forked from AnomDoubleBlind/asymmetrical_scaling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sampling_utils.py
440 lines (337 loc) · 14 KB
/
sampling_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import scipy.stats as ss
import math
from torch.distributions import Pareto, Uniform, Gamma, HalfCauchy, Beta
import numpy as np
from scipy.special import logsumexp
import torch
import torch.nn as nn
from torch.special import gammainc, gammaln
from torch.autograd import Function
class GammaInc(Function):
@staticmethod
def forward(ctx, a, x):
ctx.save_for_backward(a, x)
output = gammainc(a, x)
return output
@staticmethod
def backward(ctx, grad_output):
a, x = ctx.saved_tensors
grad_a = grad_x = None
if ctx.needs_input_grad[0]:
grad_a = grad_output * ((gammainc(a+1e-5, x) - gammainc(a, x))/1e-5)
if ctx.needs_input_grad[1]:
grad_x = grad_output * (x**(a-1)*torch.exp(-x) / torch.exp(gammaln(a)))
return grad_a, grad_x
mygammainc = GammaInc.apply
# Sample from an iid finite dimensional approximation
# of the Generalized BFRY process (double power-law)
def sample_finite_GBFRY(alpha, tau, mu=1., shape=(1, 5)):
# shape[0]: Number of samples
# shape[1]: Number of atoms to use for the finite
# dimensional approximation
tau = np.maximum(tau, 1.01)
if np.isscalar(shape):
out_features = 1
in_features = shape
else:
out_features = shape[0]
in_features = shape[1]
c = mu * (tau - 1) / (tau - alpha)
eta = 1 #/ math.gamma(1 - alpha)
s_mat = Uniform(torch.zeros(shape),
torch.ones(shape)
).sample()
log_tl = np.log(alpha * in_features * tau / eta / (tau - alpha)) / alpha
tens = torch.ones((2, out_features, in_features))
tens[0, :, :] = torch.log(s_mat)
tens[1, :, :] = torch.log(1 - s_mat) + alpha * logsumexp((log_tl, 0))
log_w = -1 / alpha * torch.logsumexp(tens, axis=0)
gamma_mat = Gamma(concentration=(1-alpha)*torch.ones(shape), rate=torch.ones(shape)).sample()
pareto_mat = Pareto(scale=torch.ones(shape), alpha=tau * torch.ones(shape)).sample()
return (c * torch.exp(log_w) * pareto_mat * gamma_mat).detach().numpy()
# Sample from an iid finite dimensional approximation
# of the Generalized BFRY process (double power-law)
def sample_finite_GGP(alpha, beta=1, mu=1., shape=(1, 5)):
# shape[0]: Number of samples
# shape[1]: Number of atoms to use for the finite
# dimensional approximation
if np.isscalar(shape):
out_features = 1
in_features = shape
else:
out_features = shape[0]
in_features = shape[1]
eta = mu * beta**(1-alpha) #/ math.gamma(1 - alpha)
s_mat = Uniform(torch.zeros(shape),
torch.ones(shape)
).sample()
log_tl = np.log(alpha * in_features / eta) / alpha
tens = torch.ones((2, out_features, in_features))
tens[0, :, :] = torch.log(s_mat)+alpha*np.log(beta)
tens[1, :, :] = torch.log(1 - s_mat) + alpha * logsumexp((log_tl, np.log(beta)))
log_w = -1 / alpha * torch.logsumexp(tens, axis=0)
gamma_mat = Gamma((1-alpha)*torch.ones(shape), torch.ones(shape)).sample()
return (torch.exp(log_w) * gamma_mat).detach().numpy()
def sample_finite_Stable(alpha, mu=1, shape=(1, 5)):
# shape[0]: Number of samples
# shape[1]: Number of atoms to use for the finite
# dimensional approximation
if np.isscalar(shape):
out_features = 1
in_features = shape
else:
out_features = shape[0]
in_features = shape[1]
pareto_mat = Pareto(alpha*torch.ones(shape), torch.ones(shape)).sample()
return mu*pareto_mat/(in_features)**(1/alpha)
class IIDInit:
def __init__(self, p):
self.is_static = True
self.p = p
def rvs(self, size):
return 1 / self.p * torch.ones(size)
def transform(self, x):
return x
def map_to_domain(self, x):
return x
class InvGammaInit:
def __init__(self, alpha, beta):
self.is_static = False
self.alpha = alpha
self.beta = beta
def rvs(self, size):
shape_tensor = torch.ones(size)
dist = Gamma(self.alpha*shape_tensor, self.beta*shape_tensor)
return 1/dist.sample()
def log_pdf(self, x):
dist = Gamma(self.alpha, self.beta)
return -2*torch.log(x) + dist.log_prob(1/x).to(x.device)
def transform(self, x):
return torch.log(x)
def map_to_domain(self, x):
return torch.exp(x)
class HorseshoeInit:
def __init__(self, p):
self.is_static = False
self.p = p
def rvs(self, size):
shape_tensor = torch.ones(size)
dist = HalfCauchy(shape_tensor)
return (np.pi / 2 * dist.sample() / self.p)**2
def log_pdf(self, x):
dist = HalfCauchy(1)
C = 2 / np.pi * torch.sqrt(x) * self.p
return -torch.log(np.pi**2 / 2 / self.p**2 * C) + dist.log_prob(C).to(x.device)
def transform(self, x):
return torch.log(x)
def map_to_domain(self, x):
return torch.exp(x)
class BetaInit:
def __init__(self, alpha=1, beta=1./2):
self.is_static = False
self.alpha = alpha
self.beta = beta
def rvs(self, size):
shape_tensor = torch.ones(size)
dist = Beta(self.alpha * shape_tensor, self.beta * shape_tensor)
return dist.sample()
def log_pdf(self, x):
dist = Beta(self.alpha, self.beta)
return dist.log_prob(x).to(x.device)
def transform(self, x):
return torch.logit(x, 1e-8)
def map_to_domain(self, x):
return torch.sigmoid(x)
class GBFRYInit:
def __init__(self, alpha=0.5, tau=2, mu=1):
self.is_static = False
self.alpha = alpha
self.tau = tau
self.mu = mu
def rvs(self, size):
return torch.tensor(sample_finite_GBFRY(alpha=self.alpha, tau=self.tau, mu=self.mu, shape=size))
#return sample_finite_GBFRY(alpha=self.alpha, tau=self.tau, mu=self.mu, shape=size)
def log_pdf_(self, x):
c = self.mu * (self.tau - 1) / (self.tau - self.alpha)
return (-(1+self.tau)*x.log()+torch.log(torch.special.gammainc(
torch.tensor(self.tau-self.alpha).to(x.device), x/c)))
def log_pdf(self, x):
c = self.mu * (self.tau - 1) / (self.tau - self.alpha)
shape = x.shape
x_ = x / c
x_ = x_.clip(min=1e-25)
if np.isscalar(shape):
out_features = 1
in_features = shape
else:
out_features = shape[0]
in_features = shape[1]
tl = (self.alpha * in_features * self.tau / (self.tau-self.alpha))**(1 / self.alpha)
g_in = torch.tensor(self.tau-self.alpha).to(x.device)
return (-(1+self.tau)*x.log()+torch.log(
torch.special.gammainc(g_in, x_) - torch.special.gammainc(g_in, x_*(tl+1))/(1+tl)**(self.tau-self.alpha)))
def transform(self, x):
return torch.log(x)
def map_to_domain(self, x):
return torch.exp(x)
class GBFRYInitLearnableAlpha(nn.Module):
def __init__(self, tau=2, mu=1):
super().__init__()
self.is_static = False
self.alpha_logit = nn.Parameter(torch.randn(1))
#self.register_buffer('alpha_logit', torch.randn(1))
self.tau = tau
self.mu = mu
@property
def alpha(self):
return torch.sigmoid(self.alpha_logit).clip(min=1e-2, max=1-1e-2)
def rvs(self, size):
return sample_finite_GBFRY(alpha=self.alpha, tau=self.tau, mu=self.mu, shape=size)
def log_pdf(self, x):
tau, alpha = self.tau, self.alpha
c = self.mu * (tau - 1) / (tau - alpha)
shape = x.shape
x_ = x / c
x_ = x_.clip(min=1e-25)
if np.isscalar(shape):
out_features = 1
in_features = shape
else:
out_features = shape[0]
in_features = shape[1]
t = (alpha*in_features*tau / (tau-alpha))**(1/alpha)
a = (-(1+tau)*x_.log() + torch.log(tau*alpha)
- torch.special.gammaln(1-alpha)
- torch.log((t+1)**alpha - 1))
b = (torch.log(mygammainc(tau-alpha, x_)
- mygammainc(tau-alpha, (t+1)*x_)/(t+1)**(tau-alpha))
+ torch.special.gammaln(tau-alpha))
y = a + b
return y
def transform(self, x):
return torch.log(x)
def map_to_domain(self, x):
return torch.exp(x)
class GGPInit:
def __init__(self, alpha=0.5, beta=1, mu=1):
self.is_static = False
self.alpha = alpha
self.beta = beta
self.mu = mu
def rvs(self, size):
return torch.tensor(sample_finite_GGP(alpha=self.alpha, beta=self.beta, mu=self.mu, shape=size))
#return sample_finite_GBFRY(alpha=self.alpha, tau=self.tau, mu=self.mu, shape=size)
def log_pdf(self, x):
alpha = self.alpha
beta = self.beta
eta = self.mu * beta**(1-alpha)
shape = x.shape
x = x.clip(min=1e-12)
if np.isscalar(shape):
out_features = 1
in_features = shape
else:
out_features = shape[0]
in_features = shape[1]
tl = (alpha * in_features / eta)**(1 / alpha)
res = torch.where(
x > 1e-16,
-(1+self.alpha)*x.log()-beta*x+torch.log(1-(-tl*x).exp()),
-(1+self.alpha)*x.log()-beta*x+torch.log(tl*x)
)
if torch.isnan(torch.sum(res)):
print(x)
print(torch.sum((1+self.alpha)*x.log()))
print(torch.sum(beta*x))
print(torch.sum(torch.log(1-(-tl*x).exp())))
assert False, "break"
return res
def transform(self, x):
return torch.log(x)
def map_to_domain(self, x):
return torch.exp(x)
class StableInit:
def __init__(self, alpha=0.5, mu=1):
self.is_static = False
self.alpha = alpha
self.mu = mu
def rvs(self, size):
return torch.tensor(sample_finite_Stable(alpha=self.alpha, mu=self.mu, shape=size))
def transform(self, x):
return torch.log(x)
def map_to_domain(self, x):
return torch.exp(x)
def lam_dist(p, name, tau=2, c=1, eta=1):
# this function returns the a sampler for the variances lambda
if name == 'iid':
return IIDInit(p)
if name == "invgamma":
return InvGammaInit(alpha=2, beta=1/p)
elif name == 'horseshoe':
return HorseshoeInit(p)
elif name == 'beta':
return BetaInit(alpha=eta / (2*p), beta=0.5)
elif name == 'reghorseshoe':
def reghorseshoe_rvs(size):
S = (ss.cauchy.rvs(size=size) / p) ** 2
return S / (1 + c * S)
return reghorseshoe_rvs
elif name == 'betapareto':
def betapareto_rvs(size):
return ss.beta(0.5 / p, 0.5).rvs(size=size) / ss.beta(tau, 1).rvs(size=size)
return betapareto_rvs
elif name == 'bernoulli':
return lambda size: ss.bernoulli(1 / p).rvs(size)
elif name == 'gbfry':
return lambda size: sample_finite_GBFRY(alpha=0.5, tau=2, mu=1, shape=size).flatten()
elif name == 'gbfry_heavy':
return lambda size: sample_finite_GBFRY(alpha=0.5, tau=1, mu=1, shape=size).flatten()
def lam_sampler(p, name, a=1.0, alpha = 0.5, tau=2, c=1, eta=1):
# this function returns the a sampler for the variances lambda
if name == 'iid':
def iid_rvs(size):
return 1 / p * np.ones(size)
return iid_rvs
if name == 'zipfian': # gets the name from the zipfian distribution in scipy
def zipfian_rvs(size):
return ss.zipfian.pmf(np.arange(p), 1/alpha, size)
return zipfian_rvs
if name == 'const_and_zipfian': # constant + zipfian weights (deterministic)
if (a>1 or a<0):
raise ValueError('a should be between 0 and 1')
if (alpha>=1 or alpha<=0) :
raise ValueError('0<alpha<1')
def const_and_zipfian_rvs(size):
return a / p * np.ones(size) + (1-a)*ss.zipfian.pmf(np.arange(p), 1/alpha, size)
return const_and_zipfian_rvs
if name == "invgamma":
return lambda size: ss.invgamma(a=2, scale=1 / p).rvs(size=size)
elif name == 'horseshoe':
def horseshoe_rvs(size):
return (np.pi / 2 * ss.cauchy.rvs(size=size) / p) ** 2
return horseshoe_rvs
elif name == 'beta':
return lambda size: ss.beta(eta / (2*p), 0.5).rvs(size=size)
elif name == 'reghorseshoe':
def reghorseshoe_rvs(size):
S = (ss.cauchy.rvs(size=size) / p) ** 2
return S / (1 + c * S)
return reghorseshoe_rvs
elif name == 'betapareto':
def betapareto_rvs(size):
return ss.beta(0.5 / p, 0.5).rvs(size=size) / ss.beta(tau, 1).rvs(size=size)
return betapareto_rvs
elif name == 'bernoulli':
return lambda size: ss.bernoulli(1 / p).rvs(size)
elif name == 'gbfry':
return lambda size: sample_finite_GBFRY(alpha=0.5, tau=2, mu=1, shape=size).flatten()
elif name == 'gbfry_heavy':
return lambda size: sample_finite_GBFRY(alpha=0.5, tau=1, mu=1, shape=size).flatten()
elif name == 'gbfry_heavy_heavy':
return lambda size: sample_finite_GBFRY(alpha=0.8, tau=1.5, mu=1, shape=size).flatten()
elif name == 'gbfry_heavy_light':
return lambda size: sample_finite_GBFRY(alpha=0.8, tau=5, mu=1, shape=size).flatten()
elif name == 'gbfry_light_heavy':
return lambda size: sample_finite_GBFRY(alpha=0.2, tau=1.5, mu=1, shape=size).flatten()
elif name == 'gbfry_light_light':
return lambda size: sample_finite_GBFRY(alpha=0.2, tau=5, mu=1, shape=size).flatten()