forked from openai/automated-interpretability
-
Notifications
You must be signed in to change notification settings - Fork 0
/
activations.py
275 lines (234 loc) · 10.4 KB
/
activations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# Dataclasses and enums for storing neuron-indexed information about activations. Also, related
# helper functions.
import math
from dataclasses import dataclass, field
from typing import List, Optional, Union
import blobfile as bf
import boostedblob as bbb
from neuron_explainer.fast_dataclasses import FastDataclass, loads, register_dataclass
@register_dataclass
@dataclass
class ActivationRecord(FastDataclass):
"""Collated lists of tokens and their activations for a single neuron."""
tokens: List[str]
"""Tokens in the text sequence, represented as strings."""
activations: List[float]
"""Raw activation values for the neuron on each token in the text sequence."""
@register_dataclass
@dataclass
class NeuronId(FastDataclass):
"""Identifier for a neuron in an artificial neural network."""
layer_index: int
"""The index of layer the neuron is in. The first layer used during inference has index 0."""
neuron_index: int
"""The neuron's index within in its layer. Indices start from 0 in each layer."""
def _check_slices(
slices_by_split: dict[str, slice],
expected_num_values: int,
) -> None:
"""Assert that the slices are disjoint and fully cover the intended range."""
indices = set()
sum_of_slice_lengths = 0
n_splits = len(slices_by_split.keys())
for s in slices_by_split.values():
subrange = range(expected_num_values)[s]
sum_of_slice_lengths += len(subrange)
indices |= set(subrange)
assert (
sum_of_slice_lengths == expected_num_values
), f"{sum_of_slice_lengths=} != {expected_num_values=}"
stride = n_splits
expected_indices = set.union(
*[set(range(start_index, expected_num_values, stride)) for start_index in range(n_splits)]
)
assert indices == expected_indices, f"{indices=} != {expected_indices=}"
def get_slices_for_splits(
splits: list[str],
num_activation_records_per_split: int,
) -> dict[str, slice]:
"""
Get equal-sized interleaved subsets for each of a list of splits, given the number of elements
to include in each split.
"""
stride = len(splits)
num_activation_records_for_even_splits = num_activation_records_per_split * stride
slices_by_split = {
split: slice(split_index, num_activation_records_for_even_splits, stride)
for split_index, split in enumerate(splits)
}
_check_slices(
slices_by_split=slices_by_split,
expected_num_values=num_activation_records_for_even_splits,
)
return slices_by_split
@dataclass
class ActivationRecordSliceParams:
"""How to select splits (train, valid, etc.) of activation records."""
n_examples_per_split: Optional[int]
"""The number of examples to include in each split."""
@register_dataclass
@dataclass
class NeuronRecord(FastDataclass):
"""Neuron-indexed activation data, including summary stats and notable activation records."""
neuron_id: NeuronId
"""Identifier for the neuron."""
random_sample: list[ActivationRecord] = field(default_factory=list)
"""
Random activation records for this neuron. The random sample is independent from those used for
other neurons.
"""
random_sample_by_quantile: Optional[list[list[ActivationRecord]]] = None
"""
Random samples of activation records in each of the specified quantiles. None if quantile
tracking is disabled.
"""
quantile_boundaries: Optional[list[float]] = None
"""Boundaries of the quantiles used to generate the random_sample_by_quantile field."""
# Moments of activations
mean: Optional[float] = math.nan
variance: Optional[float] = math.nan
skewness: Optional[float] = math.nan
kurtosis: Optional[float] = math.nan
most_positive_activation_records: list[ActivationRecord] = field(default_factory=list)
"""
Activation records with the most positive figure of merit value for this neuron over all dataset
examples.
"""
@property
def max_activation(self) -> float:
"""Return the maximum activation value over all top-activating activation records."""
return max([max(ar.activations) for ar in self.most_positive_activation_records])
def _get_top_activation_slices(
self, activation_record_slice_params: ActivationRecordSliceParams
) -> dict[str, slice]:
splits = ["train", "calibration", "valid", "test"]
n_examples_per_split = activation_record_slice_params.n_examples_per_split
if n_examples_per_split is None:
n_examples_per_split = len(self.most_positive_activation_records) // len(splits)
assert len(self.most_positive_activation_records) >= n_examples_per_split * len(splits)
return get_slices_for_splits(splits, n_examples_per_split)
def _get_random_activation_slices(
self, activation_record_slice_params: ActivationRecordSliceParams
) -> dict[str, slice]:
splits = ["calibration", "valid", "test"]
n_examples_per_split = activation_record_slice_params.n_examples_per_split
if n_examples_per_split is None:
n_examples_per_split = len(self.random_sample) // len(splits)
# NOTE: this assert could trigger on some old datasets with only 10 random samples, in which case you may have to remove "test" from the set of splits
assert len(self.random_sample) >= n_examples_per_split * len(splits)
return get_slices_for_splits(splits, n_examples_per_split)
def train_activation_records(
self,
activation_record_slice_params: ActivationRecordSliceParams,
) -> list[ActivationRecord]:
"""
Train split, typically used for generating explanations. Consists exclusively of
top-activating records since context window limitations make it difficult to include
random records.
"""
return self.most_positive_activation_records[
self._get_top_activation_slices(activation_record_slice_params)["train"]
]
def calibration_activation_records(
self,
activation_record_slice_params: ActivationRecordSliceParams,
) -> list[ActivationRecord]:
"""
Calibration split, typically used for calibrating neuron simulations. See
http://go/neuron_explanation_methodology for an explanation of calibration. Consists of
top-activating records and random records in a 1:1 ratio.
"""
return (
self.most_positive_activation_records[
self._get_top_activation_slices(activation_record_slice_params)["calibration"]
]
+ self.random_sample[
self._get_random_activation_slices(activation_record_slice_params)["calibration"]
]
)
def valid_activation_records(
self,
activation_record_slice_params: ActivationRecordSliceParams,
) -> list[ActivationRecord]:
"""
Validation split, typically used for evaluating explanations, either automatically with
simulation + correlation coefficient scoring, or manually by humans. Consists of
top-activating records and random records in a 1:1 ratio.
"""
return (
self.most_positive_activation_records[
self._get_top_activation_slices(activation_record_slice_params)["valid"]
]
+ self.random_sample[
self._get_random_activation_slices(activation_record_slice_params)["valid"]
]
)
def test_activation_records(
self,
activation_record_slice_params: ActivationRecordSliceParams,
) -> list[ActivationRecord]:
"""
Test split, typically used for explanation evaluations that can't use the validation split.
Consists of top-activating records and random records in a 1:1 ratio.
"""
return (
self.most_positive_activation_records[
self._get_top_activation_slices(activation_record_slice_params)["test"]
]
+ self.random_sample[
self._get_random_activation_slices(activation_record_slice_params)["test"]
]
)
def neuron_exists(
dataset_path: str, layer_index: Union[str, int], neuron_index: Union[str, int]
) -> bool:
"""Return whether the specified neuron exists."""
file = bf.join(dataset_path, "neurons", str(layer_index), f"{neuron_index}.json")
return bf.exists(file)
def load_neuron(
layer_index: Union[str, int], neuron_index: Union[str, int],
dataset_path: str = "az://openaipublic/neuron-explainer/data/collated-activations",
) -> NeuronRecord:
"""Load the NeuronRecord for the specified neuron."""
file = bf.join(dataset_path, str(layer_index), f"{neuron_index}.json")
with bf.BlobFile(file, "r") as f:
neuron_record = loads(f.read())
if not isinstance(neuron_record, NeuronRecord):
raise ValueError(
f"Stored data incompatible with current version of NeuronRecord dataclass."
)
return neuron_record
@bbb.ensure_session
async def load_neuron_async(
layer_index: Union[str, int], neuron_index: Union[str, int],
dataset_path: str = "az://openaipublic/neuron-explainer/data/collated-activations",
) -> NeuronRecord:
"""Async version of load_neuron."""
file = bf.join(dataset_path, str(layer_index), f"{neuron_index}.json")
return await read_neuron_file(file)
@bbb.ensure_session
async def read_neuron_file(neuron_filename: str) -> NeuronRecord:
"""Like load_neuron_async, but takes a raw neuron filename."""
raw_contents = await bbb.read.read_single(neuron_filename)
neuron_record = loads(raw_contents.decode("utf-8"))
if not isinstance(neuron_record, NeuronRecord):
raise ValueError(
f"Stored data incompatible with current version of NeuronRecord dataclass."
)
return neuron_record
def get_sorted_neuron_indices(dataset_path: str, layer_index: Union[str, int]) -> List[int]:
"""Returns the indices of all neurons in this layer, in ascending order."""
layer_dir = bf.join(dataset_path, "neurons", str(layer_index))
return sorted(
[int(f.split(".")[0]) for f in bf.listdir(layer_dir) if f.split(".")[0].isnumeric()]
)
def get_sorted_layers(dataset_path: str) -> List[str]:
"""
Return the indices of all layers in this dataset, in ascending numerical order, as strings.
"""
return [
str(x)
for x in sorted(
[int(x) for x in bf.listdir(bf.join(dataset_path, "neurons")) if x.isnumeric()]
)
]