forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathft_denoise_tsr.m
502 lines (453 loc) · 20.7 KB
/
ft_denoise_tsr.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
function dataout = ft_denoise_tsr(cfg, varargin)
% FT_DENOISE_TSR performs a regression analysis, using a (time-shifted set
% of) reference signal(s) as independent variable. It is a generic
% implementation of the method described by De Cheveigne
% (https://doi.org/10.1016/j.jneumeth.2007.06.003), or can be
% used to compute temporal-response-functions (see e.g. Crosse
% (https://doi.org/10.3389/fnhum.2016.00604)), or
% spatial filters based on canonical correlation (see Thielen
% (https://doi.org/10.1371/journal.pone.0133797))
%
% Use as
% [dataout] = ft_denoise_tsr(cfg, data)
% [dataout] = ft_denoise_tsr(cfg, data, refdata)
% where "data" is a raw data structure that was obtained with FT_PREPROCESSING. If
% you specify the additional input "refdata", the specified reference channels for
% the regression will be taken from this second data structure. This can be useful
% when reference-channel specific preprocessing needs to be done (e.g. low-pass
% filtering).
%
% The output structure dataout contains the denoised data in a format consistent
% with the output of FT_PREPROCESSING.
%
% The configuration options are:
% cfg.refchannel = the channels used as reference signal (default = 'MEGREF'), see FT_SELECTDATA
% cfg.channel = the channels to be denoised (default = 'all'), see FT_SELECTDATA
% cfg.method = string, 'mlr', 'cca', 'pls', 'svd', option specifying the criterion for the regression
% (default = 'mlr')
% cfg.reflags = integer array, specifying temporal lags (in msec) by which to shift refchannel
% with respect to data channels
% cfg.trials = integer array, trials to be used in regression, see FT_SELECTDATA
% cfg.testtrials = cell-array or string, trial indices to be used as test folds in a cross-validation scheme
% (numel(cfg.testrials == number of folds))
% cfg.nfold = scalar, indicating the number of test folds to
% use in a cross-validation scheme
% cfg.standardiserefdata = string, 'yes' or 'no', whether or not to standardise reference data
% prior to the regression (default = 'no')
% cfg.standardisedata = string, 'yes' or 'no', whether or not to standardise dependent variable
% prior to the regression (default = 'no')
% cfg.demeanrefdata = string, 'yes' or 'no', whether or not to make
% reference data zero mean prior to the regression (default = 'no')
% cfg.demeandata = string, 'yes' or 'no', whether or not to make
% dependent variable zero mean prior to the regression (default = 'no')
% cfg.threshold = integer array, ([1 by 2] or [1 by numel(cfg.channel) + numel(cfg.reflags)]),
% regularization or shrinkage ('lambda') parameter to be loaded on the diagonal of the
% penalty term (if cfg.method == 'mlrridge' or 'mlrqridge')
% cfg.updatesens = string, 'yes' or 'no' (default = 'yes')
% cfg.perchannel = string, 'yes' or 'no', or logical, whether or not to perform estimation of beta weights
% separately per channel
% cfg.output = string, 'model' or 'residual' (defaul = 'model'),
% specifies what is outputed in .trial field in <dataout>
% cfg.performance = string, 'pearson' or 'r-squared' (default =
% 'pearson'), indicating what performance metric is outputed in .weights(k).performance
% field of <dataout> for the k-th fold
% cfg.covmethod = string, 'finite', or 'overlapfinite' (default
% = 'finite'), compute covariance for the auto
% terms on the finite datapoints per channel, or
% only on the datapoints that are finite for the
% cross terms. If there is a large number of
% unshared nans across datasets, and if this number
% is large in comparison to the total number of
% datapoints the 'finite' method may become unstable.
%
% If cfg.threshold is 1 x 2 integer array, the cfg.threshold(1) parameter scales
% uniformly in the dimension of predictor variable and cfg.threshold(2) in the
% space of response variable.
%
% See also FT_PREPROCESSING, FT_DENOISE_SYNTHETIC, FT_DENOISE_PCA
% Copyright (c) 2008-2009, Jan-Mathijs Schoffelen, CCNi Glasgow
% Copyright (c) 2010-2011, Jan-Mathijs Schoffelen, DCCN Nijmegen
% Copyright (c) 2018, Jan-Mathijs Schoffelen
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% UNDOCUMENTED OPTIONS (or possibly unused)
% cfg.testsamples
% cfg.truncate
% cfg.trials
%
% === cfg.truncate
% if cfg.truncate is integer n > 1, n will be the number of singular values kept.
% if 0 < cfg.truncate < 1, the singular value spectrum will be thresholded at the
% fraction cfg.truncate of the explained variance.
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble provenance varargin
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check if the input data is valid for this function
for i=1:length(varargin)
varargin{i} = ft_checkdata(varargin{i}, 'datatype', 'raw');
end
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'forbidden', {'channels', 'trial'}); % prevent accidental typos, see issue 1729
% set the defaults
cfg.nfold = ft_getopt(cfg, 'nfold', 1);
cfg.blocklength = ft_getopt(cfg, 'blocklength', 'trial');
cfg.testtrials = ft_getopt(cfg, 'testtrials', 'all');
cfg.testsamples = ft_getopt(cfg, 'testsamples', 'all');
cfg.refchannel = ft_getopt(cfg, 'refchannel', '');
cfg.reflags = ft_getopt(cfg, 'reflags', 0); %this needs to be known for the folding
% set the rest of the defaults
cfg.channel = ft_getopt(cfg, 'channel', 'all');
cfg.truncate = ft_getopt(cfg, 'truncate', 'no');
cfg.standardiserefdata = ft_getopt(cfg, 'standardiserefdata', 'no');
cfg.standardisedata = ft_getopt(cfg, 'standardisedata', 'no');
cfg.demeanrefdata = ft_getopt(cfg, 'demeanrefdata', 'no');
cfg.demeandata = ft_getopt(cfg, 'demeandata', 'no');
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
cfg.feedback = ft_getopt(cfg, 'feedback', 'none');
cfg.updatesens = ft_getopt(cfg, 'updatesens', 'yes');
cfg.perchannel = ft_getopt(cfg, 'perchannel', 'yes');
cfg.method = ft_getopt(cfg, 'method', 'mlr');
cfg.threshold = ft_getopt(cfg, 'threshold', 0);
cfg.output = ft_getopt(cfg, 'output', 'model');
cfg.performance = ft_getopt(cfg, 'performance', 'pearson');
cfg.covmethod = ft_getopt(cfg, 'covmethod', 'finite');
if ~iscell(cfg.refchannel)
cfg.refchannel = {cfg.refchannel};
end
if iscell(cfg.testtrials)
% this has precedence above nfold
cfg.nfold = numel(cfg.testtrials);
end
if cfg.nfold<=1
dataout = ft_denoise_tsr_core(cfg, varargin{:});
else
% do a cross validation
if numel(varargin{1}.trial)>1 && ischar(cfg.blocklength) && isequal(cfg.blocklength, 'trial')
if ~iscell(cfg.testtrials)
% create sets of trial indices for the test data
ntrl = numel(varargin{1}.trial);
edges = round(linspace(0,ntrl,cfg.nfold+1));
indx = randperm(ntrl);
cfg.testtrials = cell(1,cfg.nfold);
for k = 1:cfg.nfold
cfg.testtrials{k} = indx((edges(k)+1):edges(k+1));
end
end
testtrials = cfg.testtrials;
tmp = cell(1,numel(testtrials));
for k = 1:numel(testtrials)
fprintf('estimating model for fold %d/%d\n', k, numel(testtrials));
cfg.testtrials = testtrials{k};
tmp{k} = ft_denoise_tsr_core(cfg, varargin{:});
end
% create output data structure
dataout = keepfields(tmp{1}, {'fsample' 'label'});
for k = 1:numel(testtrials)
tmp{k}.weights.trials = testtrials{k};
dataout.trial(testtrials{k}) = tmp{k}.trial;
dataout.time(testtrials{k}) = tmp{k}.time;
dataout.weights(k) = tmp{k}.weights;
dataout.cfg.previous{k} = tmp{k}.cfg;
if isfield(tmp{k}, 'trialinfo')
dataout.trialinfo(testtrials{k},:) = tmp{k}.trialinfo;
end
end
elseif numel(varargin{1}.trial==1) ||(numel(varargin{1}.trial)>1 && ~ischar(cfg.blocklength))
% concatenate into a single trial, with sufficient nan-spacing to
% accommodate the shifting, and do a chunk-based folding
error('not yet implemented');
else
error('incorrect specification of data and cfg.blocklength');
end
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble previous varargin
ft_postamble provenance dataout
ft_postamble history dataout
ft_postamble savevar dataout
%-------------------------------------------------
function dataout = ft_denoise_tsr_core(cfg, varargin)
% create a separate structure for the reference data
tmpcfg = keepfields(cfg, {'trials', 'showcallinfo', 'trackcallinfo', 'trackusage', 'trackdatainfo', 'trackmeminfo', 'tracktimeinfo', 'checksize'});
tmpcfg.channel = cfg.refchannel;
if numel(varargin)>1
fprintf('selecting reference channel data from the second data input argument\n');
refdata = ft_selectdata(tmpcfg, varargin{2});
else
fprintf('selecting reference channel data from the first data input argument\n');
refdata = ft_selectdata(tmpcfg, varargin{1});
end
[dum, refdata] = rollback_provenance(cfg, refdata);
% keep the requested channels from the data
tmpcfg = keepfields(cfg, {'trials', 'channel', 'showcallinfo', 'trackcallinfo', 'trackusage', 'trackdatainfo', 'trackmeminfo', 'tracktimeinfo', 'checksize'});
data = ft_selectdata(tmpcfg, varargin{1});
[cfg, data] = rollback_provenance(cfg, data);
% deal with the specification of testtrials/testsamples, as per the
% instruction by the caller function, for cross-validation purposes
if ~ischar(cfg.testtrials) && ischar(cfg.testsamples) && isequal(cfg.testsamples, 'all')
% subselect trials for testing
usetestdata = true;
tmpcfg = [];
tmpcfg.trials = cfg.testtrials;
testdata = ft_selectdata(tmpcfg, data);
testrefdata = ft_selectdata(tmpcfg, refdata);
tmpcfg.trials = setdiff(1:numel(data.trial), cfg.testtrials);
data = ft_selectdata(tmpcfg, data);
refdata = ft_selectdata(tmpcfg, refdata);
elseif ~ischar(cfg.testsamples) && ischar(cfg.testtrials) && isequal(cfg.testtrials, 'all')
% subselect samples from a single trial for testing
usetestdata = true;
elseif ischar(cfg.testtrials) && ischar(cfg.testsamples)
% just a single fold, use all data for training and testing
usetestdata = false;
else
error('something wrong here');
end
% demean
if istrue(cfg.demeanrefdata)
fprintf('demeaning the reference channels\n');
mu_refdata = cellmean(refdata.trial, 2);
refdata.trial = cellvecadd(refdata.trial, -mu_refdata);
if usetestdata
mu_testrefdata = cellmean(testrefdata.trial, 2);
testrefdata.trial = cellvecadd(testrefdata.trial, -mu_testrefdata);
end
end
if istrue(cfg.demeandata)
fprintf('demeaning the data channels\n');
mu_data = cellmean(data.trial, 2);
data.trial = cellvecadd(data.trial, -mu_data);
if usetestdata
mu_testdata = cellmean(testdata.trial, 2);
testdata.trial = cellvecadd(testdata.trial, -mu_testdata);
end
end
% do the time shifting for the reference channel data
ft_hastoolbox('cellfunction', 1);
timestep = mean(diff(data.time{1}));
reflags = -unique(round(cfg.reflags./timestep));
reflabel = refdata.label; % to be used later
% the convention is to have a positive cfg.reflags defined as a delay of the ref w.r.t. the chan
% cellshift has an opposite convention with respect to the sign of the
% delay, hence the minus
if ~any(reflags==0)
ft_error('the time lags for the reference data should at least include the sample 0');
end
fprintf('shifting the reference data\n');
refdata.trial = cellshift(refdata.trial, reflags, 2, [], 'overlap');
refdata.time = cellshift(data.time, 0, 2, [abs(min(reflags)) abs(max(reflags))], 'overlap');
refdata.label = repmat(refdata.label,numel(reflags),1);
for k = 1:numel(refdata.label)
refdata.label{k} = sprintf('%s_shift%03d',refdata.label{k}, k);
end
% center the data on lag 0
data.trial = cellshift(data.trial, 0, 2, [abs(min(reflags)) abs(max(reflags))], 'overlap');
data.time = cellshift(data.time, 0, 2, [abs(min(reflags)) abs(max(reflags))], 'overlap');
% only keep the trials that have > 0 samples
tmpcfg = [];
tmpcfg.trials = find(cellfun('size',data.trial,2)>0);
data = ft_selectdata(tmpcfg, data);
[cfg, data] = rollback_provenance(cfg, data);
refdata = ft_selectdata(tmpcfg, refdata);
[dum,refdata] = rollback_provenance(cfg, refdata);
% standardise the data
if istrue(cfg.standardiserefdata)
fprintf('standardising the reference channels \n');
[refdata.trial, std_refdata] = cellzscore(refdata.trial, 2, 0);
else
std_refdata = ones(numel(refdata.label),1);
end
if istrue(cfg.standardisedata)
fprintf('standardising the data channels \n');
[data.trial, std_data] = cellzscore(data.trial, 2, 0);
else
std_data = ones(numel(data.label),1);
end
% demean again, just to be sure
if istrue(cfg.demeanrefdata)
fprintf('demeaning the reference channels\n');
mu_refdata = cellmean(refdata.trial, 2);
refdata.trial = cellvecadd(refdata.trial, -mu_refdata);
end
if istrue(cfg.demeandata)
fprintf('demeaning the data channels\n'); % the edges have been chopped off
mu_data = cellmean(data.trial, 2);
data.trial = cellvecadd(data.trial, -mu_data);
end
% compute the covariance
fprintf('computing the covariance\n');
nref = size(refdata.trial{1},1);
nchan = numel(data.label);
switch cfg.covmethod
case 'finite'
C = nan(nchan,nchan);
C(1:nchan,1:nchan) = nancov(data.trial, data.trial, 1, 2, 1);
C(1:nchan,nchan+(1:nref)) = nancov(data.trial, refdata.trial, 1, 2, 1);
C(nchan+(1:nref),1:nchan) = C(1:nchan,nchan+(1:nref)).';
C(nchan+(1:nref),nchan+(1:nref)) = nancov(refdata.trial, refdata.trial, 1, 2, 1);
case 'overlapfinite'
% also only use the non-overlapping finite samples for the
% autocovariance estimates
C = nan(nchan,nchan);
f1 = cellfun(@sum,isfinite(data.trial),'UniformOutput',false)==numel(data.label);
f2 = cellfun(@sum,isfinite(refdata.trial),'UniformOutput',false)==numel(refdata.label);
sel = f1&f2;
C(1:nchan,1:nchan) = nancov(cellcolselect(data.trial, sel), cellcolselect(data.trial, sel), 1, 2, 1);
C(1:nchan,nchan+(1:nref)) = nancov(cellcolselect(data.trial, sel), cellcolselect(refdata.trial, sel), 1, 2, 1);
C(nchan+(1:nref),1:nchan) = C(1:nchan,nchan+(1:nref)).';
C(nchan+(1:nref),nchan+(1:nref)) = nancov(cellcolselect(refdata.trial, sel), cellcolselect(refdata.trial, sel), 1, 2, 1);
otherwise
ft_error('cfg.covmethod = ''%s'' is not implemented', cfg.covmethod);
end
% compute the regression
if istrue(cfg.perchannel)
beta_ref = zeros(nchan, nref);
rho = zeros(nchan,1);
for k = 1:nchan
indx = [k nchan+(1:nref)];
[E, rho(k)] = multivariate_decomp(C(indx,indx), 1+(1:nref), 1, cfg.method, 1, cfg.threshold);
%beta_ref(k,:) = E(2:end)./E(1);
beta_ref(k,:) = E(2:end); %./E(1);
end
%beta_ref = (diag(rho))*beta_ref; % scale with sqrt(rho), to get the proper scaling
else
[E, rho] = multivariate_decomp(C, nchan+(1:nref), 1:nchan, cfg.method, 1, cfg.threshold);
%beta_ref = normc(E(nchan+(1:nref),:))';
%beta_data = normc(E(1:nchan,:))';
beta_ref = E(nchan+(1:nref),:);
beta_data = E(1:nchan,:);
end
% Unstandardise the data/refchannels and test data/refchannels, the
% respective std_data/std_refdata are all(ones) if the flags were false.
refdata.trial = cellvecmult(refdata.trial, std_refdata);
data.trial = cellvecmult(data.trial, std_data);
if exist('beta_data', 'var')
beta_ref = (beta_ref*diag(1./std_refdata))';
beta_data = diag(1./std_data)*beta_data;
else
beta_ref = diag(std_data)*beta_ref*diag(1./std_refdata);
end
if usetestdata
fprintf('shifting the reference data for the test data\n');
testrefdata.trial = cellshift(testrefdata.trial, reflags, 2, [], 'overlap');
testrefdata.time = cellshift(testdata.time, 0, 2, [abs(min(reflags)) abs(max(reflags))], 'overlap');
testrefdata.label = repmat(testrefdata.label,numel(reflags),1);
for k = 1:numel(testrefdata.label)
testrefdata.label{k} = sprintf('%s_shift%03d',testrefdata.label{k}, k);
end
% center the data on lag 0
testdata.trial = cellshift(testdata.trial, 0, 2, [abs(min(reflags)) abs(max(reflags))], 'overlap');
testdata.time = cellshift(testdata.time, 0, 2, [abs(min(reflags)) abs(max(reflags))], 'overlap');
% demean again, just to be sure
if istrue(cfg.demeanrefdata)
fprintf('demeaning the reference channels\n');
mu_testrefdata = cellmean(testrefdata.trial, 2);
testrefdata.trial = cellvecadd(testrefdata.trial, -mu_testrefdata);
end
if istrue(cfg.demeandata)
fprintf('demeaning the data channels\n'); % the edges have been chopped off
mu_testdata = cellmean(testdata.trial, 2);
testdata.trial = cellvecadd(testdata.trial, -mu_testdata);
end
% only keep the trials that have > 0 samples
tmpcfg = [];
tmpcfg.trials = find(cellfun('size',testdata.trial,2)>0);
testdata = ft_selectdata(tmpcfg, testdata);
[dum,testdata] = rollback_provenance(cfg, testdata);
testrefdata = ft_selectdata(tmpcfg, testrefdata);
[dum,testrefdata] = rollback_provenance(cfg, testrefdata);
predicted = beta_ref*testrefdata.trial;
if exist('beta_data', 'var')
observed = beta_data'*testdata.trial;
else
observed = testdata.trial;
end
% create output data structure
dataout = keepfields(testdata, {'cfg' 'label' 'grad' 'elec' 'opto' 'fsample' 'trialinfo'});
dataout.time = testdata.time;
else
predicted = beta_ref*refdata.trial;
if exist('beta_data', 'var')
% this is when the data multivariate
observed = beta_data'*data.trial;
else
observed = data.trial;
end
% create output data structure
dataout = keepfields(data, {'cfg' 'label' 'grad' 'elec' 'opto' 'fsample' 'trialinfo'});
dataout.time = data.time;
end
% add the time series to the output
switch cfg.output
case 'model'
dataout.trial = predicted;
case 'residual'
dataout.trial = observed - predicted;
end
% update the weights-structure
weights.time = cfg.reflags;
weights.rho = rho;
weights.covariance = C;
weights.std = [std_data;std_refdata];
if exist('beta_data', 'var')
weights.unmixing = beta_data';
weights.beta = beta_ref;
% compute the mixing weights as per Haufe 2013
W = weights.unmixing;
A = (C(1:nchan, 1:nchan) * W')*pinv(W * C(1:nchan,1:nchan) * W');
weights.mixing = A;
else
% a per channel approach has been done, the beta weights reflect
% (channelxtime-lag) -> reshape
nref = numel(cfg.refchannel);
newbeta = zeros(size(beta_ref,1),size(beta_ref,2)./nref,nref);
for k = 1:size(newbeta,3)
newbeta(:,:,k) = beta_ref(:,k:nref:end);
end
weights.beta = newbeta;
weights.reflabel = reflabel;
weights.dimord = 'chan_lag_refchan';
end
% Compute performance statistics
fprintf('Computing performance metric\n');
switch lower(cfg.performance)
case 'pearson'
for k = 1:size(observed{1}, 1)
tmp = nancov(cellcat(1, cellrowselect(observed,k), cellrowselect(predicted,k)), 1, 2, 1);
weights.performance(k,1) = tmp(1,2)./sqrt(tmp(1,1).*tmp(2,2));
end
case 'r-squared'
tss = nansum((observed.*isfinite(predicted)).^2, 2); % total sum of squares,
% use only the samples where both predicted and observed are non-nan, testdata are already mean subtracted in l. 330
rss = nansum((observed - predicted).^2, 2); % sum of squared residual error
% R-squared
weights.performance = (tss-rss)./tss;
end
dataout.weights = weights;