Skip to content

OrdinaryQin/DST-HCN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Architecture of Dynamic Spatial-temporal Hypergraph Convolutional Network for Skeleton-based Action Recognition

Prerequisites

  • Python = 3.8.8
  • PyTorch = 1.10.0
  • Run pip install -e torchlight

There are 3 datasets to download:

  • NTU RGB+D 60 Skeleton
  • NTU RGB+D 120 Skeleton
  • NW-UCLA

NTU RGB+D 60 and 120 and NW-UCLA

1.Download the raw data from the website and place it in the appropriate directory of the './data' file 2.Generate NTU RGB+D 60 and NTU RGB+D 120 dataset: python get_raw_skes_data.py, python get_raw_denoised_data.py, python seq_transformation.py 3. Place the processed data file into the data_path parameter inside the './config'

Training & Testing

Training

Example: training DST-HCN on NTU RGB+D 120 cross subject, the training setup parameters for the other datasets are set under the './config' file

python mainfucos.py --config config/nturgbd120-cross-set/default.yaml --work-dir "/mnt/data/demo" --device 1 2 --num-epoch 90

Testing

  • To test the trained models saved in <work_dir>: python mainfucos.py --config <work_dir>/config.yaml --work-dir <work_dir> --weights <work_dir>/.pt

  • To ensemble the results of different streams python zhenghe.py

Pretrained Models

We provide individual stream weighting files for the relevant dataset

Citation

NOTE:Our work and acceptance by ICME 2023 Oral

Please cite this work if you find it useful:

@INPROCEEDINGS{10220028, author={Wang, Shengqin and Zhang, Yongji and Qi, Hong and Zhao, Minghao and Jiang, Yu}, booktitle={2023 IEEE International Conference on Multimedia and Expo (ICME)}, title={Dynamic Spatial-temporal Hypergraph Convolutional Network for Skeleton-based Action Recognition}, year={2023}, volume={}, number={}, pages={2147-2152}, doi={10.1109/ICME55011.2023.00367}}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages