Skip to content

Latest commit

 

History

History
72 lines (53 loc) · 2.18 KB

Quickstart.md

File metadata and controls

72 lines (53 loc) · 2.18 KB

🚀Quick Start

Data preprocessing

Please follow the Dataset Access section of the README.md to prepare the data, and run the preprocessing.py script as instructed. Ensure that the structure of the ./data directory is as shown below:

GUI-Odyssey
├── data
│   ├── annotations
│   │   └── *.json
│   ├── screenshots
│   │   └── *.png
│   ├── splits
│   │   ├── app_split.json
│   │   ├── device_split.json
│   │   ├── random_split.json
│   │   └── task_split.json
│   ├── format_converter.py
│   └── preprocessing.py
└── ...

Next, run the following command to generate chat-format data for training and testing. The his_len parameter can be set to specify the length of historical information:

cd data
python format_converter.py --his_len 4

Build OdysseyAgent upon Qwen-VL-Chat

The OdysseyAgent is bulit upon Qwen-VL.

Before running, set up the environment and install the required packages:

cd src
pip install -r requirements.txt

Next, initialize OdysseyAgent using the weights from Qwen-VL-Chat:

python merge_weight.py

Further, we also provide four variants of OdysseyAgent:

Each fine-tuned on Train-Random, Train-Task, Train-Device, and Train-App respectively.

Fine-tuning

Specify the path to the OdysseyAgent and the chat-format training data generated in the Data preprocessing stage (one of the four splits) in the script/train.sh file. Then, run the following command:

cd src
bash script/train.sh

Evalutaion

Specify the path to the checkpoint and dataset split (one of app_split, device_split, random_split, task_split) in the script/eval.sh file. Then, run the following command:

cd src
bash script/eval.sh