Architecture of Dynamic Spatial-temporal Hypergraph Convolutional Network for Skeleton-based Action Recognition
- Python = 3.8.8
- PyTorch = 1.10.0
- Run
pip install -e torchlight
- NTU RGB+D 60 Skeleton
- NTU RGB+D 120 Skeleton
- NW-UCLA
1.Download the raw data from the website and place it in the appropriate directory of the './data' file 2.Generate NTU RGB+D 60 and NTU RGB+D 120 dataset: python get_raw_skes_data.py, python get_raw_denoised_data.py, python seq_transformation.py 3. Place the processed data file into the data_path parameter inside the './config'
Example: training DST-HCN on NTU RGB+D 120 cross subject, the training setup parameters for the other datasets are set under the './config' file
python mainfucos.py --config config/nturgbd120-cross-set/default.yaml --work-dir "/mnt/data/demo" --device 1 2 --num-epoch 90
-
To test the trained models saved in <work_dir>: python mainfucos.py --config <work_dir>/config.yaml --work-dir <work_dir> --weights <work_dir>/.pt
-
To ensemble the results of different streams python zhenghe.py
We provide individual stream weighting files for the relevant dataset
Please cite this work if you find it useful:
@INPROCEEDINGS{10220028, author={Wang, Shengqin and Zhang, Yongji and Qi, Hong and Zhao, Minghao and Jiang, Yu}, booktitle={2023 IEEE International Conference on Multimedia and Expo (ICME)}, title={Dynamic Spatial-temporal Hypergraph Convolutional Network for Skeleton-based Action Recognition}, year={2023}, volume={}, number={}, pages={2147-2152}, doi={10.1109/ICME55011.2023.00367}}