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Agenda 
• KV host software system architecture  
• Kernel/User driver 
• KV SSD emulator 
• KV API (Application Programming Interface) 
• Applications: KVBench 
• Open source & github 
• Standard progress 
• System build and performance measurement process 

2 



KV Host Software Stack 

KV API 

KV SSD 

Application/Benchmark Suite 
(KVBench, KvRocks, KvsStore) 

KV UDD 
(SPDK) KV KDD 

KVSSD 
Emulator 

No Filesystem 
No Block layer PDK  

(Platform Development Kit) 

3 



Device Driver 
• Implement NVMe KV commands with vendor specific opcodes 
• NVMe KV command set standard discussion ongoing in NVMe TWG 
• Kernel space driver 

– Extend standard Linux Kernel driver by adding KV command support functions 
– Currently use ioctl and interrupt to communicate with KV SSD 
– IO queue management, IO scheduler, etc. 
– CentOS 7.2 Kernel v3.10 
– Ubutu 16.04 

• Kernel version v4.4, v4.9.5, v4.13, v4.15 

• User space driver 
– Extend Intel SPDK by adding KV command support functions 

• Current open source software  
– Command set: store/retrieve/delete/exist/iterator 
– Key is carried in NVMe command when key is smaller than or equal to 16-byte 
– Bigger key(>=16-byte) is delivered through PRP 
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KV SSD Emulator 
• User space KV SSD emulator (no KV SSD device required) 

– KV SSD emulator simulates KV SSD operations 
– Does not implement NVMe commands 

• Support async operation 
• System setup operations 

– Device initialization 
– Namespace setup (create/delete namespace, etc.) 
– Queue management (create/delete queues, etc.) 

• Key-value operations 
– retrieve/store/delete for individual keys 
– exists: check key existence 
– iterator: key only or key-value pairs 

• Iterator group defined with MSB bit mask and bit pattern (up to 4-byte) in key 
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KV API (Application Programming Interface) 
• KV API 

– KV API is a user space library that applications can utilize  
      for system configuration and key-value operations 
– KV API supports both Kernel and user space drivers 
– Support sync and async operations 

• System configurations 
– KV SSD device set up: open/close 
– User space device driver setup(e.g., SPDK): efficient memory management, etc.  
– Efficient host system setup: CPU core affinity, NUMA, etc. 

• Key value operations with options 
– Basic KV API: store/retrieve/delete/exis/iterator 

• Sync/async mode command support 
– Retrieve device specific information (e.g., device utilization, etc.) 
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KV SSD API 

• Device 
• Container (=key space):  

– logical management unit like namespace in block device (e.g., nvme0n1) 

• Group 
– logical set of key value tuples within a container which users can dynamically create (iterator, etc.) 

• Tuple: key value pair 
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KV APIs – Device and Container 
• Device interface 

– Kvs_open_device 
– Kvs_close_device 
– Kvs_get_device_info 
– Kvs_get_device_capacity 
– Kvs_get_device_utilization 
– Kvs_get_min_key_length 
– Kvs_get_max_key_length 
– Kvs_get_min_value_length 
– Kvs_get_max_value_length 
– Kvs_get_optimal_value_length 
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• Container interface 
– Kvs_create_container 
– Kvs_delete_container 
– Kvs_open_container 
– Kvs_close_container 



KV APIs – Tuple and Iterator 
• Key Value Tuple 

– Kvs_get_tuple_info 
– Kvs_retrieve_tuple 
– Kvs_retrieve_tuple_async 
– Kvs_store_tuple 
– Kvs_store_tuple_async 
– Kvs_delete_tuple 
– Kvs_delete_tuple_async 
– Kvs_exist_tuples 
– Kvs_exist_tuples_async 

9 

• Iterator 
– Kvs_open_iterator 
– Kvs_close_iterator 
– Kvs_iterator_next 
– Kvs_iterator_next_async 

 



kvbench: KV Benchmark Suite 
• Extended open source benchmark tool to support KV API  
• Implemented additional workload and performance measurement features 
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Workload generator 
• Generate various workloads with different DB 

configurations 
• Generate different workloads directly to the 

KV SSD 
• Workload: insertion, mixed workload with 

uniform or Zipfian distribution, various key 
and value sizes, etc. 

Application performance analysis 
module 
• Reports application level stats, e.g. ops/sec, 

latency, etc. 
System performance analysis 
module(separate module) 
• Reports system level stats, e.g. CPU and 

memory utilization, etc.  



KV SSD Host Software Open Source 
• KV SSD host software package is publicly released in 

github 
– https://github.com/OpenMPDK/KVSSD 
– KV API, drivers, emulator, bench mark suite, etc. 
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https://github.com/OpenMPDK/KVSSD


KVSSD SDK github Architecture 

Kernel driver 

Link to uNVMe user driver 

kvbench API core library 

Driver 

emulator 

Kernel driver adapter 
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Open Source - GitHub Features 

• Code – code repository, README, etc. 
• Issues – users report issues or ask questions 
• Pull requests 

– Inform others of changes developers pushed to a branch in a repository on 
GitHub. Once a pull request is opened, users can discuss and review the 
potential changes with collaborators and add follow-up commits. 

– The change would be merged to main branch as needed.  
• Wiki – FAQ, trouble shooting, public presentation materials, etc.  



Github - Issues 
• Use for bug report and responses 



Issues Report – Template & Assignee 
** Location (Korea, USA, China, India, etc.) ** 
Put your location to get prompt support 
 
**Describe the bug** 
A clear and concise description of what the bug is. 
 
**To Reproduce** 
Steps to reproduce the behavior: 
1.   
2.  
3.  
 
 
**Expected behavior** 
A clear and concise description of what you expected to happen. 
 
**Screenshots** 
If applicable, add screenshots to help explain your problem. 
 
**System environment (please complete the following information)** 
 - Firmware version : 
 - Number of SSDs : 
 - OS & Kernel version [e.g., Ubuntu 16.04 Kernel v4.9.5]:  
 - GCC version [e.g., gcc v5.0.0] : 
 - kvbench version if kvbench runs [e.g., v0.6.0]: 
 - KV API version [e.g., v0.6.0] 
 - User driver version : 
 - Driver [Kernel or user driver or emulator] : 
 
**Workload** 
 - number of records or data size 
 - Workload(insert, mixed workload, etc.) [e.g., sequential or random insert, or 50% Read & 50% write] 
 - key size :   
 - value size :  
 - operation option if available [e.g., sync or async mode] :  
 
**Additional context** 
Add any other context about the problem here. 

 



Issues Report – Labels  



Issues – Regular Issue for Generic Questions 
• Open a regular issue instead of regular bug report 

when you have generic questions 



Github - Wiki 
• KV SSD introduction 
• FAQ, trouble shooting, etc. 
• Public materials: whitepaper, presentation materials, etc. 



Wiki - FAQ 



KV SSD Standards 
• Samsung defines a KV architecture/command set based on 

NVMe spec. 
– NVMe KV standard draft review meetings ongoing 

• KV API standard draft discussion ongoing 
– KV APIs include store/retrieve/delete/exist/iterator 
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System build and 
performance measurement 
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System Build 
1. Download software package 

git clone https://github.com/OpenMPDK/KVSSD.git 

2. Build and install device driver 
            cd KVSSD/PDK/driver/PCIe/kernel_driver/kernel_v4.9.5/ 
           make all 
           sudo ./re_insmod.sh 

3. Build KV API library 
             cd /KVSSD/PDK/core 
             mkdir build && cd build 
             cmake -DWITH_KDD=ON ../ 
              make -j24  

4. Test sample codes 
   sudo ./sample_code_async -d /dev/nvme0n1 -n 100 -q 64 -o 1 -k 16 -v 4096 
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System Build(Cont’d) 
5. Build kvbench benchmark tool for KV SSD 
             (https://github.com/OpenMPDK/KVSSD/tree/master/application/kvbench) 
 cd KVSSD/application/kvbench  
            mkdir build_kv && cd build_kv 
  cmake -DCMAKE_INCLUDE_PATH=/KVSSD/PDK/core/include 
                                    -DCMAKE_LIBRARY_PATH=/KVSSD/PDK/core/build ../ 
 make kv_bench  
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Run Insertion & Mixed Workload (R50U50) 
1. create & modify cpu config file 
 cd kvbench/build_kv 
 LD_LIBRARY_PATH=/KVSSD/PDK/core/build ./kv_bench -c 
         # This will generate default cpu.txt file 
         # Modify cpu.txt for (nodeid,coreid,deviceid) mapping if needed 

2. modify bench_config.ini for workloads 
 ndocs=100000 
 device_path = /dev/nvme0n1 
 read_write_insert_delete = 50:50:0:0 

3. run benchmark 
 sudo LD_LIBRARY_PATH=/KVSSD/PDK/core/build ./kv_bench -f bench_config.ini 
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kvbench Configuration (bench_config.ini) 
[document] 
• ndocs = 100 # number of records, insert 100 key-value pairs during load phase 
[system] 
• key_pool_unit=16 # size of unit of key in key memory pool in bytes. Should be same as key_length or maximum key length if various key size is 

used 
• Value_pool_unit=4096 # size of unit of value in value memory pool in bytes. Should be same as value_length or maximum value length if various 

value size is used 
• device_path=/dev/nvme0n1 # device path under /dev directory. It is used for cpu core and numa assignment. 
[kvs] 
• device_path=/dev/nvme0n1 # it should be same as device_path in [system] section for kDD or emulator. It would be different from device_path 

for uDD (e.g., 0000:06:00.0) 
[population] 
• seq_fill=true # sequential insertion; false means random insertion 
[key_length] 
• distribution=fixed # fixed, uniform, normal 
[value_length] 
• distribution=fixed # fixed, uniform, normal, ratio 
[operation] 
• Duration = 600 # benchmark duration in seconds of insertion or 
• nops = 1000000 # number of operation after insertion 
• Read_write_insert_delete=50:50:0:0 # operation type ratio for read/write/insert/delete. If insert is larger than 0, only nops must be used 
• Batch_distribution=uniform # key space distribution (uniform, zipfian) 
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Compile Results 
• Performance measurement results are in ./logs directory 

– KVS-insert.latency.csv: latency of insertion measured in sampling rate 
defined in [latency_monitor] section in bench_config.ini file. (sampling 
rate is in the unit of Hertz) 

– KVS-insert.ops.csv: operation per second of insertion operation measured 
in print_term_ms defined in bench_config.ini. 

• Time, iops (=average ops), iops_i(=tailing/instant ops), counter (=operation count) 
– KVS-ops.txt: summary of performance measurement 

• Total run time, ops, avg latency & latency distribution, total read/write count, etc.  
– KVS-run.latency.csv: latency of operations for performance measurement 

• pos(=position/index), write, read, delete 
– KVS-run.ops.csv: operation per second during performance measurement  

• time, ops_avg, ops_i, read_cnt, write_cnt, bytes_written 
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