMA_MIN_ALIGNMENT_BYTES (LZMA_MIN_ALIGNMENT_BITS / 8) + +static void *lzma_fast_alloc(void *p, size_t size) +{ + int scan; + uint32_t *addr = NULL; + lzma_allocator *codec = (lzma_allocator *)(p); + uintptr_t vaddr = 0; + + /* compute the size, rounding to the nearest 1k */ + size = (size + 0x3ff) & ~0x3ff; + + /* reuse a hunk if we can */ + for (scan = 0; scan < MAX_LZMA_ALLOCS; scan++) + { + uint32_t *ptr = codec->allocptr[scan]; + if (ptr != NULL && size == *ptr) + { + /* set the low bit of the size so we don't match next time */ + *ptr |= 1; + + /* return aligned address of the block */ + return codec->allocptr2[scan]; + } + } + + /* alloc a new one and put it into the list */ + addr = (uint32_t *)malloc(size + sizeof(uint32_t) + LZMA_MIN_ALIGNMENT_BYTES); + if (addr==NULL) + return NULL; + for (scan = 0; scan < MAX_LZMA_ALLOCS; scan++) + { + if (codec->allocptr[scan] == NULL) + { + /* store block address */ + codec->allocptr[scan] = addr; + + /* compute aligned address, store it */ + vaddr = (uintptr_t)addr; + vaddr = (vaddr + sizeof(uint32_t) + (LZMA_MIN_ALIGNMENT_BYTES-1)) & (~(LZMA_MIN_ALIGNMENT_BYTES-1)); + codec->allocptr2[scan] = (uint32_t*)vaddr; + break; + } + } + + /* set the low bit of the size so we don't match next time */ + *addr = size | 1; + + /* return aligned address */ + return (void*)vaddr; +} + +/*------------------------------------------------- + * lzma_fast_free - fast free for lzma, which + * allocates and frees memory frequently + *------------------------------------------------- + */ + +static void lzma_fast_free(void *p, void *address) +{ + int scan; + uint32_t *ptr = NULL; + lzma_allocator *codec = NULL; + + if (address == NULL) + return; + + codec = (lzma_allocator *)(p); + + /* find the hunk */ + ptr = (uint32_t *)address; + for (scan = 0; scan < MAX_LZMA_ALLOCS; scan++) + { + if (ptr == codec->allocptr2[scan]) + { + /* clear the low bit of the size to allow matches */ + *codec->allocptr[scan] &= ~1; + return; + } + } +} + +/*************************************************************************** + * LZMA DECOMPRESSOR + *************************************************************************** + */ + +/*------------------------------------------------- + * lzma_codec_init - constructor + *------------------------------------------------- + */ + +static chd_error lzma_codec_init(void* codec, uint32_t hunkbytes) +{ + CLzmaEncHandle enc; + CLzmaEncProps encoder_props; + Byte decoder_props[LZMA_PROPS_SIZE]; + SizeT props_size; + lzma_allocator* alloc; + lzma_codec_data* lzma_codec = (lzma_codec_data*) codec; + + /* construct the decoder */ + LzmaDec_Construct(&lzma_codec->decoder); + + /* FIXME: this code is written in a way that makes it impossible to safely upgrade the LZMA SDK + * This code assumes that the current version of the encoder imposes the same requirements on the + * decoder as the encoder used to produce the file. This is not necessarily true. The format + * needs to be changed so the encoder properties are written to the file. + + * configure the properties like the compressor did */ + LzmaEncProps_Init(&encoder_props); + encoder_props.level = 9; + encoder_props.reduceSize = hunkbytes; + LzmaEncProps_Normalize(&encoder_props); + + /* convert to decoder properties */ + alloc = &lzma_codec->allocator; + lzma_allocator_init(alloc); + enc = LzmaEnc_Create((ISzAlloc*)alloc); + if (!enc) + return CHDERR_DECOMPRESSION_ERROR; + if (LzmaEnc_SetProps(enc, &encoder_props) != SZ_OK) + { + LzmaEnc_Destroy(enc, (ISzAlloc*)&alloc, (ISzAlloc*)&alloc); + return CHDERR_DECOMPRESSION_ERROR; + } + props_size = sizeof(decoder_props); + if (LzmaEnc_WriteProperties(enc, decoder_props, &props_size) != SZ_OK) + { + LzmaEnc_Destroy(enc, (ISzAlloc*)alloc, (ISzAlloc*)alloc); + return CHDERR_DECOMPRESSION_ERROR; + } + LzmaEnc_Destroy(enc, (ISzAlloc*)alloc, (ISzAlloc*)alloc); + + /* do memory allocations */ + if (LzmaDec_Allocate(&lzma_codec->decoder, decoder_props, LZMA_PROPS_SIZE, (ISzAlloc*)alloc) != SZ_OK) + return CHDERR_DECOMPRESSION_ERROR; + + /* Okay */ + return CHDERR_NONE; +} + +/*------------------------------------------------- + * lzma_codec_free + *------------------------------------------------- + */ + +static void lzma_codec_free(void* codec) +{ + lzma_codec_data* lzma_codec = (lzma_codec_data*) codec; + + /* free memory */ + LzmaDec_Free(&lzma_codec->decoder, (ISzAlloc*)&lzma_codec->allocator); + lzma_allocator_free(&lzma_codec->allocator); +} + +/*------------------------------------------------- + * decompress - decompress data using the LZMA + * codec + *------------------------------------------------- + */ + +static chd_error lzma_codec_decompress(void* codec, const uint8_t *src, uint32_t complen, uint8_t *dest, uint32_t destlen) +{ + ELzmaStatus status; + SRes res; + SizeT consumedlen, decodedlen; + /* initialize */ + lzma_codec_data* lzma_codec = (lzma_codec_data*) codec; + LzmaDec_Init(&lzma_codec->decoder); + + /* decode */ + consumedlen = complen; + decodedlen = destlen; + res = LzmaDec_DecodeToBuf(&lzma_codec->decoder, dest, &decodedlen, src, &consumedlen, LZMA_FINISH_END, &status); + if ((res != SZ_OK && res != LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK) || consumedlen != complen || decodedlen != destlen) + return CHDERR_DECOMPRESSION_ERROR; + return CHDERR_NONE; +} + +/* cdlz */ +static chd_error cdlz_codec_init(void* codec, uint32_t hunkbytes) +{ + chd_error ret; + cdlz_codec_data* cdlz = (cdlz_codec_data*) codec; + + /* allocate buffer */ + cdlz->buffer = (uint8_t*)malloc(sizeof(uint8_t) * hunkbytes); + if (cdlz->buffer == NULL) + return CHDERR_OUT_OF_MEMORY; + + /* make sure the CHD's hunk size is an even multiple of the frame size */ + ret = lzma_codec_init(&cdlz->base_decompressor, (hunkbytes / CD_FRAME_SIZE) * CD_MAX_SECTOR_DATA); + if (ret != CHDERR_NONE) + return ret; + +#ifdef WANT_SUBCODE + ret = zlib_codec_init(&cdlz->subcode_decompressor, (hunkbytes / CD_FRAME_SIZE) * CD_MAX_SUBCODE_DATA); + if (ret != CHDERR_NONE) + return ret; +#endif + + if (hunkbytes % CD_FRAME_SIZE != 0) + return CHDERR_CODEC_ERROR; + + return CHDERR_NONE; +} + +static void cdlz_codec_free(void* codec) +{ + cdlz_codec_data* cdlz = (cdlz_codec_data*) codec; + free(cdlz->buffer); + lzma_codec_free(&cdlz->base_decompressor); +#ifdef WANT_SUBCODE + zlib_codec_free(&cdlz->subcode_decompressor); +#endif +} + +static chd_error cdlz_codec_decompress(void *codec, const uint8_t *src, uint32_t complen, uint8_t *dest, uint32_t destlen) +{ + uint32_t framenum; + cdlz_codec_data* cdlz = (cdlz_codec_data*)codec; + + /* determine header bytes */ + uint32_t frames = destlen / CD_FRAME_SIZE; + uint32_t complen_bytes = (destlen < 65536) ? 2 : 3; + uint32_t ecc_bytes = (frames + 7) / 8; + uint32_t header_bytes = ecc_bytes + complen_bytes; + + /* extract compressed length of base */ + uint32_t complen_base = (src[ecc_bytes + 0] << 8) | src[ecc_bytes + 1]; + if (complen_bytes > 2) + complen_base = (complen_base << 8) | src[ecc_bytes + 2]; + + /* reset and decode */ + lzma_codec_decompress(&cdlz->base_decompressor, &src[header_bytes], complen_base, &cdlz->buffer[0], frames * CD_MAX_SECTOR_DATA); +#ifdef WANT_SUBCODE + zlib_codec_decompress(&cdlz->subcode_decompressor, &src[header_bytes + complen_base], complen - complen_base - header_bytes, &cdlz->buffer[frames * CD_MAX_SECTOR_DATA], frames * CD_MAX_SUBCODE_DATA); +#endif + + /* reassemble the data */ + for (framenum = 0; framenum < frames; framenum++) + { + uint8_t *sector; + + memcpy(&dest[framenum * CD_FRAME_SIZE], &cdlz->buffer[framenum * CD_MAX_SECTOR_DATA], CD_MAX_SECTOR_DATA); +#ifdef WANT_SUBCODE + memcpy(&dest[framenum * CD_FRAME_SIZE + CD_MAX_SECTOR_DATA], &cdlz->buffer[frames * CD_MAX_SECTOR_DATA + framenum * CD_MAX_SUBCODE_DATA], CD_MAX_SUBCODE_DATA); +#endif + +#ifdef WANT_RAW_DATA_SECTOR + /* reconstitute the ECC data and sync header */ + sector = (uint8_t *)&dest[framenum * CD_FRAME_SIZE]; + if ((src[framenum / 8] & (1 << (framenum % 8))) != 0) + { + memcpy(sector, s_cd_sync_header, sizeof(s_cd_sync_header)); + ecc_generate(sector); + } +#endif + } + return CHDERR_NONE; +} + +/* cdzl */ + +static chd_error cdzl_codec_init(void *codec, uint32_t hunkbytes) +{ + chd_error ret; + cdzl_codec_data* cdzl = (cdzl_codec_data*)codec; + + /* make sure the CHD's hunk size is an even multiple of the frame size */ + if (hunkbytes % CD_FRAME_SIZE != 0) + return CHDERR_CODEC_ERROR; + + cdzl->buffer = (uint8_t*)malloc(sizeof(uint8_t) * hunkbytes); + if (cdzl->buffer == NULL) + return CHDERR_OUT_OF_MEMORY; + + ret = zlib_codec_init(&cdzl->base_decompressor, (hunkbytes / CD_FRAME_SIZE) * CD_MAX_SECTOR_DATA); + if (ret != CHDERR_NONE) + return ret; + +#ifdef WANT_SUBCODE + ret = zlib_codec_init(&cdzl->subcode_decompressor, (hunkbytes / CD_FRAME_SIZE) * CD_MAX_SUBCODE_DATA); + if (ret != CHDERR_NONE) + return ret; +#endif + + return CHDERR_NONE; +} + +static void cdzl_codec_free(void *codec) +{ + cdzl_codec_data* cdzl = (cdzl_codec_data*)codec; + zlib_codec_free(&cdzl->base_decompressor); +#ifdef WANT_SUBCODE + zlib_codec_free(&cdzl->subcode_decompressor); +#endif + free(cdzl->buffer); +} + +static chd_error cdzl_codec_decompress(void *codec, const uint8_t *src, uint32_t complen, uint8_t *dest, uint32_t destlen) +{ + uint32_t framenum; + cdzl_codec_data* cdzl = (cdzl_codec_data*)codec; + + /* determine header bytes */ + uint32_t frames = destlen / CD_FRAME_SIZE; + uint32_t complen_bytes = (destlen < 65536) ? 2 : 3; + uint32_t ecc_bytes = (frames + 7) / 8; + uint32_t header_bytes = ecc_bytes + complen_bytes; + + /* extract compressed length of base */ + uint32_t complen_base = (src[ecc_bytes + 0] << 8) | src[ecc_bytes + 1]; + if (complen_bytes > 2) + complen_base = (complen_base << 8) | src[ecc_bytes + 2]; + + /* reset and decode */ + zlib_codec_decompress(&cdzl->base_decompressor, &src[header_bytes], complen_base, &cdzl->buffer[0], frames * CD_MAX_SECTOR_DATA); +#ifdef WANT_SUBCODE + zlib_codec_decompress(&cdzl->subcode_decompressor, &src[header_bytes + complen_base], complen - complen_base - header_bytes, &cdzl->buffer[frames * CD_MAX_SECTOR_DATA], frames * CD_MAX_SUBCODE_DATA); +#endif + + /* reassemble the data */ + for (framenum = 0; framenum < frames; framenum++) + { + uint8_t *sector; + + memcpy(&dest[framenum * CD_FRAME_SIZE], &cdzl->buffer[framenum * CD_MAX_SECTOR_DATA], CD_MAX_SECTOR_DATA); +#ifdef WANT_SUBCODE + memcpy(&dest[framenum * CD_FRAME_SIZE + CD_MAX_SECTOR_DATA], &cdzl->buffer[frames * CD_MAX_SECTOR_DATA + framenum * CD_MAX_SUBCODE_DATA], CD_MAX_SUBCODE_DATA); +#endif + +#ifdef WANT_RAW_DATA_SECTOR + /* reconstitute the ECC data and sync header */ + sector = (uint8_t *)&dest[framenum * CD_FRAME_SIZE]; + if ((src[framenum / 8] & (1 << (framenum % 8))) != 0) + { + memcpy(sector, s_cd_sync_header, sizeof(s_cd_sync_header)); + ecc_generate(sector); + } +#endif + } + return CHDERR_NONE; +} + +/*************************************************************************** + * HUFFMAN DECOMPRESSOR + *************************************************************************** + */ + +static chd_error huff_codec_init(void* codec, uint32_t hunkbytes) +{ + huff_codec_data* huff_codec = (huff_codec_data*) codec; + huff_codec->decoder = create_huffman_decoder(256, 16); + return CHDERR_NONE; +} + +static void huff_codec_free(void *codec) +{ + huff_codec_data* huff_codec = (huff_codec_data*) codec; + delete_huffman_decoder(huff_codec->decoder); +} + +static chd_error huff_codec_decompress(void *codec, const uint8_t *src, uint32_t complen, uint8_t *dest, uint32_t destlen) +{ + huff_codec_data* huff_codec = (huff_codec_data*) codec; + struct bitstream* bitbuf = create_bitstream(src, complen); + + // first import the tree + enum huffman_error err = huffman_import_tree_huffman(huff_codec->decoder, bitbuf); + if (err != HUFFERR_NONE) + { + free(bitbuf); + return err; + } + + // then decode the data + for (uint32_t cur = 0; cur < destlen; cur++) + dest[cur] = huffman_decode_one(huff_codec->decoder, bitbuf); + bitstream_flush(bitbuf); + chd_error result = bitstream_overflow(bitbuf) ? CHDERR_DECOMPRESSION_ERROR : CHDERR_NONE; + + free(bitbuf); + return result; +} + +/*************************************************************************** + * CD FLAC DECOMPRESSOR + *************************************************************************** + */ + +/*------------------------------------------------------ + * flac_codec_blocksize - return the optimal block size + *------------------------------------------------------ + */ + +static uint32_t flac_codec_blocksize(uint32_t bytes) +{ + /* determine FLAC block size, which must be 16-65535 + * clamp to 2k since that's supposed to be the sweet spot */ + uint32_t blocksize = bytes / 4; + while (blocksize > 2048) + blocksize /= 2; + return blocksize; +} + +static chd_error flac_codec_init(void *codec, uint32_t hunkbytes) +{ + uint16_t native_endian = 0; + flac_codec_data *flac = (flac_codec_data*)codec; + + /* make sure the CHD's hunk size is an even multiple of the sample size */ + if (hunkbytes % 4 != 0) + return CHDERR_CODEC_ERROR; + + /* determine whether we want native or swapped samples */ + *(uint8_t *)(&native_endian) = 1; + flac->native_endian = (native_endian & 1); + + /* flac decoder init */ + if (flac_decoder_init(&flac->decoder)) + return CHDERR_OUT_OF_MEMORY; + + return CHDERR_NONE; +} + +static void flac_codec_free(void *codec) +{ + flac_codec_data *flac = (flac_codec_data*)codec; + flac_decoder_free(&flac->decoder); +} + +static chd_error flac_codec_decompress(void *codec, const uint8_t *src, uint32_t complen, uint8_t *dest, uint32_t destlen) +{ + flac_codec_data *flac = (flac_codec_data*)codec; + int swap_endian; + + if (src[0] == 'L') + swap_endian = !flac->native_endian; + else if (src[0] == 'B') + swap_endian = flac->native_endian; + else + return CHDERR_DECOMPRESSION_ERROR; + + if (!flac_decoder_reset(&flac->decoder, 44100, 2, flac_codec_blocksize(destlen), src + 1, complen - 1)) + return CHDERR_DECOMPRESSION_ERROR; + if (!flac_decoder_decode_interleaved(&flac->decoder, (int16_t *)(dest), destlen/4, swap_endian)) + return CHDERR_DECOMPRESSION_ERROR; + flac_decoder_finish(&flac->decoder); + + return CHDERR_NONE; +} + +static uint32_t cdfl_codec_blocksize(uint32_t bytes) +{ + // for CDs it seems that CD_MAX_SECTOR_DATA is the right target + uint32_t blocksize = bytes / 4; + while (blocksize > CD_MAX_SECTOR_DATA) + blocksize /= 2; + return blocksize; +} + +static chd_error cdfl_codec_init(void *codec, uint32_t hunkbytes) +{ +#ifdef WANT_SUBCODE + chd_error ret; +#endif + uint16_t native_endian = 0; + cdfl_codec_data *cdfl = (cdfl_codec_data*)codec; + + /* make sure the CHD's hunk size is an even multiple of the frame size */ + if (hunkbytes % CD_FRAME_SIZE != 0) + return CHDERR_CODEC_ERROR; + + cdfl->buffer = (uint8_t*)malloc(sizeof(uint8_t) * hunkbytes); + if (cdfl->buffer == NULL) + return CHDERR_OUT_OF_MEMORY; + + /* determine whether we want native or swapped samples */ + *(uint8_t *)(&native_endian) = 1; + cdfl->swap_endian = (native_endian & 1); + +#ifdef WANT_SUBCODE + /* init zlib inflater */ + ret = zlib_codec_init(&cdfl->subcode_decompressor, (hunkbytes / CD_FRAME_SIZE) * CD_MAX_SECTOR_DATA); + if (ret != CHDERR_NONE) + return ret; +#endif + + /* flac decoder init */ + if (flac_decoder_init(&cdfl->decoder)) + return CHDERR_OUT_OF_MEMORY; + + return CHDERR_NONE; +} + +static void cdfl_codec_free(void *codec) +{ + cdfl_codec_data *cdfl = (cdfl_codec_data*)codec; + flac_decoder_free(&cdfl->decoder); +#ifdef WANT_SUBCODE + zlib_codec_free(&cdfl->subcode_decompressor); +#endif + if (cdfl->buffer) + free(cdfl->buffer); +} + +static chd_error cdfl_codec_decompress(void *codec, const uint8_t *src, uint32_t complen, uint8_t *dest, uint32_t destlen) +{ + uint32_t framenum; + uint8_t *buffer; +#ifdef WANT_SUBCODE + uint32_t offset; + chd_error ret; +#endif + cdfl_codec_data *cdfl = (cdfl_codec_data*)codec; + + /* reset and decode */ + uint32_t frames = destlen / CD_FRAME_SIZE; + + if (!flac_decoder_reset(&cdfl->decoder, 44100, 2, cdfl_codec_blocksize(frames * CD_MAX_SECTOR_DATA), src, complen)) + return CHDERR_DECOMPRESSION_ERROR; + buffer = &cdfl->buffer[0]; + if (!flac_decoder_decode_interleaved(&cdfl->decoder, (int16_t *)(buffer), frames * CD_MAX_SECTOR_DATA/4, cdfl->swap_endian)) + return CHDERR_DECOMPRESSION_ERROR; + +#ifdef WANT_SUBCODE + /* inflate the subcode data */ + offset = flac_decoder_finish(&cdfl->decoder); + ret = zlib_codec_decompress(&cdfl->subcode_decompressor, src + offset, complen - offset, &cdfl->buffer[frames * CD_MAX_SECTOR_DATA], frames * CD_MAX_SUBCODE_DATA); + if (ret != CHDERR_NONE) + return ret; +#else + flac_decoder_finish(&cdfl->decoder); +#endif + + /* reassemble the data */ + for (framenum = 0; framenum < frames; framenum++) + { + memcpy(&dest[framenum * CD_FRAME_SIZE], &cdfl->buffer[framenum * CD_MAX_SECTOR_DATA], CD_MAX_SECTOR_DATA); +#ifdef WANT_SUBCODE + memcpy(&dest[framenum * CD_FRAME_SIZE + CD_MAX_SECTOR_DATA], &cdfl->buffer[frames * CD_MAX_SECTOR_DATA + framenum * CD_MAX_SUBCODE_DATA], CD_MAX_SUBCODE_DATA); +#endif + } + + return CHDERR_NONE; +} +/*************************************************************************** + CODEC INTERFACES +***************************************************************************/ + +static const codec_interface codec_interfaces[] = +{ + /* "none" or no compression */ + { + CHDCOMPRESSION_NONE, + "none", + FALSE, + NULL, + NULL, + NULL, + NULL + }, + + /* standard zlib compression */ + { + CHDCOMPRESSION_ZLIB, + "zlib", + FALSE, + zlib_codec_init, + zlib_codec_free, + zlib_codec_decompress, + NULL + }, + + /* zlib+ compression */ + { + CHDCOMPRESSION_ZLIB_PLUS, + "zlib+", + FALSE, + zlib_codec_init, + zlib_codec_free, + zlib_codec_decompress, + NULL + }, + + /* V5 zlib compression */ + { + CHD_CODEC_ZLIB, + "zlib (Deflate)", + FALSE, + zlib_codec_init, + zlib_codec_free, + zlib_codec_decompress, + NULL + }, + + /* V5 lzma compression */ + { + CHD_CODEC_LZMA, + "lzma (LZMA)", + FALSE, + lzma_codec_init, + lzma_codec_free, + lzma_codec_decompress, + NULL + }, + + /* V5 huffman compression */ + { + CHD_CODEC_HUFFMAN, + "Huffman", + FALSE, + huff_codec_init, + huff_codec_free, + huff_codec_decompress, + NULL + }, + + /* V5 flac compression */ + { + CHD_CODEC_FLAC, + "flac (FLAC)", + FALSE, + flac_codec_init, + flac_codec_free, + flac_codec_decompress, + NULL + }, + + /* V5 CD zlib compression */ + { + CHD_CODEC_CD_ZLIB, + "cdzl (CD Deflate)", + FALSE, + cdzl_codec_init, + cdzl_codec_free, + cdzl_codec_decompress, + NULL + }, + + /* V5 CD lzma compression */ + { + CHD_CODEC_CD_LZMA, + "cdlz (CD LZMA)", + FALSE, + cdlz_codec_init, + cdlz_codec_free, + cdlz_codec_decompress, + NULL + }, + + /* V5 CD flac compression */ + { + CHD_CODEC_CD_FLAC, + "cdfl (CD FLAC)", + FALSE, + cdfl_codec_init, + cdfl_codec_free, + cdfl_codec_decompress, + NULL + }, +}; + +/*************************************************************************** + INLINE FUNCTIONS +***************************************************************************/ + +/*------------------------------------------------- + get_bigendian_uint64 - fetch a UINT64 from + the data stream in bigendian order +-------------------------------------------------*/ + +static inline UINT64 get_bigendian_uint64(const UINT8 *base) +{ + return ((UINT64)base[0] << 56) | ((UINT64)base[1] << 48) | ((UINT64)base[2] << 40) | ((UINT64)base[3] << 32) | + ((UINT64)base[4] << 24) | ((UINT64)base[5] << 16) | ((UINT64)base[6] << 8) | (UINT64)base[7]; +} + +/*------------------------------------------------- + put_bigendian_uint64 - write a UINT64 to + the data stream in bigendian order +-------------------------------------------------*/ + +static inline void put_bigendian_uint64(UINT8 *base, UINT64 value) +{ + base[0] = value >> 56; + base[1] = value >> 48; + base[2] = value >> 40; + base[3] = value >> 32; + base[4] = value >> 24; + base[5] = value >> 16; + base[6] = value >> 8; + base[7] = value; +} + +/*------------------------------------------------- + get_bigendian_uint48 - fetch a UINT48 from + the data stream in bigendian order +-------------------------------------------------*/ + +static inline UINT64 get_bigendian_uint48(const UINT8 *base) +{ + return ((UINT64)base[0] << 40) | ((UINT64)base[1] << 32) | + ((UINT64)base[2] << 24) | ((UINT64)base[3] << 16) | ((UINT64)base[4] << 8) | (UINT64)base[5]; +} + +/*------------------------------------------------- + put_bigendian_uint48 - write a UINT48 to + the data stream in bigendian order +-------------------------------------------------*/ + +static inline void put_bigendian_uint48(UINT8 *base, UINT64 value) +{ + value &= 0xffffffffffff; + base[0] = value >> 40; + base[1] = value >> 32; + base[2] = value >> 24; + base[3] = value >> 16; + base[4] = value >> 8; + base[5] = value; +} +/*------------------------------------------------- + get_bigendian_uint32 - fetch a UINT32 from + the data stream in bigendian order +-------------------------------------------------*/ + +static inline UINT32 get_bigendian_uint32(const UINT8 *base) +{ + return (base[0] << 24) | (base[1] << 16) | (base[2] << 8) | base[3]; +} + +/*------------------------------------------------- + put_bigendian_uint32 - write a UINT32 to + the data stream in bigendian order +-------------------------------------------------*/ + +static inline void put_bigendian_uint32(UINT8 *base, UINT32 value) +{ + base[0] = value >> 24; + base[1] = value >> 16; + base[2] = value >> 8; + base[3] = value; +} + +/*------------------------------------------------- + put_bigendian_uint24 - write a UINT24 to + the data stream in bigendian order +-------------------------------------------------*/ + +static inline void put_bigendian_uint24(UINT8 *base, UINT32 value) +{ + value &= 0xffffff; + base[0] = value >> 16; + base[1] = value >> 8; + base[2] = value; +} + +/*------------------------------------------------- + get_bigendian_uint24 - fetch a UINT24 from + the data stream in bigendian order +-------------------------------------------------*/ + +static inline UINT32 get_bigendian_uint24(const UINT8 *base) +{ + return (base[0] << 16) | (base[1] << 8) | base[2]; +} + +/*------------------------------------------------- + get_bigendian_uint16 - fetch a UINT16 from + the data stream in bigendian order +-------------------------------------------------*/ + +static inline UINT16 get_bigendian_uint16(const UINT8 *base) +{ + return (base[0] << 8) | base[1]; +} + +/*------------------------------------------------- + put_bigendian_uint16 - write a UINT16 to + the data stream in bigendian order +-------------------------------------------------*/ + +static inline void put_bigendian_uint16(UINT8 *base, UINT16 value) +{ + base[0] = value >> 8; + base[1] = value; +} + +/*------------------------------------------------- + map_extract - extract a single map + entry from the datastream +-------------------------------------------------*/ + +static inline void map_extract(const UINT8 *base, map_entry *entry) +{ + entry->offset = get_bigendian_uint64(&base[0]); + entry->crc = get_bigendian_uint32(&base[8]); + entry->length = get_bigendian_uint16(&base[12]) | (base[14] << 16); + entry->flags = base[15]; +} + +/*------------------------------------------------- + map_assemble - write a single map + entry to the datastream +-------------------------------------------------*/ + +static inline void map_assemble(UINT8 *base, map_entry *entry) +{ + put_bigendian_uint64(&base[0], entry->offset); + put_bigendian_uint32(&base[8], entry->crc); + put_bigendian_uint16(&base[12], entry->length); + base[14] = entry->length >> 16; + base[15] = entry->flags; +} + +/*------------------------------------------------- + map_size_v5 - calculate CHDv5 map size +-------------------------------------------------*/ +static inline int map_size_v5(chd_header* header) +{ + return header->hunkcount * header->mapentrybytes; +} + +/*------------------------------------------------- + crc16 - calculate CRC16 (from hashing.cpp) +-------------------------------------------------*/ +uint16_t crc16(const void *data, uint32_t length) +{ + uint16_t crc = 0xffff; + + static const uint16_t s_table[256] = + { + 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7, + 0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef, + 0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6, + 0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de, + 0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485, + 0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d, + 0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4, + 0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc, + 0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823, + 0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b, + 0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12, + 0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a, + 0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41, + 0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49, + 0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70, + 0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78, + 0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f, + 0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067, + 0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e, + 0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256, + 0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d, + 0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405, + 0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c, + 0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634, + 0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab, + 0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3, + 0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a, + 0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92, + 0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9, + 0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1, + 0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8, + 0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0 + }; + + const uint8_t *src = (uint8_t*)data; + + /* fetch the current value into a local and rip through the source data */ + while (length-- != 0) + crc = (crc << 8) ^ s_table[(crc >> 8) ^ *src++]; + return crc; +} + +/*------------------------------------------------- + compressed - test if CHD file is compressed ++-------------------------------------------------*/ +static inline int chd_compressed(chd_header* header) { + return header->compression[0] != CHD_CODEC_NONE; +} + +/*------------------------------------------------- + decompress_v5_map - decompress the v5 map +-------------------------------------------------*/ + +static chd_error decompress_v5_map(chd_file* chd, chd_header* header) +{ + int result = 0; + uint32_t hunknum; + int repcount = 0; + uint8_t lastcomp = 0; + uint32_t last_self = 0; + uint64_t last_parent = 0; + struct bitstream* bitbuf; + uint32_t mapbytes; + uint64_t firstoffs; + uint16_t mapcrc; + uint8_t lengthbits; + uint8_t selfbits; + uint8_t parentbits; + uint8_t *compressed_ptr; + uint8_t rawbuf[16]; + struct huffman_decoder* decoder; + enum huffman_error err; + uint64_t curoffset; + int rawmapsize = map_size_v5(header); + + if (!chd_compressed(header)) + { + header->rawmap = (uint8_t*)malloc(rawmapsize); + if (header->rawmap == NULL) + return CHDERR_OUT_OF_MEMORY; + core_fseek(chd->file, header->mapoffset, SEEK_SET); + result = core_fread(chd->file, header->rawmap, rawmapsize); + return CHDERR_NONE; + } + + /* read the reader */ + core_fseek(chd->file, header->mapoffset, SEEK_SET); + result = core_fread(chd->file, rawbuf, sizeof(rawbuf)); + mapbytes = get_bigendian_uint32(&rawbuf[0]); + firstoffs = get_bigendian_uint48(&rawbuf[4]); + mapcrc = get_bigendian_uint16(&rawbuf[10]); + lengthbits = rawbuf[12]; + selfbits = rawbuf[13]; + parentbits = rawbuf[14]; + + /* now read the map */ + compressed_ptr = (uint8_t*)malloc(sizeof(uint8_t) * mapbytes); + if (compressed_ptr == NULL) + return CHDERR_OUT_OF_MEMORY; + core_fseek(chd->file, header->mapoffset + 16, SEEK_SET); + result = core_fread(chd->file, compressed_ptr, mapbytes); + bitbuf = create_bitstream(compressed_ptr, sizeof(uint8_t) * mapbytes); + header->rawmap = (uint8_t*)malloc(rawmapsize); + if (header->rawmap == NULL) + { + free(compressed_ptr); + free(bitbuf); + return CHDERR_OUT_OF_MEMORY; + } + + /* first decode the compression types */ + decoder = create_huffman_decoder(16, 8); + if (decoder == NULL) + { + free(compressed_ptr); + free(bitbuf); + return CHDERR_OUT_OF_MEMORY; + } + + err = huffman_import_tree_rle(decoder, bitbuf); + if (err != HUFFERR_NONE) + { + free(compressed_ptr); + free(bitbuf); + delete_huffman_decoder(decoder); + return CHDERR_DECOMPRESSION_ERROR; + } + + for (hunknum = 0; hunknum < header->hunkcount; hunknum++) + { + uint8_t *rawmap = header->rawmap + (hunknum * 12); + if (repcount > 0) + rawmap[0] = lastcomp, repcount--; + else + { + uint8_t val = huffman_decode_one(decoder, bitbuf); + if (val == COMPRESSION_RLE_SMALL) + rawmap[0] = lastcomp, repcount = 2 + huffman_decode_one(decoder, bitbuf); + else if (val == COMPRESSION_RLE_LARGE) + rawmap[0] = lastcomp, repcount = 2 + 16 + (huffman_decode_one(decoder, bitbuf) << 4), repcount += huffman_decode_one(decoder, bitbuf); + else + rawmap[0] = lastcomp = val; + } + } + + /* then iterate through the hunks and extract the needed data */ + curoffset = firstoffs; + for (hunknum = 0; hunknum < header->hunkcount; hunknum++) + { + uint8_t *rawmap = header->rawmap + (hunknum * 12); + uint64_t offset = curoffset; + uint32_t length = 0; + uint16_t crc = 0; + switch (rawmap[0]) + { + /* base types */ + case COMPRESSION_TYPE_0: + case COMPRESSION_TYPE_1: + case COMPRESSION_TYPE_2: + case COMPRESSION_TYPE_3: + curoffset += length = bitstream_read(bitbuf, lengthbits); + crc = bitstream_read(bitbuf, 16); + break; + + case COMPRESSION_NONE: + curoffset += length = header->hunkbytes; + crc = bitstream_read(bitbuf, 16); + break; + + case COMPRESSION_SELF: + last_self = offset = bitstream_read(bitbuf, selfbits); + break; + + case COMPRESSION_PARENT: + offset = bitstream_read(bitbuf, parentbits); + last_parent = offset; + break; + + /* pseudo-types; convert into base types */ + case COMPRESSION_SELF_1: + last_self++; + case COMPRESSION_SELF_0: + rawmap[0] = COMPRESSION_SELF; + offset = last_self; + break; + + case COMPRESSION_PARENT_SELF: + rawmap[0] = COMPRESSION_PARENT; + last_parent = offset = ( ((uint64_t)hunknum) * ((uint64_t)header->hunkbytes) ) / header->unitbytes; + break; + + case COMPRESSION_PARENT_1: + last_parent += header->hunkbytes / header->unitbytes; + case COMPRESSION_PARENT_0: + rawmap[0] = COMPRESSION_PARENT; + offset = last_parent; + break; + } + /* UINT24 length */ + put_bigendian_uint24(&rawmap[1], length); + + /* UINT48 offset */ + put_bigendian_uint48(&rawmap[4], offset); + + /* crc16 */ + put_bigendian_uint16(&rawmap[10], crc); + } + + /* free memory */ + free(compressed_ptr); + free(bitbuf); + delete_huffman_decoder(decoder); + + /* verify the final CRC */ + if (crc16(&header->rawmap[0], header->hunkcount * 12) != mapcrc) + return CHDERR_DECOMPRESSION_ERROR; + + return CHDERR_NONE; +} + +/*------------------------------------------------- + map_extract_old - extract a single map + entry in old format from the datastream +-------------------------------------------------*/ + +static inline void map_extract_old(const UINT8 *base, map_entry *entry, UINT32 hunkbytes) +{ + entry->offset = get_bigendian_uint64(&base[0]); + entry->crc = 0; + entry->length = entry->offset >> 44; + entry->flags = MAP_ENTRY_FLAG_NO_CRC | ((entry->length == hunkbytes) ? V34_MAP_ENTRY_TYPE_UNCOMPRESSED : V34_MAP_ENTRY_TYPE_COMPRESSED); +#ifdef __MWERKS__ + entry->offset = entry->offset & 0x00000FFFFFFFFFFFLL; +#else + entry->offset = (entry->offset << 20) >> 20; +#endif +} + +/*************************************************************************** + CHD FILE MANAGEMENT +***************************************************************************/ + +/*------------------------------------------------- + chd_open_file - open a CHD file for access +-------------------------------------------------*/ + +CHD_EXPORT chd_error chd_open_file(FILE *file, int mode, chd_file *parent, chd_file **chd) { + core_file *stream = malloc(sizeof(core_file)); + if (!stream) + return CHDERR_OUT_OF_MEMORY; + stream->argp = file; + stream->fsize = core_stdio_fsize; + stream->fread = core_stdio_fread; + stream->fclose = core_stdio_fclose_nonowner; + stream->fseek = core_stdio_fseek; + + chd_error err = chd_open_core_file(stream, mode, parent, chd); + if (err != CHDERR_NONE) + return err; + + // swap out the fclose so that we close it on chd clost + stream->fclose = core_stdio_fclose; + return CHDERR_NONE; +} + +/*------------------------------------------------- + chd_open_core_file - open a CHD file for access +-------------------------------------------------*/ + +CHD_EXPORT chd_error chd_open_core_file(core_file *file, int mode, chd_file *parent, chd_file **chd) +{ + chd_file *newchd = NULL; + chd_error err; + int intfnum; + + /* verify parameters */ + if (file == NULL) + EARLY_EXIT(err = CHDERR_INVALID_PARAMETER); + + /* punt if invalid parent */ + if (parent != NULL && parent->cookie != COOKIE_VALUE) + EARLY_EXIT(err = CHDERR_INVALID_PARAMETER); + + /* allocate memory for the final result */ + newchd = (chd_file *)malloc(sizeof(**chd)); + if (newchd == NULL) + EARLY_EXIT(err = CHDERR_OUT_OF_MEMORY); + memset(newchd, 0, sizeof(*newchd)); + newchd->cookie = COOKIE_VALUE; + newchd->parent = parent; + newchd->file = file; + + /* now attempt to read the header */ + err = header_read(newchd, &newchd->header); + if (err != CHDERR_NONE) + EARLY_EXIT(err); + + /* validate the header */ + err = header_validate(&newchd->header); + if (err != CHDERR_NONE) + EARLY_EXIT(err); + + /* make sure we don't open a read-only file writeable */ + if (mode == CHD_OPEN_READWRITE && !(newchd->header.flags & CHDFLAGS_IS_WRITEABLE)) + EARLY_EXIT(err = CHDERR_FILE_NOT_WRITEABLE); + + /* also, never open an older version writeable */ + if (mode == CHD_OPEN_READWRITE && newchd->header.version < CHD_HEADER_VERSION) + EARLY_EXIT(err = CHDERR_UNSUPPORTED_VERSION); + + /* if we need a parent, make sure we have one */ + if (parent == NULL) + { + /* Detect parent requirement for versions below 5 */ + if (newchd->header.version < 5 && newchd->header.flags & CHDFLAGS_HAS_PARENT) + EARLY_EXIT(err = CHDERR_REQUIRES_PARENT); + /* Detection for version 5 and above - if parentsha1 != 0, we have a parent */ + else if (newchd->header.version >= 5 && memcmp(nullsha1, newchd->header.parentsha1, sizeof(newchd->header.parentsha1)) != 0) + EARLY_EXIT(err = CHDERR_REQUIRES_PARENT); + } + + /* make sure we have a valid parent */ + if (parent != NULL) + { + /* check MD5 if it isn't empty */ + if (memcmp(nullmd5, newchd->header.parentmd5, sizeof(newchd->header.parentmd5)) != 0 && + memcmp(nullmd5, newchd->parent->header.md5, sizeof(newchd->parent->header.md5)) != 0 && + memcmp(newchd->parent->header.md5, newchd->header.parentmd5, sizeof(newchd->header.parentmd5)) != 0) + EARLY_EXIT(err = CHDERR_INVALID_PARENT); + + /* check SHA1 if it isn't empty */ + if (memcmp(nullsha1, newchd->header.parentsha1, sizeof(newchd->header.parentsha1)) != 0 && + memcmp(nullsha1, newchd->parent->header.sha1, sizeof(newchd->parent->header.sha1)) != 0 && + memcmp(newchd->parent->header.sha1, newchd->header.parentsha1, sizeof(newchd->header.parentsha1)) != 0) + EARLY_EXIT(err = CHDERR_INVALID_PARENT); + } + + /* now read the hunk map */ + if (newchd->header.version < 5) + { + err = map_read(newchd); + if (err != CHDERR_NONE) + EARLY_EXIT(err); + } + else + { + err = decompress_v5_map(newchd, &(newchd->header)); + } + if (err != CHDERR_NONE) + EARLY_EXIT(err); + +#ifdef NEED_CACHE_HUNK + /* allocate and init the hunk cache */ + newchd->cache = (UINT8 *)malloc(newchd->header.hunkbytes); + newchd->compare = (UINT8 *)malloc(newchd->header.hunkbytes); + if (newchd->cache == NULL || newchd->compare == NULL) + EARLY_EXIT(err = CHDERR_OUT_OF_MEMORY); + newchd->cachehunk = ~0; + newchd->comparehunk = ~0; +#endif + + /* allocate the temporary compressed buffer */ + newchd->compressed = (UINT8 *)malloc(newchd->header.hunkbytes); + if (newchd->compressed == NULL) + EARLY_EXIT(err = CHDERR_OUT_OF_MEMORY); + + /* find the codec interface */ + if (newchd->header.version < 5) + { + for (intfnum = 0; intfnum < ARRAY_LENGTH(codec_interfaces); intfnum++) + { + if (codec_interfaces[intfnum].compression == newchd->header.compression[0]) + { + newchd->codecintf[0] = &codec_interfaces[intfnum]; + break; + } + } + + if (intfnum == ARRAY_LENGTH(codec_interfaces)) + EARLY_EXIT(err = CHDERR_UNSUPPORTED_FORMAT); + + /* initialize the codec */ + if (newchd->codecintf[0]->init != NULL) + { + err = (*newchd->codecintf[0]->init)(&newchd->zlib_codec_data, newchd->header.hunkbytes); + if (err != CHDERR_NONE) + EARLY_EXIT(err); + } + } + else + { + int decompnum; + /* verify the compression types and initialize the codecs */ + for (decompnum = 0; decompnum < ARRAY_LENGTH(newchd->header.compression); decompnum++) + { + int i; + for (i = 0 ; i < ARRAY_LENGTH(codec_interfaces) ; i++) + { + if (codec_interfaces[i].compression == newchd->header.compression[decompnum]) + { + newchd->codecintf[decompnum] = &codec_interfaces[i]; + break; + } + } + + if (newchd->codecintf[decompnum] == NULL && newchd->header.compression[decompnum] != 0) + EARLY_EXIT(err = CHDERR_UNSUPPORTED_FORMAT); + + /* initialize the codec */ + if (newchd->codecintf[decompnum]->init != NULL) + { + void* codec = NULL; + switch (newchd->header.compression[decompnum]) + { + case CHD_CODEC_ZLIB: + codec = &newchd->zlib_codec_data; + break; + + case CHD_CODEC_LZMA: + codec = &newchd->lzma_codec_data; + break; + + case CHD_CODEC_HUFFMAN: + codec = &newchd->huff_codec_data; + break; + + case CHD_CODEC_FLAC: + codec = &newchd->flac_codec_data; + break; + + case CHD_CODEC_CD_ZLIB: + codec = &newchd->cdzl_codec_data; + break; + + case CHD_CODEC_CD_LZMA: + codec = &newchd->cdlz_codec_data; + break; + + case CHD_CODEC_CD_FLAC: + codec = &newchd->cdfl_codec_data; + break; + } + + if (codec == NULL) + EARLY_EXIT(err = CHDERR_UNSUPPORTED_FORMAT); + + err = (*newchd->codecintf[decompnum]->init)(codec, newchd->header.hunkbytes); + if (err != CHDERR_NONE) + EARLY_EXIT(err); + } + } + } + + /* all done */ + *chd = newchd; + return CHDERR_NONE; + +cleanup: + if (newchd != NULL) + chd_close(newchd); + return err; +} + +/*------------------------------------------------- + chd_precache - precache underlying file in + memory +-------------------------------------------------*/ + +CHD_EXPORT chd_error chd_precache(chd_file* chd) +{ + return chd_precache_progress(chd, NULL, NULL); +} + +CHD_EXPORT chd_error chd_precache_progress(chd_file* chd, void(*progress)(size_t pos, size_t total, void* param), void* param) +{ +#define PRECACHE_CHUNK_SIZE 16 * 1024 * 1024 + + size_t count; + UINT64 size, done, req_count, last_update_done, update_interval; + + if (chd->file_cache == NULL) + { + size = core_fsize(chd->file); + if ((INT64)size <= 0) + return CHDERR_INVALID_DATA; + + if (size > SIZE_MAX) + return CHDERR_OUT_OF_MEMORY; + + chd->file_cache = malloc(size); + if (chd->file_cache == NULL) + return CHDERR_OUT_OF_MEMORY; + core_fseek(chd->file, 0, SEEK_SET); + + done = 0; + last_update_done = 0; + update_interval = ((size + 99) / 100); + + while (done < size) + { + req_count = size - done; + if (req_count > PRECACHE_CHUNK_SIZE) + req_count = PRECACHE_CHUNK_SIZE; + + count = core_fread(chd->file, chd->file_cache + (size_t)done, (size_t)req_count); + if (count != (size_t)req_count) + { + free(chd->file_cache); + chd->file_cache = NULL; + return CHDERR_READ_ERROR; + } + + done += req_count; + if (progress != NULL && (done - last_update_done) >= update_interval && done != size) + { + last_update_done = done; + progress(done, size, param); + } + } + } + + return CHDERR_NONE; +} + +/*------------------------------------------------- + chd_open - open a CHD file by + filename +-------------------------------------------------*/ + +CHD_EXPORT chd_error chd_open(const char *filename, int mode, chd_file *parent, chd_file **chd) +{ + chd_error err; + core_file *file = NULL; + + if (filename == NULL) + { + err = CHDERR_INVALID_PARAMETER; + goto cleanup; + } + + /* choose the proper mode */ + switch(mode) + { + case CHD_OPEN_READ: + break; + + default: + err = CHDERR_INVALID_PARAMETER; + goto cleanup; + } + + /* open the file */ + file = core_stdio_fopen(filename); + if (file == 0) + { + err = CHDERR_FILE_NOT_FOUND; + goto cleanup; + } + + /* now open the CHD */ + return chd_open_core_file(file, mode, parent, chd); + +cleanup: + if ((err != CHDERR_NONE) && (file != NULL)) + core_fclose(file); + return err; +} + +/*------------------------------------------------- + chd_close - close a CHD file for access +-------------------------------------------------*/ + +CHD_EXPORT void chd_close(chd_file *chd) +{ + /* punt if NULL or invalid */ + if (chd == NULL || chd->cookie != COOKIE_VALUE) + return; + + /* deinit the codec */ + if (chd->header.version < 5) + { + if (chd->codecintf[0] != NULL && chd->codecintf[0]->free != NULL) + (*chd->codecintf[0]->free)(&chd->zlib_codec_data); + } + else + { + int i; + /* Free the codecs */ + for (i = 0 ; i < ARRAY_LENGTH(chd->codecintf); i++) + { + void* codec = NULL; + + if (chd->codecintf[i] == NULL) + continue; + + switch (chd->codecintf[i]->compression) + { + case CHD_CODEC_ZLIB: + codec = &chd->zlib_codec_data; + break; + + case CHD_CODEC_LZMA: + codec = &chd->lzma_codec_data; + break; + + case CHD_CODEC_HUFFMAN: + codec = &chd->huff_codec_data; + break; + + case CHD_CODEC_FLAC: + codec = &chd->flac_codec_data; + break; + + case CHD_CODEC_CD_ZLIB: + codec = &chd->cdzl_codec_data; + break; + + case CHD_CODEC_CD_LZMA: + codec = &chd->cdlz_codec_data; + break; + + case CHD_CODEC_CD_FLAC: + codec = &chd->cdfl_codec_data; + break; + } + + if (codec) + { + (*chd->codecintf[i]->free)(codec); + } + } + + /* Free the raw map */ + if (chd->header.rawmap != NULL) + free(chd->header.rawmap); + } + + /* free the compressed data buffer */ + if (chd->compressed != NULL) + free(chd->compressed); + +#ifdef NEED_CACHE_HUNK + /* free the hunk cache and compare data */ + if (chd->compare != NULL) + free(chd->compare); + if (chd->cache != NULL) + free(chd->cache); +#endif + + /* free the hunk map */ + if (chd->map != NULL) + free(chd->map); + + /* close the file */ + if (chd->file != NULL) + core_fclose(chd->file); + +#ifdef NEED_CACHE_HUNK + if (PRINTF_MAX_HUNK) printf("Max hunk = %d/%d\n", chd->maxhunk, chd->header.totalhunks); +#endif + if (chd->file_cache) + free(chd->file_cache); + + if (chd->parent) + chd_close(chd->parent); + + /* free our memory */ + free(chd); +} + +/*------------------------------------------------- + chd_core_file - return the associated + core_file +-------------------------------------------------*/ + +CHD_EXPORT core_file *chd_core_file(chd_file *chd) +{ + return chd->file; +} + +/*------------------------------------------------- + chd_error_string - return an error string for + the given CHD error +-------------------------------------------------*/ + +CHD_EXPORT const char *chd_error_string(chd_error err) +{ + switch (err) + { + case CHDERR_NONE: return "no error"; + case CHDERR_NO_INTERFACE: return "no drive interface"; + case CHDERR_OUT_OF_MEMORY: return "out of memory"; + case CHDERR_INVALID_FILE: return "invalid file"; + case CHDERR_INVALID_PARAMETER: return "invalid parameter"; + case CHDERR_INVALID_DATA: return "invalid data"; + case CHDERR_FILE_NOT_FOUND: return "file not found"; + case CHDERR_REQUIRES_PARENT: return "requires parent"; + case CHDERR_FILE_NOT_WRITEABLE: return "file not writeable"; + case CHDERR_READ_ERROR: return "read error"; + case CHDERR_WRITE_ERROR: return "write error"; + case CHDERR_CODEC_ERROR: return "codec error"; + case CHDERR_INVALID_PARENT: return "invalid parent"; + case CHDERR_HUNK_OUT_OF_RANGE: return "hunk out of range"; + case CHDERR_DECOMPRESSION_ERROR: return "decompression error"; + case CHDERR_COMPRESSION_ERROR: return "compression error"; + case CHDERR_CANT_CREATE_FILE: return "can't create file"; + case CHDERR_CANT_VERIFY: return "can't verify file"; + case CHDERR_NOT_SUPPORTED: return "operation not supported"; + case CHDERR_METADATA_NOT_FOUND: return "can't find metadata"; + case CHDERR_INVALID_METADATA_SIZE: return "invalid metadata size"; + case CHDERR_UNSUPPORTED_VERSION: return "unsupported CHD version"; + case CHDERR_VERIFY_INCOMPLETE: return "incomplete verify"; + case CHDERR_INVALID_METADATA: return "invalid metadata"; + case CHDERR_INVALID_STATE: return "invalid state"; + case CHDERR_OPERATION_PENDING: return "operation pending"; + case CHDERR_NO_ASYNC_OPERATION: return "no async operation in progress"; + case CHDERR_UNSUPPORTED_FORMAT: return "unsupported format"; + default: return "undocumented error"; + } +} + +/*************************************************************************** + CHD HEADER MANAGEMENT +***************************************************************************/ + +/*------------------------------------------------- + chd_get_header - return a pointer to the + extracted header data +-------------------------------------------------*/ + +CHD_EXPORT const chd_header *chd_get_header(chd_file *chd) +{ + /* punt if NULL or invalid */ + if (chd == NULL || chd->cookie != COOKIE_VALUE) + return NULL; + + return &chd->header; +} + +/*------------------------------------------------- + chd_read_header - read CHD header data + from file into the pointed struct +-------------------------------------------------*/ +CHD_EXPORT chd_error chd_read_header_core_file(core_file* file, chd_header* header) +{ + chd_file chd; + chd.file = file; + + /* attempt to read the header */ + const chd_error err = header_read(&chd, header); + if (err != CHDERR_NONE) + return err; + + /* validate the header */ + return header_validate(header); +} + +CHD_EXPORT chd_error chd_read_header_file(FILE *file, chd_header *header) +{ + core_file stream; + stream.argp = file; + stream.fsize = core_stdio_fsize; + stream.fread = core_stdio_fread; + stream.fclose = core_stdio_fclose_nonowner; + stream.fseek = core_stdio_fseek; + + return chd_read_header_core_file(&stream, header); +} + +CHD_EXPORT chd_error chd_read_header(const char *filename, chd_header *header) +{ + if (filename == NULL) + return CHDERR_INVALID_PARAMETER; + + core_file* file = core_stdio_fopen(filename); + if (file == NULL) + return CHDERR_FILE_NOT_FOUND; + + chd_error err = chd_read_header_core_file(file, header); + + core_fclose(file); + return err; +} + +CHD_EXPORT bool chd_is_matching_parent(const chd_header* header, const chd_header* parent_header) +{ + /* check MD5 if it isn't empty */ + if (memcmp(nullmd5, header->parentmd5, sizeof(header->parentmd5)) != 0 && + memcmp(nullmd5, parent_header->md5, sizeof(parent_header->md5)) != 0 && + memcmp(parent_header->md5, header->parentmd5, sizeof(header->parentmd5)) != 0) + { + return false; + } + + /* check SHA1 if it isn't empty */ + if (memcmp(nullsha1, header->parentsha1, sizeof(header->parentsha1)) != 0 && + memcmp(nullsha1, parent_header->sha1, sizeof(parent_header->sha1)) != 0 && + memcmp(parent_header->sha1, header->parentsha1, sizeof(header->parentsha1)) != 0) + { + return false; + } + + return true; +} + +/*************************************************************************** + CORE DATA READ/WRITE +***************************************************************************/ + +/*------------------------------------------------- + chd_read - read a single hunk from the CHD + file +-------------------------------------------------*/ + +CHD_EXPORT chd_error chd_read(chd_file *chd, UINT32 hunknum, void *buffer) +{ + /* punt if NULL or invalid */ + if (chd == NULL || chd->cookie != COOKIE_VALUE) + return CHDERR_INVALID_PARAMETER; + + /* if we're past the end, fail */ + if (hunknum >= chd->header.totalhunks) + return CHDERR_HUNK_OUT_OF_RANGE; + + /* perform the read */ + return hunk_read_into_memory(chd, hunknum, (UINT8 *)buffer); +} + +/*************************************************************************** + METADATA MANAGEMENT +***************************************************************************/ + +/*------------------------------------------------- + chd_get_metadata - get the indexed metadata + of the given type +-------------------------------------------------*/ + +CHD_EXPORT chd_error chd_get_metadata(chd_file *chd, UINT32 searchtag, UINT32 searchindex, void *output, UINT32 outputlen, UINT32 *resultlen, UINT32 *resulttag, UINT8 *resultflags) +{ + metadata_entry metaentry; + chd_error err; + UINT32 count; + + /* if we didn't find it, just return */ + err = metadata_find_entry(chd, searchtag, searchindex, &metaentry); + if (err != CHDERR_NONE) + { + /* unless we're an old version and they are requesting hard disk metadata */ + if (chd->header.version < 3 && (searchtag == HARD_DISK_METADATA_TAG || searchtag == CHDMETATAG_WILDCARD) && searchindex == 0) + { + char faux_metadata[256]; + UINT32 faux_length; + + /* fill in the faux metadata */ + sprintf(faux_metadata, HARD_DISK_METADATA_FORMAT, chd->header.obsolete_cylinders, chd->header.obsolete_heads, chd->header.obsolete_sectors, chd->header.hunkbytes / chd->header.obsolete_hunksize); + faux_length = (UINT32)strlen(faux_metadata) + 1; + + /* copy the metadata itself */ + memcpy(output, faux_metadata, MIN(outputlen, faux_length)); + + /* return the length of the data and the tag */ + if (resultlen != NULL) + *resultlen = faux_length; + if (resulttag != NULL) + *resulttag = HARD_DISK_METADATA_TAG; + return CHDERR_NONE; + } + return err; + } + + /* read the metadata */ + outputlen = MIN(outputlen, metaentry.length); + core_fseek(chd->file, metaentry.offset + METADATA_HEADER_SIZE, SEEK_SET); + count = core_fread(chd->file, output, outputlen); + if (count != outputlen) + return CHDERR_READ_ERROR; + + /* return the length of the data and the tag */ + if (resultlen != NULL) + *resultlen = metaentry.length; + if (resulttag != NULL) + *resulttag = metaentry.metatag; + if (resultflags != NULL) + *resultflags = metaentry.flags; + return CHDERR_NONE; +} + +/*************************************************************************** + CODEC INTERFACES +***************************************************************************/ + +/*------------------------------------------------- + chd_codec_config - set internal codec + parameters +-------------------------------------------------*/ + +CHD_EXPORT chd_error chd_codec_config(chd_file *chd, int param, void *config) +{ + return CHDERR_INVALID_PARAMETER; +} + +/*------------------------------------------------- + chd_get_codec_name - get the name of a + particular codec +-------------------------------------------------*/ + +CHD_EXPORT const char *chd_get_codec_name(UINT32 codec) +{ + return "Unknown"; +} + +/*************************************************************************** + INTERNAL HEADER OPERATIONS +***************************************************************************/ + +/*------------------------------------------------- + header_validate - check the validity of a + CHD header +-------------------------------------------------*/ + +static chd_error header_validate(const chd_header *header) +{ + int intfnum; + + /* require a valid version */ + if (header->version == 0 || header->version > CHD_HEADER_VERSION) + return CHDERR_UNSUPPORTED_VERSION; + + /* require a valid length */ + if ((header->version == 1 && header->length != CHD_V1_HEADER_SIZE) || + (header->version == 2 && header->length != CHD_V2_HEADER_SIZE) || + (header->version == 3 && header->length != CHD_V3_HEADER_SIZE) || + (header->version == 4 && header->length != CHD_V4_HEADER_SIZE) || + (header->version == 5 && header->length != CHD_V5_HEADER_SIZE)) + return CHDERR_INVALID_PARAMETER; + + /* Do not validate v5 header */ + if (header->version <= 4) + { + /* require valid flags */ + if (header->flags & CHDFLAGS_UNDEFINED) + return CHDERR_INVALID_PARAMETER; + + /* require a supported compression mechanism */ + for (intfnum = 0; intfnum < ARRAY_LENGTH(codec_interfaces); intfnum++) + if (codec_interfaces[intfnum].compression == header->compression[0]) + break; + + if (intfnum == ARRAY_LENGTH(codec_interfaces)) + return CHDERR_INVALID_PARAMETER; + + /* require a valid hunksize */ + if (header->hunkbytes == 0 || header->hunkbytes >= 65536 * 256) + return CHDERR_INVALID_PARAMETER; + + /* require a valid hunk count */ + if (header->totalhunks == 0) + return CHDERR_INVALID_PARAMETER; + + /* require a valid MD5 and/or SHA1 if we're using a parent */ + if ((header->flags & CHDFLAGS_HAS_PARENT) && memcmp(header->parentmd5, nullmd5, sizeof(nullmd5)) == 0 && memcmp(header->parentsha1, nullsha1, sizeof(nullsha1)) == 0) + return CHDERR_INVALID_PARAMETER; + + /* if we're V3 or later, the obsolete fields must be 0 */ + if (header->version >= 3 && + (header->obsolete_cylinders != 0 || header->obsolete_sectors != 0 || + header->obsolete_heads != 0 || header->obsolete_hunksize != 0)) + return CHDERR_INVALID_PARAMETER; + + /* if we're pre-V3, the obsolete fields must NOT be 0 */ + if (header->version < 3 && + (header->obsolete_cylinders == 0 || header->obsolete_sectors == 0 || + header->obsolete_heads == 0 || header->obsolete_hunksize == 0)) + return CHDERR_INVALID_PARAMETER; + } + + return CHDERR_NONE; +} + +/*------------------------------------------------- + header_guess_unitbytes - for older CHD formats, + guess at the bytes/unit based on metadata +-------------------------------------------------*/ + +static UINT32 header_guess_unitbytes(chd_file *chd) +{ + /* look for hard disk metadata; if found, then the unit size == sector size */ + char metadata[512]; + int i0, i1, i2, i3; + if (chd_get_metadata(chd, HARD_DISK_METADATA_TAG, 0, metadata, sizeof(metadata), NULL, NULL, NULL) == CHDERR_NONE && + sscanf(metadata, HARD_DISK_METADATA_FORMAT, &i0, &i1, &i2, &i3) == 4) + return i3; + + /* look for CD-ROM metadata; if found, then the unit size == CD frame size */ + if (chd_get_metadata(chd, CDROM_OLD_METADATA_TAG, 0, metadata, sizeof(metadata), NULL, NULL, NULL) == CHDERR_NONE || + chd_get_metadata(chd, CDROM_TRACK_METADATA_TAG, 0, metadata, sizeof(metadata), NULL, NULL, NULL) == CHDERR_NONE || + chd_get_metadata(chd, CDROM_TRACK_METADATA2_TAG, 0, metadata, sizeof(metadata), NULL, NULL, NULL) == CHDERR_NONE || + chd_get_metadata(chd, GDROM_OLD_METADATA_TAG, 0, metadata, sizeof(metadata), NULL, NULL, NULL) == CHDERR_NONE || + chd_get_metadata(chd, GDROM_TRACK_METADATA_TAG, 0, metadata, sizeof(metadata), NULL, NULL, NULL) == CHDERR_NONE) + return CD_FRAME_SIZE; + + /* otherwise, just map 1:1 with the hunk size */ + return chd->header.hunkbytes; +} + +/*------------------------------------------------- + header_read - read a CHD header into the + internal data structure +-------------------------------------------------*/ + +static chd_error header_read(chd_file *chd, chd_header *header) +{ + UINT8 rawheader[CHD_MAX_HEADER_SIZE]; + UINT32 count; + + /* punt if NULL */ + if (header == NULL) + return CHDERR_INVALID_PARAMETER; + + /* punt if invalid file */ + if (chd->file == NULL) + return CHDERR_INVALID_FILE; + + /* seek and read */ + core_fseek(chd->file, 0, SEEK_SET); + count = core_fread(chd->file, rawheader, sizeof(rawheader)); + if (count != sizeof(rawheader)) + return CHDERR_READ_ERROR; + + /* verify the tag */ + if (strncmp((char *)rawheader, "MComprHD", 8) != 0) + return CHDERR_INVALID_DATA; + + /* extract the direct data */ + memset(header, 0, sizeof(*header)); + header->length = get_bigendian_uint32(&rawheader[8]); + header->version = get_bigendian_uint32(&rawheader[12]); + + /* make sure it's a version we understand */ + if (header->version == 0 || header->version > CHD_HEADER_VERSION) + return CHDERR_UNSUPPORTED_VERSION; + + /* make sure the length is expected */ + if ((header->version == 1 && header->length != CHD_V1_HEADER_SIZE) || + (header->version == 2 && header->length != CHD_V2_HEADER_SIZE) || + (header->version == 3 && header->length != CHD_V3_HEADER_SIZE) || + (header->version == 4 && header->length != CHD_V4_HEADER_SIZE) || + (header->version == 5 && header->length != CHD_V5_HEADER_SIZE)) + + return CHDERR_INVALID_DATA; + + /* extract the common data */ + header->flags = get_bigendian_uint32(&rawheader[16]); + header->compression[0] = get_bigendian_uint32(&rawheader[20]); + header->compression[1] = CHD_CODEC_NONE; + header->compression[2] = CHD_CODEC_NONE; + header->compression[3] = CHD_CODEC_NONE; + + /* extract the V1/V2-specific data */ + if (header->version < 3) + { + int seclen = (header->version == 1) ? CHD_V1_SECTOR_SIZE : get_bigendian_uint32(&rawheader[76]); + header->obsolete_hunksize = get_bigendian_uint32(&rawheader[24]); + header->totalhunks = get_bigendian_uint32(&rawheader[28]); + header->obsolete_cylinders = get_bigendian_uint32(&rawheader[32]); + header->obsolete_heads = get_bigendian_uint32(&rawheader[36]); + header->obsolete_sectors = get_bigendian_uint32(&rawheader[40]); + memcpy(header->md5, &rawheader[44], CHD_MD5_BYTES); + memcpy(header->parentmd5, &rawheader[60], CHD_MD5_BYTES); + header->logicalbytes = (UINT64)header->obsolete_cylinders * (UINT64)header->obsolete_heads * (UINT64)header->obsolete_sectors * (UINT64)seclen; + header->hunkbytes = seclen * header->obsolete_hunksize; + header->unitbytes = header_guess_unitbytes(chd); + if (header->unitbytes == 0) + return CHDERR_INVALID_DATA; + header->unitcount = (header->logicalbytes + header->unitbytes - 1) / header->unitbytes; + header->metaoffset = 0; + } + + /* extract the V3-specific data */ + else if (header->version == 3) + { + header->totalhunks = get_bigendian_uint32(&rawheader[24]); + header->logicalbytes = get_bigendian_uint64(&rawheader[28]); + header->metaoffset = get_bigendian_uint64(&rawheader[36]); + memcpy(header->md5, &rawheader[44], CHD_MD5_BYTES); + memcpy(header->parentmd5, &rawheader[60], CHD_MD5_BYTES); + header->hunkbytes = get_bigendian_uint32(&rawheader[76]); + header->unitbytes = header_guess_unitbytes(chd); + if (header->unitbytes == 0) + return CHDERR_INVALID_DATA; + header->unitcount = (header->logicalbytes + header->unitbytes - 1) / header->unitbytes; + memcpy(header->sha1, &rawheader[80], CHD_SHA1_BYTES); + memcpy(header->parentsha1, &rawheader[100], CHD_SHA1_BYTES); + } + + /* extract the V4-specific data */ + else if (header->version == 4) + { + header->totalhunks = get_bigendian_uint32(&rawheader[24]); + header->logicalbytes = get_bigendian_uint64(&rawheader[28]); + header->metaoffset = get_bigendian_uint64(&rawheader[36]); + header->hunkbytes = get_bigendian_uint32(&rawheader[44]); + header->unitbytes = header_guess_unitbytes(chd); + if (header->unitbytes == 0) + return CHDERR_INVALID_DATA; + header->unitcount = (header->logicalbytes + header->unitbytes - 1) / header->unitbytes; + memcpy(header->sha1, &rawheader[48], CHD_SHA1_BYTES); + memcpy(header->parentsha1, &rawheader[68], CHD_SHA1_BYTES); + memcpy(header->rawsha1, &rawheader[88], CHD_SHA1_BYTES); + } + + /* extract the V5-specific data */ + else if (header->version == 5) + { + /* TODO */ + header->compression[0] = get_bigendian_uint32(&rawheader[16]); + header->compression[1] = get_bigendian_uint32(&rawheader[20]); + header->compression[2] = get_bigendian_uint32(&rawheader[24]); + header->compression[3] = get_bigendian_uint32(&rawheader[28]); + header->logicalbytes = get_bigendian_uint64(&rawheader[32]); + header->mapoffset = get_bigendian_uint64(&rawheader[40]); + header->metaoffset = get_bigendian_uint64(&rawheader[48]); + header->hunkbytes = get_bigendian_uint32(&rawheader[56]); + if (header->hunkbytes == 0) + return CHDERR_INVALID_DATA; + header->hunkcount = (header->logicalbytes + header->hunkbytes - 1) / header->hunkbytes; + header->unitbytes = get_bigendian_uint32(&rawheader[60]); + if (header->unitbytes == 0) + return CHDERR_INVALID_DATA; + header->unitcount = (header->logicalbytes + header->unitbytes - 1) / header->unitbytes; + memcpy(header->sha1, &rawheader[84], CHD_SHA1_BYTES); + memcpy(header->parentsha1, &rawheader[104], CHD_SHA1_BYTES); + memcpy(header->rawsha1, &rawheader[64], CHD_SHA1_BYTES); + + /* determine properties of map entries */ + header->mapentrybytes = chd_compressed(header) ? 12 : 4; + + /* hack */ + header->totalhunks = header->hunkcount; + } + + /* Unknown version */ + else + { + /* TODO */ + } + + /* guess it worked */ + return CHDERR_NONE; +} + +/*************************************************************************** + INTERNAL HUNK READ/WRITE +***************************************************************************/ + +/*------------------------------------------------- + hunk_read_compressed - read a compressed + hunk +-------------------------------------------------*/ + +static UINT8* hunk_read_compressed(chd_file *chd, UINT64 offset, size_t size) +{ +#ifdef _MSC_VER + size_t bytes; +#else + ssize_t bytes; +#endif + if (chd->file_cache != NULL) + { + return chd->file_cache + offset; + } + else + { + core_fseek(chd->file, offset, SEEK_SET); + bytes = core_fread(chd->file, chd->compressed, size); + if (bytes != size) + return NULL; + return chd->compressed; + } +} + +/*------------------------------------------------- + hunk_read_uncompressed - read an uncompressed + hunk +-------------------------------------------------*/ + +static chd_error hunk_read_uncompressed(chd_file *chd, UINT64 offset, size_t size, UINT8 *dest) +{ +#ifdef _MSC_VER + size_t bytes; +#else + ssize_t bytes; +#endif + if (chd->file_cache != NULL) + { + memcpy(dest, chd->file_cache + offset, size); + } + else + { + core_fseek(chd->file, offset, SEEK_SET); + bytes = core_fread(chd->file, dest, size); + if (bytes != size) + return CHDERR_READ_ERROR; + } + return CHDERR_NONE; +} + +#ifdef NEED_CACHE_HUNK +/*------------------------------------------------- + hunk_read_into_cache - read a hunk into + the CHD's hunk cache +-------------------------------------------------*/ + +static chd_error hunk_read_into_cache(chd_file *chd, UINT32 hunknum) +{ + chd_error err; + + /* track the max */ + if (hunknum > chd->maxhunk) + chd->maxhunk = hunknum; + + /* if we're already in the cache, we're done */ + if (chd->cachehunk == hunknum) + return CHDERR_NONE; + chd->cachehunk = ~0; + + /* otherwise, read the data */ + err = hunk_read_into_memory(chd, hunknum, chd->cache); + if (err != CHDERR_NONE) + return err; + + /* mark the hunk successfully cached in */ + chd->cachehunk = hunknum; + return CHDERR_NONE; +} +#endif + +/*------------------------------------------------- + hunk_read_into_memory - read a hunk into + memory at the given location +-------------------------------------------------*/ + +static chd_error hunk_read_into_memory(chd_file *chd, UINT32 hunknum, UINT8 *dest) +{ + chd_error err; + + /* punt if no file */ + if (chd->file == NULL) + return CHDERR_INVALID_FILE; + + /* return an error if out of range */ + if (hunknum >= chd->header.totalhunks) + return CHDERR_HUNK_OUT_OF_RANGE; + + if (dest == NULL) + return CHDERR_INVALID_PARAMETER; + + if (chd->header.version < 5) + { + map_entry *entry = &chd->map[hunknum]; + UINT32 bytes; + UINT8* compressed_bytes; + + /* switch off the entry type */ + switch (entry->flags & MAP_ENTRY_FLAG_TYPE_MASK) + { + /* compressed data */ + case V34_MAP_ENTRY_TYPE_COMPRESSED: + { + void *codec = NULL; + + /* read it into the decompression buffer */ + compressed_bytes = hunk_read_compressed(chd, entry->offset, entry->length); + if (compressed_bytes == NULL) + return CHDERR_READ_ERROR; + + /* now decompress using the codec */ + err = CHDERR_NONE; + codec = &chd->zlib_codec_data; + if (chd->codecintf[0]->decompress != NULL) + err = (*chd->codecintf[0]->decompress)(codec, compressed_bytes, entry->length, dest, chd->header.hunkbytes); + if (err != CHDERR_NONE) + return err; + break; + } + + /* uncompressed data */ + case V34_MAP_ENTRY_TYPE_UNCOMPRESSED: + err = hunk_read_uncompressed(chd, entry->offset, chd->header.hunkbytes, dest); + if (err != CHDERR_NONE) + return err; + break; + + /* mini-compressed data */ + case V34_MAP_ENTRY_TYPE_MINI: + put_bigendian_uint64(&dest[0], entry->offset); + for (bytes = 8; bytes < chd->header.hunkbytes; bytes++) + dest[bytes] = dest[bytes - 8]; + break; + + /* self-referenced data */ + case V34_MAP_ENTRY_TYPE_SELF_HUNK: +#ifdef NEED_CACHE_HUNK + if (chd->cachehunk == entry->offset && dest == chd->cache) + break; +#endif + return hunk_read_into_memory(chd, entry->offset, dest); + + /* parent-referenced data */ + case V34_MAP_ENTRY_TYPE_PARENT_HUNK: + err = hunk_read_into_memory(chd->parent, entry->offset, dest); + if (err != CHDERR_NONE) + return err; + break; + } + return CHDERR_NONE; + } + else + { + void* codec = NULL; + /* get a pointer to the map entry */ + uint64_t blockoffs; + uint32_t blocklen; +#ifdef VERIFY_BLOCK_CRC + uint16_t blockcrc; +#endif + uint8_t *rawmap = &chd->header.rawmap[chd->header.mapentrybytes * hunknum]; + UINT8* compressed_bytes; + + /* uncompressed case */ + if (!chd_compressed(&chd->header)) + { + blockoffs = (uint64_t)get_bigendian_uint32(rawmap) * (uint64_t)chd->header.hunkbytes; + if (blockoffs != 0) { + core_fseek(chd->file, blockoffs, SEEK_SET); + int result = core_fread(chd->file, dest, chd->header.hunkbytes); + /* TODO + else if (m_parent_missing) + throw CHDERR_REQUIRES_PARENT; */ + } else if (chd->parent) { + err = hunk_read_into_memory(chd->parent, hunknum, dest); + if (err != CHDERR_NONE) + return err; + } else { + memset(dest, 0, chd->header.hunkbytes); + } + + return CHDERR_NONE; + } + + /* compressed case */ + blocklen = get_bigendian_uint24(&rawmap[1]); + blockoffs = get_bigendian_uint48(&rawmap[4]); +#ifdef VERIFY_BLOCK_CRC + blockcrc = get_bigendian_uint16(&rawmap[10]); +#endif + codec = NULL; + switch (rawmap[0]) + { + case COMPRESSION_TYPE_0: + case COMPRESSION_TYPE_1: + case COMPRESSION_TYPE_2: + case COMPRESSION_TYPE_3: + compressed_bytes = hunk_read_compressed(chd, blockoffs, blocklen); + if (compressed_bytes == NULL) + return CHDERR_READ_ERROR; + switch (chd->codecintf[rawmap[0]]->compression) + { + case CHD_CODEC_ZLIB: + codec = &chd->zlib_codec_data; + break; + + case CHD_CODEC_LZMA: + codec = &chd->lzma_codec_data; + break; + + case CHD_CODEC_HUFFMAN: + codec = &chd->huff_codec_data; + break; + + case CHD_CODEC_FLAC: + codec = &chd->flac_codec_data; + break; + + case CHD_CODEC_CD_ZLIB: + codec = &chd->cdzl_codec_data; + break; + + case CHD_CODEC_CD_LZMA: + codec = &chd->cdlz_codec_data; + break; + + case CHD_CODEC_CD_FLAC: + codec = &chd->cdfl_codec_data; + break; + } + if (codec==NULL) + return CHDERR_CODEC_ERROR; + err = chd->codecintf[rawmap[0]]->decompress(codec, compressed_bytes, blocklen, dest, chd->header.hunkbytes); + if (err != CHDERR_NONE) + return err; +#ifdef VERIFY_BLOCK_CRC + if (crc16(dest, chd->header.hunkbytes) != blockcrc) + return CHDERR_DECOMPRESSION_ERROR; +#endif + return CHDERR_NONE; + + case COMPRESSION_NONE: + err = hunk_read_uncompressed(chd, blockoffs, blocklen, dest); + if (err != CHDERR_NONE) + return err; +#ifdef VERIFY_BLOCK_CRC + if (crc16(dest, chd->header.hunkbytes) != blockcrc) + return CHDERR_DECOMPRESSION_ERROR; +#endif + return CHDERR_NONE; + + case COMPRESSION_SELF: + return hunk_read_into_memory(chd, blockoffs, dest); + + case COMPRESSION_PARENT: + if (chd->parent == NULL) + return CHDERR_REQUIRES_PARENT; + UINT8 units_in_hunk = chd->header.hunkbytes / chd->header.unitbytes; + + /* blockoffs is aligned to units_in_hunk */ + if (blockoffs % units_in_hunk == 0) { + return hunk_read_into_memory(chd->parent, blockoffs / units_in_hunk, dest); + /* blockoffs is not aligned to units_in_hunk */ + } else { + UINT32 unit_in_hunk = blockoffs % units_in_hunk; + UINT8 *buf = malloc(chd->header.hunkbytes); + /* Read first half of hunk which contains blockoffs */ + err = hunk_read_into_memory(chd->parent, blockoffs / units_in_hunk, buf); + if (err != CHDERR_NONE) { + free(buf); + return err; + } + memcpy(dest, buf + unit_in_hunk * chd->header.unitbytes, (units_in_hunk - unit_in_hunk) * chd->header.unitbytes); + /* Read second half of hunk which contains blockoffs */ + err = hunk_read_into_memory(chd->parent, (blockoffs / units_in_hunk) + 1, buf); + if (err != CHDERR_NONE) { + free(buf); + return err; + } + memcpy(dest + (units_in_hunk - unit_in_hunk) * chd->header.unitbytes, buf, unit_in_hunk * chd->header.unitbytes); + free(buf); + } + } + return CHDERR_NONE; + } + + /* We should not reach this code */ + return CHDERR_DECOMPRESSION_ERROR; +} + +/*************************************************************************** + INTERNAL MAP ACCESS +***************************************************************************/ + +/*------------------------------------------------- + map_read - read the initial sector map +-------------------------------------------------*/ + +static chd_error map_read(chd_file *chd) +{ + UINT32 entrysize = (chd->header.version < 3) ? OLD_MAP_ENTRY_SIZE : MAP_ENTRY_SIZE; + UINT8 raw_map_entries[MAP_STACK_ENTRIES * MAP_ENTRY_SIZE]; + UINT64 fileoffset, maxoffset = 0; + UINT8 cookie[MAP_ENTRY_SIZE]; + UINT32 count; + chd_error err; + UINT32 i; + + /* first allocate memory */ + chd->map = (map_entry *)malloc(sizeof(chd->map[0]) * chd->header.totalhunks); + if (!chd->map) + return CHDERR_OUT_OF_MEMORY; + + /* read the map entries in in chunks and extract to the map list */ + fileoffset = chd->header.length; + for (i = 0; i < chd->header.totalhunks; i += MAP_STACK_ENTRIES) + { + /* compute how many entries this time */ + int entries = chd->header.totalhunks - i, j; + if (entries > MAP_STACK_ENTRIES) + entries = MAP_STACK_ENTRIES; + + /* read that many */ + core_fseek(chd->file, fileoffset, SEEK_SET); + count = core_fread(chd->file, raw_map_entries, entries * entrysize); + if (count != entries * entrysize) + { + err = CHDERR_READ_ERROR; + goto cleanup; + } + fileoffset += entries * entrysize; + + /* process that many */ + if (entrysize == MAP_ENTRY_SIZE) + { + for (j = 0; j < entries; j++) + map_extract(&raw_map_entries[j * MAP_ENTRY_SIZE], &chd->map[i + j]); + } + else + { + for (j = 0; j < entries; j++) + map_extract_old(&raw_map_entries[j * OLD_MAP_ENTRY_SIZE], &chd->map[i + j], chd->header.hunkbytes); + } + + /* track the maximum offset */ + for (j = 0; j < entries; j++) + if ((chd->map[i + j].flags & MAP_ENTRY_FLAG_TYPE_MASK) == V34_MAP_ENTRY_TYPE_COMPRESSED || + (chd->map[i + j].flags & MAP_ENTRY_FLAG_TYPE_MASK) == V34_MAP_ENTRY_TYPE_UNCOMPRESSED) + maxoffset = MAX(maxoffset, chd->map[i + j].offset + chd->map[i + j].length); + } + + /* verify the cookie */ + core_fseek(chd->file, fileoffset, SEEK_SET); + count = core_fread(chd->file, &cookie, entrysize); + if (count != entrysize || memcmp(&cookie, END_OF_LIST_COOKIE, entrysize)) + { + err = CHDERR_INVALID_FILE; + goto cleanup; + } + + /* verify the length */ + if (maxoffset > core_fsize(chd->file)) + { + err = CHDERR_INVALID_FILE; + goto cleanup; + } + return CHDERR_NONE; + +cleanup: + if (chd->map) + free(chd->map); + chd->map = NULL; + return err; +} + +/*************************************************************************** + INTERNAL METADATA ACCESS +***************************************************************************/ + +/*------------------------------------------------- + metadata_find_entry - find a metadata entry +-------------------------------------------------*/ + +static chd_error metadata_find_entry(chd_file *chd, UINT32 metatag, UINT32 metaindex, metadata_entry *metaentry) +{ + /* start at the beginning */ + metaentry->offset = chd->header.metaoffset; + metaentry->prev = 0; + + /* loop until we run out of options */ + while (metaentry->offset != 0) + { + UINT8 raw_meta_header[METADATA_HEADER_SIZE]; + UINT32 count; + + /* read the raw header */ + core_fseek(chd->file, metaentry->offset, SEEK_SET); + count = core_fread(chd->file, raw_meta_header, sizeof(raw_meta_header)); + if (count != sizeof(raw_meta_header)) + break; + + /* extract the data */ + metaentry->metatag = get_bigendian_uint32(&raw_meta_header[0]); + metaentry->length = get_bigendian_uint32(&raw_meta_header[4]); + metaentry->next = get_bigendian_uint64(&raw_meta_header[8]); + + /* flags are encoded in the high byte of length */ + metaentry->flags = metaentry->length >> 24; + metaentry->length &= 0x00ffffff; + + /* if we got a match, proceed */ + if (metatag == CHDMETATAG_WILDCARD || metaentry->metatag == metatag) + if (metaindex-- == 0) + return CHDERR_NONE; + + /* no match, fetch the next link */ + metaentry->prev = metaentry->offset; + metaentry->offset = metaentry->next; + } + + /* if we get here, we didn't find it */ + return CHDERR_METADATA_NOT_FOUND; +} + +/*************************************************************************** + ZLIB COMPRESSION CODEC +***************************************************************************/ + +/*------------------------------------------------- + zlib_codec_init - initialize the ZLIB codec +-------------------------------------------------*/ + +static chd_error zlib_codec_init(void *codec, uint32_t hunkbytes) +{ + int zerr; + chd_error err; + zlib_codec_data *data = (zlib_codec_data*)codec; + + /* clear the buffers */ + memset(data, 0, sizeof(zlib_codec_data)); + + /* init the inflater first */ + data->inflater.next_in = (Bytef *)data; /* bogus, but that's ok */ + data->inflater.avail_in = 0; + data->inflater.zalloc = zlib_fast_alloc; + data->inflater.zfree = zlib_fast_free; + data->inflater.opaque = &data->allocator; + zerr = inflateInit2(&data->inflater, -MAX_WBITS); + + /* convert errors */ + if (zerr == Z_MEM_ERROR) + err = CHDERR_OUT_OF_MEMORY; + else if (zerr != Z_OK) + err = CHDERR_CODEC_ERROR; + else + err = CHDERR_NONE; + + return err; +} + +/*------------------------------------------------- + zlib_codec_free - free data for the ZLIB + codec +-------------------------------------------------*/ + +static void zlib_codec_free(void *codec) +{ + zlib_codec_data *data = (zlib_codec_data *)codec; + + /* deinit the streams */ + if (data != NULL) + { + inflateEnd(&data->inflater); + + /* free our fast memory */ + zlib_allocator_free(&data->allocator); + } +} + +/*------------------------------------------------- + zlib_codec_decompress - decompress data using + the ZLIB codec +-------------------------------------------------*/ + +static chd_error zlib_codec_decompress(void *codec, const uint8_t *src, uint32_t complen, uint8_t *dest, uint32_t destlen) +{ + zlib_codec_data *data = (zlib_codec_data *)codec; + int zerr; + + /* reset the decompressor */ + data->inflater.next_in = (Bytef *)src; + data->inflater.avail_in = complen; + data->inflater.total_in = 0; + data->inflater.next_out = (Bytef *)dest; + data->inflater.avail_out = destlen; + data->inflater.total_out = 0; + zerr = inflateReset(&data->inflater); + if (zerr != Z_OK) + return CHDERR_DECOMPRESSION_ERROR; + + /* do it */ + zerr = inflate(&data->inflater, Z_FINISH); + if (data->inflater.total_out != destlen) + return CHDERR_DECOMPRESSION_ERROR; + + return CHDERR_NONE; +} + +/*------------------------------------------------- + zlib_fast_alloc - fast malloc for ZLIB, which + allocates and frees memory frequently +-------------------------------------------------*/ + +/* Huge alignment values for possible SIMD optimization by compiler (NEON, SSE, AVX) */ +#define ZLIB_MIN_ALIGNMENT_BITS 512 +#define ZLIB_MIN_ALIGNMENT_BYTES (ZLIB_MIN_ALIGNMENT_BITS / 8) + +static voidpf zlib_fast_alloc(voidpf opaque, uInt items, uInt size) +{ + zlib_allocator *alloc = (zlib_allocator *)opaque; + uintptr_t paddr = 0; + UINT32 *ptr; + int i; + + /* compute the size, rounding to the nearest 1k */ + size = (size * items + 0x3ff) & ~0x3ff; + + /* reuse a hunk if we can */ + for (i = 0; i < MAX_ZLIB_ALLOCS; i++) + { + ptr = alloc->allocptr[i]; + if (ptr && size == *ptr) + { + /* set the low bit of the size so we don't match next time */ + *ptr |= 1; + + /* return aligned block address */ + return (voidpf)(alloc->allocptr2[i]); + } + } + + /* alloc a new one */ + ptr = (UINT32 *)malloc(size + sizeof(UINT32) + ZLIB_MIN_ALIGNMENT_BYTES); + if (!ptr) + return NULL; + + /* put it into the list */ + for (i = 0; i < MAX_ZLIB_ALLOCS; i++) + if (!alloc->allocptr[i]) + { + alloc->allocptr[i] = ptr; + paddr = (((uintptr_t)ptr) + sizeof(UINT32) + (ZLIB_MIN_ALIGNMENT_BYTES-1)) & (~(ZLIB_MIN_ALIGNMENT_BYTES-1)); + alloc->allocptr2[i] = (uint32_t*)paddr; + break; + } + + /* set the low bit of the size so we don't match next time */ + *ptr = size | 1; + + /* return aligned block address */ + return (voidpf)paddr; +} + +/*------------------------------------------------- + zlib_fast_free - fast free for ZLIB, which + allocates and frees memory frequently +-------------------------------------------------*/ + +static void zlib_fast_free(voidpf opaque, voidpf address) +{ + zlib_allocator *alloc = (zlib_allocator *)opaque; + UINT32 *ptr = (UINT32 *)address; + int i; + + /* find the hunk */ + for (i = 0; i < MAX_ZLIB_ALLOCS; i++) + if (ptr == alloc->allocptr2[i]) + { + /* clear the low bit of the size to allow matches */ + *(alloc->allocptr[i]) &= ~1; + return; + } +} + +/*------------------------------------------------- + zlib_allocator_free +-------------------------------------------------*/ +static void zlib_allocator_free(voidpf opaque) +{ + zlib_allocator *alloc = (zlib_allocator *)opaque; + int i; + + for (i = 0; i < MAX_ZLIB_ALLOCS; i++) + if (alloc->allocptr[i]) + free(alloc->allocptr[i]); +} + +/*------------------------------------------------- + core_stdio_fopen - core_file wrapper over fopen +-------------------------------------------------*/ +static core_file *core_stdio_fopen(char const *path) { + core_file *file = malloc(sizeof(core_file)); + if (!file) + return NULL; + if (!(file->argp = fopen(path, "rb"))) { + free(file); + return NULL; + } + file->fsize = core_stdio_fsize; + file->fread = core_stdio_fread; + file->fclose = core_stdio_fclose; + file->fseek = core_stdio_fseek; + return file; +} + +/*------------------------------------------------- + core_stdio_fsize - core_file function for + getting file size with stdio +-------------------------------------------------*/ +static UINT64 core_stdio_fsize(core_file *file) { +#if defined USE_LIBRETRO_VFS + #define core_stdio_fseek_impl fseek + #define core_stdio_ftell_impl ftell +#elif defined(__WIN32__) || defined(_WIN32) || defined(WIN32) || defined(__WIN64__) + #define core_stdio_fseek_impl _fseeki64 + #define core_stdio_ftell_impl _ftelli64 +#elif defined(_LARGEFILE_SOURCE) && defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64 + #define core_stdio_fseek_impl fseeko64 + #define core_stdio_ftell_impl ftello64 +#elif defined(__PS3__) && !defined(__PSL1GHT__) || defined(__SWITCH__) || defined(__vita__) + #define core_stdio_fseek_impl(x,y,z) fseek(x,(off_t)y,z) + #define core_stdio_ftell_impl(x) (off_t)ftell(x) +#else + #define core_stdio_fseek_impl fseeko + #define core_stdio_ftell_impl ftello +#endif + FILE *fp; + UINT64 p, rv; + fp = (FILE*)file->argp; + + p = core_stdio_ftell_impl(fp); + core_stdio_fseek_impl(fp, 0, SEEK_END); + rv = core_stdio_ftell_impl(fp); + core_stdio_fseek_impl(fp, p, SEEK_SET); + return rv; +} + +/*------------------------------------------------- + core_stdio_fread - core_file wrapper over fread +-------------------------------------------------*/ +static size_t core_stdio_fread(void *ptr, size_t size, size_t nmemb, core_file *file) { + return fread(ptr, size, nmemb, (FILE*)file->argp); +} + +/*------------------------------------------------- + core_stdio_fclose - core_file wrapper over fclose +-------------------------------------------------*/ +static int core_stdio_fclose(core_file *file) { + int err = fclose((FILE*)file->argp); + if (err == 0) + free(file); + return err; +} + +/*------------------------------------------------- + core_stdio_fclose_nonowner - don't call fclose because + we don't own the underlying file, but do free the + core_file because libchdr did allocate that itself. +-------------------------------------------------*/ +static int core_stdio_fclose_nonowner(core_file *file) { + free(file); + return 0; +} + +/*------------------------------------------------- + core_stdio_fseek - core_file wrapper over fclose +-------------------------------------------------*/ +static int core_stdio_fseek(core_file* file, INT64 offset, int whence) { + return core_stdio_fseek_impl((FILE*)file->argp, offset, whence); +} diff --git a/3rdparty/libchdr/src/libchdr_flac.c b/3rdparty/libchdr/src/libchdr_flac.c new file mode 100644 index 0000000000000..dce22c7230228 --- /dev/null +++ b/3rdparty/libchdr/src/libchdr_flac.c @@ -0,0 +1,303 @@ +/* license:BSD-3-Clause + * copyright-holders:Aaron Giles +*************************************************************************** + + flac.c + + FLAC compression wrappers + +***************************************************************************/ + +#include + +#include +#define DR_FLAC_IMPLEMENTATION +#define DR_FLAC_NO_STDIO +#include + +/*************************************************************************** + * FLAC DECODER + *************************************************************************** + */ + +static size_t flac_decoder_read_callback(void *userdata, void *buffer, size_t bytes); +static drflac_bool32 flac_decoder_seek_callback(void *userdata, int offset, drflac_seek_origin origin); +static void flac_decoder_metadata_callback(void *userdata, drflac_metadata *metadata); +static void flac_decoder_write_callback(void *userdata, void *buffer, size_t bytes); + + +/* getters (valid after reset) */ +static uint32_t sample_rate(flac_decoder *decoder) { return decoder->sample_rate; } +static uint8_t channels(flac_decoder *decoder) { return decoder->channels; } +static uint8_t bits_per_sample(flac_decoder *decoder) { return decoder->bits_per_sample; } + +/*------------------------------------------------- + * flac_decoder - constructor + *------------------------------------------------- + */ + +int flac_decoder_init(flac_decoder *decoder) +{ + decoder->decoder = NULL; + decoder->sample_rate = 0; + decoder->channels = 0; + decoder->bits_per_sample = 0; + decoder->compressed_offset = 0; + decoder->compressed_start = NULL; + decoder->compressed_length = 0; + decoder->compressed2_start = NULL; + decoder->compressed2_length = 0; + decoder->uncompressed_offset = 0; + decoder->uncompressed_length = 0; + decoder->uncompressed_swap = 0; + return 0; +} + +/*------------------------------------------------- + * flac_decoder - destructor + *------------------------------------------------- + */ + +void flac_decoder_free(flac_decoder* decoder) +{ + if ((decoder != NULL) && (decoder->decoder != NULL)) { + drflac_close(decoder->decoder); + decoder->decoder = NULL; + } +} + +/*------------------------------------------------- + * reset - reset state with the original + * parameters + *------------------------------------------------- + */ + +static int flac_decoder_internal_reset(flac_decoder* decoder) +{ + decoder->compressed_offset = 0; + flac_decoder_free(decoder); + decoder->decoder = drflac_open_with_metadata( + flac_decoder_read_callback, flac_decoder_seek_callback, + flac_decoder_metadata_callback, decoder, NULL); + return (decoder->decoder != NULL); +} + +/*------------------------------------------------- + * reset - reset state with new memory parameters + * and a custom-generated header + *------------------------------------------------- + */ + +int flac_decoder_reset(flac_decoder* decoder, uint32_t sample_rate, uint8_t num_channels, uint32_t block_size, const void *buffer, uint32_t length) +{ + /* modify the template header with our parameters */ + static const uint8_t s_header_template[0x2a] = + { + 0x66, 0x4C, 0x61, 0x43, /* +00: 'fLaC' stream header */ + 0x80, /* +04: metadata block type 0 (STREAMINFO), */ + /* flagged as last block */ + 0x00, 0x00, 0x22, /* +05: metadata block length = 0x22 */ + 0x00, 0x00, /* +08: minimum block size */ + 0x00, 0x00, /* +0A: maximum block size */ + 0x00, 0x00, 0x00, /* +0C: minimum frame size (0 == unknown) */ + 0x00, 0x00, 0x00, /* +0F: maximum frame size (0 == unknown) */ + 0x0A, 0xC4, 0x42, 0xF0, 0x00, 0x00, 0x00, 0x00, /* +12: sample rate (0x0ac44 == 44100), */ + /* numchannels (2), sample bits (16), */ + /* samples in stream (0 == unknown) */ + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* +1A: MD5 signature (0 == none) */ + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 /* +2A: start of stream data */ + }; + memcpy(decoder->custom_header, s_header_template, sizeof(s_header_template)); + decoder->custom_header[0x08] = decoder->custom_header[0x0a] = (block_size*num_channels) >> 8; + decoder->custom_header[0x09] = decoder->custom_header[0x0b] = (block_size*num_channels) & 0xff; + decoder->custom_header[0x12] = sample_rate >> 12; + decoder->custom_header[0x13] = sample_rate >> 4; + decoder->custom_header[0x14] = (sample_rate << 4) | ((num_channels - 1) << 1); + + /* configure the header ahead of the provided buffer */ + decoder->compressed_start = (const uint8_t *)(decoder->custom_header); + decoder->compressed_length = sizeof(decoder->custom_header); + decoder->compressed2_start = (const uint8_t *)(buffer); + decoder->compressed2_length = length; + return flac_decoder_internal_reset(decoder); +} + +/*------------------------------------------------- + * decode_interleaved - decode to an interleaved + * sound stream + *------------------------------------------------- + */ + +int flac_decoder_decode_interleaved(flac_decoder* decoder, int16_t *samples, uint32_t num_samples, int swap_endian) +{ + /* configure the uncompressed buffer */ + memset(decoder->uncompressed_start, 0, sizeof(decoder->uncompressed_start)); + decoder->uncompressed_start[0] = samples; + decoder->uncompressed_offset = 0; + decoder->uncompressed_length = num_samples; + decoder->uncompressed_swap = swap_endian; + +#define BUFFER 2352 /* bytes per CD audio sector */ + int16_t buffer[BUFFER]; + uint32_t buf_samples = BUFFER / channels(decoder); + /* loop until we get everything we want */ + while (decoder->uncompressed_offset < decoder->uncompressed_length) { + uint32_t frames = (num_samples < buf_samples ? num_samples : buf_samples); + if (!drflac_read_pcm_frames_s16(decoder->decoder, frames, buffer)) + return 0; + flac_decoder_write_callback(decoder, buffer, frames*sizeof(*buffer)*channels(decoder)); + num_samples -= frames; + } + return 1; +} + +/*------------------------------------------------- + * finish - finish up the decode + *------------------------------------------------- + */ + +uint32_t flac_decoder_finish(flac_decoder* decoder) +{ + /* get the final decoding position and move forward */ + drflac *flac = decoder->decoder; + uint64_t position = decoder->compressed_offset; + + /* ugh... there's no function to obtain bytes used in drflac :-/ */ + position -= DRFLAC_CACHE_L2_LINES_REMAINING(&flac->bs) * sizeof(drflac_cache_t); + position -= DRFLAC_CACHE_L1_BITS_REMAINING(&flac->bs) / 8; + position -= flac->bs.unalignedByteCount; + + /* adjust position if we provided the header */ + if (position == 0) + return 0; + if (decoder->compressed_start == (const uint8_t *)(decoder->custom_header)) + position -= decoder->compressed_length; + + flac_decoder_free(decoder); + return position; +} + +/*------------------------------------------------- + * read_callback - handle reads from the input + * stream + *------------------------------------------------- + */ + +#define MIN(x, y) ((x) < (y) ? (x) : (y)) + +static size_t flac_decoder_read_callback(void *userdata, void *buffer, size_t bytes) +{ + flac_decoder* decoder = (flac_decoder*)userdata; + uint8_t *dst = buffer; + + /* copy from primary buffer first */ + uint32_t outputpos = 0; + if (outputpos < bytes && decoder->compressed_offset < decoder->compressed_length) + { + uint32_t bytes_to_copy = MIN(bytes - outputpos, decoder->compressed_length - decoder->compressed_offset); + memcpy(&dst[outputpos], decoder->compressed_start + decoder->compressed_offset, bytes_to_copy); + outputpos += bytes_to_copy; + decoder->compressed_offset += bytes_to_copy; + } + + /* once we're out of that, copy from the secondary buffer */ + if (outputpos < bytes && decoder->compressed_offset < decoder->compressed_length + decoder->compressed2_length) + { + uint32_t bytes_to_copy = MIN(bytes - outputpos, decoder->compressed2_length - (decoder->compressed_offset - decoder->compressed_length)); + memcpy(&dst[outputpos], decoder->compressed2_start + decoder->compressed_offset - decoder->compressed_length, bytes_to_copy); + outputpos += bytes_to_copy; + decoder->compressed_offset += bytes_to_copy; + } + + return outputpos; +} + +/*------------------------------------------------- + * metadata_callback - handle STREAMINFO metadata + *------------------------------------------------- + */ + +static void flac_decoder_metadata_callback(void *userdata, drflac_metadata *metadata) +{ + flac_decoder *decoder = userdata; + + /* ignore all but STREAMINFO metadata */ + if (metadata->type != DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO) + return; + + /* parse out the data we care about */ + decoder->sample_rate = metadata->data.streaminfo.sampleRate; + decoder->bits_per_sample = metadata->data.streaminfo.bitsPerSample; + decoder->channels = metadata->data.streaminfo.channels; +} + +/*------------------------------------------------- + * write_callback - handle writes to the output + * stream + *------------------------------------------------- + */ + +static void flac_decoder_write_callback(void *userdata, void *buffer, size_t bytes) +{ + int sampnum, chan; + int shift, blocksize; + flac_decoder * decoder = (flac_decoder *)userdata; + int16_t *sampbuf = (int16_t *)buffer; + int sampch = channels(decoder); + uint32_t offset = decoder->uncompressed_offset; + uint16_t usample; + + /* interleaved case */ + shift = decoder->uncompressed_swap ? 8 : 0; + blocksize = bytes / (sampch * sizeof(sampbuf[0])); + if (decoder->uncompressed_start[1] == NULL) + { + int16_t *dest = decoder->uncompressed_start[0] + offset * sampch; + for (sampnum = 0; sampnum < blocksize && offset < decoder->uncompressed_length; sampnum++, offset++) + for (chan = 0; chan < sampch; chan++) { + usample = (uint16_t)*sampbuf++; + *dest++ = (int16_t)((usample << shift) | (usample >> shift)); + } + } + + /* non-interleaved case */ + else + { + for (sampnum = 0; sampnum < blocksize && offset < decoder->uncompressed_length; sampnum++, offset++) + for (chan = 0; chan < sampch; chan++) { + usample = (uint16_t)*sampbuf++; + if (decoder->uncompressed_start[chan] != NULL) + decoder->uncompressed_start[chan][offset] = (int16_t) ((usample << shift) | (usample >> shift)); + } + } + decoder->uncompressed_offset = offset; +} + + +/*------------------------------------------------- + * seek_callback - handle seeks on the output + * stream + *------------------------------------------------- + */ + +static drflac_bool32 flac_decoder_seek_callback(void *userdata, int offset, drflac_seek_origin origin) +{ + flac_decoder * decoder = (flac_decoder *)userdata; + uint32_t length = decoder->compressed_length + decoder->compressed2_length; + + if (origin == drflac_seek_origin_start) { + uint32_t pos = offset; + if (pos <= length) { + decoder->compressed_offset = pos; + return 1; + } + } else if (origin == drflac_seek_origin_current) { + uint32_t pos = decoder->compressed_offset + offset; + if (pos <= length) { + decoder->compressed_offset = pos; + return 1; + } + } + return 0; +} + diff --git a/3rdparty/libchdr/src/libchdr_huffman.c b/3rdparty/libchdr/src/libchdr_huffman.c new file mode 100644 index 0000000000000..5162b957a0251 --- /dev/null +++ b/3rdparty/libchdr/src/libchdr_huffman.c @@ -0,0 +1,547 @@ +/* license:BSD-3-Clause + * copyright-holders:Aaron Giles +**************************************************************************** + + huffman.c + + Static Huffman compression and decompression helpers. + +**************************************************************************** + + Maximum codelength is officially (alphabetsize - 1). This would be 255 bits + (since we use 1 byte values). However, it is also dependent upon the number + of samples used, as follows: + + 2 bits -> 3..4 samples + 3 bits -> 5..7 samples + 4 bits -> 8..12 samples + 5 bits -> 13..20 samples + 6 bits -> 21..33 samples + 7 bits -> 34..54 samples + 8 bits -> 55..88 samples + 9 bits -> 89..143 samples + 10 bits -> 144..232 samples + 11 bits -> 233..376 samples + 12 bits -> 377..609 samples + 13 bits -> 610..986 samples + 14 bits -> 987..1596 samples + 15 bits -> 1597..2583 samples + 16 bits -> 2584..4180 samples -> note that a 4k data size guarantees codelength <= 16 bits + 17 bits -> 4181..6764 samples + 18 bits -> 6765..10945 samples + 19 bits -> 10946..17710 samples + 20 bits -> 17711..28656 samples + 21 bits -> 28657..46367 samples + 22 bits -> 46368..75024 samples + 23 bits -> 75025..121392 samples + 24 bits -> 121393..196417 samples + 25 bits -> 196418..317810 samples + 26 bits -> 317811..514228 samples + 27 bits -> 514229..832039 samples + 28 bits -> 832040..1346268 samples + 29 bits -> 1346269..2178308 samples + 30 bits -> 2178309..3524577 samples + 31 bits -> 3524578..5702886 samples + 32 bits -> 5702887..9227464 samples + + Looking at it differently, here is where powers of 2 fall into these buckets: + + 256 samples -> 11 bits max + 512 samples -> 12 bits max + 1k samples -> 14 bits max + 2k samples -> 15 bits max + 4k samples -> 16 bits max + 8k samples -> 18 bits max + 16k samples -> 19 bits max + 32k samples -> 21 bits max + 64k samples -> 22 bits max + 128k samples -> 24 bits max + 256k samples -> 25 bits max + 512k samples -> 27 bits max + 1M samples -> 28 bits max + 2M samples -> 29 bits max + 4M samples -> 31 bits max + 8M samples -> 32 bits max + +**************************************************************************** + + Delta-RLE encoding works as follows: + + Starting value is assumed to be 0. All data is encoded as a delta + from the previous value, such that final[i] = final[i - 1] + delta. + Long runs of 0s are RLE-encoded as follows: + + 0x100 = repeat count of 8 + 0x101 = repeat count of 9 + 0x102 = repeat count of 10 + 0x103 = repeat count of 11 + 0x104 = repeat count of 12 + 0x105 = repeat count of 13 + 0x106 = repeat count of 14 + 0x107 = repeat count of 15 + 0x108 = repeat count of 16 + 0x109 = repeat count of 32 + 0x10a = repeat count of 64 + 0x10b = repeat count of 128 + 0x10c = repeat count of 256 + 0x10d = repeat count of 512 + 0x10e = repeat count of 1024 + 0x10f = repeat count of 2048 + + Note that repeat counts are reset at the end of a row, so if a 0 run + extends to the end of a row, a large repeat count may be used. + + The reason for starting the run counts at 8 is that 0 is expected to + be the most common symbol, and is typically encoded in 1 or 2 bits. + +***************************************************************************/ + +#include +#include +#include + +#include + +#define MAX(x,y) ((x) > (y) ? (x) : (y)) + +/*************************************************************************** + * MACROS + *************************************************************************** + */ + +#define MAKE_LOOKUP(code,bits) (((code) << 5) | ((bits) & 0x1f)) + +/*************************************************************************** + * IMPLEMENTATION + *************************************************************************** + */ + +/*------------------------------------------------- + * huffman_context_base - create an encoding/ + * decoding context + *------------------------------------------------- + */ + +struct huffman_decoder* create_huffman_decoder(int numcodes, int maxbits) +{ + struct huffman_decoder* decoder = NULL; + + /* limit to 24 bits */ + if (maxbits > 24) + return NULL; + + decoder = (struct huffman_decoder*)malloc(sizeof(struct huffman_decoder)); + decoder->numcodes = numcodes; + decoder->maxbits = maxbits; + decoder->lookup = (lookup_value*)malloc(sizeof(lookup_value) * (1 << maxbits)); + decoder->huffnode = (struct node_t*)malloc(sizeof(struct node_t) * numcodes); + decoder->datahisto = NULL; + decoder->prevdata = 0; + decoder->rleremaining = 0; + return decoder; +} + +void delete_huffman_decoder(struct huffman_decoder* decoder) +{ + if (decoder != NULL) + { + if (decoder->lookup != NULL) + free(decoder->lookup); + if (decoder->huffnode != NULL) + free(decoder->huffnode); + free(decoder); + } +} + +/*------------------------------------------------- + * decode_one - decode a single code from the + * huffman stream + *------------------------------------------------- + */ + +uint32_t huffman_decode_one(struct huffman_decoder* decoder, struct bitstream* bitbuf) +{ + /* peek ahead to get maxbits worth of data */ + uint32_t bits = bitstream_peek(bitbuf, decoder->maxbits); + + /* look it up, then remove the actual number of bits for this code */ + lookup_value lookup = decoder->lookup[bits]; + bitstream_remove(bitbuf, lookup & 0x1f); + + /* return the value */ + return lookup >> 5; +} + +/*------------------------------------------------- + * import_tree_rle - import an RLE-encoded + * huffman tree from a source data stream + *------------------------------------------------- + */ + +enum huffman_error huffman_import_tree_rle(struct huffman_decoder* decoder, struct bitstream* bitbuf) +{ + int numbits; + uint32_t curnode; + enum huffman_error error; + + /* bits per entry depends on the maxbits */ + if (decoder->maxbits >= 16) + numbits = 5; + else if (decoder->maxbits >= 8) + numbits = 4; + else + numbits = 3; + + /* loop until we read all the nodes */ + for (curnode = 0; curnode < decoder->numcodes; ) + { + /* a non-one value is just raw */ + int nodebits = bitstream_read(bitbuf, numbits); + if (nodebits != 1) + decoder->huffnode[curnode++].numbits = nodebits; + + /* a one value is an escape code */ + else + { + /* a double 1 is just a single 1 */ + nodebits = bitstream_read(bitbuf, numbits); + if (nodebits == 1) + decoder->huffnode[curnode++].numbits = nodebits; + + /* otherwise, we need one for value for the repeat count */ + else + { + int repcount = bitstream_read(bitbuf, numbits) + 3; + if (repcount + curnode > decoder->numcodes) + return HUFFERR_INVALID_DATA; + while (repcount--) + decoder->huffnode[curnode++].numbits = nodebits; + } + } + } + + /* make sure we ended up with the right number */ + if (curnode != decoder->numcodes) + return HUFFERR_INVALID_DATA; + + /* assign canonical codes for all nodes based on their code lengths */ + error = huffman_assign_canonical_codes(decoder); + if (error != HUFFERR_NONE) + return error; + + /* build the lookup table */ + huffman_build_lookup_table(decoder); + + /* determine final input length and report errors */ + return bitstream_overflow(bitbuf) ? HUFFERR_INPUT_BUFFER_TOO_SMALL : HUFFERR_NONE; +} + + +/*------------------------------------------------- + * import_tree_huffman - import a huffman-encoded + * huffman tree from a source data stream + *------------------------------------------------- + */ + +enum huffman_error huffman_import_tree_huffman(struct huffman_decoder* decoder, struct bitstream* bitbuf) +{ + int start; + int last = 0; + int count = 0; + int index; + uint32_t curcode; + uint8_t rlefullbits = 0; + uint32_t temp; + enum huffman_error error; + /* start by parsing the lengths for the small tree */ + struct huffman_decoder* smallhuff = create_huffman_decoder(24, 6); + smallhuff->huffnode[0].numbits = bitstream_read(bitbuf, 3); + start = bitstream_read(bitbuf, 3) + 1; + for (index = 1; index < 24; index++) + { + if (index < start || count == 7) + smallhuff->huffnode[index].numbits = 0; + else + { + count = bitstream_read(bitbuf, 3); + smallhuff->huffnode[index].numbits = (count == 7) ? 0 : count; + } + } + + /* then regenerate the tree */ + error = huffman_assign_canonical_codes(smallhuff); + if (error != HUFFERR_NONE) + return error; + huffman_build_lookup_table(smallhuff); + + /* determine the maximum length of an RLE count */ + temp = decoder->numcodes - 9; + while (temp != 0) + temp >>= 1, rlefullbits++; + + /* now process the rest of the data */ + for (curcode = 0; curcode < decoder->numcodes; ) + { + int value = huffman_decode_one(smallhuff, bitbuf); + if (value != 0) + decoder->huffnode[curcode++].numbits = last = value - 1; + else + { + int count = bitstream_read(bitbuf, 3) + 2; + if (count == 7+2) + count += bitstream_read(bitbuf, rlefullbits); + for ( ; count != 0 && curcode < decoder->numcodes; count--) + decoder->huffnode[curcode++].numbits = last; + } + } + + /* make sure we ended up with the right number */ + if (curcode != decoder->numcodes) + return HUFFERR_INVALID_DATA; + + /* assign canonical codes for all nodes based on their code lengths */ + error = huffman_assign_canonical_codes(decoder); + if (error != HUFFERR_NONE) + return error; + + /* build the lookup table */ + huffman_build_lookup_table(decoder); + + /* determine final input length and report errors */ + return bitstream_overflow(bitbuf) ? HUFFERR_INPUT_BUFFER_TOO_SMALL : HUFFERR_NONE; +} + +/*------------------------------------------------- + * compute_tree_from_histo - common backend for + * computing a tree based on the data histogram + *------------------------------------------------- + */ + +enum huffman_error huffman_compute_tree_from_histo(struct huffman_decoder* decoder) +{ + uint32_t i; + uint32_t lowerweight; + uint32_t upperweight; + /* compute the number of data items in the histogram */ + uint32_t sdatacount = 0; + for (i = 0; i < decoder->numcodes; i++) + sdatacount += decoder->datahisto[i]; + + /* binary search to achieve the optimum encoding */ + lowerweight = 0; + upperweight = sdatacount * 2; + while (1) + { + /* build a tree using the current weight */ + uint32_t curweight = (upperweight + lowerweight) / 2; + int curmaxbits = huffman_build_tree(decoder, sdatacount, curweight); + + /* apply binary search here */ + if (curmaxbits <= decoder->maxbits) + { + lowerweight = curweight; + + /* early out if it worked with the raw weights, or if we're done searching */ + if (curweight == sdatacount || (upperweight - lowerweight) <= 1) + break; + } + else + upperweight = curweight; + } + + /* assign canonical codes for all nodes based on their code lengths */ + return huffman_assign_canonical_codes(decoder); +} + +/*************************************************************************** + * INTERNAL FUNCTIONS + *************************************************************************** + */ + +/*------------------------------------------------- + * tree_node_compare - compare two tree nodes + * by weight + *------------------------------------------------- + */ + +static int huffman_tree_node_compare(const void *item1, const void *item2) +{ + const struct node_t *node1 = *(const struct node_t **)item1; + const struct node_t *node2 = *(const struct node_t **)item2; + if (node2->weight != node1->weight) + return node2->weight - node1->weight; + if (node2->bits - node1->bits == 0) + fprintf(stderr, "identical node sort keys, should not happen!\n"); + return (int)node1->bits - (int)node2->bits; +} + +/*------------------------------------------------- + * build_tree - build a huffman tree based on the + * data distribution + *------------------------------------------------- + */ + +int huffman_build_tree(struct huffman_decoder* decoder, uint32_t totaldata, uint32_t totalweight) +{ + uint32_t curcode; + int nextalloc; + int listitems = 0; + int maxbits = 0; + /* make a list of all non-zero nodes */ + struct node_t** list = (struct node_t**)malloc(sizeof(struct node_t*) * decoder->numcodes * 2); + memset(decoder->huffnode, 0, decoder->numcodes * sizeof(decoder->huffnode[0])); + for (curcode = 0; curcode < decoder->numcodes; curcode++) + if (decoder->datahisto[curcode] != 0) + { + list[listitems++] = &decoder->huffnode[curcode]; + decoder->huffnode[curcode].count = decoder->datahisto[curcode]; + decoder->huffnode[curcode].bits = curcode; + + /* scale the weight by the current effective length, ensuring we don't go to 0 */ + decoder->huffnode[curcode].weight = ((uint64_t)decoder->datahisto[curcode]) * ((uint64_t)totalweight) / ((uint64_t)totaldata); + if (decoder->huffnode[curcode].weight == 0) + decoder->huffnode[curcode].weight = 1; + } + +#if 0 + fprintf(stderr, "Pre-sort:\n"); + for (int i = 0; i < listitems; i++) { + fprintf(stderr, "weight: %d code: %d\n", list[i]->m_weight, list[i]->m_bits); + } +#endif + + /* sort the list by weight, largest weight first */ + qsort(&list[0], listitems, sizeof(list[0]), huffman_tree_node_compare); + +#if 0 + fprintf(stderr, "Post-sort:\n"); + for (int i = 0; i < listitems; i++) { + fprintf(stderr, "weight: %d code: %d\n", list[i]->m_weight, list[i]->m_bits); + } + fprintf(stderr, "===================\n"); +#endif + + /* now build the tree */ + nextalloc = decoder->numcodes; + while (listitems > 1) + { + int curitem; + /* remove lowest two items */ + struct node_t* node1 = &(*list[--listitems]); + struct node_t* node0 = &(*list[--listitems]); + + /* create new node */ + struct node_t* newnode = &decoder->huffnode[nextalloc++]; + newnode->parent = NULL; + node0->parent = node1->parent = newnode; + newnode->weight = node0->weight + node1->weight; + + /* insert into list at appropriate location */ + for (curitem = 0; curitem < listitems; curitem++) + if (newnode->weight > list[curitem]->weight) + { + memmove(&list[curitem+1], &list[curitem], (listitems - curitem) * sizeof(list[0])); + break; + } + list[curitem] = newnode; + listitems++; + } + + /* compute the number of bits in each code, and fill in another histogram */ + for (curcode = 0; curcode < decoder->numcodes; curcode++) + { + struct node_t *curnode; + struct node_t* node = &decoder->huffnode[curcode]; + node->numbits = 0; + node->bits = 0; + + /* if we have a non-zero weight, compute the number of bits */ + if (node->weight > 0) + { + /* determine the number of bits for this node */ + for (curnode = node; curnode->parent != NULL; curnode = curnode->parent) + node->numbits++; + if (node->numbits == 0) + node->numbits = 1; + + /* keep track of the max */ + maxbits = MAX(maxbits, ((int)node->numbits)); + } + } + return maxbits; +} + +/*------------------------------------------------- + * assign_canonical_codes - assign canonical codes + * to all the nodes based on the number of bits + * in each + *------------------------------------------------- + */ + +enum huffman_error huffman_assign_canonical_codes(struct huffman_decoder* decoder) +{ + uint32_t curcode; + int codelen; + uint32_t curstart = 0; + /* build up a histogram of bit lengths */ + uint32_t bithisto[33] = { 0 }; + for (curcode = 0; curcode < decoder->numcodes; curcode++) + { + struct node_t* node = &decoder->huffnode[curcode]; + if (node->numbits > decoder->maxbits) + return HUFFERR_INTERNAL_INCONSISTENCY; + if (node->numbits <= 32) + bithisto[node->numbits]++; + } + + /* for each code length, determine the starting code number */ + for (codelen = 32; codelen > 0; codelen--) + { + uint32_t nextstart = (curstart + bithisto[codelen]) >> 1; + if (codelen != 1 && nextstart * 2 != (curstart + bithisto[codelen])) + return HUFFERR_INTERNAL_INCONSISTENCY; + bithisto[codelen] = curstart; + curstart = nextstart; + } + + /* now assign canonical codes */ + for (curcode = 0; curcode < decoder->numcodes; curcode++) + { + struct node_t* node = &decoder->huffnode[curcode]; + if (node->numbits > 0) + node->bits = bithisto[node->numbits]++; + } + return HUFFERR_NONE; +} + +/*------------------------------------------------- + * build_lookup_table - build a lookup table for + * fast decoding + *------------------------------------------------- + */ + +void huffman_build_lookup_table(struct huffman_decoder* decoder) +{ + uint32_t curcode; + /* iterate over all codes */ + for (curcode = 0; curcode < decoder->numcodes; curcode++) + { + /* process all nodes which have non-zero bits */ + struct node_t* node = &decoder->huffnode[curcode]; + if (node->numbits > 0) + { + int shift; + lookup_value *dest; + lookup_value *destend; + /* set up the entry */ + lookup_value value = MAKE_LOOKUP(curcode, node->numbits); + + /* fill all matching entries */ + shift = decoder->maxbits - node->numbits; + dest = &decoder->lookup[node->bits << shift]; + destend = &decoder->lookup[((node->bits + 1) << shift) - 1]; + while (dest <= destend) + *dest++ = value; + } + } +} diff --git a/cmake/SearchForStuff.cmake b/cmake/SearchForStuff.cmake index fe21b77fde86c..4fa488887381b 100644 --- a/cmake/SearchForStuff.cmake +++ b/cmake/SearchForStuff.cmake @@ -119,6 +119,7 @@ add_subdirectory(3rdparty/fmt/fmt EXCLUDE_FROM_ALL) add_subdirectory(3rdparty/rapidyaml/rapidyaml EXCLUDE_FROM_ALL) add_subdirectory(3rdparty/lzma EXCLUDE_FROM_ALL) add_subdirectory(3rdparty/libchdr EXCLUDE_FROM_ALL) +disable_compiler_warnings_for_target(libchdr) add_subdirectory(3rdparty/soundtouch EXCLUDE_FROM_ALL) # rapidyaml includes fast_float as a submodule, saves us pulling it in directly. diff --git a/pcsx2/CMakeLists.txt b/pcsx2/CMakeLists.txt index 50f0a5689f8ed..99a7ed51f11ba 100644 --- a/pcsx2/CMakeLists.txt +++ b/pcsx2/CMakeLists.txt @@ -1123,7 +1123,7 @@ target_link_libraries(PCSX2_FLAGS INTERFACE imgui fmt::fmt ryml - chdr-static + libchdr libzip::zip cpuinfo zydis diff --git a/pcsx2/pcsx2.vcxproj b/pcsx2/pcsx2.vcxproj index 8792b7acec295..10362271e479a 100644 --- a/pcsx2/pcsx2.vcxproj +++ b/pcsx2/pcsx2.vcxproj @@ -39,7 +39,7 @@ %(AdditionalIncludeDirectories);$(SolutionDir)3rdparty\xz\xz\src\liblzma\api %(AdditionalIncludeDirectories);$(SolutionDir)3rdparty\zlib %(AdditionalIncludeDirectories);$(SolutionDir)3rdparty\libpng - %(AdditionalIncludeDirectories);$(SolutionDir)3rdparty\libchdr\libchdr\include + %(AdditionalIncludeDirectories);$(SolutionDir)3rdparty\libchdr\include %(AdditionalIncludeDirectories);$(SolutionDir)3rdparty\cubeb\include %(AdditionalIncludeDirectories);$(SolutionDir)3rdparty\imgui\include %(AdditionalIncludeDirectories);$(SolutionDir)3rdparty\simpleini\include