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CEPH 
• An object-based distributed storage system designed to 

provide high scalability and strong consistency 
• A de-facto standard distributed storage backend for open 

stack 
 

• Main Features  
– CRUSH: a stateless object distribution algorithm 
– OSD: a self-managed storage node with an object interface 

OSD 
CRUSH 

User:  
  store { username, alice } 



CEPH Overview 
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• The throughput of each OSD 

determines the overall performance 
 

• The resource utilization of each OSD 
influences an in-node scalability 
 

• Inter-node scalability is determined  
by an efficiency and fairness of CRUSH 
 
 



Performance of CEPH 

1% of a raw device 
performance 

• Overall throughput of Ceph is 1-10% of the device performance 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• The recent report from Micron shows that the sustained performance can go up to 10% of the device performance  
with Intel Purley processors (110MB/s, 10 FIO clients) https://www.micron.com/about/blogs/2018/may/ceph-bluestore-vs-filestoreblock-performance-comparison-when-leveraging-micron-nvme-ssds 

 



Problems with Underutilized Disks in Ceph  

• Ceph OSD cannot get benefit from high performance storage 
devices such as NVMe SSDs 
 

• Unbalanced system resource usage  
– CPUs are busy while disks are idle 

• More than 20 threads are running concurrently per OSD 

– More storage nodes are needed for a better performance 

 
How can we improve the efficiency of OSD so that the gap between the overall 
throughput and the device performance can be minimized? 



Where do bottlenecks occur? (1) 

Finisher Finisher 

In/Out Connections 

Workers  Workers  Workers  

OP 
workers 

OP 
workers 

OP 
workers 

OP 
workers 

…… 

PG1 …. PGx PGn …. PGy Dispatch 

Messenger 

PG  

Object Store 
ROCKSDB 

FS 

BlueStore KStore 

ROCKSDB 

SSD 

2. sync reads 
for attributes 

Finisher Finisher 

Blue FS 

SSD 

FS 

3. Sync between  
metadata and data writes  

4. notify 

1. read 
attributes 

2. write  
metadata & data 

3. notify 

1. static mapping between  
queue and workers 

CEPH OSD  
Architecture 



Where do bottlenecks occur? (2) 
• Multiple attribute reads before writes  

– 2 object attributes are synchronously read before each write 
 

• Use of large batch operations 
– Large batch I/Os increase latency and slow down the I/O notification  
– Due to the strong consistency requirement requires,  clients need to  

wait, holding the requests while a large batch is processed and notified 
 

• Synchronization between data and metadata writes  
 

• Use of host-side key-value stores 
– Host-side key-value stores require lots of CPU and memory resources 
– High compaction overheads -> performance variations 

 
• Job distribution between request queues and workers 

– A fixed number of workers are associated with each request queue (Shard) 
– Concurrency can be limited based on the ratio between number of Shards and PG 

 
 

 
 



Existing Approaches (1) 
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Existing approaches provide a partial solution to this problem 



Existing Approaches (2) 
• Pending OP Queues  

– Solve the issue where one PG worker can block other workers 
in the same Shard 

– Two lookups requiring an access to an additional queue every 
time 
 

• Write-through cache 
– Maintaining a write-through cache for attributes requires a 

huge amount of memory 
• A couple of 16B key-256B value pairs per key  

    (272B * 1,000,000,000 keys => 253 GB of memory per device) 
• It can severely hurt the scalability of the system 



Our Approach 
• Offload host-side key-value management to a 

underutilized storage devices 
– Eliminate the need for host-side key-value stores 

 
• Use an event-driven scheduler, replacing the need for 

pending OP queues 
 

• Data path optimization  
– Use a device I/O queue directly  
– Use a read prefetching to avoid issuing synchronous I/Os 

 
 
 



Overall Architecture of CEPH OSD + KvsStore  
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CEPH KvsStore Overview 
• Ceph ObjectStore supports 43 operations  on three types of objects: 

– Objects : user-provided key-value pairs 
– Attributes: small key-value pairs 
– OMAP: large key-value pairs 

 
• Design Choices 

– Write operations  
• Each operation is converted to a single KV device I/O operation (exploiting low read/write latency of 

KV-SSDs) 
• All requests are issued asynchronously 

– Read operations  
• I/O is issued asynchronously, but the caller waits for the completion 

– Management operations  
• List operations, such as list_collection are list_omap_entries,  are implemented using iterators  
• OSD metadata is written to a file system 

– Write order 
• Since device operations can be executed out-of-order, we keep track of the write order and force it 

before sending the response  
 

 



KvsStore Design: Prefetching & Asynchronous Batch Operations 
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KvsStore Design: Key Structure 

• Since KV-SSD currently only supports 16B key, we reduced the size of each information and encoded it in 
the key 

• Attribute names and OMAP entry names are treated specially 
• Pre-assigned / Dynamically-assigned  
• Unknown names are stored in a metadata object 

Header (2B) Shard_ID(2B) Pool_ID(1B) Key Hash(4B) User Key (4B) Snap ID (1B) Gen ID (1B) ATTR ID (1B) 

Prefix (2b) Groupid (14b) 
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KvsStore Design: Metadata Management 
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• CEPH metadata is stored as object attributes and OMAP entries 
• KvsStore converts them as individual key-value requests to avoid buffering 



I/O Handling in CEPH 



Initializing KV SSD  
• open KVSSD, open namespace, create a submission queue, and create a completion queue 

Open a device 

Open a namespace 

Open queues 



Submit KV I/Os 
• Write I/O requests to a Transaction is submitted to KV-SSD asynchronously 
• When the device queue becomes full, it tries again with an increasing delay  

callback function 
I/O context 

Submission 
queue handle 

Namespace 
handle A key-value pair 



Processing I/O completion 
• kv_io_context  contains the information about the completed I/O including key, value, size, and etc. 
• private_data contains a user-provided pointer that can handle the completion 

 
 
 
 
 
 
 

• In case of synchronous I/Os, submit I/O asynchronously and let the caller wait for a completion  
• private_data contains the struct ioevent that has a mutex and a condition variable  

 
 

 
 

Called when I/O is finished 

Pause the thread until I/O is finished 



Running CEPH  



Experimental Setup 
• CEPH storage server consists of  

– monitor daemons 
– manager daemons 
– n OSD nodes 

 
• Benchmark  

– Rados bench 
 

• Our Cluster Configuration 
– CPU: Intel E5-2695 @2.1 Ghz  

(36 cores with hyper-threading) 
– RAM: 128GB 
– Device: PM983 KVSSD 
– Network: 40Gb Ethernet 
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Installation 
• Operating system: 

– Ubuntu 16.04, ext4, kernel version: 4.9.5 

 
• KVSSD APIs and Drivers: 

– https://github.com/OpenMPDK/KVSSD 
 
 

 
 
 



Building and Running CEPH (1) 
• Install dependencies  

– sudo ./install-deps.sh 
 

• Cmake  
– cd ./build  
– rm –rf ceph-runtime && mkdir –p ceph-runtime 
– cmake -DWITH_TESTS=OFF -DWITH_FIO=ON -DFIO_INCLUDE_DIR=../fio -

DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./ceph-runtime .. 

 
• Build 

– Make  
– Make install  

 

 



Building and Running CEPH (2) 
• Running  

– Step 1. Load kernel drivers for KVSSD and format  
– Step 2. Load Monitor/Manager/OSD servers 
– Step 3. Run benchmarks 

 



Step 1. Load kernel drivers for KVSSD and format 
• Download 

– git clone https://github.com/OpenMPDK/KVSSD 
– cd PDK/driver/PCIe/kernel_driver/kernel_v4.9.5 

 
• Compile 

– make  
 

• Reload the nvme driver  
– rmmod nvme 
– rmmod nvme_core 
– insmod nvme-core.ko 
– insmod nvme.ko 



Step 2. Load and Deploy CEPH Daemons 
• The procedure to run CEPH daemons 

– http://docs.ceph.com/docs/mimic/start/ 
 

• This procedure includes the following steps 
– Terminate any remaining OSD processes 
– Setup remote deploy directories  
– Deploy CEPH binary to the remote nodes  
– Format devices  
– Start monitor daemon 
– Start manager daemon 
– Start OSD daemons in the remote servers  

 
 
 

http://docs.ceph.com/docs/mimic/start/


Step 2. Setup Remote Directories 
• ceph-runtime  

– CEPH binary 

 
• ceph-deploy 

– CEPH configuration 
– Log files 



Step 2. Starting Monitor, Manager, and OSD 
• Monitor  

– register new daemon to a keyring 
– ceph-mon -mkfs  
– ceph-mon -i hostname 

 
• Mgr  

– create a manager with a name, e.g. ‘sam’  
– ceph-mgr -I sam 

 
• OSD 

– Register new OSD to a keyring  
– ceph-osd –mkfs 
– ceph-osd –I OSDID 



Step 2. Checking the status of CEPH  
ceph –s 



Step 2. Development Environment 
• CEPH provides a vstart.sh  

– Runs all daemons in a local system 
 

• We provide scripts to automate the deploy process  
– setup_kvsstore_clusters.sh [num_of_osd_nodes] 
– setup_bluestore_clusters.sh [num_of_osd_nodes] 
– run_rados_write.sh  
– kill_ceph_pids.sh 

 



Step 3. Benchmark 
• Prepare a pool  & setup replication  

– ceph osd pool create rbd 100 
– ceph osd pool application enable  
– ceph osd pool set rbd size 1 
– ceph osd pool set rbd min_size 1  

 
• Run Rados bench 

– sudo ./bin/rados bench -p rbd -b 4096 --max-objects 
100000 --run-name m -t 64 30 write --no-cleanup 
 
 



CEPH Configuration 
• Location of A Configuration File  

– vstart creates one in the current directory 
– Our scripts creates on in the ceph-deploy directoy 

 
• Change a type of Object Store  

– KvsStore is implemented as a type of an object store  
– osd objectstore = bluestore / kvsstore  

 
• Object Store-specific options  

– search for bluestore_xxx  or kvsstore_xxxx  
 

 



Evaluation 



Benefits of Event-Driven Scheduler 
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Performance of KvsStore 

BlueStore 

KvsStore 



I/O Characteristics of KvsStore 
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Conclusion 
• Event-driven request scheduler 

– Low-overhead request scheduler that improves the processing 
latency by 20-40% 

 
• KvsStore 

– Replaces a resource hungry host-side key-value stores with 
Samsung KV-SSDs 

– Provides a 4x better sustained performance than BlueStore 
– Improves the underlying device utilization of CEPH up to 75% 

 

 
 
 



Thank you 



Structure of CEPH KvsStore  

KV-SSD  

KV-Kernel Driver  

KV-ADI  

Key Generator Memory Pool 

I/O Handler 

CEPH Object Store Interface 

Iterators Finishers 

KV-Emulator  

Queue 
Transaction Read List 



Life-cycle of I/O Requests in KvsStore 
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