
KvsStore: CEPH Object Store
for Key-Value SSDs

Memory Solution Lab
Yangwook Kang, Pratik Mishra, James Li, Yangseok Ki

10/24/2018

CEPH
• An object-based distributed storage system designed to

provide high scalability and strong consistency
• A de-facto standard distributed storage backend for open

stack

• Main Features
– CRUSH: a stateless object distribution algorithm
– OSD: a self-managed storage node with an object interface

OSD
CRUSH

User:
 store { username, alice }

CEPH Overview

Public Network

Lib
Rados

RADOS

RBD Gate
way

CEPH
FS

Client

Server

OSD OSD … OSD OSD …

…

…

Monitor

Cluster Network

CRUSH MAP

Lib
Rados

RADOS

RBD Gate
way

CEPH
FS

CRUSH MAP

• The throughput of each OSD

determines the overall performance

• The resource utilization of each OSD
influences an in-node scalability

• Inter-node scalability is determined
by an efficiency and fairness of CRUSH

Performance of CEPH

1% of a raw device
performance

• Overall throughput of Ceph is 1-10% of the device performance

• The recent report from Micron shows that the sustained performance can go up to 10% of the device performance
with Intel Purley processors (110MB/s, 10 FIO clients) https://www.micron.com/about/blogs/2018/may/ceph-bluestore-vs-filestoreblock-performance-comparison-when-leveraging-micron-nvme-ssds

Problems with Underutilized Disks in Ceph

• Ceph OSD cannot get benefit from high performance storage
devices such as NVMe SSDs

• Unbalanced system resource usage
– CPUs are busy while disks are idle

• More than 20 threads are running concurrently per OSD

– More storage nodes are needed for a better performance

How can we improve the efficiency of OSD so that the gap between the overall
throughput and the device performance can be minimized?

Where do bottlenecks occur? (1)

Finisher Finisher

In/Out Connections

Workers Workers Workers

OP
workers

OP
workers

OP
workers

OP
workers

……

PG1 …. PGx PGn …. PGy Dispatch

Messenger

PG

Object Store
ROCKSDB

FS

BlueStore KStore

ROCKSDB

SSD

2. sync reads
for attributes

Finisher Finisher

Blue FS

SSD

FS

3. Sync between
metadata and data writes

4. notify

1. read
attributes

2. write
metadata & data

3. notify

1. static mapping between
queue and workers

CEPH OSD
Architecture

Where do bottlenecks occur? (2)
• Multiple attribute reads before writes

– 2 object attributes are synchronously read before each write

• Use of large batch operations
– Large batch I/Os increase latency and slow down the I/O notification
– Due to the strong consistency requirement requires, clients need to

wait, holding the requests while a large batch is processed and notified

• Synchronization between data and metadata writes

• Use of host-side key-value stores
– Host-side key-value stores require lots of CPU and memory resources
– High compaction overheads -> performance variations

• Job distribution between request queues and workers

– A fixed number of workers are associated with each request queue (Shard)
– Concurrency can be limited based on the ratio between number of Shards and PG

Existing Approaches (1)

In/Out Connections

Workers Workers Workers

OP
workers

OP
workers

OP
workers

OP
workers

……

PG1 …. PGx PGn …. PGy Dispatch

Messenger

PG

Object Store

SSD

BlueStore KStore

SSD

No read
No read

Finisher

Write Through
Cache

Pending OP
queues

Finisher

Large
Transaction

Existing approaches provide a partial solution to this problem

Existing Approaches (2)
• Pending OP Queues

– Solve the issue where one PG worker can block other workers
in the same Shard

– Two lookups requiring an access to an additional queue every
time

• Write-through cache
– Maintaining a write-through cache for attributes requires a

huge amount of memory
• A couple of 16B key-256B value pairs per key

 (272B * 1,000,000,000 keys => 253 GB of memory per device)
• It can severely hurt the scalability of the system

Our Approach
• Offload host-side key-value management to a

underutilized storage devices
– Eliminate the need for host-side key-value stores

• Use an event-driven scheduler, replacing the need for

pending OP queues

• Data path optimization
– Use a device I/O queue directly
– Use a read prefetching to avoid issuing synchronous I/Os

Overall Architecture of CEPH OSD + KvsStore

 KvsStore
Finisher

Incoming Connections

Workers Workers Workers

OP
workers

OP
workers

OP
workers

OP
workers

…

PG1 PGn Dispatch

Messenger

PG

Object Store

Finisher

…

Event-Driven Request Distributor

KV-SSD

Write Read Metadata
Cache

I/O Queue per PG

Asynchronous Batch I/O

No host-side queuing for I/O

Prefetcher

Read metadata from cache

• Global OP worker pool
• KvsStore

• Async-batched I/Os
• No on-demand reads

CEPH KvsStore Overview
• Ceph ObjectStore supports 43 operations on three types of objects:

– Objects : user-provided key-value pairs
– Attributes: small key-value pairs
– OMAP: large key-value pairs

• Design Choices

– Write operations
• Each operation is converted to a single KV device I/O operation (exploiting low read/write latency of

KV-SSDs)
• All requests are issued asynchronously

– Read operations
• I/O is issued asynchronously, but the caller waits for the completion

– Management operations
• List operations, such as list_collection are list_omap_entries, are implemented using iterators
• OSD metadata is written to a file system

– Write order
• Since device operations can be executed out-of-order, we keep track of the write order and force it

before sending the response

KvsStore Design: Prefetching & Asynchronous Batch Operations

List of
Transactions

RocksDB

meta_write

Finishers

Notify completion

CEPH BlueStore Data Path

Transaction

Long Batch
processing

Long
Latency

KvsStore Data Path

Transaction

Assign a batch ID

1 2 3

Issue an I/O

Finishers

KV SSD

notify completion

Key journaling

Read Attributes Sync read

Data writes synchroni
zation

Attribute Prefetcher

Read Attributes
from cache

Create Transaction Create Transaction

Request Processing

KvsStore Design: Key Structure

• Since KV-SSD currently only supports 16B key, we reduced the size of each information and encoded it in
the key

• Attribute names and OMAP entry names are treated specially
• Pre-assigned / Dynamically-assigned
• Unknown names are stored in a metadata object

Header (2B) Shard_ID(2B) Pool_ID(1B) Key Hash(4B) User Key (4B) Snap ID (1B) Gen ID (1B) ATTR ID (1B)

Prefix (2b) Groupid (14b)

Metadata
collection ID

Group ID
unordered_map< obj ID, unordered_map< attr name, ATTR ID or value> >
 unordered_map< obj ID, unordered_map<omap name, ATTR ID or value> >

OMAP
DATA
COLL
ATTR

index(0 … n)

KvsStore Design: Metadata Management

<Red-Black Tree>
KEY: COLLECTION_ID

VALUE: Collection

RAM

Write a key ID and value pair, and
a collection object to a device

get_collection Set
Attributes

User-defined key?

Pre-defined key?

Store the last
assigned key in a
collection object

Write a key ID and value
pair to a device

Set
Omap

Assigned an
unique ID for
the given key

• CEPH metadata is stored as object attributes and OMAP entries
• KvsStore converts them as individual key-value requests to avoid buffering

I/O Handling in CEPH

Initializing KV SSD
• open KVSSD, open namespace, create a submission queue, and create a completion queue

Open a device

Open a namespace

Open queues

Submit KV I/Os
• Write I/O requests to a Transaction is submitted to KV-SSD asynchronously
• When the device queue becomes full, it tries again with an increasing delay

callback function
I/O context

Submission
queue handle

Namespace
handle A key-value pair

Processing I/O completion
• kv_io_context contains the information about the completed I/O including key, value, size, and etc.
• private_data contains a user-provided pointer that can handle the completion

• In case of synchronous I/Os, submit I/O asynchronously and let the caller wait for a completion
• private_data contains the struct ioevent that has a mutex and a condition variable

Called when I/O is finished

Pause the thread until I/O is finished

Running CEPH

Experimental Setup
• CEPH storage server consists of

– monitor daemons
– manager daemons
– n OSD nodes

• Benchmark

– Rados bench

• Our Cluster Configuration
– CPU: Intel E5-2695 @2.1 Ghz

(36 cores with hyper-threading)
– RAM: 128GB
– Device: PM983 KVSSD
– Network: 40Gb Ethernet

Monitor
Manager

Benchmark
OSD OSD OSD

40Gb Network Switch

Installation
• Operating system:

– Ubuntu 16.04, ext4, kernel version: 4.9.5

• KVSSD APIs and Drivers:

– https://github.com/OpenMPDK/KVSSD

Building and Running CEPH (1)
• Install dependencies

– sudo ./install-deps.sh

• Cmake
– cd ./build
– rm –rf ceph-runtime && mkdir –p ceph-runtime
– cmake -DWITH_TESTS=OFF -DWITH_FIO=ON -DFIO_INCLUDE_DIR=../fio -

DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./ceph-runtime ..

• Build

– Make
– Make install

Building and Running CEPH (2)
• Running

– Step 1. Load kernel drivers for KVSSD and format
– Step 2. Load Monitor/Manager/OSD servers
– Step 3. Run benchmarks

Step 1. Load kernel drivers for KVSSD and format
• Download

– git clone https://github.com/OpenMPDK/KVSSD
– cd PDK/driver/PCIe/kernel_driver/kernel_v4.9.5

• Compile

– make

• Reload the nvme driver
– rmmod nvme
– rmmod nvme_core
– insmod nvme-core.ko
– insmod nvme.ko

Step 2. Load and Deploy CEPH Daemons
• The procedure to run CEPH daemons

– http://docs.ceph.com/docs/mimic/start/

• This procedure includes the following steps
– Terminate any remaining OSD processes
– Setup remote deploy directories
– Deploy CEPH binary to the remote nodes
– Format devices
– Start monitor daemon
– Start manager daemon
– Start OSD daemons in the remote servers

http://docs.ceph.com/docs/mimic/start/

Step 2. Setup Remote Directories
• ceph-runtime

– CEPH binary

• ceph-deploy

– CEPH configuration
– Log files

Step 2. Starting Monitor, Manager, and OSD
• Monitor

– register new daemon to a keyring
– ceph-mon -mkfs
– ceph-mon -i hostname

• Mgr

– create a manager with a name, e.g. ‘sam’
– ceph-mgr -I sam

• OSD

– Register new OSD to a keyring
– ceph-osd –mkfs
– ceph-osd –I OSDID

Step 2. Checking the status of CEPH
ceph –s

Step 2. Development Environment
• CEPH provides a vstart.sh

– Runs all daemons in a local system

• We provide scripts to automate the deploy process
– setup_kvsstore_clusters.sh [num_of_osd_nodes]
– setup_bluestore_clusters.sh [num_of_osd_nodes]
– run_rados_write.sh
– kill_ceph_pids.sh

Step 3. Benchmark
• Prepare a pool & setup replication

– ceph osd pool create rbd 100
– ceph osd pool application enable
– ceph osd pool set rbd size 1
– ceph osd pool set rbd min_size 1

• Run Rados bench

– sudo ./bin/rados bench -p rbd -b 4096 --max-objects
100000 --run-name m -t 64 30 write --no-cleanup

CEPH Configuration
• Location of A Configuration File

– vstart creates one in the current directory
– Our scripts creates on in the ceph-deploy directoy

• Change a type of Object Store

– KvsStore is implemented as a type of an object store
– osd objectstore = bluestore / kvsstore

• Object Store-specific options

– search for bluestore_xxx or kvsstore_xxxx

Evaluation

Benefits of Event-Driven Scheduler

Number of active workers- Higher the better

0

200

400

600

800

1000

1200

1400

1600

Default Round Robin Event Driven Default Round Robin Event Driven Default Round Robin Event Driven

m
ic

ro
se

co
nd

s

Writes (4K) Read sequential Read random

0

1

2

3

4

5

6

7

8

9

Default Round Robin Event Driven Default Round Robin Event Driven Default Round Robin Event Driven

of

 a
ct

iv
e

op
_w

q
th

re
ad

s

Writes (4K) Read sequential Read random

Avg. PG queue processing time in cluster - Lower the better

Performance of KvsStore

BlueStore

KvsStore

I/O Characteristics of KvsStore

0
20
40
60
80

100
120
140
160
180
200

KvsStore Device

• KvsStore draws the 75% of the device performance
• Current performance is bounded by the device

performance, not CPU anymore

KI
O

PS
 (1

00
0

IO
/s

)

• Internal I/O Efficiency

• Write Amplification

0

2

4

6

8

10

CEPH meta reads

CEPH meta writes

User writes
0

0.2

0.4

0.6

0.8

1

1.2

KvsStore Write Amplification

CEPH meta writes

User writes

size # of I/Os

Conclusion
• Event-driven request scheduler

– Low-overhead request scheduler that improves the processing
latency by 20-40%

• KvsStore

– Replaces a resource hungry host-side key-value stores with
Samsung KV-SSDs

– Provides a 4x better sustained performance than BlueStore
– Improves the underlying device utilization of CEPH up to 75%

Thank you

Structure of CEPH KvsStore

KV-SSD

KV-Kernel Driver

KV-ADI

Key Generator Memory Pool

I/O Handler

CEPH Object Store Interface

Iterators Finishers

KV-Emulator

Queue
Transaction Read List

Life-cycle of I/O Requests in KvsStore

QUEUE TRANSACTION

CREATE TRANSACTION

ADD CMDs

SUBMIT_TRANSACTION
(non-blocking)

Issue async-I/O requests
with a batch ID

OP Worker

OBJ/ATTR/OMAP READ

SYNC READ I/O (blocking)

RETURN DATA

writes

reads
CREATE TRANSACTION

Current Version With Prefetcher support (In Development)

QUEUE TRANSACTION

CREATE TRANSACTION

ADD CMDs

SUBMIT_TRANSACTION
(non-blocking)

Issue async-I/O requests
with a batch ID

OP Worker

OBJ/ATTR/OMAP READ

READ FROM Prefetcher

RETURN DATA

writes

reads
CREATE TRANSACTION

Event-Driven Scheduler Event-Driven Scheduler

Prefetcher

	KvsStore: CEPH Object Store �for Key-Value SSDs
	CEPH
	CEPH Overview
	Performance of CEPH
	Problems with Underutilized Disks in Ceph
	Where do bottlenecks occur? (1)
	Where do bottlenecks occur? (2)
	Existing Approaches (1)
	Existing Approaches (2)
	Our Approach
	Overall Architecture of CEPH OSD + KvsStore
	CEPH KvsStore Overview
	KvsStore Design: Prefetching & Asynchronous Batch Operations
	KvsStore Design: Key Structure
	KvsStore Design: Metadata Management
	슬라이드 번호 16
	Initializing KV SSD
	Submit KV I/Os
	Processing I/O completion
	슬라이드 번호 20
	Experimental Setup
	Installation
	Building and Running CEPH (1)
	Building and Running CEPH (2)
	Step 1. Load kernel drivers for KVSSD and format
	Step 2. Load and Deploy CEPH Daemons
	Step 2. Setup Remote Directories
	Step 2. Starting Monitor, Manager, and OSD
	Step 2. Checking the status of CEPH
	Step 2. Development Environment
	Step 3. Benchmark
	CEPH Configuration
	슬라이드 번호 33
	Benefits of Event-Driven Scheduler
	Performance of KvsStore
	I/O Characteristics of KvsStore
	Conclusion
	슬라이드 번호 38
	Structure of CEPH KvsStore
	Life-cycle of I/O Requests in KvsStore

