We use standard ImageNet dataset, you can download it from http://image-net.org/. We provide the following two ways to load data:
-
For standard folder dataset, move validation images to labeled sub-folders. The file structure should look like:
$ tree data imagenet ├── train │ ├── class1 │ │ ├── img1.jpeg │ │ ├── img2.jpeg │ │ └── ... │ ├── class2 │ │ ├── img3.jpeg │ │ └── ... │ └── ... └── val ├── class1 │ ├── img4.jpeg │ ├── img5.jpeg │ └── ... ├── class2 │ ├── img6.jpeg │ └── ... └── ...
-
To boost the slow speed when reading images from massive small files, we also support zipped ImageNet, which includes four files:
train.zip
,val.zip
: which store the zipped folder for train and validate splits.train_map.txt
,val_map.txt
: which store the relative path in the corresponding zip file and ground truth label. Make sure the data folder looks like this:
$ tree data data └── ImageNet-Zip ├── train_map.txt ├── train.zip ├── val_map.txt └── val.zip $ head -n 5 data/ImageNet-Zip/val_map.txt ILSVRC2012_val_00000001.JPEG 65 ILSVRC2012_val_00000002.JPEG 970 ILSVRC2012_val_00000003.JPEG 230 ILSVRC2012_val_00000004.JPEG 809 ILSVRC2012_val_00000005.JPEG 516 $ head -n 5 data/ImageNet-Zip/train_map.txt n01440764/n01440764_10026.JPEG 0 n01440764/n01440764_10027.JPEG 0 n01440764/n01440764_10029.JPEG 0 n01440764/n01440764_10040.JPEG 0 n01440764/n01440764_10042.JPEG 0