
KV SSD Host Software Stack

Changho Choi

changho.c@samsung.com

Device Solutions America

Agenda
• KV host software system architecture
• Kernel/User driver
• KV SSD emulator
• KV API (Application Programming Interface)
• Applications: KVBench
• Open source & github
• Standard progress
• System build and performance measurement process

2

KV Host Software Stack

KV API

KV SSD

Application/Benchmark Suite
(KVBench, KvRocks, KvsStore)

KV UDD
(SPDK) KV KDD

KVSSD
Emulator

No Filesystem
No Block layer PDK

(Platform Development Kit)

3

Device Driver
• Implement NVMe KV commands with vendor specific opcodes
• NVMe KV command set standard discussion ongoing in NVMe TWG
• Kernel space driver

– Extend standard Linux Kernel driver by adding KV command support functions
– Currently use ioctl and interrupt to communicate with KV SSD
– IO queue management, IO scheduler, etc.
– CentOS 7.2 Kernel v3.10
– Ubutu 16.04

• Kernel version v4.4, v4.9.5, v4.13, v4.15

• User space driver
– Extend Intel SPDK by adding KV command support functions

• Current open source software
– Command set: store/retrieve/delete/exist/iterator
– Key is carried in NVMe command when key is smaller than or equal to 16-byte
– Bigger key(>=16-byte) is delivered through PRP

4

KV SSD Emulator
• User space KV SSD emulator (no KV SSD device required)

– KV SSD emulator simulates KV SSD operations
– Does not implement NVMe commands

• Support async operation
• System setup operations

– Device initialization
– Namespace setup (create/delete namespace, etc.)
– Queue management (create/delete queues, etc.)

• Key-value operations
– retrieve/store/delete for individual keys
– exists: check key existence
– iterator: key only or key-value pairs

• Iterator group defined with MSB bit mask and bit pattern (up to 4-byte) in key

5

KV API (Application Programming Interface)
• KV API

– KV API is a user space library that applications can utilize
 for system configuration and key-value operations
– KV API supports both Kernel and user space drivers
– Support sync and async operations

• System configurations
– KV SSD device set up: open/close
– User space device driver setup(e.g., SPDK): efficient memory management, etc.
– Efficient host system setup: CPU core affinity, NUMA, etc.

• Key value operations with options
– Basic KV API: store/retrieve/delete/exis/iterator

• Sync/async mode command support
– Retrieve device specific information (e.g., device utilization, etc.)

6

KV SSD API

• Device
• Container (=key space):

– logical management unit like namespace in block device (e.g., nvme0n1)

• Group
– logical set of key value tuples within a container which users can dynamically create (iterator, etc.)

• Tuple: key value pair
7

KV APIs – Device and Container
• Device interface

– Kvs_open_device
– Kvs_close_device
– Kvs_get_device_info
– Kvs_get_device_capacity
– Kvs_get_device_utilization
– Kvs_get_min_key_length
– Kvs_get_max_key_length
– Kvs_get_min_value_length
– Kvs_get_max_value_length
– Kvs_get_optimal_value_length

8

• Container interface
– Kvs_create_container
– Kvs_delete_container
– Kvs_open_container
– Kvs_close_container

KV APIs – Tuple and Iterator
• Key Value Tuple

– Kvs_get_tuple_info
– Kvs_retrieve_tuple
– Kvs_retrieve_tuple_async
– Kvs_store_tuple
– Kvs_store_tuple_async
– Kvs_delete_tuple
– Kvs_delete_tuple_async
– Kvs_exist_tuples
– Kvs_exist_tuples_async

9

• Iterator
– Kvs_open_iterator
– Kvs_close_iterator
– Kvs_iterator_next
– Kvs_iterator_next_async

kvbench: KV Benchmark Suite
• Extended open source benchmark tool to support KV API
• Implemented additional workload and performance measurement features

10

Workload generator
• Generate various workloads with different DB

configurations
• Generate different workloads directly to the

KV SSD
• Workload: insertion, mixed workload with

uniform or Zipfian distribution, various key
and value sizes, etc.

Application performance analysis
module
• Reports application level stats, e.g. ops/sec,

latency, etc.
System performance analysis
module(separate module)
• Reports system level stats, e.g. CPU and

memory utilization, etc.

KV SSD Host Software Open Source
• KV SSD host software package is publicly released in

github
– https://github.com/OpenMPDK/KVSSD
– KV API, drivers, emulator, bench mark suite, etc.

11

https://github.com/OpenMPDK/KVSSD

KVSSD SDK github Architecture

Kernel driver

Link to uNVMe user driver

kvbench API core library

Driver

emulator

Kernel driver adapter

12
https://github.com/OpenMPDK/KVSSD

https://github.com/OpenMPDK/KVSSD

Open Source - GitHub Features

• Code – code repository, README, etc.
• Issues – users report issues or ask questions
• Pull requests

– Inform others of changes developers pushed to a branch in a repository on
GitHub. Once a pull request is opened, users can discuss and review the
potential changes with collaborators and add follow-up commits.

– The change would be merged to main branch as needed.
• Wiki – FAQ, trouble shooting, public presentation materials, etc.

Github - Issues
• Use for bug report and responses

Issues Report – Template & Assignee
** Location (Korea, USA, China, India, etc.) **
Put your location to get prompt support

Describe the bug
A clear and concise description of what the bug is.

To Reproduce
Steps to reproduce the behavior:
1.
2.
3.

Expected behavior
A clear and concise description of what you expected to happen.

Screenshots
If applicable, add screenshots to help explain your problem.

System environment (please complete the following information)
 - Firmware version :
 - Number of SSDs :
 - OS & Kernel version [e.g., Ubuntu 16.04 Kernel v4.9.5]:
 - GCC version [e.g., gcc v5.0.0] :
 - kvbench version if kvbench runs [e.g., v0.6.0]:
 - KV API version [e.g., v0.6.0]
 - User driver version :
 - Driver [Kernel or user driver or emulator] :

Workload
 - number of records or data size
 - Workload(insert, mixed workload, etc.) [e.g., sequential or random insert, or 50% Read & 50% write]
 - key size :
 - value size :
 - operation option if available [e.g., sync or async mode] :

Additional context
Add any other context about the problem here.

Issues Report – Labels

Issues – Regular Issue for Generic Questions
• Open a regular issue instead of regular bug report

when you have generic questions

Github - Wiki
• KV SSD introduction
• FAQ, trouble shooting, etc.
• Public materials: whitepaper, presentation materials, etc.

Wiki - FAQ

KV SSD Standards
• Samsung defines a KV architecture/command set based on

NVMe spec.
– NVMe KV standard draft review meetings ongoing

• KV API standard draft discussion ongoing
– KV APIs include store/retrieve/delete/exist/iterator

2018 2019

1Q 2Q 3Q 4Q

.

.

SNIA KV API
v1.0

NVMe-KV v1.0 NVMe-KV
Architecture

Draft
version

Final API
version for
SNIA Member
vote

1st review 2nd review

Current 20

System build and
performance measurement

21

System Build
1. Download software package

git clone https://github.com/OpenMPDK/KVSSD.git

2. Build and install device driver
 cd KVSSD/PDK/driver/PCIe/kernel_driver/kernel_v4.9.5/
 make all
 sudo ./re_insmod.sh

3. Build KV API library
 cd /KVSSD/PDK/core
 mkdir build && cd build
 cmake -DWITH_KDD=ON ../
 make -j24

4. Test sample codes
 sudo ./sample_code_async -d /dev/nvme0n1 -n 100 -q 64 -o 1 -k 16 -v 4096

22

System Build(Cont’d)
5. Build kvbench benchmark tool for KV SSD
 (https://github.com/OpenMPDK/KVSSD/tree/master/application/kvbench)
 cd KVSSD/application/kvbench
 mkdir build_kv && cd build_kv
 cmake -DCMAKE_INCLUDE_PATH=/KVSSD/PDK/core/include
 -DCMAKE_LIBRARY_PATH=/KVSSD/PDK/core/build ../
 make kv_bench

23

Run Insertion & Mixed Workload (R50U50)
1. create & modify cpu config file
 cd kvbench/build_kv
 LD_LIBRARY_PATH=/KVSSD/PDK/core/build ./kv_bench -c
 # This will generate default cpu.txt file
 # Modify cpu.txt for (nodeid,coreid,deviceid) mapping if needed

2. modify bench_config.ini for workloads
 ndocs=100000
 device_path = /dev/nvme0n1
 read_write_insert_delete = 50:50:0:0

3. run benchmark
 sudo LD_LIBRARY_PATH=/KVSSD/PDK/core/build ./kv_bench -f bench_config.ini

24

kvbench Configuration (bench_config.ini)
[document]
• ndocs = 100 # number of records, insert 100 key-value pairs during load phase
[system]
• key_pool_unit=16 # size of unit of key in key memory pool in bytes. Should be same as key_length or maximum key length if various key size is

used
• Value_pool_unit=4096 # size of unit of value in value memory pool in bytes. Should be same as value_length or maximum value length if various

value size is used
• device_path=/dev/nvme0n1 # device path under /dev directory. It is used for cpu core and numa assignment.
[kvs]
• device_path=/dev/nvme0n1 # it should be same as device_path in [system] section for kDD or emulator. It would be different from device_path

for uDD (e.g., 0000:06:00.0)
[population]
• seq_fill=true # sequential insertion; false means random insertion
[key_length]
• distribution=fixed # fixed, uniform, normal
[value_length]
• distribution=fixed # fixed, uniform, normal, ratio
[operation]
• Duration = 600 # benchmark duration in seconds of insertion or
• nops = 1000000 # number of operation after insertion
• Read_write_insert_delete=50:50:0:0 # operation type ratio for read/write/insert/delete. If insert is larger than 0, only nops must be used
• Batch_distribution=uniform # key space distribution (uniform, zipfian)

25

Compile Results
• Performance measurement results are in ./logs directory

– KVS-insert.latency.csv: latency of insertion measured in sampling rate
defined in [latency_monitor] section in bench_config.ini file. (sampling
rate is in the unit of Hertz)

– KVS-insert.ops.csv: operation per second of insertion operation measured
in print_term_ms defined in bench_config.ini.

• Time, iops (=average ops), iops_i(=tailing/instant ops), counter (=operation count)
– KVS-ops.txt: summary of performance measurement

• Total run time, ops, avg latency & latency distribution, total read/write count, etc.
– KVS-run.latency.csv: latency of operations for performance measurement

• pos(=position/index), write, read, delete
– KVS-run.ops.csv: operation per second during performance measurement

• time, ops_avg, ops_i, read_cnt, write_cnt, bytes_written

26

	KV SSD Host Software Stack
	Agenda
	KV Host Software Stack
	Device Driver
	KV SSD Emulator
	KV API (Application Programming Interface)
	KV SSD API
	KV APIs – Device and Container
	KV APIs – Tuple and Iterator
	kvbench: KV Benchmark Suite
	KV SSD Host Software Open Source
	KVSSD SDK github Architecture
	Open Source - GitHub Features
	Github - Issues
	Issues Report – Template & Assignee
	Issues Report – Labels
	Issues – Regular Issue for Generic Questions
	Github - Wiki
	Wiki - FAQ
	KV SSD Standards
	System build and performance measurement
	System Build
	System Build(Cont’d)
	Run Insertion & Mixed Workload (R50U50)
	kvbench Configuration (bench_config.ini)
	Compile Results
	슬라이드 번호 27

