From 7aabb72b2c9619e2c55cf9282d58b0739a216fea Mon Sep 17 00:00:00 2001 From: cecicampanile Date: Thu, 5 Dec 2024 14:43:01 +0000 Subject: [PATCH 1/2] additional_name Now when interval = overall, additional_name = overall. --- R/summariseInObservation.R | 13 ++++++------- 1 file changed, 6 insertions(+), 7 deletions(-) diff --git a/R/summariseInObservation.R b/R/summariseInObservation.R index 664d82e..6f03c38 100644 --- a/R/summariseInObservation.R +++ b/R/summariseInObservation.R @@ -187,7 +187,8 @@ countRecords <- function(observationPeriod, cdm, start_date_name, end_date_name, (.data$start_date >= .data$interval_start_date & .data$start_date <= .data$interval_end_date)) %>% dplyr::mutate(start_date = pmax(.data$interval_start_date, .data$start_date, na.rm = TRUE)) |> dplyr::mutate(end_date = pmin(.data$interval_end_date, .data$end_date, na.rm = TRUE)) |> - dplyr::compute(temporary = FALSE, name = tablePrefix) + dplyr::compute(temporary = FALSE, name = tablePrefix)|> + dplyr::mutate("additional_name" = "time_interval") }else{ x <- observationPeriod |> dplyr::rename("start_date" = "observation_period_start_date", @@ -198,10 +199,9 @@ countRecords <- function(observationPeriod, cdm, start_date_name, end_date_name, personDays <- x %>% dplyr::mutate(estimate_value = !!CDMConnector::datediff("start_date","end_date", interval = "day")+1) |> - dplyr::group_by(dplyr::across(dplyr::any_of(c("additional_level", "sex", "age_group")))) |> + dplyr::group_by(dplyr::across(dplyr::any_of(c("additional_level", "sex", "age_group", "additional_name")))) |> dplyr::summarise(estimate_value = sum(.data$estimate_value, na.rm = TRUE), .groups = "drop") |> - dplyr::mutate("variable_name" = "Number person-days", - "additional_name" = "time_interval") |> + dplyr::mutate("variable_name" = "Number person-days")|> dplyr::collect() }else{ personDays <- createEmptyIntervalTable(interval) @@ -344,10 +344,9 @@ addSexOverall <- function(result, sex){ if(sex){ result <- result |> rbind( result |> - dplyr::group_by(.data$age_group, .data$additional_level, .data$variable_name) |> + dplyr::group_by(.data$age_group, .data$additional_level, .data$variable_name, .data$additional_name) |> dplyr::summarise(estimate_value = sum(.data$estimate_value, na.rm = TRUE), .groups = "drop") |> - dplyr::mutate(sex = "overall", - additional_name = dplyr::if_else(.data$additional_level == "overall", "overall", "time_interval")) + dplyr::mutate(sex = "overall") ) } return(result) From 028818fdad71e690fe16ba50b76658d535c15691 Mon Sep 17 00:00:00 2001 From: cecicampanile Date: Thu, 12 Dec 2024 17:12:00 +0000 Subject: [PATCH 2/2] additional name and levels created with omopgenerics --- R/summariseInObservation.R | 31 ++++++++++++++----------------- 1 file changed, 14 insertions(+), 17 deletions(-) diff --git a/R/summariseInObservation.R b/R/summariseInObservation.R index 6f03c38..fb306a6 100644 --- a/R/summariseInObservation.R +++ b/R/summariseInObservation.R @@ -164,10 +164,10 @@ getIntervalTibbleForObservation <- function(omopTable, start_date_name, end_date "interval_end_date" = as.Date(.data$interval_end_date) ) |> dplyr::mutate( - "interval_group" = paste(.data$interval_start_date,"to",.data$interval_end_date) + "time_interval" = paste(.data$interval_start_date,"to",.data$interval_end_date) ) |> dplyr::ungroup() |> - dplyr::select("interval_start_date", "interval_end_date", "interval_group") |> + dplyr::select("interval_start_date", "interval_end_date", "time_interval") |> dplyr::distinct() } @@ -176,7 +176,6 @@ countRecords <- function(observationPeriod, cdm, start_date_name, end_date_name, if(output == "person-days" | output == "all"){ if(interval != "overall"){ x <- cdm[[paste0(tablePrefix, "interval")]] |> - dplyr::rename("additional_level" = "interval_group") |> dplyr::cross_join( observationPeriod |> dplyr::select("start_date" = "observation_period_start_date", @@ -187,19 +186,18 @@ countRecords <- function(observationPeriod, cdm, start_date_name, end_date_name, (.data$start_date >= .data$interval_start_date & .data$start_date <= .data$interval_end_date)) %>% dplyr::mutate(start_date = pmax(.data$interval_start_date, .data$start_date, na.rm = TRUE)) |> dplyr::mutate(end_date = pmin(.data$interval_end_date, .data$end_date, na.rm = TRUE)) |> - dplyr::compute(temporary = FALSE, name = tablePrefix)|> - dplyr::mutate("additional_name" = "time_interval") + dplyr::compute(temporary = FALSE, name = tablePrefix) + additional_column <- "time_interval" }else{ x <- observationPeriod |> dplyr::rename("start_date" = "observation_period_start_date", - "end_date" = "observation_period_end_date") |> - dplyr::mutate("additional_level" = "overall", - "additional_name" = "overall") + "end_date" = "observation_period_end_date") + additional_column <- character() } personDays <- x %>% dplyr::mutate(estimate_value = !!CDMConnector::datediff("start_date","end_date", interval = "day")+1) |> - dplyr::group_by(dplyr::across(dplyr::any_of(c("additional_level", "sex", "age_group", "additional_name")))) |> + dplyr::group_by(dplyr::across(dplyr::any_of(c( "sex", "age_group","time_interval")))) |> dplyr::summarise(estimate_value = sum(.data$estimate_value, na.rm = TRUE), .groups = "drop") |> dplyr::mutate("variable_name" = "Number person-days")|> dplyr::collect() @@ -218,23 +216,21 @@ if(output == "records" | output == "all"){ dplyr::compute(temporary = FALSE, name = tablePrefix) records <- cdm[[paste0(tablePrefix, "interval")]] |> - dplyr::rename("additional_level" = "interval_group") |> dplyr::cross_join(x) |> dplyr::filter((.data$start_date < .data$interval_start_date & .data$end_date >= .data$interval_start_date) | (.data$start_date >= .data$interval_start_date & .data$start_date <= .data$interval_end_date)) |> - dplyr::group_by(.data$additional_level, .data$age_group, .data$sex) |> + dplyr::group_by(.data$time_interval, .data$age_group, .data$sex) |> dplyr::summarise(estimate_value = sum(.data$estimate_value, na.rm = TRUE), .groups = "drop") |> - dplyr::mutate("variable_name" = "Number records in observation", - "additional_name" = "time_interval") |> + dplyr::mutate("variable_name" = "Number records in observation") |> dplyr::collect() + additional_column <- "time_interval" }else{ records <- observationPeriod |> dplyr::group_by(.data$age_group, .data$sex) |> dplyr::summarise(estimate_value = dplyr::n(), .groups = "drop") |> - dplyr::mutate("variable_name" = "Number records in observation", - "additional_level" = "overall", - "additional_name" = "overall") |> + dplyr::mutate("variable_name" = "Number records in observation") |> dplyr::collect() + additional_column <- character() } }else{ records <- createEmptyIntervalTable(interval) @@ -242,6 +238,7 @@ if(output == "records" | output == "all"){ x <- personDays |> rbind(records) |> + omopgenerics::uniteAdditional(additional_column)|> dplyr::arrange(dplyr::across(dplyr::any_of("additional_level"))) return(x) @@ -362,7 +359,7 @@ createEmptyIntervalTable <- function(interval){ }else{ tibble::tibble( - "interval_group" = as.character(), + "time_interval" = as.character(), "sex" = as.character(), "age_group" = as.character(), "estimate_value" = as.double()