This repository has been archived by the owner on Jan 18, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathencode_rs_8.c
117 lines (99 loc) · 3.05 KB
/
encode_rs_8.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
/* Reed-Solomon encoder
* Copyright 2004, Phil Karn, KA9Q
* May be used under the terms of the GNU Lesser General Public License (LGPL)
*/
#include <string.h>
#include "fixed.h"
#ifdef __VEC__
#include <sys/sysctl.h>
#endif
static enum {UNKNOWN=0,MMX,SSE,SSE2,ALTIVEC,PORT} cpu_mode;
static void encode_rs_8_c(data_t *data, data_t *parity,int pad);
#if __vec__
static void encode_rs_8_av(data_t *data, data_t *parity,int pad);
#endif
#if __i386__
int cpu_features(void);
#endif
void encode_rs_8(data_t *data, data_t *parity,int pad){
if(cpu_mode == UNKNOWN){
#ifdef __i386__
int f;
/* Figure out what kind of CPU we have */
f = cpu_features();
if(f & (1<<26)){ /* SSE2 is present */
cpu_mode = SSE2;
} else if(f & (1<<25)){ /* SSE is present */
cpu_mode = SSE;
} else if(f & (1<<23)){ /* MMX is present */
cpu_mode = MMX;
} else { /* No SIMD at all */
cpu_mode = PORT;
}
#elif __x86_64__
cpu_mode = SSE2;
#elif __VEC__
/* Ask the OS if we have Altivec support */
int selectors[2] = { CTL_HW, HW_VECTORUNIT };
int hasVectorUnit = 0;
size_t length = sizeof(hasVectorUnit);
int error = sysctl(selectors, 2, &hasVectorUnit, &length, NULL, 0);
if(0 == error && hasVectorUnit)
cpu_mode = ALTIVEC;
else
cpu_mode = PORT;
#else
cpu_mode = PORT;
#endif
}
switch(cpu_mode){
#if __vec__
case ALTIVEC:
encode_rs_8_av(data,parity,pad);
return;
#endif
#if __i386__
case MMX:
case SSE:
case SSE2:
#endif
#ifdef __x86_64__
case SSE2:
#endif
default:
encode_rs_8_c(data,parity,pad);
return;
}
}
#if __vec__ /* PowerPC G4/G5 Altivec instructions are available */
static vector unsigned char reverse = (vector unsigned char)(0,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1);
static vector unsigned char shift_right = (vector unsigned char)(15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30);
/* Lookup table for feedback multiplications
* These are the low half of the coefficients. Since the generator polynomial is
* palindromic, we form the other half by reversing this one
*/
extern static union { vector unsigned char v; unsigned char c[16]; } table[256];
static void encode_rs_8_av(data_t *data, data_t *parity,int pad){
union { vector unsigned char v[2]; unsigned char c[32]; } shift_register;
int i;
shift_register.v[0] = (vector unsigned char)(0);
shift_register.v[1] = (vector unsigned char)(0);
for(i=0;i<NN-NROOTS-pad;i++){
vector unsigned char feedback0,feedback1;
unsigned char f;
f = data[i] ^ shift_register.c[31];
feedback1 = table[f].v;
feedback0 = vec_perm(feedback1,feedback1,reverse);
/* Shift right one byte */
shift_register.v[1] = vec_perm(shift_register.v[0],shift_register.v[1],shift_right) ^ feedback1;
shift_register.v[0] = vec_sro(shift_register.v[0],(vector unsigned char)(8)) ^ feedback0;
shift_register.c[0] = f;
}
for(i=0;i<NROOTS;i++)
parity[NROOTS-i-1] = shift_register.c[i];
}
#endif
/* Portable C version */
static void encode_rs_8_c(data_t *data, data_t *parity,int pad){
#include "encode_rs.h"
}