-
Notifications
You must be signed in to change notification settings - Fork 2
/
qrs2.py
310 lines (243 loc) · 8.3 KB
/
qrs2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
"""
Program that finds the smalles solution to a cover problem with a specific even-odd rule
for combining different sets.
"""
from typing import FrozenSet, Iterator, List, Set
def choose_n_filtered_recurse(
problem: List[List[bool]],
column: int,
n: int,
index: int,
selection: List[int],
result: List[List[int]],
):
"""Recursive implementation for choose_n_filtered"""
if n == 0:
result.append(selection.copy())
return
if index == len(problem):
return
choose_n_filtered_recurse(problem, column, n, index + 1, selection.copy(), result)
if problem[index][column]:
selection.append(index)
choose_n_filtered_recurse(
problem, column, n - 1, index + 1, selection.copy(), result
)
def choose_n_filtered(
problem: List[List[bool]], column: int, n: int
) -> List[List[int]]:
"""
Returns all ways of choosing N from a column of the problem, filtered by colum value
Arguments
---------
problem :
The problem instance
column :
Which column to select from
n :
The number of items to select
"""
result: List[List[int]] = []
choose_n_filtered_recurse(problem, column, n, 0, [], result)
return result
def find_mult_covers(problem: List[List[bool]], columns: List[int]) -> Set[FrozenSet[int]]:
"""Find all row multiplications that covers a set of columns
Arguments
---------
problem :
The problem instance
columns :
Which columns must be covered
"""
selection: Set[FrozenSet[int]] = set()
invalid_solutions: Set[FrozenSet[int]] = set()
for column_idx, column in enumerate(columns):
num_true = 0
for row_idx in range(len(problem)):
if problem[row_idx][column]:
num_true += 1
new_selection: Set[FrozenSet[int]] = set()
# TODO: Store failures to fail sooner
# TODO: Check if a set is already computed
for num in range(1, num_true + 1, 2):
rows = choose_n_filtered(problem, column, num)
if column_idx == 0:
for row in rows:
new_selection.add(frozenset(row))
continue
for sel in selection:
for row in rows:
comb = sel.union(row)
if comb in invalid_solutions:
continue
count = 0
for r in comb:
if problem[r][columns[column_idx]]:
count += 1
if count % 2 == 0:
invalid_solutions.add(comb)
continue
if sel.issuperset(row):
new_selection.add(sel)
continue
are_compatible = True
for col in columns[: column_idx + 1]:
count = 0
for r in comb:
if problem[r][col]:
count += 1
if count % 2 == 0:
are_compatible = False
break
if are_compatible:
new_selection.add(comb)
else:
invalid_solutions.add(comb)
if len(new_selection) == 0:
return set()
selection = new_selection
return selection
def choose_n_recurse(
options: List[int],
n: int,
index: int,
selection: List[int],
result: List[List[int]],
):
"""Recursive implementation of choose_n"""
if n == 0:
result.append(selection.copy())
return
if len(options) == index + n:
for opt in options[index:]:
selection.append(opt)
result.append(selection.copy())
return
choose_n_recurse(options, n, index + 1, selection.copy(), result)
selection.append(options[index])
choose_n_recurse(options, n - 1, index + 1, selection.copy(), result)
def choose_n(options: List[int], n: int) -> List[List[int]]:
"""
Returns all ways of choosing N from a collection of integers
Arguments
---------
options :
The integers to choose from
n :
The number of items to select
"""
result: List[List[int]] = []
choose_n_recurse(options, n, 0, [], result)
return result
def all_splits_recursive(
count: int, splits: int, upper: int, current: List[int], result: List[List[int]]
):
"""Recursive implementation of all_splits"""
if splits == 0:
current.append(count)
result.append(current.copy())
return
lower = count // (splits + 1)
if count % (splits + 1) == 0:
lower -= 1
for i in range(min(upper, count - splits), lower, -1):
new = current.copy()
new.append(i)
all_splits_recursive(count - i, splits - 1, i, new, result)
def all_splits(count: int, splits: int) -> List[List[int]]:
"""
Returns all unique ways of splitting the number line up to a value into parts
Arguments
---------
count :
The length of the number line
splits :
The number of splits to do (one less than the number of partitions)
"""
result: List[List[int]] = []
all_splits_recursive(count, splits, count, [], result)
return result
def partitions_recursive(
remaining: Set[int], splits: List[int], split_idx: int, current: List[List[int]]
) -> Iterator[List[List[int]]]:
""""""
if split_idx == len(splits):
yield current
return
for choice in choose_n(list(remaining), splits[split_idx]):
new_current = current.copy()
new_current.append(choice)
yield from partitions_recursive(
remaining.difference(choice), splits, split_idx + 1, new_current
)
def all_partitions(columns: int, partitions: int) -> Iterator[List[List[int]]]:
"""
Returns all ways to partition the number of the number line into partitions
Arguments
---------
columns :
The number of columns in the problem, i.e. the length of the number line
partitions :
The number of partitions to divide them into, i.e. number of splits plus one
"""
for split in all_splits(columns, partitions - 1):
yield from partitions_recursive(set(range(columns)), split, 0, [])
def find_smallest_covers(
problem: List[List[bool]], find_all_solutions: bool = False
) -> List[List[Set[FrozenSet[int]]]]:
"""Finds the smallest cover of the rows including multiplications.
Arguments
---------
problem :
The problem instance
find_all_solutions :
Whether to print the first solution or all solutions with the same fewest number
of multiplications
"""
columns = len(problem[0])
for i in range(columns):
all_solutions: List[List[Set[FrozenSet[int]]]] = []
for partition in all_partitions(columns, i + 1):
selections: List[Set[FrozenSet[int]]] = []
for cols in partition:
cover = find_mult_covers(problem, cols)
if len(cover) == 0:
break
selections.append(cover)
if len(selections) == len(partition):
if find_all_solutions:
all_solutions.append(selections)
else:
return [selections]
if len(all_solutions) > 0:
return all_solutions
return []
#problem = [
# [False, True, True, False, True],
# [False, False, True, True, False],
# [False, True, False, False, False],
# [True, True, False, False, False],
#]
# problem = [
# [True, False, True, True],
# [False, False, True, False],
# [False, True, True, False],
# [False, False, True, True],
# ]
# problem = [
# [False, True, True, False],
# [True, True, False, True],
# ]
# problem = [
# [False, True, True, False, True, False, True],
# [False, True, False, True, True, True, False],
# [True, True, False, True, False, False, True],
# ]
#
# problem = [
# [False, True, True, True, False, False, True],
# [True, False, True, True, False, True, False],
# [False, True, True, False, True, True, False],
# ]
#solution = find_smallest_covers(problem, find_all_solutions=False)
#print(solution)