在scala中可以方便的实现异步操作,这里是通过Future来实现的,和java中的Future很相似,但是功能更加强大。
下面我们看下如何定义一个返回Future的方法:
println("Step 1: Define a method which returns a Future")
import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
def donutStock(donut: String): Future[Int] = Future {
// assume some long running database operation
println("checking donut stock")
10
}
注意这里需要引入scala.concurrent.ExecutionContext.Implicits.global, 它会提供一个默认的线程池来异步执行Future。
println("\nStep 2: Call method which returns a Future")
import scala.concurrent.Await
import scala.concurrent.duration._
val vanillaDonutStock = Await.result(donutStock("vanilla donut"), 5 seconds)
println(s"Stock of vanilla donut = $vanillaDonutStock")
donutStock() 是异步执行的,我们可以使用Await.result() 来阻塞主线程来等待donutStock()的执行结果。
下面是其输出:
Step 2: Call method which returns a Future
checking donut stock
Stock of vanilla donut = 10
我们可以使用Future.onComplete() 回调来实现非阻塞的通知:
println("\nStep 2: Non blocking future result")
import scala.util.{Failure, Success}
donutStock("vanilla donut").onComplete {
case Success(stock) => println(s"Stock for vanilla donut = $stock")
case Failure(e) => println(s"Failed to find vanilla donut stock, exception = $e")
}
Thread.sleep(3000)
Future.onComplete() 有两种可能情况,Success 或者 Failure,需要引入: import scala.util.{Failure, Success}。
有时候我们需要在获得一个Future之后再继续对其进行操作,有点类似于java中的管道,下面看一个例子:
println("\nStep 2: Define another method which returns a Future")
def buyDonuts(quantity: Int): Future[Boolean] = Future {
println(s"buying $quantity donuts")
true
}
上面我们又定义了一个方法,用来接收donutStock()的返回值,然后再返回一个Future[Boolean] 。
我们看下使用flatmap该怎么链接他们:
println("\nStep 3: Chaining Futures using flatMap")
val buyingDonuts: Future[Boolean] = donutStock("plain donut").flatMap(qty => buyDonuts(qty))
import scala.concurrent.Await
import scala.concurrent.duration._
val isSuccess = Await.result(buyingDonuts, 5 seconds)
println(s"Buying vanilla donut was successful = $isSuccess")
同样的,我们还可以使用for语句来进行链接:
println("\nStep 3: Chaining Futures using for comprehension")
for {
stock <- donutStock("vanilla donut")
isSuccess <- buyDonuts(stock)
} yield println(s"Buying vanilla donut was successful = $isSuccess")
Thread.sleep(3000)
map就是对集合中的元素进行重映射,而flatmap则会将返回的值拆散然后重新组合。 下面举个直观的例子:
val buyingDonuts: Future[Boolean] = donutStock("plain donut").flatMap(qty => buyDonuts(qty))
flatMap返回的值是Future[Boolean]。
val buyingDonuts: Future[Future[Boolean]] = donutStock("plain donut").Map(qty => buyDonuts(qty))
map返回的值是Future[Future[Boolean]]。
如果我们有很多个Future,然后想让他们并行执行,则可以使用 Future.sequence() 。
println(s"\nStep 2: Create a List of future operations")
val futureOperations = List(
donutStock("vanilla donut"),
donutStock("plain donut"),
donutStock("chocolate donut")
)
println(s"\nStep 5: Call Future.sequence to run the future operations in parallel")
val futureSequenceResults = Future.sequence(futureOperations)
futureSequenceResults.onComplete {
case Success(results) => println(s"Results $results")
case Failure(e) => println(s"Error processing future operations, error = ${e.getMessage}")
}
Future.traverse() 和Future.sequence() 类似, 唯一不同的是,Future.traverse()可以对要执行的Future进行操作,如下所示:
println(s"\nStep 3: Call Future.traverse to convert all Option of Int into Int")
val futureTraverseResult = Future.traverse(futureOperations){ futureSomeQty =>
futureSomeQty.map(someQty => someQty.getOrElse(0))
}
futureTraverseResult.onComplete {
case Success(results) => println(s"Results $results")
case Failure(e) => println(s"Error processing future operations, error = ${e.getMessage}")
}
foldLeft 和 reduceLeft 都是用来从左到右做集合操作的,区别在于foldLeft可以提供默认值。看下下面的例子:
println(s"\nStep 3: Call Future.foldLeft to fold over futures results from left to right")
val futureFoldLeft = Future.foldLeft(futureOperations)(0){ case (acc, someQty) =>
acc + someQty.getOrElse(0)
}
futureFoldLeft.onComplete {
case Success(results) => println(s"Results $results")
case Failure(e) => println(s"Error processing future operations, error = ${e.getMessage}")
}
输出结果:
Step 3: Call Future.foldLeft to fold over futures results from left to right
Results 20
println(s"\nStep 3: Call Future.reduceLeft to fold over futures results from left to right")
val futureFoldLeft = Future.reduceLeft(futureOperations){ case (acc, someQty) =>
acc.map(qty => qty + someQty.getOrElse(0))
}
futureFoldLeft.onComplete {
case Success(results) => println(s"Results $results")
case Failure(e) => println(s"Error processing future operations, error = ${e.getMessage}")
}
输出结果:
Step 3: Call Future.reduceLeft to fold over futures results from left to right
Results Some(20)
firstCompletedOf在处理多个Future请求时,会返回第一个处理完成的future结果。
println(s"\nStep 3: Call Future.firstCompletedOf to get the results of the first future that completes")
val futureFirstCompletedResult = Future.firstCompletedOf(futureOperations)
futureFirstCompletedResult.onComplete {
case Success(results) => println(s"Results $results")
case Failure(e) => println(s"Error processing future operations, error = ${e.getMessage}")
}
zip用来将两个future结果组合成一个tuple. zipWith则可以自定义Function来处理future返回的结果。
println(s"\nStep 3: Zip the values of the first future with the second future")
val donutStockAndPriceOperation = donutStock("vanilla donut") zip donutPrice()
donutStockAndPriceOperation.onComplete {
case Success(results) => println(s"Results $results")
case Failure(e) => println(s"Error processing future operations, error = ${e.getMessage}")
}
输出值:
Step 3: Zip the values of the first future with the second future
checking donut stock
Results (Some(10),3.25)
使用zipwith的例子:
println(s"\nStep 4: Call Future.zipWith and pass-through function qtyAndPriceF")
val donutAndPriceOperation = donutStock("vanilla donut").zipWith(donutPrice())(qtyAndPriceF)
donutAndPriceOperation.onComplete {
case Success(result) => println(s"Result $result")
case Failure(e) => println(s"Error processing future operations, error = ${e.getMessage}")
}
输出结果:
Step 4: Call Future.zipWith and pass-through function qtyAndPriceF
checking donut stock
Result (10,3.25)
andThen后面可以跟一个自定义的PartialFunction,来处理Future返回的结果, 如下所示:
println(s"\nStep 2: Call Future.andThen with a PartialFunction")
val donutStockOperation = donutStock("vanilla donut")
donutStockOperation.andThen { case stockQty => println(s"Donut stock qty = $stockQty")}
输出结果:
Step 2: Call Future.andThen with a PartialFunction
checking donut stock
Donut stock qty = Success(10)
上面的例子中, 我们都是使用了scala的全局ExecutionContext: scala.concurrent.ExecutionContext.Implicits.global. 同样的,我们也可以自定义你自己的ExecutionContext。下面是一个使用java.util.concurrent.Executors的例子:
println("Step 1: Define an ExecutionContext")
val executor = Executors.newSingleThreadExecutor()
implicit val ec = scala.concurrent.ExecutionContext.fromExecutor(executor)
println("\nStep 2: Define a method which returns a Future")
import scala.concurrent.Future
def donutStock(donut: String): Future[Int] = Future {
// assume some long running database operation
println("checking donut stock")
10
}
println("\nStep 3: Call method which returns a Future")
val donutStockOperation = donutStock("vanilla donut")
donutStockOperation.onComplete {
case Success(donutStock) => println(s"Results $donutStock")
case Failure(e) => println(s"Error processing future operations, error = ${e.getMessage}")
}
Thread.sleep(3000)
executor.shutdownNow()
这三个方法主要用来处理异常的,recover是用来从你已知的异常中恢复,如下所示:
println("\nStep 3: Call Future.recover to recover from a known exception")
donutStock("unknown donut")
.recover { case e: IllegalStateException if e.getMessage == "Out of stock" => 0 }
.onComplete {
case Success(donutStock) => println(s"Results $donutStock")
case Failure(e) => println(s"Error processing future operations, error = ${e.getMessage}")
}
recoverWith()和recover()类似,不同的是他的返回值是一个Future。
println("\nStep 3: Call Future.recoverWith to recover from a known exception")
donutStock("unknown donut")
.recoverWith { case e: IllegalStateException if e.getMessage == "Out of stock" => Future.successful(0) }
.onComplete {
case Success(donutStock) => println(s"Results $donutStock")
case Failure(e) => println(s"Error processing future operations, error = ${e.getMessage}")
}
fallbackTo()是在发生异常时,去调用指定的方法:
println("\nStep 3: Call Future.fallbackTo")
val donutStockOperation = donutStock("plain donut")
.fallbackTo(similarDonutStock("vanilla donut"))
.onComplete {
case Success(donutStock) => println(s"Results $donutStock")
case Failure(e) => println(s"Error processing future operations, error = ${e.getMessage}")
}
熟悉ES6的同学可能知道,promise是JS在ES6中引入的新特性,其主要目的是将回调转变成链式调动。
当然scala的promise和ES6的promise还是不一样的,我们看下scala中promise是怎么用的:
println("Step 1: Define a method which returns a Future")
import scala.concurrent.ExecutionContext.Implicits.global
def donutStock(donut: String): Int = {
if(donut == "vanilla donut") 10
else throw new IllegalStateException("Out of stock")
}
println(s"\nStep 2: Define a Promise of type Int")
val donutStockPromise = Promise[Int]()
println("\nStep 3: Define a future from Promise")
val donutStockFuture = donutStockPromise.future
donutStockFuture.onComplete {
case Success(stock) => println(s"Stock for vanilla donut = $stock")
case Failure(e) => println(s"Failed to find vanilla donut stock, exception = $e")
}
println("\nStep 4: Use Promise.success or Promise.failure to control execution of your future")
val donut = "vanilla donut"
if(donut == "vanilla donut") {
donutStockPromise.success(donutStock(donut))
} else {
donutStockPromise.failure(Try(donutStock(donut)).failed.get)
}
println("\nStep 5: Completing Promise using Promise.complete() method")
val donutStockPromise2 = Promise[Int]()
val donutStockFuture2 = donutStockPromise2.future
donutStockFuture2.onComplete {
case Success(stock) => println(s"Stock for vanilla donut = $stock")
case Failure(e) => println(s"Failed to find vanilla donut stock, exception = $e")
}
donutStockPromise2.complete(Try(donutStock("unknown donut")))
上面例子中我们使用了 Promise.success, Promise.failure, Promise.complete() 来控制程序的运行。