-
Notifications
You must be signed in to change notification settings - Fork 1
/
LexBase.pas
1170 lines (1071 loc) · 29.6 KB
/
LexBase.pas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
This module collects the basic data types and operations used in the TP
Lex program, and other basic stuff that does not belong anywhere else:
- Lex input and output files and corresponding bookkeeping information
used by the parser
- symbolic character constants
- dynamically allocated strings and character classes
- integer sets
- generic quicksort and hash table routines
- utilities for list-generating
- other tiny utilities
Copyright (c) 1990-92 Albert Graef <[email protected]>
Copyright (C) 1996 Berend de Boer <[email protected]>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
$Revision: 2 $
$Modtime: 96-08-01 10:21 $
$History: LEXBASE.PAS $
*
* ***************** Version 2 *****************
* User: Berend Date: 96-10-10 Time: 21:16
* Updated in $/Lex and Yacc/tply
* Updated for protected mode, windows and Delphi 1.X and 2.X.
}
unit LexBase;
interface
{$IFDEF VIRTUALPASCAL}
Uses Use32;
{$ENDIF}
const
(* symbolic character constants: *)
bs = #8; (* backspace character *)
tab = #9; (* tab character *)
nl = #10; (* newline character *)
cr = #13; (* carriage return *)
ff = #12; (* form feed character *)
var
(* Filenames: *)
lfilename : String;
pasfilename : String;
lstfilename : String;
codfilename : String;
codfilepath : String; { Under linux, binary and conf file
are not in the same path}
(* Lex input, output, list and code template file: *)
yyin, yylst, yyout, yycod : Text;
(* the following values are initialized and updated by the parser: *)
line : String; (* current input line *)
lno : Integer; (* current line number *)
const
max_elems = 100; (* maximum size of integer sets *)
type
(* String and character class pointers: *)
StrPtr = ^String;
CClass = set of Char;
CClassPtr = ^CClass;
(* Sorted integer sets: *)
IntSet = array [0..max_elems] of Integer;
(* word 0 is size *)
IntSetPtr = ^IntSet;
(* Regular expressions: *)
RegExpr = ^Node;
NodeType = (mark_node, (* marker node *)
char_node, (* character node *)
str_node, (* string node *)
cclass_node, (* character class node *)
star_node, (* star node *)
plus_node, (* plus node *)
opt_node, (* option node *)
cat_node, (* concatenation node *)
alt_node); (* alternatives node (|) *)
Node = record case node_type : NodeType of
mark_node : (rule, pos : Integer);
char_node : (c : Char);
str_node : (str : StrPtr);
cclass_node : (cc : CClassPtr);
star_node, plus_node, opt_node : (r : RegExpr);
cat_node, alt_node : (r1, r2 : RegExpr);
end;
(* Some standard character classes: *)
const
letters : CClass = ['A'..'Z','a'..'z','_'];
digits : CClass = ['0'..'9'];
alphanums : CClass = ['A'..'Z','a'..'z','_','0'..'9'];
(* Operations: *)
(* Strings and character classes: *)
function newStr(str : String) : StrPtr;
(* creates a string pointer (only the space actually needed for the given
string is allocated) *)
function newCClass(cc : CClass) : CClassPtr;
(* creates a CClass pointer *)
(* Integer sets (set arguments are passed by reference even if they are not
modified, for greater efficiency): *)
procedure empty(var M : IntSet);
(* initializes M as empty *)
procedure singleton(var M : IntSet; i : Integer);
(* initializes M as a singleton set containing the element i *)
procedure include(var M : IntSet; i : Integer);
(* include i in M *)
procedure exclude(var M : IntSet; i : Integer);
(* exclude i from M *)
procedure setunion(var M, N : IntSet);
(* adds N to M *)
procedure setminus(var M, N : IntSet);
(* removes N from M *)
procedure intersect(var M, N : IntSet);
(* removes from M all elements NOT in N *)
function size(var M : IntSet) : Integer;
(* cardinality of set M *)
function member(i : Integer; var M : IntSet) : Boolean;
(* tests for membership of i in M *)
function isempty(var M : IntSet) : Boolean;
(* checks whether M is an empty set *)
function equal(var M, N : IntSet) : Boolean;
(* checks whether M and N are equal *)
function subseteq(var M, N : IntSet) : Boolean;
(* checks whether M is a subset of N *)
function newIntSet : IntSetPtr;
(* creates a pointer to an empty integer set *)
(* Constructors for regular expressions: *)
const epsExpr : RegExpr = nil;
(* empty regular expression *)
function markExpr(rule, pos : Integer) : RegExpr;
(* markers are used to denote endmarkers of rules, as well as other
special positions in rules, e.g. the position of the lookahead
operator; they are considered nullable; by convention, we use
the following pos numbers:
- 0: endmarker position
- 1: lookahead operator position *)
function charExpr(c : Char) : RegExpr;
(* character c *)
function strExpr(str : StrPtr) : RegExpr;
(* "str" *)
function cclassExpr(cc : CClassPtr) : RegExpr;
(* [str] where str are the literals in cc *)
function starExpr(r : RegExpr) : RegExpr;
(* r* *)
function plusExpr(r : RegExpr) : RegExpr;
(* r+ *)
function optExpr(r : RegExpr) : RegExpr;
(* r? *)
function mnExpr(r : RegExpr; m, n : Integer) : RegExpr;
(* constructor expanding expression r{m,n} to the corresponding
alt expression r^m|...|r^n *)
function catExpr(r1, r2 : RegExpr) : RegExpr;
(* r1r2 *)
function altExpr(r1, r2 : RegExpr) : RegExpr;
(* r1|r2 *)
(* Unifiers for regular expressions:
The following predicates check whether the specified regular
expression r is of the denoted type; if the predicate succeeds,
the other arguments of the predicate are instantiated to the
corresponding values. *)
function is_epsExpr(r : RegExpr) : Boolean;
(* empty regular expression *)
function is_markExpr(r : RegExpr; var rule, pos : Integer) : Boolean;
(* marker expression *)
function is_charExpr(r : RegExpr; var c : Char) : Boolean;
(* character c *)
function is_strExpr(r : RegExpr; var str : StrPtr) : Boolean;
(* "str" *)
function is_cclassExpr(r : RegExpr; var cc : CClassPtr) : Boolean;
(* [str] where str are the literals in cc *)
function is_starExpr(r : RegExpr; var r1 : RegExpr) : Boolean;
(* r1* *)
function is_plusExpr(r : RegExpr; var r1 : RegExpr) : Boolean;
(* r1+ *)
function is_optExpr(r : RegExpr; var r1 : RegExpr) : Boolean;
(* r1? *)
function is_catExpr(r : RegExpr; var r1, r2 : RegExpr) : Boolean;
(* r1r2 *)
function is_altExpr(r : RegExpr; var r1, r2 : RegExpr) : Boolean;
(* r1|r2 *)
(* Quicksort: *)
type
OrderPredicate = function (i, j : Integer) : Boolean;
SwapProc = procedure (i, j : Integer);
procedure quicksort(lo, hi: Integer;
less : OrderPredicate;
swap : SwapProc);
(* General inplace sorting procedure based on the quicksort algorithm.
This procedure can be applied to any sequential data structure;
only the corresponding routines less which compares, and swap which
swaps two elements i,j of the target data structure, must be
supplied as appropriate for the target data structure.
- lo, hi: the lower and higher indices, indicating the elements to
be sorted
- less(i, j): should return true if element no. i `is less than'
element no. j, and false otherwise; any total quasi-ordering may
be supplied here (if neither less(i, j) nor less(j, i) then elements
i and j are assumed to be `equal').
- swap(i, j): should swap the elements with index i and j *)
(* Generic hash table routines (based on quadratic rehashing; hence the
table size must be a prime number): *)
type
TableLookupProc = function(k : Integer) : String;
TableEntryProc = procedure(k : Integer; symbol : String);
function key(symbol : String;
table_size : Integer;
lookup : TableLookupProc;
entry : TableEntryProc) : Integer;
(* returns a hash table key for symbol; inserts the symbol into the
table if necessary
- table_size is the symbol table size and must be a fixed prime number
- lookup is the table lookup procedure which should return the string
at key k in the table ('' if entry is empty)
- entry is the table entry procedure which is assumed to store the
given symbol at the given location *)
function definedKey(symbol : String;
table_size : Integer;
lookup : TableLookupProc) : Boolean;
(* checks the table to see if symbol is in the table *)
(* Utility routines: *)
function min(i, j : Integer) : Integer;
function max(i, j : Integer) : Integer;
(* minimum and maximum of two integers *)
function nchars(cc : CClass) : Integer;
(* returns the cardinality (number of characters) of a character class *)
function upper(str : String) : String;
(* returns str converted to uppercase *)
function strip(str : String) : String;
(* returns str with leading and trailing blanks stripped off *)
function blankStr(str : String) : String;
(* returns string of same length as str, with all non-whitespace characters
replaced by blanks *)
function intStr(i : Integer) : String;
(* returns the string representation of i *)
function isInt(str : String; var i : Integer) : Boolean;
(* checks whether str represents an integer; if so, returns the
value of it in i *)
function path(filename : String) : String;
(* returns the path in filename *)
function root(filename : String) : String;
(* returns root (i.e. extension stripped from filename) of
filename *)
function addExt(filename, ext : String) : String;
(* if filename has no extension and last filename character is not '.',
add extension ext to filename *)
function file_size(filename : String) : LongInt;
(* determines file size in bytes *)
(* Utility functions for list generating routines: *)
function charStr(c : char; reserved : CClass) : String;
(* returns a print name for character c, using the standard escape
conventions; reserved is the class of `reserved' special characters
which should be quoted with \ (\ itself is always quoted) *)
function singleQuoteStr(str : String) : String;
(* returns print name of str enclosed in single quotes, using the
standard escape conventions *)
function doubleQuoteStr(str : String) : String;
(* returns print name of str enclosed in double quotes, using the
standard escape conventions *)
function cclassStr(cc : CClass) : String;
(* returns print name of character class cc, using the standard escape
conventions; if cc contains more than 128 elements, the complement
notation (^) is used; if cc is the class of all (non-null) characters
except newline, the period notation is used *)
function cclassOrCharStr(cc : CClass) : String;
(* returns a print name for character class cc (either cclassStr, or,
if cc contains only one element, character in single quotes) *)
function regExprStr(r : RegExpr) : String;
(* unparses a regular expression *)
implementation
uses LexMsgs;
(* String and character class pointers: *)
function newStr(str : String) : StrPtr;
var strp : StrPtr;
begin
getmem(strp, succ(length(str)));
move(str, strp^, succ(length(str)));
newStr := strp;
end(*newStr*);
function newCClass(cc : CClass) : CClassPtr;
var ccp : CClassPtr;
begin
new(ccp);
ccp^ := cc;
newCClass := ccp;
end(*newCClass*);
(* Integer sets: *)
procedure empty(var M : IntSet);
begin
M[0] := 0;
end(*empty*);
procedure singleton(var M : IntSet; i : Integer);
begin
M[0] := 1; M[1] := i;
end(*singleton*);
procedure include(var M : IntSet; i : Integer);
var l, r, k : Integer;
begin
(* binary search: *)
l := 1; r := M[0];
k := l + (r-l) div 2;
while (l<r) and (M[k]<>i) do
begin
if M[k]<i then
l := succ(k)
else
r := pred(k);
k := l + (r-l) div 2;
end;
if (k>M[0]) or (M[k]<>i) then
begin
if M[0]>=max_elems then fatal(intset_overflow);
if (k<=M[0]) and (M[k]<i) then
begin
move(M[k+1], M[k+2], (M[0]-k)*sizeOf(Integer));
M[k+1] := i;
end
else
begin
move(M[k], M[k+1], (M[0]-k+1)*sizeOf(Integer));
M[k] := i;
end;
inc(M[0]);
end;
end(*include*);
procedure exclude(var M : IntSet; i : Integer);
var l, r, k : Integer;
begin
(* binary search: *)
l := 1; r := M[0];
k := l + (r-l) div 2;
while (l<r) and (M[k]<>i) do
begin
if M[k]<i then
l := succ(k)
else
r := pred(k);
k := l + (r-l) div 2;
end;
if (k<=M[0]) and (M[k]=i) then
begin
move(M[k+1], M[k], (M[0]-k)*sizeOf(Integer));
dec(M[0]);
end;
end(*exclude*);
procedure setunion(var M, N : IntSet);
var
K : IntSet;
i, j, i_M, i_N : Integer;
begin
(* merge sort: *)
i := 0; i_M := 1; i_N := 1;
while (i_M<=M[0]) and (i_N<=N[0]) do
begin
inc(i);
if i>max_elems then fatal(intset_overflow);
if M[i_M]<N[i_N] then
begin
K[i] := M[i_M]; inc(i_M);
end
else if N[i_N]<M[i_M] then
begin
K[i] := N[i_N]; inc(i_N);
end
else
begin
K[i] := M[i_M]; inc(i_M); inc(i_N);
end
end;
for j := i_M to M[0] do
begin
inc(i);
if i>max_elems then fatal(intset_overflow);
K[i] := M[j];
end;
for j := i_N to N[0] do
begin
inc(i);
if i>max_elems then fatal(intset_overflow);
K[i] := N[j];
end;
K[0] := i;
move(K, M, succ(i)*sizeOf(Integer));
end(*setunion*);
procedure setminus(var M, N : IntSet);
var
K : IntSet;
i, i_M, i_N : Integer;
begin
i := 0; i_N := 1;
for i_M := 1 to M[0] do
begin
while (i_N<=N[0]) and (N[i_N]<M[i_M]) do inc(i_N);
if (i_N>N[0]) or (N[i_N]>M[i_M]) then
begin
inc(i);
K[i] := M[i_M];
end
else
inc(i_N);
end;
K[0] := i;
move(K, M, succ(i)*sizeOf(Integer));
end(*setminus*);
procedure intersect(var M, N : IntSet);
var
K : IntSet;
i, i_M, i_N : Integer;
begin
i := 0; i_N := 1;
for i_M := 1 to M[0] do
begin
while (i_N<=N[0]) and (N[i_N]<M[i_M]) do inc(i_N);
if (i_N<=N[0]) and (N[i_N]=M[i_M]) then
begin
inc(i);
K[i] := M[i_M];
inc(i_N);
end
end;
K[0] := i;
move(K, M, succ(i)*sizeOf(Integer));
end(*intersect*);
function size(var M : IntSet) : Integer;
begin
size := M[0]
end(*size*);
function member(i : Integer; var M : IntSet) : Boolean;
var l, r, k : Integer;
begin
(* binary search: *)
l := 1; r := M[0];
k := l + (r-l) div 2;
while (l<r) and (M[k]<>i) do
begin
if M[k]<i then
l := succ(k)
else
r := pred(k);
k := l + (r-l) div 2;
end;
member := (k<=M[0]) and (M[k]=i);
end(*member*);
function isempty(var M : IntSet) : Boolean;
begin
isempty := M[0]=0
end(*isempty*);
function equal(var M, N : IntSet) : Boolean;
var i : Integer;
begin
if M[0]<>N[0] then
equal := false
else
begin
for i := 1 to M[0] do
if M[i]<>N[i] then
begin
equal := false;
exit
end;
equal := true
end
end(*equal*);
function subseteq(var M, N : IntSet) : Boolean;
var
i_M, i_N : Integer;
begin
if M[0]>N[0] then
subseteq := false
else
begin
i_N := 1;
for i_M := 1 to M[0] do
begin
while (i_N<=N[0]) and (N[i_N]<M[i_M]) do inc(i_N);
if (i_N>N[0]) or (N[i_N]>M[i_M]) then
begin
subseteq := false;
exit
end
else
inc(i_N);
end;
subseteq := true
end;
end(*subseteq*);
function newIntSet : IntSetPtr;
var
MP : IntSetPtr;
begin
getmem(MP, (max_elems+1)*sizeOf(Integer));
MP^[0] := 0;
newIntSet := MP
end(*newIntSet*);
(* Constructors for regular expressions: *)
function newExpr(node_type : NodeType; n : Integer) : RegExpr;
(* returns new RegExpr node (n: number of bytes to allocate) *)
var x : RegExpr;
begin
getmem(x, sizeOf(NodeType)+n);
x^.node_type := node_type;
newExpr := x
end(*newExpr*);
function markExpr(rule, pos : Integer) : RegExpr;
var x : RegExpr;
begin
x := newExpr(mark_node, 2*sizeOf(Integer));
x^.rule := rule;
x^.pos := pos;
markExpr := x
end(*markExpr*);
function charExpr(c : Char) : RegExpr;
var x : RegExpr;
begin
x := newExpr(char_node, sizeOf(Char));
x^.c := c;
charExpr := x
end(*charExpr*);
function strExpr(str : StrPtr) : RegExpr;
var x : RegExpr;
begin
x := newExpr(str_node, sizeOf(StrPtr));
x^.str := str;
strExpr := x
end(*strExpr*);
function cclassExpr(cc : CClassPtr) : RegExpr;
var x : RegExpr;
begin
x := newExpr(cclass_node, sizeOf(CClassPtr));
x^.cc := cc;
cclassExpr := x
end(*cclassExpr*);
function starExpr(r : RegExpr) : RegExpr;
var x : RegExpr;
begin
x := newExpr(star_node, sizeOf(RegExpr));
x^.r := r;
starExpr := x
end(*starExpr*);
function plusExpr(r : RegExpr) : RegExpr;
var x : RegExpr;
begin
x := newExpr(plus_node, sizeOf(RegExpr));
x^.r := r;
plusExpr := x
end(*plusExpr*);
function optExpr(r : RegExpr) : RegExpr;
var x : RegExpr;
begin
x := newExpr(opt_node, sizeOf(RegExpr));
x^.r := r;
optExpr := x
end(*optExpr*);
function mnExpr(r : RegExpr; m, n : Integer) : RegExpr;
var
ri, rmn : RegExpr;
i : Integer;
begin
if (m>n) or (n=0) then
mnExpr := epsExpr
else
begin
(* construct r^m: *)
if m=0 then
ri := epsExpr
else
begin
ri := r;
for i := 2 to m do
ri := catExpr(ri, r);
end;
(* construct r{m,n}: *)
rmn := ri; (* r{m,n} := r^m *)
for i := m+1 to n do
begin
if is_epsExpr(ri) then
ri := r
else
ri := catExpr(ri, r);
rmn := altExpr(rmn, ri) (* r{m,n} := r{m,n} | r^i,
i=m+1,...,n *)
end;
mnExpr := rmn
end
end(*mnExpr*);
function catExpr(r1, r2 : RegExpr) : RegExpr;
var x : RegExpr;
begin
x := newExpr(cat_node, 2*sizeOf(RegExpr));
x^.r1 := r1;
x^.r2 := r2;
catExpr := x
end(*catExpr*);
function altExpr(r1, r2 : RegExpr) : RegExpr;
var x : RegExpr;
begin
x := newExpr(alt_node, 2*sizeOf(RegExpr));
x^.r1 := r1;
x^.r2 := r2;
altExpr := x
end(*altExpr*);
(* Unifiers for regular expressions: *)
function is_epsExpr(r : RegExpr) : Boolean;
begin
is_epsExpr := r=epsExpr
end(*is_epsExpr*);
function is_markExpr(r : RegExpr; var rule, pos : Integer) : Boolean;
begin
if r=epsExpr then
is_markExpr := false
else if r^.node_type=mark_node then
begin
is_markExpr := true;
rule := r^.rule;
pos := r^.pos;
end
else
is_markExpr := false
end(*is_markExpr*);
function is_charExpr(r : RegExpr; var c : Char) : Boolean;
begin
if r=epsExpr then
is_charExpr := false
else if r^.node_type=char_node then
begin
is_charExpr := true;
c := r^.c
end
else
is_charExpr := false
end(*is_charExpr*);
function is_strExpr(r : RegExpr; var str : StrPtr) : Boolean;
begin
if r=epsExpr then
is_strExpr := false
else if r^.node_type=str_node then
begin
is_strExpr := true;
str := r^.str;
end
else
is_strExpr := false
end(*is_strExpr*);
function is_cclassExpr(r : RegExpr; var cc : CClassPtr) : Boolean;
begin
if r=epsExpr then
is_cclassExpr := false
else if r^.node_type=cclass_node then
begin
is_cclassExpr := true;
cc := r^.cc
end
else
is_cclassExpr := false
end(*is_cclassExpr*);
function is_starExpr(r : RegExpr; var r1 : RegExpr) : Boolean;
begin
if r=epsExpr then
is_starExpr := false
else if r^.node_type=star_node then
begin
is_starExpr := true;
r1 := r^.r
end
else
is_starExpr := false
end(*is_starExpr*);
function is_plusExpr(r : RegExpr; var r1 : RegExpr) : Boolean;
begin
if r=epsExpr then
is_plusExpr := false
else if r^.node_type=plus_node then
begin
is_plusExpr := true;
r1 := r^.r
end
else
is_plusExpr := false
end(*is_plusExpr*);
function is_optExpr(r : RegExpr; var r1 : RegExpr) : Boolean;
begin
if r=epsExpr then
is_optExpr := false
else if r^.node_type=opt_node then
begin
is_optExpr := true;
r1 := r^.r
end
else
is_optExpr := false
end(*is_optExpr*);
function is_catExpr(r : RegExpr; var r1, r2 : RegExpr) : Boolean;
begin
if r=epsExpr then
is_catExpr := false
else if r^.node_type=cat_node then
begin
is_catExpr := true;
r1 := r^.r1;
r2 := r^.r2
end
else
is_catExpr := false
end(*is_catExpr*);
function is_altExpr(r : RegExpr; var r1, r2 : RegExpr) : Boolean;
begin
if r=epsExpr then
is_altExpr := false
else if r^.node_type=alt_node then
begin
is_altExpr := true;
r1 := r^.r1;
r2 := r^.r2
end
else
is_altExpr := false
end(*is_altExpr*);
(* Quicksort: *)
procedure quicksort(lo, hi: Integer;
less : OrderPredicate;
swap : SwapProc);
(* derived from the quicksort routine in QSORT.PAS in the Turbo Pascal
distribution *)
procedure sort(l, r: Integer);
var i, j, k : Integer;
begin
i := l; j := r; k := (l+r) DIV 2;
repeat
while less(i, k) do inc(i);
while less(k, j) do dec(j);
if i<=j then
begin
swap(i, j);
if k=i then k := j (* pivot element swapped! *)
else if k=j then k := i;
inc(i); dec(j);
end;
until i>j;
if l<j then sort(l,j);
if i<r then sort(i,r);
end(*sort*);
begin
if lo<hi then sort(lo,hi);
end(*quicksort*);
(* Generic hash table routines: *)
function hash(str : String; table_size : Integer) : Integer;
(* computes a hash key for str *)
var i, key : Integer;
begin
key := 0;
for i := 1 to length(str) do
inc(key, ord(str[i]));
hash := key mod table_size + 1;
end(*hash*);
procedure newPos(var pos, incr, count : Integer; table_size : Integer);
(* computes a new position in the table (quadratic collision strategy)
- pos: current position (+inc)
- incr: current increment (+2)
- count: current number of collisions (+1)
quadratic collision formula for position of str after n collisions:
pos(str, n) = (hash(str)+n^2) mod table_size +1
note that n^2-(n-1)^2 = 2n-1 <=> n^2 = (n-1)^2 + (2n-1) for n>0,
i.e. the increment inc=2n-1 increments by two in each collision *)
begin
inc(count);
inc(pos, incr);
if pos>table_size then pos := pos mod table_size + 1;
inc(incr, 2)
end(*newPos*);
function key(symbol : String;
table_size : Integer;
lookup : TableLookupProc;
entry : TableEntryProc) : Integer;
var pos, incr, count : Integer;
begin
pos := hash(symbol, table_size);
incr := 1;
count := 0;
while count<=table_size do
if lookup(pos)='' then
begin
entry(pos, symbol);
key := pos;
exit
end
else if lookup(pos)=symbol then
begin
key := pos;
exit
end
else
newPos(pos, incr, count, table_size);
fatal(sym_table_overflow)
end(*key*);
function definedKey(symbol : String;
table_size : Integer;
lookup : TableLookupProc) : Boolean;
var pos, incr, count : Integer;
begin
pos := hash(symbol, table_size);
incr := 1;
count := 0;
while count<=table_size do
if lookup(pos)='' then
begin
definedKey := false;
exit
end
else if lookup(pos)=symbol then
begin
definedKey := true;
exit
end
else
newPos(pos, incr, count, table_size);
definedKey := false
end(*definedKey*);
(* Utility routines: *)
function min(i, j : Integer) : Integer;
begin
if i<j then
min := i
else
min := j
end(*min*);
function max(i, j : Integer) : Integer;
begin
if i>j then
max := i
else
max := j
end(*max*);
function nchars(cc : CClass) : Integer;
var
c : Char;
count : Integer;
begin
count := 0;
for c := #0 to #255 do if c in cc then inc(count);
nchars := count;
end(*nchars*);
function upper(str : String) : String;
var i : Integer;
begin
for i := 1 to length(str) do
str[i] := upCase(str[i]);
upper := str
end(*upper*);
function strip(str : String) : String;
begin
while (length(str)>0) and ((str[1]=' ') or (str[1]=tab)) do
delete(str, 1, 1);
while (length(str)>0) and
((str[length(str)]= ' ') or
(str[length(str)]=tab)) do
delete(str, length(str), 1);
strip := str;
end(*strip*);
function blankStr(str : String) : String;
var i : Integer;
begin
for i := 1 to length(str) do
if str[i]<>tab then str[i] := ' ';
blankStr := str;
end(*blankStr*);
function intStr(i : Integer) : String;
var s : String;
begin
str(i, s);
intStr := s
end(*intStr*);
function isInt(str : String; var i : Integer) : Boolean;
var res : Integer;
begin
val(str, i, res);
isInt := res = 0;
end(*isInt*);
function path(filename : String) : String;
var i : Integer;
begin
i := length(filename);
while (i>0) and (filename[i]<>'\') and (filename[i]<>':') do
dec(i);
path := copy(filename, 1, i);
end(*path*);
function root(filename : String) : String;
var
i : Integer;
begin
root := filename;
for i := length(filename) downto 1 do
case filename[i] of
'.' :
begin
root := copy(filename, 1, i-1);
exit
end;
'\': exit;
else
end;
end(*addExt*);
function addExt(filename, ext : String) : String;
(* implemented with goto for maximum efficiency *)
label x;
var
i : Integer;
begin
addExt := filename;