From 7dd4e53e9f95d161f9d6c8a1c52073c76fdd7845 Mon Sep 17 00:00:00 2001 From: "Documenter.jl" Date: Sun, 3 Nov 2024 19:39:54 +0000 Subject: [PATCH] build based on 09bc135 --- previews/PR298/404.html | 4 +- ...mjvi.B07IzMp6.png => absnpig.B07IzMp6.png} | Bin .../{app.YVTbfN8D.js => app.C5C9DhfA.js} | 2 +- ...npig.BNXvpC22.png => bkiujaz.BNXvpC22.png} | Bin ...mwqe.BoTXYRl4.png => cfcmjbv.BoTXYRl4.png} | Bin .../chunks/@localSearchIndexroot.DeDEvz61.js | 1 - .../chunks/@localSearchIndexroot._bmAGjC1.js | 1 + ...KxGbZF.js => VPLocalSearchBox.CszAeK67.js} | 2 +- .../{theme.BLixrSJZ.js => theme.CggJt1nr.js} | 4 +- ...yafz.DVQRnJSE.png => ddktigp.DVQRnJSE.png} | Bin ...vopt.BKS8fzbs.png => efdoffe.BKS8fzbs.png} | Bin ...tric_via_three_wave_mixing.md.CDmqTf3s.js} | 2 +- ...via_three_wave_mixing.md.CDmqTf3s.lean.js} | 2 +- ....js => examples_parametron.md.BisKADsJ.js} | 10 ++-- ...> examples_parametron.md.BisKADsJ.lean.js} | 10 ++-- ...js => examples_wave_mixing.md.nPQR0uea.js} | 2 +- ... examples_wave_mixing.md.nPQR0uea.lean.js} | 2 +- ...kbtx.DaP9_FvO.png => fxvcubu.DaP9_FvO.png} | Bin ...rksp.TE4cNA4T.png => gfmvopt.TE4cNA4T.png} | Bin ...ykfg.BUn_Tigz.png => hapmwqe.BUn_Tigz.png} | Bin ...furx.B0Aj9aMC.png => icvvgjo.B0Aj9aMC.png} | Bin ...4.js => introduction_index.md.BoGsh2BE.js} | 2 +- ...=> introduction_index.md.BoGsh2BE.lean.js} | 2 +- previews/PR298/assets/ivufurx.-rvD5x0j.png | Bin 0 -> 14300 bytes ...tigp.B-Cc1T24.png => jcitgik.B-Cc1T24.png} | Bin ...l_Krylov-Bogoliubov_method.md.DoOiZlmG.js} | 2 +- ...lov-Bogoliubov_method.md.DoOiZlmG.lean.js} | 2 +- ....js => manual_entering_eom.md.C-sG7qQL.js} | 8 ++-- ...> manual_entering_eom.md.C-sG7qQL.lean.js} | 8 ++-- ...anual_extracting_harmonics.md.Cpv7m-2B.js} | 8 ++-- ..._extracting_harmonics.md.Cpv7m-2B.lean.js} | 8 ++-- ... => manual_linear_response.md.K1dOkrxg.js} | 4 +- ...anual_linear_response.md.K1dOkrxg.lean.js} | 4 +- .../assets/manual_methods.md.-11YqXIu.js | 1 + .../assets/manual_methods.md.-11YqXIu.lean.js | 1 + .../assets/manual_methods.md.Djy_jbuV.js | 1 - .../assets/manual_methods.md.Djy_jbuV.lean.js | 1 - ..._6pI.js => manual_plotting.md.B3Zx1lZ_.js} | 10 ++-- ...js => manual_plotting.md.B3Zx1lZ_.lean.js} | 10 ++-- ...qj9lkP.js => manual_saving.md.DxkqPXKw.js} | 2 +- ...n.js => manual_saving.md.DxkqPXKw.lean.js} | 2 +- ...> manual_solving_harmonics.md.CUoAwVIW.js} | 13 +++-- ...ual_solving_harmonics.md.CUoAwVIW.lean.js} | 13 +++-- ...s => manual_time_dependent.md.DklFRcLU.js} | 10 ++-- ...manual_time_dependent.md.DklFRcLU.lean.js} | 10 ++-- ...hfdy.CDefs9HS.png => nyukexf.CDefs9HS.png} | Bin ...qpav.Br8cARbP.png => olopefk.Br8cARbP.png} | Bin ...pefk.CY3KP9Dg.png => omwflhu.CY3KP9Dg.png} | Bin ...kzhc.B3J9_Und.png => pdqqpav.B3J9_Und.png} | Bin ...tgik.UTcoxLl5.png => rkshfdy.UTcoxLl5.png} | Bin ...lgfs.BWuHbhjm.png => rlkrksp.BWuHbhjm.png} | Bin ...flhu.B1eISI2b.png => rqglgfs.B1eISI2b.png} | Bin ...kexf.C1mRfhhg.png => sstwmep.C1mRfhhg.png} | Bin previews/PR298/assets/szvkzhc.DOOv3P5U.png | Bin 0 -> 13975 bytes previews/PR298/assets/teoyafz.CHo32oEM.png | Bin 0 -> 13747 bytes .../tutorials_classification.md.CJnBmxA2.js | 26 ---------- ...torials_classification.md.CJnBmxA2.lean.js | 26 ---------- .../tutorials_classification.md.Cgq0-zEf.js | 45 ++++++++++++++++++ ...torials_classification.md.Cgq0-zEf.lean.js | 45 ++++++++++++++++++ ... => tutorials_limit_cycles.md.B6_qaUZm.js} | 2 +- ...utorials_limit_cycles.md.B6_qaUZm.lean.js} | 2 +- ... tutorials_linear_response.md.BYTLHXLI.js} | 2 +- ...rials_linear_response.md.BYTLHXLI.lean.js} | 2 +- ...=> tutorials_steady_states.md.BySfj_zT.js} | 2 +- ...torials_steady_states.md.BySfj_zT.lean.js} | 2 +- ...wmep.CF_iK7k1.png => vbkkbtx.CF_iK7k1.png} | Bin ...ujaz.y7rNhHvU.png => wyxykfg.y7rNhHvU.png} | Bin ...vgjo.2MzQm7AU.png => zmnmjvi.2MzQm7AU.png} | Bin .../PR298/background/harmonic_balance.html | 6 +-- previews/PR298/background/limit_cycles.html | 6 +-- .../PR298/background/stability_response.html | 6 +-- previews/PR298/examples/index.html | 6 +-- .../parametric_via_three_wave_mixing.html | 16 +++---- previews/PR298/examples/parametron.html | 18 +++---- previews/PR298/examples/wave_mixing.html | 14 +++--- previews/PR298/hashmap.json | 2 +- previews/PR298/index.html | 6 +-- previews/PR298/introduction/citation.html | 6 +-- previews/PR298/introduction/index.html | 10 ++-- previews/PR298/introduction/resources.html | 6 +-- .../manual/Krylov-Bogoliubov_method.html | 10 ++-- previews/PR298/manual/entering_eom.html | 14 +++--- .../PR298/manual/extracting_harmonics.html | 14 +++--- previews/PR298/manual/linear_response.html | 12 ++--- previews/PR298/manual/methods.html | 10 ++-- previews/PR298/manual/plotting.html | 16 +++---- previews/PR298/manual/saving.html | 10 ++-- previews/PR298/manual/solving_harmonics.html | 19 ++++---- previews/PR298/manual/time_dependent.html | 16 +++---- previews/PR298/tutorials/classification.html | 37 ++++++++++---- previews/PR298/tutorials/index.html | 6 +-- previews/PR298/tutorials/limit_cycles.html | 10 ++-- previews/PR298/tutorials/linear_response.html | 20 ++++---- previews/PR298/tutorials/steady_states.html | 16 +++---- previews/PR298/tutorials/time_dependent.html | 6 +-- 95 files changed, 351 insertions(+), 285 deletions(-) rename previews/PR298/assets/{zmnmjvi.B07IzMp6.png => absnpig.B07IzMp6.png} (100%) rename previews/PR298/assets/{app.YVTbfN8D.js => app.C5C9DhfA.js} (95%) rename previews/PR298/assets/{absnpig.BNXvpC22.png => bkiujaz.BNXvpC22.png} (100%) rename previews/PR298/assets/{hapmwqe.BoTXYRl4.png => cfcmjbv.BoTXYRl4.png} (100%) delete mode 100644 previews/PR298/assets/chunks/@localSearchIndexroot.DeDEvz61.js create mode 100644 previews/PR298/assets/chunks/@localSearchIndexroot._bmAGjC1.js rename previews/PR298/assets/chunks/{VPLocalSearchBox.B8KxGbZF.js => VPLocalSearchBox.CszAeK67.js} (99%) rename previews/PR298/assets/chunks/{theme.BLixrSJZ.js => theme.CggJt1nr.js} (99%) rename previews/PR298/assets/{teoyafz.DVQRnJSE.png => ddktigp.DVQRnJSE.png} (100%) rename previews/PR298/assets/{gfmvopt.BKS8fzbs.png => efdoffe.BKS8fzbs.png} (100%) rename previews/PR298/assets/{examples_parametric_via_three_wave_mixing.md.C_TUhlcu.js => examples_parametric_via_three_wave_mixing.md.CDmqTf3s.js} (99%) rename previews/PR298/assets/{examples_parametric_via_three_wave_mixing.md.C_TUhlcu.lean.js => examples_parametric_via_three_wave_mixing.md.CDmqTf3s.lean.js} (99%) rename previews/PR298/assets/{examples_parametron.md.CppdrFjS.js => examples_parametron.md.BisKADsJ.js} (99%) rename previews/PR298/assets/{examples_parametron.md.CppdrFjS.lean.js => examples_parametron.md.BisKADsJ.lean.js} (99%) rename previews/PR298/assets/{examples_wave_mixing.md.Bn8hc4od.js => examples_wave_mixing.md.nPQR0uea.js} (99%) rename previews/PR298/assets/{examples_wave_mixing.md.Bn8hc4od.lean.js => examples_wave_mixing.md.nPQR0uea.lean.js} (99%) rename previews/PR298/assets/{vbkkbtx.DaP9_FvO.png => fxvcubu.DaP9_FvO.png} (100%) rename previews/PR298/assets/{rlkrksp.TE4cNA4T.png => gfmvopt.TE4cNA4T.png} (100%) rename previews/PR298/assets/{wyxykfg.BUn_Tigz.png => hapmwqe.BUn_Tigz.png} (100%) rename previews/PR298/assets/{ivufurx.B0Aj9aMC.png => icvvgjo.B0Aj9aMC.png} (100%) rename previews/PR298/assets/{introduction_index.md.DWcINcP4.js => introduction_index.md.BoGsh2BE.js} (99%) rename previews/PR298/assets/{introduction_index.md.DWcINcP4.lean.js => introduction_index.md.BoGsh2BE.lean.js} (99%) create mode 100644 previews/PR298/assets/ivufurx.-rvD5x0j.png rename previews/PR298/assets/{ddktigp.B-Cc1T24.png => jcitgik.B-Cc1T24.png} (100%) rename previews/PR298/assets/{manual_Krylov-Bogoliubov_method.md.DVmZeoVi.js => manual_Krylov-Bogoliubov_method.md.DoOiZlmG.js} (99%) rename previews/PR298/assets/{manual_Krylov-Bogoliubov_method.md.DVmZeoVi.lean.js => manual_Krylov-Bogoliubov_method.md.DoOiZlmG.lean.js} (99%) rename previews/PR298/assets/{manual_entering_eom.md.DCB_x1bm.js => manual_entering_eom.md.C-sG7qQL.js} (97%) rename previews/PR298/assets/{manual_entering_eom.md.DCB_x1bm.lean.js => manual_entering_eom.md.C-sG7qQL.lean.js} (97%) rename previews/PR298/assets/{manual_extracting_harmonics.md.BF5zlRR-.js => manual_extracting_harmonics.md.Cpv7m-2B.js} (98%) rename previews/PR298/assets/{manual_extracting_harmonics.md.BF5zlRR-.lean.js => manual_extracting_harmonics.md.Cpv7m-2B.lean.js} (98%) rename previews/PR298/assets/{manual_linear_response.md.0Nnqm4c-.js => manual_linear_response.md.K1dOkrxg.js} (94%) rename previews/PR298/assets/{manual_linear_response.md.0Nnqm4c-.lean.js => manual_linear_response.md.K1dOkrxg.lean.js} (94%) create mode 100644 previews/PR298/assets/manual_methods.md.-11YqXIu.js create mode 100644 previews/PR298/assets/manual_methods.md.-11YqXIu.lean.js delete mode 100644 previews/PR298/assets/manual_methods.md.Djy_jbuV.js delete mode 100644 previews/PR298/assets/manual_methods.md.Djy_jbuV.lean.js rename previews/PR298/assets/{manual_plotting.md.BsDV_6pI.js => manual_plotting.md.B3Zx1lZ_.js} (92%) rename previews/PR298/assets/{manual_plotting.md.BsDV_6pI.lean.js => manual_plotting.md.B3Zx1lZ_.lean.js} (92%) rename previews/PR298/assets/{manual_saving.md.Dsqj9lkP.js => manual_saving.md.DxkqPXKw.js} (66%) rename previews/PR298/assets/{manual_saving.md.Dsqj9lkP.lean.js => manual_saving.md.DxkqPXKw.lean.js} (66%) rename previews/PR298/assets/{manual_solving_harmonics.md.BNtGzorW.js => manual_solving_harmonics.md.CUoAwVIW.js} (73%) rename previews/PR298/assets/{manual_solving_harmonics.md.BNtGzorW.lean.js => manual_solving_harmonics.md.CUoAwVIW.lean.js} (73%) rename previews/PR298/assets/{manual_time_dependent.md.Du-_Z03b.js => manual_time_dependent.md.DklFRcLU.js} (97%) rename previews/PR298/assets/{manual_time_dependent.md.Du-_Z03b.lean.js => manual_time_dependent.md.DklFRcLU.lean.js} (97%) rename previews/PR298/assets/{rkshfdy.CDefs9HS.png => nyukexf.CDefs9HS.png} (100%) rename previews/PR298/assets/{pdqqpav.Br8cARbP.png => olopefk.Br8cARbP.png} (100%) rename previews/PR298/assets/{olopefk.CY3KP9Dg.png => omwflhu.CY3KP9Dg.png} (100%) rename previews/PR298/assets/{szvkzhc.B3J9_Und.png => pdqqpav.B3J9_Und.png} (100%) rename previews/PR298/assets/{jcitgik.UTcoxLl5.png => rkshfdy.UTcoxLl5.png} (100%) rename previews/PR298/assets/{rqglgfs.BWuHbhjm.png => rlkrksp.BWuHbhjm.png} (100%) rename previews/PR298/assets/{omwflhu.B1eISI2b.png => rqglgfs.B1eISI2b.png} (100%) rename previews/PR298/assets/{nyukexf.C1mRfhhg.png => sstwmep.C1mRfhhg.png} (100%) create mode 100644 previews/PR298/assets/szvkzhc.DOOv3P5U.png create mode 100644 previews/PR298/assets/teoyafz.CHo32oEM.png delete mode 100644 previews/PR298/assets/tutorials_classification.md.CJnBmxA2.js delete mode 100644 previews/PR298/assets/tutorials_classification.md.CJnBmxA2.lean.js create mode 100644 previews/PR298/assets/tutorials_classification.md.Cgq0-zEf.js create mode 100644 previews/PR298/assets/tutorials_classification.md.Cgq0-zEf.lean.js rename previews/PR298/assets/{tutorials_limit_cycles.md.C1gWwotW.js => tutorials_limit_cycles.md.B6_qaUZm.js} (99%) rename previews/PR298/assets/{tutorials_limit_cycles.md.C1gWwotW.lean.js => tutorials_limit_cycles.md.B6_qaUZm.lean.js} (99%) rename previews/PR298/assets/{tutorials_linear_response.md.PMCbi141.js => tutorials_linear_response.md.BYTLHXLI.js} (99%) rename previews/PR298/assets/{tutorials_linear_response.md.PMCbi141.lean.js => tutorials_linear_response.md.BYTLHXLI.lean.js} (99%) rename previews/PR298/assets/{tutorials_steady_states.md.gkR3833J.js => tutorials_steady_states.md.BySfj_zT.js} (99%) rename previews/PR298/assets/{tutorials_steady_states.md.gkR3833J.lean.js => tutorials_steady_states.md.BySfj_zT.lean.js} (99%) rename previews/PR298/assets/{sstwmep.CF_iK7k1.png => vbkkbtx.CF_iK7k1.png} (100%) rename previews/PR298/assets/{bkiujaz.y7rNhHvU.png => wyxykfg.y7rNhHvU.png} (100%) rename previews/PR298/assets/{icvvgjo.2MzQm7AU.png => zmnmjvi.2MzQm7AU.png} (100%) diff --git a/previews/PR298/404.html b/previews/PR298/404.html index 75d50ea0..d575036f 100644 --- a/previews/PR298/404.html +++ b/previews/PR298/404.html @@ -8,7 +8,7 @@ - + @@ -19,7 +19,7 @@
- + \ No newline at end of file diff --git a/previews/PR298/assets/zmnmjvi.B07IzMp6.png b/previews/PR298/assets/absnpig.B07IzMp6.png similarity index 100% rename from previews/PR298/assets/zmnmjvi.B07IzMp6.png rename to previews/PR298/assets/absnpig.B07IzMp6.png diff --git a/previews/PR298/assets/app.YVTbfN8D.js b/previews/PR298/assets/app.C5C9DhfA.js similarity index 95% rename from previews/PR298/assets/app.YVTbfN8D.js rename to previews/PR298/assets/app.C5C9DhfA.js index 1652d15b..c5aa261b 100644 --- a/previews/PR298/assets/app.YVTbfN8D.js +++ b/previews/PR298/assets/app.C5C9DhfA.js @@ -1 +1 @@ -import{R as p}from"./chunks/theme.BLixrSJZ.js";import{R as o,a5 as u,a6 as c,a7 as l,a8 as f,a9 as d,aa as m,ab as h,ac as g,ad as A,ae as v,d as P,u as R,v as w,s as y,af as C,ag as b,ah as E,ai as S}from"./chunks/framework.DcvNxhjd.js";function i(e){if(e.extends){const a=i(e.extends);return{...a,...e,async enhanceApp(t){a.enhanceApp&&await a.enhanceApp(t),e.enhanceApp&&await e.enhanceApp(t)}}}return e}const s=i(p),T=P({name:"VitePressApp",setup(){const{site:e,lang:a,dir:t}=R();return w(()=>{y(()=>{document.documentElement.lang=a.value,document.documentElement.dir=t.value})}),e.value.router.prefetchLinks&&C(),b(),E(),s.setup&&s.setup(),()=>S(s.Layout)}});async function D(){globalThis.__VITEPRESS__=!0;const e=j(),a=_();a.provide(c,e);const t=l(e.route);return a.provide(f,t),a.component("Content",d),a.component("ClientOnly",m),Object.defineProperties(a.config.globalProperties,{$frontmatter:{get(){return t.frontmatter.value}},$params:{get(){return t.page.value.params}}}),s.enhanceApp&&await s.enhanceApp({app:a,router:e,siteData:h}),{app:a,router:e,data:t}}function _(){return g(T)}function j(){let e=o,a;return A(t=>{let n=v(t),r=null;return n&&(e&&(a=n),(e||a===n)&&(n=n.replace(/\.js$/,".lean.js")),r=import(n)),o&&(e=!1),r},s.NotFound)}o&&D().then(({app:e,router:a,data:t})=>{a.go().then(()=>{u(a.route,t.site),e.mount("#app")})});export{D as createApp}; +import{R as p}from"./chunks/theme.CggJt1nr.js";import{R as o,a5 as u,a6 as c,a7 as l,a8 as f,a9 as d,aa as m,ab as h,ac as g,ad as A,ae as v,d as P,u as R,v as w,s as y,af as C,ag as b,ah as E,ai as S}from"./chunks/framework.DcvNxhjd.js";function i(e){if(e.extends){const a=i(e.extends);return{...a,...e,async enhanceApp(t){a.enhanceApp&&await a.enhanceApp(t),e.enhanceApp&&await e.enhanceApp(t)}}}return e}const s=i(p),T=P({name:"VitePressApp",setup(){const{site:e,lang:a,dir:t}=R();return w(()=>{y(()=>{document.documentElement.lang=a.value,document.documentElement.dir=t.value})}),e.value.router.prefetchLinks&&C(),b(),E(),s.setup&&s.setup(),()=>S(s.Layout)}});async function D(){globalThis.__VITEPRESS__=!0;const e=j(),a=_();a.provide(c,e);const t=l(e.route);return a.provide(f,t),a.component("Content",d),a.component("ClientOnly",m),Object.defineProperties(a.config.globalProperties,{$frontmatter:{get(){return t.frontmatter.value}},$params:{get(){return t.page.value.params}}}),s.enhanceApp&&await s.enhanceApp({app:a,router:e,siteData:h}),{app:a,router:e,data:t}}function _(){return g(T)}function j(){let e=o,a;return A(t=>{let n=v(t),r=null;return n&&(e&&(a=n),(e||a===n)&&(n=n.replace(/\.js$/,".lean.js")),r=import(n)),o&&(e=!1),r},s.NotFound)}o&&D().then(({app:e,router:a,data:t})=>{a.go().then(()=>{u(a.route,t.site),e.mount("#app")})});export{D as createApp}; diff --git a/previews/PR298/assets/absnpig.BNXvpC22.png b/previews/PR298/assets/bkiujaz.BNXvpC22.png similarity index 100% rename from previews/PR298/assets/absnpig.BNXvpC22.png rename to previews/PR298/assets/bkiujaz.BNXvpC22.png diff --git a/previews/PR298/assets/hapmwqe.BoTXYRl4.png b/previews/PR298/assets/cfcmjbv.BoTXYRl4.png similarity index 100% rename from previews/PR298/assets/hapmwqe.BoTXYRl4.png rename to previews/PR298/assets/cfcmjbv.BoTXYRl4.png diff --git a/previews/PR298/assets/chunks/@localSearchIndexroot.DeDEvz61.js b/previews/PR298/assets/chunks/@localSearchIndexroot.DeDEvz61.js deleted file mode 100644 index a5448a0a..00000000 --- a/previews/PR298/assets/chunks/@localSearchIndexroot.DeDEvz61.js +++ /dev/null @@ -1 +0,0 @@ -const e='{"documentCount":75,"nextId":75,"documentIds":{"0":"/HarmonicBalance.jl/previews/PR298/background/harmonic_balance#intro_hb","1":"/HarmonicBalance.jl/previews/PR298/background/harmonic_balance#prelude","2":"/HarmonicBalance.jl/previews/PR298/background/harmonic_balance#Harmonic-ansatz-and-harmonic-equations","3":"/HarmonicBalance.jl/previews/PR298/background/harmonic_balance#Duffing_harmeq","4":"/HarmonicBalance.jl/previews/PR298/background/harmonic_balance#Single-frequency-ansatz","5":"/HarmonicBalance.jl/previews/PR298/background/harmonic_balance#Sidenote:-perturbative-approach","6":"/HarmonicBalance.jl/previews/PR298/background/harmonic_balance#Two-frequency-ansatz","7":"/HarmonicBalance.jl/previews/PR298/background/limit_cycles#limit_cycles_bg","8":"/HarmonicBalance.jl/previews/PR298/background/limit_cycles#Limit-cycles-from-a-Hopf-bifurcation","9":"/HarmonicBalance.jl/previews/PR298/background/limit_cycles#ansatz","10":"/HarmonicBalance.jl/previews/PR298/background/limit_cycles#Original-ansatz","11":"/HarmonicBalance.jl/previews/PR298/background/limit_cycles#Extended-ansatz","12":"/HarmonicBalance.jl/previews/PR298/background/limit_cycles#gauge_fixing","13":"/HarmonicBalance.jl/previews/PR298/background/stability_response#linresp_background","14":"/HarmonicBalance.jl/previews/PR298/background/stability_response#stability","15":"/HarmonicBalance.jl/previews/PR298/background/stability_response#Linear-response","16":"/HarmonicBalance.jl/previews/PR298/examples/#examples","17":"/HarmonicBalance.jl/previews/PR298/examples/parametric_via_three_wave_mixing#Parametric-Pumping-via-Three-Wave-Mixing","18":"/HarmonicBalance.jl/previews/PR298/examples/parametric_via_three_wave_mixing#system","19":"/HarmonicBalance.jl/previews/PR298/examples/parametric_via_three_wave_mixing#1st-order-Krylov-expansion","20":"/HarmonicBalance.jl/previews/PR298/examples/parametric_via_three_wave_mixing#2nd-order-Krylov-expansion","21":"/HarmonicBalance.jl/previews/PR298/examples/parametron#parametron","22":"/HarmonicBalance.jl/previews/PR298/examples/parametron#1D-parameters","23":"/HarmonicBalance.jl/previews/PR298/examples/parametron#2D-parameters","24":"/HarmonicBalance.jl/previews/PR298/examples/wave_mixing#Three-Wave-Mixing-vs-four-wave-mixing","25":"/HarmonicBalance.jl/previews/PR298/examples/wave_mixing#packages","26":"/HarmonicBalance.jl/previews/PR298/examples/wave_mixing#system","27":"/HarmonicBalance.jl/previews/PR298/examples/wave_mixing#four-wave-mixing","28":"/HarmonicBalance.jl/previews/PR298/examples/wave_mixing#Three-wave-mixing","29":"/HarmonicBalance.jl/previews/PR298/examples/wave_mixing#both","30":"/HarmonicBalance.jl/previews/PR298/introduction/citation#citation","31":"/HarmonicBalance.jl/previews/PR298/introduction/#installation","32":"/HarmonicBalance.jl/previews/PR298/introduction/#Getting-Started","33":"/HarmonicBalance.jl/previews/PR298/manual/Krylov-Bogoliubov_method#Krylov-Bogoliubov","34":"/HarmonicBalance.jl/previews/PR298/manual/Krylov-Bogoliubov_method#Purpose-and-Advantages","35":"/HarmonicBalance.jl/previews/PR298/manual/Krylov-Bogoliubov_method#usage","36":"/HarmonicBalance.jl/previews/PR298/manual/Krylov-Bogoliubov_method#Function-Reference","37":"/HarmonicBalance.jl/previews/PR298/manual/entering_eom#Entering-equations-of-motion","38":"/HarmonicBalance.jl/previews/PR298/manual/extracting_harmonics#Extracting-harmonic-equations","39":"/HarmonicBalance.jl/previews/PR298/manual/extracting_harmonics#Harmonic-Balance-method","40":"/HarmonicBalance.jl/previews/PR298/manual/extracting_harmonics#HarmonicVariable-and-HarmonicEquation-types","41":"/HarmonicBalance.jl/previews/PR298/manual/linear_response#linresp_man","42":"/HarmonicBalance.jl/previews/PR298/manual/linear_response#stability","43":"/HarmonicBalance.jl/previews/PR298/manual/linear_response#Linear-response","44":"/HarmonicBalance.jl/previews/PR298/manual/linear_response#First-order","45":"/HarmonicBalance.jl/previews/PR298/manual/linear_response#Higher-orders","46":"/HarmonicBalance.jl/previews/PR298/manual/methods#methods","47":"/HarmonicBalance.jl/previews/PR298/manual/methods#Total-Degree-Method","48":"/HarmonicBalance.jl/previews/PR298/manual/methods#Polyhedral-Method","49":"/HarmonicBalance.jl/previews/PR298/manual/methods#Warm-Up-Method","50":"/HarmonicBalance.jl/previews/PR298/manual/plotting#Analysis-and-plotting","51":"/HarmonicBalance.jl/previews/PR298/manual/plotting#Plotting-solutions","52":"/HarmonicBalance.jl/previews/PR298/manual/plotting#Plotting-phase-diagrams","53":"/HarmonicBalance.jl/previews/PR298/manual/plotting#Plot-spaghetti-plot","54":"/HarmonicBalance.jl/previews/PR298/manual/saving#Saving-and-loading","55":"/HarmonicBalance.jl/previews/PR298/manual/solving_harmonics#Solving-harmonic-equations","56":"/HarmonicBalance.jl/previews/PR298/manual/solving_harmonics#Classifying-solutions","57":"/HarmonicBalance.jl/previews/PR298/manual/solving_harmonics#Sorting-solutions","58":"/HarmonicBalance.jl/previews/PR298/manual/time_dependent#Time-evolution","59":"/HarmonicBalance.jl/previews/PR298/manual/time_dependent#plotting","60":"/HarmonicBalance.jl/previews/PR298/manual/time_dependent#miscellaneous","61":"/HarmonicBalance.jl/previews/PR298/tutorials/classification#classifying","62":"/HarmonicBalance.jl/previews/PR298/tutorials/#tutorials","63":"/HarmonicBalance.jl/previews/PR298/tutorials/limit_cycles#limit_cycles","64":"/HarmonicBalance.jl/previews/PR298/tutorials/limit_cycles#Non-driven-system-the-van-der-Pol-oscillator","65":"/HarmonicBalance.jl/previews/PR298/tutorials/limit_cycles#Driven-system-coupled-Duffings","66":"/HarmonicBalance.jl/previews/PR298/tutorials/linear_response#linresp_ex","67":"/HarmonicBalance.jl/previews/PR298/tutorials/linear_response#Linear-regime","68":"/HarmonicBalance.jl/previews/PR298/tutorials/linear_response#Nonlinear-regime","69":"/HarmonicBalance.jl/previews/PR298/tutorials/steady_states#Duffing","70":"/HarmonicBalance.jl/previews/PR298/tutorials/steady_states#One-harmonic","71":"/HarmonicBalance.jl/previews/PR298/tutorials/steady_states#Using-multiple-harmonics","72":"/HarmonicBalance.jl/previews/PR298/tutorials/time_dependent#Time-dependent-simulations","73":"/HarmonicBalance.jl/previews/PR298/tutorials/time_dependent#Evolving-from-an-initial-condition","74":"/HarmonicBalance.jl/previews/PR298/tutorials/time_dependent#Adiabatic-parameter-sweeps"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[5,1,1],"1":[6,5,208],"2":[5,5,135],"3":[4,5,42],"4":[3,9,184],"5":[3,9,86],"6":[3,9,132],"7":[2,1,36],"8":[6,2,172],"9":[1,2,1],"10":[2,3,71],"11":[2,3,142],"12":[2,3,167],"13":[4,1,89],"14":[1,4,104],"15":[2,4,241],"16":[1,1,22],"17":[6,1,7],"18":[1,6,38],"19":[4,6,67],"20":[4,6,119],"21":[3,1,221],"22":[2,3,189],"23":[2,3,190],"24":[7,1,1],"25":[1,7,24],"26":[1,7,66],"27":[3,7,66],"28":[3,7,124],"29":[1,7,130],"30":[1,1,67],"31":[1,1,42],"32":[2,1,141],"33":[4,1,41],"34":[3,4,64],"35":[1,4,31],"36":[2,5,100],"37":[4,1,140],"38":[3,1,1],"39":[3,3,198],"40":[4,3,125],"41":[4,1,46],"42":[1,4,54],"43":[2,4,63],"44":[2,3,115],"45":[2,3,101],"46":[1,1,27],"47":[3,1,82],"48":[2,1,83],"49":[3,1,82],"50":[3,1,61],"51":[2,3,140],"52":[3,3,70],"53":[3,3,68],"54":[3,1,93],"55":[3,1,251],"56":[2,3,97],"57":[2,3,127],"58":[2,1,180],"59":[1,2,36],"60":[1,2,81],"61":[2,1,227],"62":[1,1,21],"63":[2,1,38],"64":[8,2,200],"65":[4,2,359],"66":[2,1,100],"67":[2,2,174],"68":[2,2,186],"69":[8,1,169],"70":[2,8,210],"71":[3,8,296],"72":[3,1,176],"73":[5,3,126],"74":[3,3,121]},"averageFieldLength":[2.8,3.093333333333333,110.46666666666667],"storedFields":{"0":{"title":"The method of harmonic balance","titles":[]},"1":{"title":"Frequency conversion in oscillating nonlinear systems","titles":["The method of harmonic balance"]},"2":{"title":"Harmonic ansatz & harmonic equations","titles":["The method of harmonic balance"]},"3":{"title":"Example: the Duffing oscillator","titles":["The method of harmonic balance"]},"4":{"title":"Single-frequency ansatz","titles":["The method of harmonic balance","Example: the Duffing oscillator"]},"5":{"title":"Sidenote: perturbative approach","titles":["The method of harmonic balance","Example: the Duffing oscillator"]},"6":{"title":"Two-frequency ansatz","titles":["The method of harmonic balance","Example: the Duffing oscillator"]},"7":{"title":"Limit cycles","titles":[]},"8":{"title":"Limit cycles from a Hopf bifurcation","titles":["Limit cycles"]},"9":{"title":"Ansatz","titles":["Limit cycles"]},"10":{"title":"Original ansatz","titles":["Limit cycles","Ansatz"]},"11":{"title":"Extended ansatz","titles":["Limit cycles","Ansatz"]},"12":{"title":"Gauge fixing","titles":["Limit cycles","Ansatz"]},"13":{"title":"Stability and linear response","titles":[]},"14":{"title":"Stability","titles":["Stability and linear response"]},"15":{"title":"Linear response","titles":["Stability and linear response"]},"16":{"title":"Examples","titles":[]},"17":{"title":"Parametric Pumping via Three-Wave Mixing","titles":[]},"18":{"title":"System","titles":["Parametric Pumping via Three-Wave Mixing"]},"19":{"title":"1st order Krylov expansion","titles":["Parametric Pumping via Three-Wave Mixing"]},"20":{"title":"2nd order Krylov expansion","titles":["Parametric Pumping via Three-Wave Mixing"]},"21":{"title":"Parametrically driven resonator","titles":[]},"22":{"title":"1D parameters","titles":["Parametrically driven resonator"]},"23":{"title":"2D parameters","titles":["Parametrically driven resonator"]},"24":{"title":"Three Wave Mixing vs four wave mixing","titles":[]},"25":{"title":"Packages","titles":["Three Wave Mixing vs four wave mixing"]},"26":{"title":"system","titles":["Three Wave Mixing vs four wave mixing"]},"27":{"title":"four wave mixing","titles":["Three Wave Mixing vs four wave mixing"]},"28":{"title":"Three wave mixing","titles":["Three Wave Mixing vs four wave mixing"]},"29":{"title":"Both","titles":["Three Wave Mixing vs four wave mixing"]},"30":{"title":"Citation","titles":[]},"31":{"title":"Installation","titles":[]},"32":{"title":"Getting Started","titles":[]},"33":{"title":"Krylov-Bogoliubov Averaging Method","titles":[]},"34":{"title":"Purpose and Advantages","titles":["Krylov-Bogoliubov Averaging Method"]},"35":{"title":"Usage","titles":["Krylov-Bogoliubov Averaging Method"]},"36":{"title":"Function Reference","titles":["Krylov-Bogoliubov Averaging Method","Usage"]},"37":{"title":"Entering equations of motion","titles":[]},"38":{"title":"Extracting harmonic equations","titles":[]},"39":{"title":"Harmonic Balance method","titles":["Extracting harmonic equations"]},"40":{"title":"HarmonicVariable and HarmonicEquation types","titles":["Extracting harmonic equations"]},"41":{"title":"Linear response (WIP)","titles":[]},"42":{"title":"Stability","titles":["Linear response (WIP)"]},"43":{"title":"Linear response","titles":["Linear response (WIP)"]},"44":{"title":"First order","titles":["Linear response (WIP)","Linear response"]},"45":{"title":"Higher orders","titles":["Linear response (WIP)","Linear response"]},"46":{"title":"Methods","titles":[]},"47":{"title":"Total Degree Method","titles":["Methods"]},"48":{"title":"Polyhedral Method","titles":["Methods"]},"49":{"title":"Warm Up Method","titles":["Methods"]},"50":{"title":"Analysis and plotting","titles":[]},"51":{"title":"Plotting solutions","titles":["Analysis and plotting"]},"52":{"title":"Plotting phase diagrams","titles":["Analysis and plotting"]},"53":{"title":"Plot spaghetti plot","titles":["Analysis and plotting"]},"54":{"title":"Saving and loading","titles":[]},"55":{"title":"Solving harmonic equations","titles":[]},"56":{"title":"Classifying solutions","titles":["Solving harmonic equations"]},"57":{"title":"Sorting solutions","titles":["Solving harmonic equations"]},"58":{"title":"Time evolution","titles":[]},"59":{"title":"Plotting","titles":["Time evolution"]},"60":{"title":"Miscellaneous","titles":["Time evolution"]},"61":{"title":"Classifying solutions","titles":[]},"62":{"title":"Tutorials","titles":[]},"63":{"title":"Limit cycles","titles":[]},"64":{"title":"Non-driven system - the van der Pol oscillator","titles":["Limit cycles"]},"65":{"title":"Driven system - coupled Duffings","titles":["Limit cycles"]},"66":{"title":"Linear response","titles":[]},"67":{"title":"Linear regime","titles":["Linear response"]},"68":{"title":"Nonlinear regime","titles":["Linear response"]},"69":{"title":"Finding the staedy states of a Duffing oscillator","titles":[]},"70":{"title":"One harmonic","titles":["Finding the staedy states of a Duffing oscillator"]},"71":{"title":"Using multiple harmonics","titles":["Finding the staedy states of a Duffing oscillator"]},"72":{"title":"Time-dependent simulations","titles":[]},"73":{"title":"Evolving from an initial condition","titles":["Time-dependent simulations"]},"74":{"title":"Adiabatic parameter sweeps","titles":["Time-dependent simulations"]}},"dirtCount":0,"index":[["θ",{"2":{"72":5,"73":1}}],["ϵ",{"2":{"71":1}}],["⏟periodic",{"2":{"69":1}}],["⏟damped",{"2":{"69":1}}],["7",{"2":{"65":1}}],["79",{"2":{"23":1}}],["ħω0",{"2":{"65":2}}],["μ",{"2":{"64":294}}],["ᵢdᵢ",{"2":{"47":1}}],["ᵢᵢᵢxᵢdᵢ+aᵢ",{"2":{"47":1}}],["²",{"2":{"44":1}}],["`",{"2":{"31":2}}],["√",{"2":{"27":3,"28":3,"29":3,"61":1}}],["\\u001b",{"2":{"23":8}}],["zambon",{"2":{"65":3}}],["z",{"2":{"51":2,"53":1}}],["zilberberg",{"2":{"30":2}}],["zones",{"2":{"23":1}}],["zeroth",{"2":{"71":1}}],["zero",{"2":{"4":1,"11":1,"19":1,"39":2,"48":5,"55":1,"61":6,"64":1}}],[">",{"2":{"22":1,"37":2,"39":1,"45":1,"50":1,"51":2,"52":2,"53":1,"55":2,"56":2,"57":1,"58":1,"60":1,"61":1}}],["≈ucos⁡",{"2":{"21":1}}],["ηf1",{"2":{"65":1}}],["η",{"2":{"21":14,"22":1,"23":1,"32":3,"65":6,"72":13,"73":1}}],["ηx2x˙",{"2":{"21":1}}],["867e",{"2":{"65":1}}],["8",{"2":{"20":18,"23":1,"55":2}}],["5ω",{"2":{"64":2}}],["5ωlc",{"2":{"64":1}}],["5e",{"2":{"22":1,"58":1,"73":1}}],["50",{"2":{"20":1,"23":3,"58":1,"65":1}}],["500",{"2":{"20":1}}],["51",{"2":{"20":6}}],["5",{"2":{"20":4,"22":2,"55":1,"58":1,"64":29,"71":1}}],["y^3",{"2":{"65":1}}],["y^2",{"2":{"39":2}}],["y",{"2":{"37":6,"39":5,"51":4,"53":1,"58":2,"65":17}}],["ylims=",{"2":{"27":1,"28":1,"29":1,"67":1,"68":2}}],["y=2",{"2":{"51":1}}],["y=",{"2":{"19":2,"20":1,"22":1,"27":3,"28":3,"29":3,"51":1,"61":1,"64":2,"68":1}}],["your",{"2":{"30":1,"35":1}}],["yourself",{"2":{"16":1}}],["you",{"2":{"16":1,"30":2,"31":3,"32":2,"48":1,"61":1}}],["95",{"2":{"58":2,"67":2,"68":2}}],["900",{"2":{"27":1,"28":1,"29":1}}],["9820\\u001b",{"2":{"23":1}}],["9",{"2":{"22":1,"26":2,"27":1,"28":1,"29":1,"32":1,"64":2,"68":2,"70":2,"71":5,"73":1,"74":3}}],["94",{"2":{"21":2}}],["99",{"2":{"19":2,"61":1}}],["9ωd2−ω02",{"2":{"6":1}}],["~",{"2":{"18":1,"20":3,"21":3,"26":7,"32":1,"36":3,"37":4,"39":3,"61":2,"64":7,"65":6,"66":3,"69":2,"70":2,"71":4,"72":3}}],["β^2",{"2":{"20":4}}],["β",{"2":{"18":2,"19":2,"20":8,"26":22,"27":1,"28":1,"29":1}}],["βx2",{"2":{"1":1}}],["χ",{"2":{"15":2}}],["±ω",{"2":{"15":1}}],["quite",{"2":{"65":1}}],["quasi",{"2":{"67":2,"68":2}}],["quadratures",{"2":{"40":1,"51":1,"53":1,"69":1,"70":1}}],["quadratic",{"2":{"1":1,"19":2,"20":1}}],["quantum",{"2":{"28":1,"29":1}}],["quot",{"2":{"15":2,"23":2,"50":2,"51":1,"55":10,"56":6,"57":6,"67":4,"70":2}}],["π",{"2":{"12":1}}],["ϕ",{"2":{"12":2}}],["ϕ=−arctan⁡u2",{"2":{"12":2}}],["ϕ=−atan",{"2":{"5":1}}],["ϕ=2πnωlc",{"2":{"12":1}}],["→",{"2":{"8":1}}],["λk",{"2":{"67":1}}],["λ=0",{"2":{"61":1}}],["λmax",{"2":{"60":1}}],["λeff",{"2":{"20":1}}],["λeff=2f1β3mω2",{"2":{"20":1}}],["λr∗",{"2":{"15":1}}],["λr",{"2":{"14":5,"15":4}}],["λ",{"2":{"8":3,"15":17,"21":6,"22":1,"23":3,"44":3,"51":2,"58":2,"60":3,"61":7,"72":5,"73":1}}],["kwarg",{"2":{"51":1,"52":1,"53":1}}],["kwargs",{"2":{"43":2,"51":5,"52":2,"53":2,"59":3,"60":1}}],["kosata",{"2":{"41":1}}],["košata",{"2":{"7":1,"30":2}}],["kindly",{"2":{"30":1}}],["k\\u001b",{"2":{"23":4}}],["krylovbogoliubov",{"2":{"36":1}}],["krylov",{"0":{"19":1,"20":1,"33":1},"1":{"34":1,"35":1,"36":1},"2":{"19":1,"20":1,"33":2,"34":1,"35":2,"36":6}}],["kerr",{"2":{"65":2}}],["kept",{"2":{"43":1}}],["keep",{"2":{"23":1}}],["keeping",{"2":{"15":1,"55":1}}],["keyword",{"2":{"23":1,"51":1,"55":1,"57":1,"64":1,"74":1}}],["keywords",{"2":{"22":1}}],["key",{"2":{"10":1,"50":1}}],["knowing",{"2":{"15":1}}],["known",{"2":{"4":1,"64":1,"65":1,"68":1,"71":1}}],["kutta",{"2":{"10":1}}],["k",{"2":{"8":2,"23":9,"37":4}}],["600",{"2":{"68":2}}],["60",{"2":{"23":1}}],["6265\\u001b",{"2":{"23":1}}],["6",{"2":{"7":1,"20":4,"23":1,"26":3,"30":2,"61":1,"64":4,"65":2,"68":1,"71":2}}],["|>",{"2":{"61":1}}],["|████████████████████|",{"2":{"23":1}}],["|███████████████▊",{"2":{"23":1}}],["|██████████",{"2":{"23":1}}],["|2=∑j=1mi",{"2":{"15":2}}],["|χ",{"2":{"15":2}}],["|",{"2":{"5":1,"23":2}}],["|≪|x0",{"2":{"5":1}}],["|δx",{"2":{"5":1}}],["≡x0",{"2":{"5":1}}],["−re",{"2":{"15":1}}],["−im",{"2":{"15":4}}],["−v13+3v23+3u12v1+6u12v2+3u22v2+6v12v2",{"2":{"6":1}}],["−fcos⁡θ",{"2":{"6":1}}],["−4fcos⁡θ",{"2":{"4":1}}],["−4fsin⁡θ4u",{"2":{"4":1}}],["−3α",{"2":{"4":1}}],["08",{"2":{"65":1,"74":1}}],["021066",{"2":{"66":1}}],["023526",{"2":{"65":1}}],["022201",{"2":{"21":2}}],["06092",{"2":{"64":1}}],["03",{"2":{"61":1,"65":1}}],["033180",{"2":{"30":1}}],["05",{"2":{"58":1,"67":2,"68":1}}],["010",{"2":{"65":1}}],["011",{"2":{"65":2}}],["01\\u001b",{"2":{"23":2}}],["01",{"2":{"20":2,"32":1,"55":1,"58":1,"61":3,"70":4,"71":1}}],["0030303030303030303",{"2":{"70":1}}],["003",{"2":{"67":1,"68":2}}],["0001",{"2":{"67":1}}],["002",{"2":{"61":1,"65":3,"68":1}}],["0025",{"2":{"19":2,"27":1,"28":1,"29":1}}],["00\\u001b",{"2":{"23":1}}],["00",{"2":{"23":3}}],["001",{"2":{"20":1,"23":1,"61":1}}],["005",{"2":{"19":2,"20":1,"27":1,"28":1,"29":1,"67":1,"68":1}}],["0",{"2":{"4":2,"8":2,"14":2,"19":13,"20":13,"21":3,"22":5,"23":9,"26":5,"27":9,"28":9,"29":8,"32":5,"37":1,"39":2,"51":2,"55":7,"56":1,"58":17,"60":1,"61":10,"64":9,"65":16,"66":1,"67":7,"68":12,"70":11,"71":4,"73":24,"74":10}}],["0^2",{"2":{"4":4,"32":2}}],["4507941",{"2":{"65":1}}],["4504859",{"2":{"65":1}}],["4e",{"2":{"65":1}}],["4e4",{"2":{"58":1}}],["41",{"2":{"64":1}}],["40",{"2":{"23":1}}],["4v",{"2":{"4":1}}],["4",{"2":{"4":8,"6":1,"11":1,"20":4,"21":12,"26":32,"61":4,"64":74,"65":9,"66":4,"70":4,"71":20,"72":12}}],["3=fcos⁡",{"2":{"71":1}}],["3⏟duffing",{"2":{"69":1}}],["300",{"2":{"27":1,"28":1,"29":1,"67":1,"68":3}}],["3ω=ω0",{"2":{"71":1}}],["3ωlc",{"2":{"64":1}}],["3ωt+ϕ1",{"2":{"71":1}}],["3ωt+3ϕ0",{"2":{"71":1}}],["3ωt",{"2":{"26":2,"71":4}}],["3ω",{"2":{"26":1,"64":2,"71":7}}],["3ωdt",{"2":{"6":4}}],["3ωdt+3ϕ",{"2":{"5":1}}],["3ωd",{"2":{"3":1,"4":1,"5":2,"6":3}}],["34=81",{"2":{"6":1,"71":1}}],["32=9",{"2":{"4":1,"70":1}}],["39",{"2":{"4":1,"5":2,"7":1,"13":1,"23":1,"34":1,"43":1,"48":1,"55":1,"57":6,"64":4,"68":1,"72":1}}],["3u^2",{"2":{"4":2}}],["3",{"2":{"4":12,"6":2,"20":12,"21":6,"22":3,"23":2,"26":66,"27":1,"28":1,"29":1,"32":2,"39":1,"61":4,"64":36,"65":9,"66":4,"70":7,"71":30,"72":6,"73":3}}],["\\t+",{"2":{"4":4}}],["\\t",{"2":{"4":2}}],["α^2",{"2":{"20":6}}],["αi",{"2":{"15":1}}],["α",{"2":{"3":1,"18":2,"19":2,"20":18,"21":8,"22":1,"23":1,"26":69,"27":2,"28":2,"29":2,"32":3,"61":8,"65":15,"66":7,"67":1,"68":2,"69":3,"70":7,"71":29,"72":7,"73":1}}],["18000",{"2":{"74":1}}],["154",{"2":{"65":1}}],["102",{"2":{"65":1}}],["10",{"2":{"55":1,"64":2,"66":1,"68":1,"71":1}}],["1000",{"2":{"55":1,"73":2}}],["100",{"2":{"19":1,"20":1,"22":2,"23":1,"32":2,"55":4,"58":3,"61":2,"64":1,"67":1,"68":1,"70":2,"71":2,"73":1}}],["1964\\u001b",{"2":{"23":1}}],["1977",{"2":{"8":1}}],["1d",{"0":{"22":1},"2":{"22":1,"23":1,"51":3,"52":2,"53":1,"55":1,"57":2}}],["1−t",{"2":{"47":1}}],["1−λcos⁡",{"2":{"21":2}}],["1−αi",{"2":{"15":2}}],["1e",{"2":{"20":1,"22":2,"23":2,"58":1,"61":1,"65":1,"68":1,"73":2}}],["1234",{"2":{"25":1}}],["12500\\u001b",{"2":{"23":1}}],["1253\\u001b",{"2":{"23":1}}],["128",{"2":{"20":2}}],["12",{"2":{"20":4,"61":1}}],["1+αi",{"2":{"15":2}}],["1st",{"0":{"19":1},"2":{"2":1}}],["1",{"2":{"2":8,"4":1,"11":1,"12":1,"13":8,"19":9,"20":22,"21":13,"22":5,"23":3,"25":1,"26":23,"27":6,"28":6,"29":7,"32":4,"33":1,"36":6,"37":1,"39":4,"45":1,"55":12,"56":1,"57":1,"58":7,"59":1,"61":9,"64":217,"65":19,"66":3,"67":4,"68":16,"69":1,"70":9,"71":14,"72":13,"73":5,"74":7}}],["utype",{"2":{"73":1}}],["utilize",{"2":{"35":1}}],["uint32",{"2":{"47":1,"48":1,"49":1,"55":1}}],["ui",{"2":{"13":1,"40":1}}],["u=u0",{"2":{"14":1}}],["u=",{"2":{"12":1}}],["u3^2+v3^2",{"2":{"27":1,"28":1,"29":1}}],["u3",{"2":{"12":1,"26":32,"64":97}}],["u3cos⁡ϕ−v3sin⁡ϕ",{"2":{"12":1}}],["u3+uv2",{"2":{"4":1}}],["upconverted",{"2":{"71":2}}],["upconversion",{"2":{"4":1}}],["upwards",{"2":{"65":2}}],["up",{"0":{"49":1},"2":{"6":1,"22":1,"36":1,"43":1,"48":1,"49":2,"73":2}}],["u22+v22",{"2":{"71":1}}],["u2+v2",{"2":{"70":1}}],["u2^2",{"2":{"65":1,"71":2}}],["u2^2+v2^2",{"2":{"27":1,"28":1,"29":1}}],["u2k+1",{"2":{"11":2}}],["u2−α4",{"2":{"6":1}}],["u2",{"2":{"6":1,"11":2,"12":1,"26":36,"64":129,"65":13,"71":18}}],["u12+v12",{"2":{"71":1}}],["u1^2",{"2":{"22":5,"23":2,"32":1,"56":1,"61":2,"65":2,"67":1,"68":2,"70":1,"71":3,"73":1,"74":1}}],["u1^2+v1^2",{"2":{"19":2,"27":1,"28":1,"29":1,"51":2,"61":1}}],["u1v1v2⋮v2k+1ωlc",{"2":{"12":1}}],["u13+3u23+6u12u2−3v12u1+3v22u2+6v12u2",{"2":{"6":1}}],["u13+u12u2+v12u1−v12u2+2u22u1+2v22u1+2u1v1v2",{"2":{"6":1}}],["u1−3α4",{"2":{"6":1}}],["u1",{"2":{"6":1,"10":1,"20":28,"21":21,"26":40,"36":5,"39":5,"61":11,"64":145,"65":14,"66":10,"70":11,"71":22,"72":21,"73":2}}],["unequal",{"2":{"68":1}}],["unusual",{"2":{"65":1}}],["unlike",{"2":{"33":1,"34":1,"45":1}}],["undriven",{"2":{"21":1}}],["understanding",{"2":{"34":1,"36":1}}],["underbrace",{"2":{"32":6}}],["underlying",{"2":{"22":1,"39":1,"45":1}}],["underdetermined",{"2":{"11":1}}],["under",{"2":{"2":1,"12":2,"40":1,"56":1,"57":1,"65":2,"70":1}}],["union",{"2":{"47":1,"48":1,"49":2,"55":1,"56":1}}],["units",{"2":{"21":1}}],["unique",{"2":{"6":1,"64":3}}],["unstable",{"2":{"8":3,"14":2,"23":1,"51":1,"61":1,"74":1}}],["unknown",{"2":{"5":1}}],["uv",{"2":{"4":1}}],["uv^2",{"2":{"4":2}}],["u^2",{"2":{"4":2}}],["u^3",{"2":{"4":4}}],["u0=",{"2":{"74":1}}],["u0",{"2":{"2":2,"13":2,"14":10,"15":4,"58":2,"73":9}}],["u",{"2":{"2":11,"4":11,"5":1,"8":4,"11":1,"12":1,"13":8,"15":3,"18":1,"26":1,"32":1,"40":1,"42":1,"53":1,"65":8,"66":1,"69":1,"70":2,"72":3,"73":2}}],["usual",{"2":{"63":1,"71":1}}],["usually",{"2":{"57":1,"72":1}}],["usage",{"0":{"35":1},"1":{"36":1}}],["useful",{"2":{"48":1,"53":1,"61":1}}],["user",{"2":{"22":1,"56":1}}],["uses",{"2":{"7":1,"65":1}}],["use",{"2":{"6":1,"8":1,"11":1,"12":1,"15":2,"22":1,"30":1,"39":1,"55":2,"58":2,"65":1,"68":1,"69":1,"72":1,"73":1,"74":1}}],["used",{"2":{"2":1,"28":1,"29":1,"33":1,"36":1,"37":2,"39":1,"40":3,"41":2,"42":1,"43":1,"44":1,"54":1,"55":3,"56":1,"57":1,"58":5,"69":1,"70":1,"74":1}}],["using",{"0":{"71":1},"2":{"4":1,"12":1,"13":1,"17":2,"20":1,"21":1,"23":2,"25":2,"29":1,"30":1,"31":1,"35":1,"37":3,"39":2,"40":3,"44":1,"49":2,"51":1,"54":3,"55":2,"56":1,"58":3,"60":1,"64":1,"65":2,"66":2,"67":1,"68":1,"70":1,"71":1,"72":1}}],["us",{"2":{"1":2,"14":1,"15":1,"23":1,"28":1,"29":1,"32":1,"61":1,"65":3,"68":1,"70":1,"71":3,"73":1,"74":1}}],["judiciously",{"2":{"69":1}}],["just",{"2":{"65":1}}],["jump",{"2":{"65":3,"74":2}}],["juliaode",{"2":{"74":1}}],["juliaodeproblem",{"2":{"58":1}}],["juliau0",{"2":{"73":1}}],["juliausing",{"2":{"17":1,"21":1,"25":1,"32":1,"61":1,"64":1,"65":1,"66":1,"69":1,"72":1,"73":1}}],["juliadiff",{"2":{"69":1}}],["juliadrop",{"2":{"39":1}}],["juliaresult",{"2":{"64":1,"70":1,"71":1}}],["juliais",{"2":{"60":2}}],["juliaωfunc",{"2":{"58":1}}],["juliaexport",{"2":{"54":1}}],["juliaload",{"2":{"54":1}}],["juliatime",{"2":{"73":1}}],["juliatransform",{"2":{"50":1}}],["juliatotaldegree",{"2":{"47":1}}],["juliawarmup",{"2":{"49":1}}],["juliap1",{"2":{"71":1}}],["juliap1=plot",{"2":{"71":1}}],["juliapolyhedral",{"2":{"48":1}}],["juliaplot",{"2":{"22":2,"23":1,"32":1,"43":1,"51":1,"52":1,"53":1,"59":1,"64":2,"67":2,"68":2,"70":1}}],["juliasweep",{"2":{"58":1,"74":1}}],["juliasweep1",{"2":{"58":1}}],["juliasort",{"2":{"57":1}}],["juliasave",{"2":{"54":1}}],["juliastruct",{"2":{"44":1,"45":1}}],["juliaslow",{"2":{"39":1}}],["juliajacobianspectrum",{"2":{"44":1}}],["juliajulia>",{"2":{"31":3,"36":1,"37":2,"39":2}}],["juliaforeach",{"2":{"64":1}}],["juliafourier",{"2":{"39":1}}],["juliafixed",{"2":{"22":1,"23":1,"67":1,"68":2,"70":1,"71":1}}],["juliamutable",{"2":{"37":1,"40":2,"44":1,"55":1}}],["juliaget",{"2":{"36":1,"37":2,"39":1,"42":1,"45":2,"55":1,"64":1}}],["julia>drop",{"2":{"39":3}}],["julia>",{"2":{"31":3,"36":3,"37":5,"39":3,"55":5,"58":5}}],["juliaclassify",{"2":{"22":1,"56":1}}],["juliaadd",{"2":{"21":1,"37":1,"65":1,"70":1,"71":1}}],["juliavaried",{"2":{"19":2,"20":2,"27":1,"28":1,"29":1,"70":1}}],["juliaharmonicbalance",{"2":{"22":1}}],["juliaharmonic",{"2":{"19":1,"21":1,"39":1,"64":1,"70":1}}],["julia",{"2":{"18":1,"20":1,"21":1,"23":1,"26":1,"30":1,"31":2,"55":2,"56":1,"58":1}}],["j=2",{"2":{"15":1}}],["j+im",{"2":{"15":2}}],["j+ω",{"2":{"15":2}}],["j−im",{"2":{"15":2}}],["j−ω~",{"2":{"15":1}}],["j−ω",{"2":{"15":2}}],["j2=1",{"2":{"15":1}}],["j2+δv^i",{"2":{"15":1}}],["j±ω",{"2":{"15":2}}],["javier",{"2":{"30":1}}],["jacobians",{"2":{"54":1}}],["jacobianspectrum",{"2":{"44":3}}],["jacobian",{"2":{"14":1,"15":1,"22":1,"41":1,"42":6,"44":1,"45":1,"55":5,"60":2,"61":2,"67":1}}],["jan",{"2":{"7":1,"30":1,"41":1}}],["jt",{"2":{"2":5,"13":2,"15":2,"40":2}}],["j",{"2":{"2":2,"13":4,"14":2,"15":37,"30":2,"40":5,"55":2,"65":15}}],["jld2",{"2":{"22":1,"54":3}}],["jl",{"2":{"1":1,"2":1,"7":1,"15":2,"16":1,"20":1,"21":2,"23":1,"29":1,"30":2,"31":1,"32":1,"37":1,"47":1,"48":1,"49":1,"50":1,"51":1,"54":2,"55":1,"56":1,"58":3,"59":1,"66":1,"69":3,"72":2,"73":2}}],["hypothetically",{"2":{"70":1}}],["huber",{"2":{"66":1,"68":2}}],["human",{"2":{"40":1}}],["hide",{"2":{"56":1,"65":1}}],["hilbert",{"2":{"55":2,"57":2}}],["highest",{"2":{"45":1}}],["higher",{"0":{"45":1},"2":{"1":2,"2":1,"4":1,"6":1,"33":1,"34":1,"39":1,"71":1}}],["high",{"2":{"33":1,"34":2,"47":1,"71":1}}],["hence",{"2":{"67":1}}],["help",{"2":{"61":1}}],["heugel",{"2":{"30":1}}],["here",{"2":{"3":1,"4":1,"28":1,"29":1,"45":1,"64":1,"65":1,"66":1,"67":1,"69":3,"70":2,"71":1,"72":2,"73":1}}],["holds",{"2":{"37":2,"40":3,"44":2,"45":1,"55":3}}],["homotopycontinuation",{"2":{"21":1,"47":3,"48":3,"49":3,"55":1,"69":1}}],["homotopy",{"2":{"11":1,"12":1,"21":1,"22":4,"47":3,"48":2,"49":1,"55":1,"69":1,"70":1}}],["hopf",{"0":{"8":1},"2":{"8":3,"22":1,"32":1,"40":2,"55":2,"61":2,"64":2,"70":1,"71":1}}],["how",{"2":{"7":1,"10":2,"71":1,"72":1}}],["however",{"2":{"1":1,"8":2,"11":1,"12":1,"34":1,"44":1,"45":1,"47":1,"58":1,"64":1,"65":2,"68":1,"71":2,"72":1}}],["h",{"2":{"4":1,"47":1}}],["harder",{"2":{"71":1}}],["hard",{"2":{"69":1}}],["harm",{"2":{"59":4}}],["harmvar",{"2":{"13":3}}],["harmeqfull",{"2":{"65":5}}],["harmeq",{"2":{"2":3}}],["harmansatz",{"2":{"2":4}}],["harmonicequation",{"0":{"40":1},"2":{"39":3,"40":5,"42":2,"45":1,"54":1,"55":3,"58":4,"59":3,"60":1,"63":1,"73":1}}],["harmonicvariable",{"0":{"40":1},"2":{"39":1,"40":4,"45":1}}],["harmonics",{"0":{"71":1},"2":{"1":2,"6":2,"8":2,"11":1,"13":2,"15":1,"34":1,"36":3,"37":5,"39":6,"40":5,"69":2,"71":5,"72":1}}],["harmonically",{"2":{"1":1}}],["harmonicbalancemethod",{"2":{"55":1}}],["harmonicbalance",{"2":{"1":1,"2":1,"7":1,"15":2,"16":1,"17":1,"21":2,"25":1,"30":2,"31":4,"32":2,"36":1,"37":4,"39":5,"40":3,"42":1,"43":1,"44":3,"45":4,"47":1,"48":1,"49":1,"50":2,"51":1,"52":2,"53":1,"54":6,"55":3,"56":2,"57":1,"58":1,"60":2,"61":1,"64":1,"65":1,"66":2,"69":2,"72":2}}],["harmonic",{"0":{"0":1,"2":2,"38":1,"39":1,"55":1,"70":1},"1":{"1":1,"2":1,"3":1,"4":1,"5":1,"6":1,"39":1,"40":1,"56":1,"57":1},"2":{"1":4,"2":3,"3":1,"4":4,"5":1,"6":3,"8":7,"10":1,"11":4,"12":4,"13":2,"15":5,"18":1,"19":4,"20":7,"21":9,"22":3,"23":1,"26":8,"27":1,"28":1,"29":1,"30":2,"32":7,"33":1,"36":7,"37":12,"39":23,"40":7,"44":4,"45":2,"46":1,"55":2,"58":2,"61":7,"63":2,"64":11,"65":17,"66":7,"67":1,"68":2,"69":4,"70":11,"71":14,"72":8,"73":4,"74":2}}],["hand",{"2":{"42":1}}],["handles",{"2":{"52":1}}],["handle",{"2":{"34":1,"70":1}}],["having",{"2":{"10":1,"55":2}}],["have",{"2":{"6":1,"8":2,"12":1,"15":1,"19":1,"27":1,"28":1,"29":1,"31":1,"32":1,"57":1,"60":1,"61":3,"65":2,"69":1,"71":2}}],["has",{"2":{"4":1,"11":3,"12":1,"19":1,"41":1,"46":1,"55":1,"65":1,"67":1,"70":1}}],["^5",{"2":{"20":2}}],["^4",{"2":{"20":2}}],["^3",{"2":{"20":10,"21":5,"26":8,"32":2,"39":1,"61":2,"64":8,"65":6,"66":2,"69":1,"70":2,"71":6,"72":4}}],["^2",{"2":{"20":10,"21":9,"26":46,"39":3,"61":2,"64":113,"65":4,"66":2,"70":2,"71":18,"72":8}}],["^",{"2":{"1":2,"68":1}}],["δ=ωl−ω0",{"2":{"23":1}}],["δv^i",{"2":{"15":7}}],["δvi",{"2":{"15":5}}],["δu^i",{"2":{"15":8}}],["δui",{"2":{"15":5}}],["δu",{"2":{"14":5,"15":7}}],["δu=u−u0",{"2":{"14":1}}],["δxi",{"2":{"15":7}}],["δx¨",{"2":{"5":1}}],["δx",{"2":{"5":3}}],["δ",{"2":{"1":1}}],["ω≅ω0",{"2":{"71":1}}],["ωfunc",{"2":{"58":1}}],["ω2=ω0",{"2":{"28":1,"29":1}}],["ω2",{"2":{"28":1,"29":1}}],["ω₀^2",{"2":{"21":4,"61":3}}],["ω₀",{"2":{"21":2,"22":1,"23":1,"61":3}}],["ω^3",{"2":{"20":2}}],["ω^4",{"2":{"20":2}}],["ω^2",{"2":{"20":10,"21":2,"26":6,"36":2,"39":2,"61":2,"65":4,"66":2,"70":2,"71":4,"72":2}}],["ω~−ωi",{"2":{"15":1}}],["ω~",{"2":{"15":6}}],["ω=1",{"2":{"74":2}}],["ω=0",{"2":{"74":1}}],["ω=ω0",{"2":{"68":2}}],["ω=im",{"2":{"15":1}}],["ω=±ωd",{"2":{"1":1}}],["ω−im",{"2":{"15":1}}],["ω−ωlc",{"2":{"11":2,"12":4}}],["ω−ωd",{"2":{"1":1}}],["ω±kωlc",{"2":{"11":1}}],["ωt+ϕ0",{"2":{"71":1}}],["ωt+θ",{"2":{"21":1}}],["ωt",{"2":{"10":2,"11":2,"12":4,"18":2,"20":2,"21":4,"26":4,"32":2,"36":2,"39":2,"55":1,"61":2,"65":6,"66":2,"69":3,"70":4,"71":5,"72":2}}],["ωlc",{"2":{"10":1,"11":4,"12":1,"64":3}}],["ωlct+ϕ",{"2":{"8":1}}],["ωm±kωlc",{"2":{"8":1}}],["ωm",{"2":{"8":1}}],["ω1±ω2=±ω0",{"2":{"28":1,"29":1}}],["ω1±ωlc",{"2":{"8":1}}],["ω1±2ωlc",{"2":{"8":1}}],["ω1",{"2":{"8":2,"28":1,"29":1}}],["ωj±kωlc",{"2":{"8":1}}],["ωj±ωlc",{"2":{"8":1}}],["ωj",{"2":{"8":2}}],["ωi",{"2":{"2":5,"13":2,"15":15,"40":3}}],["ωd≈ω0",{"2":{"6":1}}],["ωd2−ω02",{"2":{"4":1,"6":1}}],["ωd",{"2":{"3":2,"4":2,"5":1,"6":1}}],["ωd→2ωd",{"2":{"1":1}}],["ωdt+ϕ",{"2":{"5":1}}],["ωdt+θ",{"2":{"3":1}}],["ωdt",{"2":{"1":1,"4":4,"6":4}}],["ω+ωlc",{"2":{"11":2,"12":4}}],["ω+ω",{"2":{"1":1}}],["ω+ωd",{"2":{"1":1}}],["ω",{"2":{"1":5,"10":1,"12":2,"15":6,"18":3,"19":2,"20":9,"21":17,"22":4,"23":2,"26":16,"27":1,"28":1,"29":1,"32":4,"33":1,"36":7,"37":13,"39":7,"40":2,"43":2,"44":1,"45":2,"55":4,"58":3,"61":10,"64":114,"65":19,"66":10,"67":5,"68":6,"69":4,"70":13,"71":18,"72":13,"73":2,"74":3}}],["ω0^4",{"2":{"20":2}}],["ω0^2",{"2":{"18":1,"20":9,"26":7,"32":1,"36":3,"37":6,"39":3,"65":8,"69":2,"70":2,"71":4,"72":5}}],["ω02−9ωd2",{"2":{"6":1}}],["ω02−ωd2",{"2":{"4":1,"6":1}}],["ω02−ω2+iωγ",{"2":{"1":1}}],["ω02+3αx024",{"2":{"5":1,"71":1}}],["ω0",{"2":{"1":1,"18":1,"19":2,"20":4,"26":2,"27":1,"28":1,"29":1,"32":2,"36":2,"37":2,"39":2,"44":2,"64":1,"65":15,"66":5,"67":2,"68":2,"69":1,"70":3,"71":2,"72":2,"73":1}}],["γ²",{"2":{"44":1}}],["γ^2",{"2":{"20":2}}],["γ=>0",{"2":{"71":1}}],["γ=l",{"2":{"15":1}}],["γ=1",{"2":{"15":1}}],["γ",{"2":{"1":1,"15":1,"18":2,"19":2,"20":7,"21":8,"22":1,"23":1,"26":15,"27":1,"28":1,"29":1,"44":1,"55":1,"61":8,"65":15,"66":7,"67":1,"68":2,"69":3,"70":7,"71":9,"72":7,"73":1}}],["ceases",{"2":{"65":1}}],["certain",{"2":{"56":1}}],["center",{"2":{"44":1}}],["centered",{"2":{"15":4}}],["csv",{"2":{"54":4}}],["cite",{"2":{"30":1}}],["citation",{"0":{"30":1}}],["circuits",{"2":{"1":1}}],["curves",{"2":{"61":1}}],["curve",{"2":{"55":1,"57":1,"68":1,"70":1}}],["current",{"2":{"55":1,"57":1}}],["currently",{"2":{"41":1,"57":1}}],["cut=λ",{"2":{"61":1}}],["cut=",{"2":{"51":1}}],["cut",{"2":{"51":4,"61":1}}],["custom",{"2":{"22":1,"58":1}}],["cubic",{"2":{"19":2,"20":1,"27":1,"28":1,"29":1,"69":1,"71":1}}],["chosen",{"2":{"69":1,"72":1}}],["choose",{"2":{"13":1}}],["choosing",{"2":{"12":1,"64":1}}],["check",{"2":{"15":1,"25":1,"31":1,"32":1,"55":1}}],["changing",{"2":{"67":1}}],["changes",{"2":{"57":2}}],["change",{"2":{"57":1,"68":1}}],["chaotic",{"2":{"51":1}}],["characterise",{"2":{"65":1}}],["characterised",{"2":{"11":1}}],["characteristic",{"2":{"14":1,"67":1,"68":1}}],["chapter",{"2":{"7":1}}],["clock",{"2":{"64":2}}],["closed",{"2":{"65":2}}],["closest",{"2":{"23":1}}],["close",{"2":{"6":1}}],["clases",{"2":{"22":1}}],["class",{"2":{"23":2,"43":1,"51":5,"52":5,"53":5,"56":2,"61":2,"64":1}}],["classification",{"2":{"55":1,"56":1}}],["classified",{"2":{"22":1,"55":1,"56":1,"61":1}}],["classifying",{"0":{"56":1,"61":1},"2":{"55":1,"70":1}}],["classify",{"2":{"22":1,"55":3,"56":4,"61":2}}],["classes",{"2":{"22":1,"32":1,"55":3,"56":5,"64":1,"70":2,"71":1}}],["class=",{"2":{"20":1,"22":3,"23":3,"51":4,"61":4,"64":1}}],["clear",{"2":{"15":1}}],["clearly",{"2":{"8":1,"71":1,"73":1}}],["cycle",{"2":{"8":1,"10":1,"11":3,"12":1,"30":1,"61":1,"63":1,"64":4,"65":5}}],["cycles",{"0":{"7":1,"8":1,"63":1},"1":{"8":1,"9":1,"10":1,"11":1,"12":1,"64":1,"65":1},"2":{"7":1,"8":1,"10":2,"11":1,"30":1,"61":1,"64":2,"65":2}}],["crucial",{"2":{"72":1}}],["crank",{"2":{"70":1}}],["create",{"2":{"58":1}}],["created",{"2":{"39":1,"56":1,"64":1}}],["creates",{"2":{"15":1,"56":1,"58":1}}],["creation",{"2":{"8":1}}],["crosses",{"2":{"8":1}}],["critical",{"2":{"8":1}}],["capabilities",{"2":{"62":1}}],["capture",{"2":{"33":1,"67":1,"71":1,"72":1}}],["captured",{"2":{"1":1,"6":1}}],["capturing",{"2":{"8":1}}],["catagory",{"2":{"61":1}}],["catogaries",{"2":{"61":1}}],["cases",{"2":{"55":1,"60":1}}],["cartesian",{"2":{"39":1}}],["camera=",{"2":{"23":1}}],["calculation",{"2":{"67":1}}],["calculations",{"2":{"55":1}}],["calculating",{"2":{"23":1,"41":2}}],["calculate",{"2":{"45":1,"66":1}}],["calculated",{"2":{"15":1}}],["calling",{"2":{"64":1}}],["callable",{"2":{"59":1}}],["called",{"2":{"23":1,"28":1,"29":1,"55":1,"61":1}}],["call",{"2":{"2":1,"8":1,"21":1,"64":1}}],["caused",{"2":{"15":1}}],["cause",{"2":{"1":1}}],["cannot",{"2":{"6":1,"34":1,"45":1}}],["can",{"2":{"1":1,"4":1,"5":1,"8":2,"12":3,"14":1,"15":3,"21":3,"22":4,"23":3,"28":1,"29":1,"31":2,"32":2,"34":1,"36":1,"39":1,"40":1,"42":1,"43":1,"48":1,"50":1,"51":1,"54":3,"55":1,"56":1,"58":3,"60":1,"61":6,"62":1,"64":1,"65":1,"67":2,"68":1,"69":1,"71":3,"73":1}}],["cavity",{"2":{"1":1}}],["code",{"2":{"73":1}}],["coded",{"2":{"51":1,"57":1}}],["codebases",{"2":{"30":1}}],["colour",{"2":{"51":1,"57":1}}],["color=",{"2":{"23":1}}],["colors",{"2":{"23":1}}],["collected",{"2":{"32":1}}],["collecting",{"2":{"2":1}}],["collective",{"2":{"1":1}}],["could",{"2":{"65":1}}],["counting",{"2":{"23":1}}],["count",{"2":{"23":1,"52":2,"53":2}}],["coupled",{"0":{"65":1},"2":{"37":2,"65":2,"69":2,"70":1,"71":1}}],["couples",{"2":{"1":1}}],["coupling",{"2":{"1":1,"65":1}}],["coordinates",{"2":{"65":1}}],["coordinates=",{"2":{"39":1}}],["coordinate",{"2":{"13":2}}],["core",{"2":{"13":1}}],["corresponding",{"2":{"11":1,"15":2,"23":1,"37":1,"39":1,"40":1,"45":1,"71":1}}],["correspondingly",{"2":{"5":1}}],["correspond",{"2":{"6":1}}],["comes",{"2":{"47":1}}],["command",{"2":{"21":1,"31":2}}],["combined",{"2":{"12":1,"39":1,"58":2}}],["complicated",{"2":{"68":1}}],["complete",{"2":{"69":1}}],["completeness",{"2":{"21":1,"46":1}}],["complexf64",{"2":{"45":1,"49":1,"55":2,"60":2}}],["complex",{"2":{"1":1,"8":1,"14":1,"15":1,"21":1,"22":3,"47":2,"60":1,"61":1,"67":1,"68":1,"71":1}}],["compare",{"2":{"73":1}}],["compared",{"2":{"12":1}}],["comparable",{"2":{"71":1}}],["compatible",{"2":{"51":1,"57":1}}],["compilation",{"2":{"47":1,"48":1,"49":1}}],["compile",{"2":{"47":1,"48":1,"49":1}}],["compiled",{"2":{"45":2,"55":1}}],["composite",{"2":{"54":1}}],["composed",{"2":{"37":1,"39":1}}],["component",{"2":{"6":1,"71":1}}],["components",{"2":{"2":2,"13":1,"15":3,"34":1,"39":1,"72":1}}],["comprehensive",{"2":{"34":1}}],["computationally",{"2":{"58":1,"72":1}}],["computational",{"2":{"47":1}}],["computing",{"2":{"33":1}}],["compute",{"2":{"27":1,"35":1,"60":1,"67":1}}],["co",{"2":{"8":1}}],["convert",{"2":{"70":1}}],["converted",{"2":{"55":1}}],["converting",{"2":{"42":1}}],["conversely",{"2":{"14":1}}],["conversion",{"0":{"1":1},"2":{"1":2,"3":1,"5":1,"8":1,"71":2}}],["conditions",{"2":{"22":1,"28":1,"29":1}}],["condition",{"0":{"73":1},"2":{"14":1,"56":1,"58":1,"60":1,"65":1,"72":1,"73":2,"74":1}}],["conclude",{"2":{"12":1}}],["consequence",{"2":{"54":1}}],["consitutes",{"2":{"65":1}}],["consisting",{"2":{"40":1}}],["consistent",{"2":{"21":1}}],["consider",{"2":{"21":1,"61":1,"69":1}}],["considered",{"2":{"21":1,"45":1,"48":1,"60":1}}],["considering",{"2":{"10":1}}],["constraints",{"2":{"69":1}}],["constrain",{"2":{"12":1}}],["constructs",{"2":{"48":1}}],["constructor",{"2":{"44":1,"73":1,"74":1}}],["constructing",{"2":{"13":1}}],["construction",{"2":{"11":1,"65":1}}],["construct",{"2":{"8":1,"63":1,"70":1}}],["constituting",{"2":{"8":1,"72":1}}],["constant",{"2":{"4":2,"18":1,"26":1,"32":1,"39":2,"40":1,"55":1,"58":1,"66":1,"69":2,"72":1,"73":1,"74":1}}],["contain",{"2":{"72":1}}],["contained",{"2":{"58":1}}],["containing",{"2":{"22":1,"54":1}}],["contains",{"2":{"15":1,"21":1,"54":1,"70":1}}],["continuing",{"2":{"71":1}}],["continuously",{"2":{"57":1}}],["continuous",{"2":{"55":1,"57":2,"64":1,"65":1}}],["continuation",{"2":{"11":1,"12":1,"21":1,"55":1,"69":1,"70":1}}],["continue",{"2":{"8":1}}],["contributions",{"2":{"71":1}}],["contribute",{"2":{"11":1}}],["contributes",{"2":{"11":1}}],["contrast",{"2":{"6":1,"63":1}}],["conjugates",{"2":{"61":1}}],["conjugate",{"2":{"8":1,"67":1,"68":1}}],["cost",{"2":{"47":1}}],["cosines",{"2":{"15":1}}],["cos",{"2":{"4":6,"18":2,"20":2,"21":5,"26":5,"32":4,"36":2,"37":5,"39":3,"58":1,"61":2,"64":3,"65":6,"66":3,"69":2,"70":2,"71":2,"72":4}}],["cos⁡",{"2":{"2":2,"4":2,"6":4,"10":1,"12":2,"13":1,"15":3,"40":1}}],["coefficient=fcos⁡",{"2":{"69":1}}],["coefficients",{"2":{"4":1,"6":1,"39":1,"48":1}}],["coefficient",{"2":{"1":1,"32":2}}],["rich",{"2":{"71":1}}],["right",{"2":{"4":16}}],["rapidly",{"2":{"65":1}}],["raw",{"2":{"57":1}}],["rather",{"2":{"52":1,"58":1,"63":1,"71":1}}],["range=range",{"2":{"67":1,"68":3}}],["ranges",{"2":{"55":2}}],["range",{"2":{"19":3,"20":3,"22":1,"23":2,"27":2,"28":3,"29":3,"32":2,"43":2,"55":6,"57":2,"61":2,"65":2,"67":2,"68":5,"70":4,"71":2,"73":1}}],["random",{"2":{"17":1,"22":1,"25":2,"47":1,"48":1,"49":1}}],["rules",{"2":{"50":2}}],["running",{"2":{"73":1}}],["run",{"2":{"31":1,"65":1}}],["runge",{"2":{"10":1}}],["rmat",{"2":{"45":2}}],["role",{"2":{"71":1}}],["robustness",{"2":{"46":1}}],["routine",{"2":{"45":1}}],["roots",{"2":{"22":1,"69":2}}],["rotating",{"2":{"21":1,"44":2,"45":1,"65":1,"67":1}}],["r",{"2":{"15":2,"39":1,"70":1}}],["rlc",{"2":{"1":1}}],["relaxation",{"2":{"64":1}}],["rel",{"2":{"60":2}}],["relies",{"2":{"44":1}}],["reflect",{"2":{"71":1}}],["reflects",{"2":{"57":1}}],["refer",{"2":{"36":1,"64":1}}],["reference",{"0":{"36":1},"2":{"66":1}}],["reinstated",{"2":{"54":1}}],["reinstating",{"2":{"54":1}}],["regime",{"0":{"67":1,"68":1}}],["region",{"2":{"61":2}}],["regions",{"2":{"52":1,"61":1}}],["registry",{"2":{"31":1}}],["registered",{"2":{"31":1}}],["remake",{"2":{"73":1}}],["remain",{"2":{"71":1}}],["remains",{"2":{"65":1}}],["remaining",{"2":{"39":1}}],["removes",{"2":{"39":1,"58":1}}],["removed",{"2":{"12":1}}],["remove",{"2":{"12":2,"39":2}}],["reduced",{"2":{"72":1}}],["reduces",{"2":{"69":1}}],["redundant",{"2":{"11":1}}],["red",{"2":{"23":1}}],["returned",{"2":{"56":1}}],["returns",{"2":{"50":1,"57":1,"60":1}}],["return",{"2":{"37":2,"60":1}}],["returning",{"2":{"14":1}}],["retrieve",{"2":{"23":1}}],["retrieves",{"2":{"21":1}}],["replaced",{"2":{"39":1}}],["replacing",{"2":{"21":1}}],["repl",{"2":{"31":1}}],["represents",{"2":{"58":1}}],["representing",{"2":{"50":1}}],["represented",{"2":{"22":1}}],["represent",{"2":{"15":1,"23":1}}],["rev",{"2":{"21":2,"30":1,"65":1,"66":1}}],["receives",{"2":{"61":1}}],["recipesbase",{"2":{"51":1,"59":1}}],["recompiling",{"2":{"54":1}}],["reconstruct",{"2":{"40":1,"65":1}}],["recover",{"2":{"19":1}}],["recall",{"2":{"12":1}}],["recast",{"2":{"5":1}}],["rewrite",{"2":{"15":1}}],["required",{"2":{"51":1}}],["requires",{"2":{"22":1,"58":1}}],["require",{"2":{"15":1,"65":1}}],["re",{"2":{"8":2,"14":2,"15":12,"44":1,"60":2}}],["reasonable",{"2":{"71":1}}],["ready",{"2":{"70":2}}],["reads",{"2":{"69":1}}],["readable",{"2":{"40":1}}],["rearranging",{"2":{"6":1}}],["rearranged",{"2":{"57":1}}],["rearranges",{"2":{"55":1}}],["rearrange",{"2":{"4":1}}],["realify",{"2":{"50":1}}],["real",{"2":{"1":1,"4":1,"6":1,"8":1,"15":2,"22":2,"32":1,"55":2,"60":3,"61":3,"64":1,"67":3,"68":2,"70":2,"71":2}}],["rest",{"2":{"56":1}}],["res",{"2":{"30":1,"43":2,"44":1,"50":1,"51":7,"52":1,"53":1,"54":2,"56":5,"60":2}}],["rescaling",{"2":{"21":1}}],["resonance",{"2":{"15":1,"21":2,"71":1}}],["resonantly",{"2":{"28":1,"29":1}}],["resonant",{"2":{"6":1,"61":1,"65":1}}],["resonator",{"0":{"21":1},"1":{"22":1,"23":1},"2":{"3":1,"21":1,"67":1,"69":1,"71":1}}],["resonators",{"2":{"1":1}}],["result",{"2":{"12":1,"19":4,"20":4,"21":1,"22":9,"23":4,"27":4,"28":4,"29":4,"32":3,"40":1,"43":2,"44":1,"50":2,"51":6,"52":2,"53":2,"54":2,"55":5,"56":4,"60":2,"61":9,"64":3,"65":4,"67":5,"68":11,"70":2,"71":7,"73":2}}],["resulting",{"2":{"4":1,"5":1,"10":1,"39":1,"40":1,"48":1,"54":1,"55":1,"71":1}}],["results",{"2":{"4":2,"6":1,"15":1,"64":2,"65":1,"66":1,"70":2}}],["respectively",{"2":{"15":1}}],["respective",{"2":{"4":1,"6":1,"15":1,"50":1}}],["respect",{"2":{"4":1,"6":1,"42":1}}],["responsematrix",{"2":{"45":3}}],["response",{"0":{"13":1,"15":1,"41":1,"43":1,"66":1},"1":{"14":1,"15":1,"42":1,"43":1,"44":2,"45":2,"67":1,"68":1},"2":{"3":2,"5":3,"8":1,"15":9,"19":1,"21":2,"27":2,"28":2,"29":2,"41":2,"43":5,"44":6,"45":10,"55":2,"66":2,"67":6,"68":8,"70":1,"71":5}}],["responds",{"2":{"1":1,"14":1,"71":1}}],["psd",{"2":{"67":2,"68":1}}],["pkg",{"2":{"31":3}}],["p3",{"2":{"27":2,"28":2,"29":2}}],["p2=plot",{"2":{"71":1}}],["p2",{"2":{"27":2,"28":2,"29":2,"65":4,"71":3}}],["p1",{"2":{"27":2,"28":2,"29":2,"65":2,"71":2}}],["pump",{"2":{"65":3}}],["pumping",{"0":{"17":1},"1":{"18":1,"19":1,"20":1},"2":{"65":1}}],["purely",{"2":{"61":1}}],["purpose",{"0":{"34":1},"2":{"2":1,"4":1,"21":1}}],["peak",{"2":{"44":2,"67":3,"68":1}}],["peaks",{"2":{"15":1,"44":1,"68":2}}],["permutation",{"2":{"61":1}}],["perfrom",{"2":{"55":1}}],["performe",{"2":{"61":1}}],["performed",{"2":{"54":1}}],["performs",{"2":{"47":1,"49":1}}],["perform",{"2":{"23":1,"45":1,"64":1}}],["perturb",{"2":{"60":2}}],["perturbed",{"2":{"49":1}}],["perturbation",{"2":{"14":1,"15":2,"45":1,"49":3,"71":1}}],["perturbations",{"2":{"14":2,"70":1}}],["perturbatively",{"2":{"6":1,"71":1}}],["perturbative",{"0":{"5":1},"2":{"45":1,"71":4}}],["period",{"2":{"20":1}}],["periodic",{"2":{"3":1,"8":1,"32":2,"64":1,"65":1}}],["play",{"2":{"71":1}}],["place",{"2":{"8":2,"71":1,"73":1}}],["plotted",{"2":{"32":1,"51":1,"67":2}}],["plotting",{"0":{"50":1,"51":1,"52":1,"59":1},"1":{"51":1,"52":1,"53":1},"2":{"23":1,"40":1,"54":1,"56":1,"65":1,"70":1}}],["plottable",{"2":{"15":1}}],["plot",{"0":{"53":2},"2":{"19":2,"20":2,"22":3,"23":5,"27":4,"28":4,"29":4,"43":3,"51":16,"52":5,"53":6,"54":1,"59":6,"61":3,"65":6,"67":5,"68":11,"70":1,"71":5,"73":3,"74":1}}],["plots",{"2":{"17":2,"22":2,"23":1,"25":2,"43":1,"51":6,"52":2,"53":1,"59":1,"66":2,"73":1}}],["please",{"2":{"16":1}}],["plugging",{"2":{"15":1,"70":1}}],["pametric",{"2":{"61":1}}],["package",{"2":{"54":1,"58":1,"62":1}}],["packages",{"0":{"25":1},"2":{"25":1}}],["passed",{"2":{"51":1,"52":1,"53":1}}],["passing",{"2":{"51":1,"52":1,"53":1}}],["paper",{"2":{"30":2,"65":2,"69":1}}],["paths",{"2":{"22":1,"23":3}}],["page",{"2":{"20":1,"23":1,"29":1}}],["pairs",{"2":{"8":2,"11":2,"55":2,"70":3}}],["pair",{"2":{"8":1,"40":1,"51":1,"67":1,"68":1}}],["parse",{"2":{"54":1,"55":1,"72":1}}],["parses",{"2":{"50":1}}],["parsed",{"2":{"40":1,"56":1,"59":1}}],["particle",{"2":{"67":1}}],["particular",{"2":{"6":1,"21":1}}],["part",{"2":{"67":3}}],["parts",{"2":{"39":1,"61":2,"67":1}}],["parametron",{"2":{"22":1}}],["parametrically",{"0":{"21":1},"1":{"22":1,"23":1},"2":{"23":1,"72":1}}],["parametric",{"0":{"17":1},"1":{"18":1,"19":1,"20":1},"2":{"20":1,"21":3,"23":2,"59":2,"61":1}}],["parameterlist",{"2":{"55":2}}],["parameterrange",{"2":{"55":3}}],["parameter",{"0":{"74":1},"2":{"19":1,"22":4,"23":2,"27":1,"32":2,"40":1,"44":1,"49":3,"52":1,"53":1,"55":3,"57":4,"58":3,"61":2,"63":1,"64":1,"67":1,"68":2,"70":3,"71":2,"73":1}}],["parameters+variables",{"2":{"58":1}}],["parameters",{"0":{"22":1,"23":1},"2":{"4":1,"19":1,"20":1,"21":3,"22":1,"23":6,"26":1,"27":1,"32":1,"36":1,"37":1,"39":1,"40":2,"44":1,"51":1,"52":1,"53":1,"55":14,"56":2,"57":2,"58":7,"61":1,"64":1,"65":2,"66":1,"67":1,"68":2,"69":1,"70":5,"71":3,"72":2,"73":1,"74":1}}],["pino",{"2":{"7":1,"30":2}}],["phenomenon",{"2":{"68":1}}],["photons",{"2":{"28":2,"29":2}}],["phys",{"2":{"21":2,"30":2,"65":1,"66":1}}],["physical",{"2":{"11":1,"22":2,"32":2,"43":1,"51":1,"55":3,"56":3,"61":3,"64":1,"70":1,"71":2}}],["physically",{"2":{"1":1,"22":1,"70":1}}],["phases",{"2":{"61":1}}],["phase",{"0":{"52":1},"2":{"8":1,"12":2,"20":1,"23":4,"52":4,"61":4,"64":2,"65":1}}],["phd",{"2":{"7":1,"41":1}}],["pol",{"0":{"64":1},"2":{"64":1}}],["polyhedral",{"0":{"48":1},"2":{"48":3}}],["polynomials",{"2":{"69":1,"70":1}}],["polynomial",{"2":{"4":1,"12":1,"47":1,"48":1,"69":1}}],["positive",{"2":{"61":1}}],["possible",{"2":{"55":1,"56":1,"58":1,"65":1}}],["possesses",{"2":{"65":1}}],["possess",{"2":{"11":1}}],["powerful",{"2":{"72":1}}],["power",{"2":{"39":2,"67":1}}],["powers",{"2":{"39":6}}],["pointers",{"2":{"28":1,"29":1}}],["points",{"2":{"22":1,"32":1,"55":2,"64":1,"65":2,"70":1,"71":1}}],["point",{"2":{"1":2,"4":1,"8":1,"23":1,"58":1,"65":1,"70":1}}],["pr",{"2":{"16":1}}],["principal",{"2":{"71":1}}],["principle",{"2":{"11":1,"65":1}}],["primary",{"2":{"34":1,"37":2,"74":1}}],["primarily",{"2":{"2":1,"72":1}}],["providing",{"2":{"62":1}}],["progress",{"2":{"55":2,"57":3}}],["progress=true",{"2":{"43":1,"55":1}}],["project",{"2":{"30":1}}],["projecting",{"2":{"15":1}}],["proximity",{"2":{"22":1}}],["property",{"2":{"52":1}}],["properties",{"2":{"22":1}}],["proportional",{"2":{"15":1}}],["propagates",{"2":{"1":1}}],["probes",{"2":{"15":1}}],["problems",{"2":{"52":1,"63":1,"71":1}}],["problem",{"2":{"10":1,"21":1,"40":1,"55":14,"56":2,"57":1,"65":3,"72":2,"73":5,"74":2}}],["prompting",{"2":{"11":1}}],["procedure",{"2":{"13":1,"46":1,"64":1,"71":1}}],["procedures",{"2":{"11":1}}],["proceeds",{"2":{"65":1,"74":1}}],["proceed",{"2":{"10":1}}],["process",{"2":{"2":1,"4":2,"5":1,"28":1,"29":1,"43":1,"58":1,"71":1}}],["products",{"2":{"39":2}}],["product",{"2":{"8":1}}],["previous",{"2":{"63":1}}],["previously",{"2":{"5":1,"56":1}}],["preferable",{"2":{"55":1}}],["prefactor",{"2":{"2":1}}],["precedence",{"2":{"55":2}}],["prepares",{"2":{"49":1}}],["pressed",{"2":{"31":1}}],["presence",{"2":{"15":1}}],["present",{"2":{"1":1,"61":1,"71":1}}],["=x1cos⁡",{"2":{"71":1}}],["=x0",{"2":{"71":1}}],["=x0cos⁡",{"2":{"5":1,"71":1}}],["=ηf0cos⁡",{"2":{"65":1}}],["=real",{"2":{"56":1}}],["==2",{"2":{"51":1}}],["=γtg",{"2":{"47":1}}],["=>",{"2":{"19":12,"20":12,"21":1,"22":7,"23":7,"27":6,"28":6,"29":6,"32":5,"37":1,"55":7,"58":8,"61":6,"64":4,"65":11,"67":5,"68":10,"69":1,"70":10,"71":4,"73":9,"74":2}}],["=ξ⋅v−re",{"2":{"15":1}}],["=ξ⋅v⟹a",{"2":{"15":1}}],["=a",{"2":{"15":2}}],["=∑j=1mui",{"2":{"40":1}}],["=∑j=1mi",{"2":{"15":1}}],["=∑j=1miδui",{"2":{"15":1}}],["=∑j=1miui",{"2":{"2":1,"13":1}}],["=∑rcrvreλrt",{"2":{"14":1}}],["=∇uf¯|u=u0",{"2":{"14":1}}],["=j",{"2":{"14":1,"15":1}}],["=−αx034cos⁡",{"2":{"5":1,"71":1}}],["=18ωd",{"2":{"4":1}}],["=ucos⁡",{"2":{"69":1}}],["=u0+ulccos⁡",{"2":{"8":1}}],["=u1cos⁡",{"2":{"11":1,"12":2,"71":1}}],["=u1",{"2":{"6":1,"10":1}}],["=u",{"2":{"4":1}}],["=f0cos⁡",{"2":{"65":1}}],["=f2",{"2":{"1":1}}],["=fcos⁡",{"2":{"1":1,"3":1,"21":1}}],["=",{"2":{"1":5,"2":4,"4":2,"13":2,"18":2,"19":7,"20":10,"21":5,"22":3,"23":3,"26":4,"27":6,"28":6,"29":6,"32":9,"36":6,"37":1,"39":4,"42":1,"48":1,"50":2,"51":2,"55":3,"56":1,"58":8,"60":1,"61":7,"64":4,"65":22,"66":4,"67":3,"68":6,"69":1,"70":6,"71":8,"72":4,"73":15,"74":3}}],["=0where",{"2":{"21":1}}],["=0",{"2":{"1":3,"2":1,"11":1,"13":1,"60":1}}],["vs",{"0":{"24":1},"1":{"25":1,"26":1,"27":1,"28":1,"29":1}}],["verify",{"2":{"60":1,"64":1}}],["very",{"2":{"28":1,"29":1,"49":1,"55":1,"69":1,"72":1}}],["version",{"2":{"22":1,"31":1}}],["veiωt+v∗e−iωt",{"2":{"15":1}}],["veiωt",{"2":{"15":1}}],["vector",{"2":{"1":1,"2":1,"13":1,"15":1,"37":1,"40":3,"44":1,"45":2,"50":1,"51":1,"52":1,"53":1,"55":3,"57":2,"58":1,"59":1,"70":1,"73":2}}],["v=λv",{"2":{"15":1}}],["vr",{"2":{"14":1}}],["visualize",{"2":{"61":2,"70":1}}],["visualization",{"2":{"50":1}}],["visualise",{"2":{"22":1,"71":1}}],["visible",{"2":{"28":1,"29":1}}],["via",{"0":{"17":1},"1":{"18":1,"19":1,"20":1},"2":{"21":1,"22":2}}],["vi",{"2":{"13":1,"40":1}}],["violate",{"2":{"11":1}}],["v3",{"2":{"12":1,"26":32,"64":97}}],["v3cos⁡ϕ+u3sin⁡ϕ",{"2":{"12":1}}],["v3+u2v",{"2":{"4":1}}],["vanish",{"2":{"70":1}}],["van",{"0":{"64":1},"2":{"64":1}}],["val",{"2":{"50":2}}],["valued",{"2":{"68":1,"71":1}}],["values",{"2":{"19":1,"22":1,"27":1,"32":1,"50":1,"55":4,"58":1,"67":1,"68":2,"70":3,"71":1,"73":1}}],["value",{"2":{"11":1,"60":1,"63":1,"65":2}}],["varying",{"2":{"58":1}}],["vary",{"2":{"58":1,"72":1}}],["varargs",{"2":{"51":1}}],["vars",{"2":{"39":2,"42":1}}],["var",{"2":{"37":2,"43":2,"74":1}}],["variation",{"2":{"70":1}}],["variable",{"2":{"1":1,"2":1,"8":1,"10":1,"11":2,"34":1,"36":2,"37":6,"39":7,"40":8,"43":1,"44":1,"55":1,"63":1,"64":2,"69":1,"70":1}}],["variables",{"2":{"1":1,"4":1,"6":1,"8":1,"11":4,"12":3,"13":1,"15":4,"18":2,"20":2,"21":4,"23":1,"26":3,"32":2,"36":2,"37":11,"39":5,"40":4,"42":1,"44":1,"45":4,"54":2,"55":2,"58":3,"61":3,"64":3,"65":5,"66":3,"69":4,"70":2,"71":3,"72":2}}],["varied",{"2":{"19":2,"20":2,"22":3,"23":3,"27":1,"28":1,"29":1,"32":2,"61":2,"65":2,"67":2,"68":2,"70":2,"71":3,"72":1,"73":1}}],["vastly",{"2":{"58":1,"72":1}}],["vast",{"2":{"12":1}}],["v2^2",{"2":{"65":1,"71":2}}],["v2+π",{"2":{"12":1}}],["v2+α4",{"2":{"6":1}}],["v2cos⁡ϕ−u2sin⁡ϕ",{"2":{"12":1}}],["v2which",{"2":{"12":1}}],["v2k+1",{"2":{"11":2}}],["v2",{"2":{"6":1,"11":2,"12":1,"26":36,"64":129,"65":13,"71":18}}],["v1^2",{"2":{"22":5,"23":2,"32":1,"56":1,"61":2,"65":2,"67":1,"68":2,"70":1,"71":3,"73":1,"74":1}}],["v13+u12v1+u12v2−v12v2+2u22v1+2v22v1−2u1u2v1",{"2":{"6":1}}],["v1+3α4",{"2":{"6":1}}],["v1",{"2":{"6":1,"10":1,"20":29,"21":21,"26":40,"36":5,"39":5,"61":11,"64":145,"65":13,"66":10,"70":11,"71":22,"72":21,"73":2}}],["v^2",{"2":{"4":2}}],["v^3",{"2":{"4":4}}],["v",{"2":{"2":4,"4":13,"5":1,"13":4,"15":1,"18":1,"26":1,"32":1,"40":1,"53":1,"65":1,"66":1,"69":1,"70":2}}],["voltage",{"2":{"1":1}}],["+ϵx1",{"2":{"71":1}}],["+ϵαx",{"2":{"71":1}}],["+re",{"2":{"15":3}}],["+im",{"2":{"15":2}}],["+i",{"2":{"15":1}}],["+ξeiωt",{"2":{"15":1}}],["+u3cos⁡",{"2":{"11":1,"12":1}}],["+u2cos⁡",{"2":{"11":1,"12":1,"71":1}}],["+u2",{"2":{"6":1}}],["+fsin⁡θ",{"2":{"6":1}}],["+3α",{"2":{"4":1}}],["+vsin⁡",{"2":{"21":1,"69":1}}],["+v3sin⁡",{"2":{"11":1,"12":1}}],["+v2sin⁡",{"2":{"11":1,"12":1,"71":1}}],["+v2",{"2":{"6":1}}],["+v1sin⁡",{"2":{"11":1,"12":2,"71":1}}],["+v1",{"2":{"6":1,"10":1}}],["+v",{"2":{"4":1}}],["+vi",{"2":{"2":1,"13":1,"40":1}}],["+αx3",{"2":{"3":1}}],["+ω2",{"2":{"21":1}}],["+ω",{"2":{"1":1}}],["+ω02x",{"2":{"1":1,"3":1,"69":1,"71":1}}],["+δvi",{"2":{"15":1}}],["+δx",{"2":{"5":1}}],["+δ",{"2":{"1":1}}],["+γx˙1",{"2":{"71":1}}],["+γx˙",{"2":{"1":1,"21":1,"69":1,"71":1}}],["+",{"2":{"1":6,"4":18,"5":1,"11":1,"12":5,"15":5,"18":5,"20":24,"21":30,"22":5,"23":2,"26":93,"32":11,"36":2,"37":6,"39":7,"44":1,"47":1,"56":1,"58":2,"61":16,"64":193,"65":45,"66":13,"67":1,"68":2,"69":6,"70":11,"71":38,"72":23,"73":1,"74":1}}],["xscale=",{"2":{"68":2}}],["x2−x1",{"2":{"65":1}}],["x2",{"2":{"65":1}}],["xˍt",{"2":{"36":1}}],["x=",{"2":{"22":1,"68":1}}],["x+y",{"2":{"39":4}}],["x+γx˙+αx3+ηx2x˙=fcos⁡ωtcan",{"2":{"21":1}}],["x+αx3+ηx2x˙+fd",{"2":{"21":1}}],["x+δ",{"2":{"15":1}}],["x^3+",{"2":{"65":1}}],["x^3",{"2":{"18":1,"20":1,"21":1,"26":1,"32":1,"61":1,"66":1,"69":1,"72":1}}],["x^2",{"2":{"1":4,"18":1,"20":1,"21":1,"26":1,"32":1,"39":1,"64":1,"72":1}}],["x−x0",{"2":{"15":1}}],["x0+δ",{"2":{"15":1}}],["x0=u2+v2",{"2":{"5":1}}],["x0",{"2":{"5":1,"15":2,"71":1}}],["x3c",{"2":{"61":1}}],["x3",{"2":{"4":1}}],["x~",{"2":{"1":2}}],["x¨1",{"2":{"71":1}}],["x¨1+γx˙1+ω02x1+αx13+2j",{"2":{"65":1}}],["x¨2+γx˙2+ω02x2+αx23+2j",{"2":{"65":1}}],["x¨",{"2":{"1":1,"3":1,"21":1,"69":1,"71":1}}],["xn",{"2":{"1":1}}],["x1−x2",{"2":{"65":1}}],["x1",{"2":{"1":1,"65":1,"71":3}}],["x",{"2":{"1":10,"4":2,"5":1,"6":1,"8":1,"10":2,"11":1,"12":3,"15":2,"18":8,"20":7,"21":18,"26":11,"32":16,"36":7,"37":22,"39":13,"47":4,"51":4,"53":1,"58":2,"61":7,"64":14,"65":17,"66":10,"67":1,"68":4,"69":16,"70":4,"71":4,"72":8}}],["xi",{"2":{"1":1,"2":2,"13":2,"15":1,"40":3}}],["lc^2",{"2":{"64":6}}],["lct",{"2":{"64":6}}],["lc",{"2":{"64":106}}],["long",{"2":{"72":1}}],["looks",{"2":{"71":1}}],["look",{"2":{"68":1}}],["looking",{"2":{"39":1}}],["lorentenzian",{"2":{"67":1}}],["lorentzians",{"2":{"15":1}}],["lorentzian",{"2":{"15":5,"44":7,"67":1,"68":1}}],["low",{"2":{"65":1,"68":2,"73":1,"74":1}}],["lowest",{"2":{"1":1}}],["lobe",{"2":{"61":3}}],["logscale=true",{"2":{"67":1,"68":3}}],["logscale=false",{"2":{"43":1}}],["log",{"2":{"55":1,"68":3}}],["loss",{"2":{"54":1}}],["loads",{"2":{"54":1}}],["loaded",{"2":{"54":2}}],["loading",{"0":{"54":1},"2":{"54":1}}],["load",{"2":{"25":1,"54":2,"58":1}}],["lt",{"2":{"8":1,"14":1,"60":3}}],["landscape",{"2":{"74":1}}],["later",{"2":{"37":1,"40":1,"74":1}}],["laser",{"2":{"28":1,"29":1}}],["last",{"2":{"15":1}}],["layout=",{"2":{"27":1,"28":1,"29":1}}],["largely",{"2":{"65":1}}],["large",{"2":{"22":3,"55":1,"56":2,"61":2,"68":2}}],["larger",{"2":{"6":1,"68":1}}],["lab",{"2":{"8":2}}],["labelled",{"2":{"56":1}}],["labeled",{"2":{"51":1}}],["labels",{"2":{"22":1,"32":1,"40":1,"55":2,"56":1,"61":1,"64":1,"70":2,"71":1}}],["label",{"2":{"1":6,"2":6,"4":3,"13":3,"32":3,"39":1,"56":1,"65":3}}],["l",{"2":{"4":1,"15":7,"30":1}}],["less",{"2":{"49":1,"51":1}}],["leveraging",{"2":{"34":1}}],["leaving",{"2":{"70":1}}],["leaking",{"2":{"65":1}}],["learn",{"2":{"32":1}}],["least",{"2":{"14":1,"70":1}}],["legend=false",{"2":{"65":1,"71":2}}],["legend=",{"2":{"27":3,"28":3,"29":3}}],["left",{"2":{"4":16,"42":1}}],["let",{"2":{"1":2,"14":1,"15":1,"23":1,"32":1,"55":1,"61":1,"65":2,"68":2,"70":1,"71":2,"73":1,"74":1}}],["ldots",{"2":{"2":2,"13":2}}],["lifetime",{"2":{"67":1}}],["linrange",{"2":{"55":1}}],["line",{"2":{"53":1}}],["lines",{"2":{"51":1}}],["linebreak",{"2":{"22":1}}],["linearly",{"2":{"58":1,"65":1,"67":2,"68":1,"74":1}}],["linearresponse",{"2":{"15":1,"42":1,"43":1,"44":3,"45":4,"66":1}}],["linearised",{"2":{"14":1,"15":1,"42":1}}],["linearisation",{"2":{"8":1}}],["linearize",{"2":{"14":1}}],["linear",{"0":{"13":1,"15":1,"41":1,"43":1,"66":1,"67":1},"1":{"14":1,"15":1,"42":1,"43":1,"44":2,"45":2,"67":1,"68":1},"2":{"1":1,"15":7,"21":2,"39":1,"41":1,"43":4,"44":1,"45":1,"55":1,"66":1,"67":3,"68":7}}],["light",{"2":{"34":1}}],["lies",{"2":{"34":1}}],["literature",{"2":{"21":1}}],["literate",{"2":{"20":1,"23":1,"29":1}}],["library",{"2":{"21":1}}],["list",{"2":{"16":1}}],["limitation",{"2":{"34":1}}],["limited",{"2":{"23":1}}],["limit",{"0":{"7":1,"8":1,"63":1},"1":{"8":1,"9":1,"10":1,"11":1,"12":1,"64":1,"65":1},"2":{"7":1,"8":2,"10":3,"11":4,"12":1,"30":2,"61":2,"63":1,"64":3,"65":7}}],["likewise",{"2":{"8":1}}],["like",{"2":{"1":1,"28":1,"29":1}}],["⋯",{"2":{"1":1}}],["2e6",{"2":{"65":1}}],["2e4",{"2":{"58":3,"74":3}}],["27",{"2":{"65":1}}],["2j",{"2":{"65":2}}],["2308",{"2":{"64":1}}],["2nm",{"2":{"40":2}}],["2nd",{"0":{"20":1}}],["250",{"2":{"68":2}}],["2500\\u001b",{"2":{"23":1}}],["2500",{"2":{"23":3}}],["25",{"2":{"64":2}}],["256",{"2":{"20":4}}],["2d",{"0":{"23":1},"2":{"23":5,"51":3,"52":2,"53":1,"57":1,"61":10}}],["2t",{"2":{"21":1}}],["2ω0=ω1",{"2":{"28":1,"29":1}}],["2ωt",{"2":{"26":2}}],["2ωt+ψ",{"2":{"21":2}}],["2ω",{"2":{"20":2,"26":1,"27":1,"28":1,"29":1}}],["2020",{"2":{"65":1,"66":1}}],["2022",{"2":{"30":1}}],["2024",{"2":{"7":1,"30":1}}],["2016",{"2":{"21":2}}],["20000",{"2":{"74":1}}],["200",{"2":{"19":1,"27":1,"28":1,"29":1,"58":1,"68":1}}],["2+",{"2":{"15":2}}],["2+γ2we",{"2":{"15":1}}],["2+4k+1",{"2":{"11":1}}],["2+4k",{"2":{"11":1,"12":1}}],["2",{"2":{"1":1,"4":5,"15":2,"18":1,"20":10,"21":8,"22":2,"23":4,"26":45,"27":1,"28":1,"29":1,"32":3,"36":8,"37":5,"39":9,"51":3,"55":3,"58":2,"59":1,"61":6,"64":184,"65":20,"66":4,"68":3,"69":1,"70":7,"71":13,"72":8,"73":10}}],["w",{"2":{"39":1,"70":1}}],["workflow",{"2":{"69":1}}],["works",{"2":{"52":1,"53":1}}],["work",{"2":{"30":1}}],["would",{"2":{"12":1,"28":1,"29":1,"44":1,"55":1,"65":1,"71":1}}],["warm",{"0":{"49":1},"2":{"49":2}}],["warmup",{"2":{"22":1,"49":3}}],["way",{"2":{"44":1,"65":1}}],["ways",{"2":{"37":1}}],["want",{"2":{"32":1,"57":1,"67":1,"70":1}}],["was",{"2":{"20":1,"23":2,"29":1,"40":1,"55":1,"71":1}}],["wave",{"0":{"17":1,"24":2,"27":1,"28":1},"1":{"18":1,"19":1,"20":1,"25":2,"26":2,"27":2,"28":2,"29":2},"2":{"28":2,"29":2}}],["wrote",{"2":{"16":1}}],["writing",{"2":{"12":1,"21":1}}],["wish",{"2":{"72":1}}],["width",{"2":{"44":1}}],["wip",{"0":{"41":1},"1":{"42":1,"43":1,"44":1,"45":1}}],["wikipedia",{"2":{"36":1}}],["will",{"2":{"14":1,"28":1,"29":1,"55":1,"65":1,"69":1,"70":1}}],["within",{"2":{"2":1,"33":1,"34":1,"35":1,"58":1,"60":2,"71":1}}],["with",{"2":{"1":1,"4":2,"5":1,"6":2,"8":1,"10":1,"11":1,"12":1,"15":3,"20":1,"21":1,"22":2,"23":1,"27":1,"28":3,"29":3,"31":1,"32":2,"37":2,"39":1,"42":1,"43":1,"47":2,"49":1,"50":1,"51":1,"52":1,"53":2,"54":3,"55":2,"56":2,"57":2,"58":1,"61":3,"64":2,"65":2,"67":2,"68":2,"71":1,"73":3,"74":1}}],["whose",{"2":{"40":1,"63":1}}],["white",{"2":{"43":2,"66":1,"68":1,"69":1}}],["while",{"2":{"21":1,"68":1}}],["which",{"2":{"1":1,"2":1,"4":1,"5":1,"6":1,"8":2,"11":3,"15":1,"21":3,"22":3,"31":1,"32":2,"33":1,"37":2,"39":2,"40":1,"50":1,"54":1,"55":5,"61":2,"64":3,"65":2,"68":2,"69":2,"70":3,"71":4,"72":3,"74":2}}],["whether",{"2":{"55":1,"57":1}}],["when",{"2":{"8":1,"14":1,"39":2,"40":2,"67":1,"73":1}}],["where",{"2":{"1":3,"5":1,"6":2,"8":1,"11":1,"12":1,"13":1,"14":1,"15":2,"21":1,"22":1,"23":2,"28":1,"29":1,"39":1,"55":1,"60":1,"61":1,"65":4,"67":1,"71":1}}],["what",{"2":{"8":1,"15":1,"32":1,"73":1}}],["were",{"2":{"51":2,"70":1,"71":1}}],["well",{"2":{"8":1,"68":1,"69":1}}],["weakly",{"2":{"67":1}}],["weak",{"2":{"3":1,"15":1,"67":1}}],["we",{"2":{"1":1,"2":5,"3":2,"4":5,"6":3,"7":1,"8":7,"10":3,"11":4,"12":8,"13":2,"14":2,"15":10,"19":4,"21":10,"22":3,"23":4,"25":1,"27":2,"28":5,"29":5,"30":1,"31":1,"32":1,"45":1,"46":1,"52":1,"55":2,"57":1,"61":7,"62":1,"63":1,"64":4,"65":9,"66":2,"67":3,"68":2,"69":7,"70":6,"71":9,"72":5,"73":1,"74":1}}],["squeezing",{"2":{"68":2}}],["sqrt",{"2":{"22":5,"23":2,"32":1,"44":1,"51":2,"56":1,"61":2,"65":1,"67":1,"68":2,"70":1,"71":5,"73":1,"74":1}}],["slight",{"2":{"67":1}}],["slowly",{"2":{"44":1,"72":1}}],["slow",{"2":{"4":2,"36":5,"39":13,"43":1,"70":1}}],["slower",{"2":{"2":1,"22":1,"70":1}}],["swept",{"2":{"53":1,"55":6,"56":1,"58":2,"68":2}}],["sweep=sweep",{"2":{"65":1,"74":1}}],["sweep1",{"2":{"58":1}}],["sweep2",{"2":{"58":2}}],["sweeps",{"0":{"74":1},"2":{"55":1,"58":3,"65":1}}],["sweep",{"2":{"21":1,"22":1,"23":1,"49":2,"51":1,"58":11,"61":3,"65":7,"74":6}}],["shapes",{"2":{"65":1}}],["shall",{"2":{"63":1}}],["shed",{"2":{"34":1}}],["should",{"2":{"31":1,"55":1,"57":1,"65":1}}],["showed",{"2":{"72":1}}],["shows",{"2":{"61":1,"67":1,"68":1,"71":1}}],["showcasing",{"2":{"16":1}}],["show",{"2":{"8":1,"43":1,"55":2,"56":1,"57":2,"62":1,"64":1,"69":1}}],["shown",{"2":{"2":1,"42":1,"43":1,"65":1,"67":1}}],["scale",{"2":{"68":1}}],["scales",{"2":{"12":1}}],["scimlbase",{"2":{"58":1}}],["scipost",{"2":{"30":1}}],["scenes",{"2":{"44":1}}],["scenario",{"2":{"22":1}}],["smallest",{"2":{"57":1}}],["smaller",{"2":{"6":1,"71":1}}],["small",{"2":{"12":1,"14":3,"71":1}}],["syntax",{"2":{"23":1,"73":1}}],["sym",{"2":{"70":2}}],["symbol",{"2":{"40":4,"47":1,"48":1,"49":1}}],["symbols",{"2":{"37":1,"45":1,"69":1}}],["symbolic",{"2":{"22":1,"42":1,"45":2,"50":1,"54":3,"55":5,"69":1}}],["symbolics",{"2":{"21":1,"37":1,"50":1,"51":1,"56":1,"59":1,"69":1}}],["symmetry",{"2":{"12":1,"64":1,"65":2}}],["symmetric",{"2":{"12":1}}],["system",{"0":{"18":1,"26":1,"64":1,"65":1},"2":{"1":4,"2":2,"8":2,"10":1,"11":2,"12":2,"13":3,"14":4,"15":1,"19":1,"21":5,"22":2,"28":1,"29":1,"33":1,"34":1,"35":2,"37":2,"45":1,"47":2,"48":1,"49":2,"57":1,"58":1,"61":1,"64":2,"65":4,"66":1,"67":1,"69":2,"71":3,"72":4,"73":2,"74":3}}],["systems",{"0":{"1":1},"2":{"1":3,"7":1,"12":1,"32":1,"33":1,"48":1,"49":2,"58":1,"62":1,"72":1}}],["satisfies",{"2":{"71":1}}],["satisfy",{"2":{"8":1,"65":1}}],["said",{"2":{"57":1}}],["saving",{"0":{"54":1},"2":{"54":1}}],["saveat=1",{"2":{"73":2}}],["saveat=100",{"2":{"65":1,"74":1}}],["saves",{"2":{"54":3}}],["saved",{"2":{"54":2}}],["save",{"2":{"22":2,"54":2}}],["same",{"2":{"6":1,"55":1,"58":1,"61":1,"65":1,"68":1,"71":1}}],["s",{"2":{"4":2,"7":1,"13":1,"23":1,"34":1,"37":1,"39":1,"45":2,"55":2,"57":1,"63":1,"65":1,"68":1,"72":1}}],["series",{"2":{"62":1}}],["select",{"2":{"70":1}}],["selected",{"2":{"58":1}}],["selection",{"2":{"51":1,"52":1,"53":1}}],["several",{"2":{"46":1}}],["section",{"2":{"33":1,"67":1,"71":1}}],["second",{"2":{"1":1,"6":1,"64":1}}],["sense",{"2":{"15":1}}],["sensible",{"2":{"11":1}}],["searching",{"2":{"8":1}}],["settles",{"2":{"65":1}}],["setting",{"2":{"4":1,"5":1,"45":1}}],["sets",{"2":{"55":1,"57":3}}],["set",{"2":{"4":2,"8":1,"13":2,"15":1,"19":1,"20":1,"21":1,"22":1,"26":1,"36":2,"37":2,"39":2,"40":5,"42":1,"44":2,"55":2,"57":6,"61":1,"64":1,"65":1,"66":2,"69":2,"70":1,"71":1,"72":1}}],["seed",{"2":{"25":1,"47":2,"48":2,"49":2,"55":2}}],["seen",{"2":{"10":1,"68":1}}],["see",{"2":{"4":1,"6":1,"7":1,"10":1,"12":1,"13":1,"15":3,"21":1,"47":1,"48":1,"49":1,"51":1,"55":1,"57":1,"61":2,"65":3,"67":1,"68":2,"69":1,"71":1,"74":1}}],["separate",{"2":{"2":1,"65":1}}],["step",{"2":{"69":1}}],["stems",{"2":{"68":1}}],["steadystates",{"2":{"21":1}}],["steady",{"2":{"2":1,"4":3,"5":2,"8":3,"11":2,"12":2,"13":1,"14":2,"15":1,"19":2,"20":2,"21":1,"22":5,"23":2,"27":2,"28":1,"29":1,"32":4,"39":1,"40":1,"41":1,"44":1,"50":1,"53":1,"55":12,"56":1,"57":2,"58":1,"61":3,"64":3,"65":6,"67":3,"68":4,"70":5,"71":3,"72":3,"73":2,"74":2}}],["stopped",{"2":{"65":1}}],["store",{"2":{"56":1}}],["stored",{"2":{"40":4,"44":1,"54":1,"56":2,"69":1,"70":1}}],["stores",{"2":{"37":1,"55":1}}],["style=",{"2":{"22":1}}],["studying",{"2":{"21":1}}],["still",{"2":{"8":1,"11":1,"20":1}}],["strongly",{"2":{"68":1,"71":1}}],["strong",{"2":{"68":1}}],["strings",{"2":{"51":1,"55":1}}],["string",{"2":{"40":2,"50":2,"51":6,"52":4,"53":4,"55":1,"56":2,"59":3}}],["strictly",{"2":{"8":1,"65":1}}],["structure",{"2":{"48":1}}],["structs",{"2":{"40":1,"44":1}}],["struct",{"2":{"37":2,"40":2,"44":1,"55":1}}],["strengths",{"2":{"68":1}}],["strength",{"2":{"23":2,"61":1}}],["straightforward",{"2":{"11":1,"72":1}}],["strategy",{"2":{"2":1}}],["staedy",{"0":{"69":1},"1":{"70":1,"71":1}}],["staes",{"2":{"11":1}}],["status",{"2":{"31":1}}],["stationary",{"2":{"30":1}}],["states",{"0":{"69":1},"1":{"70":1,"71":1},"2":{"2":1,"4":3,"5":1,"8":1,"11":3,"12":1,"14":1,"19":2,"20":2,"21":1,"22":3,"23":2,"27":2,"28":1,"29":1,"30":1,"32":3,"39":1,"41":1,"53":1,"55":8,"56":1,"57":2,"61":3,"64":2,"65":3,"67":1,"68":2,"70":3,"71":2,"72":2,"73":1}}],["state",{"2":{"1":1,"5":1,"8":3,"12":1,"13":1,"14":6,"15":2,"22":2,"32":1,"40":1,"44":1,"50":1,"55":4,"57":1,"58":1,"64":1,"65":6,"67":2,"68":2,"70":2,"71":1,"72":2,"73":1,"74":2}}],["starts",{"2":{"65":1}}],["started",{"0":{"32":1}}],["start",{"2":{"22":1,"47":1,"65":1,"66":1,"70":1,"72":1}}],["starting",{"2":{"4":1,"65":1}}],["stability",{"0":{"13":1,"14":1,"42":1},"1":{"14":1,"15":1},"2":{"14":1,"22":1,"23":1,"41":1,"42":1,"55":1,"60":2,"66":1,"67":1}}],["stable",{"2":{"8":2,"14":2,"15":1,"20":1,"22":2,"23":6,"32":2,"51":1,"52":1,"55":5,"56":1,"57":1,"60":6,"61":11,"64":2,"65":1,"68":1,"70":3,"71":2}}],["standing",{"2":{"1":1}}],["so",{"2":{"64":1,"65":1}}],["sorts",{"2":{"57":2}}],["sorting",{"0":{"57":1},"2":{"55":3,"57":5}}],["sorting=",{"2":{"55":1}}],["sort",{"2":{"51":1,"55":1,"57":4}}],["source",{"2":{"36":1,"37":4,"39":5,"40":2,"42":3,"43":1,"44":2,"45":3,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":3,"55":2,"56":1,"57":1,"58":2,"59":1,"60":2}}],["soln",{"2":{"59":4,"60":4}}],["solution",{"2":{"8":4,"12":3,"14":1,"15":1,"22":2,"23":1,"32":1,"45":1,"50":1,"54":1,"55":3,"56":1,"57":8,"58":2,"59":1,"60":4,"61":7,"64":3,"65":2,"69":1,"70":4,"71":3,"74":1}}],["solutions",{"0":{"51":1,"56":1,"57":1,"61":1},"2":{"4":2,"5":1,"6":3,"8":1,"11":3,"12":2,"21":1,"22":4,"23":4,"42":1,"43":1,"47":1,"48":2,"49":1,"50":4,"51":5,"52":5,"53":2,"55":9,"56":7,"57":11,"58":1,"60":1,"61":8,"64":3,"65":4,"71":1}}],["soluble",{"2":{"5":1,"69":1}}],["solving",{"0":{"55":1},"1":{"56":1,"57":1},"2":{"10":1,"15":1,"22":1,"23":3,"46":1,"55":1,"57":2,"58":1,"65":1,"70":2,"71":1}}],["solvable",{"2":{"1":2,"14":1}}],["solves",{"2":{"55":1,"70":1}}],["solved",{"2":{"12":2,"23":3,"40":1,"55":1,"64":1,"70":1}}],["solvers",{"2":{"58":1,"72":1}}],["solver",{"2":{"10":1,"40":1,"55":1,"72":1}}],["solve",{"2":{"1":1,"2":1,"11":1,"15":1,"55":1,"56":1,"64":1,"65":1,"70":1,"71":1,"72":1,"73":3,"74":2}}],["sometimes",{"2":{"53":1}}],["some",{"2":{"2":1,"11":1,"14":1,"32":1,"34":1,"45":1,"58":1,"61":1,"69":1,"70":1,"71":3}}],["spontaneous",{"2":{"65":1}}],["spaghetti",{"0":{"53":1},"2":{"53":3}}],["sparse",{"2":{"48":1}}],["spawning",{"2":{"8":1}}],["space",{"2":{"1":3,"2":2,"8":1,"15":1,"21":1,"22":1,"23":2,"52":1,"58":1,"65":1,"69":1,"71":1}}],["speed",{"2":{"22":1,"46":1,"48":1}}],["spectral",{"2":{"67":1}}],["spectra",{"2":{"44":1,"45":1}}],["spectrum",{"2":{"1":1,"21":1,"44":1,"69":1,"71":1}}],["specifies",{"2":{"74":1}}],["specified",{"2":{"15":1,"37":3,"39":3,"50":1,"54":1,"55":1,"58":1,"70":1}}],["specific",{"2":{"36":1,"51":1,"61":1}}],["specifically",{"2":{"35":1}}],["specifying",{"2":{"55":1}}],["specify",{"2":{"18":1,"26":1,"32":1,"37":1,"51":1,"66":1,"69":1,"70":1,"71":1}}],["speaking",{"2":{"8":1,"65":1}}],["spirit",{"2":{"6":1}}],["supplemental",{"2":{"68":1}}],["suppose",{"2":{"1":1,"11":1,"15":1,"71":1}}],["suitable",{"2":{"65":1}}],["suited",{"2":{"70":1}}],["suite",{"2":{"30":1}}],["suffix",{"2":{"54":1}}],["subroutines",{"2":{"39":1}}],["subspace",{"2":{"71":1}}],["subset",{"2":{"65":1}}],["subsequent",{"2":{"22":1}}],["subsequently",{"2":{"21":1}}],["substitution",{"2":{"50":1}}],["substituting",{"2":{"4":1}}],["substituted",{"2":{"45":1,"55":1}}],["substitute",{"2":{"6":1}}],["successive",{"2":{"58":1}}],["succintly",{"2":{"22":1}}],["such",{"2":{"1":1,"6":1,"8":2,"11":1,"14":1,"15":1,"28":1,"29":1,"39":1,"54":2,"55":1,"57":3,"65":1,"71":2,"72":1}}],["summands",{"2":{"15":1}}],["site",{"2":{"65":1}}],["situation",{"2":{"1":1}}],["sized",{"2":{"56":1}}],["size",{"2":{"49":3}}],["size=",{"2":{"27":1,"28":1,"29":1,"68":2}}],["simultaneously",{"2":{"58":2}}],["simulate",{"2":{"58":1,"65":1}}],["simulating",{"2":{"58":1}}],["simulations",{"0":{"72":1},"1":{"73":1,"74":1}}],["simulation",{"2":{"22":1,"60":1,"65":2}}],["similar",{"2":{"57":1,"71":1,"73":1}}],["similarly",{"2":{"56":1}}],["simply",{"2":{"8":1,"21":1,"31":1}}],["simple",{"2":{"5":1,"36":1,"37":2,"39":1,"55":1,"61":1,"66":1,"69":1}}],["simplest",{"2":{"1":1,"10":1,"44":1,"65":1}}],["sign",{"2":{"12":1,"68":1}}],["signs",{"2":{"12":1}}],["significantly",{"2":{"12":1,"22":1}}],["significant",{"2":{"6":1}}],["side",{"2":{"15":1,"42":1}}],["sidenote",{"0":{"5":1},"2":{"15":1}}],["sides",{"2":{"1":1,"4":1,"6":1}}],["sines",{"2":{"15":1}}],["since",{"2":{"4":2,"5":1,"11":1,"12":2,"15":1,"28":1,"29":1,"45":1,"65":2,"72":1}}],["sin",{"2":{"4":6,"18":1,"20":1,"21":1,"26":4,"32":1,"36":1,"39":2,"61":1,"64":3,"65":2,"66":2,"70":2,"71":2,"72":2}}],["sin⁡",{"2":{"2":2,"4":2,"6":4,"10":1,"12":1,"13":1,"15":3,"40":1}}],["single",{"0":{"4":1},"2":{"1":1,"3":1,"6":2,"10":1,"12":1,"21":1,"23":1,"34":1,"54":1,"61":1,"64":2,"67":1,"68":3,"69":1,"70":1,"71":2,"72":1}}],["nthreads",{"2":{"25":1}}],["nice",{"2":{"21":1}}],["nature",{"2":{"71":1}}],["natural",{"2":{"1":1,"6":1,"15":1,"21":2,"40":5,"61":2,"65":1,"67":1}}],["native",{"2":{"54":1}}],["nat",{"2":{"43":2}}],["name",{"2":{"40":1,"56":3}}],["namespace",{"2":{"40":1,"54":2}}],["named",{"2":{"39":1}}],["namely",{"2":{"14":1,"30":1}}],["num",{"2":{"37":5,"39":4,"40":4,"43":1,"45":3,"51":1,"55":2,"58":1,"60":2,"74":1}}],["numerically",{"2":{"58":1,"60":1,"65":1,"72":1}}],["numerical",{"2":{"6":1,"11":1,"55":1,"63":1,"70":1}}],["numbers",{"2":{"12":1,"22":1,"55":1,"58":1,"60":1,"70":1}}],["number",{"2":{"1":1,"4":2,"6":2,"8":1,"11":1,"12":1,"15":1,"22":1,"23":1,"25":1,"47":1,"48":1,"49":1,"52":2,"61":2,"64":1}}],["next",{"2":{"69":1}}],["negative",{"2":{"61":1,"67":1}}],["neglecting",{"2":{"4":1}}],["neglect",{"2":{"2":1}}],["neighboring",{"2":{"57":2}}],["neighbor",{"2":{"55":1,"57":1}}],["neighbors",{"2":{"23":1}}],["necessary",{"2":{"35":1,"37":1,"70":1}}],["nearest",{"2":{"55":3,"57":2}}],["near",{"2":{"14":1}}],["newton",{"2":{"11":1}}],["newly",{"2":{"11":1}}],["new",{"2":{"7":1,"12":1,"56":1,"72":2,"74":1}}],["needs",{"2":{"22":1,"37":1,"69":1,"70":1}}],["needed",{"2":{"20":1,"40":1,"44":1,"45":1,"54":2,"55":1,"67":1}}],["need",{"2":{"2":1,"48":1,"55":1,"69":1,"73":1}}],["normal",{"2":{"19":1,"27":1,"28":1,"29":1}}],["normalization",{"2":{"15":1}}],["normalize",{"2":{"15":1}}],["normalised",{"2":{"15":1}}],["noise",{"2":{"14":1,"15":1,"43":2,"66":1,"67":2,"68":2}}],["no",{"2":{"5":1,"8":2,"11":1,"19":1,"27":1,"28":1,"29":1,"36":1,"39":1,"54":1,"64":1,"69":1,"71":1,"72":1}}],["now",{"2":{"4":3,"6":2,"8":1,"10":1,"12":2,"13":1,"15":1,"21":1,"23":1,"55":1,"68":1,"70":4,"71":4,"72":1,"74":1}}],["nothing",{"2":{"65":1}}],["notation",{"2":{"65":1}}],["note",{"2":{"12":1,"21":1,"23":1,"34":1,"67":1,"71":1}}],["notice",{"2":{"2":1}}],["not",{"2":{"1":1,"11":2,"12":2,"22":1,"39":1,"40":1,"43":1,"49":1,"51":4,"52":2,"53":2,"54":1,"63":1,"64":1,"65":2,"68":1,"71":4}}],["none",{"2":{"55":1,"57":1}}],["non",{"0":{"64":1},"2":{"39":1,"44":1,"45":1,"48":3,"71":1}}],["nonzero",{"2":{"11":1}}],["nonumber",{"2":{"4":4}}],["nonvanishing",{"2":{"1":1}}],["nonlineariy",{"2":{"19":1,"27":1,"28":1,"29":1}}],["nonlinearity",{"2":{"1":1,"3":1,"19":2,"20":2,"23":1,"65":2}}],["nonlinear",{"0":{"1":1,"68":1},"2":{"1":3,"2":1,"4":1,"7":1,"13":1,"21":2,"30":1,"32":1,"46":1,"65":1,"66":1,"68":2,"71":1,"72":1}}],["n",{"2":{"1":2,"2":8,"12":1,"13":9,"40":1,"57":1}}],["guide",{"2":{"65":1}}],["guaranteed",{"2":{"69":1}}],["guarantee",{"2":{"49":1}}],["guarantees",{"2":{"47":1}}],["green",{"2":{"61":1}}],["gr",{"2":{"43":1,"51":1,"52":1,"53":1}}],["grounds",{"2":{"11":1}}],["goes",{"2":{"57":1,"71":1}}],["goals",{"2":{"41":1}}],["going",{"2":{"40":1}}],["governing",{"2":{"36":1,"39":1,"40":3}}],["governed",{"2":{"1":1,"3":1,"14":1,"21":1}}],["gamma",{"2":{"32":2,"47":1}}],["gauge",{"0":{"12":1},"2":{"11":1,"12":1,"64":1}}],["gennes",{"2":{"67":1}}],["generation",{"2":{"47":1,"48":1,"49":1,"71":1}}],["generate",{"2":{"28":1,"29":1,"55":1}}],["generated",{"2":{"4":1,"5":1,"6":1,"20":1,"23":1,"29":1,"39":2}}],["generates",{"2":{"1":1,"2":1}}],["generalised",{"2":{"22":1}}],["generally",{"2":{"6":1,"58":1,"71":1}}],["general",{"2":{"1":2,"31":1,"69":2,"71":1}}],["getting",{"0":{"32":1}}],["get",{"2":{"19":3,"20":4,"21":2,"22":3,"23":1,"26":1,"27":1,"28":1,"29":1,"32":3,"35":1,"36":3,"37":2,"39":5,"42":2,"45":2,"55":6,"56":1,"57":2,"61":2,"64":4,"65":2,"66":2,"67":1,"68":3,"70":3,"71":3,"72":1,"73":1}}],["given",{"2":{"11":1,"14":1,"23":1,"44":1,"57":1,"61":1,"67":1,"72":1,"73":1}}],["gives",{"2":{"1":2,"15":2,"20":1,"44":2,"64":1,"67":2,"68":1,"71":1,"73":1}}],["giving",{"2":{"8":1,"61":1}}],["gt",{"2":{"8":1,"14":1,"39":2,"45":1,"50":2,"51":1}}],["g",{"2":{"1":1,"6":1,"22":1,"23":1,"28":1,"29":1,"47":1,"51":1,"58":1}}],["axes",{"2":{"51":1}}],["axis",{"2":{"8":1,"68":1}}],["automatically",{"2":{"39":1,"51":2,"54":1,"64":1,"70":1}}],["autonomous",{"2":{"8":2}}],["admissible",{"2":{"70":1}}],["adiabaticsweep",{"2":{"58":9,"65":1,"74":3}}],["adiabatic",{"0":{"74":1},"2":{"57":1,"65":1,"74":1}}],["advantage",{"2":{"34":1,"44":1}}],["advantages",{"0":{"34":1}}],["adding",{"2":{"61":1}}],["addition",{"2":{"22":1,"23":1,"54":1}}],["additional",{"2":{"15":2,"39":1,"50":1}}],["added",{"2":{"54":1}}],["add",{"2":{"1":1,"8":1,"16":1,"18":1,"20":1,"21":1,"26":3,"31":2,"32":1,"36":1,"37":5,"39":1,"61":1,"64":1,"65":1,"66":1,"72":1}}],["averaging",{"0":{"33":1},"1":{"34":1,"35":1,"36":1},"2":{"33":1,"35":1,"36":3}}],["averaged",{"2":{"21":2}}],["accessed",{"2":{"65":1}}],["accepts",{"2":{"55":3}}],["accept",{"2":{"45":1}}],["accompanied",{"2":{"56":1}}],["according",{"2":{"23":1,"51":1,"57":1,"65":1}}],["accuracy",{"2":{"45":1}}],["accurate",{"2":{"41":1}}],["accceptable",{"2":{"22":1}}],["about",{"2":{"72":1}}],["above",{"2":{"3":1,"15":1,"71":2,"73":1}}],["abs",{"2":{"60":1}}],["absolute",{"2":{"60":1}}],["absence",{"2":{"23":1}}],["ability",{"2":{"34":1}}],["after",{"2":{"21":1,"22":1,"37":1,"55":1,"57":1,"65":1}}],["affect",{"2":{"19":1}}],["away",{"2":{"14":2}}],["amazing",{"2":{"16":1}}],["ambiguity",{"2":{"12":1}}],["amplitude",{"2":{"15":2,"21":1,"51":1,"56":2,"61":7,"64":1,"65":2,"67":1,"68":2,"70":1,"73":1,"74":2}}],["amplitudes",{"2":{"1":1,"65":1,"68":1,"71":1}}],["amp",{"0":{"2":1},"2":{"4":10}}],["argued",{"2":{"71":1}}],["arguments",{"2":{"51":1,"55":1,"57":1}}],["argument",{"2":{"23":1,"43":1,"64":1}}],["arxiv",{"2":{"64":1}}],["arrays",{"2":{"55":2,"56":1,"57":1}}],["array",{"2":{"50":1,"55":2,"57":4}}],["arrive",{"2":{"11":1}}],["arise",{"2":{"46":1}}],["arnold",{"2":{"23":1}}],["around",{"2":{"14":1,"21":1,"65":3,"68":1,"74":1}}],["are",{"2":{"1":4,"2":2,"4":2,"5":1,"8":2,"10":1,"11":3,"15":3,"21":3,"22":1,"23":1,"31":1,"37":3,"39":6,"40":1,"43":4,"44":1,"45":2,"48":2,"51":4,"52":2,"53":1,"54":1,"55":2,"56":3,"57":1,"58":3,"60":1,"61":6,"65":5,"66":1,"67":1,"68":1,"69":2,"70":6,"71":2,"72":2}}],["appendices",{"2":{"69":1}}],["appearing",{"2":{"71":1}}],["appearance",{"2":{"65":1}}],["appears",{"2":{"12":1,"15":1,"58":1,"64":1}}],["appear",{"2":{"6":1,"11":2,"12":1,"39":1,"65":3,"71":1}}],["approximate",{"2":{"41":1}}],["approximations",{"2":{"34":1}}],["approach",{"0":{"5":1},"2":{"6":1,"39":1}}],["apply",{"2":{"36":1,"39":1,"69":1}}],["applying",{"2":{"12":1}}],["applications",{"2":{"28":1,"29":1}}],["applicable",{"2":{"11":1}}],["applies",{"2":{"15":1}}],["applied",{"2":{"14":1,"36":1,"67":1}}],["against",{"2":{"59":1,"65":1,"70":1}}],["againts",{"2":{"22":1}}],["again",{"2":{"6":1,"10":1,"23":1,"61":1,"68":2,"74":1}}],["although",{"2":{"71":1}}],["alternative",{"2":{"33":1}}],["alternatively",{"2":{"22":1}}],["al",{"2":{"65":3,"66":1,"68":2}}],["along",{"2":{"55":1,"57":1,"65":2,"74":1}}],["already",{"2":{"45":1,"55":1}}],["algebraic",{"2":{"40":1,"46":1,"55":1,"70":2}}],["algorithm",{"2":{"30":1,"70":1}}],["also",{"2":{"8":1,"11":2,"15":1,"21":2,"22":1,"32":1,"51":1,"55":1,"57":1,"59":1,"61":3,"64":1,"68":1,"71":1}}],["alpha",{"2":{"4":8,"32":2}}],["align",{"2":{"4":4}}],["allowed",{"2":{"65":1}}],["allows",{"2":{"28":1,"29":1,"61":1,"71":1}}],["allowing",{"2":{"6":1,"34":1}}],["allong",{"2":{"21":1}}],["allwright",{"2":{"8":1}}],["all",{"2":{"1":2,"2":2,"8":1,"12":1,"14":1,"15":1,"21":2,"22":3,"39":3,"47":1,"49":2,"51":1,"52":1,"53":1,"54":1,"55":3,"60":1,"61":2,"70":3}}],["attempt",{"2":{"1":1,"4":1}}],["at",{"2":{"1":2,"2":1,"3":3,"4":1,"5":1,"10":1,"11":1,"14":2,"15":7,"20":1,"27":1,"28":1,"29":1,"45":2,"49":1,"51":1,"61":1,"65":3,"67":5,"68":2,"70":1,"71":6,"73":1,"74":2}}],["answer",{"2":{"72":1}}],["ansatz1",{"2":{"4":4}}],["ansatz",{"0":{"2":1,"4":1,"6":1,"9":1,"10":1,"11":1},"1":{"10":1,"11":1,"12":1},"2":{"2":1,"4":2,"6":4,"8":2,"10":1,"11":1,"12":3,"15":1,"18":1,"20":1,"21":3,"26":2,"30":1,"32":2,"36":1,"37":3,"39":5,"40":3,"44":2,"58":1,"61":1,"64":2,"65":2,"66":3,"69":2,"70":4,"71":4,"72":2}}],["antisymmetric",{"2":{"65":1}}],["analytical",{"2":{"69":1,"71":1}}],["analysing",{"2":{"65":1,"72":1}}],["analysis",{"0":{"50":1},"1":{"51":1,"52":1,"53":1},"2":{"65":1}}],["analyses",{"2":{"67":1}}],["analyse",{"2":{"21":1}}],["analyze",{"2":{"14":1,"33":1,"35":1}}],["another",{"2":{"8":1}}],["any",{"2":{"2":1,"4":1,"11":1,"12":1,"37":2,"43":1,"45":2,"52":1,"56":1,"60":1,"64":2}}],["anymore",{"2":{"1":1,"39":1}}],["an",{"0":{"73":1},"2":{"1":4,"2":2,"6":1,"8":3,"10":1,"11":2,"13":2,"14":1,"15":4,"16":2,"21":2,"30":1,"32":1,"33":1,"37":2,"39":2,"40":1,"44":1,"50":1,"54":1,"57":2,"58":3,"60":1,"61":2,"63":1,"64":1,"65":2,"68":1,"71":4,"72":2,"74":2}}],["and",{"0":{"13":1,"34":1,"40":1,"50":1,"54":1},"1":{"14":1,"15":1,"51":1,"52":1,"53":1},"2":{"1":2,"2":2,"3":1,"4":8,"5":2,"6":3,"10":1,"11":2,"13":1,"14":1,"15":10,"18":1,"19":1,"21":4,"22":3,"23":3,"26":1,"28":2,"29":2,"30":1,"32":1,"35":1,"36":2,"37":2,"39":7,"40":1,"41":1,"44":2,"45":1,"46":1,"49":1,"50":2,"51":2,"52":2,"53":1,"54":3,"55":4,"56":2,"57":3,"58":2,"60":1,"61":2,"64":4,"65":8,"66":2,"68":2,"69":2,"70":4,"71":6,"72":3,"73":1,"74":2}}],["ask",{"2":{"30":1}}],["assigned",{"2":{"39":1}}],["assigns",{"2":{"37":2}}],["assigning",{"2":{"37":1}}],["assesed",{"2":{"22":1}}],["associated",{"2":{"8":1}}],["assume",{"2":{"8":1,"14":1}}],["assumed",{"2":{"4":1,"71":1}}],["assuming",{"2":{"4":1}}],["assumption",{"2":{"2":1,"11":1,"39":1}}],["as",{"2":{"1":3,"3":1,"4":1,"5":1,"6":1,"8":5,"11":1,"12":4,"14":1,"15":3,"21":2,"23":1,"30":1,"31":1,"32":1,"36":1,"37":1,"39":4,"40":3,"41":1,"44":2,"51":3,"52":2,"53":2,"54":3,"55":3,"58":2,"59":2,"60":1,"61":1,"63":2,"64":4,"65":5,"67":3,"68":1,"69":2,"70":2,"71":3,"72":2,"74":2}}],["a",{"0":{"8":1,"69":1},"1":{"70":1,"71":1},"2":{"1":4,"2":4,"3":4,"4":1,"5":3,"7":2,"8":10,"10":4,"11":6,"12":4,"13":4,"14":3,"15":10,"18":1,"20":1,"21":7,"22":7,"23":13,"26":2,"27":1,"28":4,"29":4,"30":1,"32":3,"33":1,"34":3,"36":5,"37":5,"39":6,"40":14,"41":1,"42":6,"44":8,"45":7,"47":2,"48":1,"49":2,"50":7,"51":6,"52":2,"53":4,"54":6,"55":17,"56":2,"57":13,"58":17,"59":3,"60":2,"61":9,"62":1,"63":1,"64":10,"65":21,"66":4,"67":6,"68":8,"69":7,"70":6,"71":14,"72":2,"73":1,"74":5}}],["ttype",{"2":{"73":1}}],["t=2e6",{"2":{"65":1}}],["tsit5",{"2":{"65":1,"73":2,"74":1}}],["typically",{"2":{"65":1}}],["type=",{"2":{"67":1,"68":2}}],["types",{"0":{"40":1},"2":{"54":1}}],["type",{"2":{"10":1,"21":1,"40":2,"51":1}}],["twice",{"2":{"21":1}}],["two",{"0":{"6":1},"2":{"15":1,"37":1,"40":1,"41":1,"51":1,"58":1,"61":1,"65":2,"68":3,"69":1,"71":2}}],["t0",{"2":{"14":1,"73":1}}],["tuple",{"2":{"58":1,"74":1}}],["turns",{"2":{"12":1,"68":1}}],["tutorials",{"0":{"62":1},"2":{"32":1,"62":1,"63":1}}],["tutorial",{"2":{"10":1,"16":1,"61":1}}],["t−ϕ",{"2":{"12":2}}],["t+ϕ",{"2":{"12":2}}],["t→t+2π",{"2":{"12":1}}],["tab",{"2":{"62":1}}],["taking",{"2":{"12":1,"64":1}}],["taken",{"2":{"36":1,"39":1,"51":1}}],["takes",{"2":{"8":1,"50":1,"51":1,"71":1,"73":1,"74":1}}],["take",{"2":{"1":1,"8":1,"11":1,"51":1,"55":2}}],["tackle",{"2":{"10":1}}],["treatment",{"2":{"71":3}}],["treating",{"2":{"71":1}}],["treated",{"2":{"4":1,"39":1,"66":1}}],["truncating",{"2":{"69":1}}],["truncated",{"2":{"2":1,"71":1}}],["true",{"2":{"48":1,"55":1,"60":2,"73":1}}],["trivial",{"2":{"47":1}}],["trajectories",{"2":{"65":2}}],["tradeoffs",{"2":{"46":1}}],["tracking",{"2":{"58":1,"72":1}}],["trackeroptions",{"2":{"47":1,"48":1,"49":1}}],["tracker",{"2":{"47":2,"48":2,"49":2}}],["tracked",{"2":{"23":3}}],["track",{"2":{"22":1}}],["translation",{"2":{"12":1,"64":1,"65":2}}],["translate",{"2":{"8":1}}],["transitions",{"2":{"8":1}}],["transient",{"2":{"4":1,"72":1}}],["transformed",{"2":{"39":1}}],["transforms",{"2":{"12":1}}],["transformation",{"2":{"4":1}}],["transform",{"2":{"1":1,"4":1,"6":1,"37":1,"39":4,"45":1,"50":2}}],["transforming",{"2":{"1":2,"44":1}}],["try",{"2":{"10":1,"65":1,"69":1,"71":1}}],["tip",{"2":{"16":1}}],["tilde",{"2":{"1":4}}],["timeevolution",{"2":{"58":2,"74":1}}],["time=nothing",{"2":{"39":2}}],["timespan=",{"2":{"65":1,"74":1}}],["timespan",{"2":{"58":3,"60":2,"73":2}}],["timescale",{"2":{"14":1}}],["timescales",{"2":{"2":1,"70":1}}],["times",{"2":{"12":1,"73":1,"74":1}}],["time",{"0":{"58":1,"72":1},"1":{"59":1,"60":1,"73":1,"74":1},"2":{"1":2,"2":1,"4":1,"8":3,"10":1,"12":1,"21":2,"23":1,"36":7,"37":1,"39":22,"43":1,"45":1,"55":1,"58":5,"59":2,"60":1,"64":1,"65":17,"70":1,"72":1,"73":3,"74":5}}],["tested",{"2":{"22":1}}],["technique",{"2":{"7":1,"8":1,"33":1,"34":1,"35":1}}],["term",{"2":{"4":1,"15":1,"21":2,"65":1}}],["terms",{"2":{"1":2,"2":2,"4":1,"13":1,"14":1,"36":1,"37":1,"39":3}}],["text",{"2":{"1":2,"32":6}}],["towards",{"2":{"74":1}}],["tol",{"2":{"60":5}}],["too",{"2":{"60":1}}],["toni",{"2":{"30":1}}],["tongues",{"2":{"23":1}}],["together",{"2":{"20":1}}],["totaldegree",{"2":{"20":1,"22":1,"47":1}}],["total",{"0":{"47":1},"2":{"11":1,"22":1,"45":1,"47":1,"48":1,"65":1,"70":1,"71":1}}],["top",{"2":{"5":1,"67":1}}],["to",{"2":{"1":5,"2":3,"3":2,"4":9,"5":2,"6":7,"7":1,"8":5,"10":3,"11":4,"12":6,"13":1,"14":4,"15":9,"16":2,"19":1,"20":1,"21":5,"22":3,"23":5,"28":2,"29":2,"30":1,"31":1,"32":1,"33":1,"34":2,"35":3,"36":5,"37":11,"39":6,"40":3,"41":1,"42":2,"43":5,"44":4,"45":6,"47":1,"48":1,"49":2,"51":6,"53":1,"54":3,"55":14,"56":1,"57":4,"58":7,"60":2,"61":5,"63":1,"64":4,"65":9,"66":1,"67":5,"68":2,"69":11,"70":10,"71":11,"72":4,"73":3}}],["threshold",{"2":{"60":1}}],["threading=true",{"2":{"61":1}}],["threading",{"2":{"47":1,"48":1,"49":1}}],["thread",{"2":{"47":1,"48":1,"49":1}}],["threads",{"2":{"25":2}}],["three",{"0":{"17":1,"24":1,"28":1},"1":{"18":1,"19":1,"20":1,"25":1,"26":1,"27":1,"28":1,"29":1},"2":{"28":2,"29":2,"44":1,"53":1,"57":1}}],["throughout",{"2":{"55":1}}],["through",{"2":{"1":1,"20":1,"23":1}}],["those",{"2":{"6":1,"23":1}}],["though",{"2":{"2":1}}],["than",{"2":{"2":2,"48":1,"52":1,"58":1,"63":1,"68":1,"69":1,"70":1,"72":1}}],["that",{"2":{"1":2,"2":2,"4":2,"5":1,"8":1,"11":1,"12":5,"14":1,"15":8,"21":1,"23":1,"28":1,"29":1,"34":1,"37":1,"39":1,"44":2,"46":1,"55":2,"57":3,"61":6,"64":1,"65":3,"67":1,"68":1,"69":1,"71":3,"72":1}}],["thus",{"2":{"1":1,"2":1,"11":2,"14":1,"15":2,"65":1}}],["this",{"2":{"1":3,"2":1,"4":3,"5":1,"10":1,"11":3,"12":2,"13":2,"14":1,"15":7,"20":1,"21":6,"22":2,"23":3,"28":3,"29":4,"30":2,"34":2,"35":2,"36":1,"37":2,"39":1,"40":1,"41":2,"42":1,"44":1,"45":1,"48":1,"49":1,"51":2,"52":3,"53":3,"55":4,"58":1,"61":3,"63":1,"64":1,"65":3,"67":1,"68":2,"69":3,"70":1,"71":7,"72":2,"73":1,"74":2}}],["thefore",{"2":{"70":1}}],["thefirst",{"2":{"19":1}}],["thesis",{"2":{"41":1}}],["theses",{"2":{"7":1}}],["these",{"2":{"1":1,"2":1,"8":1,"11":1,"21":1,"45":1,"61":1,"65":1,"67":1,"70":3}}],["there",{"2":{"15":1,"22":1,"45":1,"69":1,"71":1}}],["therefore",{"2":{"8":1,"11":2,"12":1,"57":1}}],["then",{"2":{"8":1,"21":1,"22":1,"44":1,"65":2,"69":1,"72":1,"74":1}}],["their",{"2":{"8":1,"10":1,"22":1,"23":1,"39":1}}],["theorem",{"2":{"4":1}}],["they",{"2":{"4":1,"8":1}}],["theta",{"2":{"4":4}}],["themselves",{"2":{"36":1,"39":1,"52":1}}],["them",{"2":{"2":1,"37":1,"65":1}}],["the",{"0":{"0":1,"3":1,"64":1,"69":1},"1":{"1":1,"2":1,"3":1,"4":2,"5":2,"6":2,"70":1,"71":1},"2":{"1":22,"2":9,"3":3,"4":19,"5":4,"6":14,"8":16,"10":4,"11":8,"12":14,"13":6,"14":13,"15":32,"16":1,"18":1,"19":5,"20":5,"21":31,"22":16,"23":10,"25":1,"26":1,"27":1,"28":9,"29":9,"30":2,"31":4,"32":5,"33":5,"34":2,"35":5,"36":10,"37":14,"39":27,"40":25,"41":5,"42":6,"43":6,"44":20,"45":12,"46":2,"47":9,"48":8,"49":10,"50":4,"51":10,"52":6,"53":3,"54":13,"55":26,"56":7,"57":13,"58":15,"60":7,"61":21,"62":3,"63":1,"64":9,"65":24,"66":5,"67":33,"68":16,"69":22,"70":21,"71":27,"72":16,"73":8,"74":12}}],["t",{"2":{"1":21,"2":17,"3":3,"4":19,"5":10,"6":6,"8":5,"10":6,"11":5,"12":7,"13":14,"14":4,"15":18,"18":8,"20":64,"21":80,"26":237,"32":18,"36":20,"37":23,"39":18,"40":5,"47":1,"48":1,"58":2,"61":33,"64":960,"65":100,"66":35,"69":23,"70":30,"71":99,"72":64,"73":1}}],["mm",{"2":{"66":1}}],["mx¨+γx˙+ω02x=fcos⁡",{"2":{"55":1}}],["mx¨+mω02",{"2":{"21":1}}],["miscellaneous",{"0":{"60":1}}],["missing",{"2":{"55":2}}],["minimize",{"2":{"57":1}}],["mind",{"2":{"15":1}}],["mixing",{"0":{"17":1,"24":2,"27":1,"28":1},"1":{"18":1,"19":1,"20":1,"25":2,"26":2,"27":2,"28":2,"29":2},"2":{"28":2,"29":2}}],["mi",{"2":{"13":1}}],["magnitude",{"2":{"68":1}}],["manifest",{"2":{"67":1}}],["many",{"2":{"28":1,"29":1,"52":1}}],["maps",{"2":{"55":1,"58":1}}],["mapping",{"2":{"55":2,"58":1}}],["maximal",{"2":{"47":1}}],["maximum",{"2":{"4":1,"15":1,"22":1,"71":1}}],["margin=3mm",{"2":{"68":2}}],["margin=5mm",{"2":{"27":1,"28":1,"29":1}}],["marking",{"2":{"64":1}}],["markdownast",{"2":{"22":1}}],["macro",{"2":{"21":1}}],["make",{"2":{"15":1,"51":1}}],["material",{"2":{"68":1}}],["matters",{"2":{"68":1}}],["mathematical",{"2":{"69":1}}],["mathieu",{"2":{"61":2}}],["mathbf",{"2":{"1":6,"2":8,"13":2,"65":6}}],["matches",{"2":{"15":1}}],["matrix",{"2":{"14":1,"15":1,"22":1,"41":1,"42":1,"44":1,"45":10,"55":1,"67":1}}],["main",{"2":{"2":1}}],["may",{"2":{"2":1,"5":1,"8":2,"10":2,"11":3,"13":1,"22":1,"55":1,"58":1,"61":1,"66":1,"68":1,"69":1,"70":1,"71":2,"72":2}}],["multidimensional",{"2":{"58":1}}],["multiplied",{"2":{"51":1}}],["multiple",{"0":{"71":1},"2":{"8":1,"34":1,"51":1,"58":1}}],["multiplying",{"2":{"15":1,"47":1}}],["multiply",{"2":{"1":2,"2":2,"4":1,"13":1,"32":1,"65":1}}],["must",{"2":{"11":1,"12":1,"45":1,"58":2}}],["much",{"2":{"2":1,"70":1,"71":2}}],["m",{"2":{"2":4,"8":1,"13":4,"40":1,"55":1}}],["move",{"2":{"65":1}}],["most",{"2":{"21":1,"48":1,"54":1,"72":1}}],["mostly",{"2":{"8":1}}],["mode",{"2":{"65":1}}],["model",{"2":{"22":1,"61":1}}],["modes",{"2":{"1":1,"65":2}}],["modulated",{"2":{"21":1}}],["module",{"2":{"15":2,"41":1,"66":1}}],["modulo",{"2":{"12":1}}],["more",{"2":{"1":1,"2":1,"7":1,"12":1,"22":1,"32":1,"34":1,"41":2,"47":1,"48":2,"49":1,"58":2,"64":1,"68":2,"69":2,"71":1,"72":1,"74":1}}],["moment",{"2":{"1":1}}],["motion",{"0":{"37":1},"2":{"1":4,"2":1,"4":1,"5":1,"14":1,"15":3,"21":1,"32":1,"37":2,"40":2,"55":1,"64":2,"69":2,"71":1,"72":1}}],["mere",{"2":{"71":1}}],["merely",{"2":{"65":1}}],["measurement",{"2":{"67":1}}],["measures",{"2":{"17":1,"25":1,"66":1}}],["meaning",{"2":{"48":1,"65":1}}],["means",{"2":{"1":1,"13":1,"28":1,"29":1,"39":1,"55":1,"65":1,"74":1}}],["mechanism",{"2":{"8":1}}],["mechanical",{"2":{"1":1,"4":1}}],["methodology",{"2":{"35":1,"41":1}}],["methods",{"0":{"46":1},"1":{"47":1,"48":1,"49":1},"2":{"34":1,"43":1,"46":1}}],["method",{"0":{"0":1,"33":1,"39":1,"47":1,"48":1,"49":1},"1":{"1":1,"2":1,"3":1,"4":1,"5":1,"6":1,"34":1,"35":1,"36":1},"2":{"11":1,"13":1,"20":2,"21":1,"22":2,"33":3,"34":2,"35":1,"36":4,"37":1,"44":2,"46":1,"47":2,"48":3,"49":3,"50":1,"55":6,"57":2,"69":1}}],["blue",{"2":{"61":1}}],["b",{"2":{"58":2}}],["build",{"2":{"55":1}}],["but",{"2":{"11":3,"12":1,"20":1,"22":2,"23":1,"41":2,"63":1,"65":1,"71":1}}],["binary",{"2":{"22":1,"32":1,"55":2,"56":1,"61":1,"64":1,"70":1,"71":1}}],["bifurcation",{"0":{"8":1},"2":{"8":2,"20":1,"49":1,"61":1}}],["breaking",{"2":{"65":1}}],["branch",{"2":{"43":2,"44":1,"51":2,"54":2,"57":1,"58":1,"65":3,"68":4,"73":2,"74":2}}],["branch=2",{"2":{"23":1,"68":3}}],["branch=1",{"2":{"23":1,"61":1,"67":3,"68":4}}],["branches",{"2":{"22":2,"23":2,"32":1,"50":1,"51":1,"55":3,"57":5,"61":1,"64":1,"68":1,"70":3,"71":2}}],["brought",{"2":{"21":1}}],["boolean",{"2":{"47":1,"48":2,"49":1,"56":1,"70":1}}],["bool",{"2":{"47":2,"48":3,"49":2}}],["bogoliubov",{"0":{"33":1},"1":{"34":1,"35":1,"36":1},"2":{"33":2,"34":1,"35":1,"36":3,"67":1}}],["boasts",{"2":{"23":1}}],["bound",{"2":{"12":1,"47":1}}],["both",{"0":{"29":1},"2":{"1":1,"4":1,"6":2,"19":1,"65":2,"67":1}}],["bézout",{"2":{"4":1,"12":1}}],["based",{"2":{"22":1,"30":1,"48":1,"61":1}}],["background",{"2":{"33":1,"67":1,"72":1}}],["back",{"2":{"8":1,"15":1}}],["bare",{"2":{"21":1}}],["bar",{"2":{"2":2,"55":1,"57":1,"65":2}}],["balance",{"0":{"0":1,"39":1},"1":{"1":1,"2":1,"3":1,"4":1,"5":1,"6":1},"2":{"2":1,"6":1,"8":2,"13":1,"21":1,"30":2,"33":1,"46":1}}],["beyond",{"2":{"71":1}}],["bending",{"2":{"67":1}}],["bezout",{"2":{"47":1}}],["behave",{"2":{"72":1}}],["behaves",{"2":{"67":1}}],["behaviors",{"2":{"34":1}}],["behaviour",{"2":{"1":1,"4":1,"13":1,"14":1,"15":1,"51":1,"57":1,"68":1,"71":2,"72":3}}],["behind",{"2":{"44":1}}],["belonging",{"2":{"37":1,"43":1,"44":1}}],["becoming",{"2":{"68":1}}],["become",{"2":{"2":1,"22":1}}],["becomes",{"2":{"1":1,"4":1,"61":2,"74":1}}],["because",{"2":{"37":1}}],["been",{"2":{"8":1,"55":1,"71":1}}],["before",{"2":{"6":1,"23":1,"40":1,"67":1}}],["being",{"2":{"6":1,"40":2,"61":1}}],["between",{"2":{"4":2,"46":1,"61":1,"74":1}}],["best",{"2":{"2":1,"12":1,"27":3,"28":3,"29":3}}],["be",{"2":{"1":1,"4":3,"5":2,"6":1,"10":1,"12":3,"14":1,"15":1,"21":2,"22":3,"23":1,"31":1,"32":1,"36":1,"37":2,"39":2,"40":1,"42":1,"43":1,"44":1,"45":2,"48":1,"50":1,"51":1,"54":3,"55":4,"56":1,"57":1,"58":5,"61":1,"62":1,"64":1,"65":2,"66":1,"67":2,"68":2,"69":2,"70":4,"72":1,"73":1}}],["begin",{"2":{"1":4,"2":4,"4":2,"13":2,"32":2,"65":2}}],["by",{"2":{"1":3,"2":2,"3":2,"4":2,"5":1,"6":2,"10":2,"11":3,"12":1,"13":1,"14":3,"15":3,"21":5,"22":1,"23":1,"34":1,"39":3,"42":1,"47":1,"49":1,"51":5,"52":1,"53":1,"55":2,"56":4,"57":1,"58":1,"59":1,"60":1,"61":3,"62":1,"64":1,"65":4,"66":1,"67":1,"69":1,"70":1,"71":4,"72":1}}],["dynamics",{"2":{"30":1,"33":1,"34":1,"35":1,"65":1}}],["dynamical",{"2":{"1":1,"14":1,"33":1,"34":1,"40":1}}],["datasets",{"2":{"51":1,"52":2,"53":1}}],["dashed",{"2":{"51":1}}],["dash",{"2":{"22":1}}],["damped",{"2":{"19":1,"32":2}}],["damping",{"2":{"1":1,"15":1,"21":1,"32":1,"65":2}}],["dωlc",{"2":{"11":1}}],["dv2dt=16ωd",{"2":{"6":1}}],["dv1dt=12ωd",{"2":{"6":1}}],["ddt",{"2":{"4":1,"14":1,"15":1}}],["ddot",{"2":{"1":2,"4":4,"32":2}}],["dropped",{"2":{"39":1,"45":1}}],["dropping",{"2":{"39":1}}],["drop",{"2":{"4":1,"6":1,"39":2}}],["drivein",{"2":{"69":1}}],["drive",{"2":{"1":1,"14":1,"15":1,"20":2,"21":3,"23":2,"32":2,"61":1,"64":1,"65":1,"67":3,"68":1,"69":1,"70":1,"71":3}}],["driven",{"0":{"21":1,"64":1,"65":1},"1":{"22":1,"23":1},"2":{"1":1,"10":1,"19":1,"23":1,"28":1,"29":1,"32":1,"37":1,"67":1,"69":1,"72":2}}],["driving",{"2":{"1":1,"3":1,"21":1,"23":1,"32":1,"61":2,"67":3,"68":3,"70":1}}],["d^2",{"2":{"4":4}}],["documenter",{"2":{"55":1}}],["docstring",{"2":{"55":2}}],["docs",{"2":{"21":1}}],["don",{"2":{"48":1}}],["done",{"2":{"12":1,"21":1,"23":1,"51":2,"52":1,"53":2}}],["do",{"2":{"21":1,"32":1,"51":1,"52":1,"53":1,"58":1,"64":1,"65":1}}],["doubling",{"2":{"20":1,"28":1,"29":1}}],["doubly",{"2":{"12":1}}],["does",{"2":{"11":1,"12":1,"39":1,"49":1,"65":1,"72":2}}],["dot",{"2":{"4":4,"32":2}}],["dominate",{"2":{"3":1}}],["during",{"2":{"22":1,"37":1,"58":1}}],["du",{"2":{"8":1,"13":1,"42":1,"72":1}}],["du2dt=16ωd",{"2":{"6":1}}],["du1dt=12ωd",{"2":{"6":1}}],["due",{"2":{"3":1,"61":2,"68":1}}],["duffings",{"0":{"65":1}}],["duffing",{"0":{"3":1,"69":1},"1":{"4":1,"5":1,"6":1,"70":1,"71":1},"2":{"3":1,"4":1,"5":1,"6":1,"19":1,"27":1,"28":2,"29":2,"32":6,"57":1,"66":1,"67":1,"68":1,"69":2,"70":1,"71":2}}],["duffingft",{"2":{"1":3}}],["d",{"2":{"1":4,"2":2,"4":12,"18":2,"20":2,"21":4,"26":2,"32":2,"36":1,"37":5,"39":1,"61":3,"64":3,"65":6,"66":2,"69":2,"72":4}}],["dt=f¯",{"2":{"13":1,"72":1}}],["dt=0",{"2":{"11":1}}],["dt=g",{"2":{"8":1}}],["dt",{"2":{"1":2,"2":2,"42":1,"65":2}}],["dict",{"2":{"55":1,"58":1,"74":1}}],["dictionary",{"2":{"37":1,"45":1,"54":1,"55":1,"56":1,"58":1}}],["dim",{"2":{"51":1}}],["dimension",{"2":{"53":1}}],["dimensionless",{"2":{"21":1}}],["dimensionality",{"2":{"15":1}}],["dimensional",{"2":{"2":1,"51":1,"55":1,"57":1,"69":1}}],["diagrams",{"0":{"52":1},"2":{"23":1,"52":1}}],["diagram",{"2":{"20":1,"23":5,"52":3,"61":4,"65":2,"73":1}}],["diagonalization",{"2":{"44":1}}],["diagonal",{"2":{"1":1}}],["different",{"2":{"22":1,"23":1,"32":1,"43":1,"46":1,"52":1,"58":1,"61":2}}],["differential",{"2":{"20":2,"21":15,"26":12,"36":2,"37":4,"39":2,"45":1,"55":1,"61":4,"64":206,"65":15,"66":4,"69":6,"70":5,"71":8,"72":12}}],["differentialequations",{"2":{"73":1}}],["differentialequation",{"2":{"18":1,"20":1,"21":1,"26":1,"32":1,"36":2,"37":11,"39":4,"40":2,"42":2,"45":1,"55":1,"61":1,"64":1,"65":1,"66":1,"69":2,"72":1}}],["diff",{"2":{"18":2,"19":1,"20":3,"21":3,"26":5,"32":3,"36":6,"37":8,"39":7,"45":2,"61":3,"64":3,"65":4,"66":3,"70":3,"71":2,"72":3}}],["disappears",{"2":{"74":1}}],["displacement",{"2":{"69":1}}],["displaced",{"2":{"21":1,"60":1}}],["displays",{"2":{"64":1}}],["display",{"2":{"61":1}}],["displayed",{"2":{"55":1,"57":1}}],["dispatched",{"2":{"51":1}}],["distance",{"2":{"57":2}}],["distinguish",{"2":{"60":1,"61":1}}],["distinguishing",{"2":{"39":1}}],["distinctly",{"2":{"68":1}}],["distinct",{"2":{"11":2}}],["distinction",{"2":{"4":1}}],["distribution",{"2":{"15":1}}],["discussed",{"2":{"67":1}}],["discrete",{"2":{"13":1}}],["discarding",{"2":{"12":1}}],["discarded",{"2":{"11":1}}],["dipole",{"2":{"1":1}}],["density",{"2":{"67":1}}],["denotes",{"2":{"45":1}}],["denote",{"2":{"8":1}}],["de",{"2":{"67":1}}],["der",{"0":{"64":1},"2":{"64":1}}],["derive",{"2":{"3":1,"35":1}}],["derivatives",{"2":{"2":1,"4":1,"6":1,"39":5,"43":1,"45":1,"55":1,"70":1}}],["dedicated",{"2":{"44":1}}],["desired",{"2":{"72":1}}],["designed",{"2":{"35":1}}],["describing",{"2":{"4":1,"40":2}}],["described",{"2":{"2":1,"13":1,"21":1,"40":2}}],["describe",{"2":{"2":2,"4":1,"5":1,"13":1,"44":1,"57":1,"65":1}}],["describes",{"2":{"1":1,"5":1,"8":1,"44":1,"57":1,"70":1}}],["deeper",{"2":{"34":1}}],["detuned",{"2":{"67":1}}],["detuning",{"2":{"23":1}}],["detail",{"2":{"64":1}}],["details",{"2":{"55":1,"69":1}}],["detailed",{"2":{"33":1,"36":1}}],["determined",{"2":{"47":1}}],["deg",{"2":{"39":2}}],["degree=2",{"2":{"39":1}}],["degree",{"0":{"47":1},"2":{"22":1,"39":1,"47":2,"48":1}}],["degeneracy",{"2":{"12":1,"64":2}}],["degenerate",{"2":{"11":1,"12":2,"28":1,"29":1}}],["defining",{"2":{"66":1,"72":1}}],["define",{"2":{"15":1,"21":1,"37":1,"64":1,"66":1,"74":1}}],["defined",{"2":{"1":2,"2":3,"4":1,"12":2,"13":2,"32":1,"36":1,"39":2,"44":1,"55":2,"56":2,"58":1,"65":1}}],["default=true",{"2":{"55":1}}],["default",{"2":{"22":1,"39":1,"51":2,"55":2,"56":2,"61":1}}],["declared",{"2":{"70":2}}],["declare",{"2":{"18":1,"26":1,"32":1,"66":1,"69":2}}],["demonstrates",{"2":{"71":1}}],["demonstrate",{"2":{"10":1,"72":1}}],["delve",{"2":{"34":1}}],["delineating",{"2":{"23":1}}],["del",{"2":{"7":1,"30":2}}],["delta",{"2":{"1":2}}],["depth",{"2":{"7":1}}],["dependences",{"2":{"39":1}}],["dependence",{"2":{"8":2,"37":1,"39":1,"58":1}}],["dependent",{"0":{"72":1},"1":{"73":1,"74":1},"2":{"1":1,"8":1,"37":3,"58":1,"59":1,"60":1,"65":4}}],["depending",{"2":{"4":1,"43":1}}],["euclidean",{"2":{"57":2}}],["element",{"2":{"57":1,"73":1}}],["electrical",{"2":{"1":1}}],["elsewhere",{"2":{"54":1,"58":1}}],["efficient",{"2":{"48":1,"49":1,"58":1,"72":1}}],["effects",{"2":{"21":1}}],["effective",{"2":{"20":1,"72":2}}],["effectively",{"2":{"12":1,"15":1}}],["effect",{"2":{"12":1,"71":1}}],["et",{"2":{"65":3,"66":1,"68":2}}],["etc",{"2":{"40":1,"55":1}}],["eta",{"2":{"23":2}}],["es",{"2":{"51":2}}],["essentially",{"2":{"39":1}}],["essential",{"2":{"34":1}}],["especially",{"2":{"28":1,"29":1,"48":1,"70":1}}],["eom",{"2":{"32":2,"36":7,"37":6,"39":14,"42":2,"58":2,"60":2}}],["earlier",{"2":{"74":1}}],["easy",{"2":{"31":1}}],["each",{"2":{"2":1,"5":1,"8":1,"11":1,"12":1,"13":1,"15":4,"22":3,"23":1,"37":3,"39":6,"40":3,"44":1,"45":1,"46":1,"57":6,"58":1,"61":2,"65":1,"70":1}}],["employs",{"2":{"67":1}}],["employing",{"2":{"21":1}}],["emerges",{"2":{"64":1}}],["emergent",{"2":{"11":1}}],["eλrt",{"2":{"14":1}}],["eigenvalue",{"2":{"15":4}}],["eigenvalues",{"2":{"8":2,"14":1,"15":1,"22":1,"44":1,"60":1,"61":2,"67":8,"68":6}}],["eigenvector",{"2":{"15":1}}],["eigenvectors",{"2":{"14":1,"15":1}}],["either",{"2":{"1":1,"14":1,"40":1,"42":1}}],["evo",{"2":{"65":4,"73":4,"74":2}}],["evolve",{"2":{"36":1,"39":1,"72":3}}],["evolves",{"2":{"2":1,"60":1,"65":1,"74":1}}],["evolving",{"0":{"73":1},"2":{"8":1,"14":1,"36":1,"39":1,"72":1,"73":1}}],["evolution",{"0":{"58":1},"1":{"59":1,"60":1},"2":{"4":1,"10":1,"58":1,"65":1}}],["evaluation",{"2":{"45":1}}],["evaluates",{"2":{"50":1}}],["evaluate",{"2":{"42":1,"44":1,"54":1}}],["evaluated",{"2":{"14":1,"50":1}}],["everything",{"2":{"51":1,"52":1,"53":1,"70":1}}],["every",{"2":{"15":1,"50":1,"68":1}}],["eventually",{"2":{"71":1}}],["even",{"2":{"2":1,"12":1}}],["evidently",{"2":{"1":1}}],["e^",{"2":{"1":2}}],["exhibit",{"2":{"71":1}}],["excellent",{"2":{"69":1}}],["excels",{"2":{"33":1}}],["excitation",{"2":{"67":1}}],["excitations",{"2":{"67":2}}],["excited",{"2":{"67":1}}],["excite",{"2":{"28":1,"29":1,"67":1}}],["execution",{"2":{"22":1}}],["extra",{"2":{"61":1,"63":1}}],["extract",{"2":{"15":1,"39":2,"44":1}}],["extracting",{"0":{"38":1},"1":{"39":1,"40":1},"2":{"4":1}}],["extension",{"2":{"58":1,"71":1}}],["extention",{"2":{"58":1}}],["extended",{"0":{"11":1},"2":{"30":1,"71":2}}],["externally",{"2":{"63":1}}],["external",{"2":{"21":3,"23":1,"32":1,"64":1}}],["exists",{"2":{"61":1,"65":1}}],["existing",{"2":{"8":1}}],["exist",{"2":{"8":2}}],["export",{"2":{"54":2}}],["exponentially",{"2":{"12":1,"23":1}}],["expr",{"2":{"39":2}}],["exprutils",{"2":{"39":1}}],["expression",{"2":{"50":2}}],["expressions",{"2":{"22":1,"54":2}}],["expressing",{"2":{"13":1}}],["experimentally",{"2":{"74":1}}],["experiment",{"2":{"44":1}}],["expensive",{"2":{"41":1,"58":1,"60":1,"72":1}}],["expeted",{"2":{"39":1}}],["expected",{"2":{"39":1,"70":1}}],["expect",{"2":{"3":1,"11":1,"12":1}}],["expansion",{"0":{"19":1,"20":1},"2":{"33":1,"34":1}}],["expand",{"2":{"36":1,"37":3,"39":2,"64":1,"65":1,"70":1}}],["expanded",{"2":{"14":1,"37":1,"40":2}}],["expanding",{"2":{"5":1,"71":1}}],["exploring",{"2":{"74":1}}],["explicit",{"2":{"8":1}}],["explicitly",{"2":{"1":1,"12":1,"42":1,"65":1}}],["explain",{"2":{"7":1}}],["explained",{"2":{"3":1,"6":1,"41":1}}],["exact",{"2":{"39":1,"71":1}}],["exactly",{"2":{"1":1,"2":1,"5":1,"14":1,"61":1}}],["examplevaried",{"2":{"73":1}}],["exampleusing",{"2":{"65":1}}],["examplep1",{"2":{"65":2}}],["exampleplot",{"2":{"61":3,"65":1}}],["exampleclassify",{"2":{"61":2}}],["exampleget",{"2":{"61":1}}],["examplefixed",{"2":{"61":1,"65":1}}],["examples",{"0":{"16":1},"2":{"6":1,"32":1,"58":1,"62":2}}],["example",{"0":{"3":1},"1":{"4":1,"5":1,"6":1},"2":{"1":1,"2":1,"8":1,"10":1,"12":1,"13":1,"15":1,"36":1,"37":2,"39":2,"51":1,"55":1,"56":1,"57":2,"68":1,"69":1}}],["energy",{"2":{"67":1}}],["encodes",{"2":{"72":1}}],["encode",{"2":{"71":2}}],["encoding",{"2":{"52":1}}],["encompasses",{"2":{"1":1}}],["enabled",{"2":{"47":1,"48":1,"49":1}}],["enabling",{"2":{"33":1}}],["entry",{"2":{"51":1,"54":1,"57":1}}],["entries",{"2":{"11":1}}],["entered",{"2":{"54":1}}],["entering",{"0":{"37":1}}],["enter",{"2":{"36":1,"37":1,"39":1}}],["environment",{"2":{"25":1}}],["enlarged",{"2":{"12":1}}],["ends",{"2":{"73":2}}],["endpoint",{"2":{"49":2}}],["endpointranges",{"2":{"49":1}}],["endgameoptions",{"2":{"47":1,"48":1,"49":1}}],["endgame",{"2":{"47":2,"48":2,"49":2}}],["end",{"2":{"1":4,"2":4,"4":2,"8":1,"13":2,"32":2,"64":1,"65":2}}],["eqs",{"2":{"42":1,"65":2}}],["eq2",{"2":{"20":3}}],["equi",{"2":{"61":1}}],["equivalent",{"2":{"4":2,"37":1}}],["equal",{"2":{"15":1}}],["equation",{"2":{"1":10,"2":9,"3":1,"4":1,"5":1,"11":1,"13":4,"21":3,"32":5,"37":3,"39":1,"40":5,"55":1,"61":2,"64":1,"65":4,"69":3,"70":2,"71":1,"72":1}}],["equations",{"0":{"2":1,"37":1,"38":1,"55":1},"1":{"39":1,"40":1,"56":1,"57":1},"2":{"1":3,"2":2,"3":1,"4":3,"5":1,"6":1,"8":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"19":2,"20":3,"21":8,"22":2,"26":3,"32":2,"35":2,"36":7,"37":5,"39":15,"40":7,"42":1,"44":1,"46":1,"55":4,"58":1,"61":3,"64":5,"65":7,"66":4,"69":3,"70":5,"71":4,"72":6}}],["eqref",{"2":{"2":2,"4":2,"5":1,"6":1,"65":2}}],["eq",{"2":{"1":6,"2":9,"4":7,"5":2,"6":2,"13":3,"18":2,"19":5,"20":3,"21":4,"22":1,"23":1,"26":6,"27":1,"28":1,"29":1,"32":8,"37":2,"45":2,"59":4,"61":5,"64":6,"65":17,"66":4,"67":1,"68":2,"69":1,"70":7,"71":5,"72":7,"73":4,"74":2}}],["e",{"2":{"1":2,"4":1,"6":2,"8":1,"12":1,"21":3,"22":1,"23":1,"28":1,"29":1,"51":2,"58":1,"61":2,"64":1,"65":1,"67":1,"71":1,"74":1}}],["irrespective",{"2":{"67":1}}],["ignored",{"2":{"43":1,"55":1}}],["identify",{"2":{"61":1,"63":1}}],["identifier",{"2":{"61":1}}],["identified",{"2":{"37":1,"40":1}}],["identification",{"2":{"40":1}}],["identical",{"2":{"23":1}}],["imaginary",{"2":{"67":2}}],["implying",{"2":{"64":1}}],["implemented",{"2":{"55":1,"69":1,"71":1}}],["implement",{"2":{"21":1,"32":1,"35":1,"66":1,"69":1}}],["imposing",{"2":{"64":1}}],["imposed",{"2":{"63":1}}],["import",{"2":{"21":1}}],["important",{"2":{"2":1,"4":1,"28":1,"29":1,"69":1,"71":1}}],["im",{"2":{"15":8,"44":1,"60":1}}],["iω−λ",{"2":{"15":1}}],["it",{"2":{"12":1,"14":1,"15":2,"16":1,"23":1,"28":1,"29":1,"31":1,"34":1,"37":1,"39":1,"42":2,"44":2,"47":1,"48":2,"49":1,"50":1,"51":2,"53":1,"55":1,"57":1,"58":1,"61":1,"64":2,"65":2,"67":1,"72":1,"73":1}}],["iterative",{"2":{"11":1}}],["itself",{"2":{"39":1,"67":1}}],["its",{"2":{"2":1,"12":1,"32":1,"34":1,"37":1,"39":1,"44":3,"61":1,"67":2,"68":1,"72":2}}],["if",{"2":{"1":1,"8":1,"14":2,"16":1,"19":2,"23":1,"27":1,"28":2,"29":2,"30":1,"32":1,"36":1,"39":1,"47":1,"48":3,"49":1,"51":1,"54":1,"55":3,"58":1,"60":2,"61":1,"68":1,"72":1,"74":1}}],["illustrates",{"2":{"1":1}}],["issue",{"2":{"16":1}}],["is",{"2":{"1":4,"2":5,"4":6,"5":3,"6":5,"8":3,"11":5,"12":6,"13":4,"14":6,"15":7,"20":1,"21":3,"22":2,"23":4,"28":3,"29":3,"30":1,"31":1,"32":1,"33":2,"35":1,"36":3,"37":5,"39":11,"40":7,"41":4,"42":2,"44":5,"47":1,"48":2,"49":2,"50":1,"51":3,"53":2,"54":2,"55":4,"56":3,"57":4,"58":5,"59":1,"60":4,"61":1,"63":1,"64":2,"65":6,"67":3,"68":5,"69":5,"70":3,"71":9,"72":7,"73":2,"74":3}}],["i=1",{"2":{"1":1}}],["i",{"2":{"1":3,"4":1,"6":1,"8":1,"12":1,"21":1,"51":1,"61":2,"64":3,"65":1,"67":1,"71":1,"74":1}}],["inequality",{"2":{"56":1}}],["inexpensive",{"2":{"41":1}}],["incorporates",{"2":{"74":1}}],["increases",{"2":{"45":1,"74":1}}],["includes",{"2":{"40":1}}],["include",{"2":{"23":1}}],["including",{"2":{"11":1,"22":1}}],["inaccurate",{"2":{"44":1}}],["inputting",{"2":{"37":1}}],["input",{"2":{"36":1,"37":3,"39":1,"43":1,"55":1,"56":1,"69":2,"72":1}}],["inversion",{"2":{"45":1}}],["inverting",{"2":{"44":1}}],["invert",{"2":{"12":1}}],["investigate",{"2":{"28":1,"29":1,"60":1}}],["initiates",{"2":{"22":1}}],["initially",{"2":{"65":1}}],["initializes",{"2":{"22":1}}],["initial",{"0":{"73":1},"2":{"14":1,"40":1,"58":1,"60":4,"65":4,"72":1,"73":2,"74":1}}],["inspecting",{"2":{"65":1}}],["inside",{"2":{"61":1}}],["instability",{"2":{"64":1,"65":1}}],["instance",{"2":{"39":1}}],["installled",{"2":{"31":1}}],["install",{"2":{"31":1}}],["installation",{"0":{"31":1}}],["instead",{"2":{"8":1,"58":1,"64":2,"65":1,"72":1}}],["inserted",{"2":{"55":1}}],["insert",{"2":{"6":1,"15":2}}],["infrared",{"2":{"28":1,"29":1}}],["information",{"2":{"22":1,"36":1,"37":2,"47":1,"48":1,"49":1,"54":1,"70":1,"72":1}}],["infinity",{"2":{"2":1,"71":1}}],["infinitesimal",{"2":{"70":1}}],["infinitely",{"2":{"11":1}}],["infinite",{"2":{"1":1,"11":1,"12":1,"64":1,"69":1}}],["infty",{"2":{"1":4}}],["indicitive",{"2":{"68":1}}],["indicate",{"2":{"55":1,"57":1}}],["indicating",{"2":{"47":1,"48":2,"49":1,"67":1}}],["index=",{"2":{"61":1}}],["index",{"2":{"44":1,"49":3,"58":1}}],["indeed",{"2":{"19":1,"61":1,"67":1}}],["independent",{"2":{"1":1,"21":1,"36":1,"37":3,"39":1,"65":1,"67":1}}],["induced",{"2":{"1":1}}],["intuition",{"2":{"71":1}}],["int64",{"2":{"49":1,"51":2,"73":1,"74":1}}],["intricate",{"2":{"34":1}}],["introduce",{"2":{"22":1}}],["interpolates",{"2":{"74":1}}],["interpreted",{"2":{"60":1}}],["internal",{"2":{"68":1}}],["internally",{"2":{"40":1}}],["interval",{"2":{"65":1}}],["interface",{"2":{"58":1}}],["interest",{"2":{"15":1}}],["interested",{"2":{"2":1,"4":1,"21":2,"52":1}}],["integer",{"2":{"8":2}}],["into",{"2":{"4":1,"6":1,"8":2,"12":2,"15":2,"22":1,"23":1,"25":1,"34":1,"40":1,"42":1,"44":1,"50":1,"54":3,"55":1,"56":1,"57":1,"65":1,"72":3,"73":1}}],["int",{"2":{"1":4,"43":1,"44":2}}],["in",{"0":{"1":1},"2":{"1":3,"2":3,"3":1,"4":3,"5":2,"6":3,"7":3,"8":3,"10":1,"11":5,"13":1,"14":2,"15":7,"21":12,"22":8,"23":4,"28":5,"29":5,"30":1,"31":2,"33":3,"34":1,"36":4,"37":2,"39":10,"40":2,"41":1,"43":1,"44":4,"45":1,"48":1,"49":2,"50":2,"51":4,"52":7,"53":3,"54":3,"55":4,"56":4,"57":2,"58":4,"60":1,"61":3,"62":1,"63":1,"64":2,"65":9,"66":3,"67":3,"68":4,"69":3,"70":4,"71":6,"72":3,"73":3,"74":1}}],["f=2∗10−3",{"2":{"68":1}}],["f=10−4",{"2":{"67":1}}],["fluctuation",{"2":{"67":1}}],["float64",{"2":{"44":3,"51":1,"55":2,"70":2,"73":2,"74":3}}],["flow",{"2":{"36":1,"39":4}}],["f2",{"2":{"65":1}}],["f0≅0",{"2":{"65":2}}],["f0",{"2":{"65":15}}],["feature",{"2":{"63":1}}],["fed",{"2":{"43":1,"72":1,"73":1}}],["fd",{"2":{"21":1}}],["failure",{"2":{"67":1}}],["fairly",{"2":{"12":1,"71":1}}],["false",{"2":{"55":1,"56":1}}],["factor",{"2":{"47":1}}],["fast",{"2":{"34":1,"36":3,"39":7}}],["faster",{"2":{"33":1}}],["famous",{"2":{"21":1}}],["far",{"2":{"6":1,"44":1,"64":1,"65":1,"67":1,"71":1}}],["future",{"2":{"73":1}}],["func",{"2":{"50":1,"56":1}}],["functions",{"2":{"23":1,"54":2,"56":1,"58":2}}],["function",{"0":{"36":1},"2":{"13":1,"15":2,"18":1,"21":2,"23":1,"26":1,"32":2,"35":2,"41":1,"45":1,"51":1,"52":1,"53":2,"54":1,"55":4,"56":1,"57":1,"58":3,"59":2,"65":1,"66":1,"68":1,"69":1,"74":1}}],["fullfil",{"2":{"28":1,"29":1}}],["full",{"2":{"22":1,"40":1,"41":1,"51":1,"72":3}}],["fully",{"2":{"1":1,"15":1,"44":1}}],["further",{"2":{"8":1,"36":1}}],["furthermore",{"2":{"8":1}}],["f¯",{"2":{"2":1,"13":2,"65":1}}],["freq",{"2":{"45":2}}],["frequencies",{"2":{"8":1,"11":1,"15":1,"28":1,"29":1,"43":1,"44":2,"45":1,"67":1,"68":1,"70":1}}],["frequency",{"0":{"1":1,"4":1,"6":1},"2":{"1":6,"3":3,"4":1,"5":2,"6":3,"8":2,"10":2,"11":2,"15":2,"21":4,"22":1,"23":1,"28":3,"29":3,"32":1,"33":1,"34":2,"37":1,"41":1,"45":3,"61":1,"64":1,"65":3,"67":7,"68":1,"69":1,"70":2,"71":5,"72":1}}],["free",{"2":{"12":3,"65":1}}],["freedom",{"2":{"11":1,"12":1,"64":1}}],["frame",{"2":{"8":2,"21":1,"44":2,"45":1,"65":1,"67":1}}],["frac",{"2":{"2":2,"4":8,"65":2}}],["from",{"0":{"8":1,"73":1},"2":{"5":1,"14":2,"15":1,"21":2,"22":2,"23":2,"28":1,"29":1,"39":1,"40":1,"42":1,"44":1,"46":1,"47":1,"51":2,"54":1,"58":3,"65":3,"67":1,"68":1,"71":1,"73":2,"74":1}}],["fields",{"2":{"37":1,"40":2,"44":2,"45":1,"47":1,"48":1,"49":1,"55":1,"58":1}}],["filters",{"2":{"64":1}}],["filtering",{"2":{"22":1}}],["filename",{"2":{"54":6}}],["file",{"2":{"22":1,"54":4}}],["fixed",{"2":{"19":5,"20":4,"22":1,"23":2,"27":3,"28":2,"29":2,"32":3,"55":13,"56":1,"58":4,"61":1,"63":1,"64":1,"65":5,"67":2,"68":4,"70":4,"71":3,"73":3,"74":1}}],["fix",{"2":{"12":1,"68":1}}],["fixing",{"0":{"12":1},"2":{"12":1,"21":1,"64":2,"69":1}}],["finding",{"0":{"69":1},"1":{"70":1,"71":1},"2":{"30":1,"65":1,"69":1,"72":1}}],["find",{"2":{"7":1,"10":1,"11":1,"15":1,"32":1,"47":1,"48":1,"49":1,"55":3,"67":2,"69":1,"70":1,"71":1}}],["finite",{"2":{"2":1}}],["first",{"0":{"44":1},"2":{"1":1,"4":1,"5":1,"8":1,"15":1,"21":2,"36":1,"41":1,"42":1,"51":1,"58":1,"65":1,"67":1,"69":1,"71":2,"74":1}}],["ft",{"2":{"1":2}}],["focused",{"2":{"65":1,"72":1}}],["focuses",{"2":{"1":1}}],["focus",{"2":{"21":1,"28":1,"29":1}}],["follow",{"2":{"65":1}}],["follows",{"2":{"22":1,"67":1}}],["following",{"2":{"21":1,"25":1,"31":1,"40":1,"68":1,"72":1}}],["followed",{"2":{"3":1,"39":1}}],["footing",{"2":{"6":1,"71":1}}],["four",{"0":{"24":1,"27":1},"1":{"25":1,"26":1,"27":1,"28":1,"29":1},"2":{"61":1}}],["fourfold",{"2":{"12":1,"64":1}}],["fourier",{"2":{"1":4,"2":2,"4":2,"6":1,"13":1,"15":1,"37":1,"39":6,"69":1,"71":2}}],["found",{"2":{"4":1,"5":1,"14":1,"15":1,"21":2,"62":1,"66":1,"70":1,"71":1}}],["fortunately",{"2":{"69":1}}],["forcing",{"2":{"21":1}}],["forces",{"2":{"21":2}}],["force",{"2":{"14":1,"15":1,"45":1}}],["format",{"2":{"50":1}}],["formulation",{"2":{"10":1,"11":2}}],["formed",{"2":{"10":1,"11":1}}],["form",{"2":{"8":1,"21":2,"57":1,"68":1,"71":1}}],["for",{"2":{"1":1,"3":2,"4":4,"6":2,"7":1,"8":4,"10":2,"11":2,"12":2,"13":1,"14":4,"15":3,"21":2,"22":2,"23":4,"30":1,"32":1,"36":3,"37":1,"39":6,"40":5,"43":2,"44":2,"45":3,"46":1,"47":5,"48":5,"49":6,"50":3,"51":1,"52":1,"54":1,"55":8,"56":1,"57":7,"58":1,"61":1,"64":3,"65":2,"67":1,"68":5,"69":3,"70":6,"71":3,"73":1,"74":1}}],["f",{"2":{"1":2,"2":2,"4":4,"18":2,"19":2,"20":7,"21":5,"22":1,"23":1,"26":4,"27":1,"28":1,"29":1,"32":5,"36":4,"37":7,"39":4,"42":1,"47":1,"50":2,"55":3,"59":7,"65":3,"66":4,"67":1,"68":5,"69":3,"70":4,"71":3,"72":5,"73":1,"74":1}}],["occurring",{"2":{"74":1}}],["occurred",{"2":{"65":1}}],["occur",{"2":{"65":1}}],["occurs",{"2":{"21":1,"65":1,"68":1,"74":1}}],["o",{"2":{"30":1}}],["otherwise",{"2":{"58":1}}],["other",{"2":{"21":1,"34":1,"37":1,"41":1,"49":1,"51":1,"52":1,"53":1,"61":1,"62":1,"64":1,"65":1,"69":1,"70":1}}],["others",{"2":{"2":1,"69":1}}],["overriden",{"2":{"65":1}}],["overlay",{"2":{"23":2}}],["overlaid",{"2":{"22":1}}],["over",{"2":{"14":1,"23":1,"55":3,"57":2,"58":2,"68":1,"70":2}}],["overwiew",{"2":{"7":1}}],["outside",{"2":{"61":1}}],["output",{"2":{"21":1,"22":1,"57":2}}],["out",{"2":{"12":1,"15":3,"32":1,"64":2,"68":1,"70":1,"71":2}}],["our",{"2":{"2":1,"8":2,"11":2,"12":2,"25":1,"63":1,"65":1,"70":1,"72":1}}],["optional",{"2":{"74":1}}],["optionally",{"2":{"55":1}}],["options",{"2":{"47":5,"48":5,"49":5,"55":1,"57":1}}],["optics",{"2":{"28":1,"29":1}}],["optical",{"2":{"1":1}}],["operating",{"2":{"21":1}}],["open",{"2":{"16":1}}],["oppositely",{"2":{"11":1}}],["object",{"2":{"50":1,"51":1,"52":1,"53":1,"54":3,"55":1,"58":2,"70":1,"72":2,"73":1,"74":1}}],["objects",{"2":{"15":1,"44":1,"54":2}}],["observable",{"2":{"70":1}}],["observation",{"2":{"11":1}}],["observe",{"2":{"19":1,"27":1,"28":1,"29":1,"65":2}}],["observed",{"2":{"5":1,"44":1}}],["obtained",{"2":{"5":1,"10":1,"32":1,"51":1,"55":1,"61":1}}],["obtaining",{"2":{"2":1}}],["obtain",{"2":{"2":2,"4":1,"6":1,"8":1,"10":1,"11":1,"12":1,"13":1,"14":1,"21":1,"34":1,"36":1,"39":1,"41":1,"42":2,"45":1,"55":2,"64":1,"65":1,"69":1,"71":2}}],["omega",{"2":{"1":18,"4":20,"32":4}}],["oscillates",{"2":{"37":1}}],["oscillate",{"2":{"4":1,"15":1,"65":1,"71":1}}],["oscillator+αx",{"2":{"69":1}}],["oscillatory",{"2":{"2":2,"15":1,"58":3,"72":1}}],["oscillator",{"0":{"3":1,"64":1,"69":1},"1":{"4":1,"5":1,"6":1,"70":1,"71":1},"2":{"1":1,"5":1,"15":1,"19":2,"21":2,"23":2,"27":1,"28":2,"29":2,"32":3,"36":1,"37":2,"39":1,"55":1,"57":1,"61":2,"64":1,"66":1,"69":1,"71":3,"72":1}}],["oscillators",{"2":{"1":1,"21":1,"37":1,"65":3}}],["oscillation",{"2":{"28":1,"29":1}}],["oscillations",{"2":{"1":1,"58":1,"64":1}}],["oscillating",{"0":{"1":1},"2":{"1":1,"21":1,"36":1,"39":3,"44":1}}],["ordinarydiffeqtsit5",{"2":{"58":1,"65":1,"73":1}}],["ordinarydiffeq",{"2":{"58":2,"72":3,"73":1}}],["orderedset",{"2":{"37":1}}],["ordereddict",{"2":{"37":2,"45":1,"55":2,"60":2}}],["orderedcollections",{"2":{"37":3,"45":1,"55":2,"60":2}}],["ordered",{"2":{"23":1}}],["order=2",{"2":{"20":1,"45":1}}],["order=1",{"2":{"19":1,"43":1}}],["orders",{"0":{"45":1},"2":{"1":1,"33":1,"71":1}}],["order",{"0":{"19":1,"20":1,"44":1},"2":{"1":2,"2":2,"4":2,"5":1,"6":1,"8":1,"19":1,"34":1,"36":5,"39":2,"41":1,"43":2,"45":3,"57":2,"64":1,"67":1,"71":3}}],["original",{"0":{"10":1},"2":{"40":1}}],["originating",{"2":{"8":1}}],["orbit",{"2":{"8":1}}],["or",{"2":{"1":2,"7":1,"13":1,"14":2,"15":1,"16":1,"31":1,"37":1,"40":2,"42":1,"50":1,"51":1,"52":1,"53":1,"55":1,"58":1,"64":2,"71":1,"74":2}}],["odeproblem",{"2":{"58":2,"65":1,"72":1,"73":3,"74":3}}],["oded",{"2":{"30":1}}],["ode",{"2":{"1":3,"2":1,"37":2,"40":1,"58":1,"64":1,"66":1,"72":2,"73":5,"74":1}}],["odesolution",{"2":{"59":3}}],["odes",{"2":{"1":1,"2":1,"7":1,"8":3,"36":1,"37":1,"39":1}}],["onto",{"2":{"15":1,"51":1,"52":1,"53":1}}],["ones",{"2":{"6":1,"22":1}}],["one",{"0":{"70":1},"2":{"4":1,"8":3,"11":2,"12":1,"14":1,"21":1,"22":1,"34":1,"37":1,"39":1,"41":1,"44":1,"51":1,"58":2,"61":1,"67":2,"68":1,"74":1}}],["once",{"2":{"2":1,"39":1,"55":2}}],["only",{"2":{"1":2,"4":1,"12":1,"23":2,"27":1,"28":1,"29":1,"44":1,"48":3,"51":1,"52":1,"53":1,"55":1,"56":1,"61":1,"69":2,"70":2,"71":3,"72":1,"73":1}}],["on",{"2":{"1":1,"2":1,"4":1,"5":1,"6":1,"12":1,"19":1,"21":1,"22":1,"28":1,"29":1,"30":1,"32":1,"34":1,"36":1,"37":1,"43":2,"44":1,"48":1,"61":2,"65":1,"67":2,"69":2,"70":1,"71":1,"72":2}}],["offer",{"2":{"46":1}}],["offers",{"2":{"22":1}}],["often",{"2":{"15":1,"67":1}}],["of",{"0":{"0":1,"37":1,"69":1},"1":{"1":1,"2":1,"3":1,"4":1,"5":1,"6":1,"70":1,"71":1},"2":{"1":9,"2":7,"4":11,"5":4,"6":4,"7":1,"8":8,"10":1,"11":6,"12":5,"13":5,"14":5,"15":21,"19":1,"20":1,"21":12,"22":10,"23":3,"25":1,"26":1,"27":1,"28":1,"29":1,"30":2,"32":7,"33":1,"34":2,"36":5,"37":10,"39":17,"40":15,"41":2,"42":5,"43":1,"44":6,"45":4,"47":1,"48":2,"49":1,"50":1,"51":1,"52":5,"53":4,"54":5,"55":11,"57":6,"58":8,"59":4,"60":4,"61":9,"62":3,"64":10,"65":16,"66":3,"67":13,"68":10,"69":9,"70":10,"71":14,"72":5,"73":1,"74":2}}]],"serializationVersion":2}';export{e as default}; diff --git a/previews/PR298/assets/chunks/@localSearchIndexroot._bmAGjC1.js b/previews/PR298/assets/chunks/@localSearchIndexroot._bmAGjC1.js new file mode 100644 index 00000000..2a23b289 --- /dev/null +++ b/previews/PR298/assets/chunks/@localSearchIndexroot._bmAGjC1.js @@ -0,0 +1 @@ +const e='{"documentCount":75,"nextId":75,"documentIds":{"0":"/HarmonicBalance.jl/previews/PR298/background/harmonic_balance#intro_hb","1":"/HarmonicBalance.jl/previews/PR298/background/harmonic_balance#prelude","2":"/HarmonicBalance.jl/previews/PR298/background/harmonic_balance#Harmonic-ansatz-and-harmonic-equations","3":"/HarmonicBalance.jl/previews/PR298/background/harmonic_balance#Duffing_harmeq","4":"/HarmonicBalance.jl/previews/PR298/background/harmonic_balance#Single-frequency-ansatz","5":"/HarmonicBalance.jl/previews/PR298/background/harmonic_balance#Sidenote:-perturbative-approach","6":"/HarmonicBalance.jl/previews/PR298/background/harmonic_balance#Two-frequency-ansatz","7":"/HarmonicBalance.jl/previews/PR298/background/limit_cycles#limit_cycles_bg","8":"/HarmonicBalance.jl/previews/PR298/background/limit_cycles#Limit-cycles-from-a-Hopf-bifurcation","9":"/HarmonicBalance.jl/previews/PR298/background/limit_cycles#ansatz","10":"/HarmonicBalance.jl/previews/PR298/background/limit_cycles#Original-ansatz","11":"/HarmonicBalance.jl/previews/PR298/background/limit_cycles#Extended-ansatz","12":"/HarmonicBalance.jl/previews/PR298/background/limit_cycles#gauge_fixing","13":"/HarmonicBalance.jl/previews/PR298/background/stability_response#linresp_background","14":"/HarmonicBalance.jl/previews/PR298/background/stability_response#stability","15":"/HarmonicBalance.jl/previews/PR298/background/stability_response#Linear-response","16":"/HarmonicBalance.jl/previews/PR298/examples/#examples","17":"/HarmonicBalance.jl/previews/PR298/examples/parametric_via_three_wave_mixing#Parametric-Pumping-via-Three-Wave-Mixing","18":"/HarmonicBalance.jl/previews/PR298/examples/parametric_via_three_wave_mixing#system","19":"/HarmonicBalance.jl/previews/PR298/examples/parametric_via_three_wave_mixing#1st-order-Krylov-expansion","20":"/HarmonicBalance.jl/previews/PR298/examples/parametric_via_three_wave_mixing#2nd-order-Krylov-expansion","21":"/HarmonicBalance.jl/previews/PR298/examples/parametron#parametron","22":"/HarmonicBalance.jl/previews/PR298/examples/parametron#1D-parameters","23":"/HarmonicBalance.jl/previews/PR298/examples/parametron#2D-parameters","24":"/HarmonicBalance.jl/previews/PR298/examples/wave_mixing#Three-Wave-Mixing-vs-four-wave-mixing","25":"/HarmonicBalance.jl/previews/PR298/examples/wave_mixing#packages","26":"/HarmonicBalance.jl/previews/PR298/examples/wave_mixing#system","27":"/HarmonicBalance.jl/previews/PR298/examples/wave_mixing#four-wave-mixing","28":"/HarmonicBalance.jl/previews/PR298/examples/wave_mixing#Three-wave-mixing","29":"/HarmonicBalance.jl/previews/PR298/examples/wave_mixing#both","30":"/HarmonicBalance.jl/previews/PR298/introduction/citation#citation","31":"/HarmonicBalance.jl/previews/PR298/introduction/#installation","32":"/HarmonicBalance.jl/previews/PR298/introduction/#Getting-Started","33":"/HarmonicBalance.jl/previews/PR298/manual/Krylov-Bogoliubov_method#Krylov-Bogoliubov","34":"/HarmonicBalance.jl/previews/PR298/manual/Krylov-Bogoliubov_method#Purpose-and-Advantages","35":"/HarmonicBalance.jl/previews/PR298/manual/Krylov-Bogoliubov_method#usage","36":"/HarmonicBalance.jl/previews/PR298/manual/Krylov-Bogoliubov_method#Function-Reference","37":"/HarmonicBalance.jl/previews/PR298/manual/entering_eom#Entering-equations-of-motion","38":"/HarmonicBalance.jl/previews/PR298/manual/extracting_harmonics#Extracting-harmonic-equations","39":"/HarmonicBalance.jl/previews/PR298/manual/extracting_harmonics#Harmonic-Balance-method","40":"/HarmonicBalance.jl/previews/PR298/manual/extracting_harmonics#HarmonicVariable-and-HarmonicEquation-types","41":"/HarmonicBalance.jl/previews/PR298/manual/linear_response#linresp_man","42":"/HarmonicBalance.jl/previews/PR298/manual/linear_response#stability","43":"/HarmonicBalance.jl/previews/PR298/manual/linear_response#Linear-response","44":"/HarmonicBalance.jl/previews/PR298/manual/linear_response#First-order","45":"/HarmonicBalance.jl/previews/PR298/manual/linear_response#Higher-orders","46":"/HarmonicBalance.jl/previews/PR298/manual/methods#methods","47":"/HarmonicBalance.jl/previews/PR298/manual/methods#Total-Degree-Method","48":"/HarmonicBalance.jl/previews/PR298/manual/methods#Polyhedral-Method","49":"/HarmonicBalance.jl/previews/PR298/manual/methods#Warm-Up-Method","50":"/HarmonicBalance.jl/previews/PR298/manual/plotting#Analysis-and-plotting","51":"/HarmonicBalance.jl/previews/PR298/manual/plotting#Plotting-solutions","52":"/HarmonicBalance.jl/previews/PR298/manual/plotting#Plotting-phase-diagrams","53":"/HarmonicBalance.jl/previews/PR298/manual/plotting#Plot-spaghetti-plot","54":"/HarmonicBalance.jl/previews/PR298/manual/saving#Saving-and-loading","55":"/HarmonicBalance.jl/previews/PR298/manual/solving_harmonics#Solving-harmonic-equations","56":"/HarmonicBalance.jl/previews/PR298/manual/solving_harmonics#Classifying-solutions","57":"/HarmonicBalance.jl/previews/PR298/manual/solving_harmonics#Sorting-solutions","58":"/HarmonicBalance.jl/previews/PR298/manual/time_dependent#Time-evolution","59":"/HarmonicBalance.jl/previews/PR298/manual/time_dependent#plotting","60":"/HarmonicBalance.jl/previews/PR298/manual/time_dependent#miscellaneous","61":"/HarmonicBalance.jl/previews/PR298/tutorials/classification#classifying","62":"/HarmonicBalance.jl/previews/PR298/tutorials/#tutorials","63":"/HarmonicBalance.jl/previews/PR298/tutorials/limit_cycles#limit_cycles","64":"/HarmonicBalance.jl/previews/PR298/tutorials/limit_cycles#Non-driven-system-the-van-der-Pol-oscillator","65":"/HarmonicBalance.jl/previews/PR298/tutorials/limit_cycles#Driven-system-coupled-Duffings","66":"/HarmonicBalance.jl/previews/PR298/tutorials/linear_response#linresp_ex","67":"/HarmonicBalance.jl/previews/PR298/tutorials/linear_response#Linear-regime","68":"/HarmonicBalance.jl/previews/PR298/tutorials/linear_response#Nonlinear-regime","69":"/HarmonicBalance.jl/previews/PR298/tutorials/steady_states#Duffing","70":"/HarmonicBalance.jl/previews/PR298/tutorials/steady_states#One-harmonic","71":"/HarmonicBalance.jl/previews/PR298/tutorials/steady_states#Using-multiple-harmonics","72":"/HarmonicBalance.jl/previews/PR298/tutorials/time_dependent#Time-dependent-simulations","73":"/HarmonicBalance.jl/previews/PR298/tutorials/time_dependent#Evolving-from-an-initial-condition","74":"/HarmonicBalance.jl/previews/PR298/tutorials/time_dependent#Adiabatic-parameter-sweeps"},"fieldIds":{"title":0,"titles":1,"text":2},"fieldLength":{"0":[5,1,1],"1":[6,5,208],"2":[5,5,135],"3":[4,5,42],"4":[3,9,184],"5":[3,9,86],"6":[3,9,132],"7":[2,1,36],"8":[6,2,172],"9":[1,2,1],"10":[2,3,71],"11":[2,3,142],"12":[2,3,167],"13":[4,1,89],"14":[1,4,104],"15":[2,4,241],"16":[1,1,22],"17":[6,1,7],"18":[1,6,38],"19":[4,6,67],"20":[4,6,119],"21":[3,1,221],"22":[2,3,189],"23":[2,3,191],"24":[7,1,1],"25":[1,7,24],"26":[1,7,66],"27":[3,7,66],"28":[3,7,124],"29":[1,7,130],"30":[1,1,67],"31":[1,1,42],"32":[2,1,141],"33":[4,1,41],"34":[3,4,64],"35":[1,4,31],"36":[2,5,100],"37":[4,1,140],"38":[3,1,1],"39":[3,3,198],"40":[4,3,125],"41":[4,1,46],"42":[1,4,54],"43":[2,4,63],"44":[2,3,115],"45":[2,3,101],"46":[1,1,27],"47":[3,1,82],"48":[2,1,83],"49":[3,1,82],"50":[3,1,61],"51":[2,3,140],"52":[3,3,70],"53":[3,3,68],"54":[3,1,93],"55":[3,1,269],"56":[2,3,97],"57":[2,3,127],"58":[2,1,180],"59":[1,2,36],"60":[1,2,81],"61":[2,1,249],"62":[1,1,21],"63":[2,1,38],"64":[8,2,200],"65":[4,2,359],"66":[2,1,100],"67":[2,2,174],"68":[2,2,186],"69":[8,1,169],"70":[2,8,210],"71":[3,8,296],"72":[3,1,176],"73":[5,3,126],"74":[3,3,121]},"averageFieldLength":[2.8,3.093333333333333,111.01333333333334],"storedFields":{"0":{"title":"The method of harmonic balance","titles":[]},"1":{"title":"Frequency conversion in oscillating nonlinear systems","titles":["The method of harmonic balance"]},"2":{"title":"Harmonic ansatz & harmonic equations","titles":["The method of harmonic balance"]},"3":{"title":"Example: the Duffing oscillator","titles":["The method of harmonic balance"]},"4":{"title":"Single-frequency ansatz","titles":["The method of harmonic balance","Example: the Duffing oscillator"]},"5":{"title":"Sidenote: perturbative approach","titles":["The method of harmonic balance","Example: the Duffing oscillator"]},"6":{"title":"Two-frequency ansatz","titles":["The method of harmonic balance","Example: the Duffing oscillator"]},"7":{"title":"Limit cycles","titles":[]},"8":{"title":"Limit cycles from a Hopf bifurcation","titles":["Limit cycles"]},"9":{"title":"Ansatz","titles":["Limit cycles"]},"10":{"title":"Original ansatz","titles":["Limit cycles","Ansatz"]},"11":{"title":"Extended ansatz","titles":["Limit cycles","Ansatz"]},"12":{"title":"Gauge fixing","titles":["Limit cycles","Ansatz"]},"13":{"title":"Stability and linear response","titles":[]},"14":{"title":"Stability","titles":["Stability and linear response"]},"15":{"title":"Linear response","titles":["Stability and linear response"]},"16":{"title":"Examples","titles":[]},"17":{"title":"Parametric Pumping via Three-Wave Mixing","titles":[]},"18":{"title":"System","titles":["Parametric Pumping via Three-Wave Mixing"]},"19":{"title":"1st order Krylov expansion","titles":["Parametric Pumping via Three-Wave Mixing"]},"20":{"title":"2nd order Krylov expansion","titles":["Parametric Pumping via Three-Wave Mixing"]},"21":{"title":"Parametrically driven resonator","titles":[]},"22":{"title":"1D parameters","titles":["Parametrically driven resonator"]},"23":{"title":"2D parameters","titles":["Parametrically driven resonator"]},"24":{"title":"Three Wave Mixing vs four wave mixing","titles":[]},"25":{"title":"Packages","titles":["Three Wave Mixing vs four wave mixing"]},"26":{"title":"system","titles":["Three Wave Mixing vs four wave mixing"]},"27":{"title":"four wave mixing","titles":["Three Wave Mixing vs four wave mixing"]},"28":{"title":"Three wave mixing","titles":["Three Wave Mixing vs four wave mixing"]},"29":{"title":"Both","titles":["Three Wave Mixing vs four wave mixing"]},"30":{"title":"Citation","titles":[]},"31":{"title":"Installation","titles":[]},"32":{"title":"Getting Started","titles":[]},"33":{"title":"Krylov-Bogoliubov Averaging Method","titles":[]},"34":{"title":"Purpose and Advantages","titles":["Krylov-Bogoliubov Averaging Method"]},"35":{"title":"Usage","titles":["Krylov-Bogoliubov Averaging Method"]},"36":{"title":"Function Reference","titles":["Krylov-Bogoliubov Averaging Method","Usage"]},"37":{"title":"Entering equations of motion","titles":[]},"38":{"title":"Extracting harmonic equations","titles":[]},"39":{"title":"Harmonic Balance method","titles":["Extracting harmonic equations"]},"40":{"title":"HarmonicVariable and HarmonicEquation types","titles":["Extracting harmonic equations"]},"41":{"title":"Linear response (WIP)","titles":[]},"42":{"title":"Stability","titles":["Linear response (WIP)"]},"43":{"title":"Linear response","titles":["Linear response (WIP)"]},"44":{"title":"First order","titles":["Linear response (WIP)","Linear response"]},"45":{"title":"Higher orders","titles":["Linear response (WIP)","Linear response"]},"46":{"title":"Methods","titles":[]},"47":{"title":"Total Degree Method","titles":["Methods"]},"48":{"title":"Polyhedral Method","titles":["Methods"]},"49":{"title":"Warm Up Method","titles":["Methods"]},"50":{"title":"Analysis and plotting","titles":[]},"51":{"title":"Plotting solutions","titles":["Analysis and plotting"]},"52":{"title":"Plotting phase diagrams","titles":["Analysis and plotting"]},"53":{"title":"Plot spaghetti plot","titles":["Analysis and plotting"]},"54":{"title":"Saving and loading","titles":[]},"55":{"title":"Solving harmonic equations","titles":[]},"56":{"title":"Classifying solutions","titles":["Solving harmonic equations"]},"57":{"title":"Sorting solutions","titles":["Solving harmonic equations"]},"58":{"title":"Time evolution","titles":[]},"59":{"title":"Plotting","titles":["Time evolution"]},"60":{"title":"Miscellaneous","titles":["Time evolution"]},"61":{"title":"Classifying solutions","titles":[]},"62":{"title":"Tutorials","titles":[]},"63":{"title":"Limit cycles","titles":[]},"64":{"title":"Non-driven system - the van der Pol oscillator","titles":["Limit cycles"]},"65":{"title":"Driven system - coupled Duffings","titles":["Limit cycles"]},"66":{"title":"Linear response","titles":[]},"67":{"title":"Linear regime","titles":["Linear response"]},"68":{"title":"Nonlinear regime","titles":["Linear response"]},"69":{"title":"Finding the staedy states of a Duffing oscillator","titles":[]},"70":{"title":"One harmonic","titles":["Finding the staedy states of a Duffing oscillator"]},"71":{"title":"Using multiple harmonics","titles":["Finding the staedy states of a Duffing oscillator"]},"72":{"title":"Time-dependent simulations","titles":[]},"73":{"title":"Evolving from an initial condition","titles":["Time-dependent simulations"]},"74":{"title":"Adiabatic parameter sweeps","titles":["Time-dependent simulations"]}},"dirtCount":0,"index":[["θ",{"2":{"72":5,"73":1}}],["ϵ",{"2":{"71":1}}],["⏟periodic",{"2":{"69":1}}],["⏟damped",{"2":{"69":1}}],["ħω0",{"2":{"65":2}}],["μ",{"2":{"64":294}}],["7",{"2":{"61":1,"65":1}}],["79",{"2":{"23":1}}],["ᵢdᵢ",{"2":{"47":1}}],["ᵢᵢᵢxᵢdᵢ+aᵢ",{"2":{"47":1}}],["²",{"2":{"44":1}}],["`",{"2":{"31":2}}],["√",{"2":{"27":3,"28":3,"29":3,"61":1}}],["\\u001b",{"2":{"23":8}}],["zambon",{"2":{"65":3}}],["z",{"2":{"51":2,"53":1}}],["zilberberg",{"2":{"30":2}}],["zones",{"2":{"23":1}}],["zeroth",{"2":{"71":1}}],["zero",{"2":{"4":1,"11":1,"19":1,"39":2,"48":5,"55":1,"61":7,"64":1}}],[">",{"2":{"22":1,"37":2,"39":1,"45":1,"50":1,"51":2,"52":2,"53":1,"55":2,"56":2,"57":1,"58":1,"60":1,"61":1}}],["≈ucos⁡",{"2":{"21":1}}],["ηf1",{"2":{"65":1}}],["η",{"2":{"21":14,"22":1,"23":1,"32":3,"65":6,"72":13,"73":1}}],["ηx2x˙",{"2":{"21":1}}],["867e",{"2":{"65":1}}],["83278e",{"2":{"61":1}}],["8",{"2":{"20":18,"23":1,"55":2}}],["5ω",{"2":{"64":2}}],["5ωlc",{"2":{"64":1}}],["5e",{"2":{"22":1,"58":1,"73":1}}],["50",{"2":{"20":1,"23":2,"58":1,"65":1}}],["500",{"2":{"20":1}}],["51",{"2":{"20":6,"23":1}}],["5",{"2":{"20":4,"22":2,"55":1,"58":1,"61":4,"64":29,"71":1}}],["y^3",{"2":{"65":1}}],["y^2",{"2":{"39":2}}],["y",{"2":{"37":6,"39":5,"51":4,"53":1,"58":2,"65":17}}],["ylims=",{"2":{"27":1,"28":1,"29":1,"67":1,"68":2}}],["y=2",{"2":{"51":1}}],["y=",{"2":{"19":2,"20":1,"22":1,"27":3,"28":3,"29":3,"51":1,"61":1,"64":2,"68":1}}],["your",{"2":{"30":1,"35":1}}],["yourself",{"2":{"16":1}}],["you",{"2":{"16":1,"30":2,"31":3,"32":2,"48":1,"61":1}}],["95",{"2":{"58":2,"67":2,"68":2}}],["900",{"2":{"27":1,"28":1,"29":1}}],["9865\\u001b",{"2":{"23":1}}],["9",{"2":{"22":1,"26":2,"27":1,"28":1,"29":1,"32":1,"64":2,"68":2,"70":2,"71":5,"73":1,"74":3}}],["94",{"2":{"21":2}}],["99+0",{"2":{"61":1}}],["99",{"2":{"19":2,"61":1}}],["9ωd2−ω02",{"2":{"6":1}}],["~",{"2":{"18":1,"20":3,"21":3,"26":7,"32":1,"36":3,"37":4,"39":3,"61":2,"64":7,"65":6,"66":3,"69":2,"70":2,"71":4,"72":3}}],["β^2",{"2":{"20":4}}],["β",{"2":{"18":2,"19":2,"20":8,"26":22,"27":1,"28":1,"29":1}}],["βx2",{"2":{"1":1}}],["χ",{"2":{"15":2}}],["±ω",{"2":{"15":1}}],["quite",{"2":{"65":1}}],["quasi",{"2":{"67":2,"68":2}}],["quadratures",{"2":{"40":1,"51":1,"53":1,"69":1,"70":1}}],["quadratic",{"2":{"1":1,"19":2,"20":1}}],["quantum",{"2":{"28":1,"29":1}}],["quot",{"2":{"15":2,"23":2,"50":2,"51":1,"55":10,"56":6,"57":6,"67":4,"70":2}}],["π",{"2":{"12":1}}],["ϕ",{"2":{"12":2}}],["ϕ=−arctan⁡u2",{"2":{"12":2}}],["ϕ=−atan",{"2":{"5":1}}],["ϕ=2πnωlc",{"2":{"12":1}}],["→",{"2":{"8":1}}],["λk",{"2":{"67":1}}],["λ=0",{"2":{"61":1}}],["λmax",{"2":{"60":1}}],["λeff",{"2":{"20":1}}],["λeff=2f1β3mω2",{"2":{"20":1}}],["λr∗",{"2":{"15":1}}],["λr",{"2":{"14":5,"15":4}}],["λ",{"2":{"8":3,"15":17,"21":6,"22":1,"23":3,"44":3,"51":2,"58":2,"60":3,"61":8,"72":5,"73":1}}],["kwarg",{"2":{"51":1,"52":1,"53":1}}],["kwargs",{"2":{"43":2,"51":5,"52":2,"53":2,"59":3,"60":1}}],["kosata",{"2":{"41":1}}],["košata",{"2":{"7":1,"30":2}}],["kindly",{"2":{"30":1}}],["k\\u001b",{"2":{"23":4}}],["krylovbogoliubov",{"2":{"36":1}}],["krylov",{"0":{"19":1,"20":1,"33":1},"1":{"34":1,"35":1,"36":1},"2":{"19":1,"20":1,"33":2,"34":1,"35":2,"36":6}}],["kerr",{"2":{"65":2}}],["kept",{"2":{"43":1}}],["keep",{"2":{"23":1}}],["keeping",{"2":{"15":1,"55":1}}],["keyword",{"2":{"23":1,"51":1,"55":1,"57":1,"64":1,"74":1}}],["keywords",{"2":{"22":1}}],["key",{"2":{"10":1,"50":1}}],["knowing",{"2":{"15":1}}],["known",{"2":{"4":1,"64":1,"65":1,"68":1,"71":1}}],["kutta",{"2":{"10":1}}],["k",{"2":{"8":2,"23":9,"37":4}}],["6+0",{"2":{"61":1}}],["600",{"2":{"68":2}}],["60",{"2":{"23":1}}],["6315\\u001b",{"2":{"23":1}}],["6",{"2":{"7":1,"20":4,"23":1,"26":3,"30":2,"61":2,"64":4,"65":2,"68":1,"71":2}}],["|>",{"2":{"61":1}}],["|████████████████████|",{"2":{"23":1}}],["|███████████████▊",{"2":{"23":1}}],["|██████████▏",{"2":{"23":1}}],["|2=∑j=1mi",{"2":{"15":2}}],["|χ",{"2":{"15":2}}],["|",{"2":{"5":1,"23":2}}],["|≪|x0",{"2":{"5":1}}],["|δx",{"2":{"5":1}}],["≡x0",{"2":{"5":1}}],["−re",{"2":{"15":1}}],["−im",{"2":{"15":4}}],["−v13+3v23+3u12v1+6u12v2+3u22v2+6v12v2",{"2":{"6":1}}],["−fcos⁡θ",{"2":{"6":1}}],["−4fcos⁡θ",{"2":{"4":1}}],["−4fsin⁡θ4u",{"2":{"4":1}}],["−3α",{"2":{"4":1}}],["08",{"2":{"65":1,"74":1}}],["021066",{"2":{"66":1}}],["023526",{"2":{"65":1}}],["022201",{"2":{"21":2}}],["06092",{"2":{"64":1}}],["0+0",{"2":{"61":2}}],["0e",{"2":{"61":1}}],["0im",{"2":{"61":5}}],["03",{"2":{"61":1,"65":1}}],["033180",{"2":{"30":1}}],["05",{"2":{"58":1,"67":2,"68":1}}],["010",{"2":{"65":1}}],["011",{"2":{"65":2}}],["01\\u001b",{"2":{"23":2}}],["01",{"2":{"20":2,"32":1,"55":1,"58":1,"61":3,"70":4,"71":1}}],["0030303030303030303",{"2":{"70":1}}],["003",{"2":{"67":1,"68":2}}],["0001",{"2":{"67":1}}],["002+0",{"2":{"61":1}}],["002",{"2":{"61":1,"65":3,"68":1}}],["0025",{"2":{"19":2,"27":1,"28":1,"29":1}}],["00\\u001b",{"2":{"23":1}}],["00",{"2":{"23":3}}],["001",{"2":{"20":1,"23":1,"61":1}}],["005",{"2":{"19":2,"20":1,"27":1,"28":1,"29":1,"67":1,"68":1}}],["0",{"2":{"4":2,"8":2,"14":2,"19":13,"20":13,"21":3,"22":5,"23":9,"26":5,"27":9,"28":9,"29":8,"32":5,"37":1,"39":2,"51":2,"55":7,"56":1,"58":17,"60":1,"61":14,"64":9,"65":16,"66":1,"67":7,"68":12,"70":11,"71":4,"73":24,"74":10}}],["0^2",{"2":{"4":4,"32":2}}],["4507941",{"2":{"65":1}}],["4504859",{"2":{"65":1}}],["4e",{"2":{"65":1}}],["4e4",{"2":{"58":1}}],["41",{"2":{"64":1}}],["40",{"2":{"23":1}}],["4v",{"2":{"4":1}}],["4",{"2":{"4":8,"6":1,"11":1,"20":4,"21":12,"26":32,"61":4,"64":74,"65":9,"66":4,"70":4,"71":20,"72":12}}],["3=fcos⁡",{"2":{"71":1}}],["3⏟duffing",{"2":{"69":1}}],["300",{"2":{"27":1,"28":1,"29":1,"67":1,"68":3}}],["3ω=ω0",{"2":{"71":1}}],["3ωlc",{"2":{"64":1}}],["3ωt+ϕ1",{"2":{"71":1}}],["3ωt+3ϕ0",{"2":{"71":1}}],["3ωt",{"2":{"26":2,"71":4}}],["3ω",{"2":{"26":1,"64":2,"71":7}}],["3ωdt",{"2":{"6":4}}],["3ωdt+3ϕ",{"2":{"5":1}}],["3ωd",{"2":{"3":1,"4":1,"5":2,"6":3}}],["34=81",{"2":{"6":1,"71":1}}],["32=9",{"2":{"4":1,"70":1}}],["39",{"2":{"4":1,"5":2,"7":1,"13":1,"23":1,"34":1,"43":1,"48":1,"57":6,"64":4,"68":1,"72":1}}],["3u^2",{"2":{"4":2}}],["3",{"2":{"4":12,"6":2,"20":12,"21":6,"22":3,"23":2,"26":66,"27":1,"28":1,"29":1,"32":2,"39":1,"61":6,"64":36,"65":9,"66":4,"70":7,"71":30,"72":6,"73":3}}],["\\t+",{"2":{"4":4}}],["\\t",{"2":{"4":2}}],["α^2",{"2":{"20":6}}],["αi",{"2":{"15":1}}],["α",{"2":{"3":1,"18":2,"19":2,"20":18,"21":8,"22":1,"23":1,"26":69,"27":2,"28":2,"29":2,"32":3,"61":9,"65":15,"66":7,"67":1,"68":2,"69":3,"70":7,"71":29,"72":7,"73":1}}],["18000",{"2":{"74":1}}],["154",{"2":{"65":1}}],["13785e",{"2":{"61":1}}],["102",{"2":{"65":1}}],["10",{"2":{"55":1,"64":2,"66":1,"68":1,"71":1}}],["10000",{"2":{"61":2}}],["1000",{"2":{"55":1,"73":2}}],["100",{"2":{"19":1,"20":1,"22":2,"23":1,"32":2,"55":4,"58":3,"61":2,"64":1,"67":1,"68":1,"70":2,"71":2,"73":1}}],["1973\\u001b",{"2":{"23":1}}],["1977",{"2":{"8":1}}],["1d",{"0":{"22":1},"2":{"22":1,"23":1,"51":3,"52":2,"53":1,"55":1,"57":2}}],["1−t",{"2":{"47":1}}],["1−λcos⁡",{"2":{"21":2}}],["1−αi",{"2":{"15":2}}],["1e",{"2":{"20":1,"22":2,"23":2,"58":1,"61":1,"65":1,"68":1,"73":2}}],["12299e",{"2":{"61":1}}],["1234",{"2":{"25":1}}],["12500\\u001b",{"2":{"23":1}}],["1263\\u001b",{"2":{"23":1}}],["128",{"2":{"20":2}}],["12",{"2":{"20":4,"61":1}}],["1+αi",{"2":{"15":2}}],["1st",{"0":{"19":1},"2":{"2":1}}],["1",{"2":{"2":8,"4":1,"11":1,"12":1,"13":8,"19":9,"20":22,"21":13,"22":5,"23":3,"25":1,"26":23,"27":6,"28":6,"29":7,"32":4,"33":1,"36":6,"37":1,"39":4,"45":1,"55":12,"56":1,"57":1,"58":7,"59":1,"61":12,"64":217,"65":19,"66":3,"67":4,"68":16,"69":1,"70":9,"71":14,"72":13,"73":5,"74":7}}],["utype",{"2":{"73":1}}],["utilize",{"2":{"35":1}}],["uint32",{"2":{"47":1,"48":1,"49":1,"55":1}}],["ui",{"2":{"13":1,"40":1}}],["u=u0",{"2":{"14":1}}],["u=",{"2":{"12":1}}],["u3^2+v3^2",{"2":{"27":1,"28":1,"29":1}}],["u3",{"2":{"12":1,"26":32,"64":97}}],["u3cos⁡ϕ−v3sin⁡ϕ",{"2":{"12":1}}],["u3+uv2",{"2":{"4":1}}],["upconverted",{"2":{"71":2}}],["upconversion",{"2":{"4":1}}],["upwards",{"2":{"65":2}}],["up",{"0":{"49":1},"2":{"6":1,"22":1,"36":1,"43":1,"48":1,"49":2,"73":2}}],["u22+v22",{"2":{"71":1}}],["u2+v2",{"2":{"70":1}}],["u2^2",{"2":{"65":1,"71":2}}],["u2^2+v2^2",{"2":{"27":1,"28":1,"29":1}}],["u2k+1",{"2":{"11":2}}],["u2−α4",{"2":{"6":1}}],["u2",{"2":{"6":1,"11":2,"12":1,"26":36,"64":129,"65":13,"71":18}}],["u12+v12",{"2":{"71":1}}],["u1^2",{"2":{"22":5,"23":2,"32":1,"56":1,"61":2,"65":2,"67":1,"68":2,"70":1,"71":3,"73":1,"74":1}}],["u1^2+v1^2",{"2":{"19":2,"27":1,"28":1,"29":1,"51":2,"61":1}}],["u1v1v2⋮v2k+1ωlc",{"2":{"12":1}}],["u13+3u23+6u12u2−3v12u1+3v22u2+6v12u2",{"2":{"6":1}}],["u13+u12u2+v12u1−v12u2+2u22u1+2v22u1+2u1v1v2",{"2":{"6":1}}],["u1−3α4",{"2":{"6":1}}],["u1",{"2":{"6":1,"10":1,"20":28,"21":21,"26":40,"36":5,"39":5,"61":12,"64":145,"65":14,"66":10,"70":11,"71":22,"72":21,"73":2}}],["unequal",{"2":{"68":1}}],["unusual",{"2":{"65":1}}],["unlike",{"2":{"33":1,"34":1,"45":1}}],["undriven",{"2":{"21":1}}],["understanding",{"2":{"34":1,"36":1}}],["underbrace",{"2":{"32":6}}],["underlying",{"2":{"22":1,"39":1,"45":1}}],["underdetermined",{"2":{"11":1}}],["under",{"2":{"2":1,"12":2,"40":1,"56":1,"57":1,"65":2,"70":1}}],["union",{"2":{"47":1,"48":1,"49":2,"55":1,"56":1}}],["units",{"2":{"21":1}}],["unique",{"2":{"6":1,"64":3}}],["unstable",{"2":{"8":3,"14":2,"23":1,"51":1,"61":1,"74":1}}],["unknown",{"2":{"5":1}}],["uv",{"2":{"4":1}}],["uv^2",{"2":{"4":2}}],["u^2",{"2":{"4":2}}],["u^3",{"2":{"4":4}}],["u0=",{"2":{"74":1}}],["u0",{"2":{"2":2,"13":2,"14":10,"15":4,"58":2,"73":9}}],["u",{"2":{"2":11,"4":11,"5":1,"8":4,"11":1,"12":1,"13":8,"15":3,"18":1,"26":1,"32":1,"40":1,"42":1,"53":1,"65":8,"66":1,"69":1,"70":2,"72":3,"73":2}}],["usual",{"2":{"63":1,"71":1}}],["usually",{"2":{"57":1,"72":1}}],["usage",{"0":{"35":1},"1":{"36":1}}],["useful",{"2":{"48":1,"53":1,"61":1}}],["user",{"2":{"22":1,"56":1}}],["uses",{"2":{"7":1,"65":1}}],["use",{"2":{"6":1,"8":1,"11":1,"12":1,"15":2,"22":1,"30":1,"39":1,"55":3,"58":2,"65":1,"68":1,"69":1,"72":1,"73":1,"74":1}}],["used",{"2":{"2":1,"28":1,"29":1,"33":1,"36":1,"37":2,"39":1,"40":3,"41":2,"42":1,"43":1,"44":1,"54":1,"55":4,"56":1,"57":1,"58":5,"69":1,"70":1,"74":1}}],["using",{"0":{"71":1},"2":{"4":1,"12":1,"13":1,"17":2,"20":1,"21":1,"23":2,"25":2,"29":1,"30":1,"31":1,"35":1,"37":3,"39":2,"40":3,"44":1,"49":2,"51":1,"54":3,"55":2,"56":1,"58":3,"60":1,"64":1,"65":2,"66":2,"67":1,"68":1,"70":1,"71":1,"72":1}}],["us",{"2":{"1":2,"14":1,"15":1,"23":1,"28":1,"29":1,"32":1,"61":1,"65":3,"68":1,"70":1,"71":3,"73":1,"74":1}}],["judiciously",{"2":{"69":1}}],["just",{"2":{"65":1}}],["jump",{"2":{"65":3,"74":2}}],["juliaode",{"2":{"74":1}}],["juliaodeproblem",{"2":{"58":1}}],["juliau0",{"2":{"73":1}}],["juliausing",{"2":{"17":1,"21":1,"25":1,"32":1,"61":1,"64":1,"65":1,"66":1,"69":1,"72":1,"73":1}}],["juliadiff",{"2":{"69":1}}],["juliadrop",{"2":{"39":1}}],["juliaresult",{"2":{"64":1,"70":1,"71":1}}],["juliais",{"2":{"60":2}}],["juliaωfunc",{"2":{"58":1}}],["juliaexport",{"2":{"54":1}}],["juliaload",{"2":{"54":1}}],["juliatime",{"2":{"73":1}}],["juliatransform",{"2":{"50":1}}],["juliatotaldegree",{"2":{"47":1}}],["juliawarmup",{"2":{"49":1}}],["juliap1",{"2":{"71":1}}],["juliap1=plot",{"2":{"71":1}}],["juliaproblem",{"2":{"55":1}}],["juliapolyhedral",{"2":{"48":1}}],["juliaplot",{"2":{"22":2,"23":1,"32":1,"43":1,"51":1,"52":1,"53":1,"59":1,"61":3,"64":2,"67":2,"68":2,"70":1}}],["juliasweep",{"2":{"58":1,"74":1}}],["juliasweep1",{"2":{"58":1}}],["juliasort",{"2":{"57":1}}],["juliasave",{"2":{"54":1}}],["juliastruct",{"2":{"44":1,"45":1}}],["juliaslow",{"2":{"39":1}}],["juliajacobianspectrum",{"2":{"44":1}}],["juliajulia>",{"2":{"31":3,"36":1,"37":2,"39":2}}],["juliaforeach",{"2":{"64":1}}],["juliafourier",{"2":{"39":1}}],["juliafixed",{"2":{"22":1,"23":1,"61":1,"67":1,"68":2,"70":1,"71":1}}],["juliamutable",{"2":{"37":1,"40":2,"44":1,"55":2}}],["juliaget",{"2":{"36":1,"37":2,"39":1,"42":1,"45":2,"55":1,"61":1,"64":1}}],["julia>drop",{"2":{"39":3}}],["julia>",{"2":{"31":3,"36":3,"37":5,"39":3,"55":5,"58":5}}],["juliaclassify",{"2":{"22":1,"56":1,"61":2}}],["juliaadd",{"2":{"21":1,"37":1,"65":1,"70":1,"71":1}}],["juliavaried",{"2":{"19":2,"20":2,"27":1,"28":1,"29":1,"70":1}}],["juliaharmonicbalance",{"2":{"22":1}}],["juliaharmonic",{"2":{"19":1,"21":1,"39":1,"64":1,"70":1}}],["julia",{"2":{"18":1,"20":1,"21":1,"23":1,"26":1,"30":1,"31":2,"55":2,"56":1,"58":1}}],["j=2",{"2":{"15":1}}],["j+im",{"2":{"15":2}}],["j+ω",{"2":{"15":2}}],["j−im",{"2":{"15":2}}],["j−ω~",{"2":{"15":1}}],["j−ω",{"2":{"15":2}}],["j2=1",{"2":{"15":1}}],["j2+δv^i",{"2":{"15":1}}],["j±ω",{"2":{"15":2}}],["javier",{"2":{"30":1}}],["jacobian=false",{"2":{"55":1}}],["jacobian=j",{"2":{"55":1}}],["jacobian=",{"2":{"55":1}}],["jacobian=true",{"2":{"55":1}}],["jacobians",{"2":{"54":1}}],["jacobianspectrum",{"2":{"44":3}}],["jacobian",{"2":{"14":1,"15":1,"22":1,"41":1,"42":6,"44":1,"45":1,"55":12,"60":2,"61":2,"67":1}}],["jan",{"2":{"7":1,"30":1,"41":1}}],["jt",{"2":{"2":5,"13":2,"15":2,"40":2}}],["j",{"2":{"2":2,"13":4,"14":2,"15":37,"30":2,"40":5,"55":3,"65":15}}],["jld2",{"2":{"22":1,"54":3}}],["jl",{"2":{"1":1,"2":1,"7":1,"15":2,"16":1,"20":1,"21":2,"23":1,"29":1,"30":2,"31":1,"32":1,"37":1,"47":1,"48":1,"49":1,"50":1,"51":1,"54":2,"55":2,"56":1,"58":3,"59":1,"66":1,"69":3,"72":2,"73":2}}],["hypothetically",{"2":{"70":1}}],["huber",{"2":{"66":1,"68":2}}],["human",{"2":{"40":1}}],["hide",{"2":{"56":1,"65":1}}],["hilbert",{"2":{"55":2,"57":2}}],["highest",{"2":{"45":1}}],["higher",{"0":{"45":1},"2":{"1":2,"2":1,"4":1,"6":1,"33":1,"34":1,"39":1,"71":1}}],["high",{"2":{"33":1,"34":2,"47":1,"71":1}}],["hence",{"2":{"67":1}}],["help",{"2":{"61":1}}],["heugel",{"2":{"30":1}}],["here",{"2":{"3":1,"4":1,"28":1,"29":1,"45":1,"64":1,"65":1,"66":1,"67":1,"69":3,"70":2,"71":1,"72":2,"73":1}}],["holds",{"2":{"37":2,"40":3,"44":2,"45":1,"55":4}}],["homotopycontinuation",{"2":{"21":1,"47":3,"48":3,"49":3,"55":3,"69":1}}],["homotopy",{"2":{"11":1,"12":1,"21":1,"22":4,"47":3,"48":2,"49":1,"55":1,"69":1,"70":1}}],["hopf",{"0":{"8":1},"2":{"8":3,"22":1,"32":1,"40":2,"55":2,"61":4,"64":2,"70":1,"71":1}}],["how",{"2":{"7":1,"10":2,"71":1,"72":1}}],["however",{"2":{"1":1,"8":2,"11":1,"12":1,"34":1,"44":1,"45":1,"47":1,"58":1,"64":1,"65":2,"68":1,"71":2,"72":1}}],["h",{"2":{"4":1,"47":1}}],["harder",{"2":{"71":1}}],["hard",{"2":{"69":1}}],["harm",{"2":{"59":4}}],["harmvar",{"2":{"13":3}}],["harmeqfull",{"2":{"65":5}}],["harmeq",{"2":{"2":3}}],["harmansatz",{"2":{"2":4}}],["harmonicequation",{"0":{"40":1},"2":{"39":3,"40":5,"42":2,"45":1,"54":1,"55":9,"58":4,"59":3,"60":1,"63":1,"73":1}}],["harmonicvariable",{"0":{"40":1},"2":{"39":1,"40":4,"45":1}}],["harmonics",{"0":{"71":1},"2":{"1":2,"6":2,"8":2,"11":1,"13":2,"15":1,"34":1,"36":3,"37":5,"39":6,"40":5,"69":2,"71":5,"72":1}}],["harmonically",{"2":{"1":1}}],["harmonicbalancemethod",{"2":{"55":1}}],["harmonicbalance",{"2":{"1":1,"2":1,"7":1,"15":2,"16":1,"17":1,"21":2,"25":1,"30":2,"31":4,"32":2,"36":1,"37":4,"39":5,"40":3,"42":1,"43":1,"44":3,"45":4,"47":1,"48":1,"49":1,"50":2,"51":1,"52":2,"53":1,"54":6,"55":4,"56":2,"57":1,"58":1,"60":2,"61":1,"64":1,"65":1,"66":2,"69":2,"72":2}}],["harmonic",{"0":{"0":1,"2":2,"38":1,"39":1,"55":1,"70":1},"1":{"1":1,"2":1,"3":1,"4":1,"5":1,"6":1,"39":1,"40":1,"56":1,"57":1},"2":{"1":4,"2":3,"3":1,"4":4,"5":1,"6":3,"8":7,"10":1,"11":4,"12":4,"13":2,"15":5,"18":1,"19":4,"20":7,"21":9,"22":3,"23":1,"26":8,"27":1,"28":1,"29":1,"30":2,"32":7,"33":1,"36":7,"37":12,"39":23,"40":7,"44":4,"45":2,"46":1,"55":4,"58":2,"61":7,"63":2,"64":11,"65":17,"66":7,"67":1,"68":2,"69":4,"70":11,"71":14,"72":8,"73":4,"74":2}}],["hand",{"2":{"42":1}}],["handles",{"2":{"52":1}}],["handle",{"2":{"34":1,"70":1}}],["having",{"2":{"10":1,"55":2}}],["have",{"2":{"6":1,"8":2,"12":1,"15":1,"19":1,"27":1,"28":1,"29":1,"31":1,"32":1,"57":1,"60":1,"61":3,"65":2,"69":1,"71":2}}],["has",{"2":{"4":1,"11":3,"12":1,"19":1,"41":1,"46":1,"55":1,"65":1,"67":1,"70":1}}],["^5",{"2":{"20":2}}],["^4",{"2":{"20":2}}],["^3",{"2":{"20":10,"21":5,"26":8,"32":2,"39":1,"61":2,"64":8,"65":6,"66":2,"69":1,"70":2,"71":6,"72":4}}],["^2",{"2":{"20":10,"21":9,"26":46,"39":3,"61":2,"64":113,"65":4,"66":2,"70":2,"71":18,"72":8}}],["^",{"2":{"1":2,"68":1}}],["δ=ωl−ω0",{"2":{"23":1}}],["δv^i",{"2":{"15":7}}],["δvi",{"2":{"15":5}}],["δu^i",{"2":{"15":8}}],["δui",{"2":{"15":5}}],["δu",{"2":{"14":5,"15":7}}],["δu=u−u0",{"2":{"14":1}}],["δxi",{"2":{"15":7}}],["δx¨",{"2":{"5":1}}],["δx",{"2":{"5":3}}],["δ",{"2":{"1":1}}],["ω≅ω0",{"2":{"71":1}}],["ωfunc",{"2":{"58":1}}],["ω2=ω0",{"2":{"28":1,"29":1}}],["ω2",{"2":{"28":1,"29":1}}],["ω₀^2",{"2":{"21":4,"61":3}}],["ω₀",{"2":{"21":2,"22":1,"23":1,"61":4}}],["ω^3",{"2":{"20":2}}],["ω^4",{"2":{"20":2}}],["ω^2",{"2":{"20":10,"21":2,"26":6,"36":2,"39":2,"61":2,"65":4,"66":2,"70":2,"71":4,"72":2}}],["ω~−ωi",{"2":{"15":1}}],["ω~",{"2":{"15":6}}],["ω=1",{"2":{"74":2}}],["ω=0",{"2":{"74":1}}],["ω=ω0",{"2":{"68":2}}],["ω=im",{"2":{"15":1}}],["ω=±ωd",{"2":{"1":1}}],["ω−im",{"2":{"15":1}}],["ω−ωlc",{"2":{"11":2,"12":4}}],["ω−ωd",{"2":{"1":1}}],["ω±kωlc",{"2":{"11":1}}],["ωt+ϕ0",{"2":{"71":1}}],["ωt+θ",{"2":{"21":1}}],["ωt",{"2":{"10":2,"11":2,"12":4,"18":2,"20":2,"21":4,"26":4,"32":2,"36":2,"39":2,"55":1,"61":2,"65":6,"66":2,"69":3,"70":4,"71":5,"72":2}}],["ωlc",{"2":{"10":1,"11":4,"12":1,"64":3}}],["ωlct+ϕ",{"2":{"8":1}}],["ωm±kωlc",{"2":{"8":1}}],["ωm",{"2":{"8":1}}],["ω1±ω2=±ω0",{"2":{"28":1,"29":1}}],["ω1±ωlc",{"2":{"8":1}}],["ω1±2ωlc",{"2":{"8":1}}],["ω1",{"2":{"8":2,"28":1,"29":1}}],["ωj±kωlc",{"2":{"8":1}}],["ωj±ωlc",{"2":{"8":1}}],["ωj",{"2":{"8":2}}],["ωi",{"2":{"2":5,"13":2,"15":15,"40":3}}],["ωd≈ω0",{"2":{"6":1}}],["ωd2−ω02",{"2":{"4":1,"6":1}}],["ωd",{"2":{"3":2,"4":2,"5":1,"6":1}}],["ωd→2ωd",{"2":{"1":1}}],["ωdt+ϕ",{"2":{"5":1}}],["ωdt+θ",{"2":{"3":1}}],["ωdt",{"2":{"1":1,"4":4,"6":4}}],["ω+ωlc",{"2":{"11":2,"12":4}}],["ω+ω",{"2":{"1":1}}],["ω+ωd",{"2":{"1":1}}],["ω",{"2":{"1":5,"10":1,"12":2,"15":6,"18":3,"19":2,"20":9,"21":17,"22":4,"23":2,"26":16,"27":1,"28":1,"29":1,"32":4,"33":1,"36":7,"37":13,"39":7,"40":2,"43":2,"44":1,"45":2,"55":4,"58":3,"61":11,"64":114,"65":19,"66":10,"67":5,"68":6,"69":4,"70":13,"71":18,"72":13,"73":2,"74":3}}],["ω0^4",{"2":{"20":2}}],["ω0^2",{"2":{"18":1,"20":9,"26":7,"32":1,"36":3,"37":6,"39":3,"65":8,"69":2,"70":2,"71":4,"72":5}}],["ω02−9ωd2",{"2":{"6":1}}],["ω02−ωd2",{"2":{"4":1,"6":1}}],["ω02−ω2+iωγ",{"2":{"1":1}}],["ω02+3αx024",{"2":{"5":1,"71":1}}],["ω0",{"2":{"1":1,"18":1,"19":2,"20":4,"26":2,"27":1,"28":1,"29":1,"32":2,"36":2,"37":2,"39":2,"44":2,"64":1,"65":15,"66":5,"67":2,"68":2,"69":1,"70":3,"71":2,"72":2,"73":1}}],["γ²",{"2":{"44":1}}],["γ^2",{"2":{"20":2}}],["γ=>0",{"2":{"71":1}}],["γ=l",{"2":{"15":1}}],["γ=1",{"2":{"15":1}}],["γ",{"2":{"1":1,"15":1,"18":2,"19":2,"20":7,"21":8,"22":1,"23":1,"26":15,"27":1,"28":1,"29":1,"44":1,"55":1,"61":9,"65":15,"66":7,"67":1,"68":2,"69":3,"70":7,"71":9,"72":7,"73":1}}],["ceases",{"2":{"65":1}}],["certain",{"2":{"56":1}}],["center",{"2":{"44":1}}],["centered",{"2":{"15":4}}],["csv",{"2":{"54":4}}],["cite",{"2":{"30":1}}],["citation",{"0":{"30":1}}],["circuits",{"2":{"1":1}}],["curves",{"2":{"61":1}}],["curve",{"2":{"55":1,"57":1,"68":1,"70":1}}],["current",{"2":{"55":1,"57":1}}],["currently",{"2":{"41":1,"57":1}}],["cut=λ",{"2":{"61":1}}],["cut=",{"2":{"51":1}}],["cut",{"2":{"51":4,"61":1}}],["custom",{"2":{"22":1,"58":1}}],["cubic",{"2":{"19":2,"20":1,"27":1,"28":1,"29":1,"69":1,"71":1}}],["chosen",{"2":{"69":1,"72":1}}],["choose",{"2":{"13":1}}],["choosing",{"2":{"12":1,"64":1}}],["check",{"2":{"15":1,"25":1,"31":1,"32":1}}],["changing",{"2":{"67":1}}],["changes",{"2":{"57":2}}],["change",{"2":{"57":1,"68":1}}],["chaotic",{"2":{"51":1}}],["characterise",{"2":{"65":1}}],["characterised",{"2":{"11":1}}],["characteristic",{"2":{"14":1,"67":1,"68":1}}],["chapter",{"2":{"7":1}}],["clock",{"2":{"64":2}}],["closed",{"2":{"65":2}}],["closest",{"2":{"23":1}}],["close",{"2":{"6":1}}],["clases",{"2":{"22":1}}],["class",{"2":{"23":2,"43":1,"51":5,"52":5,"53":5,"56":2,"61":2,"64":1}}],["classification",{"2":{"55":1,"56":1}}],["classified",{"2":{"22":1,"55":1,"56":1,"61":1}}],["classifying",{"0":{"56":1,"61":1},"2":{"55":1,"70":1}}],["classify",{"2":{"22":1,"55":3,"56":4,"61":2}}],["classes",{"2":{"22":1,"32":1,"55":3,"56":5,"61":2,"64":1,"70":2,"71":1}}],["class=",{"2":{"20":1,"22":3,"23":3,"51":4,"61":4,"64":1}}],["clear",{"2":{"15":1}}],["clearly",{"2":{"8":1,"71":1,"73":1}}],["cycle",{"2":{"8":1,"10":1,"11":3,"12":1,"30":1,"61":1,"63":1,"64":4,"65":5}}],["cycles",{"0":{"7":1,"8":1,"63":1},"1":{"8":1,"9":1,"10":1,"11":1,"12":1,"64":1,"65":1},"2":{"7":1,"8":1,"10":2,"11":1,"30":1,"61":1,"64":2,"65":2}}],["crucial",{"2":{"72":1}}],["crank",{"2":{"70":1}}],["create",{"2":{"58":1}}],["created",{"2":{"39":1,"56":1,"64":1}}],["creates",{"2":{"15":1,"56":1,"58":1}}],["creation",{"2":{"8":1}}],["crosses",{"2":{"8":1}}],["critical",{"2":{"8":1}}],["capabilities",{"2":{"62":1}}],["capture",{"2":{"33":1,"67":1,"71":1,"72":1}}],["captured",{"2":{"1":1,"6":1}}],["capturing",{"2":{"8":1}}],["catagory",{"2":{"61":1}}],["catogaries",{"2":{"61":1}}],["cases",{"2":{"55":1,"60":1}}],["cartesian",{"2":{"39":1}}],["camera=",{"2":{"23":1}}],["calculation",{"2":{"67":1}}],["calculations",{"2":{"55":1}}],["calculating",{"2":{"23":1,"41":2}}],["calculate",{"2":{"45":1,"66":1}}],["calculated",{"2":{"15":1,"55":1}}],["calling",{"2":{"64":1}}],["callable",{"2":{"59":1}}],["called",{"2":{"23":1,"28":1,"29":1,"55":1,"61":1}}],["call",{"2":{"2":1,"8":1,"21":1,"64":1}}],["caused",{"2":{"15":1}}],["cause",{"2":{"1":1}}],["cannot",{"2":{"6":1,"34":1,"45":1}}],["can",{"2":{"1":1,"4":1,"5":1,"8":2,"12":3,"14":1,"15":3,"21":3,"22":4,"23":3,"28":1,"29":1,"31":2,"32":2,"34":1,"36":1,"39":1,"40":1,"42":1,"43":1,"48":1,"50":1,"51":1,"54":3,"55":1,"56":1,"58":3,"60":1,"61":6,"62":1,"64":1,"65":1,"67":2,"68":1,"69":1,"71":3,"73":1}}],["cavity",{"2":{"1":1}}],["code",{"2":{"73":1}}],["coded",{"2":{"51":1,"57":1}}],["codebases",{"2":{"30":1}}],["colour",{"2":{"51":1,"57":1}}],["color=",{"2":{"23":1}}],["colors",{"2":{"23":1}}],["collected",{"2":{"32":1}}],["collecting",{"2":{"2":1}}],["collective",{"2":{"1":1}}],["could",{"2":{"65":1}}],["counting",{"2":{"23":1}}],["count",{"2":{"23":1,"52":2,"53":2}}],["coupled",{"0":{"65":1},"2":{"37":2,"65":2,"69":2,"70":1,"71":1}}],["couples",{"2":{"1":1}}],["coupling",{"2":{"1":1,"65":1}}],["coordinates",{"2":{"65":1}}],["coordinates=",{"2":{"39":1}}],["coordinate",{"2":{"13":2}}],["core",{"2":{"13":1}}],["corresponding",{"2":{"11":1,"15":2,"23":1,"37":1,"39":1,"40":1,"45":1,"71":1}}],["correspondingly",{"2":{"5":1}}],["correspond",{"2":{"6":1}}],["comes",{"2":{"47":1}}],["command",{"2":{"21":1,"31":2}}],["combined",{"2":{"12":1,"39":1,"58":2}}],["complicated",{"2":{"68":1}}],["complete",{"2":{"69":1}}],["completeness",{"2":{"21":1,"46":1}}],["complexf64",{"2":{"45":1,"49":1,"55":2,"60":2,"61":1}}],["complex",{"2":{"1":1,"8":1,"14":1,"15":1,"21":1,"22":3,"47":2,"60":1,"61":1,"67":1,"68":1,"71":1}}],["compare",{"2":{"73":1}}],["compared",{"2":{"12":1}}],["comparable",{"2":{"71":1}}],["compatible",{"2":{"51":1,"57":1}}],["compilation",{"2":{"47":1,"48":1,"49":1}}],["compile",{"2":{"47":1,"48":1,"49":1}}],["compiled",{"2":{"45":2,"55":1}}],["composite",{"2":{"54":1}}],["composed",{"2":{"37":1,"39":1}}],["component",{"2":{"6":1,"71":1}}],["components",{"2":{"2":2,"13":1,"15":3,"34":1,"39":1,"72":1}}],["comprehensive",{"2":{"34":1}}],["computationally",{"2":{"58":1,"72":1}}],["computational",{"2":{"47":1}}],["computing",{"2":{"33":1}}],["compute",{"2":{"27":1,"35":1,"55":1,"60":1,"67":1}}],["co",{"2":{"8":1}}],["convert",{"2":{"70":1}}],["converted",{"2":{"55":1}}],["converting",{"2":{"42":1}}],["conversely",{"2":{"14":1}}],["conversion",{"0":{"1":1},"2":{"1":2,"3":1,"5":1,"8":1,"71":2}}],["conditions",{"2":{"22":1,"28":1,"29":1}}],["condition",{"0":{"73":1},"2":{"14":1,"56":1,"58":1,"60":1,"65":1,"72":1,"73":2,"74":1}}],["conclude",{"2":{"12":1}}],["consequence",{"2":{"54":1}}],["consitutes",{"2":{"65":1}}],["consisting",{"2":{"40":1}}],["consistent",{"2":{"21":1}}],["consider",{"2":{"21":1,"61":1,"69":1}}],["considered",{"2":{"21":1,"45":1,"48":1,"60":1}}],["considering",{"2":{"10":1}}],["constraints",{"2":{"69":1}}],["constrain",{"2":{"12":1}}],["constructs",{"2":{"48":1}}],["constructors",{"2":{"55":1}}],["constructor",{"2":{"44":1,"73":1,"74":1}}],["constructing",{"2":{"13":1}}],["construction",{"2":{"11":1,"65":1}}],["construct",{"2":{"8":1,"63":1,"70":1}}],["constituting",{"2":{"8":1,"72":1}}],["constant",{"2":{"4":2,"18":1,"26":1,"32":1,"39":2,"40":1,"55":1,"58":1,"66":1,"69":2,"72":1,"73":1,"74":1}}],["contain",{"2":{"72":1}}],["contained",{"2":{"58":1}}],["containing",{"2":{"22":1,"54":1}}],["contains",{"2":{"15":1,"21":1,"54":1,"70":1}}],["continuing",{"2":{"71":1}}],["continuously",{"2":{"57":1}}],["continuous",{"2":{"55":1,"57":2,"64":1,"65":1}}],["continuation",{"2":{"11":1,"12":1,"21":1,"55":1,"69":1,"70":1}}],["continue",{"2":{"8":1}}],["contributions",{"2":{"71":1}}],["contribute",{"2":{"11":1}}],["contributes",{"2":{"11":1}}],["contrast",{"2":{"6":1,"63":1}}],["conjugates",{"2":{"61":1}}],["conjugate",{"2":{"8":1,"67":1,"68":1}}],["cost",{"2":{"47":1}}],["cosines",{"2":{"15":1}}],["cos",{"2":{"4":6,"18":2,"20":2,"21":5,"26":5,"32":4,"36":2,"37":5,"39":3,"58":1,"61":2,"64":3,"65":6,"66":3,"69":2,"70":2,"71":2,"72":4}}],["cos⁡",{"2":{"2":2,"4":2,"6":4,"10":1,"12":2,"13":1,"15":3,"40":1}}],["coefficient=fcos⁡",{"2":{"69":1}}],["coefficients",{"2":{"4":1,"6":1,"39":1,"48":1}}],["coefficient",{"2":{"1":1,"32":2}}],["rich",{"2":{"71":1}}],["right",{"2":{"4":16}}],["rapidly",{"2":{"65":1}}],["raw",{"2":{"57":1}}],["rather",{"2":{"52":1,"58":1,"63":1,"71":1}}],["range=range",{"2":{"67":1,"68":3}}],["ranges",{"2":{"55":2}}],["range",{"2":{"19":3,"20":3,"22":1,"23":2,"27":2,"28":3,"29":3,"32":2,"43":2,"55":6,"57":2,"61":2,"65":2,"67":2,"68":5,"70":4,"71":2,"73":1}}],["random",{"2":{"17":1,"22":1,"25":2,"47":1,"48":1,"49":1}}],["rules",{"2":{"50":2}}],["running",{"2":{"73":1}}],["run",{"2":{"31":1,"65":1}}],["runge",{"2":{"10":1}}],["rmat",{"2":{"45":2}}],["role",{"2":{"71":1}}],["robustness",{"2":{"46":1}}],["routine",{"2":{"45":1}}],["roots",{"2":{"22":1,"69":2}}],["rotating",{"2":{"21":1,"44":2,"45":1,"65":1,"67":1}}],["r",{"2":{"15":2,"39":1,"70":1}}],["rlc",{"2":{"1":1}}],["relaxation",{"2":{"64":1}}],["rel",{"2":{"60":2}}],["relies",{"2":{"44":1}}],["reflect",{"2":{"71":1}}],["reflects",{"2":{"57":1}}],["refer",{"2":{"36":1,"64":1}}],["reference",{"0":{"36":1},"2":{"66":1}}],["reinstated",{"2":{"54":1}}],["reinstating",{"2":{"54":1}}],["regime",{"0":{"67":1,"68":1}}],["region",{"2":{"61":2}}],["regions",{"2":{"52":1,"61":1}}],["registry",{"2":{"31":1}}],["registered",{"2":{"31":1}}],["remake",{"2":{"73":1}}],["remain",{"2":{"71":1}}],["remains",{"2":{"65":1}}],["remaining",{"2":{"39":1}}],["removes",{"2":{"39":1,"58":1}}],["removed",{"2":{"12":1}}],["remove",{"2":{"12":2,"39":2}}],["reduced",{"2":{"72":1}}],["reduces",{"2":{"69":1}}],["redundant",{"2":{"11":1}}],["red",{"2":{"23":1}}],["returned",{"2":{"56":1}}],["returns",{"2":{"50":1,"57":1,"60":1}}],["return",{"2":{"37":2,"60":1}}],["returning",{"2":{"14":1}}],["retrieve",{"2":{"23":1}}],["retrieves",{"2":{"21":1}}],["replaced",{"2":{"39":1}}],["replacing",{"2":{"21":1}}],["repl",{"2":{"31":1}}],["represents",{"2":{"58":1}}],["representing",{"2":{"50":1}}],["represented",{"2":{"22":1}}],["represent",{"2":{"15":1,"23":1}}],["rev",{"2":{"21":2,"30":1,"65":1,"66":1}}],["receives",{"2":{"61":1}}],["recipesbase",{"2":{"51":1,"59":1}}],["recompiling",{"2":{"54":1}}],["reconstruct",{"2":{"40":1,"65":1}}],["recover",{"2":{"19":1}}],["recall",{"2":{"12":1}}],["recast",{"2":{"5":1}}],["rewrite",{"2":{"15":1}}],["required",{"2":{"51":1}}],["requires",{"2":{"22":1,"58":1}}],["require",{"2":{"15":1,"65":1}}],["re",{"2":{"8":2,"14":2,"15":12,"44":1,"60":2}}],["reasonable",{"2":{"71":1}}],["ready",{"2":{"70":2}}],["reads",{"2":{"69":1}}],["readable",{"2":{"40":1}}],["rearranging",{"2":{"6":1}}],["rearranged",{"2":{"57":1}}],["rearranges",{"2":{"55":1}}],["rearrange",{"2":{"4":1}}],["realify",{"2":{"50":1}}],["real",{"2":{"1":1,"4":1,"6":1,"8":1,"15":2,"22":2,"32":1,"55":2,"60":3,"61":5,"64":1,"67":3,"68":2,"70":2,"71":2}}],["rest",{"2":{"56":1}}],["res",{"2":{"30":1,"43":2,"44":1,"50":1,"51":7,"52":1,"53":1,"54":2,"56":5,"60":2}}],["rescaling",{"2":{"21":1}}],["resonance",{"2":{"15":1,"21":2,"71":1}}],["resonantly",{"2":{"28":1,"29":1}}],["resonant",{"2":{"6":1,"61":1,"65":1}}],["resonator",{"0":{"21":1},"1":{"22":1,"23":1},"2":{"3":1,"21":1,"67":1,"69":1,"71":1}}],["resonators",{"2":{"1":1}}],["result",{"2":{"12":1,"19":4,"20":4,"21":1,"22":9,"23":4,"27":4,"28":4,"29":4,"32":3,"40":1,"43":2,"44":1,"50":2,"51":6,"52":2,"53":2,"54":2,"55":5,"56":4,"60":2,"61":11,"64":3,"65":4,"67":5,"68":11,"70":2,"71":7,"73":2}}],["resulting",{"2":{"4":1,"5":1,"10":1,"39":1,"40":1,"48":1,"54":1,"55":1,"71":1}}],["results",{"2":{"4":2,"6":1,"15":1,"64":2,"65":1,"66":1,"70":2}}],["respectively",{"2":{"15":1}}],["respective",{"2":{"4":1,"6":1,"15":1,"50":1}}],["respect",{"2":{"4":1,"6":1,"42":1}}],["responsematrix",{"2":{"45":3}}],["response",{"0":{"13":1,"15":1,"41":1,"43":1,"66":1},"1":{"14":1,"15":1,"42":1,"43":1,"44":2,"45":2,"67":1,"68":1},"2":{"3":2,"5":3,"8":1,"15":9,"19":1,"21":2,"27":2,"28":2,"29":2,"41":2,"43":5,"44":6,"45":10,"55":2,"66":2,"67":6,"68":8,"70":1,"71":5}}],["responds",{"2":{"1":1,"14":1,"71":1}}],["psd",{"2":{"67":2,"68":1}}],["pkg",{"2":{"31":3}}],["p3",{"2":{"27":2,"28":2,"29":2}}],["p2=plot",{"2":{"71":1}}],["p2",{"2":{"27":2,"28":2,"29":2,"65":4,"71":3}}],["p1",{"2":{"27":2,"28":2,"29":2,"65":2,"71":2}}],["pump",{"2":{"65":3}}],["pumping",{"0":{"17":1},"1":{"18":1,"19":1,"20":1},"2":{"65":1}}],["purely",{"2":{"61":1}}],["purpose",{"0":{"34":1},"2":{"2":1,"4":1,"21":1}}],["peak",{"2":{"44":2,"67":3,"68":1}}],["peaks",{"2":{"15":1,"44":1,"68":2}}],["permutation",{"2":{"61":1}}],["perfrom",{"2":{"55":1}}],["performe",{"2":{"61":1}}],["performed",{"2":{"54":1}}],["performs",{"2":{"47":1,"49":1}}],["perform",{"2":{"23":1,"45":1,"64":1}}],["perturb",{"2":{"60":2}}],["perturbed",{"2":{"49":1}}],["perturbation",{"2":{"14":1,"15":2,"45":1,"49":3,"71":1}}],["perturbations",{"2":{"14":2,"70":1}}],["perturbatively",{"2":{"6":1,"71":1}}],["perturbative",{"0":{"5":1},"2":{"45":1,"71":4}}],["period",{"2":{"20":1}}],["periodic",{"2":{"3":1,"8":1,"32":2,"64":1,"65":1}}],["play",{"2":{"71":1}}],["place",{"2":{"8":2,"71":1,"73":1}}],["plotted",{"2":{"32":1,"51":1,"67":2}}],["plotting",{"0":{"50":1,"51":1,"52":1,"59":1},"1":{"51":1,"52":1,"53":1},"2":{"23":1,"40":1,"54":1,"56":1,"65":1,"70":1}}],["plottable",{"2":{"15":1}}],["plot",{"0":{"53":2},"2":{"19":2,"20":2,"22":3,"23":5,"27":4,"28":4,"29":4,"43":3,"51":16,"52":5,"53":6,"54":1,"59":6,"61":3,"65":6,"67":5,"68":11,"70":1,"71":5,"73":3,"74":1}}],["plots",{"2":{"17":2,"22":2,"23":1,"25":2,"43":1,"51":6,"52":2,"53":1,"59":1,"66":2,"73":1}}],["please",{"2":{"16":1}}],["plugging",{"2":{"15":1,"70":1}}],["pametric",{"2":{"61":1}}],["package",{"2":{"54":1,"58":1,"62":1}}],["packages",{"0":{"25":1},"2":{"25":1}}],["passed",{"2":{"51":1,"52":1,"53":1}}],["passing",{"2":{"51":1,"52":1,"53":1}}],["paper",{"2":{"30":2,"65":2,"69":1}}],["paths",{"2":{"22":1,"23":3}}],["page",{"2":{"20":1,"23":1,"29":1}}],["pairs",{"2":{"8":2,"11":2,"55":2,"70":3}}],["pair",{"2":{"8":1,"40":1,"51":1,"67":1,"68":1}}],["parse",{"2":{"54":1,"55":1,"72":1}}],["parses",{"2":{"50":1}}],["parsed",{"2":{"40":1,"56":1,"59":1}}],["particle",{"2":{"67":1}}],["particular",{"2":{"6":1,"21":1}}],["part",{"2":{"67":3}}],["parts",{"2":{"39":1,"61":2,"67":1}}],["parametron",{"2":{"22":1}}],["parametrically",{"0":{"21":1},"1":{"22":1,"23":1},"2":{"23":1,"72":1}}],["parametric",{"0":{"17":1},"1":{"18":1,"19":1,"20":1},"2":{"20":1,"21":3,"23":2,"59":2,"61":1}}],["parameterlist",{"2":{"55":2}}],["parameterrange",{"2":{"55":3}}],["parameter",{"0":{"74":1},"2":{"19":1,"22":4,"23":2,"27":1,"32":2,"40":1,"44":1,"49":3,"52":1,"53":1,"55":3,"57":4,"58":3,"61":4,"63":1,"64":1,"67":1,"68":2,"70":3,"71":2,"73":1}}],["parameters+variables",{"2":{"58":1}}],["parameters",{"0":{"22":1,"23":1},"2":{"4":1,"19":1,"20":1,"21":3,"22":1,"23":6,"26":1,"27":1,"32":1,"36":1,"37":1,"39":1,"40":2,"44":1,"51":1,"52":1,"53":1,"55":15,"56":2,"57":2,"58":7,"61":1,"64":1,"65":2,"66":1,"67":1,"68":2,"69":1,"70":5,"71":3,"72":2,"73":1,"74":1}}],["pino",{"2":{"7":1,"30":2}}],["phenomenon",{"2":{"68":1}}],["photons",{"2":{"28":2,"29":2}}],["phys",{"2":{"21":2,"30":2,"65":1,"66":1}}],["physical",{"2":{"11":1,"22":2,"32":2,"43":1,"51":1,"55":3,"56":3,"61":5,"64":1,"70":1,"71":2}}],["physically",{"2":{"1":1,"22":1,"70":1}}],["phases",{"2":{"61":1}}],["phase",{"0":{"52":1},"2":{"8":1,"12":2,"20":1,"23":4,"52":4,"61":4,"64":2,"65":1}}],["phd",{"2":{"7":1,"41":1}}],["pol",{"0":{"64":1},"2":{"64":1}}],["polyhedral",{"0":{"48":1},"2":{"48":3}}],["polynomials",{"2":{"69":1,"70":1}}],["polynomial",{"2":{"4":1,"12":1,"47":1,"48":1,"69":1}}],["positive",{"2":{"61":1}}],["possible",{"2":{"55":1,"56":1,"58":1,"65":1}}],["possibly",{"2":{"55":1}}],["possesses",{"2":{"65":1}}],["possess",{"2":{"11":1}}],["powerful",{"2":{"72":1}}],["power",{"2":{"39":2,"67":1}}],["powers",{"2":{"39":6}}],["pointers",{"2":{"28":1,"29":1}}],["points",{"2":{"22":1,"32":1,"55":2,"61":2,"64":1,"65":2,"70":1,"71":1}}],["point",{"2":{"1":2,"4":1,"8":1,"23":1,"58":1,"65":1,"70":1}}],["pr",{"2":{"16":1}}],["principal",{"2":{"71":1}}],["principle",{"2":{"11":1,"65":1}}],["primary",{"2":{"34":1,"37":2,"74":1}}],["primarily",{"2":{"2":1,"72":1}}],["providing",{"2":{"62":1}}],["progress",{"2":{"55":2,"57":3}}],["progress=true",{"2":{"43":1,"55":1}}],["project",{"2":{"30":1}}],["projecting",{"2":{"15":1}}],["proximity",{"2":{"22":1}}],["property",{"2":{"52":1}}],["properties",{"2":{"22":1}}],["proportional",{"2":{"15":1}}],["propagates",{"2":{"1":1}}],["probes",{"2":{"15":1}}],["problems",{"2":{"52":1,"63":1,"71":1}}],["problem",{"2":{"10":1,"21":1,"40":1,"55":19,"56":2,"57":1,"65":3,"72":2,"73":5,"74":2}}],["prompting",{"2":{"11":1}}],["procedure",{"2":{"13":1,"46":1,"64":1,"71":1}}],["procedures",{"2":{"11":1}}],["proceeds",{"2":{"65":1,"74":1}}],["proceed",{"2":{"10":1}}],["process",{"2":{"2":1,"4":2,"5":1,"28":1,"29":1,"43":1,"58":1,"71":1}}],["products",{"2":{"39":2}}],["product",{"2":{"8":1}}],["previous",{"2":{"63":1}}],["previously",{"2":{"5":1,"56":1}}],["preferable",{"2":{"55":1}}],["prefactor",{"2":{"2":1}}],["precedence",{"2":{"55":2}}],["prepares",{"2":{"49":1}}],["pressed",{"2":{"31":1}}],["presence",{"2":{"15":1}}],["present",{"2":{"1":1,"61":1,"71":1}}],["=x1cos⁡",{"2":{"71":1}}],["=x0",{"2":{"71":1}}],["=x0cos⁡",{"2":{"5":1,"71":1}}],["=ηf0cos⁡",{"2":{"65":1}}],["=real",{"2":{"56":1}}],["==2",{"2":{"51":1}}],["=γtg",{"2":{"47":1}}],["=>",{"2":{"19":12,"20":12,"21":1,"22":7,"23":7,"27":6,"28":6,"29":6,"32":5,"37":1,"55":7,"58":8,"61":13,"64":4,"65":11,"67":5,"68":10,"69":1,"70":10,"71":4,"73":9,"74":2}}],["=ξ⋅v−re",{"2":{"15":1}}],["=ξ⋅v⟹a",{"2":{"15":1}}],["=a",{"2":{"15":2}}],["=∑j=1mui",{"2":{"40":1}}],["=∑j=1mi",{"2":{"15":1}}],["=∑j=1miδui",{"2":{"15":1}}],["=∑j=1miui",{"2":{"2":1,"13":1}}],["=∑rcrvreλrt",{"2":{"14":1}}],["=∇uf¯|u=u0",{"2":{"14":1}}],["=j",{"2":{"14":1,"15":1}}],["=−αx034cos⁡",{"2":{"5":1,"71":1}}],["=18ωd",{"2":{"4":1}}],["=ucos⁡",{"2":{"69":1}}],["=u0+ulccos⁡",{"2":{"8":1}}],["=u1cos⁡",{"2":{"11":1,"12":2,"71":1}}],["=u1",{"2":{"6":1,"10":1}}],["=u",{"2":{"4":1}}],["=f0cos⁡",{"2":{"65":1}}],["=f2",{"2":{"1":1}}],["=fcos⁡",{"2":{"1":1,"3":1,"21":1}}],["=",{"2":{"1":5,"2":4,"4":2,"13":2,"18":2,"19":7,"20":10,"21":5,"22":3,"23":3,"26":4,"27":6,"28":6,"29":6,"32":9,"36":6,"37":1,"39":4,"42":1,"48":1,"50":2,"51":2,"55":3,"56":1,"58":8,"60":1,"61":7,"64":4,"65":22,"66":4,"67":3,"68":6,"69":1,"70":6,"71":8,"72":4,"73":15,"74":3}}],["=0where",{"2":{"21":1}}],["=0",{"2":{"1":3,"2":1,"11":1,"13":1,"60":1}}],["vs",{"0":{"24":1},"1":{"25":1,"26":1,"27":1,"28":1,"29":1}}],["verify",{"2":{"60":1,"64":1}}],["very",{"2":{"28":1,"29":1,"49":1,"55":1,"69":1,"72":1}}],["version",{"2":{"22":1,"31":1}}],["veiωt+v∗e−iωt",{"2":{"15":1}}],["veiωt",{"2":{"15":1}}],["vector",{"2":{"1":1,"2":1,"13":1,"15":1,"37":1,"40":3,"44":1,"45":2,"50":1,"51":1,"52":1,"53":1,"55":5,"57":2,"58":1,"59":1,"70":1,"73":2}}],["v=λv",{"2":{"15":1}}],["vr",{"2":{"14":1}}],["visualize",{"2":{"61":2,"70":1}}],["visualization",{"2":{"50":1}}],["visualise",{"2":{"22":1,"71":1}}],["visible",{"2":{"28":1,"29":1}}],["via",{"0":{"17":1},"1":{"18":1,"19":1,"20":1},"2":{"21":1,"22":2}}],["vi",{"2":{"13":1,"40":1}}],["violate",{"2":{"11":1}}],["v3",{"2":{"12":1,"26":32,"64":97}}],["v3cos⁡ϕ+u3sin⁡ϕ",{"2":{"12":1}}],["v3+u2v",{"2":{"4":1}}],["vanish",{"2":{"70":1}}],["van",{"0":{"64":1},"2":{"64":1}}],["val",{"2":{"50":2}}],["valued",{"2":{"68":1,"71":1}}],["values",{"2":{"19":1,"22":1,"27":1,"32":1,"50":1,"55":4,"58":1,"67":1,"68":2,"70":3,"71":1,"73":1}}],["value",{"2":{"11":1,"60":1,"63":1,"65":2}}],["varying",{"2":{"58":1}}],["vary",{"2":{"58":1,"72":1}}],["varargs",{"2":{"51":1}}],["vars",{"2":{"39":2,"42":1}}],["var",{"2":{"37":2,"43":2,"74":1}}],["variation",{"2":{"70":1}}],["variable",{"2":{"1":1,"2":1,"8":1,"10":1,"11":2,"34":1,"36":2,"37":6,"39":7,"40":8,"43":1,"44":1,"55":1,"63":1,"64":2,"69":1,"70":1}}],["variables",{"2":{"1":1,"4":1,"6":1,"8":1,"11":4,"12":3,"13":1,"15":4,"18":2,"20":2,"21":4,"23":1,"26":3,"32":2,"36":2,"37":11,"39":5,"40":4,"42":1,"44":1,"45":4,"54":2,"55":5,"58":3,"61":3,"64":3,"65":5,"66":3,"69":4,"70":2,"71":3,"72":2}}],["varied",{"2":{"19":2,"20":2,"22":3,"23":3,"27":1,"28":1,"29":1,"32":2,"61":2,"65":2,"67":2,"68":2,"70":2,"71":3,"72":1,"73":1}}],["vastly",{"2":{"58":1,"72":1}}],["vast",{"2":{"12":1}}],["v2^2",{"2":{"65":1,"71":2}}],["v2+π",{"2":{"12":1}}],["v2+α4",{"2":{"6":1}}],["v2cos⁡ϕ−u2sin⁡ϕ",{"2":{"12":1}}],["v2which",{"2":{"12":1}}],["v2k+1",{"2":{"11":2}}],["v2",{"2":{"6":1,"11":2,"12":1,"26":36,"64":129,"65":13,"71":18}}],["v1^2",{"2":{"22":5,"23":2,"32":1,"56":1,"61":2,"65":2,"67":1,"68":2,"70":1,"71":3,"73":1,"74":1}}],["v13+u12v1+u12v2−v12v2+2u22v1+2v22v1−2u1u2v1",{"2":{"6":1}}],["v1+3α4",{"2":{"6":1}}],["v1",{"2":{"6":1,"10":1,"20":29,"21":21,"26":40,"36":5,"39":5,"61":12,"64":145,"65":13,"66":10,"70":11,"71":22,"72":21,"73":2}}],["v^2",{"2":{"4":2}}],["v^3",{"2":{"4":4}}],["v",{"2":{"2":4,"4":13,"5":1,"13":4,"15":1,"18":1,"26":1,"32":1,"40":1,"53":1,"65":1,"66":1,"69":1,"70":2}}],["voltage",{"2":{"1":1}}],["+ϵx1",{"2":{"71":1}}],["+ϵαx",{"2":{"71":1}}],["+re",{"2":{"15":3}}],["+im",{"2":{"15":2}}],["+i",{"2":{"15":1}}],["+ξeiωt",{"2":{"15":1}}],["+u3cos⁡",{"2":{"11":1,"12":1}}],["+u2cos⁡",{"2":{"11":1,"12":1,"71":1}}],["+u2",{"2":{"6":1}}],["+fsin⁡θ",{"2":{"6":1}}],["+3α",{"2":{"4":1}}],["+vsin⁡",{"2":{"21":1,"69":1}}],["+v3sin⁡",{"2":{"11":1,"12":1}}],["+v2sin⁡",{"2":{"11":1,"12":1,"71":1}}],["+v2",{"2":{"6":1}}],["+v1sin⁡",{"2":{"11":1,"12":2,"71":1}}],["+v1",{"2":{"6":1,"10":1}}],["+v",{"2":{"4":1}}],["+vi",{"2":{"2":1,"13":1,"40":1}}],["+αx3",{"2":{"3":1}}],["+ω2",{"2":{"21":1}}],["+ω",{"2":{"1":1}}],["+ω02x",{"2":{"1":1,"3":1,"69":1,"71":1}}],["+δvi",{"2":{"15":1}}],["+δx",{"2":{"5":1}}],["+δ",{"2":{"1":1}}],["+γx˙1",{"2":{"71":1}}],["+γx˙",{"2":{"1":1,"21":1,"69":1,"71":1}}],["+",{"2":{"1":6,"4":18,"5":1,"11":1,"12":5,"15":5,"18":5,"20":24,"21":30,"22":5,"23":2,"26":93,"32":11,"36":2,"37":6,"39":7,"44":1,"47":1,"56":1,"58":2,"61":16,"64":193,"65":45,"66":13,"67":1,"68":2,"69":6,"70":11,"71":38,"72":23,"73":1,"74":1}}],["xscale=",{"2":{"68":2}}],["x2−x1",{"2":{"65":1}}],["x2",{"2":{"65":1}}],["xˍt",{"2":{"36":1}}],["x=",{"2":{"22":1,"68":1}}],["x+y",{"2":{"39":4}}],["x+γx˙+αx3+ηx2x˙=fcos⁡ωtcan",{"2":{"21":1}}],["x+αx3+ηx2x˙+fd",{"2":{"21":1}}],["x+δ",{"2":{"15":1}}],["x^3+",{"2":{"65":1}}],["x^3",{"2":{"18":1,"20":1,"21":1,"26":1,"32":1,"61":1,"66":1,"69":1,"72":1}}],["x^2",{"2":{"1":4,"18":1,"20":1,"21":1,"26":1,"32":1,"39":1,"64":1,"72":1}}],["x−x0",{"2":{"15":1}}],["x0+δ",{"2":{"15":1}}],["x0=u2+v2",{"2":{"5":1}}],["x0",{"2":{"5":1,"15":2,"71":1}}],["x3c",{"2":{"61":1}}],["x3",{"2":{"4":1}}],["x~",{"2":{"1":2}}],["x¨1",{"2":{"71":1}}],["x¨1+γx˙1+ω02x1+αx13+2j",{"2":{"65":1}}],["x¨2+γx˙2+ω02x2+αx23+2j",{"2":{"65":1}}],["x¨",{"2":{"1":1,"3":1,"21":1,"69":1,"71":1}}],["xn",{"2":{"1":1}}],["x1−x2",{"2":{"65":1}}],["x1",{"2":{"1":1,"65":1,"71":3}}],["x",{"2":{"1":10,"4":2,"5":1,"6":1,"8":1,"10":2,"11":1,"12":3,"15":2,"18":8,"20":7,"21":18,"26":11,"32":16,"36":7,"37":22,"39":13,"47":4,"51":4,"53":1,"58":2,"61":7,"64":14,"65":17,"66":10,"67":1,"68":4,"69":16,"70":4,"71":4,"72":8}}],["xi",{"2":{"1":1,"2":2,"13":2,"15":1,"40":3}}],["lc^2",{"2":{"64":6}}],["lct",{"2":{"64":6}}],["lc",{"2":{"64":106}}],["long",{"2":{"72":1}}],["log",{"2":{"68":3}}],["logscale=true",{"2":{"67":1,"68":3}}],["logscale=false",{"2":{"43":1}}],["looks",{"2":{"71":1}}],["look",{"2":{"68":1}}],["looking",{"2":{"39":1}}],["lorentenzian",{"2":{"67":1}}],["lorentzians",{"2":{"15":1}}],["lorentzian",{"2":{"15":5,"44":7,"67":1,"68":1}}],["low",{"2":{"65":1,"68":2,"73":1,"74":1}}],["lowest",{"2":{"1":1}}],["lobe",{"2":{"61":3}}],["loss",{"2":{"54":1}}],["loads",{"2":{"54":1}}],["loaded",{"2":{"54":2}}],["loading",{"0":{"54":1},"2":{"54":1}}],["load",{"2":{"25":1,"54":2,"58":1}}],["lt",{"2":{"8":1,"14":1,"60":3}}],["landscape",{"2":{"74":1}}],["later",{"2":{"37":1,"40":1,"55":1,"74":1}}],["laser",{"2":{"28":1,"29":1}}],["last",{"2":{"15":1}}],["layout=",{"2":{"27":1,"28":1,"29":1}}],["largely",{"2":{"65":1}}],["large",{"2":{"22":3,"55":1,"56":2,"61":2,"68":2}}],["larger",{"2":{"6":1,"68":1}}],["lab",{"2":{"8":2}}],["labelled",{"2":{"56":1}}],["labeled",{"2":{"51":1}}],["labels",{"2":{"22":1,"32":1,"40":1,"55":2,"56":1,"61":3,"64":1,"70":2,"71":1}}],["label",{"2":{"1":6,"2":6,"4":3,"13":3,"32":3,"39":1,"56":1,"65":3}}],["l",{"2":{"4":1,"15":7,"30":1}}],["less",{"2":{"49":1,"51":1}}],["leveraging",{"2":{"34":1}}],["leaving",{"2":{"70":1}}],["leaking",{"2":{"65":1}}],["learn",{"2":{"32":1}}],["least",{"2":{"14":1,"70":1}}],["legend=false",{"2":{"65":1,"71":2}}],["legend=",{"2":{"27":3,"28":3,"29":3}}],["left",{"2":{"4":16,"42":1}}],["let",{"2":{"1":2,"14":1,"15":1,"23":1,"32":1,"55":1,"61":1,"65":2,"68":2,"70":1,"71":2,"73":1,"74":1}}],["ldots",{"2":{"2":2,"13":2}}],["lifetime",{"2":{"67":1}}],["linrange",{"2":{"55":1}}],["line",{"2":{"53":1}}],["lines",{"2":{"51":1}}],["linebreak",{"2":{"22":1}}],["linearly",{"2":{"58":1,"65":1,"67":2,"68":1,"74":1}}],["linearresponse",{"2":{"15":1,"42":1,"43":1,"44":3,"45":4,"66":1}}],["linearised",{"2":{"14":1,"15":1,"42":1}}],["linearisation",{"2":{"8":1}}],["linearize",{"2":{"14":1}}],["linear",{"0":{"13":1,"15":1,"41":1,"43":1,"66":1,"67":1},"1":{"14":1,"15":1,"42":1,"43":1,"44":2,"45":2,"67":1,"68":1},"2":{"1":1,"15":7,"21":2,"39":1,"41":1,"43":4,"44":1,"45":1,"55":1,"66":1,"67":3,"68":7}}],["light",{"2":{"34":1}}],["lies",{"2":{"34":1}}],["literature",{"2":{"21":1}}],["literate",{"2":{"20":1,"23":1,"29":1}}],["library",{"2":{"21":1}}],["list",{"2":{"16":1}}],["limitation",{"2":{"34":1}}],["limited",{"2":{"23":1}}],["limit",{"0":{"7":1,"8":1,"63":1},"1":{"8":1,"9":1,"10":1,"11":1,"12":1,"64":1,"65":1},"2":{"7":1,"8":2,"10":3,"11":4,"12":1,"30":2,"61":2,"63":1,"64":3,"65":7}}],["likewise",{"2":{"8":1}}],["like",{"2":{"1":1,"28":1,"29":1}}],["⋯",{"2":{"1":1}}],["2e6",{"2":{"65":1}}],["2e4",{"2":{"58":3,"74":3}}],["27",{"2":{"65":1}}],["2j",{"2":{"65":2}}],["2308",{"2":{"64":1}}],["248im",{"2":{"61":2}}],["2nm",{"2":{"40":2}}],["2nd",{"0":{"20":1}}],["250",{"2":{"68":2}}],["2500\\u001b",{"2":{"23":1}}],["2500",{"2":{"23":3}}],["25",{"2":{"64":2}}],["253+9",{"2":{"61":1}}],["256",{"2":{"20":4}}],["2d",{"0":{"23":1},"2":{"23":5,"51":3,"52":2,"53":1,"57":1,"61":10}}],["2t",{"2":{"21":1}}],["2ω0=ω1",{"2":{"28":1,"29":1}}],["2ωt",{"2":{"26":2}}],["2ωt+ψ",{"2":{"21":2}}],["2ω",{"2":{"20":2,"26":1,"27":1,"28":1,"29":1}}],["2020",{"2":{"65":1,"66":1}}],["2022",{"2":{"30":1}}],["2024",{"2":{"7":1,"30":1}}],["2016",{"2":{"21":2}}],["20000",{"2":{"74":1}}],["200",{"2":{"19":1,"27":1,"28":1,"29":1,"58":1,"68":1}}],["2+",{"2":{"15":2}}],["2+γ2we",{"2":{"15":1}}],["2+4k+1",{"2":{"11":1}}],["2+4k",{"2":{"11":1,"12":1}}],["2",{"2":{"1":1,"4":5,"15":2,"18":1,"20":10,"21":8,"22":2,"23":4,"26":45,"27":1,"28":1,"29":1,"32":3,"36":8,"37":5,"39":9,"51":3,"55":3,"58":2,"59":1,"61":7,"64":184,"65":20,"66":4,"68":3,"69":1,"70":7,"71":13,"72":8,"73":10}}],["w",{"2":{"39":1,"70":1}}],["workflow",{"2":{"69":1}}],["works",{"2":{"52":1,"53":1}}],["work",{"2":{"30":1}}],["would",{"2":{"12":1,"28":1,"29":1,"44":1,"55":1,"65":1,"71":1}}],["warm",{"0":{"49":1},"2":{"49":2}}],["warmup",{"2":{"22":1,"49":3}}],["way",{"2":{"44":1,"65":1}}],["ways",{"2":{"37":1}}],["want",{"2":{"32":1,"57":1,"67":1,"70":1}}],["was",{"2":{"20":1,"23":2,"29":1,"40":1,"55":1,"71":1}}],["wave",{"0":{"17":1,"24":2,"27":1,"28":1},"1":{"18":1,"19":1,"20":1,"25":2,"26":2,"27":2,"28":2,"29":2},"2":{"28":2,"29":2}}],["wrote",{"2":{"16":1}}],["writing",{"2":{"12":1,"21":1}}],["wish",{"2":{"72":1}}],["width",{"2":{"44":1}}],["wip",{"0":{"41":1},"1":{"42":1,"43":1,"44":1,"45":1}}],["wikipedia",{"2":{"36":1}}],["will",{"2":{"14":1,"28":1,"29":1,"55":1,"65":1,"69":1,"70":1}}],["within",{"2":{"2":1,"33":1,"34":1,"35":1,"58":1,"60":2,"71":1}}],["with",{"2":{"1":1,"4":2,"5":1,"6":2,"8":1,"10":1,"11":1,"12":1,"15":3,"20":1,"21":1,"22":2,"23":1,"27":1,"28":3,"29":3,"31":1,"32":2,"37":2,"39":1,"42":1,"43":1,"47":2,"49":1,"50":1,"51":1,"52":1,"53":2,"54":3,"55":2,"56":2,"57":2,"58":1,"61":4,"64":2,"65":2,"67":2,"68":2,"71":1,"73":3,"74":1}}],["whose",{"2":{"40":1,"63":1}}],["white",{"2":{"43":2,"66":1,"68":1,"69":1}}],["while",{"2":{"21":1,"68":1}}],["which",{"2":{"1":1,"2":1,"4":1,"5":1,"6":1,"8":2,"11":3,"15":1,"21":3,"22":3,"31":1,"32":2,"33":1,"37":2,"39":2,"40":1,"50":1,"54":1,"55":6,"61":6,"64":3,"65":2,"68":2,"69":2,"70":3,"71":4,"72":3,"74":2}}],["whether",{"2":{"55":1,"57":1}}],["when",{"2":{"8":1,"14":1,"39":2,"40":2,"67":1,"73":1}}],["where",{"2":{"1":3,"5":1,"6":2,"8":1,"11":1,"12":1,"13":1,"14":1,"15":2,"21":1,"22":1,"23":2,"28":1,"29":1,"39":1,"55":1,"60":1,"61":1,"65":4,"67":1,"71":1}}],["what",{"2":{"8":1,"15":1,"32":1,"73":1}}],["were",{"2":{"51":2,"70":1,"71":1}}],["well",{"2":{"8":1,"68":1,"69":1}}],["weakly",{"2":{"67":1}}],["weak",{"2":{"3":1,"15":1,"67":1}}],["we",{"2":{"1":1,"2":5,"3":2,"4":5,"6":3,"7":1,"8":7,"10":3,"11":4,"12":8,"13":2,"14":2,"15":10,"19":4,"21":10,"22":3,"23":4,"25":1,"27":2,"28":5,"29":5,"30":1,"31":1,"32":1,"45":1,"46":1,"52":1,"55":2,"57":1,"61":7,"62":1,"63":1,"64":4,"65":9,"66":2,"67":3,"68":2,"69":7,"70":6,"71":9,"72":5,"73":1,"74":1}}],["squeezing",{"2":{"68":2}}],["sqrt",{"2":{"22":5,"23":2,"32":1,"44":1,"51":2,"56":1,"61":2,"65":1,"67":1,"68":2,"70":1,"71":5,"73":1,"74":1}}],["slight",{"2":{"67":1}}],["slowly",{"2":{"44":1,"72":1}}],["slow",{"2":{"4":2,"36":5,"39":13,"43":1,"70":1}}],["slower",{"2":{"2":1,"22":1,"70":1}}],["swept",{"2":{"53":1,"55":6,"56":1,"58":2,"68":2}}],["sweep=sweep",{"2":{"65":1,"74":1}}],["sweep1",{"2":{"58":1}}],["sweep2",{"2":{"58":2}}],["sweeps",{"0":{"74":1},"2":{"55":1,"58":3,"65":1}}],["sweep",{"2":{"21":1,"22":1,"23":1,"49":2,"51":1,"58":11,"61":3,"65":7,"74":6}}],["shapes",{"2":{"65":1}}],["shall",{"2":{"63":1}}],["shed",{"2":{"34":1}}],["should",{"2":{"31":1,"55":1,"57":1,"65":1}}],["showed",{"2":{"72":1}}],["shows",{"2":{"61":1,"67":1,"68":1,"71":1}}],["showcasing",{"2":{"16":1}}],["show",{"2":{"8":1,"43":1,"55":2,"56":1,"57":2,"62":1,"64":1,"69":1}}],["shown",{"2":{"2":1,"42":1,"43":1,"65":1,"67":1}}],["scale",{"2":{"68":1}}],["scales",{"2":{"12":1}}],["scimlbase",{"2":{"58":1}}],["scipost",{"2":{"30":1}}],["scenes",{"2":{"44":1}}],["scenario",{"2":{"22":1}}],["smallest",{"2":{"57":1}}],["smaller",{"2":{"6":1,"71":1}}],["small",{"2":{"12":1,"14":3,"71":1}}],["syntax",{"2":{"23":1,"73":1}}],["sym",{"2":{"70":2}}],["symbol",{"2":{"40":4,"47":1,"48":1,"49":1}}],["symbols",{"2":{"37":1,"45":1,"55":1,"69":1}}],["symbolic",{"2":{"22":1,"42":1,"45":2,"50":1,"54":3,"55":7,"69":1}}],["symbolics",{"2":{"21":1,"37":1,"50":1,"51":1,"56":1,"59":1,"69":1}}],["symmetry",{"2":{"12":1,"64":1,"65":2}}],["symmetric",{"2":{"12":1}}],["system",{"0":{"18":1,"26":1,"64":1,"65":1},"2":{"1":4,"2":2,"8":2,"10":1,"11":2,"12":2,"13":3,"14":4,"15":1,"19":1,"21":5,"22":2,"28":1,"29":1,"33":1,"34":1,"35":2,"37":2,"45":1,"47":2,"48":1,"49":2,"55":3,"57":1,"58":1,"61":1,"64":2,"65":4,"66":1,"67":1,"69":2,"71":3,"72":4,"73":2,"74":3}}],["systems",{"0":{"1":1},"2":{"1":3,"7":1,"12":1,"32":1,"33":1,"48":1,"49":2,"58":1,"62":1,"72":1}}],["satisfies",{"2":{"71":1}}],["satisfy",{"2":{"8":1,"65":1}}],["said",{"2":{"57":1}}],["saving",{"0":{"54":1},"2":{"54":1}}],["saveat=1",{"2":{"73":2}}],["saveat=100",{"2":{"65":1,"74":1}}],["saves",{"2":{"54":3}}],["saved",{"2":{"54":2}}],["save",{"2":{"22":2,"54":2}}],["same",{"2":{"6":1,"55":1,"58":1,"61":1,"65":1,"68":1,"71":1}}],["s",{"2":{"4":2,"7":1,"13":1,"23":1,"34":1,"37":1,"39":1,"45":2,"55":1,"57":1,"63":1,"65":1,"68":1,"72":1}}],["series",{"2":{"62":1}}],["select",{"2":{"70":1}}],["selected",{"2":{"58":1}}],["selection",{"2":{"51":1,"52":1,"53":1}}],["several",{"2":{"46":1}}],["section",{"2":{"33":1,"67":1,"71":1}}],["second",{"2":{"1":1,"6":1,"64":1}}],["sense",{"2":{"15":1}}],["sensible",{"2":{"11":1}}],["searching",{"2":{"8":1}}],["settles",{"2":{"65":1}}],["setting",{"2":{"4":1,"5":1,"45":1}}],["sets",{"2":{"55":1,"57":3}}],["set",{"2":{"4":2,"8":1,"13":2,"15":1,"19":1,"20":1,"21":1,"22":1,"26":1,"36":2,"37":2,"39":2,"40":5,"42":1,"44":2,"55":3,"57":6,"61":1,"64":1,"65":1,"66":2,"69":2,"70":1,"71":1,"72":1}}],["seed",{"2":{"25":1,"47":2,"48":2,"49":2,"55":2}}],["seen",{"2":{"10":1,"68":1}}],["see",{"2":{"4":1,"6":1,"7":1,"10":1,"12":1,"13":1,"15":3,"21":1,"47":1,"48":1,"49":1,"51":1,"55":1,"57":1,"61":2,"65":3,"67":1,"68":2,"69":1,"71":1,"74":1}}],["separate",{"2":{"2":1,"65":1}}],["step",{"2":{"69":1}}],["stems",{"2":{"68":1}}],["steadystates",{"2":{"21":1}}],["steady",{"2":{"2":1,"4":3,"5":2,"8":3,"11":2,"12":2,"13":1,"14":2,"15":1,"19":2,"20":2,"21":1,"22":5,"23":2,"27":2,"28":1,"29":1,"32":4,"39":1,"40":1,"41":1,"44":1,"50":1,"53":1,"55":13,"56":1,"57":2,"58":1,"61":5,"64":3,"65":6,"67":3,"68":4,"70":5,"71":3,"72":3,"73":2,"74":2}}],["stopped",{"2":{"65":1}}],["store",{"2":{"55":1,"56":1}}],["stored",{"2":{"40":4,"44":1,"54":1,"56":2,"69":1,"70":1}}],["stores",{"2":{"37":1,"55":1}}],["style=",{"2":{"22":1}}],["studying",{"2":{"21":1}}],["still",{"2":{"8":1,"11":1,"20":1}}],["strongly",{"2":{"68":1,"71":1}}],["strong",{"2":{"68":1}}],["strings",{"2":{"51":1,"55":1}}],["string",{"2":{"40":2,"50":2,"51":6,"52":4,"53":4,"55":1,"56":2,"59":3}}],["strictly",{"2":{"8":1,"65":1}}],["structure",{"2":{"48":1}}],["structs",{"2":{"40":1,"44":1}}],["struct",{"2":{"37":2,"40":2,"44":1,"55":2}}],["strengths",{"2":{"68":1}}],["strength",{"2":{"23":2,"61":1}}],["straightforward",{"2":{"11":1,"72":1}}],["strategy",{"2":{"2":1}}],["staedy",{"0":{"69":1},"1":{"70":1,"71":1}}],["staes",{"2":{"11":1}}],["status",{"2":{"31":1}}],["stationary",{"2":{"30":1}}],["states",{"0":{"69":1},"1":{"70":1,"71":1},"2":{"2":1,"4":3,"5":1,"8":1,"11":3,"12":1,"14":1,"19":2,"20":2,"21":1,"22":3,"23":2,"27":2,"28":1,"29":1,"30":1,"32":3,"39":1,"41":1,"53":1,"55":8,"56":1,"57":2,"61":3,"64":2,"65":3,"67":1,"68":2,"70":3,"71":2,"72":2,"73":1}}],["state",{"2":{"1":1,"5":1,"8":3,"12":1,"13":1,"14":6,"15":2,"22":2,"32":1,"40":1,"44":1,"50":1,"55":5,"57":1,"58":1,"61":2,"64":1,"65":6,"67":2,"68":2,"70":2,"71":1,"72":2,"73":1,"74":2}}],["starts",{"2":{"65":1}}],["started",{"0":{"32":1}}],["start",{"2":{"22":1,"47":1,"65":1,"66":1,"70":1,"72":1}}],["starting",{"2":{"4":1,"65":1}}],["stability",{"0":{"13":1,"14":1,"42":1},"1":{"14":1,"15":1},"2":{"14":1,"22":1,"23":1,"41":1,"42":1,"55":1,"60":2,"66":1,"67":1}}],["stable",{"2":{"8":2,"14":2,"15":1,"20":1,"22":2,"23":6,"32":2,"51":1,"52":1,"55":5,"56":1,"57":1,"60":6,"61":15,"64":2,"65":1,"68":1,"70":3,"71":2}}],["standing",{"2":{"1":1}}],["so",{"2":{"64":1,"65":1}}],["sorts",{"2":{"57":2}}],["sorting",{"0":{"57":1},"2":{"55":3,"57":5}}],["sorting=",{"2":{"55":1}}],["sort",{"2":{"51":1,"55":1,"57":4}}],["source",{"2":{"36":1,"37":4,"39":5,"40":2,"42":3,"43":1,"44":2,"45":3,"47":1,"48":1,"49":1,"50":1,"51":1,"52":1,"53":1,"54":3,"55":3,"56":1,"57":1,"58":2,"59":1,"60":2}}],["soln",{"2":{"59":4,"60":4}}],["solution",{"2":{"8":4,"12":3,"14":1,"15":1,"22":2,"23":1,"32":1,"45":1,"50":1,"54":1,"55":3,"56":1,"57":8,"58":2,"59":1,"60":4,"61":9,"64":3,"65":2,"69":1,"70":4,"71":3,"74":1}}],["solutions",{"0":{"51":1,"56":1,"57":1,"61":1},"2":{"4":2,"5":1,"6":3,"8":1,"11":3,"12":2,"21":1,"22":4,"23":4,"42":1,"43":1,"47":1,"48":2,"49":1,"50":4,"51":5,"52":5,"53":2,"55":9,"56":7,"57":11,"58":1,"60":1,"61":8,"64":3,"65":4,"71":1}}],["soluble",{"2":{"5":1,"69":1}}],["solving",{"0":{"55":1},"1":{"56":1,"57":1},"2":{"10":1,"15":1,"22":1,"23":3,"46":1,"55":2,"57":2,"58":1,"65":1,"70":2,"71":1}}],["solvable",{"2":{"1":2,"14":1}}],["solves",{"2":{"55":1,"70":1}}],["solved",{"2":{"12":2,"23":3,"40":1,"55":2,"64":1,"70":1}}],["solvers",{"2":{"58":1,"72":1}}],["solver",{"2":{"10":1,"40":1,"55":2,"72":1}}],["solve",{"2":{"1":1,"2":1,"11":1,"15":1,"55":1,"56":1,"64":1,"65":1,"70":1,"71":1,"72":1,"73":3,"74":2}}],["sometimes",{"2":{"53":1}}],["some",{"2":{"2":1,"11":1,"14":1,"32":1,"34":1,"45":1,"58":1,"61":1,"69":1,"70":1,"71":3}}],["spontaneous",{"2":{"65":1}}],["spaghetti",{"0":{"53":1},"2":{"53":3}}],["sparse",{"2":{"48":1}}],["spawning",{"2":{"8":1}}],["space",{"2":{"1":3,"2":2,"8":1,"15":1,"21":1,"22":1,"23":2,"52":1,"58":1,"65":1,"69":1,"71":1}}],["speed",{"2":{"22":1,"46":1,"48":1}}],["spectral",{"2":{"67":1}}],["spectra",{"2":{"44":1,"45":1}}],["spectrum",{"2":{"1":1,"21":1,"44":1,"69":1,"71":1}}],["specifies",{"2":{"74":1}}],["specified",{"2":{"15":1,"37":3,"39":3,"50":1,"54":1,"55":1,"58":1,"70":1}}],["specific",{"2":{"36":1,"51":1,"61":1}}],["specifically",{"2":{"35":1}}],["specifying",{"2":{"55":1}}],["specify",{"2":{"18":1,"26":1,"32":1,"37":1,"51":1,"66":1,"69":1,"70":1,"71":1}}],["speaking",{"2":{"8":1,"65":1}}],["spirit",{"2":{"6":1}}],["supplemental",{"2":{"68":1}}],["suppose",{"2":{"1":1,"11":1,"15":1,"71":1}}],["suitable",{"2":{"65":1}}],["suited",{"2":{"70":1}}],["suite",{"2":{"30":1}}],["suffix",{"2":{"54":1}}],["subroutines",{"2":{"39":1}}],["subspace",{"2":{"71":1}}],["subset",{"2":{"65":1}}],["subsequent",{"2":{"22":1}}],["subsequently",{"2":{"21":1}}],["substitution",{"2":{"50":1}}],["substituting",{"2":{"4":1}}],["substituted",{"2":{"45":1,"55":1}}],["substitute",{"2":{"6":1}}],["successive",{"2":{"58":1}}],["succintly",{"2":{"22":1}}],["such",{"2":{"1":1,"6":1,"8":2,"11":1,"14":1,"15":1,"28":1,"29":1,"39":1,"54":2,"55":1,"57":3,"65":1,"71":2,"72":1}}],["summands",{"2":{"15":1}}],["site",{"2":{"65":1}}],["situation",{"2":{"1":1}}],["sized",{"2":{"56":1}}],["size",{"2":{"49":3}}],["size=",{"2":{"27":1,"28":1,"29":1,"68":2}}],["simultaneously",{"2":{"58":2}}],["simulate",{"2":{"58":1,"65":1}}],["simulating",{"2":{"58":1}}],["simulations",{"0":{"72":1},"1":{"73":1,"74":1}}],["simulation",{"2":{"22":1,"60":1,"65":2}}],["similar",{"2":{"57":1,"71":1,"73":1}}],["similarly",{"2":{"56":1}}],["simply",{"2":{"8":1,"21":1,"31":1}}],["simple",{"2":{"5":1,"36":1,"37":2,"39":1,"55":1,"61":1,"66":1,"69":1}}],["simplest",{"2":{"1":1,"10":1,"44":1,"65":1}}],["sign",{"2":{"12":1,"68":1}}],["signs",{"2":{"12":1}}],["significantly",{"2":{"12":1,"22":1}}],["significant",{"2":{"6":1}}],["side",{"2":{"15":1,"42":1}}],["sidenote",{"0":{"5":1},"2":{"15":1}}],["sides",{"2":{"1":1,"4":1,"6":1}}],["sines",{"2":{"15":1}}],["since",{"2":{"4":2,"5":1,"11":1,"12":2,"15":1,"28":1,"29":1,"45":1,"65":2,"72":1}}],["sin",{"2":{"4":6,"18":1,"20":1,"21":1,"26":4,"32":1,"36":1,"39":2,"61":1,"64":3,"65":2,"66":2,"70":2,"71":2,"72":2}}],["sin⁡",{"2":{"2":2,"4":2,"6":4,"10":1,"12":1,"13":1,"15":3,"40":1}}],["single",{"0":{"4":1},"2":{"1":1,"3":1,"6":2,"10":1,"12":1,"21":1,"23":1,"34":1,"54":1,"61":1,"64":2,"67":1,"68":3,"69":1,"70":1,"71":2,"72":1}}],["nthreads",{"2":{"25":1}}],["nice",{"2":{"21":1}}],["nature",{"2":{"71":1}}],["natural",{"2":{"1":1,"6":1,"15":1,"21":2,"40":5,"61":2,"65":1,"67":1}}],["native",{"2":{"54":1}}],["nat",{"2":{"43":2}}],["name",{"2":{"40":1,"56":3}}],["namespace",{"2":{"40":1,"54":2}}],["named",{"2":{"39":1}}],["namely",{"2":{"14":1,"30":1}}],["num",{"2":{"37":5,"39":4,"40":4,"43":1,"45":3,"51":1,"55":4,"58":1,"60":2,"61":1,"74":1}}],["numerically",{"2":{"58":1,"60":1,"65":1,"72":1}}],["numerical",{"2":{"6":1,"11":1,"55":1,"63":1,"70":1}}],["numbers",{"2":{"12":1,"22":1,"55":1,"58":1,"60":1,"70":1}}],["number",{"2":{"1":1,"4":2,"6":2,"8":1,"11":1,"12":1,"15":1,"22":1,"23":1,"25":1,"47":1,"48":1,"49":1,"52":2,"61":2,"64":1}}],["next",{"2":{"69":1}}],["negative",{"2":{"61":1,"67":1}}],["neglecting",{"2":{"4":1}}],["neglect",{"2":{"2":1}}],["neighboring",{"2":{"57":2}}],["neighbor",{"2":{"55":1,"57":1}}],["neighbors",{"2":{"23":1}}],["necessary",{"2":{"35":1,"37":1,"70":1}}],["nearest",{"2":{"55":3,"57":2}}],["near",{"2":{"14":1}}],["newton",{"2":{"11":1}}],["newly",{"2":{"11":1}}],["new",{"2":{"7":1,"12":1,"56":1,"72":2,"74":1}}],["needs",{"2":{"22":1,"37":1,"69":1,"70":1}}],["needed",{"2":{"20":1,"40":1,"44":1,"45":1,"54":2,"55":1,"67":1}}],["need",{"2":{"2":1,"48":1,"55":1,"69":1,"73":1}}],["normal",{"2":{"19":1,"27":1,"28":1,"29":1}}],["normalization",{"2":{"15":1}}],["normalize",{"2":{"15":1}}],["normalised",{"2":{"15":1}}],["noise",{"2":{"14":1,"15":1,"43":2,"66":1,"67":2,"68":2}}],["no",{"2":{"5":1,"8":2,"11":1,"19":1,"27":1,"28":1,"29":1,"36":1,"39":1,"54":1,"64":1,"69":1,"71":1,"72":1}}],["now",{"2":{"4":3,"6":2,"8":1,"10":1,"12":2,"13":1,"15":1,"21":1,"23":1,"55":2,"68":1,"70":4,"71":4,"72":1,"74":1}}],["nothing",{"2":{"65":1}}],["notation",{"2":{"65":1}}],["note",{"2":{"12":1,"21":1,"23":1,"34":1,"67":1,"71":1}}],["notice",{"2":{"2":1}}],["not",{"2":{"1":1,"11":2,"12":2,"22":1,"39":1,"40":1,"43":1,"49":1,"51":4,"52":2,"53":2,"54":1,"55":1,"63":1,"64":1,"65":2,"68":1,"71":4}}],["none",{"2":{"55":1,"57":1}}],["non",{"0":{"64":1},"2":{"39":1,"44":1,"45":1,"48":3,"71":1}}],["nonzero",{"2":{"11":1}}],["nonumber",{"2":{"4":4}}],["nonvanishing",{"2":{"1":1}}],["nonlineariy",{"2":{"19":1,"27":1,"28":1,"29":1}}],["nonlinearity",{"2":{"1":1,"3":1,"19":2,"20":2,"23":1,"65":2}}],["nonlinear",{"0":{"1":1,"68":1},"2":{"1":3,"2":1,"4":1,"7":1,"13":1,"21":2,"30":1,"32":1,"46":1,"65":1,"66":1,"68":2,"71":1,"72":1}}],["n",{"2":{"1":2,"2":8,"12":1,"13":9,"40":1,"57":1}}],["guide",{"2":{"65":1}}],["guaranteed",{"2":{"69":1}}],["guarantee",{"2":{"49":1}}],["guarantees",{"2":{"47":1}}],["green",{"2":{"61":1}}],["gr",{"2":{"43":1,"51":1,"52":1,"53":1}}],["grounds",{"2":{"11":1}}],["goes",{"2":{"57":1,"71":1}}],["goals",{"2":{"41":1}}],["going",{"2":{"40":1}}],["governing",{"2":{"36":1,"39":1,"40":3}}],["governed",{"2":{"1":1,"3":1,"14":1,"21":1}}],["gamma",{"2":{"32":2,"47":1}}],["gauge",{"0":{"12":1},"2":{"11":1,"12":1,"64":1}}],["gennes",{"2":{"67":1}}],["generation",{"2":{"47":1,"48":1,"49":1,"71":1}}],["generate",{"2":{"28":1,"29":1,"55":2}}],["generated",{"2":{"4":1,"5":1,"6":1,"20":1,"23":1,"29":1,"39":2}}],["generates",{"2":{"1":1,"2":1}}],["generalised",{"2":{"22":1}}],["generally",{"2":{"6":1,"58":1,"71":1}}],["general",{"2":{"1":2,"31":1,"69":2,"71":1}}],["getting",{"0":{"32":1}}],["get",{"2":{"19":3,"20":4,"21":2,"22":3,"23":1,"26":1,"27":1,"28":1,"29":1,"32":3,"35":1,"36":3,"37":2,"39":5,"42":2,"45":2,"55":6,"56":1,"57":2,"61":2,"64":4,"65":2,"66":2,"67":1,"68":3,"70":3,"71":3,"72":1,"73":1}}],["given",{"2":{"11":1,"14":1,"23":1,"44":1,"57":1,"61":1,"67":1,"72":1,"73":1}}],["gives",{"2":{"1":2,"15":2,"20":1,"44":2,"64":1,"67":2,"68":1,"71":1,"73":1}}],["giving",{"2":{"8":1,"61":1}}],["gt",{"2":{"8":1,"14":1,"39":2,"45":1,"50":2,"51":1}}],["g",{"2":{"1":1,"6":1,"22":1,"23":1,"28":1,"29":1,"47":1,"51":1,"58":1}}],["axes",{"2":{"51":1}}],["axis",{"2":{"8":1,"68":1}}],["automatically",{"2":{"39":1,"51":2,"54":1,"64":1,"70":1}}],["autonomous",{"2":{"8":2}}],["admissible",{"2":{"70":1}}],["adiabaticsweep",{"2":{"58":9,"65":1,"74":3}}],["adiabatic",{"0":{"74":1},"2":{"57":1,"65":1,"74":1}}],["advantage",{"2":{"34":1,"44":1}}],["advantages",{"0":{"34":1}}],["adding",{"2":{"61":1}}],["addition",{"2":{"22":1,"23":1,"54":1}}],["additional",{"2":{"15":2,"39":1,"50":1}}],["added",{"2":{"54":1}}],["add",{"2":{"1":1,"8":1,"16":1,"18":1,"20":1,"21":1,"26":3,"31":2,"32":1,"36":1,"37":5,"39":1,"61":1,"64":1,"65":1,"66":1,"72":1}}],["averaging",{"0":{"33":1},"1":{"34":1,"35":1,"36":1},"2":{"33":1,"35":1,"36":3}}],["averaged",{"2":{"21":2}}],["accessed",{"2":{"65":1}}],["accepts",{"2":{"55":3}}],["accept",{"2":{"45":1}}],["accompanied",{"2":{"56":1}}],["according",{"2":{"23":1,"51":1,"57":1,"65":1}}],["accuracy",{"2":{"45":1}}],["accurate",{"2":{"41":1}}],["accceptable",{"2":{"22":1}}],["about",{"2":{"72":1}}],["above",{"2":{"3":1,"15":1,"71":2,"73":1}}],["abs",{"2":{"60":1}}],["absolute",{"2":{"60":1}}],["absence",{"2":{"23":1}}],["ability",{"2":{"34":1}}],["after",{"2":{"21":1,"22":1,"37":1,"55":2,"57":1,"65":1}}],["affect",{"2":{"19":1}}],["away",{"2":{"14":2}}],["amazing",{"2":{"16":1}}],["ambiguity",{"2":{"12":1}}],["amplitude",{"2":{"15":2,"21":1,"51":1,"56":2,"61":7,"64":1,"65":2,"67":1,"68":2,"70":1,"73":1,"74":2}}],["amplitudes",{"2":{"1":1,"65":1,"68":1,"71":1}}],["amp",{"0":{"2":1},"2":{"4":10}}],["argued",{"2":{"71":1}}],["arguments",{"2":{"51":1,"55":1,"57":1}}],["argument",{"2":{"23":1,"43":1,"64":1}}],["arxiv",{"2":{"64":1}}],["arrays",{"2":{"55":2,"56":1,"57":1}}],["array",{"2":{"50":1,"55":2,"57":4}}],["arrive",{"2":{"11":1}}],["arise",{"2":{"46":1}}],["arnold",{"2":{"23":1}}],["around",{"2":{"14":1,"21":1,"65":3,"68":1,"74":1}}],["are",{"2":{"1":4,"2":2,"4":2,"5":1,"8":2,"10":1,"11":3,"15":3,"21":3,"22":1,"23":1,"31":1,"37":3,"39":6,"40":1,"43":4,"44":1,"45":2,"48":2,"51":4,"52":2,"53":1,"54":1,"55":3,"56":3,"57":1,"58":3,"60":1,"61":6,"65":5,"66":1,"67":1,"68":1,"69":2,"70":6,"71":2,"72":2}}],["appendices",{"2":{"69":1}}],["appearing",{"2":{"71":1}}],["appearance",{"2":{"65":1}}],["appears",{"2":{"12":1,"15":1,"58":1,"64":1}}],["appear",{"2":{"6":1,"11":2,"12":1,"39":1,"65":3,"71":1}}],["approximate",{"2":{"41":1}}],["approximations",{"2":{"34":1}}],["approach",{"0":{"5":1},"2":{"6":1,"39":1}}],["apply",{"2":{"36":1,"39":1,"69":1}}],["applying",{"2":{"12":1}}],["applications",{"2":{"28":1,"29":1}}],["applicable",{"2":{"11":1}}],["applies",{"2":{"15":1}}],["applied",{"2":{"14":1,"36":1,"67":1}}],["against",{"2":{"59":1,"65":1,"70":1}}],["againts",{"2":{"22":1}}],["again",{"2":{"6":1,"10":1,"23":1,"61":1,"68":2,"74":1}}],["although",{"2":{"71":1}}],["alternative",{"2":{"33":1}}],["alternatively",{"2":{"22":1}}],["al",{"2":{"65":3,"66":1,"68":2}}],["along",{"2":{"55":1,"57":1,"65":2,"74":1}}],["already",{"2":{"45":1,"55":1}}],["algebraic",{"2":{"40":1,"46":1,"55":2,"70":2}}],["algorithm",{"2":{"30":1,"70":1}}],["also",{"2":{"8":1,"11":2,"15":1,"21":2,"22":1,"32":1,"51":1,"55":1,"57":1,"59":1,"61":3,"64":1,"68":1,"71":1}}],["alpha",{"2":{"4":8,"32":2}}],["align",{"2":{"4":4}}],["allowed",{"2":{"65":1}}],["allows",{"2":{"28":1,"29":1,"61":1,"71":1}}],["allowing",{"2":{"6":1,"34":1}}],["allong",{"2":{"21":1}}],["allwright",{"2":{"8":1}}],["all",{"2":{"1":2,"2":2,"8":1,"12":1,"14":1,"15":1,"21":2,"22":3,"39":3,"47":1,"49":2,"51":1,"52":1,"53":1,"54":1,"55":4,"60":1,"61":2,"70":3}}],["attempt",{"2":{"1":1,"4":1}}],["at",{"2":{"1":2,"2":1,"3":3,"4":1,"5":1,"10":1,"11":1,"14":2,"15":7,"20":1,"27":1,"28":1,"29":1,"45":2,"49":1,"51":1,"61":1,"65":3,"67":5,"68":2,"70":1,"71":6,"73":1,"74":2}}],["answer",{"2":{"72":1}}],["ansatz1",{"2":{"4":4}}],["ansatz",{"0":{"2":1,"4":1,"6":1,"9":1,"10":1,"11":1},"1":{"10":1,"11":1,"12":1},"2":{"2":1,"4":2,"6":4,"8":2,"10":1,"11":1,"12":3,"15":1,"18":1,"20":1,"21":3,"26":2,"30":1,"32":2,"36":1,"37":3,"39":5,"40":3,"44":2,"58":1,"61":1,"64":2,"65":2,"66":3,"69":2,"70":4,"71":4,"72":2}}],["antisymmetric",{"2":{"65":1}}],["analytical",{"2":{"69":1,"71":1}}],["analysing",{"2":{"65":1,"72":1}}],["analysis",{"0":{"50":1},"1":{"51":1,"52":1,"53":1},"2":{"65":1}}],["analyses",{"2":{"67":1}}],["analyse",{"2":{"21":1}}],["analyze",{"2":{"14":1,"33":1,"35":1}}],["another",{"2":{"8":1}}],["any",{"2":{"2":1,"4":1,"11":1,"12":1,"37":2,"43":1,"45":2,"52":1,"55":1,"56":1,"60":1,"64":2}}],["anymore",{"2":{"1":1,"39":1}}],["an",{"0":{"73":1},"2":{"1":4,"2":2,"6":1,"8":3,"10":1,"11":2,"13":2,"14":1,"15":4,"16":2,"21":2,"30":1,"32":1,"33":1,"37":2,"39":2,"40":1,"44":1,"50":1,"54":1,"57":2,"58":3,"60":1,"61":2,"63":1,"64":1,"65":2,"68":1,"71":4,"72":2,"74":2}}],["and",{"0":{"13":1,"34":1,"40":1,"50":1,"54":1},"1":{"14":1,"15":1,"51":1,"52":1,"53":1},"2":{"1":2,"2":2,"3":1,"4":8,"5":2,"6":3,"10":1,"11":2,"13":1,"14":1,"15":10,"18":1,"19":1,"21":4,"22":3,"23":3,"26":1,"28":2,"29":2,"30":1,"32":1,"35":1,"36":2,"37":2,"39":7,"40":1,"41":1,"44":2,"45":1,"46":1,"49":1,"50":2,"51":2,"52":2,"53":1,"54":3,"55":5,"56":2,"57":3,"58":2,"60":1,"61":2,"64":4,"65":8,"66":2,"68":2,"69":2,"70":4,"71":6,"72":3,"73":1,"74":2}}],["ask",{"2":{"30":1}}],["assigned",{"2":{"39":1}}],["assigns",{"2":{"37":2}}],["assigning",{"2":{"37":1}}],["assesed",{"2":{"22":1}}],["associated",{"2":{"8":1}}],["assume",{"2":{"8":1,"14":1}}],["assumed",{"2":{"4":1,"71":1}}],["assuming",{"2":{"4":1}}],["assumption",{"2":{"2":1,"11":1,"39":1}}],["as",{"2":{"1":3,"3":1,"4":1,"5":1,"6":1,"8":5,"11":1,"12":4,"14":1,"15":3,"21":2,"23":1,"30":1,"31":1,"32":1,"36":1,"37":1,"39":4,"40":3,"41":1,"44":2,"51":3,"52":2,"53":2,"54":3,"55":4,"58":2,"59":2,"60":1,"61":1,"63":2,"64":4,"65":5,"67":3,"68":1,"69":2,"70":2,"71":3,"72":2,"74":2}}],["a",{"0":{"8":1,"69":1},"1":{"70":1,"71":1},"2":{"1":4,"2":4,"3":4,"4":1,"5":3,"7":2,"8":10,"10":4,"11":6,"12":4,"13":4,"14":3,"15":10,"18":1,"20":1,"21":7,"22":7,"23":13,"26":2,"27":1,"28":4,"29":4,"30":1,"32":3,"33":1,"34":3,"36":5,"37":5,"39":6,"40":14,"41":1,"42":6,"44":8,"45":7,"47":2,"48":1,"49":2,"50":7,"51":6,"52":2,"53":4,"54":6,"55":21,"56":2,"57":13,"58":17,"59":3,"60":2,"61":11,"62":1,"63":1,"64":10,"65":21,"66":4,"67":6,"68":8,"69":7,"70":6,"71":14,"72":2,"73":1,"74":5}}],["ttype",{"2":{"73":1}}],["t=2e6",{"2":{"65":1}}],["tsit5",{"2":{"65":1,"73":2,"74":1}}],["typically",{"2":{"65":1}}],["type=",{"2":{"67":1,"68":2}}],["types",{"0":{"40":1},"2":{"54":1}}],["type",{"2":{"10":1,"21":1,"40":2,"51":1}}],["twice",{"2":{"21":1}}],["two",{"0":{"6":1},"2":{"15":1,"37":1,"40":1,"41":1,"51":1,"58":1,"61":1,"65":2,"68":3,"69":1,"71":2}}],["t0",{"2":{"14":1,"73":1}}],["tuple",{"2":{"58":1,"74":1}}],["turns",{"2":{"12":1,"68":1}}],["tutorials",{"0":{"62":1},"2":{"32":1,"62":1,"63":1}}],["tutorial",{"2":{"10":1,"16":1,"61":1}}],["t−ϕ",{"2":{"12":2}}],["t+ϕ",{"2":{"12":2}}],["t→t+2π",{"2":{"12":1}}],["tab",{"2":{"62":1}}],["taking",{"2":{"12":1,"64":1}}],["taken",{"2":{"36":1,"39":1,"51":1}}],["takes",{"2":{"8":1,"50":1,"51":1,"55":1,"71":1,"73":1,"74":1}}],["take",{"2":{"1":1,"8":1,"11":1,"51":1,"55":2}}],["tackle",{"2":{"10":1}}],["treatment",{"2":{"71":3}}],["treating",{"2":{"71":1}}],["treated",{"2":{"4":1,"39":1,"66":1}}],["truncating",{"2":{"69":1}}],["truncated",{"2":{"2":1,"71":1}}],["true",{"2":{"48":1,"55":1,"60":2,"73":1}}],["trivial",{"2":{"47":1}}],["trajectories",{"2":{"65":2}}],["tradeoffs",{"2":{"46":1}}],["tracking",{"2":{"58":1,"72":1}}],["trackeroptions",{"2":{"47":1,"48":1,"49":1}}],["tracker",{"2":{"47":2,"48":2,"49":2}}],["tracked",{"2":{"23":3}}],["track",{"2":{"22":1}}],["translation",{"2":{"12":1,"64":1,"65":2}}],["translate",{"2":{"8":1}}],["transitions",{"2":{"8":1}}],["transient",{"2":{"4":1,"72":1}}],["transformed",{"2":{"39":1}}],["transforms",{"2":{"12":1}}],["transformation",{"2":{"4":1}}],["transform",{"2":{"1":1,"4":1,"6":1,"37":1,"39":4,"45":1,"50":2}}],["transforming",{"2":{"1":2,"44":1}}],["try",{"2":{"10":1,"65":1,"69":1,"71":1}}],["tip",{"2":{"16":1}}],["tilde",{"2":{"1":4}}],["timeevolution",{"2":{"58":2,"74":1}}],["time=nothing",{"2":{"39":2}}],["timespan=",{"2":{"65":1,"74":1}}],["timespan",{"2":{"58":3,"60":2,"73":2}}],["timescale",{"2":{"14":1}}],["timescales",{"2":{"2":1,"70":1}}],["times",{"2":{"12":1,"73":1,"74":1}}],["time",{"0":{"58":1,"72":1},"1":{"59":1,"60":1,"73":1,"74":1},"2":{"1":2,"2":1,"4":1,"8":3,"10":1,"12":1,"21":2,"23":1,"36":7,"37":1,"39":22,"43":1,"45":1,"55":1,"58":5,"59":2,"60":1,"64":1,"65":17,"70":1,"72":1,"73":3,"74":5}}],["tested",{"2":{"22":1}}],["technique",{"2":{"7":1,"8":1,"33":1,"34":1,"35":1}}],["term",{"2":{"4":1,"15":1,"21":2,"65":1}}],["terms",{"2":{"1":2,"2":2,"4":1,"13":1,"14":1,"36":1,"37":1,"39":3}}],["text",{"2":{"1":2,"32":6}}],["towards",{"2":{"74":1}}],["tol",{"2":{"60":5}}],["too",{"2":{"60":1}}],["toni",{"2":{"30":1}}],["tongues",{"2":{"23":1}}],["together",{"2":{"20":1}}],["totaldegree",{"2":{"20":1,"22":1,"47":1}}],["total",{"0":{"47":1},"2":{"11":1,"22":1,"45":1,"47":1,"48":1,"65":1,"70":1,"71":1}}],["top",{"2":{"5":1,"67":1}}],["to",{"2":{"1":5,"2":3,"3":2,"4":9,"5":2,"6":7,"7":1,"8":5,"10":3,"11":4,"12":6,"13":1,"14":4,"15":9,"16":2,"19":1,"20":1,"21":5,"22":3,"23":5,"28":2,"29":2,"30":1,"31":1,"32":1,"33":1,"34":2,"35":3,"36":5,"37":11,"39":6,"40":3,"41":1,"42":2,"43":5,"44":4,"45":6,"47":1,"48":1,"49":2,"51":6,"53":1,"54":3,"55":16,"56":1,"57":4,"58":7,"60":2,"61":5,"63":1,"64":4,"65":9,"66":1,"67":5,"68":2,"69":11,"70":10,"71":11,"72":4,"73":3}}],["threshold",{"2":{"60":1}}],["threading",{"2":{"47":1,"48":1,"49":1}}],["thread",{"2":{"47":1,"48":1,"49":1}}],["threads",{"2":{"25":2}}],["three",{"0":{"17":1,"24":1,"28":1},"1":{"18":1,"19":1,"20":1,"25":1,"26":1,"27":1,"28":1,"29":1},"2":{"28":2,"29":2,"44":1,"53":1,"57":1}}],["throughout",{"2":{"55":1}}],["through",{"2":{"1":1,"20":1,"23":1}}],["those",{"2":{"6":1,"23":1}}],["though",{"2":{"2":1}}],["than",{"2":{"2":2,"48":1,"52":1,"58":1,"63":1,"68":1,"69":1,"70":1,"72":1}}],["that",{"2":{"1":2,"2":2,"4":2,"5":1,"8":1,"11":1,"12":5,"14":1,"15":8,"21":1,"23":1,"28":1,"29":1,"34":1,"37":1,"39":1,"44":2,"46":1,"55":3,"57":3,"61":6,"64":1,"65":3,"67":1,"68":1,"69":1,"71":3,"72":1}}],["thus",{"2":{"1":1,"2":1,"11":2,"14":1,"15":2,"65":1}}],["this",{"2":{"1":3,"2":1,"4":3,"5":1,"10":1,"11":3,"12":2,"13":2,"14":1,"15":7,"20":1,"21":6,"22":2,"23":3,"28":3,"29":4,"30":2,"34":2,"35":2,"36":1,"37":2,"39":1,"40":1,"41":2,"42":1,"44":1,"45":1,"48":1,"49":1,"51":2,"52":3,"53":3,"55":5,"58":1,"61":3,"63":1,"64":1,"65":3,"67":1,"68":2,"69":3,"70":1,"71":7,"72":2,"73":1,"74":2}}],["thefore",{"2":{"70":1}}],["thefirst",{"2":{"19":1}}],["thesis",{"2":{"41":1}}],["theses",{"2":{"7":1}}],["these",{"2":{"1":1,"2":1,"8":1,"11":1,"21":1,"45":1,"61":1,"65":1,"67":1,"70":3}}],["there",{"2":{"15":1,"22":1,"45":1,"69":1,"71":1}}],["therefore",{"2":{"8":1,"11":2,"12":1,"57":1}}],["then",{"2":{"8":1,"21":1,"22":1,"44":1,"65":2,"69":1,"72":1,"74":1}}],["their",{"2":{"8":1,"10":1,"22":1,"23":1,"39":1}}],["theorem",{"2":{"4":1}}],["they",{"2":{"4":1,"8":1}}],["theta",{"2":{"4":4}}],["themselves",{"2":{"36":1,"39":1,"52":1}}],["them",{"2":{"2":1,"37":1,"65":1}}],["the",{"0":{"0":1,"3":1,"64":1,"69":1},"1":{"1":1,"2":1,"3":1,"4":2,"5":2,"6":2,"70":1,"71":1},"2":{"1":22,"2":9,"3":3,"4":19,"5":4,"6":14,"8":16,"10":4,"11":8,"12":14,"13":6,"14":13,"15":32,"16":1,"18":1,"19":5,"20":5,"21":31,"22":16,"23":10,"25":1,"26":1,"27":1,"28":9,"29":9,"30":2,"31":4,"32":5,"33":5,"34":2,"35":5,"36":10,"37":14,"39":27,"40":25,"41":5,"42":6,"43":6,"44":20,"45":12,"46":2,"47":9,"48":8,"49":10,"50":4,"51":10,"52":6,"53":3,"54":13,"55":37,"56":7,"57":13,"58":15,"60":7,"61":21,"62":3,"63":1,"64":9,"65":24,"66":5,"67":33,"68":16,"69":22,"70":21,"71":27,"72":16,"73":8,"74":12}}],["t",{"2":{"1":21,"2":17,"3":3,"4":19,"5":10,"6":6,"8":5,"10":6,"11":5,"12":7,"13":14,"14":4,"15":18,"18":8,"20":64,"21":80,"26":237,"32":18,"36":20,"37":23,"39":18,"40":5,"47":1,"48":1,"58":2,"61":33,"64":960,"65":100,"66":35,"69":23,"70":30,"71":99,"72":64,"73":1}}],["mm",{"2":{"66":1}}],["mx¨+γx˙+ω02x=fcos⁡",{"2":{"55":1}}],["mx¨+mω02",{"2":{"21":1}}],["miscellaneous",{"0":{"60":1}}],["minimize",{"2":{"57":1}}],["mind",{"2":{"15":1}}],["mixing",{"0":{"17":1,"24":2,"27":1,"28":1},"1":{"18":1,"19":1,"20":1,"25":2,"26":2,"27":2,"28":2,"29":2},"2":{"28":2,"29":2}}],["mi",{"2":{"13":1}}],["magnitude",{"2":{"68":1}}],["manifest",{"2":{"67":1}}],["many",{"2":{"28":1,"29":1,"52":1}}],["maps",{"2":{"55":1,"58":1}}],["mapping",{"2":{"55":2,"58":1}}],["maximal",{"2":{"47":1}}],["maximum",{"2":{"4":1,"15":1,"22":1,"71":1}}],["margin=3mm",{"2":{"68":2}}],["margin=5mm",{"2":{"27":1,"28":1,"29":1}}],["marking",{"2":{"64":1}}],["markdownast",{"2":{"22":1}}],["macro",{"2":{"21":1}}],["make",{"2":{"15":1,"51":1}}],["material",{"2":{"68":1}}],["matters",{"2":{"68":1}}],["mathematical",{"2":{"69":1}}],["mathieu",{"2":{"61":2}}],["mathbf",{"2":{"1":6,"2":8,"13":2,"65":6}}],["matches",{"2":{"15":1}}],["matrix",{"2":{"14":1,"15":1,"22":1,"41":1,"42":1,"44":1,"45":10,"55":2,"67":1}}],["main",{"2":{"2":1}}],["may",{"2":{"2":1,"5":1,"8":2,"10":2,"11":3,"13":1,"22":1,"55":2,"58":1,"61":1,"66":1,"68":1,"69":1,"70":1,"71":2,"72":2}}],["multidimensional",{"2":{"58":1}}],["multiplied",{"2":{"51":1}}],["multiple",{"0":{"71":1},"2":{"8":1,"34":1,"51":1,"58":1}}],["multiplying",{"2":{"15":1,"47":1}}],["multiply",{"2":{"1":2,"2":2,"4":1,"13":1,"32":1,"65":1}}],["must",{"2":{"11":1,"12":1,"45":1,"58":2}}],["much",{"2":{"2":1,"70":1,"71":2}}],["m",{"2":{"2":4,"8":1,"13":4,"40":1,"55":1}}],["move",{"2":{"65":1}}],["most",{"2":{"21":1,"48":1,"54":1,"72":1}}],["mostly",{"2":{"8":1}}],["mode",{"2":{"65":1}}],["modelkit",{"2":{"55":1}}],["model",{"2":{"22":1,"61":1}}],["modes",{"2":{"1":1,"65":2}}],["modulated",{"2":{"21":1}}],["module",{"2":{"15":2,"41":1,"66":1}}],["modulo",{"2":{"12":1}}],["more",{"2":{"1":1,"2":1,"7":1,"12":1,"22":1,"32":1,"34":1,"41":2,"47":1,"48":2,"49":1,"58":2,"64":1,"68":2,"69":2,"71":1,"72":1,"74":1}}],["moment",{"2":{"1":1}}],["motion",{"0":{"37":1},"2":{"1":4,"2":1,"4":1,"5":1,"14":1,"15":3,"21":1,"32":1,"37":2,"40":2,"55":1,"64":2,"69":2,"71":1,"72":1}}],["mere",{"2":{"71":1}}],["merely",{"2":{"65":1}}],["measurement",{"2":{"67":1}}],["measures",{"2":{"17":1,"25":1,"66":1}}],["meaning",{"2":{"48":1,"65":1}}],["means",{"2":{"1":1,"13":1,"28":1,"29":1,"39":1,"55":1,"65":1,"74":1}}],["mechanism",{"2":{"8":1}}],["mechanical",{"2":{"1":1,"4":1}}],["methodology",{"2":{"35":1,"41":1}}],["methods",{"0":{"46":1},"1":{"47":1,"48":1,"49":1},"2":{"34":1,"43":1,"46":1,"55":1}}],["method",{"0":{"0":1,"33":1,"39":1,"47":1,"48":1,"49":1},"1":{"1":1,"2":1,"3":1,"4":1,"5":1,"6":1,"34":1,"35":1,"36":1},"2":{"11":1,"13":1,"20":2,"21":1,"22":2,"33":3,"34":2,"35":1,"36":4,"37":1,"44":2,"46":1,"47":2,"48":3,"49":3,"50":1,"55":6,"57":2,"69":1}}],["blue",{"2":{"61":1}}],["b",{"2":{"58":2}}],["binary",{"2":{"22":1,"32":1,"55":2,"56":1,"61":3,"64":1,"70":1,"71":1}}],["bifurcation",{"0":{"8":1},"2":{"8":2,"20":1,"49":1,"61":1}}],["breaking",{"2":{"65":1}}],["branch",{"2":{"43":2,"44":1,"51":2,"54":2,"57":1,"58":1,"65":3,"68":4,"73":2,"74":2}}],["branch=2",{"2":{"23":1,"68":3}}],["branch=1",{"2":{"23":1,"61":1,"67":3,"68":4}}],["branches",{"2":{"22":2,"23":2,"32":1,"50":1,"51":1,"55":3,"57":5,"61":3,"64":1,"68":1,"70":3,"71":2}}],["brought",{"2":{"21":1}}],["boolean",{"2":{"47":1,"48":2,"49":1,"56":1,"70":1}}],["bool",{"2":{"47":2,"48":3,"49":2}}],["bogoliubov",{"0":{"33":1},"1":{"34":1,"35":1,"36":1},"2":{"33":2,"34":1,"35":1,"36":3,"67":1}}],["boasts",{"2":{"23":1}}],["bound",{"2":{"12":1,"47":1}}],["both",{"0":{"29":1},"2":{"1":1,"4":1,"6":2,"19":1,"65":2,"67":1}}],["but",{"2":{"11":3,"12":1,"20":1,"22":2,"23":1,"41":2,"63":1,"65":1,"71":1}}],["bézout",{"2":{"4":1,"12":1}}],["based",{"2":{"22":1,"30":1,"48":1,"61":1}}],["background",{"2":{"33":1,"67":1,"72":1}}],["back",{"2":{"8":1,"15":1}}],["bare",{"2":{"21":1}}],["bar",{"2":{"2":2,"55":1,"57":1,"65":2}}],["balance",{"0":{"0":1,"39":1},"1":{"1":1,"2":1,"3":1,"4":1,"5":1,"6":1},"2":{"2":1,"6":1,"8":2,"13":1,"21":1,"30":2,"33":1,"46":1}}],["beyond",{"2":{"71":1}}],["bending",{"2":{"67":1}}],["bezout",{"2":{"47":1}}],["behave",{"2":{"72":1}}],["behaves",{"2":{"67":1}}],["behaviors",{"2":{"34":1}}],["behaviour",{"2":{"1":1,"4":1,"13":1,"14":1,"15":1,"51":1,"57":1,"68":1,"71":2,"72":3}}],["behind",{"2":{"44":1}}],["belonging",{"2":{"37":1,"43":1,"44":1}}],["becoming",{"2":{"68":1}}],["become",{"2":{"2":1,"22":1}}],["becomes",{"2":{"1":1,"4":1,"61":2,"74":1}}],["because",{"2":{"37":1}}],["been",{"2":{"8":1,"55":1,"71":1}}],["before",{"2":{"6":1,"23":1,"40":1,"67":1}}],["being",{"2":{"6":1,"40":2,"61":1}}],["between",{"2":{"4":2,"46":1,"61":1,"74":1}}],["best",{"2":{"2":1,"12":1,"27":3,"28":3,"29":3}}],["be",{"2":{"1":1,"4":3,"5":2,"6":1,"10":1,"12":3,"14":1,"15":1,"21":2,"22":3,"23":1,"31":1,"32":1,"36":1,"37":2,"39":2,"40":1,"42":1,"43":1,"44":1,"45":2,"48":1,"50":1,"51":1,"54":3,"55":6,"56":1,"57":1,"58":5,"61":1,"62":1,"64":1,"65":2,"66":1,"67":2,"68":2,"69":2,"70":4,"72":1,"73":1}}],["begin",{"2":{"1":4,"2":4,"4":2,"13":2,"32":2,"65":2}}],["by",{"2":{"1":3,"2":2,"3":2,"4":2,"5":1,"6":2,"10":2,"11":3,"12":1,"13":1,"14":3,"15":3,"21":5,"22":1,"23":1,"34":1,"39":3,"42":1,"47":1,"49":1,"51":5,"52":1,"53":1,"55":2,"56":4,"57":1,"58":1,"59":1,"60":1,"61":3,"62":1,"64":1,"65":4,"66":1,"67":1,"69":1,"70":1,"71":4,"72":1}}],["dynamics",{"2":{"30":1,"33":1,"34":1,"35":1,"65":1}}],["dynamical",{"2":{"1":1,"14":1,"33":1,"34":1,"40":1}}],["datasets",{"2":{"51":1,"52":2,"53":1}}],["dashed",{"2":{"51":1}}],["dash",{"2":{"22":1}}],["damped",{"2":{"19":1,"32":2}}],["damping",{"2":{"1":1,"15":1,"21":1,"32":1,"65":2}}],["dωlc",{"2":{"11":1}}],["dv2dt=16ωd",{"2":{"6":1}}],["dv1dt=12ωd",{"2":{"6":1}}],["ddt",{"2":{"4":1,"14":1,"15":1}}],["ddot",{"2":{"1":2,"4":4,"32":2}}],["dropped",{"2":{"39":1,"45":1}}],["dropping",{"2":{"39":1}}],["drop",{"2":{"4":1,"6":1,"39":2}}],["drivein",{"2":{"69":1}}],["drive",{"2":{"1":1,"14":1,"15":1,"20":2,"21":3,"23":2,"32":2,"61":1,"64":1,"65":1,"67":3,"68":1,"69":1,"70":1,"71":3}}],["driven",{"0":{"21":1,"64":1,"65":1},"1":{"22":1,"23":1},"2":{"1":1,"10":1,"19":1,"23":1,"28":1,"29":1,"32":1,"37":1,"67":1,"69":1,"72":2}}],["driving",{"2":{"1":1,"3":1,"21":1,"23":1,"32":1,"61":2,"67":3,"68":3,"70":1}}],["d^2",{"2":{"4":4}}],["don",{"2":{"48":1}}],["done",{"2":{"12":1,"21":1,"23":1,"51":2,"52":1,"53":2}}],["docs",{"2":{"21":1}}],["do",{"2":{"21":1,"32":1,"51":1,"52":1,"53":1,"58":1,"64":1,"65":1}}],["doubling",{"2":{"20":1,"28":1,"29":1}}],["doubly",{"2":{"12":1}}],["does",{"2":{"11":1,"12":1,"39":1,"49":1,"65":1,"72":2}}],["dot",{"2":{"4":4,"32":2}}],["dominate",{"2":{"3":1}}],["during",{"2":{"22":1,"37":1,"58":1}}],["du",{"2":{"8":1,"13":1,"42":1,"72":1}}],["du2dt=16ωd",{"2":{"6":1}}],["du1dt=12ωd",{"2":{"6":1}}],["due",{"2":{"3":1,"61":2,"68":1}}],["duffings",{"0":{"65":1}}],["duffing",{"0":{"3":1,"69":1},"1":{"4":1,"5":1,"6":1,"70":1,"71":1},"2":{"3":1,"4":1,"5":1,"6":1,"19":1,"27":1,"28":2,"29":2,"32":6,"57":1,"66":1,"67":1,"68":1,"69":2,"70":1,"71":2}}],["duffingft",{"2":{"1":3}}],["d",{"2":{"1":4,"2":2,"4":12,"18":2,"20":2,"21":4,"26":2,"32":2,"36":1,"37":5,"39":1,"61":3,"64":3,"65":6,"66":2,"69":2,"72":4}}],["dt=f¯",{"2":{"13":1,"72":1}}],["dt=0",{"2":{"11":1}}],["dt=g",{"2":{"8":1}}],["dt",{"2":{"1":2,"2":2,"42":1,"65":2}}],["dict",{"2":{"55":2,"58":1,"74":1}}],["dictionary",{"2":{"37":1,"45":1,"54":1,"55":1,"56":1,"58":1}}],["dim",{"2":{"51":1}}],["dimension",{"2":{"53":1}}],["dimensionless",{"2":{"21":1}}],["dimensionality",{"2":{"15":1}}],["dimensional",{"2":{"2":1,"51":1,"55":1,"57":1,"69":1}}],["diagrams",{"0":{"52":1},"2":{"23":1,"52":1}}],["diagram",{"2":{"20":1,"23":5,"52":3,"61":4,"65":2,"73":1}}],["diagonalization",{"2":{"44":1}}],["diagonal",{"2":{"1":1}}],["different",{"2":{"22":1,"23":1,"32":1,"43":1,"46":1,"52":1,"58":1,"61":2}}],["differential",{"2":{"20":2,"21":15,"26":12,"36":2,"37":4,"39":2,"45":1,"55":1,"61":4,"64":206,"65":15,"66":4,"69":6,"70":5,"71":8,"72":12}}],["differentialequations",{"2":{"73":1}}],["differentialequation",{"2":{"18":1,"20":1,"21":1,"26":1,"32":1,"36":2,"37":11,"39":4,"40":2,"42":2,"45":1,"55":1,"61":1,"64":1,"65":1,"66":1,"69":2,"72":1}}],["diff",{"2":{"18":2,"19":1,"20":3,"21":3,"26":5,"32":3,"36":6,"37":8,"39":7,"45":2,"61":3,"64":3,"65":4,"66":3,"70":3,"71":2,"72":3}}],["disappears",{"2":{"74":1}}],["displacement",{"2":{"69":1}}],["displaced",{"2":{"21":1,"60":1}}],["displays",{"2":{"64":1}}],["display",{"2":{"61":1}}],["displayed",{"2":{"55":1,"57":1}}],["dispatched",{"2":{"51":1}}],["distance",{"2":{"57":2}}],["distinguish",{"2":{"60":1,"61":1}}],["distinguishing",{"2":{"39":1}}],["distinctly",{"2":{"68":1}}],["distinct",{"2":{"11":2}}],["distinction",{"2":{"4":1}}],["distribution",{"2":{"15":1}}],["discussed",{"2":{"67":1}}],["discrete",{"2":{"13":1}}],["discarding",{"2":{"12":1}}],["discarded",{"2":{"11":1}}],["dipole",{"2":{"1":1}}],["density",{"2":{"67":1}}],["denotes",{"2":{"45":1}}],["denote",{"2":{"8":1}}],["de",{"2":{"67":1}}],["der",{"0":{"64":1},"2":{"64":1}}],["derive",{"2":{"3":1,"35":1}}],["derivatives",{"2":{"2":1,"4":1,"6":1,"39":5,"43":1,"45":1,"55":1,"70":1}}],["dedicated",{"2":{"44":1}}],["desired",{"2":{"72":1}}],["designed",{"2":{"35":1}}],["describing",{"2":{"4":1,"40":2,"55":1}}],["described",{"2":{"2":1,"13":1,"21":1,"40":2}}],["describe",{"2":{"2":2,"4":1,"5":1,"13":1,"44":1,"57":1,"65":1}}],["describes",{"2":{"1":1,"5":1,"8":1,"44":1,"57":1,"70":1}}],["deeper",{"2":{"34":1}}],["detuned",{"2":{"67":1}}],["detuning",{"2":{"23":1}}],["details",{"2":{"69":1}}],["detail",{"2":{"64":1}}],["detailed",{"2":{"33":1,"36":1}}],["determined",{"2":{"47":1}}],["deg",{"2":{"39":2}}],["degree=2",{"2":{"39":1}}],["degree",{"0":{"47":1},"2":{"22":1,"39":1,"47":2,"48":1}}],["degeneracy",{"2":{"12":1,"64":2}}],["degenerate",{"2":{"11":1,"12":2,"28":1,"29":1}}],["defining",{"2":{"66":1,"72":1}}],["define",{"2":{"15":1,"21":1,"37":1,"64":1,"66":1,"74":1}}],["defined",{"2":{"1":2,"2":3,"4":1,"12":2,"13":2,"32":1,"36":1,"39":2,"44":1,"55":2,"56":2,"58":1,"65":1}}],["default=true",{"2":{"55":1}}],["default",{"2":{"22":1,"39":1,"51":2,"55":2,"56":2,"61":1}}],["declared",{"2":{"70":2}}],["declare",{"2":{"18":1,"26":1,"32":1,"66":1,"69":2}}],["demonstrates",{"2":{"71":1}}],["demonstrate",{"2":{"10":1,"72":1}}],["delve",{"2":{"34":1}}],["delineating",{"2":{"23":1}}],["del",{"2":{"7":1,"30":2}}],["delta",{"2":{"1":2}}],["depth",{"2":{"7":1}}],["dependences",{"2":{"39":1}}],["dependence",{"2":{"8":2,"37":1,"39":1,"58":1}}],["dependent",{"0":{"72":1},"1":{"73":1,"74":1},"2":{"1":1,"8":1,"37":3,"58":1,"59":1,"60":1,"65":4}}],["depending",{"2":{"4":1,"43":1}}],["euclidean",{"2":{"57":2}}],["element",{"2":{"57":1,"73":1}}],["electrical",{"2":{"1":1}}],["elsewhere",{"2":{"54":1,"58":1}}],["efficient",{"2":{"48":1,"49":1,"58":1,"72":1}}],["effects",{"2":{"21":1}}],["effective",{"2":{"20":1,"72":2}}],["effectively",{"2":{"12":1,"15":1}}],["effect",{"2":{"12":1,"71":1}}],["et",{"2":{"65":3,"66":1,"68":2}}],["etc",{"2":{"40":1,"55":1}}],["eta",{"2":{"23":2}}],["es",{"2":{"51":2}}],["essentially",{"2":{"39":1}}],["essential",{"2":{"34":1}}],["especially",{"2":{"28":1,"29":1,"48":1,"70":1}}],["eom",{"2":{"32":2,"36":7,"37":6,"39":14,"42":2,"55":5,"58":2,"60":2}}],["earlier",{"2":{"74":1}}],["easy",{"2":{"31":1}}],["each",{"2":{"2":1,"5":1,"8":1,"11":1,"12":1,"13":1,"15":4,"22":3,"23":1,"37":3,"39":6,"40":3,"44":1,"45":1,"46":1,"57":6,"58":1,"61":2,"65":1,"70":1}}],["employs",{"2":{"67":1}}],["employing",{"2":{"21":1}}],["emerges",{"2":{"64":1}}],["emergent",{"2":{"11":1}}],["eλrt",{"2":{"14":1}}],["eigenvalue",{"2":{"15":4}}],["eigenvalues",{"2":{"8":2,"14":1,"15":1,"22":1,"44":1,"60":1,"61":2,"67":8,"68":6}}],["eigenvector",{"2":{"15":1}}],["eigenvectors",{"2":{"14":1,"15":1}}],["either",{"2":{"1":1,"14":1,"40":1,"42":1}}],["evo",{"2":{"65":4,"73":4,"74":2}}],["evolve",{"2":{"36":1,"39":1,"72":3}}],["evolves",{"2":{"2":1,"60":1,"65":1,"74":1}}],["evolving",{"0":{"73":1},"2":{"8":1,"14":1,"36":1,"39":1,"72":1,"73":1}}],["evolution",{"0":{"58":1},"1":{"59":1,"60":1},"2":{"4":1,"10":1,"58":1,"65":1}}],["evaluation",{"2":{"45":1}}],["evaluates",{"2":{"50":1}}],["evaluate",{"2":{"42":1,"44":1,"54":1}}],["evaluated",{"2":{"14":1,"50":1}}],["everything",{"2":{"51":1,"52":1,"53":1,"70":1}}],["every",{"2":{"15":1,"50":1,"68":1}}],["eventually",{"2":{"71":1}}],["even",{"2":{"2":1,"12":1}}],["evidently",{"2":{"1":1}}],["e^",{"2":{"1":2}}],["exhibit",{"2":{"71":1}}],["excellent",{"2":{"69":1}}],["excels",{"2":{"33":1}}],["excitation",{"2":{"67":1}}],["excitations",{"2":{"67":2}}],["excited",{"2":{"67":1}}],["excite",{"2":{"28":1,"29":1,"67":1}}],["execution",{"2":{"22":1}}],["extra",{"2":{"61":1,"63":1}}],["extract",{"2":{"15":1,"39":2,"44":1}}],["extracting",{"0":{"38":1},"1":{"39":1,"40":1},"2":{"4":1}}],["extension",{"2":{"58":1,"71":1}}],["extention",{"2":{"58":1}}],["extended",{"0":{"11":1},"2":{"30":1,"71":2}}],["externally",{"2":{"63":1}}],["external",{"2":{"21":3,"23":1,"32":1,"64":1}}],["exists",{"2":{"61":1,"65":1}}],["existing",{"2":{"8":1}}],["exist",{"2":{"8":2}}],["export",{"2":{"54":2}}],["exponentially",{"2":{"12":1,"23":1}}],["expr",{"2":{"39":2}}],["exprutils",{"2":{"39":1}}],["expression",{"2":{"50":2}}],["expressions",{"2":{"22":1,"54":2}}],["expressing",{"2":{"13":1}}],["experimentally",{"2":{"74":1}}],["experiment",{"2":{"44":1}}],["expensive",{"2":{"41":1,"58":1,"60":1,"72":1}}],["expeted",{"2":{"39":1}}],["expected",{"2":{"39":1,"70":1}}],["expect",{"2":{"3":1,"11":1,"12":1}}],["expansion",{"0":{"19":1,"20":1},"2":{"33":1,"34":1}}],["expand",{"2":{"36":1,"37":3,"39":2,"64":1,"65":1,"70":1}}],["expanded",{"2":{"14":1,"37":1,"40":2}}],["expanding",{"2":{"5":1,"71":1}}],["exploring",{"2":{"74":1}}],["explicit",{"2":{"8":1}}],["explicitly",{"2":{"1":1,"12":1,"42":1,"65":1}}],["explain",{"2":{"7":1}}],["explained",{"2":{"3":1,"6":1,"41":1}}],["exact",{"2":{"39":1,"71":1}}],["exactly",{"2":{"1":1,"2":1,"5":1,"14":1,"61":1}}],["examplevaried",{"2":{"73":1}}],["exampleplot",{"2":{"65":1}}],["examplep1",{"2":{"65":2}}],["exampleusing",{"2":{"65":1}}],["examplefixed",{"2":{"65":1}}],["examples",{"0":{"16":1},"2":{"6":1,"32":1,"58":1,"62":2}}],["example",{"0":{"3":1},"1":{"4":1,"5":1,"6":1},"2":{"1":1,"2":1,"8":1,"10":1,"12":1,"13":1,"15":1,"36":1,"37":2,"39":2,"51":1,"55":1,"56":1,"57":2,"68":1,"69":1}}],["energy",{"2":{"67":1}}],["encodes",{"2":{"72":1}}],["encode",{"2":{"71":2}}],["encoding",{"2":{"52":1}}],["encompasses",{"2":{"1":1}}],["enabled",{"2":{"47":1,"48":1,"49":1}}],["enabling",{"2":{"33":1}}],["entry",{"2":{"51":1,"54":1,"57":1}}],["entries",{"2":{"11":1,"61":1}}],["entered",{"2":{"54":1}}],["entering",{"0":{"37":1}}],["enter",{"2":{"36":1,"37":1,"39":1}}],["environment",{"2":{"25":1}}],["enlarged",{"2":{"12":1}}],["ends",{"2":{"73":2}}],["endpoint",{"2":{"49":2}}],["endpointranges",{"2":{"49":1}}],["endgameoptions",{"2":{"47":1,"48":1,"49":1}}],["endgame",{"2":{"47":2,"48":2,"49":2}}],["end",{"2":{"1":4,"2":4,"4":2,"8":1,"13":2,"32":2,"64":1,"65":2}}],["eqs",{"2":{"42":1,"65":2}}],["eq2",{"2":{"20":3}}],["equi",{"2":{"61":1}}],["equivalent",{"2":{"4":2,"37":1}}],["equal",{"2":{"15":1}}],["equation",{"2":{"1":10,"2":9,"3":1,"4":1,"5":1,"11":1,"13":4,"21":3,"32":5,"37":3,"39":1,"40":5,"55":1,"61":2,"64":1,"65":4,"69":3,"70":2,"71":1,"72":1}}],["equations",{"0":{"2":1,"37":1,"38":1,"55":1},"1":{"39":1,"40":1,"56":1,"57":1},"2":{"1":3,"2":2,"3":1,"4":3,"5":1,"6":1,"8":1,"10":1,"11":1,"12":1,"13":1,"14":1,"15":1,"19":2,"20":3,"21":8,"22":2,"26":3,"32":2,"35":2,"36":7,"37":5,"39":15,"40":7,"42":1,"44":1,"46":1,"55":5,"58":1,"61":3,"64":5,"65":7,"66":4,"69":3,"70":5,"71":4,"72":6}}],["eqref",{"2":{"2":2,"4":2,"5":1,"6":1,"65":2}}],["eq",{"2":{"1":6,"2":9,"4":7,"5":2,"6":2,"13":3,"18":2,"19":5,"20":3,"21":4,"22":1,"23":1,"26":6,"27":1,"28":1,"29":1,"32":8,"37":2,"45":2,"59":4,"61":5,"64":6,"65":17,"66":4,"67":1,"68":2,"69":1,"70":7,"71":5,"72":7,"73":4,"74":2}}],["e",{"2":{"1":2,"4":1,"6":2,"8":1,"12":1,"21":3,"22":1,"23":1,"28":1,"29":1,"51":2,"58":1,"61":2,"64":1,"65":1,"67":1,"71":1,"74":1}}],["irrespective",{"2":{"67":1}}],["ignore",{"2":{"55":2}}],["ignored",{"2":{"43":1,"55":2}}],["identify",{"2":{"61":1,"63":1}}],["identifier",{"2":{"61":1}}],["identified",{"2":{"37":1,"40":1}}],["identification",{"2":{"40":1}}],["identical",{"2":{"23":1}}],["imaginary",{"2":{"67":2}}],["imposing",{"2":{"64":1}}],["imposed",{"2":{"63":1}}],["import",{"2":{"21":1}}],["important",{"2":{"2":1,"4":1,"28":1,"29":1,"69":1,"71":1}}],["implying",{"2":{"64":1}}],["implicit",{"2":{"55":1}}],["implicitly",{"2":{"55":2}}],["implemented",{"2":{"55":1,"69":1,"71":1}}],["implement",{"2":{"21":1,"32":1,"35":1,"66":1,"69":1}}],["im",{"2":{"15":8,"44":1,"60":1}}],["iω−λ",{"2":{"15":1}}],["it",{"2":{"12":1,"14":1,"15":2,"16":1,"23":1,"28":1,"29":1,"31":1,"34":1,"37":1,"39":1,"42":2,"44":2,"47":1,"48":2,"49":1,"50":1,"51":2,"53":1,"55":1,"57":1,"58":1,"61":1,"64":2,"65":2,"67":1,"72":1,"73":1}}],["iterative",{"2":{"11":1}}],["itself",{"2":{"39":1,"67":1}}],["its",{"2":{"2":1,"12":1,"32":1,"34":1,"37":1,"39":1,"44":3,"61":1,"67":2,"68":1,"72":2}}],["if",{"2":{"1":1,"8":1,"14":2,"16":1,"19":2,"23":1,"27":1,"28":2,"29":2,"30":1,"32":1,"36":1,"39":1,"47":1,"48":3,"49":1,"51":1,"54":1,"55":4,"58":1,"60":2,"61":1,"68":1,"72":1,"74":1}}],["illustrates",{"2":{"1":1}}],["issue",{"2":{"16":1}}],["is",{"2":{"1":4,"2":5,"4":6,"5":3,"6":5,"8":3,"11":5,"12":6,"13":4,"14":6,"15":7,"20":1,"21":3,"22":2,"23":4,"28":3,"29":3,"30":1,"31":1,"32":1,"33":2,"35":1,"36":3,"37":5,"39":11,"40":7,"41":4,"42":2,"44":5,"47":1,"48":2,"49":2,"50":1,"51":3,"53":2,"54":2,"55":5,"56":3,"57":4,"58":5,"59":1,"60":4,"61":1,"63":1,"64":2,"65":6,"67":3,"68":5,"69":5,"70":3,"71":9,"72":7,"73":2,"74":3}}],["i=1",{"2":{"1":1}}],["i",{"2":{"1":3,"4":1,"6":1,"8":1,"12":1,"21":1,"51":1,"61":2,"64":3,"65":1,"67":1,"71":1,"74":1}}],["inequality",{"2":{"56":1}}],["inexpensive",{"2":{"41":1}}],["incorporates",{"2":{"74":1}}],["increases",{"2":{"45":1,"74":1}}],["includes",{"2":{"40":1}}],["include",{"2":{"23":1}}],["including",{"2":{"11":1,"22":1}}],["inaccurate",{"2":{"44":1}}],["inputting",{"2":{"37":1}}],["input",{"2":{"36":1,"37":3,"39":1,"43":1,"55":2,"56":1,"69":2,"72":1}}],["inversion",{"2":{"45":1}}],["inverting",{"2":{"44":1}}],["invert",{"2":{"12":1}}],["investigate",{"2":{"28":1,"29":1,"60":1}}],["initiates",{"2":{"22":1}}],["initially",{"2":{"65":1}}],["initializes",{"2":{"22":1}}],["initial",{"0":{"73":1},"2":{"14":1,"40":1,"58":1,"60":4,"65":4,"72":1,"73":2,"74":1}}],["inspecting",{"2":{"65":1}}],["inside",{"2":{"61":1}}],["instability",{"2":{"64":1,"65":1}}],["instance",{"2":{"39":1}}],["installled",{"2":{"31":1}}],["install",{"2":{"31":1}}],["installation",{"0":{"31":1}}],["instead",{"2":{"8":1,"58":1,"64":2,"65":1,"72":1}}],["inserted",{"2":{"55":1}}],["insert",{"2":{"6":1,"15":2}}],["infrared",{"2":{"28":1,"29":1}}],["information",{"2":{"22":1,"36":1,"37":2,"47":1,"48":1,"49":1,"54":1,"70":1,"72":1}}],["infinity",{"2":{"2":1,"71":1}}],["infinitesimal",{"2":{"70":1}}],["infinitely",{"2":{"11":1}}],["infinite",{"2":{"1":1,"11":1,"12":1,"64":1,"69":1}}],["infty",{"2":{"1":4}}],["indicitive",{"2":{"68":1}}],["indicate",{"2":{"55":1,"57":1}}],["indicating",{"2":{"47":1,"48":2,"49":1,"67":1}}],["index=",{"2":{"61":1}}],["index",{"2":{"44":1,"49":3,"58":1}}],["indeed",{"2":{"19":1,"61":1,"67":1}}],["independent",{"2":{"1":1,"21":1,"36":1,"37":3,"39":1,"65":1,"67":1}}],["induced",{"2":{"1":1}}],["intuition",{"2":{"71":1}}],["int64",{"2":{"49":1,"51":2,"73":1,"74":1}}],["intricate",{"2":{"34":1}}],["introduce",{"2":{"22":1}}],["interpolates",{"2":{"74":1}}],["interpreted",{"2":{"60":1}}],["internal",{"2":{"68":1}}],["internally",{"2":{"40":1}}],["interval",{"2":{"65":1}}],["interface",{"2":{"58":1}}],["interest",{"2":{"15":1}}],["interested",{"2":{"2":1,"4":1,"21":2,"52":1}}],["integer",{"2":{"8":2}}],["into",{"2":{"4":1,"6":1,"8":2,"12":2,"15":2,"22":1,"23":1,"25":1,"34":1,"40":1,"42":1,"44":1,"50":1,"54":3,"55":1,"56":1,"57":1,"65":1,"72":3,"73":1}}],["int",{"2":{"1":4,"43":1,"44":2}}],["in",{"0":{"1":1},"2":{"1":3,"2":3,"3":1,"4":3,"5":2,"6":3,"7":3,"8":3,"10":1,"11":5,"13":1,"14":2,"15":7,"21":12,"22":8,"23":4,"28":5,"29":5,"30":1,"31":2,"33":3,"34":1,"36":4,"37":2,"39":10,"40":2,"41":1,"43":1,"44":4,"45":1,"48":1,"49":2,"50":2,"51":4,"52":7,"53":3,"54":3,"55":4,"56":4,"57":2,"58":4,"60":1,"61":3,"62":1,"63":1,"64":2,"65":9,"66":3,"67":3,"68":4,"69":3,"70":4,"71":6,"72":3,"73":3,"74":1}}],["f=2∗10−3",{"2":{"68":1}}],["f=10−4",{"2":{"67":1}}],["fluctuation",{"2":{"67":1}}],["float64",{"2":{"44":3,"51":1,"55":2,"70":2,"73":2,"74":3}}],["flow",{"2":{"36":1,"39":4}}],["f2",{"2":{"65":1}}],["f0≅0",{"2":{"65":2}}],["f0",{"2":{"65":15}}],["feature",{"2":{"63":1}}],["fed",{"2":{"43":1,"72":1,"73":1}}],["fd",{"2":{"21":1}}],["failure",{"2":{"67":1}}],["fairly",{"2":{"12":1,"71":1}}],["false",{"2":{"55":2,"56":1}}],["factor",{"2":{"47":1}}],["fast",{"2":{"34":1,"36":3,"39":7}}],["faster",{"2":{"33":1}}],["famous",{"2":{"21":1}}],["far",{"2":{"6":1,"44":1,"64":1,"65":1,"67":1,"71":1}}],["future",{"2":{"73":1}}],["func",{"2":{"50":1,"56":1}}],["functions",{"2":{"23":1,"54":2,"56":1,"58":2}}],["function",{"0":{"36":1},"2":{"13":1,"15":2,"18":1,"21":2,"23":1,"26":1,"32":2,"35":2,"41":1,"45":1,"51":1,"52":1,"53":2,"54":1,"55":5,"56":1,"57":1,"58":3,"59":2,"65":1,"66":1,"68":1,"69":1,"74":1}}],["fullfil",{"2":{"28":1,"29":1}}],["full",{"2":{"22":1,"40":1,"41":1,"51":1,"72":3}}],["fully",{"2":{"1":1,"15":1,"44":1}}],["further",{"2":{"8":1,"36":1}}],["furthermore",{"2":{"8":1}}],["f¯",{"2":{"2":1,"13":2,"65":1}}],["freq",{"2":{"45":2}}],["frequencies",{"2":{"8":1,"11":1,"15":1,"28":1,"29":1,"43":1,"44":2,"45":1,"67":1,"68":1,"70":1}}],["frequency",{"0":{"1":1,"4":1,"6":1},"2":{"1":6,"3":3,"4":1,"5":2,"6":3,"8":2,"10":2,"11":2,"15":2,"21":4,"22":1,"23":1,"28":3,"29":3,"32":1,"33":1,"34":2,"37":1,"41":1,"45":3,"61":1,"64":1,"65":3,"67":7,"68":1,"69":1,"70":2,"71":5,"72":1}}],["free",{"2":{"12":3,"65":1}}],["freedom",{"2":{"11":1,"12":1,"64":1}}],["frame",{"2":{"8":2,"21":1,"44":2,"45":1,"65":1,"67":1}}],["frac",{"2":{"2":2,"4":8,"65":2}}],["from",{"0":{"8":1,"73":1},"2":{"5":1,"14":2,"15":1,"21":2,"22":2,"23":2,"28":1,"29":1,"39":1,"40":1,"42":1,"44":1,"46":1,"47":1,"51":2,"54":1,"58":3,"65":3,"67":1,"68":1,"71":1,"73":2,"74":1}}],["fields",{"2":{"37":1,"40":2,"44":2,"45":1,"47":1,"48":1,"49":1,"55":2,"58":1}}],["filters",{"2":{"64":1}}],["filtering",{"2":{"22":1}}],["filename",{"2":{"54":6}}],["file",{"2":{"22":1,"54":4}}],["fixed",{"2":{"19":5,"20":4,"22":1,"23":2,"27":3,"28":2,"29":2,"32":3,"55":13,"56":1,"58":4,"61":1,"63":1,"64":1,"65":5,"67":2,"68":4,"70":4,"71":3,"73":3,"74":1}}],["fix",{"2":{"12":1,"68":1}}],["fixing",{"0":{"12":1},"2":{"12":1,"21":1,"64":2,"69":1}}],["finding",{"0":{"69":1},"1":{"70":1,"71":1},"2":{"30":1,"65":1,"69":1,"72":1}}],["find",{"2":{"7":1,"10":1,"11":1,"15":1,"32":1,"47":1,"48":1,"49":1,"55":4,"67":2,"69":1,"70":1,"71":1}}],["finite",{"2":{"2":1}}],["first",{"0":{"44":1},"2":{"1":1,"4":1,"5":1,"8":1,"15":1,"21":2,"36":1,"41":1,"42":1,"51":1,"58":1,"65":1,"67":1,"69":1,"71":2,"74":1}}],["ft",{"2":{"1":2}}],["focused",{"2":{"65":1,"72":1}}],["focuses",{"2":{"1":1}}],["focus",{"2":{"21":1,"28":1,"29":1}}],["follow",{"2":{"65":1}}],["follows",{"2":{"22":1,"67":1}}],["following",{"2":{"21":1,"25":1,"31":1,"40":1,"68":1,"72":1}}],["followed",{"2":{"3":1,"39":1}}],["footing",{"2":{"6":1,"71":1}}],["four",{"0":{"24":1,"27":1},"1":{"25":1,"26":1,"27":1,"28":1,"29":1},"2":{"61":1}}],["fourfold",{"2":{"12":1,"64":1}}],["fourier",{"2":{"1":4,"2":2,"4":2,"6":1,"13":1,"15":1,"37":1,"39":6,"69":1,"71":2}}],["found",{"2":{"4":1,"5":1,"14":1,"15":1,"21":2,"62":1,"66":1,"70":1,"71":1}}],["fortunately",{"2":{"69":1}}],["forcing",{"2":{"21":1}}],["forces",{"2":{"21":2}}],["force",{"2":{"14":1,"15":1,"45":1}}],["format",{"2":{"50":1}}],["formulation",{"2":{"10":1,"11":2}}],["formed",{"2":{"10":1,"11":1}}],["form",{"2":{"8":1,"21":2,"57":1,"68":1,"71":1}}],["for",{"2":{"1":1,"3":2,"4":4,"6":2,"7":1,"8":4,"10":2,"11":2,"12":2,"13":1,"14":4,"15":3,"21":2,"22":2,"23":4,"30":1,"32":1,"36":3,"37":1,"39":6,"40":5,"43":2,"44":2,"45":3,"46":1,"47":5,"48":5,"49":6,"50":3,"51":1,"52":1,"54":1,"55":9,"56":1,"57":7,"58":1,"61":3,"64":3,"65":2,"67":1,"68":5,"69":3,"70":6,"71":3,"73":1,"74":1}}],["f",{"2":{"1":2,"2":2,"4":4,"18":2,"19":2,"20":7,"21":5,"22":1,"23":1,"26":4,"27":1,"28":1,"29":1,"32":5,"36":4,"37":7,"39":4,"42":1,"47":1,"50":2,"55":3,"59":7,"65":3,"66":4,"67":1,"68":5,"69":3,"70":4,"71":3,"72":5,"73":1,"74":1}}],["occurring",{"2":{"74":1}}],["occurred",{"2":{"65":1}}],["occur",{"2":{"65":1}}],["occurs",{"2":{"21":1,"65":1,"68":1,"74":1}}],["o",{"2":{"30":1}}],["otherwise",{"2":{"58":1}}],["other",{"2":{"21":1,"34":1,"37":1,"41":1,"49":1,"51":1,"52":1,"53":1,"61":1,"62":1,"64":1,"65":1,"69":1,"70":1}}],["others",{"2":{"2":1,"69":1}}],["overriden",{"2":{"65":1}}],["overlay",{"2":{"23":2}}],["overlaid",{"2":{"22":1}}],["over",{"2":{"14":1,"23":1,"55":3,"57":2,"58":2,"68":1,"70":2}}],["overwiew",{"2":{"7":1}}],["outside",{"2":{"61":1}}],["output",{"2":{"21":1,"22":1,"57":2}}],["out",{"2":{"12":1,"15":3,"32":1,"64":2,"68":1,"70":1,"71":2}}],["our",{"2":{"2":1,"8":2,"11":2,"12":2,"25":1,"63":1,"65":1,"70":1,"72":1}}],["optional",{"2":{"74":1}}],["optionally",{"2":{"55":1}}],["options",{"2":{"47":5,"48":5,"49":5,"55":1,"57":1}}],["optics",{"2":{"28":1,"29":1}}],["optical",{"2":{"1":1}}],["operating",{"2":{"21":1}}],["open",{"2":{"16":1}}],["oppositely",{"2":{"11":1}}],["object",{"2":{"50":1,"51":1,"52":1,"53":1,"54":3,"55":3,"58":2,"70":1,"72":2,"73":1,"74":1}}],["objects",{"2":{"15":1,"44":1,"54":2}}],["observable",{"2":{"70":1}}],["observation",{"2":{"11":1}}],["observe",{"2":{"19":1,"27":1,"28":1,"29":1,"65":2}}],["observed",{"2":{"5":1,"44":1}}],["obtained",{"2":{"5":1,"10":1,"32":1,"51":1,"55":1,"61":1}}],["obtaining",{"2":{"2":1}}],["obtain",{"2":{"2":2,"4":1,"6":1,"8":1,"10":1,"11":1,"12":1,"13":1,"14":1,"21":1,"34":1,"36":1,"39":1,"41":1,"42":2,"45":1,"55":2,"64":1,"65":1,"69":1,"71":2}}],["omega",{"2":{"1":18,"4":20,"32":4}}],["oscillates",{"2":{"37":1}}],["oscillate",{"2":{"4":1,"15":1,"65":1,"71":1}}],["oscillator+αx",{"2":{"69":1}}],["oscillatory",{"2":{"2":2,"15":1,"58":3,"72":1}}],["oscillator",{"0":{"3":1,"64":1,"69":1},"1":{"4":1,"5":1,"6":1,"70":1,"71":1},"2":{"1":1,"5":1,"15":1,"19":2,"21":2,"23":2,"27":1,"28":2,"29":2,"32":3,"36":1,"37":2,"39":1,"55":1,"57":1,"61":2,"64":1,"66":1,"69":1,"71":3,"72":1}}],["oscillators",{"2":{"1":1,"21":1,"37":1,"65":3}}],["oscillation",{"2":{"28":1,"29":1}}],["oscillations",{"2":{"1":1,"58":1,"64":1}}],["oscillating",{"0":{"1":1},"2":{"1":1,"21":1,"36":1,"39":3,"44":1}}],["ordinarydiffeqtsit5",{"2":{"58":1,"65":1,"73":1}}],["ordinarydiffeq",{"2":{"58":2,"72":3,"73":1}}],["orderedset",{"2":{"37":1}}],["ordereddict",{"2":{"37":2,"45":1,"55":2,"60":2,"61":1}}],["orderedcollections",{"2":{"37":3,"45":1,"55":2,"60":2,"61":1}}],["ordered",{"2":{"23":1}}],["order=2",{"2":{"20":1,"45":1}}],["order=1",{"2":{"19":1,"43":1}}],["orders",{"0":{"45":1},"2":{"1":1,"33":1,"71":1}}],["order",{"0":{"19":1,"20":1,"44":1},"2":{"1":2,"2":2,"4":2,"5":1,"6":1,"8":1,"19":1,"34":1,"36":5,"39":2,"41":1,"43":2,"45":3,"57":2,"64":1,"67":1,"71":3}}],["original",{"0":{"10":1},"2":{"40":1}}],["originating",{"2":{"8":1}}],["orbit",{"2":{"8":1}}],["or",{"2":{"1":2,"7":1,"13":1,"14":2,"15":1,"16":1,"31":1,"37":1,"40":2,"42":1,"50":1,"51":1,"52":1,"53":1,"55":1,"58":1,"64":2,"71":1,"74":2}}],["odeproblem",{"2":{"58":2,"65":1,"72":1,"73":3,"74":3}}],["oded",{"2":{"30":1}}],["ode",{"2":{"1":3,"2":1,"37":2,"40":1,"58":1,"64":1,"66":1,"72":2,"73":5,"74":1}}],["odesolution",{"2":{"59":3}}],["odes",{"2":{"1":1,"2":1,"7":1,"8":3,"36":1,"37":1,"39":1}}],["onto",{"2":{"15":1,"51":1,"52":1,"53":1}}],["ones",{"2":{"6":1,"22":1}}],["one",{"0":{"70":1},"2":{"4":1,"8":3,"11":2,"12":1,"14":1,"21":1,"22":1,"34":1,"37":1,"39":1,"41":1,"44":1,"51":1,"58":2,"61":1,"67":2,"68":1,"74":1}}],["once",{"2":{"2":1,"39":1,"55":2}}],["only",{"2":{"1":2,"4":1,"12":1,"23":2,"27":1,"28":1,"29":1,"44":1,"48":3,"51":1,"52":1,"53":1,"55":1,"56":1,"61":1,"69":2,"70":2,"71":3,"72":1,"73":1}}],["on",{"2":{"1":1,"2":1,"4":1,"5":1,"6":1,"12":1,"19":1,"21":1,"22":1,"28":1,"29":1,"30":1,"32":1,"34":1,"36":1,"37":1,"43":2,"44":1,"48":1,"61":2,"65":1,"67":2,"69":2,"70":1,"71":1,"72":2}}],["offer",{"2":{"46":1}}],["offers",{"2":{"22":1}}],["often",{"2":{"15":1,"67":1}}],["of",{"0":{"0":1,"37":1,"69":1},"1":{"1":1,"2":1,"3":1,"4":1,"5":1,"6":1,"70":1,"71":1},"2":{"1":9,"2":7,"4":11,"5":4,"6":4,"7":1,"8":8,"10":1,"11":6,"12":5,"13":5,"14":5,"15":21,"19":1,"20":1,"21":12,"22":10,"23":3,"25":1,"26":1,"27":1,"28":1,"29":1,"30":2,"32":7,"33":1,"34":2,"36":5,"37":10,"39":17,"40":15,"41":2,"42":5,"43":1,"44":6,"45":4,"47":1,"48":2,"49":1,"50":1,"51":1,"52":5,"53":4,"54":5,"55":13,"57":6,"58":8,"59":4,"60":4,"61":13,"62":3,"64":10,"65":16,"66":3,"67":13,"68":10,"69":9,"70":10,"71":14,"72":5,"73":1,"74":2}}]],"serializationVersion":2}';export{e as default}; diff --git a/previews/PR298/assets/chunks/VPLocalSearchBox.B8KxGbZF.js b/previews/PR298/assets/chunks/VPLocalSearchBox.CszAeK67.js similarity index 99% rename from previews/PR298/assets/chunks/VPLocalSearchBox.B8KxGbZF.js rename to previews/PR298/assets/chunks/VPLocalSearchBox.CszAeK67.js index d7c0b6f7..2bce8f03 100644 --- a/previews/PR298/assets/chunks/VPLocalSearchBox.B8KxGbZF.js +++ b/previews/PR298/assets/chunks/VPLocalSearchBox.CszAeK67.js @@ -1,4 +1,4 @@ -var Ft=Object.defineProperty;var Ot=(a,e,t)=>e in a?Ft(a,e,{enumerable:!0,configurable:!0,writable:!0,value:t}):a[e]=t;var Me=(a,e,t)=>Ot(a,typeof e!="symbol"?e+"":e,t);import{V as Rt,p as ie,h as me,aj as et,ak as Ct,al as Mt,q as $e,am as At,d as Lt,D as xe,an as tt,ao as Dt,ap as zt,s as Pt,aq as jt,v as Ae,P as he,O as Se,ar as Vt,as as $t,W as Bt,R as Wt,$ as Kt,o as H,b as Jt,j as S,a0 as Ut,k as L,at as qt,au as Gt,av as Ht,c as Z,n as st,e as _e,C as nt,F as it,a as fe,t as pe,aw as Qt,ax as rt,ay as Yt,a8 as Zt,ae as Xt,az as es,_ as ts}from"./framework.DcvNxhjd.js";import{u as ss,c as ns}from"./theme.BLixrSJZ.js";const is={root:()=>Rt(()=>import("./@localSearchIndexroot.DeDEvz61.js"),[])};/*! +var Ft=Object.defineProperty;var Ot=(a,e,t)=>e in a?Ft(a,e,{enumerable:!0,configurable:!0,writable:!0,value:t}):a[e]=t;var Me=(a,e,t)=>Ot(a,typeof e!="symbol"?e+"":e,t);import{V as Rt,p as ie,h as me,aj as et,ak as Ct,al as Mt,q as $e,am as At,d as Lt,D as xe,an as tt,ao as Dt,ap as zt,s as Pt,aq as jt,v as Ae,P as he,O as Se,ar as Vt,as as $t,W as Bt,R as Wt,$ as Kt,o as H,b as Jt,j as S,a0 as Ut,k as L,at as qt,au as Gt,av as Ht,c as Z,n as st,e as _e,C as nt,F as it,a as fe,t as pe,aw as Qt,ax as rt,ay as Yt,a8 as Zt,ae as Xt,az as es,_ as ts}from"./framework.DcvNxhjd.js";import{u as ss,c as ns}from"./theme.CggJt1nr.js";const is={root:()=>Rt(()=>import("./@localSearchIndexroot._bmAGjC1.js"),[])};/*! * tabbable 6.2.0 * @license MIT, https://github.com/focus-trap/tabbable/blob/master/LICENSE */var mt=["input:not([inert])","select:not([inert])","textarea:not([inert])","a[href]:not([inert])","button:not([inert])","[tabindex]:not(slot):not([inert])","audio[controls]:not([inert])","video[controls]:not([inert])",'[contenteditable]:not([contenteditable="false"]):not([inert])',"details>summary:first-of-type:not([inert])","details:not([inert])"],Ne=mt.join(","),gt=typeof Element>"u",ae=gt?function(){}:Element.prototype.matches||Element.prototype.msMatchesSelector||Element.prototype.webkitMatchesSelector,Fe=!gt&&Element.prototype.getRootNode?function(a){var e;return a==null||(e=a.getRootNode)===null||e===void 0?void 0:e.call(a)}:function(a){return a==null?void 0:a.ownerDocument},Oe=function a(e,t){var s;t===void 0&&(t=!0);var n=e==null||(s=e.getAttribute)===null||s===void 0?void 0:s.call(e,"inert"),r=n===""||n==="true",i=r||t&&e&&a(e.parentNode);return i},rs=function(e){var t,s=e==null||(t=e.getAttribute)===null||t===void 0?void 0:t.call(e,"contenteditable");return s===""||s==="true"},bt=function(e,t,s){if(Oe(e))return[];var n=Array.prototype.slice.apply(e.querySelectorAll(Ne));return t&&ae.call(e,Ne)&&n.unshift(e),n=n.filter(s),n},yt=function a(e,t,s){for(var n=[],r=Array.from(e);r.length;){var i=r.shift();if(!Oe(i,!1))if(i.tagName==="SLOT"){var o=i.assignedElements(),l=o.length?o:i.children,c=a(l,!0,s);s.flatten?n.push.apply(n,c):n.push({scopeParent:i,candidates:c})}else{var h=ae.call(i,Ne);h&&s.filter(i)&&(t||!e.includes(i))&&n.push(i);var m=i.shadowRoot||typeof s.getShadowRoot=="function"&&s.getShadowRoot(i),f=!Oe(m,!1)&&(!s.shadowRootFilter||s.shadowRootFilter(i));if(m&&f){var b=a(m===!0?i.children:m.children,!0,s);s.flatten?n.push.apply(n,b):n.push({scopeParent:i,candidates:b})}else r.unshift.apply(r,i.children)}}return n},wt=function(e){return!isNaN(parseInt(e.getAttribute("tabindex"),10))},re=function(e){if(!e)throw new Error("No node provided");return e.tabIndex<0&&(/^(AUDIO|VIDEO|DETAILS)$/.test(e.tagName)||rs(e))&&!wt(e)?0:e.tabIndex},as=function(e,t){var s=re(e);return s<0&&t&&!wt(e)?0:s},os=function(e,t){return e.tabIndex===t.tabIndex?e.documentOrder-t.documentOrder:e.tabIndex-t.tabIndex},xt=function(e){return e.tagName==="INPUT"},ls=function(e){return xt(e)&&e.type==="hidden"},cs=function(e){var t=e.tagName==="DETAILS"&&Array.prototype.slice.apply(e.children).some(function(s){return s.tagName==="SUMMARY"});return t},us=function(e,t){for(var s=0;ssummary:first-of-type"),i=r?e.parentElement:e;if(ae.call(i,"details:not([open]) *"))return!0;if(!s||s==="full"||s==="legacy-full"){if(typeof n=="function"){for(var o=e;e;){var l=e.parentElement,c=Fe(e);if(l&&!l.shadowRoot&&n(l)===!0)return at(e);e.assignedSlot?e=e.assignedSlot:!l&&c!==e.ownerDocument?e=c.host:e=l}e=o}if(ps(e))return!e.getClientRects().length;if(s!=="legacy-full")return!0}else if(s==="non-zero-area")return at(e);return!1},ms=function(e){if(/^(INPUT|BUTTON|SELECT|TEXTAREA)$/.test(e.tagName))for(var t=e.parentElement;t;){if(t.tagName==="FIELDSET"&&t.disabled){for(var s=0;s=0)},bs=function a(e){var t=[],s=[];return e.forEach(function(n,r){var i=!!n.scopeParent,o=i?n.scopeParent:n,l=as(o,i),c=i?a(n.candidates):o;l===0?i?t.push.apply(t,c):t.push(o):s.push({documentOrder:r,tabIndex:l,item:n,isScope:i,content:c})}),s.sort(os).reduce(function(n,r){return r.isScope?n.push.apply(n,r.content):n.push(r.content),n},[]).concat(t)},ys=function(e,t){t=t||{};var s;return t.getShadowRoot?s=yt([e],t.includeContainer,{filter:Be.bind(null,t),flatten:!1,getShadowRoot:t.getShadowRoot,shadowRootFilter:gs}):s=bt(e,t.includeContainer,Be.bind(null,t)),bs(s)},ws=function(e,t){t=t||{};var s;return t.getShadowRoot?s=yt([e],t.includeContainer,{filter:Re.bind(null,t),flatten:!0,getShadowRoot:t.getShadowRoot}):s=bt(e,t.includeContainer,Re.bind(null,t)),s},oe=function(e,t){if(t=t||{},!e)throw new Error("No node provided");return ae.call(e,Ne)===!1?!1:Be(t,e)},xs=mt.concat("iframe").join(","),Le=function(e,t){if(t=t||{},!e)throw new Error("No node provided");return ae.call(e,xs)===!1?!1:Re(t,e)};/*! diff --git a/previews/PR298/assets/chunks/theme.BLixrSJZ.js b/previews/PR298/assets/chunks/theme.CggJt1nr.js similarity index 99% rename from previews/PR298/assets/chunks/theme.BLixrSJZ.js rename to previews/PR298/assets/chunks/theme.CggJt1nr.js index c51ad41d..36f16735 100644 --- a/previews/PR298/assets/chunks/theme.BLixrSJZ.js +++ b/previews/PR298/assets/chunks/theme.CggJt1nr.js @@ -1,2 +1,2 @@ -const __vite__mapDeps=(i,m=__vite__mapDeps,d=(m.f||(m.f=["assets/chunks/VPLocalSearchBox.B8KxGbZF.js","assets/chunks/framework.DcvNxhjd.js"])))=>i.map(i=>d[i]); -import{d as m,o as a,c as u,r as c,n as M,a as j,t as w,b as g,w as f,e as h,T as de,_ as $,u as Ue,i as Re,f as Ge,g as ve,h as y,j as p,k as r,l as z,m as re,p as T,q as H,s as Z,v as G,x as pe,y as fe,z as je,A as ze,B as K,F as I,C as A,D as Se,E as x,G as k,H as D,I as Le,J as ee,K as R,L as q,M as Ke,N as Ve,O as ie,P as Te,Q as Ne,R as te,S as We,U as qe,V as Je,W as we,X as he,Y as Ye,Z as Xe,$ as Qe,a0 as Ze,a1 as Me,a2 as xe,a3 as et}from"./framework.DcvNxhjd.js";const tt=m({__name:"VPBadge",props:{text:{},type:{default:"tip"}},setup(s){return(e,t)=>(a(),u("span",{class:M(["VPBadge",e.type])},[c(e.$slots,"default",{},()=>[j(w(e.text),1)])],2))}}),nt={key:0,class:"VPBackdrop"},ot=m({__name:"VPBackdrop",props:{show:{type:Boolean}},setup(s){return(e,t)=>(a(),g(de,{name:"fade"},{default:f(()=>[e.show?(a(),u("div",nt)):h("",!0)]),_:1}))}}),st=$(ot,[["__scopeId","data-v-b06cdb19"]]),V=Ue;function at(s,e){let t,o=!1;return()=>{t&&clearTimeout(t),o?t=setTimeout(s,e):(s(),(o=!0)&&setTimeout(()=>o=!1,e))}}function le(s){return/^\//.test(s)?s:`/${s}`}function me(s){const{pathname:e,search:t,hash:o,protocol:n}=new URL(s,"http://a.com");if(Re(s)||s.startsWith("#")||!n.startsWith("http")||!Ge(e))return s;const{site:i}=V(),l=e.endsWith("/")||e.endsWith(".html")?s:s.replace(/(?:(^\.+)\/)?.*$/,`$1${e.replace(/(\.md)?$/,i.value.cleanUrls?"":".html")}${t}${o}`);return ve(l)}function Y({correspondingLink:s=!1}={}){const{site:e,localeIndex:t,page:o,theme:n,hash:i}=V(),l=y(()=>{var v,b;return{label:(v=e.value.locales[t.value])==null?void 0:v.label,link:((b=e.value.locales[t.value])==null?void 0:b.link)||(t.value==="root"?"/":`/${t.value}/`)}});return{localeLinks:y(()=>Object.entries(e.value.locales).flatMap(([v,b])=>l.value.label===b.label?[]:{text:b.label,link:rt(b.link||(v==="root"?"/":`/${v}/`),n.value.i18nRouting!==!1&&s,o.value.relativePath.slice(l.value.link.length-1),!e.value.cleanUrls)+i.value})),currentLang:l}}function rt(s,e,t,o){return e?s.replace(/\/$/,"")+le(t.replace(/(^|\/)index\.md$/,"$1").replace(/\.md$/,o?".html":"")):s}const it={class:"NotFound"},lt={class:"code"},ct={class:"title"},ut={class:"quote"},dt={class:"action"},vt=["href","aria-label"],pt=m({__name:"NotFound",setup(s){const{theme:e}=V(),{currentLang:t}=Y();return(o,n)=>{var i,l,d,v,b;return a(),u("div",it,[p("p",lt,w(((i=r(e).notFound)==null?void 0:i.code)??"404"),1),p("h1",ct,w(((l=r(e).notFound)==null?void 0:l.title)??"PAGE NOT FOUND"),1),n[0]||(n[0]=p("div",{class:"divider"},null,-1)),p("blockquote",ut,w(((d=r(e).notFound)==null?void 0:d.quote)??"But if you don't change your direction, and if you keep looking, you may end up where you are heading."),1),p("div",dt,[p("a",{class:"link",href:r(ve)(r(t).link),"aria-label":((v=r(e).notFound)==null?void 0:v.linkLabel)??"go to home"},w(((b=r(e).notFound)==null?void 0:b.linkText)??"Take me home"),9,vt)])])}}}),ft=$(pt,[["__scopeId","data-v-951cab6c"]]);function Ie(s,e){if(Array.isArray(s))return X(s);if(s==null)return[];e=le(e);const t=Object.keys(s).sort((n,i)=>i.split("/").length-n.split("/").length).find(n=>e.startsWith(le(n))),o=t?s[t]:[];return Array.isArray(o)?X(o):X(o.items,o.base)}function ht(s){const e=[];let t=0;for(const o in s){const n=s[o];if(n.items){t=e.push(n);continue}e[t]||e.push({items:[]}),e[t].items.push(n)}return e}function mt(s){const e=[];function t(o){for(const n of o)n.text&&n.link&&e.push({text:n.text,link:n.link,docFooterText:n.docFooterText}),n.items&&t(n.items)}return t(s),e}function ce(s,e){return Array.isArray(e)?e.some(t=>ce(s,t)):z(s,e.link)?!0:e.items?ce(s,e.items):!1}function X(s,e){return[...s].map(t=>{const o={...t},n=o.base||e;return n&&o.link&&(o.link=n+o.link),o.items&&(o.items=X(o.items,n)),o})}function F(){const{frontmatter:s,page:e,theme:t}=V(),o=re("(min-width: 960px)"),n=T(!1),i=y(()=>{const C=t.value.sidebar,N=e.value.relativePath;return C?Ie(C,N):[]}),l=T(i.value);H(i,(C,N)=>{JSON.stringify(C)!==JSON.stringify(N)&&(l.value=i.value)});const d=y(()=>s.value.sidebar!==!1&&l.value.length>0&&s.value.layout!=="home"),v=y(()=>b?s.value.aside==null?t.value.aside==="left":s.value.aside==="left":!1),b=y(()=>s.value.layout==="home"?!1:s.value.aside!=null?!!s.value.aside:t.value.aside!==!1),L=y(()=>d.value&&o.value),_=y(()=>d.value?ht(l.value):[]);function P(){n.value=!0}function S(){n.value=!1}function E(){n.value?S():P()}return{isOpen:n,sidebar:l,sidebarGroups:_,hasSidebar:d,hasAside:b,leftAside:v,isSidebarEnabled:L,open:P,close:S,toggle:E}}function _t(s,e){let t;Z(()=>{t=s.value?document.activeElement:void 0}),G(()=>{window.addEventListener("keyup",o)}),pe(()=>{window.removeEventListener("keyup",o)});function o(n){n.key==="Escape"&&s.value&&(e(),t==null||t.focus())}}function bt(s){const{page:e,hash:t}=V(),o=T(!1),n=y(()=>s.value.collapsed!=null),i=y(()=>!!s.value.link),l=T(!1),d=()=>{l.value=z(e.value.relativePath,s.value.link)};H([e,s,t],d),G(d);const v=y(()=>l.value?!0:s.value.items?ce(e.value.relativePath,s.value.items):!1),b=y(()=>!!(s.value.items&&s.value.items.length));Z(()=>{o.value=!!(n.value&&s.value.collapsed)}),fe(()=>{(l.value||v.value)&&(o.value=!1)});function L(){n.value&&(o.value=!o.value)}return{collapsed:o,collapsible:n,isLink:i,isActiveLink:l,hasActiveLink:v,hasChildren:b,toggle:L}}function kt(){const{hasSidebar:s}=F(),e=re("(min-width: 960px)"),t=re("(min-width: 1280px)");return{isAsideEnabled:y(()=>!t.value&&!e.value?!1:s.value?t.value:e.value)}}const ue=[];function Ee(s){return typeof s.outline=="object"&&!Array.isArray(s.outline)&&s.outline.label||s.outlineTitle||"On this page"}function _e(s){const e=[...document.querySelectorAll(".VPDoc :where(h1,h2,h3,h4,h5,h6)")].filter(t=>t.id&&t.hasChildNodes()).map(t=>{const o=Number(t.tagName[1]);return{element:t,title:gt(t),link:"#"+t.id,level:o}});return $t(e,s)}function gt(s){let e="";for(const t of s.childNodes)if(t.nodeType===1){if(t.classList.contains("VPBadge")||t.classList.contains("header-anchor")||t.classList.contains("ignore-header"))continue;e+=t.textContent}else t.nodeType===3&&(e+=t.textContent);return e.trim()}function $t(s,e){if(e===!1)return[];const t=(typeof e=="object"&&!Array.isArray(e)?e.level:e)||2,[o,n]=typeof t=="number"?[t,t]:t==="deep"?[2,6]:t;return St(s,o,n)}function yt(s,e){const{isAsideEnabled:t}=kt(),o=at(i,100);let n=null;G(()=>{requestAnimationFrame(i),window.addEventListener("scroll",o)}),je(()=>{l(location.hash)}),pe(()=>{window.removeEventListener("scroll",o)});function i(){if(!t.value)return;const d=window.scrollY,v=window.innerHeight,b=document.body.offsetHeight,L=Math.abs(d+v-b)<1,_=ue.map(({element:S,link:E})=>({link:E,top:Pt(S)})).filter(({top:S})=>!Number.isNaN(S)).sort((S,E)=>S.top-E.top);if(!_.length){l(null);return}if(d<1){l(null);return}if(L){l(_[_.length-1].link);return}let P=null;for(const{link:S,top:E}of _){if(E>d+ze()+4)break;P=S}l(P)}function l(d){n&&n.classList.remove("active"),d==null?n=null:n=s.value.querySelector(`a[href="${decodeURIComponent(d)}"]`);const v=n;v?(v.classList.add("active"),e.value.style.top=v.offsetTop+39+"px",e.value.style.opacity="1"):(e.value.style.top="33px",e.value.style.opacity="0")}}function Pt(s){let e=0;for(;s!==document.body;){if(s===null)return NaN;e+=s.offsetTop,s=s.offsetParent}return e}function St(s,e,t){ue.length=0;const o=[],n=[];return s.forEach(i=>{const l={...i,children:[]};let d=n[n.length-1];for(;d&&d.level>=l.level;)n.pop(),d=n[n.length-1];if(l.element.classList.contains("ignore-header")||d&&"shouldIgnore"in d){n.push({level:l.level,shouldIgnore:!0});return}l.level>t||l.level{const n=K("VPDocOutlineItem",!0);return a(),u("ul",{class:M(["VPDocOutlineItem",t.root?"root":"nested"])},[(a(!0),u(I,null,A(t.headers,({children:i,link:l,title:d})=>(a(),u("li",null,[p("a",{class:"outline-link",href:l,onClick:e,title:d},w(d),9,Lt),i!=null&&i.length?(a(),g(n,{key:0,headers:i},null,8,["headers"])):h("",!0)]))),256))],2)}}}),Ce=$(Vt,[["__scopeId","data-v-3f927ebe"]]),Tt={class:"content"},Nt={"aria-level":"2",class:"outline-title",id:"doc-outline-aria-label",role:"heading"},wt=m({__name:"VPDocAsideOutline",setup(s){const{frontmatter:e,theme:t}=V(),o=Se([]);x(()=>{o.value=_e(e.value.outline??t.value.outline)});const n=T(),i=T();return yt(n,i),(l,d)=>(a(),u("nav",{"aria-labelledby":"doc-outline-aria-label",class:M(["VPDocAsideOutline",{"has-outline":o.value.length>0}]),ref_key:"container",ref:n},[p("div",Tt,[p("div",{class:"outline-marker",ref_key:"marker",ref:i},null,512),p("div",Nt,w(r(Ee)(r(t))),1),k(Ce,{headers:o.value,root:!0},null,8,["headers"])])],2))}}),Mt=$(wt,[["__scopeId","data-v-b38bf2ff"]]),It={class:"VPDocAsideCarbonAds"},Et=m({__name:"VPDocAsideCarbonAds",props:{carbonAds:{}},setup(s){const e=()=>null;return(t,o)=>(a(),u("div",It,[k(r(e),{"carbon-ads":t.carbonAds},null,8,["carbon-ads"])]))}}),Ct={class:"VPDocAside"},At=m({__name:"VPDocAside",setup(s){const{theme:e}=V();return(t,o)=>(a(),u("div",Ct,[c(t.$slots,"aside-top",{},void 0,!0),c(t.$slots,"aside-outline-before",{},void 0,!0),k(Mt),c(t.$slots,"aside-outline-after",{},void 0,!0),o[0]||(o[0]=p("div",{class:"spacer"},null,-1)),c(t.$slots,"aside-ads-before",{},void 0,!0),r(e).carbonAds?(a(),g(Et,{key:0,"carbon-ads":r(e).carbonAds},null,8,["carbon-ads"])):h("",!0),c(t.$slots,"aside-ads-after",{},void 0,!0),c(t.$slots,"aside-bottom",{},void 0,!0)]))}}),Bt=$(At,[["__scopeId","data-v-6d7b3c46"]]);function Ht(){const{theme:s,page:e}=V();return y(()=>{const{text:t="Edit this page",pattern:o=""}=s.value.editLink||{};let n;return typeof o=="function"?n=o(e.value):n=o.replace(/:path/g,e.value.filePath),{url:n,text:t}})}function Dt(){const{page:s,theme:e,frontmatter:t}=V();return y(()=>{var b,L,_,P,S,E,C,N;const o=Ie(e.value.sidebar,s.value.relativePath),n=mt(o),i=Ot(n,B=>B.link.replace(/[?#].*$/,"")),l=i.findIndex(B=>z(s.value.relativePath,B.link)),d=((b=e.value.docFooter)==null?void 0:b.prev)===!1&&!t.value.prev||t.value.prev===!1,v=((L=e.value.docFooter)==null?void 0:L.next)===!1&&!t.value.next||t.value.next===!1;return{prev:d?void 0:{text:(typeof t.value.prev=="string"?t.value.prev:typeof t.value.prev=="object"?t.value.prev.text:void 0)??((_=i[l-1])==null?void 0:_.docFooterText)??((P=i[l-1])==null?void 0:P.text),link:(typeof t.value.prev=="object"?t.value.prev.link:void 0)??((S=i[l-1])==null?void 0:S.link)},next:v?void 0:{text:(typeof t.value.next=="string"?t.value.next:typeof t.value.next=="object"?t.value.next.text:void 0)??((E=i[l+1])==null?void 0:E.docFooterText)??((C=i[l+1])==null?void 0:C.text),link:(typeof t.value.next=="object"?t.value.next.link:void 0)??((N=i[l+1])==null?void 0:N.link)}}})}function Ot(s,e){const t=new Set;return s.filter(o=>{const n=e(o);return t.has(n)?!1:t.add(n)})}const O=m({__name:"VPLink",props:{tag:{},href:{},noIcon:{type:Boolean},target:{},rel:{}},setup(s){const e=s,t=y(()=>e.tag??(e.href?"a":"span")),o=y(()=>e.href&&Le.test(e.href)||e.target==="_blank");return(n,i)=>(a(),g(D(t.value),{class:M(["VPLink",{link:n.href,"vp-external-link-icon":o.value,"no-icon":n.noIcon}]),href:n.href?r(me)(n.href):void 0,target:n.target??(o.value?"_blank":void 0),rel:n.rel??(o.value?"noreferrer":void 0)},{default:f(()=>[c(n.$slots,"default")]),_:3},8,["class","href","target","rel"]))}}),Ft={class:"VPLastUpdated"},Ut=["datetime"],Rt=m({__name:"VPDocFooterLastUpdated",setup(s){const{theme:e,page:t,lang:o}=V(),n=y(()=>new Date(t.value.lastUpdated)),i=y(()=>n.value.toISOString()),l=T("");return G(()=>{Z(()=>{var d,v,b;l.value=new Intl.DateTimeFormat((v=(d=e.value.lastUpdated)==null?void 0:d.formatOptions)!=null&&v.forceLocale?o.value:void 0,((b=e.value.lastUpdated)==null?void 0:b.formatOptions)??{dateStyle:"short",timeStyle:"short"}).format(n.value)})}),(d,v)=>{var b;return a(),u("p",Ft,[j(w(((b=r(e).lastUpdated)==null?void 0:b.text)||r(e).lastUpdatedText||"Last updated")+": ",1),p("time",{datetime:i.value},w(l.value),9,Ut)])}}}),Gt=$(Rt,[["__scopeId","data-v-475f71b8"]]),jt={key:0,class:"VPDocFooter"},zt={key:0,class:"edit-info"},Kt={key:0,class:"edit-link"},Wt={key:1,class:"last-updated"},qt={key:1,class:"prev-next","aria-labelledby":"doc-footer-aria-label"},Jt={class:"pager"},Yt=["innerHTML"],Xt=["innerHTML"],Qt={class:"pager"},Zt=["innerHTML"],xt=["innerHTML"],en=m({__name:"VPDocFooter",setup(s){const{theme:e,page:t,frontmatter:o}=V(),n=Ht(),i=Dt(),l=y(()=>e.value.editLink&&o.value.editLink!==!1),d=y(()=>t.value.lastUpdated),v=y(()=>l.value||d.value||i.value.prev||i.value.next);return(b,L)=>{var _,P,S,E;return v.value?(a(),u("footer",jt,[c(b.$slots,"doc-footer-before",{},void 0,!0),l.value||d.value?(a(),u("div",zt,[l.value?(a(),u("div",Kt,[k(O,{class:"edit-link-button",href:r(n).url,"no-icon":!0},{default:f(()=>[L[0]||(L[0]=p("span",{class:"vpi-square-pen edit-link-icon"},null,-1)),j(" "+w(r(n).text),1)]),_:1},8,["href"])])):h("",!0),d.value?(a(),u("div",Wt,[k(Gt)])):h("",!0)])):h("",!0),(_=r(i).prev)!=null&&_.link||(P=r(i).next)!=null&&P.link?(a(),u("nav",qt,[L[1]||(L[1]=p("span",{class:"visually-hidden",id:"doc-footer-aria-label"},"Pager",-1)),p("div",Jt,[(S=r(i).prev)!=null&&S.link?(a(),g(O,{key:0,class:"pager-link prev",href:r(i).prev.link},{default:f(()=>{var C;return[p("span",{class:"desc",innerHTML:((C=r(e).docFooter)==null?void 0:C.prev)||"Previous page"},null,8,Yt),p("span",{class:"title",innerHTML:r(i).prev.text},null,8,Xt)]}),_:1},8,["href"])):h("",!0)]),p("div",Qt,[(E=r(i).next)!=null&&E.link?(a(),g(O,{key:0,class:"pager-link next",href:r(i).next.link},{default:f(()=>{var C;return[p("span",{class:"desc",innerHTML:((C=r(e).docFooter)==null?void 0:C.next)||"Next page"},null,8,Zt),p("span",{class:"title",innerHTML:r(i).next.text},null,8,xt)]}),_:1},8,["href"])):h("",!0)])])):h("",!0)])):h("",!0)}}}),tn=$(en,[["__scopeId","data-v-4f9813fa"]]),nn={class:"container"},on={class:"aside-container"},sn={class:"aside-content"},an={class:"content"},rn={class:"content-container"},ln={class:"main"},cn=m({__name:"VPDoc",setup(s){const{theme:e}=V(),t=ee(),{hasSidebar:o,hasAside:n,leftAside:i}=F(),l=y(()=>t.path.replace(/[./]+/g,"_").replace(/_html$/,""));return(d,v)=>{const b=K("Content");return a(),u("div",{class:M(["VPDoc",{"has-sidebar":r(o),"has-aside":r(n)}])},[c(d.$slots,"doc-top",{},void 0,!0),p("div",nn,[r(n)?(a(),u("div",{key:0,class:M(["aside",{"left-aside":r(i)}])},[v[0]||(v[0]=p("div",{class:"aside-curtain"},null,-1)),p("div",on,[p("div",sn,[k(Bt,null,{"aside-top":f(()=>[c(d.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":f(()=>[c(d.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":f(()=>[c(d.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":f(()=>[c(d.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":f(()=>[c(d.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":f(()=>[c(d.$slots,"aside-ads-after",{},void 0,!0)]),_:3})])])],2)):h("",!0),p("div",an,[p("div",rn,[c(d.$slots,"doc-before",{},void 0,!0),p("main",ln,[k(b,{class:M(["vp-doc",[l.value,r(e).externalLinkIcon&&"external-link-icon-enabled"]])},null,8,["class"])]),k(tn,null,{"doc-footer-before":f(()=>[c(d.$slots,"doc-footer-before",{},void 0,!0)]),_:3}),c(d.$slots,"doc-after",{},void 0,!0)])])]),c(d.$slots,"doc-bottom",{},void 0,!0)],2)}}}),un=$(cn,[["__scopeId","data-v-83890dd9"]]),dn=m({__name:"VPButton",props:{tag:{},size:{default:"medium"},theme:{default:"brand"},text:{},href:{},target:{},rel:{}},setup(s){const e=s,t=y(()=>e.href&&Le.test(e.href)),o=y(()=>e.tag||(e.href?"a":"button"));return(n,i)=>(a(),g(D(o.value),{class:M(["VPButton",[n.size,n.theme]]),href:n.href?r(me)(n.href):void 0,target:e.target??(t.value?"_blank":void 0),rel:e.rel??(t.value?"noreferrer":void 0)},{default:f(()=>[j(w(n.text),1)]),_:1},8,["class","href","target","rel"]))}}),vn=$(dn,[["__scopeId","data-v-906d7fb4"]]),pn=["src","alt"],fn=m({inheritAttrs:!1,__name:"VPImage",props:{image:{},alt:{}},setup(s){return(e,t)=>{const o=K("VPImage",!0);return e.image?(a(),u(I,{key:0},[typeof e.image=="string"||"src"in e.image?(a(),u("img",R({key:0,class:"VPImage"},typeof e.image=="string"?e.$attrs:{...e.image,...e.$attrs},{src:r(ve)(typeof e.image=="string"?e.image:e.image.src),alt:e.alt??(typeof e.image=="string"?"":e.image.alt||"")}),null,16,pn)):(a(),u(I,{key:1},[k(o,R({class:"dark",image:e.image.dark,alt:e.image.alt},e.$attrs),null,16,["image","alt"]),k(o,R({class:"light",image:e.image.light,alt:e.image.alt},e.$attrs),null,16,["image","alt"])],64))],64)):h("",!0)}}}),Q=$(fn,[["__scopeId","data-v-35a7d0b8"]]),hn={class:"container"},mn={class:"main"},_n={key:0,class:"name"},bn=["innerHTML"],kn=["innerHTML"],gn=["innerHTML"],$n={key:0,class:"actions"},yn={key:0,class:"image"},Pn={class:"image-container"},Sn=m({__name:"VPHero",props:{name:{},text:{},tagline:{},image:{},actions:{}},setup(s){const e=q("hero-image-slot-exists");return(t,o)=>(a(),u("div",{class:M(["VPHero",{"has-image":t.image||r(e)}])},[p("div",hn,[p("div",mn,[c(t.$slots,"home-hero-info-before",{},void 0,!0),c(t.$slots,"home-hero-info",{},()=>[t.name?(a(),u("h1",_n,[p("span",{innerHTML:t.name,class:"clip"},null,8,bn)])):h("",!0),t.text?(a(),u("p",{key:1,innerHTML:t.text,class:"text"},null,8,kn)):h("",!0),t.tagline?(a(),u("p",{key:2,innerHTML:t.tagline,class:"tagline"},null,8,gn)):h("",!0)],!0),c(t.$slots,"home-hero-info-after",{},void 0,!0),t.actions?(a(),u("div",$n,[(a(!0),u(I,null,A(t.actions,n=>(a(),u("div",{key:n.link,class:"action"},[k(vn,{tag:"a",size:"medium",theme:n.theme,text:n.text,href:n.link,target:n.target,rel:n.rel},null,8,["theme","text","href","target","rel"])]))),128))])):h("",!0),c(t.$slots,"home-hero-actions-after",{},void 0,!0)]),t.image||r(e)?(a(),u("div",yn,[p("div",Pn,[o[0]||(o[0]=p("div",{class:"image-bg"},null,-1)),c(t.$slots,"home-hero-image",{},()=>[t.image?(a(),g(Q,{key:0,class:"image-src",image:t.image},null,8,["image"])):h("",!0)],!0)])])):h("",!0)])],2))}}),Ln=$(Sn,[["__scopeId","data-v-955009fc"]]),Vn=m({__name:"VPHomeHero",setup(s){const{frontmatter:e}=V();return(t,o)=>r(e).hero?(a(),g(Ln,{key:0,class:"VPHomeHero",name:r(e).hero.name,text:r(e).hero.text,tagline:r(e).hero.tagline,image:r(e).hero.image,actions:r(e).hero.actions},{"home-hero-info-before":f(()=>[c(t.$slots,"home-hero-info-before")]),"home-hero-info":f(()=>[c(t.$slots,"home-hero-info")]),"home-hero-info-after":f(()=>[c(t.$slots,"home-hero-info-after")]),"home-hero-actions-after":f(()=>[c(t.$slots,"home-hero-actions-after")]),"home-hero-image":f(()=>[c(t.$slots,"home-hero-image")]),_:3},8,["name","text","tagline","image","actions"])):h("",!0)}}),Tn={class:"box"},Nn={key:0,class:"icon"},wn=["innerHTML"],Mn=["innerHTML"],In=["innerHTML"],En={key:4,class:"link-text"},Cn={class:"link-text-value"},An=m({__name:"VPFeature",props:{icon:{},title:{},details:{},link:{},linkText:{},rel:{},target:{}},setup(s){return(e,t)=>(a(),g(O,{class:"VPFeature",href:e.link,rel:e.rel,target:e.target,"no-icon":!0,tag:e.link?"a":"div"},{default:f(()=>[p("article",Tn,[typeof e.icon=="object"&&e.icon.wrap?(a(),u("div",Nn,[k(Q,{image:e.icon,alt:e.icon.alt,height:e.icon.height||48,width:e.icon.width||48},null,8,["image","alt","height","width"])])):typeof e.icon=="object"?(a(),g(Q,{key:1,image:e.icon,alt:e.icon.alt,height:e.icon.height||48,width:e.icon.width||48},null,8,["image","alt","height","width"])):e.icon?(a(),u("div",{key:2,class:"icon",innerHTML:e.icon},null,8,wn)):h("",!0),p("h2",{class:"title",innerHTML:e.title},null,8,Mn),e.details?(a(),u("p",{key:3,class:"details",innerHTML:e.details},null,8,In)):h("",!0),e.linkText?(a(),u("div",En,[p("p",Cn,[j(w(e.linkText)+" ",1),t[0]||(t[0]=p("span",{class:"vpi-arrow-right link-text-icon"},null,-1))])])):h("",!0)])]),_:1},8,["href","rel","target","tag"]))}}),Bn=$(An,[["__scopeId","data-v-f5e9645b"]]),Hn={key:0,class:"VPFeatures"},Dn={class:"container"},On={class:"items"},Fn=m({__name:"VPFeatures",props:{features:{}},setup(s){const e=s,t=y(()=>{const o=e.features.length;if(o){if(o===2)return"grid-2";if(o===3)return"grid-3";if(o%3===0)return"grid-6";if(o>3)return"grid-4"}else return});return(o,n)=>o.features?(a(),u("div",Hn,[p("div",Dn,[p("div",On,[(a(!0),u(I,null,A(o.features,i=>(a(),u("div",{key:i.title,class:M(["item",[t.value]])},[k(Bn,{icon:i.icon,title:i.title,details:i.details,link:i.link,"link-text":i.linkText,rel:i.rel,target:i.target},null,8,["icon","title","details","link","link-text","rel","target"])],2))),128))])])])):h("",!0)}}),Un=$(Fn,[["__scopeId","data-v-d0a190d7"]]),Rn=m({__name:"VPHomeFeatures",setup(s){const{frontmatter:e}=V();return(t,o)=>r(e).features?(a(),g(Un,{key:0,class:"VPHomeFeatures",features:r(e).features},null,8,["features"])):h("",!0)}}),Gn=m({__name:"VPHomeContent",setup(s){const{width:e}=Ke({initialWidth:0,includeScrollbar:!1});return(t,o)=>(a(),u("div",{class:"vp-doc container",style:Ve(r(e)?{"--vp-offset":`calc(50% - ${r(e)/2}px)`}:{})},[c(t.$slots,"default",{},void 0,!0)],4))}}),jn=$(Gn,[["__scopeId","data-v-7a48a447"]]),zn={class:"VPHome"},Kn=m({__name:"VPHome",setup(s){const{frontmatter:e}=V();return(t,o)=>{const n=K("Content");return a(),u("div",zn,[c(t.$slots,"home-hero-before",{},void 0,!0),k(Vn,null,{"home-hero-info-before":f(()=>[c(t.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":f(()=>[c(t.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":f(()=>[c(t.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":f(()=>[c(t.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":f(()=>[c(t.$slots,"home-hero-image",{},void 0,!0)]),_:3}),c(t.$slots,"home-hero-after",{},void 0,!0),c(t.$slots,"home-features-before",{},void 0,!0),k(Rn),c(t.$slots,"home-features-after",{},void 0,!0),r(e).markdownStyles!==!1?(a(),g(jn,{key:0},{default:f(()=>[k(n)]),_:1})):(a(),g(n,{key:1}))])}}}),Wn=$(Kn,[["__scopeId","data-v-cbb6ec48"]]),qn={},Jn={class:"VPPage"};function Yn(s,e){const t=K("Content");return a(),u("div",Jn,[c(s.$slots,"page-top"),k(t),c(s.$slots,"page-bottom")])}const Xn=$(qn,[["render",Yn]]),Qn=m({__name:"VPContent",setup(s){const{page:e,frontmatter:t}=V(),{hasSidebar:o}=F();return(n,i)=>(a(),u("div",{class:M(["VPContent",{"has-sidebar":r(o),"is-home":r(t).layout==="home"}]),id:"VPContent"},[r(e).isNotFound?c(n.$slots,"not-found",{key:0},()=>[k(ft)],!0):r(t).layout==="page"?(a(),g(Xn,{key:1},{"page-top":f(()=>[c(n.$slots,"page-top",{},void 0,!0)]),"page-bottom":f(()=>[c(n.$slots,"page-bottom",{},void 0,!0)]),_:3})):r(t).layout==="home"?(a(),g(Wn,{key:2},{"home-hero-before":f(()=>[c(n.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":f(()=>[c(n.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":f(()=>[c(n.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":f(()=>[c(n.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":f(()=>[c(n.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":f(()=>[c(n.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":f(()=>[c(n.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":f(()=>[c(n.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":f(()=>[c(n.$slots,"home-features-after",{},void 0,!0)]),_:3})):r(t).layout&&r(t).layout!=="doc"?(a(),g(D(r(t).layout),{key:3})):(a(),g(un,{key:4},{"doc-top":f(()=>[c(n.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":f(()=>[c(n.$slots,"doc-bottom",{},void 0,!0)]),"doc-footer-before":f(()=>[c(n.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":f(()=>[c(n.$slots,"doc-before",{},void 0,!0)]),"doc-after":f(()=>[c(n.$slots,"doc-after",{},void 0,!0)]),"aside-top":f(()=>[c(n.$slots,"aside-top",{},void 0,!0)]),"aside-outline-before":f(()=>[c(n.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":f(()=>[c(n.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":f(()=>[c(n.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":f(()=>[c(n.$slots,"aside-ads-after",{},void 0,!0)]),"aside-bottom":f(()=>[c(n.$slots,"aside-bottom",{},void 0,!0)]),_:3}))],2))}}),Zn=$(Qn,[["__scopeId","data-v-91765379"]]),xn={class:"container"},eo=["innerHTML"],to=["innerHTML"],no=m({__name:"VPFooter",setup(s){const{theme:e,frontmatter:t}=V(),{hasSidebar:o}=F();return(n,i)=>r(e).footer&&r(t).footer!==!1?(a(),u("footer",{key:0,class:M(["VPFooter",{"has-sidebar":r(o)}])},[p("div",xn,[r(e).footer.message?(a(),u("p",{key:0,class:"message",innerHTML:r(e).footer.message},null,8,eo)):h("",!0),r(e).footer.copyright?(a(),u("p",{key:1,class:"copyright",innerHTML:r(e).footer.copyright},null,8,to)):h("",!0)])],2)):h("",!0)}}),oo=$(no,[["__scopeId","data-v-c970a860"]]);function so(){const{theme:s,frontmatter:e}=V(),t=Se([]),o=y(()=>t.value.length>0);return x(()=>{t.value=_e(e.value.outline??s.value.outline)}),{headers:t,hasLocalNav:o}}const ao={class:"menu-text"},ro={class:"header"},io={class:"outline"},lo=m({__name:"VPLocalNavOutlineDropdown",props:{headers:{},navHeight:{}},setup(s){const e=s,{theme:t}=V(),o=T(!1),n=T(0),i=T(),l=T();function d(_){var P;(P=i.value)!=null&&P.contains(_.target)||(o.value=!1)}H(o,_=>{if(_){document.addEventListener("click",d);return}document.removeEventListener("click",d)}),ie("Escape",()=>{o.value=!1}),x(()=>{o.value=!1});function v(){o.value=!o.value,n.value=window.innerHeight+Math.min(window.scrollY-e.navHeight,0)}function b(_){_.target.classList.contains("outline-link")&&(l.value&&(l.value.style.transition="none"),Te(()=>{o.value=!1}))}function L(){o.value=!1,window.scrollTo({top:0,left:0,behavior:"smooth"})}return(_,P)=>(a(),u("div",{class:"VPLocalNavOutlineDropdown",style:Ve({"--vp-vh":n.value+"px"}),ref_key:"main",ref:i},[_.headers.length>0?(a(),u("button",{key:0,onClick:v,class:M({open:o.value})},[p("span",ao,w(r(Ee)(r(t))),1),P[0]||(P[0]=p("span",{class:"vpi-chevron-right icon"},null,-1))],2)):(a(),u("button",{key:1,onClick:L},w(r(t).returnToTopLabel||"Return to top"),1)),k(de,{name:"flyout"},{default:f(()=>[o.value?(a(),u("div",{key:0,ref_key:"items",ref:l,class:"items",onClick:b},[p("div",ro,[p("a",{class:"top-link",href:"#",onClick:L},w(r(t).returnToTopLabel||"Return to top"),1)]),p("div",io,[k(Ce,{headers:_.headers},null,8,["headers"])])],512)):h("",!0)]),_:1})],4))}}),co=$(lo,[["__scopeId","data-v-bc9dc845"]]),uo={class:"container"},vo=["aria-expanded"],po={class:"menu-text"},fo=m({__name:"VPLocalNav",props:{open:{type:Boolean}},emits:["open-menu"],setup(s){const{theme:e,frontmatter:t}=V(),{hasSidebar:o}=F(),{headers:n}=so(),{y:i}=Ne(),l=T(0);G(()=>{l.value=parseInt(getComputedStyle(document.documentElement).getPropertyValue("--vp-nav-height"))}),x(()=>{n.value=_e(t.value.outline??e.value.outline)});const d=y(()=>n.value.length===0),v=y(()=>d.value&&!o.value),b=y(()=>({VPLocalNav:!0,"has-sidebar":o.value,empty:d.value,fixed:v.value}));return(L,_)=>r(t).layout!=="home"&&(!v.value||r(i)>=l.value)?(a(),u("div",{key:0,class:M(b.value)},[p("div",uo,[r(o)?(a(),u("button",{key:0,class:"menu","aria-expanded":L.open,"aria-controls":"VPSidebarNav",onClick:_[0]||(_[0]=P=>L.$emit("open-menu"))},[_[1]||(_[1]=p("span",{class:"vpi-align-left menu-icon"},null,-1)),p("span",po,w(r(e).sidebarMenuLabel||"Menu"),1)],8,vo)):h("",!0),k(co,{headers:r(n),navHeight:l.value},null,8,["headers","navHeight"])])],2)):h("",!0)}}),ho=$(fo,[["__scopeId","data-v-070ab83d"]]);function mo(){const s=T(!1);function e(){s.value=!0,window.addEventListener("resize",n)}function t(){s.value=!1,window.removeEventListener("resize",n)}function o(){s.value?t():e()}function n(){window.outerWidth>=768&&t()}const i=ee();return H(()=>i.path,t),{isScreenOpen:s,openScreen:e,closeScreen:t,toggleScreen:o}}const _o={},bo={class:"VPSwitch",type:"button",role:"switch"},ko={class:"check"},go={key:0,class:"icon"};function $o(s,e){return a(),u("button",bo,[p("span",ko,[s.$slots.default?(a(),u("span",go,[c(s.$slots,"default",{},void 0,!0)])):h("",!0)])])}const yo=$(_o,[["render",$o],["__scopeId","data-v-4a1c76db"]]),Po=m({__name:"VPSwitchAppearance",setup(s){const{isDark:e,theme:t}=V(),o=q("toggle-appearance",()=>{e.value=!e.value}),n=T("");return fe(()=>{n.value=e.value?t.value.lightModeSwitchTitle||"Switch to light theme":t.value.darkModeSwitchTitle||"Switch to dark theme"}),(i,l)=>(a(),g(yo,{title:n.value,class:"VPSwitchAppearance","aria-checked":r(e),onClick:r(o)},{default:f(()=>l[0]||(l[0]=[p("span",{class:"vpi-sun sun"},null,-1),p("span",{class:"vpi-moon moon"},null,-1)])),_:1},8,["title","aria-checked","onClick"]))}}),be=$(Po,[["__scopeId","data-v-e40a8bb6"]]),So={key:0,class:"VPNavBarAppearance"},Lo=m({__name:"VPNavBarAppearance",setup(s){const{site:e}=V();return(t,o)=>r(e).appearance&&r(e).appearance!=="force-dark"&&r(e).appearance!=="force-auto"?(a(),u("div",So,[k(be)])):h("",!0)}}),Vo=$(Lo,[["__scopeId","data-v-af096f4a"]]),ke=T();let Ae=!1,ae=0;function To(s){const e=T(!1);if(te){!Ae&&No(),ae++;const t=H(ke,o=>{var n,i,l;o===s.el.value||(n=s.el.value)!=null&&n.contains(o)?(e.value=!0,(i=s.onFocus)==null||i.call(s)):(e.value=!1,(l=s.onBlur)==null||l.call(s))});pe(()=>{t(),ae--,ae||wo()})}return We(e)}function No(){document.addEventListener("focusin",Be),Ae=!0,ke.value=document.activeElement}function wo(){document.removeEventListener("focusin",Be)}function Be(){ke.value=document.activeElement}const Mo={class:"VPMenuLink"},Io=["innerHTML"],Eo=m({__name:"VPMenuLink",props:{item:{}},setup(s){const{page:e}=V();return(t,o)=>(a(),u("div",Mo,[k(O,{class:M({active:r(z)(r(e).relativePath,t.item.activeMatch||t.item.link,!!t.item.activeMatch)}),href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon},{default:f(()=>[p("span",{innerHTML:t.item.text},null,8,Io)]),_:1},8,["class","href","target","rel","no-icon"])]))}}),ne=$(Eo,[["__scopeId","data-v-acbfed09"]]),Co={class:"VPMenuGroup"},Ao={key:0,class:"title"},Bo=m({__name:"VPMenuGroup",props:{text:{},items:{}},setup(s){return(e,t)=>(a(),u("div",Co,[e.text?(a(),u("p",Ao,w(e.text),1)):h("",!0),(a(!0),u(I,null,A(e.items,o=>(a(),u(I,null,["link"in o?(a(),g(ne,{key:0,item:o},null,8,["item"])):h("",!0)],64))),256))]))}}),Ho=$(Bo,[["__scopeId","data-v-48c802d0"]]),Do={class:"VPMenu"},Oo={key:0,class:"items"},Fo=m({__name:"VPMenu",props:{items:{}},setup(s){return(e,t)=>(a(),u("div",Do,[e.items?(a(),u("div",Oo,[(a(!0),u(I,null,A(e.items,o=>(a(),u(I,{key:JSON.stringify(o)},["link"in o?(a(),g(ne,{key:0,item:o},null,8,["item"])):"component"in o?(a(),g(D(o.component),R({key:1,ref_for:!0},o.props),null,16)):(a(),g(Ho,{key:2,text:o.text,items:o.items},null,8,["text","items"]))],64))),128))])):h("",!0),c(e.$slots,"default",{},void 0,!0)]))}}),Uo=$(Fo,[["__scopeId","data-v-7dd3104a"]]),Ro=["aria-expanded","aria-label"],Go={key:0,class:"text"},jo=["innerHTML"],zo={key:1,class:"vpi-more-horizontal icon"},Ko={class:"menu"},Wo=m({__name:"VPFlyout",props:{icon:{},button:{},label:{},items:{}},setup(s){const e=T(!1),t=T();To({el:t,onBlur:o});function o(){e.value=!1}return(n,i)=>(a(),u("div",{class:"VPFlyout",ref_key:"el",ref:t,onMouseenter:i[1]||(i[1]=l=>e.value=!0),onMouseleave:i[2]||(i[2]=l=>e.value=!1)},[p("button",{type:"button",class:"button","aria-haspopup":"true","aria-expanded":e.value,"aria-label":n.label,onClick:i[0]||(i[0]=l=>e.value=!e.value)},[n.button||n.icon?(a(),u("span",Go,[n.icon?(a(),u("span",{key:0,class:M([n.icon,"option-icon"])},null,2)):h("",!0),n.button?(a(),u("span",{key:1,innerHTML:n.button},null,8,jo)):h("",!0),i[3]||(i[3]=p("span",{class:"vpi-chevron-down text-icon"},null,-1))])):(a(),u("span",zo))],8,Ro),p("div",Ko,[k(Uo,{items:n.items},{default:f(()=>[c(n.$slots,"default",{},void 0,!0)]),_:3},8,["items"])])],544))}}),ge=$(Wo,[["__scopeId","data-v-04f5c5e9"]]),qo=["href","aria-label","innerHTML"],Jo=m({__name:"VPSocialLink",props:{icon:{},link:{},ariaLabel:{}},setup(s){const e=s,t=y(()=>typeof e.icon=="object"?e.icon.svg:``);return(o,n)=>(a(),u("a",{class:"VPSocialLink no-icon",href:o.link,"aria-label":o.ariaLabel??(typeof o.icon=="string"?o.icon:""),target:"_blank",rel:"noopener",innerHTML:t.value},null,8,qo))}}),Yo=$(Jo,[["__scopeId","data-v-717b8b75"]]),Xo={class:"VPSocialLinks"},Qo=m({__name:"VPSocialLinks",props:{links:{}},setup(s){return(e,t)=>(a(),u("div",Xo,[(a(!0),u(I,null,A(e.links,({link:o,icon:n,ariaLabel:i})=>(a(),g(Yo,{key:o,icon:n,link:o,ariaLabel:i},null,8,["icon","link","ariaLabel"]))),128))]))}}),$e=$(Qo,[["__scopeId","data-v-ee7a9424"]]),Zo={key:0,class:"group translations"},xo={class:"trans-title"},es={key:1,class:"group"},ts={class:"item appearance"},ns={class:"label"},os={class:"appearance-action"},ss={key:2,class:"group"},as={class:"item social-links"},rs=m({__name:"VPNavBarExtra",setup(s){const{site:e,theme:t}=V(),{localeLinks:o,currentLang:n}=Y({correspondingLink:!0}),i=y(()=>o.value.length&&n.value.label||e.value.appearance||t.value.socialLinks);return(l,d)=>i.value?(a(),g(ge,{key:0,class:"VPNavBarExtra",label:"extra navigation"},{default:f(()=>[r(o).length&&r(n).label?(a(),u("div",Zo,[p("p",xo,w(r(n).label),1),(a(!0),u(I,null,A(r(o),v=>(a(),g(ne,{key:v.link,item:v},null,8,["item"]))),128))])):h("",!0),r(e).appearance&&r(e).appearance!=="force-dark"&&r(e).appearance!=="force-auto"?(a(),u("div",es,[p("div",ts,[p("p",ns,w(r(t).darkModeSwitchLabel||"Appearance"),1),p("div",os,[k(be)])])])):h("",!0),r(t).socialLinks?(a(),u("div",ss,[p("div",as,[k($e,{class:"social-links-list",links:r(t).socialLinks},null,8,["links"])])])):h("",!0)]),_:1})):h("",!0)}}),is=$(rs,[["__scopeId","data-v-925effce"]]),ls=["aria-expanded"],cs=m({__name:"VPNavBarHamburger",props:{active:{type:Boolean}},emits:["click"],setup(s){return(e,t)=>(a(),u("button",{type:"button",class:M(["VPNavBarHamburger",{active:e.active}]),"aria-label":"mobile navigation","aria-expanded":e.active,"aria-controls":"VPNavScreen",onClick:t[0]||(t[0]=o=>e.$emit("click"))},t[1]||(t[1]=[p("span",{class:"container"},[p("span",{class:"top"}),p("span",{class:"middle"}),p("span",{class:"bottom"})],-1)]),10,ls))}}),us=$(cs,[["__scopeId","data-v-5dea55bf"]]),ds=["innerHTML"],vs=m({__name:"VPNavBarMenuLink",props:{item:{}},setup(s){const{page:e}=V();return(t,o)=>(a(),g(O,{class:M({VPNavBarMenuLink:!0,active:r(z)(r(e).relativePath,t.item.activeMatch||t.item.link,!!t.item.activeMatch)}),href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon,tabindex:"0"},{default:f(()=>[p("span",{innerHTML:t.item.text},null,8,ds)]),_:1},8,["class","href","target","rel","no-icon"]))}}),ps=$(vs,[["__scopeId","data-v-956ec74c"]]),fs=m({__name:"VPNavBarMenuGroup",props:{item:{}},setup(s){const e=s,{page:t}=V(),o=i=>"component"in i?!1:"link"in i?z(t.value.relativePath,i.link,!!e.item.activeMatch):i.items.some(o),n=y(()=>o(e.item));return(i,l)=>(a(),g(ge,{class:M({VPNavBarMenuGroup:!0,active:r(z)(r(t).relativePath,i.item.activeMatch,!!i.item.activeMatch)||n.value}),button:i.item.text,items:i.item.items},null,8,["class","button","items"]))}}),hs={key:0,"aria-labelledby":"main-nav-aria-label",class:"VPNavBarMenu"},ms=m({__name:"VPNavBarMenu",setup(s){const{theme:e}=V();return(t,o)=>r(e).nav?(a(),u("nav",hs,[o[0]||(o[0]=p("span",{id:"main-nav-aria-label",class:"visually-hidden"}," Main Navigation ",-1)),(a(!0),u(I,null,A(r(e).nav,n=>(a(),u(I,{key:JSON.stringify(n)},["link"in n?(a(),g(ps,{key:0,item:n},null,8,["item"])):"component"in n?(a(),g(D(n.component),R({key:1,ref_for:!0},n.props),null,16)):(a(),g(fs,{key:2,item:n},null,8,["item"]))],64))),128))])):h("",!0)}}),_s=$(ms,[["__scopeId","data-v-e6d46098"]]);function bs(s){const{localeIndex:e,theme:t}=V();function o(n){var E,C,N;const i=n.split("."),l=(E=t.value.search)==null?void 0:E.options,d=l&&typeof l=="object",v=d&&((N=(C=l.locales)==null?void 0:C[e.value])==null?void 0:N.translations)||null,b=d&&l.translations||null;let L=v,_=b,P=s;const S=i.pop();for(const B of i){let U=null;const W=P==null?void 0:P[B];W&&(U=P=W);const oe=_==null?void 0:_[B];oe&&(U=_=oe);const se=L==null?void 0:L[B];se&&(U=L=se),W||(P=U),oe||(_=U),se||(L=U)}return(L==null?void 0:L[S])??(_==null?void 0:_[S])??(P==null?void 0:P[S])??""}return o}const ks=["aria-label"],gs={class:"DocSearch-Button-Container"},$s={class:"DocSearch-Button-Placeholder"},ye=m({__name:"VPNavBarSearchButton",setup(s){const t=bs({button:{buttonText:"Search",buttonAriaLabel:"Search"}});return(o,n)=>(a(),u("button",{type:"button",class:"DocSearch DocSearch-Button","aria-label":r(t)("button.buttonAriaLabel")},[p("span",gs,[n[0]||(n[0]=p("span",{class:"vp-icon DocSearch-Search-Icon"},null,-1)),p("span",$s,w(r(t)("button.buttonText")),1)]),n[1]||(n[1]=p("span",{class:"DocSearch-Button-Keys"},[p("kbd",{class:"DocSearch-Button-Key"}),p("kbd",{class:"DocSearch-Button-Key"},"K")],-1))],8,ks))}}),ys={class:"VPNavBarSearch"},Ps={id:"local-search"},Ss={key:1,id:"docsearch"},Ls=m({__name:"VPNavBarSearch",setup(s){const e=qe(()=>Je(()=>import("./VPLocalSearchBox.B8KxGbZF.js"),__vite__mapDeps([0,1]))),t=()=>null,{theme:o}=V(),n=T(!1),i=T(!1);G(()=>{});function l(){n.value||(n.value=!0,setTimeout(d,16))}function d(){const _=new Event("keydown");_.key="k",_.metaKey=!0,window.dispatchEvent(_),setTimeout(()=>{document.querySelector(".DocSearch-Modal")||d()},16)}function v(_){const P=_.target,S=P.tagName;return P.isContentEditable||S==="INPUT"||S==="SELECT"||S==="TEXTAREA"}const b=T(!1);ie("k",_=>{(_.ctrlKey||_.metaKey)&&(_.preventDefault(),b.value=!0)}),ie("/",_=>{v(_)||(_.preventDefault(),b.value=!0)});const L="local";return(_,P)=>{var S;return a(),u("div",ys,[r(L)==="local"?(a(),u(I,{key:0},[b.value?(a(),g(r(e),{key:0,onClose:P[0]||(P[0]=E=>b.value=!1)})):h("",!0),p("div",Ps,[k(ye,{onClick:P[1]||(P[1]=E=>b.value=!0)})])],64)):r(L)==="algolia"?(a(),u(I,{key:1},[n.value?(a(),g(r(t),{key:0,algolia:((S=r(o).search)==null?void 0:S.options)??r(o).algolia,onVnodeBeforeMount:P[2]||(P[2]=E=>i.value=!0)},null,8,["algolia"])):h("",!0),i.value?h("",!0):(a(),u("div",Ss,[k(ye,{onClick:l})]))],64)):h("",!0)])}}}),Vs=m({__name:"VPNavBarSocialLinks",setup(s){const{theme:e}=V();return(t,o)=>r(e).socialLinks?(a(),g($e,{key:0,class:"VPNavBarSocialLinks",links:r(e).socialLinks},null,8,["links"])):h("",!0)}}),Ts=$(Vs,[["__scopeId","data-v-164c457f"]]),Ns=["href","rel","target"],ws=["innerHTML"],Ms={key:2},Is=m({__name:"VPNavBarTitle",setup(s){const{site:e,theme:t}=V(),{hasSidebar:o}=F(),{currentLang:n}=Y(),i=y(()=>{var v;return typeof t.value.logoLink=="string"?t.value.logoLink:(v=t.value.logoLink)==null?void 0:v.link}),l=y(()=>{var v;return typeof t.value.logoLink=="string"||(v=t.value.logoLink)==null?void 0:v.rel}),d=y(()=>{var v;return typeof t.value.logoLink=="string"||(v=t.value.logoLink)==null?void 0:v.target});return(v,b)=>(a(),u("div",{class:M(["VPNavBarTitle",{"has-sidebar":r(o)}])},[p("a",{class:"title",href:i.value??r(me)(r(n).link),rel:l.value,target:d.value},[c(v.$slots,"nav-bar-title-before",{},void 0,!0),r(t).logo?(a(),g(Q,{key:0,class:"logo",image:r(t).logo},null,8,["image"])):h("",!0),r(t).siteTitle?(a(),u("span",{key:1,innerHTML:r(t).siteTitle},null,8,ws)):r(t).siteTitle===void 0?(a(),u("span",Ms,w(r(e).title),1)):h("",!0),c(v.$slots,"nav-bar-title-after",{},void 0,!0)],8,Ns)],2))}}),Es=$(Is,[["__scopeId","data-v-0f4f798b"]]),Cs={class:"items"},As={class:"title"},Bs=m({__name:"VPNavBarTranslations",setup(s){const{theme:e}=V(),{localeLinks:t,currentLang:o}=Y({correspondingLink:!0});return(n,i)=>r(t).length&&r(o).label?(a(),g(ge,{key:0,class:"VPNavBarTranslations",icon:"vpi-languages",label:r(e).langMenuLabel||"Change language"},{default:f(()=>[p("div",Cs,[p("p",As,w(r(o).label),1),(a(!0),u(I,null,A(r(t),l=>(a(),g(ne,{key:l.link,item:l},null,8,["item"]))),128))])]),_:1},8,["label"])):h("",!0)}}),Hs=$(Bs,[["__scopeId","data-v-c80d9ad0"]]),Ds={class:"wrapper"},Os={class:"container"},Fs={class:"title"},Us={class:"content"},Rs={class:"content-body"},Gs=m({__name:"VPNavBar",props:{isScreenOpen:{type:Boolean}},emits:["toggle-screen"],setup(s){const e=s,{y:t}=Ne(),{hasSidebar:o}=F(),{frontmatter:n}=V(),i=T({});return fe(()=>{i.value={"has-sidebar":o.value,home:n.value.layout==="home",top:t.value===0,"screen-open":e.isScreenOpen}}),(l,d)=>(a(),u("div",{class:M(["VPNavBar",i.value])},[p("div",Ds,[p("div",Os,[p("div",Fs,[k(Es,null,{"nav-bar-title-before":f(()=>[c(l.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":f(()=>[c(l.$slots,"nav-bar-title-after",{},void 0,!0)]),_:3})]),p("div",Us,[p("div",Rs,[c(l.$slots,"nav-bar-content-before",{},void 0,!0),k(Ls,{class:"search"}),k(_s,{class:"menu"}),k(Hs,{class:"translations"}),k(Vo,{class:"appearance"}),k(Ts,{class:"social-links"}),k(is,{class:"extra"}),c(l.$slots,"nav-bar-content-after",{},void 0,!0),k(us,{class:"hamburger",active:l.isScreenOpen,onClick:d[0]||(d[0]=v=>l.$emit("toggle-screen"))},null,8,["active"])])])])]),d[1]||(d[1]=p("div",{class:"divider"},[p("div",{class:"divider-line"})],-1))],2))}}),js=$(Gs,[["__scopeId","data-v-822684d1"]]),zs={key:0,class:"VPNavScreenAppearance"},Ks={class:"text"},Ws=m({__name:"VPNavScreenAppearance",setup(s){const{site:e,theme:t}=V();return(o,n)=>r(e).appearance&&r(e).appearance!=="force-dark"&&r(e).appearance!=="force-auto"?(a(),u("div",zs,[p("p",Ks,w(r(t).darkModeSwitchLabel||"Appearance"),1),k(be)])):h("",!0)}}),qs=$(Ws,[["__scopeId","data-v-ffb44008"]]),Js=["innerHTML"],Ys=m({__name:"VPNavScreenMenuLink",props:{item:{}},setup(s){const e=q("close-screen");return(t,o)=>(a(),g(O,{class:"VPNavScreenMenuLink",href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon,onClick:r(e)},{default:f(()=>[p("span",{innerHTML:t.item.text},null,8,Js)]),_:1},8,["href","target","rel","no-icon","onClick"]))}}),Xs=$(Ys,[["__scopeId","data-v-735512b8"]]),Qs=["innerHTML"],Zs=m({__name:"VPNavScreenMenuGroupLink",props:{item:{}},setup(s){const e=q("close-screen");return(t,o)=>(a(),g(O,{class:"VPNavScreenMenuGroupLink",href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon,onClick:r(e)},{default:f(()=>[p("span",{innerHTML:t.item.text},null,8,Qs)]),_:1},8,["href","target","rel","no-icon","onClick"]))}}),He=$(Zs,[["__scopeId","data-v-372ae7c0"]]),xs={class:"VPNavScreenMenuGroupSection"},ea={key:0,class:"title"},ta=m({__name:"VPNavScreenMenuGroupSection",props:{text:{},items:{}},setup(s){return(e,t)=>(a(),u("div",xs,[e.text?(a(),u("p",ea,w(e.text),1)):h("",!0),(a(!0),u(I,null,A(e.items,o=>(a(),g(He,{key:o.text,item:o},null,8,["item"]))),128))]))}}),na=$(ta,[["__scopeId","data-v-4b8941ac"]]),oa=["aria-controls","aria-expanded"],sa=["innerHTML"],aa=["id"],ra={key:0,class:"item"},ia={key:1,class:"item"},la={key:2,class:"group"},ca=m({__name:"VPNavScreenMenuGroup",props:{text:{},items:{}},setup(s){const e=s,t=T(!1),o=y(()=>`NavScreenGroup-${e.text.replace(" ","-").toLowerCase()}`);function n(){t.value=!t.value}return(i,l)=>(a(),u("div",{class:M(["VPNavScreenMenuGroup",{open:t.value}])},[p("button",{class:"button","aria-controls":o.value,"aria-expanded":t.value,onClick:n},[p("span",{class:"button-text",innerHTML:i.text},null,8,sa),l[0]||(l[0]=p("span",{class:"vpi-plus button-icon"},null,-1))],8,oa),p("div",{id:o.value,class:"items"},[(a(!0),u(I,null,A(i.items,d=>(a(),u(I,{key:JSON.stringify(d)},["link"in d?(a(),u("div",ra,[k(He,{item:d},null,8,["item"])])):"component"in d?(a(),u("div",ia,[(a(),g(D(d.component),R({ref_for:!0},d.props,{"screen-menu":""}),null,16))])):(a(),u("div",la,[k(na,{text:d.text,items:d.items},null,8,["text","items"])]))],64))),128))],8,aa)],2))}}),ua=$(ca,[["__scopeId","data-v-875057a5"]]),da={key:0,class:"VPNavScreenMenu"},va=m({__name:"VPNavScreenMenu",setup(s){const{theme:e}=V();return(t,o)=>r(e).nav?(a(),u("nav",da,[(a(!0),u(I,null,A(r(e).nav,n=>(a(),u(I,{key:JSON.stringify(n)},["link"in n?(a(),g(Xs,{key:0,item:n},null,8,["item"])):"component"in n?(a(),g(D(n.component),R({key:1,ref_for:!0},n.props,{"screen-menu":""}),null,16)):(a(),g(ua,{key:2,text:n.text||"",items:n.items},null,8,["text","items"]))],64))),128))])):h("",!0)}}),pa=m({__name:"VPNavScreenSocialLinks",setup(s){const{theme:e}=V();return(t,o)=>r(e).socialLinks?(a(),g($e,{key:0,class:"VPNavScreenSocialLinks",links:r(e).socialLinks},null,8,["links"])):h("",!0)}}),fa={class:"list"},ha=m({__name:"VPNavScreenTranslations",setup(s){const{localeLinks:e,currentLang:t}=Y({correspondingLink:!0}),o=T(!1);function n(){o.value=!o.value}return(i,l)=>r(e).length&&r(t).label?(a(),u("div",{key:0,class:M(["VPNavScreenTranslations",{open:o.value}])},[p("button",{class:"title",onClick:n},[l[0]||(l[0]=p("span",{class:"vpi-languages icon lang"},null,-1)),j(" "+w(r(t).label)+" ",1),l[1]||(l[1]=p("span",{class:"vpi-chevron-down icon chevron"},null,-1))]),p("ul",fa,[(a(!0),u(I,null,A(r(e),d=>(a(),u("li",{key:d.link,class:"item"},[k(O,{class:"link",href:d.link},{default:f(()=>[j(w(d.text),1)]),_:2},1032,["href"])]))),128))])],2)):h("",!0)}}),ma=$(ha,[["__scopeId","data-v-362991c2"]]),_a={class:"container"},ba=m({__name:"VPNavScreen",props:{open:{type:Boolean}},setup(s){const e=T(null),t=we(te?document.body:null);return(o,n)=>(a(),g(de,{name:"fade",onEnter:n[0]||(n[0]=i=>t.value=!0),onAfterLeave:n[1]||(n[1]=i=>t.value=!1)},{default:f(()=>[o.open?(a(),u("div",{key:0,class:"VPNavScreen",ref_key:"screen",ref:e,id:"VPNavScreen"},[p("div",_a,[c(o.$slots,"nav-screen-content-before",{},void 0,!0),k(va,{class:"menu"}),k(ma,{class:"translations"}),k(qs,{class:"appearance"}),k(pa,{class:"social-links"}),c(o.$slots,"nav-screen-content-after",{},void 0,!0)])],512)):h("",!0)]),_:3}))}}),ka=$(ba,[["__scopeId","data-v-833aabba"]]),ga={key:0,class:"VPNav"},$a=m({__name:"VPNav",setup(s){const{isScreenOpen:e,closeScreen:t,toggleScreen:o}=mo(),{frontmatter:n}=V(),i=y(()=>n.value.navbar!==!1);return he("close-screen",t),Z(()=>{te&&document.documentElement.classList.toggle("hide-nav",!i.value)}),(l,d)=>i.value?(a(),u("header",ga,[k(js,{"is-screen-open":r(e),onToggleScreen:r(o)},{"nav-bar-title-before":f(()=>[c(l.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":f(()=>[c(l.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":f(()=>[c(l.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":f(()=>[c(l.$slots,"nav-bar-content-after",{},void 0,!0)]),_:3},8,["is-screen-open","onToggleScreen"]),k(ka,{open:r(e)},{"nav-screen-content-before":f(()=>[c(l.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":f(()=>[c(l.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3},8,["open"])])):h("",!0)}}),ya=$($a,[["__scopeId","data-v-f1e365da"]]),Pa=["role","tabindex"],Sa={key:1,class:"items"},La=m({__name:"VPSidebarItem",props:{item:{},depth:{}},setup(s){const e=s,{collapsed:t,collapsible:o,isLink:n,isActiveLink:i,hasActiveLink:l,hasChildren:d,toggle:v}=bt(y(()=>e.item)),b=y(()=>d.value?"section":"div"),L=y(()=>n.value?"a":"div"),_=y(()=>d.value?e.depth+2===7?"p":`h${e.depth+2}`:"p"),P=y(()=>n.value?void 0:"button"),S=y(()=>[[`level-${e.depth}`],{collapsible:o.value},{collapsed:t.value},{"is-link":n.value},{"is-active":i.value},{"has-active":l.value}]);function E(N){"key"in N&&N.key!=="Enter"||!e.item.link&&v()}function C(){e.item.link&&v()}return(N,B)=>{const U=K("VPSidebarItem",!0);return a(),g(D(b.value),{class:M(["VPSidebarItem",S.value])},{default:f(()=>[N.item.text?(a(),u("div",R({key:0,class:"item",role:P.value},Xe(N.item.items?{click:E,keydown:E}:{},!0),{tabindex:N.item.items&&0}),[B[1]||(B[1]=p("div",{class:"indicator"},null,-1)),N.item.link?(a(),g(O,{key:0,tag:L.value,class:"link",href:N.item.link,rel:N.item.rel,target:N.item.target},{default:f(()=>[(a(),g(D(_.value),{class:"text",innerHTML:N.item.text},null,8,["innerHTML"]))]),_:1},8,["tag","href","rel","target"])):(a(),g(D(_.value),{key:1,class:"text",innerHTML:N.item.text},null,8,["innerHTML"])),N.item.collapsed!=null&&N.item.items&&N.item.items.length?(a(),u("div",{key:2,class:"caret",role:"button","aria-label":"toggle section",onClick:C,onKeydown:Ye(C,["enter"]),tabindex:"0"},B[0]||(B[0]=[p("span",{class:"vpi-chevron-right caret-icon"},null,-1)]),32)):h("",!0)],16,Pa)):h("",!0),N.item.items&&N.item.items.length?(a(),u("div",Sa,[N.depth<5?(a(!0),u(I,{key:0},A(N.item.items,W=>(a(),g(U,{key:W.text,item:W,depth:N.depth+1},null,8,["item","depth"]))),128)):h("",!0)])):h("",!0)]),_:1},8,["class"])}}}),Va=$(La,[["__scopeId","data-v-196b2e5f"]]),Ta=m({__name:"VPSidebarGroup",props:{items:{}},setup(s){const e=T(!0);let t=null;return G(()=>{t=setTimeout(()=>{t=null,e.value=!1},300)}),Qe(()=>{t!=null&&(clearTimeout(t),t=null)}),(o,n)=>(a(!0),u(I,null,A(o.items,i=>(a(),u("div",{key:i.text,class:M(["group",{"no-transition":e.value}])},[k(Va,{item:i,depth:0},null,8,["item"])],2))),128))}}),Na=$(Ta,[["__scopeId","data-v-9e426adc"]]),wa={class:"nav",id:"VPSidebarNav","aria-labelledby":"sidebar-aria-label",tabindex:"-1"},Ma=m({__name:"VPSidebar",props:{open:{type:Boolean}},setup(s){const{sidebarGroups:e,hasSidebar:t}=F(),o=s,n=T(null),i=we(te?document.body:null);H([o,n],()=>{var d;o.open?(i.value=!0,(d=n.value)==null||d.focus()):i.value=!1},{immediate:!0,flush:"post"});const l=T(0);return H(e,()=>{l.value+=1},{deep:!0}),(d,v)=>r(t)?(a(),u("aside",{key:0,class:M(["VPSidebar",{open:d.open}]),ref_key:"navEl",ref:n,onClick:v[0]||(v[0]=Ze(()=>{},["stop"]))},[v[2]||(v[2]=p("div",{class:"curtain"},null,-1)),p("nav",wa,[v[1]||(v[1]=p("span",{class:"visually-hidden",id:"sidebar-aria-label"}," Sidebar Navigation ",-1)),c(d.$slots,"sidebar-nav-before",{},void 0,!0),(a(),g(Na,{items:r(e),key:l.value},null,8,["items"])),c(d.$slots,"sidebar-nav-after",{},void 0,!0)])],2)):h("",!0)}}),Ia=$(Ma,[["__scopeId","data-v-18756405"]]),Ea=m({__name:"VPSkipLink",setup(s){const e=ee(),t=T();H(()=>e.path,()=>t.value.focus());function o({target:n}){const i=document.getElementById(decodeURIComponent(n.hash).slice(1));if(i){const l=()=>{i.removeAttribute("tabindex"),i.removeEventListener("blur",l)};i.setAttribute("tabindex","-1"),i.addEventListener("blur",l),i.focus(),window.scrollTo(0,0)}}return(n,i)=>(a(),u(I,null,[p("span",{ref_key:"backToTop",ref:t,tabindex:"-1"},null,512),p("a",{href:"#VPContent",class:"VPSkipLink visually-hidden",onClick:o}," Skip to content ")],64))}}),Ca=$(Ea,[["__scopeId","data-v-c3508ec8"]]),Aa=m({__name:"Layout",setup(s){const{isOpen:e,open:t,close:o}=F(),n=ee();H(()=>n.path,o),_t(e,o);const{frontmatter:i}=V(),l=Me(),d=y(()=>!!l["home-hero-image"]);return he("hero-image-slot-exists",d),(v,b)=>{const L=K("Content");return r(i).layout!==!1?(a(),u("div",{key:0,class:M(["Layout",r(i).pageClass])},[c(v.$slots,"layout-top",{},void 0,!0),k(Ca),k(st,{class:"backdrop",show:r(e),onClick:r(o)},null,8,["show","onClick"]),k(ya,null,{"nav-bar-title-before":f(()=>[c(v.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":f(()=>[c(v.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":f(()=>[c(v.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":f(()=>[c(v.$slots,"nav-bar-content-after",{},void 0,!0)]),"nav-screen-content-before":f(()=>[c(v.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":f(()=>[c(v.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3}),k(ho,{open:r(e),onOpenMenu:r(t)},null,8,["open","onOpenMenu"]),k(Ia,{open:r(e)},{"sidebar-nav-before":f(()=>[c(v.$slots,"sidebar-nav-before",{},void 0,!0)]),"sidebar-nav-after":f(()=>[c(v.$slots,"sidebar-nav-after",{},void 0,!0)]),_:3},8,["open"]),k(Zn,null,{"page-top":f(()=>[c(v.$slots,"page-top",{},void 0,!0)]),"page-bottom":f(()=>[c(v.$slots,"page-bottom",{},void 0,!0)]),"not-found":f(()=>[c(v.$slots,"not-found",{},void 0,!0)]),"home-hero-before":f(()=>[c(v.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":f(()=>[c(v.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":f(()=>[c(v.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":f(()=>[c(v.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":f(()=>[c(v.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":f(()=>[c(v.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":f(()=>[c(v.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":f(()=>[c(v.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":f(()=>[c(v.$slots,"home-features-after",{},void 0,!0)]),"doc-footer-before":f(()=>[c(v.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":f(()=>[c(v.$slots,"doc-before",{},void 0,!0)]),"doc-after":f(()=>[c(v.$slots,"doc-after",{},void 0,!0)]),"doc-top":f(()=>[c(v.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":f(()=>[c(v.$slots,"doc-bottom",{},void 0,!0)]),"aside-top":f(()=>[c(v.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":f(()=>[c(v.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":f(()=>[c(v.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":f(()=>[c(v.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":f(()=>[c(v.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":f(()=>[c(v.$slots,"aside-ads-after",{},void 0,!0)]),_:3}),k(oo),c(v.$slots,"layout-bottom",{},void 0,!0)],2)):(a(),g(L,{key:1}))}}}),Ba=$(Aa,[["__scopeId","data-v-a9a9e638"]]),Ha={Layout:Ba,enhanceApp:({app:s})=>{s.component("Badge",tt)}},Da=s=>{if(typeof document>"u")return{stabilizeScrollPosition:n=>async(...i)=>n(...i)};const e=document.documentElement;return{stabilizeScrollPosition:o=>async(...n)=>{const i=o(...n),l=s.value;if(!l)return i;const d=l.offsetTop-e.scrollTop;return await Te(),e.scrollTop=l.offsetTop-d,i}}},De="vitepress:tabSharedState",J=typeof localStorage<"u"?localStorage:null,Oe="vitepress:tabsSharedState",Oa=()=>{const s=J==null?void 0:J.getItem(Oe);if(s)try{return JSON.parse(s)}catch{}return{}},Fa=s=>{J&&J.setItem(Oe,JSON.stringify(s))},Ua=s=>{const e=xe({});H(()=>e.content,(t,o)=>{t&&o&&Fa(t)},{deep:!0}),s.provide(De,e)},Ra=(s,e)=>{const t=q(De);if(!t)throw new Error("[vitepress-plugin-tabs] TabsSharedState should be injected");G(()=>{t.content||(t.content=Oa())});const o=T(),n=y({get(){var v;const l=e.value,d=s.value;if(l){const b=(v=t.content)==null?void 0:v[l];if(b&&d.includes(b))return b}else{const b=o.value;if(b)return b}return d[0]},set(l){const d=e.value;d?t.content&&(t.content[d]=l):o.value=l}});return{selected:n,select:l=>{n.value=l}}};let Pe=0;const Ga=()=>(Pe++,""+Pe);function ja(){const s=Me();return y(()=>{var o;const t=(o=s.default)==null?void 0:o.call(s);return t?t.filter(n=>typeof n.type=="object"&&"__name"in n.type&&n.type.__name==="PluginTabsTab"&&n.props).map(n=>{var i;return(i=n.props)==null?void 0:i.label}):[]})}const Fe="vitepress:tabSingleState",za=s=>{he(Fe,s)},Ka=()=>{const s=q(Fe);if(!s)throw new Error("[vitepress-plugin-tabs] TabsSingleState should be injected");return s},Wa={class:"plugin-tabs"},qa=["id","aria-selected","aria-controls","tabindex","onClick"],Ja=m({__name:"PluginTabs",props:{sharedStateKey:{}},setup(s){const e=s,t=ja(),{selected:o,select:n}=Ra(t,et(e,"sharedStateKey")),i=T(),{stabilizeScrollPosition:l}=Da(i),d=l(n),v=T([]),b=_=>{var E;const P=t.value.indexOf(o.value);let S;_.key==="ArrowLeft"?S=P>=1?P-1:t.value.length-1:_.key==="ArrowRight"&&(S=P(a(),u("div",Wa,[p("div",{ref_key:"tablist",ref:i,class:"plugin-tabs--tab-list",role:"tablist",onKeydown:b},[(a(!0),u(I,null,A(r(t),S=>(a(),u("button",{id:`tab-${S}-${r(L)}`,ref_for:!0,ref_key:"buttonRefs",ref:v,key:S,role:"tab",class:"plugin-tabs--tab","aria-selected":S===r(o),"aria-controls":`panel-${S}-${r(L)}`,tabindex:S===r(o)?0:-1,onClick:()=>r(d)(S)},w(S),9,qa))),128))],544),c(_.$slots,"default")]))}}),Ya=["id","aria-labelledby"],Xa=m({__name:"PluginTabsTab",props:{label:{}},setup(s){const{uid:e,selected:t}=Ka();return(o,n)=>r(t)===o.label?(a(),u("div",{key:0,id:`panel-${o.label}-${r(e)}`,class:"plugin-tabs--content",role:"tabpanel",tabindex:"0","aria-labelledby":`tab-${o.label}-${r(e)}`},[c(o.$slots,"default",{},void 0,!0)],8,Ya)):h("",!0)}}),Qa=$(Xa,[["__scopeId","data-v-9b0d03d2"]]),Za=s=>{Ua(s),s.component("PluginTabs",Ja),s.component("PluginTabsTab",Qa)},er={extends:Ha,async enhanceApp({app:s,router:e,siteData:t}){if(Za(s),typeof window<"u"){let o=function(){if(!(window.DOCUMENTER_NEWEST===void 0||window.DOCUMENTER_CURRENT_VERSION===void 0||window.DOCUMENTER_STABLE===void 0)&&window.DOCUMENTER_NEWEST===window.DOCUMENTER_CURRENT_VERSION){const n=window.location.href.replace(window.DOCUMENTER_CURRENT_VERSION,window.DOCUMENTER_STABLE);window.history.replaceState({additionalInformation:"URL rewritten to stable"},"DimensionalData",n);return}};H(()=>e.route.data.relativePath,o,{immediate:!0}),document.addEventListener("DOMContentLoaded",o)}}};export{er as R,bs as c,V as u}; +const __vite__mapDeps=(i,m=__vite__mapDeps,d=(m.f||(m.f=["assets/chunks/VPLocalSearchBox.CszAeK67.js","assets/chunks/framework.DcvNxhjd.js"])))=>i.map(i=>d[i]); +import{d as m,o as a,c as u,r as c,n as M,a as j,t as w,b as g,w as f,e as h,T as de,_ as $,u as Ue,i as Re,f as Ge,g as ve,h as y,j as p,k as r,l as z,m as re,p as T,q as H,s as Z,v as G,x as pe,y as fe,z as je,A as ze,B as K,F as I,C as A,D as Se,E as x,G as k,H as D,I as Le,J as ee,K as R,L as q,M as Ke,N as Ve,O as ie,P as Te,Q as Ne,R as te,S as We,U as qe,V as Je,W as we,X as he,Y as Ye,Z as Xe,$ as Qe,a0 as Ze,a1 as Me,a2 as xe,a3 as et}from"./framework.DcvNxhjd.js";const tt=m({__name:"VPBadge",props:{text:{},type:{default:"tip"}},setup(s){return(e,t)=>(a(),u("span",{class:M(["VPBadge",e.type])},[c(e.$slots,"default",{},()=>[j(w(e.text),1)])],2))}}),nt={key:0,class:"VPBackdrop"},ot=m({__name:"VPBackdrop",props:{show:{type:Boolean}},setup(s){return(e,t)=>(a(),g(de,{name:"fade"},{default:f(()=>[e.show?(a(),u("div",nt)):h("",!0)]),_:1}))}}),st=$(ot,[["__scopeId","data-v-b06cdb19"]]),V=Ue;function at(s,e){let t,o=!1;return()=>{t&&clearTimeout(t),o?t=setTimeout(s,e):(s(),(o=!0)&&setTimeout(()=>o=!1,e))}}function le(s){return/^\//.test(s)?s:`/${s}`}function me(s){const{pathname:e,search:t,hash:o,protocol:n}=new URL(s,"http://a.com");if(Re(s)||s.startsWith("#")||!n.startsWith("http")||!Ge(e))return s;const{site:i}=V(),l=e.endsWith("/")||e.endsWith(".html")?s:s.replace(/(?:(^\.+)\/)?.*$/,`$1${e.replace(/(\.md)?$/,i.value.cleanUrls?"":".html")}${t}${o}`);return ve(l)}function Y({correspondingLink:s=!1}={}){const{site:e,localeIndex:t,page:o,theme:n,hash:i}=V(),l=y(()=>{var v,b;return{label:(v=e.value.locales[t.value])==null?void 0:v.label,link:((b=e.value.locales[t.value])==null?void 0:b.link)||(t.value==="root"?"/":`/${t.value}/`)}});return{localeLinks:y(()=>Object.entries(e.value.locales).flatMap(([v,b])=>l.value.label===b.label?[]:{text:b.label,link:rt(b.link||(v==="root"?"/":`/${v}/`),n.value.i18nRouting!==!1&&s,o.value.relativePath.slice(l.value.link.length-1),!e.value.cleanUrls)+i.value})),currentLang:l}}function rt(s,e,t,o){return e?s.replace(/\/$/,"")+le(t.replace(/(^|\/)index\.md$/,"$1").replace(/\.md$/,o?".html":"")):s}const it={class:"NotFound"},lt={class:"code"},ct={class:"title"},ut={class:"quote"},dt={class:"action"},vt=["href","aria-label"],pt=m({__name:"NotFound",setup(s){const{theme:e}=V(),{currentLang:t}=Y();return(o,n)=>{var i,l,d,v,b;return a(),u("div",it,[p("p",lt,w(((i=r(e).notFound)==null?void 0:i.code)??"404"),1),p("h1",ct,w(((l=r(e).notFound)==null?void 0:l.title)??"PAGE NOT FOUND"),1),n[0]||(n[0]=p("div",{class:"divider"},null,-1)),p("blockquote",ut,w(((d=r(e).notFound)==null?void 0:d.quote)??"But if you don't change your direction, and if you keep looking, you may end up where you are heading."),1),p("div",dt,[p("a",{class:"link",href:r(ve)(r(t).link),"aria-label":((v=r(e).notFound)==null?void 0:v.linkLabel)??"go to home"},w(((b=r(e).notFound)==null?void 0:b.linkText)??"Take me home"),9,vt)])])}}}),ft=$(pt,[["__scopeId","data-v-951cab6c"]]);function Ie(s,e){if(Array.isArray(s))return X(s);if(s==null)return[];e=le(e);const t=Object.keys(s).sort((n,i)=>i.split("/").length-n.split("/").length).find(n=>e.startsWith(le(n))),o=t?s[t]:[];return Array.isArray(o)?X(o):X(o.items,o.base)}function ht(s){const e=[];let t=0;for(const o in s){const n=s[o];if(n.items){t=e.push(n);continue}e[t]||e.push({items:[]}),e[t].items.push(n)}return e}function mt(s){const e=[];function t(o){for(const n of o)n.text&&n.link&&e.push({text:n.text,link:n.link,docFooterText:n.docFooterText}),n.items&&t(n.items)}return t(s),e}function ce(s,e){return Array.isArray(e)?e.some(t=>ce(s,t)):z(s,e.link)?!0:e.items?ce(s,e.items):!1}function X(s,e){return[...s].map(t=>{const o={...t},n=o.base||e;return n&&o.link&&(o.link=n+o.link),o.items&&(o.items=X(o.items,n)),o})}function F(){const{frontmatter:s,page:e,theme:t}=V(),o=re("(min-width: 960px)"),n=T(!1),i=y(()=>{const C=t.value.sidebar,N=e.value.relativePath;return C?Ie(C,N):[]}),l=T(i.value);H(i,(C,N)=>{JSON.stringify(C)!==JSON.stringify(N)&&(l.value=i.value)});const d=y(()=>s.value.sidebar!==!1&&l.value.length>0&&s.value.layout!=="home"),v=y(()=>b?s.value.aside==null?t.value.aside==="left":s.value.aside==="left":!1),b=y(()=>s.value.layout==="home"?!1:s.value.aside!=null?!!s.value.aside:t.value.aside!==!1),L=y(()=>d.value&&o.value),_=y(()=>d.value?ht(l.value):[]);function P(){n.value=!0}function S(){n.value=!1}function E(){n.value?S():P()}return{isOpen:n,sidebar:l,sidebarGroups:_,hasSidebar:d,hasAside:b,leftAside:v,isSidebarEnabled:L,open:P,close:S,toggle:E}}function _t(s,e){let t;Z(()=>{t=s.value?document.activeElement:void 0}),G(()=>{window.addEventListener("keyup",o)}),pe(()=>{window.removeEventListener("keyup",o)});function o(n){n.key==="Escape"&&s.value&&(e(),t==null||t.focus())}}function bt(s){const{page:e,hash:t}=V(),o=T(!1),n=y(()=>s.value.collapsed!=null),i=y(()=>!!s.value.link),l=T(!1),d=()=>{l.value=z(e.value.relativePath,s.value.link)};H([e,s,t],d),G(d);const v=y(()=>l.value?!0:s.value.items?ce(e.value.relativePath,s.value.items):!1),b=y(()=>!!(s.value.items&&s.value.items.length));Z(()=>{o.value=!!(n.value&&s.value.collapsed)}),fe(()=>{(l.value||v.value)&&(o.value=!1)});function L(){n.value&&(o.value=!o.value)}return{collapsed:o,collapsible:n,isLink:i,isActiveLink:l,hasActiveLink:v,hasChildren:b,toggle:L}}function kt(){const{hasSidebar:s}=F(),e=re("(min-width: 960px)"),t=re("(min-width: 1280px)");return{isAsideEnabled:y(()=>!t.value&&!e.value?!1:s.value?t.value:e.value)}}const ue=[];function Ee(s){return typeof s.outline=="object"&&!Array.isArray(s.outline)&&s.outline.label||s.outlineTitle||"On this page"}function _e(s){const e=[...document.querySelectorAll(".VPDoc :where(h1,h2,h3,h4,h5,h6)")].filter(t=>t.id&&t.hasChildNodes()).map(t=>{const o=Number(t.tagName[1]);return{element:t,title:gt(t),link:"#"+t.id,level:o}});return $t(e,s)}function gt(s){let e="";for(const t of s.childNodes)if(t.nodeType===1){if(t.classList.contains("VPBadge")||t.classList.contains("header-anchor")||t.classList.contains("ignore-header"))continue;e+=t.textContent}else t.nodeType===3&&(e+=t.textContent);return e.trim()}function $t(s,e){if(e===!1)return[];const t=(typeof e=="object"&&!Array.isArray(e)?e.level:e)||2,[o,n]=typeof t=="number"?[t,t]:t==="deep"?[2,6]:t;return St(s,o,n)}function yt(s,e){const{isAsideEnabled:t}=kt(),o=at(i,100);let n=null;G(()=>{requestAnimationFrame(i),window.addEventListener("scroll",o)}),je(()=>{l(location.hash)}),pe(()=>{window.removeEventListener("scroll",o)});function i(){if(!t.value)return;const d=window.scrollY,v=window.innerHeight,b=document.body.offsetHeight,L=Math.abs(d+v-b)<1,_=ue.map(({element:S,link:E})=>({link:E,top:Pt(S)})).filter(({top:S})=>!Number.isNaN(S)).sort((S,E)=>S.top-E.top);if(!_.length){l(null);return}if(d<1){l(null);return}if(L){l(_[_.length-1].link);return}let P=null;for(const{link:S,top:E}of _){if(E>d+ze()+4)break;P=S}l(P)}function l(d){n&&n.classList.remove("active"),d==null?n=null:n=s.value.querySelector(`a[href="${decodeURIComponent(d)}"]`);const v=n;v?(v.classList.add("active"),e.value.style.top=v.offsetTop+39+"px",e.value.style.opacity="1"):(e.value.style.top="33px",e.value.style.opacity="0")}}function Pt(s){let e=0;for(;s!==document.body;){if(s===null)return NaN;e+=s.offsetTop,s=s.offsetParent}return e}function St(s,e,t){ue.length=0;const o=[],n=[];return s.forEach(i=>{const l={...i,children:[]};let d=n[n.length-1];for(;d&&d.level>=l.level;)n.pop(),d=n[n.length-1];if(l.element.classList.contains("ignore-header")||d&&"shouldIgnore"in d){n.push({level:l.level,shouldIgnore:!0});return}l.level>t||l.level{const n=K("VPDocOutlineItem",!0);return a(),u("ul",{class:M(["VPDocOutlineItem",t.root?"root":"nested"])},[(a(!0),u(I,null,A(t.headers,({children:i,link:l,title:d})=>(a(),u("li",null,[p("a",{class:"outline-link",href:l,onClick:e,title:d},w(d),9,Lt),i!=null&&i.length?(a(),g(n,{key:0,headers:i},null,8,["headers"])):h("",!0)]))),256))],2)}}}),Ce=$(Vt,[["__scopeId","data-v-3f927ebe"]]),Tt={class:"content"},Nt={"aria-level":"2",class:"outline-title",id:"doc-outline-aria-label",role:"heading"},wt=m({__name:"VPDocAsideOutline",setup(s){const{frontmatter:e,theme:t}=V(),o=Se([]);x(()=>{o.value=_e(e.value.outline??t.value.outline)});const n=T(),i=T();return yt(n,i),(l,d)=>(a(),u("nav",{"aria-labelledby":"doc-outline-aria-label",class:M(["VPDocAsideOutline",{"has-outline":o.value.length>0}]),ref_key:"container",ref:n},[p("div",Tt,[p("div",{class:"outline-marker",ref_key:"marker",ref:i},null,512),p("div",Nt,w(r(Ee)(r(t))),1),k(Ce,{headers:o.value,root:!0},null,8,["headers"])])],2))}}),Mt=$(wt,[["__scopeId","data-v-b38bf2ff"]]),It={class:"VPDocAsideCarbonAds"},Et=m({__name:"VPDocAsideCarbonAds",props:{carbonAds:{}},setup(s){const e=()=>null;return(t,o)=>(a(),u("div",It,[k(r(e),{"carbon-ads":t.carbonAds},null,8,["carbon-ads"])]))}}),Ct={class:"VPDocAside"},At=m({__name:"VPDocAside",setup(s){const{theme:e}=V();return(t,o)=>(a(),u("div",Ct,[c(t.$slots,"aside-top",{},void 0,!0),c(t.$slots,"aside-outline-before",{},void 0,!0),k(Mt),c(t.$slots,"aside-outline-after",{},void 0,!0),o[0]||(o[0]=p("div",{class:"spacer"},null,-1)),c(t.$slots,"aside-ads-before",{},void 0,!0),r(e).carbonAds?(a(),g(Et,{key:0,"carbon-ads":r(e).carbonAds},null,8,["carbon-ads"])):h("",!0),c(t.$slots,"aside-ads-after",{},void 0,!0),c(t.$slots,"aside-bottom",{},void 0,!0)]))}}),Bt=$(At,[["__scopeId","data-v-6d7b3c46"]]);function Ht(){const{theme:s,page:e}=V();return y(()=>{const{text:t="Edit this page",pattern:o=""}=s.value.editLink||{};let n;return typeof o=="function"?n=o(e.value):n=o.replace(/:path/g,e.value.filePath),{url:n,text:t}})}function Dt(){const{page:s,theme:e,frontmatter:t}=V();return y(()=>{var b,L,_,P,S,E,C,N;const o=Ie(e.value.sidebar,s.value.relativePath),n=mt(o),i=Ot(n,B=>B.link.replace(/[?#].*$/,"")),l=i.findIndex(B=>z(s.value.relativePath,B.link)),d=((b=e.value.docFooter)==null?void 0:b.prev)===!1&&!t.value.prev||t.value.prev===!1,v=((L=e.value.docFooter)==null?void 0:L.next)===!1&&!t.value.next||t.value.next===!1;return{prev:d?void 0:{text:(typeof t.value.prev=="string"?t.value.prev:typeof t.value.prev=="object"?t.value.prev.text:void 0)??((_=i[l-1])==null?void 0:_.docFooterText)??((P=i[l-1])==null?void 0:P.text),link:(typeof t.value.prev=="object"?t.value.prev.link:void 0)??((S=i[l-1])==null?void 0:S.link)},next:v?void 0:{text:(typeof t.value.next=="string"?t.value.next:typeof t.value.next=="object"?t.value.next.text:void 0)??((E=i[l+1])==null?void 0:E.docFooterText)??((C=i[l+1])==null?void 0:C.text),link:(typeof t.value.next=="object"?t.value.next.link:void 0)??((N=i[l+1])==null?void 0:N.link)}}})}function Ot(s,e){const t=new Set;return s.filter(o=>{const n=e(o);return t.has(n)?!1:t.add(n)})}const O=m({__name:"VPLink",props:{tag:{},href:{},noIcon:{type:Boolean},target:{},rel:{}},setup(s){const e=s,t=y(()=>e.tag??(e.href?"a":"span")),o=y(()=>e.href&&Le.test(e.href)||e.target==="_blank");return(n,i)=>(a(),g(D(t.value),{class:M(["VPLink",{link:n.href,"vp-external-link-icon":o.value,"no-icon":n.noIcon}]),href:n.href?r(me)(n.href):void 0,target:n.target??(o.value?"_blank":void 0),rel:n.rel??(o.value?"noreferrer":void 0)},{default:f(()=>[c(n.$slots,"default")]),_:3},8,["class","href","target","rel"]))}}),Ft={class:"VPLastUpdated"},Ut=["datetime"],Rt=m({__name:"VPDocFooterLastUpdated",setup(s){const{theme:e,page:t,lang:o}=V(),n=y(()=>new Date(t.value.lastUpdated)),i=y(()=>n.value.toISOString()),l=T("");return G(()=>{Z(()=>{var d,v,b;l.value=new Intl.DateTimeFormat((v=(d=e.value.lastUpdated)==null?void 0:d.formatOptions)!=null&&v.forceLocale?o.value:void 0,((b=e.value.lastUpdated)==null?void 0:b.formatOptions)??{dateStyle:"short",timeStyle:"short"}).format(n.value)})}),(d,v)=>{var b;return a(),u("p",Ft,[j(w(((b=r(e).lastUpdated)==null?void 0:b.text)||r(e).lastUpdatedText||"Last updated")+": ",1),p("time",{datetime:i.value},w(l.value),9,Ut)])}}}),Gt=$(Rt,[["__scopeId","data-v-475f71b8"]]),jt={key:0,class:"VPDocFooter"},zt={key:0,class:"edit-info"},Kt={key:0,class:"edit-link"},Wt={key:1,class:"last-updated"},qt={key:1,class:"prev-next","aria-labelledby":"doc-footer-aria-label"},Jt={class:"pager"},Yt=["innerHTML"],Xt=["innerHTML"],Qt={class:"pager"},Zt=["innerHTML"],xt=["innerHTML"],en=m({__name:"VPDocFooter",setup(s){const{theme:e,page:t,frontmatter:o}=V(),n=Ht(),i=Dt(),l=y(()=>e.value.editLink&&o.value.editLink!==!1),d=y(()=>t.value.lastUpdated),v=y(()=>l.value||d.value||i.value.prev||i.value.next);return(b,L)=>{var _,P,S,E;return v.value?(a(),u("footer",jt,[c(b.$slots,"doc-footer-before",{},void 0,!0),l.value||d.value?(a(),u("div",zt,[l.value?(a(),u("div",Kt,[k(O,{class:"edit-link-button",href:r(n).url,"no-icon":!0},{default:f(()=>[L[0]||(L[0]=p("span",{class:"vpi-square-pen edit-link-icon"},null,-1)),j(" "+w(r(n).text),1)]),_:1},8,["href"])])):h("",!0),d.value?(a(),u("div",Wt,[k(Gt)])):h("",!0)])):h("",!0),(_=r(i).prev)!=null&&_.link||(P=r(i).next)!=null&&P.link?(a(),u("nav",qt,[L[1]||(L[1]=p("span",{class:"visually-hidden",id:"doc-footer-aria-label"},"Pager",-1)),p("div",Jt,[(S=r(i).prev)!=null&&S.link?(a(),g(O,{key:0,class:"pager-link prev",href:r(i).prev.link},{default:f(()=>{var C;return[p("span",{class:"desc",innerHTML:((C=r(e).docFooter)==null?void 0:C.prev)||"Previous page"},null,8,Yt),p("span",{class:"title",innerHTML:r(i).prev.text},null,8,Xt)]}),_:1},8,["href"])):h("",!0)]),p("div",Qt,[(E=r(i).next)!=null&&E.link?(a(),g(O,{key:0,class:"pager-link next",href:r(i).next.link},{default:f(()=>{var C;return[p("span",{class:"desc",innerHTML:((C=r(e).docFooter)==null?void 0:C.next)||"Next page"},null,8,Zt),p("span",{class:"title",innerHTML:r(i).next.text},null,8,xt)]}),_:1},8,["href"])):h("",!0)])])):h("",!0)])):h("",!0)}}}),tn=$(en,[["__scopeId","data-v-4f9813fa"]]),nn={class:"container"},on={class:"aside-container"},sn={class:"aside-content"},an={class:"content"},rn={class:"content-container"},ln={class:"main"},cn=m({__name:"VPDoc",setup(s){const{theme:e}=V(),t=ee(),{hasSidebar:o,hasAside:n,leftAside:i}=F(),l=y(()=>t.path.replace(/[./]+/g,"_").replace(/_html$/,""));return(d,v)=>{const b=K("Content");return a(),u("div",{class:M(["VPDoc",{"has-sidebar":r(o),"has-aside":r(n)}])},[c(d.$slots,"doc-top",{},void 0,!0),p("div",nn,[r(n)?(a(),u("div",{key:0,class:M(["aside",{"left-aside":r(i)}])},[v[0]||(v[0]=p("div",{class:"aside-curtain"},null,-1)),p("div",on,[p("div",sn,[k(Bt,null,{"aside-top":f(()=>[c(d.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":f(()=>[c(d.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":f(()=>[c(d.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":f(()=>[c(d.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":f(()=>[c(d.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":f(()=>[c(d.$slots,"aside-ads-after",{},void 0,!0)]),_:3})])])],2)):h("",!0),p("div",an,[p("div",rn,[c(d.$slots,"doc-before",{},void 0,!0),p("main",ln,[k(b,{class:M(["vp-doc",[l.value,r(e).externalLinkIcon&&"external-link-icon-enabled"]])},null,8,["class"])]),k(tn,null,{"doc-footer-before":f(()=>[c(d.$slots,"doc-footer-before",{},void 0,!0)]),_:3}),c(d.$slots,"doc-after",{},void 0,!0)])])]),c(d.$slots,"doc-bottom",{},void 0,!0)],2)}}}),un=$(cn,[["__scopeId","data-v-83890dd9"]]),dn=m({__name:"VPButton",props:{tag:{},size:{default:"medium"},theme:{default:"brand"},text:{},href:{},target:{},rel:{}},setup(s){const e=s,t=y(()=>e.href&&Le.test(e.href)),o=y(()=>e.tag||(e.href?"a":"button"));return(n,i)=>(a(),g(D(o.value),{class:M(["VPButton",[n.size,n.theme]]),href:n.href?r(me)(n.href):void 0,target:e.target??(t.value?"_blank":void 0),rel:e.rel??(t.value?"noreferrer":void 0)},{default:f(()=>[j(w(n.text),1)]),_:1},8,["class","href","target","rel"]))}}),vn=$(dn,[["__scopeId","data-v-906d7fb4"]]),pn=["src","alt"],fn=m({inheritAttrs:!1,__name:"VPImage",props:{image:{},alt:{}},setup(s){return(e,t)=>{const o=K("VPImage",!0);return e.image?(a(),u(I,{key:0},[typeof e.image=="string"||"src"in e.image?(a(),u("img",R({key:0,class:"VPImage"},typeof e.image=="string"?e.$attrs:{...e.image,...e.$attrs},{src:r(ve)(typeof e.image=="string"?e.image:e.image.src),alt:e.alt??(typeof e.image=="string"?"":e.image.alt||"")}),null,16,pn)):(a(),u(I,{key:1},[k(o,R({class:"dark",image:e.image.dark,alt:e.image.alt},e.$attrs),null,16,["image","alt"]),k(o,R({class:"light",image:e.image.light,alt:e.image.alt},e.$attrs),null,16,["image","alt"])],64))],64)):h("",!0)}}}),Q=$(fn,[["__scopeId","data-v-35a7d0b8"]]),hn={class:"container"},mn={class:"main"},_n={key:0,class:"name"},bn=["innerHTML"],kn=["innerHTML"],gn=["innerHTML"],$n={key:0,class:"actions"},yn={key:0,class:"image"},Pn={class:"image-container"},Sn=m({__name:"VPHero",props:{name:{},text:{},tagline:{},image:{},actions:{}},setup(s){const e=q("hero-image-slot-exists");return(t,o)=>(a(),u("div",{class:M(["VPHero",{"has-image":t.image||r(e)}])},[p("div",hn,[p("div",mn,[c(t.$slots,"home-hero-info-before",{},void 0,!0),c(t.$slots,"home-hero-info",{},()=>[t.name?(a(),u("h1",_n,[p("span",{innerHTML:t.name,class:"clip"},null,8,bn)])):h("",!0),t.text?(a(),u("p",{key:1,innerHTML:t.text,class:"text"},null,8,kn)):h("",!0),t.tagline?(a(),u("p",{key:2,innerHTML:t.tagline,class:"tagline"},null,8,gn)):h("",!0)],!0),c(t.$slots,"home-hero-info-after",{},void 0,!0),t.actions?(a(),u("div",$n,[(a(!0),u(I,null,A(t.actions,n=>(a(),u("div",{key:n.link,class:"action"},[k(vn,{tag:"a",size:"medium",theme:n.theme,text:n.text,href:n.link,target:n.target,rel:n.rel},null,8,["theme","text","href","target","rel"])]))),128))])):h("",!0),c(t.$slots,"home-hero-actions-after",{},void 0,!0)]),t.image||r(e)?(a(),u("div",yn,[p("div",Pn,[o[0]||(o[0]=p("div",{class:"image-bg"},null,-1)),c(t.$slots,"home-hero-image",{},()=>[t.image?(a(),g(Q,{key:0,class:"image-src",image:t.image},null,8,["image"])):h("",!0)],!0)])])):h("",!0)])],2))}}),Ln=$(Sn,[["__scopeId","data-v-955009fc"]]),Vn=m({__name:"VPHomeHero",setup(s){const{frontmatter:e}=V();return(t,o)=>r(e).hero?(a(),g(Ln,{key:0,class:"VPHomeHero",name:r(e).hero.name,text:r(e).hero.text,tagline:r(e).hero.tagline,image:r(e).hero.image,actions:r(e).hero.actions},{"home-hero-info-before":f(()=>[c(t.$slots,"home-hero-info-before")]),"home-hero-info":f(()=>[c(t.$slots,"home-hero-info")]),"home-hero-info-after":f(()=>[c(t.$slots,"home-hero-info-after")]),"home-hero-actions-after":f(()=>[c(t.$slots,"home-hero-actions-after")]),"home-hero-image":f(()=>[c(t.$slots,"home-hero-image")]),_:3},8,["name","text","tagline","image","actions"])):h("",!0)}}),Tn={class:"box"},Nn={key:0,class:"icon"},wn=["innerHTML"],Mn=["innerHTML"],In=["innerHTML"],En={key:4,class:"link-text"},Cn={class:"link-text-value"},An=m({__name:"VPFeature",props:{icon:{},title:{},details:{},link:{},linkText:{},rel:{},target:{}},setup(s){return(e,t)=>(a(),g(O,{class:"VPFeature",href:e.link,rel:e.rel,target:e.target,"no-icon":!0,tag:e.link?"a":"div"},{default:f(()=>[p("article",Tn,[typeof e.icon=="object"&&e.icon.wrap?(a(),u("div",Nn,[k(Q,{image:e.icon,alt:e.icon.alt,height:e.icon.height||48,width:e.icon.width||48},null,8,["image","alt","height","width"])])):typeof e.icon=="object"?(a(),g(Q,{key:1,image:e.icon,alt:e.icon.alt,height:e.icon.height||48,width:e.icon.width||48},null,8,["image","alt","height","width"])):e.icon?(a(),u("div",{key:2,class:"icon",innerHTML:e.icon},null,8,wn)):h("",!0),p("h2",{class:"title",innerHTML:e.title},null,8,Mn),e.details?(a(),u("p",{key:3,class:"details",innerHTML:e.details},null,8,In)):h("",!0),e.linkText?(a(),u("div",En,[p("p",Cn,[j(w(e.linkText)+" ",1),t[0]||(t[0]=p("span",{class:"vpi-arrow-right link-text-icon"},null,-1))])])):h("",!0)])]),_:1},8,["href","rel","target","tag"]))}}),Bn=$(An,[["__scopeId","data-v-f5e9645b"]]),Hn={key:0,class:"VPFeatures"},Dn={class:"container"},On={class:"items"},Fn=m({__name:"VPFeatures",props:{features:{}},setup(s){const e=s,t=y(()=>{const o=e.features.length;if(o){if(o===2)return"grid-2";if(o===3)return"grid-3";if(o%3===0)return"grid-6";if(o>3)return"grid-4"}else return});return(o,n)=>o.features?(a(),u("div",Hn,[p("div",Dn,[p("div",On,[(a(!0),u(I,null,A(o.features,i=>(a(),u("div",{key:i.title,class:M(["item",[t.value]])},[k(Bn,{icon:i.icon,title:i.title,details:i.details,link:i.link,"link-text":i.linkText,rel:i.rel,target:i.target},null,8,["icon","title","details","link","link-text","rel","target"])],2))),128))])])])):h("",!0)}}),Un=$(Fn,[["__scopeId","data-v-d0a190d7"]]),Rn=m({__name:"VPHomeFeatures",setup(s){const{frontmatter:e}=V();return(t,o)=>r(e).features?(a(),g(Un,{key:0,class:"VPHomeFeatures",features:r(e).features},null,8,["features"])):h("",!0)}}),Gn=m({__name:"VPHomeContent",setup(s){const{width:e}=Ke({initialWidth:0,includeScrollbar:!1});return(t,o)=>(a(),u("div",{class:"vp-doc container",style:Ve(r(e)?{"--vp-offset":`calc(50% - ${r(e)/2}px)`}:{})},[c(t.$slots,"default",{},void 0,!0)],4))}}),jn=$(Gn,[["__scopeId","data-v-7a48a447"]]),zn={class:"VPHome"},Kn=m({__name:"VPHome",setup(s){const{frontmatter:e}=V();return(t,o)=>{const n=K("Content");return a(),u("div",zn,[c(t.$slots,"home-hero-before",{},void 0,!0),k(Vn,null,{"home-hero-info-before":f(()=>[c(t.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":f(()=>[c(t.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":f(()=>[c(t.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":f(()=>[c(t.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":f(()=>[c(t.$slots,"home-hero-image",{},void 0,!0)]),_:3}),c(t.$slots,"home-hero-after",{},void 0,!0),c(t.$slots,"home-features-before",{},void 0,!0),k(Rn),c(t.$slots,"home-features-after",{},void 0,!0),r(e).markdownStyles!==!1?(a(),g(jn,{key:0},{default:f(()=>[k(n)]),_:1})):(a(),g(n,{key:1}))])}}}),Wn=$(Kn,[["__scopeId","data-v-cbb6ec48"]]),qn={},Jn={class:"VPPage"};function Yn(s,e){const t=K("Content");return a(),u("div",Jn,[c(s.$slots,"page-top"),k(t),c(s.$slots,"page-bottom")])}const Xn=$(qn,[["render",Yn]]),Qn=m({__name:"VPContent",setup(s){const{page:e,frontmatter:t}=V(),{hasSidebar:o}=F();return(n,i)=>(a(),u("div",{class:M(["VPContent",{"has-sidebar":r(o),"is-home":r(t).layout==="home"}]),id:"VPContent"},[r(e).isNotFound?c(n.$slots,"not-found",{key:0},()=>[k(ft)],!0):r(t).layout==="page"?(a(),g(Xn,{key:1},{"page-top":f(()=>[c(n.$slots,"page-top",{},void 0,!0)]),"page-bottom":f(()=>[c(n.$slots,"page-bottom",{},void 0,!0)]),_:3})):r(t).layout==="home"?(a(),g(Wn,{key:2},{"home-hero-before":f(()=>[c(n.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":f(()=>[c(n.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":f(()=>[c(n.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":f(()=>[c(n.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":f(()=>[c(n.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":f(()=>[c(n.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":f(()=>[c(n.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":f(()=>[c(n.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":f(()=>[c(n.$slots,"home-features-after",{},void 0,!0)]),_:3})):r(t).layout&&r(t).layout!=="doc"?(a(),g(D(r(t).layout),{key:3})):(a(),g(un,{key:4},{"doc-top":f(()=>[c(n.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":f(()=>[c(n.$slots,"doc-bottom",{},void 0,!0)]),"doc-footer-before":f(()=>[c(n.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":f(()=>[c(n.$slots,"doc-before",{},void 0,!0)]),"doc-after":f(()=>[c(n.$slots,"doc-after",{},void 0,!0)]),"aside-top":f(()=>[c(n.$slots,"aside-top",{},void 0,!0)]),"aside-outline-before":f(()=>[c(n.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":f(()=>[c(n.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":f(()=>[c(n.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":f(()=>[c(n.$slots,"aside-ads-after",{},void 0,!0)]),"aside-bottom":f(()=>[c(n.$slots,"aside-bottom",{},void 0,!0)]),_:3}))],2))}}),Zn=$(Qn,[["__scopeId","data-v-91765379"]]),xn={class:"container"},eo=["innerHTML"],to=["innerHTML"],no=m({__name:"VPFooter",setup(s){const{theme:e,frontmatter:t}=V(),{hasSidebar:o}=F();return(n,i)=>r(e).footer&&r(t).footer!==!1?(a(),u("footer",{key:0,class:M(["VPFooter",{"has-sidebar":r(o)}])},[p("div",xn,[r(e).footer.message?(a(),u("p",{key:0,class:"message",innerHTML:r(e).footer.message},null,8,eo)):h("",!0),r(e).footer.copyright?(a(),u("p",{key:1,class:"copyright",innerHTML:r(e).footer.copyright},null,8,to)):h("",!0)])],2)):h("",!0)}}),oo=$(no,[["__scopeId","data-v-c970a860"]]);function so(){const{theme:s,frontmatter:e}=V(),t=Se([]),o=y(()=>t.value.length>0);return x(()=>{t.value=_e(e.value.outline??s.value.outline)}),{headers:t,hasLocalNav:o}}const ao={class:"menu-text"},ro={class:"header"},io={class:"outline"},lo=m({__name:"VPLocalNavOutlineDropdown",props:{headers:{},navHeight:{}},setup(s){const e=s,{theme:t}=V(),o=T(!1),n=T(0),i=T(),l=T();function d(_){var P;(P=i.value)!=null&&P.contains(_.target)||(o.value=!1)}H(o,_=>{if(_){document.addEventListener("click",d);return}document.removeEventListener("click",d)}),ie("Escape",()=>{o.value=!1}),x(()=>{o.value=!1});function v(){o.value=!o.value,n.value=window.innerHeight+Math.min(window.scrollY-e.navHeight,0)}function b(_){_.target.classList.contains("outline-link")&&(l.value&&(l.value.style.transition="none"),Te(()=>{o.value=!1}))}function L(){o.value=!1,window.scrollTo({top:0,left:0,behavior:"smooth"})}return(_,P)=>(a(),u("div",{class:"VPLocalNavOutlineDropdown",style:Ve({"--vp-vh":n.value+"px"}),ref_key:"main",ref:i},[_.headers.length>0?(a(),u("button",{key:0,onClick:v,class:M({open:o.value})},[p("span",ao,w(r(Ee)(r(t))),1),P[0]||(P[0]=p("span",{class:"vpi-chevron-right icon"},null,-1))],2)):(a(),u("button",{key:1,onClick:L},w(r(t).returnToTopLabel||"Return to top"),1)),k(de,{name:"flyout"},{default:f(()=>[o.value?(a(),u("div",{key:0,ref_key:"items",ref:l,class:"items",onClick:b},[p("div",ro,[p("a",{class:"top-link",href:"#",onClick:L},w(r(t).returnToTopLabel||"Return to top"),1)]),p("div",io,[k(Ce,{headers:_.headers},null,8,["headers"])])],512)):h("",!0)]),_:1})],4))}}),co=$(lo,[["__scopeId","data-v-bc9dc845"]]),uo={class:"container"},vo=["aria-expanded"],po={class:"menu-text"},fo=m({__name:"VPLocalNav",props:{open:{type:Boolean}},emits:["open-menu"],setup(s){const{theme:e,frontmatter:t}=V(),{hasSidebar:o}=F(),{headers:n}=so(),{y:i}=Ne(),l=T(0);G(()=>{l.value=parseInt(getComputedStyle(document.documentElement).getPropertyValue("--vp-nav-height"))}),x(()=>{n.value=_e(t.value.outline??e.value.outline)});const d=y(()=>n.value.length===0),v=y(()=>d.value&&!o.value),b=y(()=>({VPLocalNav:!0,"has-sidebar":o.value,empty:d.value,fixed:v.value}));return(L,_)=>r(t).layout!=="home"&&(!v.value||r(i)>=l.value)?(a(),u("div",{key:0,class:M(b.value)},[p("div",uo,[r(o)?(a(),u("button",{key:0,class:"menu","aria-expanded":L.open,"aria-controls":"VPSidebarNav",onClick:_[0]||(_[0]=P=>L.$emit("open-menu"))},[_[1]||(_[1]=p("span",{class:"vpi-align-left menu-icon"},null,-1)),p("span",po,w(r(e).sidebarMenuLabel||"Menu"),1)],8,vo)):h("",!0),k(co,{headers:r(n),navHeight:l.value},null,8,["headers","navHeight"])])],2)):h("",!0)}}),ho=$(fo,[["__scopeId","data-v-070ab83d"]]);function mo(){const s=T(!1);function e(){s.value=!0,window.addEventListener("resize",n)}function t(){s.value=!1,window.removeEventListener("resize",n)}function o(){s.value?t():e()}function n(){window.outerWidth>=768&&t()}const i=ee();return H(()=>i.path,t),{isScreenOpen:s,openScreen:e,closeScreen:t,toggleScreen:o}}const _o={},bo={class:"VPSwitch",type:"button",role:"switch"},ko={class:"check"},go={key:0,class:"icon"};function $o(s,e){return a(),u("button",bo,[p("span",ko,[s.$slots.default?(a(),u("span",go,[c(s.$slots,"default",{},void 0,!0)])):h("",!0)])])}const yo=$(_o,[["render",$o],["__scopeId","data-v-4a1c76db"]]),Po=m({__name:"VPSwitchAppearance",setup(s){const{isDark:e,theme:t}=V(),o=q("toggle-appearance",()=>{e.value=!e.value}),n=T("");return fe(()=>{n.value=e.value?t.value.lightModeSwitchTitle||"Switch to light theme":t.value.darkModeSwitchTitle||"Switch to dark theme"}),(i,l)=>(a(),g(yo,{title:n.value,class:"VPSwitchAppearance","aria-checked":r(e),onClick:r(o)},{default:f(()=>l[0]||(l[0]=[p("span",{class:"vpi-sun sun"},null,-1),p("span",{class:"vpi-moon moon"},null,-1)])),_:1},8,["title","aria-checked","onClick"]))}}),be=$(Po,[["__scopeId","data-v-e40a8bb6"]]),So={key:0,class:"VPNavBarAppearance"},Lo=m({__name:"VPNavBarAppearance",setup(s){const{site:e}=V();return(t,o)=>r(e).appearance&&r(e).appearance!=="force-dark"&&r(e).appearance!=="force-auto"?(a(),u("div",So,[k(be)])):h("",!0)}}),Vo=$(Lo,[["__scopeId","data-v-af096f4a"]]),ke=T();let Ae=!1,ae=0;function To(s){const e=T(!1);if(te){!Ae&&No(),ae++;const t=H(ke,o=>{var n,i,l;o===s.el.value||(n=s.el.value)!=null&&n.contains(o)?(e.value=!0,(i=s.onFocus)==null||i.call(s)):(e.value=!1,(l=s.onBlur)==null||l.call(s))});pe(()=>{t(),ae--,ae||wo()})}return We(e)}function No(){document.addEventListener("focusin",Be),Ae=!0,ke.value=document.activeElement}function wo(){document.removeEventListener("focusin",Be)}function Be(){ke.value=document.activeElement}const Mo={class:"VPMenuLink"},Io=["innerHTML"],Eo=m({__name:"VPMenuLink",props:{item:{}},setup(s){const{page:e}=V();return(t,o)=>(a(),u("div",Mo,[k(O,{class:M({active:r(z)(r(e).relativePath,t.item.activeMatch||t.item.link,!!t.item.activeMatch)}),href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon},{default:f(()=>[p("span",{innerHTML:t.item.text},null,8,Io)]),_:1},8,["class","href","target","rel","no-icon"])]))}}),ne=$(Eo,[["__scopeId","data-v-acbfed09"]]),Co={class:"VPMenuGroup"},Ao={key:0,class:"title"},Bo=m({__name:"VPMenuGroup",props:{text:{},items:{}},setup(s){return(e,t)=>(a(),u("div",Co,[e.text?(a(),u("p",Ao,w(e.text),1)):h("",!0),(a(!0),u(I,null,A(e.items,o=>(a(),u(I,null,["link"in o?(a(),g(ne,{key:0,item:o},null,8,["item"])):h("",!0)],64))),256))]))}}),Ho=$(Bo,[["__scopeId","data-v-48c802d0"]]),Do={class:"VPMenu"},Oo={key:0,class:"items"},Fo=m({__name:"VPMenu",props:{items:{}},setup(s){return(e,t)=>(a(),u("div",Do,[e.items?(a(),u("div",Oo,[(a(!0),u(I,null,A(e.items,o=>(a(),u(I,{key:JSON.stringify(o)},["link"in o?(a(),g(ne,{key:0,item:o},null,8,["item"])):"component"in o?(a(),g(D(o.component),R({key:1,ref_for:!0},o.props),null,16)):(a(),g(Ho,{key:2,text:o.text,items:o.items},null,8,["text","items"]))],64))),128))])):h("",!0),c(e.$slots,"default",{},void 0,!0)]))}}),Uo=$(Fo,[["__scopeId","data-v-7dd3104a"]]),Ro=["aria-expanded","aria-label"],Go={key:0,class:"text"},jo=["innerHTML"],zo={key:1,class:"vpi-more-horizontal icon"},Ko={class:"menu"},Wo=m({__name:"VPFlyout",props:{icon:{},button:{},label:{},items:{}},setup(s){const e=T(!1),t=T();To({el:t,onBlur:o});function o(){e.value=!1}return(n,i)=>(a(),u("div",{class:"VPFlyout",ref_key:"el",ref:t,onMouseenter:i[1]||(i[1]=l=>e.value=!0),onMouseleave:i[2]||(i[2]=l=>e.value=!1)},[p("button",{type:"button",class:"button","aria-haspopup":"true","aria-expanded":e.value,"aria-label":n.label,onClick:i[0]||(i[0]=l=>e.value=!e.value)},[n.button||n.icon?(a(),u("span",Go,[n.icon?(a(),u("span",{key:0,class:M([n.icon,"option-icon"])},null,2)):h("",!0),n.button?(a(),u("span",{key:1,innerHTML:n.button},null,8,jo)):h("",!0),i[3]||(i[3]=p("span",{class:"vpi-chevron-down text-icon"},null,-1))])):(a(),u("span",zo))],8,Ro),p("div",Ko,[k(Uo,{items:n.items},{default:f(()=>[c(n.$slots,"default",{},void 0,!0)]),_:3},8,["items"])])],544))}}),ge=$(Wo,[["__scopeId","data-v-04f5c5e9"]]),qo=["href","aria-label","innerHTML"],Jo=m({__name:"VPSocialLink",props:{icon:{},link:{},ariaLabel:{}},setup(s){const e=s,t=y(()=>typeof e.icon=="object"?e.icon.svg:``);return(o,n)=>(a(),u("a",{class:"VPSocialLink no-icon",href:o.link,"aria-label":o.ariaLabel??(typeof o.icon=="string"?o.icon:""),target:"_blank",rel:"noopener",innerHTML:t.value},null,8,qo))}}),Yo=$(Jo,[["__scopeId","data-v-717b8b75"]]),Xo={class:"VPSocialLinks"},Qo=m({__name:"VPSocialLinks",props:{links:{}},setup(s){return(e,t)=>(a(),u("div",Xo,[(a(!0),u(I,null,A(e.links,({link:o,icon:n,ariaLabel:i})=>(a(),g(Yo,{key:o,icon:n,link:o,ariaLabel:i},null,8,["icon","link","ariaLabel"]))),128))]))}}),$e=$(Qo,[["__scopeId","data-v-ee7a9424"]]),Zo={key:0,class:"group translations"},xo={class:"trans-title"},es={key:1,class:"group"},ts={class:"item appearance"},ns={class:"label"},os={class:"appearance-action"},ss={key:2,class:"group"},as={class:"item social-links"},rs=m({__name:"VPNavBarExtra",setup(s){const{site:e,theme:t}=V(),{localeLinks:o,currentLang:n}=Y({correspondingLink:!0}),i=y(()=>o.value.length&&n.value.label||e.value.appearance||t.value.socialLinks);return(l,d)=>i.value?(a(),g(ge,{key:0,class:"VPNavBarExtra",label:"extra navigation"},{default:f(()=>[r(o).length&&r(n).label?(a(),u("div",Zo,[p("p",xo,w(r(n).label),1),(a(!0),u(I,null,A(r(o),v=>(a(),g(ne,{key:v.link,item:v},null,8,["item"]))),128))])):h("",!0),r(e).appearance&&r(e).appearance!=="force-dark"&&r(e).appearance!=="force-auto"?(a(),u("div",es,[p("div",ts,[p("p",ns,w(r(t).darkModeSwitchLabel||"Appearance"),1),p("div",os,[k(be)])])])):h("",!0),r(t).socialLinks?(a(),u("div",ss,[p("div",as,[k($e,{class:"social-links-list",links:r(t).socialLinks},null,8,["links"])])])):h("",!0)]),_:1})):h("",!0)}}),is=$(rs,[["__scopeId","data-v-925effce"]]),ls=["aria-expanded"],cs=m({__name:"VPNavBarHamburger",props:{active:{type:Boolean}},emits:["click"],setup(s){return(e,t)=>(a(),u("button",{type:"button",class:M(["VPNavBarHamburger",{active:e.active}]),"aria-label":"mobile navigation","aria-expanded":e.active,"aria-controls":"VPNavScreen",onClick:t[0]||(t[0]=o=>e.$emit("click"))},t[1]||(t[1]=[p("span",{class:"container"},[p("span",{class:"top"}),p("span",{class:"middle"}),p("span",{class:"bottom"})],-1)]),10,ls))}}),us=$(cs,[["__scopeId","data-v-5dea55bf"]]),ds=["innerHTML"],vs=m({__name:"VPNavBarMenuLink",props:{item:{}},setup(s){const{page:e}=V();return(t,o)=>(a(),g(O,{class:M({VPNavBarMenuLink:!0,active:r(z)(r(e).relativePath,t.item.activeMatch||t.item.link,!!t.item.activeMatch)}),href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon,tabindex:"0"},{default:f(()=>[p("span",{innerHTML:t.item.text},null,8,ds)]),_:1},8,["class","href","target","rel","no-icon"]))}}),ps=$(vs,[["__scopeId","data-v-956ec74c"]]),fs=m({__name:"VPNavBarMenuGroup",props:{item:{}},setup(s){const e=s,{page:t}=V(),o=i=>"component"in i?!1:"link"in i?z(t.value.relativePath,i.link,!!e.item.activeMatch):i.items.some(o),n=y(()=>o(e.item));return(i,l)=>(a(),g(ge,{class:M({VPNavBarMenuGroup:!0,active:r(z)(r(t).relativePath,i.item.activeMatch,!!i.item.activeMatch)||n.value}),button:i.item.text,items:i.item.items},null,8,["class","button","items"]))}}),hs={key:0,"aria-labelledby":"main-nav-aria-label",class:"VPNavBarMenu"},ms=m({__name:"VPNavBarMenu",setup(s){const{theme:e}=V();return(t,o)=>r(e).nav?(a(),u("nav",hs,[o[0]||(o[0]=p("span",{id:"main-nav-aria-label",class:"visually-hidden"}," Main Navigation ",-1)),(a(!0),u(I,null,A(r(e).nav,n=>(a(),u(I,{key:JSON.stringify(n)},["link"in n?(a(),g(ps,{key:0,item:n},null,8,["item"])):"component"in n?(a(),g(D(n.component),R({key:1,ref_for:!0},n.props),null,16)):(a(),g(fs,{key:2,item:n},null,8,["item"]))],64))),128))])):h("",!0)}}),_s=$(ms,[["__scopeId","data-v-e6d46098"]]);function bs(s){const{localeIndex:e,theme:t}=V();function o(n){var E,C,N;const i=n.split("."),l=(E=t.value.search)==null?void 0:E.options,d=l&&typeof l=="object",v=d&&((N=(C=l.locales)==null?void 0:C[e.value])==null?void 0:N.translations)||null,b=d&&l.translations||null;let L=v,_=b,P=s;const S=i.pop();for(const B of i){let U=null;const W=P==null?void 0:P[B];W&&(U=P=W);const oe=_==null?void 0:_[B];oe&&(U=_=oe);const se=L==null?void 0:L[B];se&&(U=L=se),W||(P=U),oe||(_=U),se||(L=U)}return(L==null?void 0:L[S])??(_==null?void 0:_[S])??(P==null?void 0:P[S])??""}return o}const ks=["aria-label"],gs={class:"DocSearch-Button-Container"},$s={class:"DocSearch-Button-Placeholder"},ye=m({__name:"VPNavBarSearchButton",setup(s){const t=bs({button:{buttonText:"Search",buttonAriaLabel:"Search"}});return(o,n)=>(a(),u("button",{type:"button",class:"DocSearch DocSearch-Button","aria-label":r(t)("button.buttonAriaLabel")},[p("span",gs,[n[0]||(n[0]=p("span",{class:"vp-icon DocSearch-Search-Icon"},null,-1)),p("span",$s,w(r(t)("button.buttonText")),1)]),n[1]||(n[1]=p("span",{class:"DocSearch-Button-Keys"},[p("kbd",{class:"DocSearch-Button-Key"}),p("kbd",{class:"DocSearch-Button-Key"},"K")],-1))],8,ks))}}),ys={class:"VPNavBarSearch"},Ps={id:"local-search"},Ss={key:1,id:"docsearch"},Ls=m({__name:"VPNavBarSearch",setup(s){const e=qe(()=>Je(()=>import("./VPLocalSearchBox.CszAeK67.js"),__vite__mapDeps([0,1]))),t=()=>null,{theme:o}=V(),n=T(!1),i=T(!1);G(()=>{});function l(){n.value||(n.value=!0,setTimeout(d,16))}function d(){const _=new Event("keydown");_.key="k",_.metaKey=!0,window.dispatchEvent(_),setTimeout(()=>{document.querySelector(".DocSearch-Modal")||d()},16)}function v(_){const P=_.target,S=P.tagName;return P.isContentEditable||S==="INPUT"||S==="SELECT"||S==="TEXTAREA"}const b=T(!1);ie("k",_=>{(_.ctrlKey||_.metaKey)&&(_.preventDefault(),b.value=!0)}),ie("/",_=>{v(_)||(_.preventDefault(),b.value=!0)});const L="local";return(_,P)=>{var S;return a(),u("div",ys,[r(L)==="local"?(a(),u(I,{key:0},[b.value?(a(),g(r(e),{key:0,onClose:P[0]||(P[0]=E=>b.value=!1)})):h("",!0),p("div",Ps,[k(ye,{onClick:P[1]||(P[1]=E=>b.value=!0)})])],64)):r(L)==="algolia"?(a(),u(I,{key:1},[n.value?(a(),g(r(t),{key:0,algolia:((S=r(o).search)==null?void 0:S.options)??r(o).algolia,onVnodeBeforeMount:P[2]||(P[2]=E=>i.value=!0)},null,8,["algolia"])):h("",!0),i.value?h("",!0):(a(),u("div",Ss,[k(ye,{onClick:l})]))],64)):h("",!0)])}}}),Vs=m({__name:"VPNavBarSocialLinks",setup(s){const{theme:e}=V();return(t,o)=>r(e).socialLinks?(a(),g($e,{key:0,class:"VPNavBarSocialLinks",links:r(e).socialLinks},null,8,["links"])):h("",!0)}}),Ts=$(Vs,[["__scopeId","data-v-164c457f"]]),Ns=["href","rel","target"],ws=["innerHTML"],Ms={key:2},Is=m({__name:"VPNavBarTitle",setup(s){const{site:e,theme:t}=V(),{hasSidebar:o}=F(),{currentLang:n}=Y(),i=y(()=>{var v;return typeof t.value.logoLink=="string"?t.value.logoLink:(v=t.value.logoLink)==null?void 0:v.link}),l=y(()=>{var v;return typeof t.value.logoLink=="string"||(v=t.value.logoLink)==null?void 0:v.rel}),d=y(()=>{var v;return typeof t.value.logoLink=="string"||(v=t.value.logoLink)==null?void 0:v.target});return(v,b)=>(a(),u("div",{class:M(["VPNavBarTitle",{"has-sidebar":r(o)}])},[p("a",{class:"title",href:i.value??r(me)(r(n).link),rel:l.value,target:d.value},[c(v.$slots,"nav-bar-title-before",{},void 0,!0),r(t).logo?(a(),g(Q,{key:0,class:"logo",image:r(t).logo},null,8,["image"])):h("",!0),r(t).siteTitle?(a(),u("span",{key:1,innerHTML:r(t).siteTitle},null,8,ws)):r(t).siteTitle===void 0?(a(),u("span",Ms,w(r(e).title),1)):h("",!0),c(v.$slots,"nav-bar-title-after",{},void 0,!0)],8,Ns)],2))}}),Es=$(Is,[["__scopeId","data-v-0f4f798b"]]),Cs={class:"items"},As={class:"title"},Bs=m({__name:"VPNavBarTranslations",setup(s){const{theme:e}=V(),{localeLinks:t,currentLang:o}=Y({correspondingLink:!0});return(n,i)=>r(t).length&&r(o).label?(a(),g(ge,{key:0,class:"VPNavBarTranslations",icon:"vpi-languages",label:r(e).langMenuLabel||"Change language"},{default:f(()=>[p("div",Cs,[p("p",As,w(r(o).label),1),(a(!0),u(I,null,A(r(t),l=>(a(),g(ne,{key:l.link,item:l},null,8,["item"]))),128))])]),_:1},8,["label"])):h("",!0)}}),Hs=$(Bs,[["__scopeId","data-v-c80d9ad0"]]),Ds={class:"wrapper"},Os={class:"container"},Fs={class:"title"},Us={class:"content"},Rs={class:"content-body"},Gs=m({__name:"VPNavBar",props:{isScreenOpen:{type:Boolean}},emits:["toggle-screen"],setup(s){const e=s,{y:t}=Ne(),{hasSidebar:o}=F(),{frontmatter:n}=V(),i=T({});return fe(()=>{i.value={"has-sidebar":o.value,home:n.value.layout==="home",top:t.value===0,"screen-open":e.isScreenOpen}}),(l,d)=>(a(),u("div",{class:M(["VPNavBar",i.value])},[p("div",Ds,[p("div",Os,[p("div",Fs,[k(Es,null,{"nav-bar-title-before":f(()=>[c(l.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":f(()=>[c(l.$slots,"nav-bar-title-after",{},void 0,!0)]),_:3})]),p("div",Us,[p("div",Rs,[c(l.$slots,"nav-bar-content-before",{},void 0,!0),k(Ls,{class:"search"}),k(_s,{class:"menu"}),k(Hs,{class:"translations"}),k(Vo,{class:"appearance"}),k(Ts,{class:"social-links"}),k(is,{class:"extra"}),c(l.$slots,"nav-bar-content-after",{},void 0,!0),k(us,{class:"hamburger",active:l.isScreenOpen,onClick:d[0]||(d[0]=v=>l.$emit("toggle-screen"))},null,8,["active"])])])])]),d[1]||(d[1]=p("div",{class:"divider"},[p("div",{class:"divider-line"})],-1))],2))}}),js=$(Gs,[["__scopeId","data-v-822684d1"]]),zs={key:0,class:"VPNavScreenAppearance"},Ks={class:"text"},Ws=m({__name:"VPNavScreenAppearance",setup(s){const{site:e,theme:t}=V();return(o,n)=>r(e).appearance&&r(e).appearance!=="force-dark"&&r(e).appearance!=="force-auto"?(a(),u("div",zs,[p("p",Ks,w(r(t).darkModeSwitchLabel||"Appearance"),1),k(be)])):h("",!0)}}),qs=$(Ws,[["__scopeId","data-v-ffb44008"]]),Js=["innerHTML"],Ys=m({__name:"VPNavScreenMenuLink",props:{item:{}},setup(s){const e=q("close-screen");return(t,o)=>(a(),g(O,{class:"VPNavScreenMenuLink",href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon,onClick:r(e)},{default:f(()=>[p("span",{innerHTML:t.item.text},null,8,Js)]),_:1},8,["href","target","rel","no-icon","onClick"]))}}),Xs=$(Ys,[["__scopeId","data-v-735512b8"]]),Qs=["innerHTML"],Zs=m({__name:"VPNavScreenMenuGroupLink",props:{item:{}},setup(s){const e=q("close-screen");return(t,o)=>(a(),g(O,{class:"VPNavScreenMenuGroupLink",href:t.item.link,target:t.item.target,rel:t.item.rel,"no-icon":t.item.noIcon,onClick:r(e)},{default:f(()=>[p("span",{innerHTML:t.item.text},null,8,Qs)]),_:1},8,["href","target","rel","no-icon","onClick"]))}}),He=$(Zs,[["__scopeId","data-v-372ae7c0"]]),xs={class:"VPNavScreenMenuGroupSection"},ea={key:0,class:"title"},ta=m({__name:"VPNavScreenMenuGroupSection",props:{text:{},items:{}},setup(s){return(e,t)=>(a(),u("div",xs,[e.text?(a(),u("p",ea,w(e.text),1)):h("",!0),(a(!0),u(I,null,A(e.items,o=>(a(),g(He,{key:o.text,item:o},null,8,["item"]))),128))]))}}),na=$(ta,[["__scopeId","data-v-4b8941ac"]]),oa=["aria-controls","aria-expanded"],sa=["innerHTML"],aa=["id"],ra={key:0,class:"item"},ia={key:1,class:"item"},la={key:2,class:"group"},ca=m({__name:"VPNavScreenMenuGroup",props:{text:{},items:{}},setup(s){const e=s,t=T(!1),o=y(()=>`NavScreenGroup-${e.text.replace(" ","-").toLowerCase()}`);function n(){t.value=!t.value}return(i,l)=>(a(),u("div",{class:M(["VPNavScreenMenuGroup",{open:t.value}])},[p("button",{class:"button","aria-controls":o.value,"aria-expanded":t.value,onClick:n},[p("span",{class:"button-text",innerHTML:i.text},null,8,sa),l[0]||(l[0]=p("span",{class:"vpi-plus button-icon"},null,-1))],8,oa),p("div",{id:o.value,class:"items"},[(a(!0),u(I,null,A(i.items,d=>(a(),u(I,{key:JSON.stringify(d)},["link"in d?(a(),u("div",ra,[k(He,{item:d},null,8,["item"])])):"component"in d?(a(),u("div",ia,[(a(),g(D(d.component),R({ref_for:!0},d.props,{"screen-menu":""}),null,16))])):(a(),u("div",la,[k(na,{text:d.text,items:d.items},null,8,["text","items"])]))],64))),128))],8,aa)],2))}}),ua=$(ca,[["__scopeId","data-v-875057a5"]]),da={key:0,class:"VPNavScreenMenu"},va=m({__name:"VPNavScreenMenu",setup(s){const{theme:e}=V();return(t,o)=>r(e).nav?(a(),u("nav",da,[(a(!0),u(I,null,A(r(e).nav,n=>(a(),u(I,{key:JSON.stringify(n)},["link"in n?(a(),g(Xs,{key:0,item:n},null,8,["item"])):"component"in n?(a(),g(D(n.component),R({key:1,ref_for:!0},n.props,{"screen-menu":""}),null,16)):(a(),g(ua,{key:2,text:n.text||"",items:n.items},null,8,["text","items"]))],64))),128))])):h("",!0)}}),pa=m({__name:"VPNavScreenSocialLinks",setup(s){const{theme:e}=V();return(t,o)=>r(e).socialLinks?(a(),g($e,{key:0,class:"VPNavScreenSocialLinks",links:r(e).socialLinks},null,8,["links"])):h("",!0)}}),fa={class:"list"},ha=m({__name:"VPNavScreenTranslations",setup(s){const{localeLinks:e,currentLang:t}=Y({correspondingLink:!0}),o=T(!1);function n(){o.value=!o.value}return(i,l)=>r(e).length&&r(t).label?(a(),u("div",{key:0,class:M(["VPNavScreenTranslations",{open:o.value}])},[p("button",{class:"title",onClick:n},[l[0]||(l[0]=p("span",{class:"vpi-languages icon lang"},null,-1)),j(" "+w(r(t).label)+" ",1),l[1]||(l[1]=p("span",{class:"vpi-chevron-down icon chevron"},null,-1))]),p("ul",fa,[(a(!0),u(I,null,A(r(e),d=>(a(),u("li",{key:d.link,class:"item"},[k(O,{class:"link",href:d.link},{default:f(()=>[j(w(d.text),1)]),_:2},1032,["href"])]))),128))])],2)):h("",!0)}}),ma=$(ha,[["__scopeId","data-v-362991c2"]]),_a={class:"container"},ba=m({__name:"VPNavScreen",props:{open:{type:Boolean}},setup(s){const e=T(null),t=we(te?document.body:null);return(o,n)=>(a(),g(de,{name:"fade",onEnter:n[0]||(n[0]=i=>t.value=!0),onAfterLeave:n[1]||(n[1]=i=>t.value=!1)},{default:f(()=>[o.open?(a(),u("div",{key:0,class:"VPNavScreen",ref_key:"screen",ref:e,id:"VPNavScreen"},[p("div",_a,[c(o.$slots,"nav-screen-content-before",{},void 0,!0),k(va,{class:"menu"}),k(ma,{class:"translations"}),k(qs,{class:"appearance"}),k(pa,{class:"social-links"}),c(o.$slots,"nav-screen-content-after",{},void 0,!0)])],512)):h("",!0)]),_:3}))}}),ka=$(ba,[["__scopeId","data-v-833aabba"]]),ga={key:0,class:"VPNav"},$a=m({__name:"VPNav",setup(s){const{isScreenOpen:e,closeScreen:t,toggleScreen:o}=mo(),{frontmatter:n}=V(),i=y(()=>n.value.navbar!==!1);return he("close-screen",t),Z(()=>{te&&document.documentElement.classList.toggle("hide-nav",!i.value)}),(l,d)=>i.value?(a(),u("header",ga,[k(js,{"is-screen-open":r(e),onToggleScreen:r(o)},{"nav-bar-title-before":f(()=>[c(l.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":f(()=>[c(l.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":f(()=>[c(l.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":f(()=>[c(l.$slots,"nav-bar-content-after",{},void 0,!0)]),_:3},8,["is-screen-open","onToggleScreen"]),k(ka,{open:r(e)},{"nav-screen-content-before":f(()=>[c(l.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":f(()=>[c(l.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3},8,["open"])])):h("",!0)}}),ya=$($a,[["__scopeId","data-v-f1e365da"]]),Pa=["role","tabindex"],Sa={key:1,class:"items"},La=m({__name:"VPSidebarItem",props:{item:{},depth:{}},setup(s){const e=s,{collapsed:t,collapsible:o,isLink:n,isActiveLink:i,hasActiveLink:l,hasChildren:d,toggle:v}=bt(y(()=>e.item)),b=y(()=>d.value?"section":"div"),L=y(()=>n.value?"a":"div"),_=y(()=>d.value?e.depth+2===7?"p":`h${e.depth+2}`:"p"),P=y(()=>n.value?void 0:"button"),S=y(()=>[[`level-${e.depth}`],{collapsible:o.value},{collapsed:t.value},{"is-link":n.value},{"is-active":i.value},{"has-active":l.value}]);function E(N){"key"in N&&N.key!=="Enter"||!e.item.link&&v()}function C(){e.item.link&&v()}return(N,B)=>{const U=K("VPSidebarItem",!0);return a(),g(D(b.value),{class:M(["VPSidebarItem",S.value])},{default:f(()=>[N.item.text?(a(),u("div",R({key:0,class:"item",role:P.value},Xe(N.item.items?{click:E,keydown:E}:{},!0),{tabindex:N.item.items&&0}),[B[1]||(B[1]=p("div",{class:"indicator"},null,-1)),N.item.link?(a(),g(O,{key:0,tag:L.value,class:"link",href:N.item.link,rel:N.item.rel,target:N.item.target},{default:f(()=>[(a(),g(D(_.value),{class:"text",innerHTML:N.item.text},null,8,["innerHTML"]))]),_:1},8,["tag","href","rel","target"])):(a(),g(D(_.value),{key:1,class:"text",innerHTML:N.item.text},null,8,["innerHTML"])),N.item.collapsed!=null&&N.item.items&&N.item.items.length?(a(),u("div",{key:2,class:"caret",role:"button","aria-label":"toggle section",onClick:C,onKeydown:Ye(C,["enter"]),tabindex:"0"},B[0]||(B[0]=[p("span",{class:"vpi-chevron-right caret-icon"},null,-1)]),32)):h("",!0)],16,Pa)):h("",!0),N.item.items&&N.item.items.length?(a(),u("div",Sa,[N.depth<5?(a(!0),u(I,{key:0},A(N.item.items,W=>(a(),g(U,{key:W.text,item:W,depth:N.depth+1},null,8,["item","depth"]))),128)):h("",!0)])):h("",!0)]),_:1},8,["class"])}}}),Va=$(La,[["__scopeId","data-v-196b2e5f"]]),Ta=m({__name:"VPSidebarGroup",props:{items:{}},setup(s){const e=T(!0);let t=null;return G(()=>{t=setTimeout(()=>{t=null,e.value=!1},300)}),Qe(()=>{t!=null&&(clearTimeout(t),t=null)}),(o,n)=>(a(!0),u(I,null,A(o.items,i=>(a(),u("div",{key:i.text,class:M(["group",{"no-transition":e.value}])},[k(Va,{item:i,depth:0},null,8,["item"])],2))),128))}}),Na=$(Ta,[["__scopeId","data-v-9e426adc"]]),wa={class:"nav",id:"VPSidebarNav","aria-labelledby":"sidebar-aria-label",tabindex:"-1"},Ma=m({__name:"VPSidebar",props:{open:{type:Boolean}},setup(s){const{sidebarGroups:e,hasSidebar:t}=F(),o=s,n=T(null),i=we(te?document.body:null);H([o,n],()=>{var d;o.open?(i.value=!0,(d=n.value)==null||d.focus()):i.value=!1},{immediate:!0,flush:"post"});const l=T(0);return H(e,()=>{l.value+=1},{deep:!0}),(d,v)=>r(t)?(a(),u("aside",{key:0,class:M(["VPSidebar",{open:d.open}]),ref_key:"navEl",ref:n,onClick:v[0]||(v[0]=Ze(()=>{},["stop"]))},[v[2]||(v[2]=p("div",{class:"curtain"},null,-1)),p("nav",wa,[v[1]||(v[1]=p("span",{class:"visually-hidden",id:"sidebar-aria-label"}," Sidebar Navigation ",-1)),c(d.$slots,"sidebar-nav-before",{},void 0,!0),(a(),g(Na,{items:r(e),key:l.value},null,8,["items"])),c(d.$slots,"sidebar-nav-after",{},void 0,!0)])],2)):h("",!0)}}),Ia=$(Ma,[["__scopeId","data-v-18756405"]]),Ea=m({__name:"VPSkipLink",setup(s){const e=ee(),t=T();H(()=>e.path,()=>t.value.focus());function o({target:n}){const i=document.getElementById(decodeURIComponent(n.hash).slice(1));if(i){const l=()=>{i.removeAttribute("tabindex"),i.removeEventListener("blur",l)};i.setAttribute("tabindex","-1"),i.addEventListener("blur",l),i.focus(),window.scrollTo(0,0)}}return(n,i)=>(a(),u(I,null,[p("span",{ref_key:"backToTop",ref:t,tabindex:"-1"},null,512),p("a",{href:"#VPContent",class:"VPSkipLink visually-hidden",onClick:o}," Skip to content ")],64))}}),Ca=$(Ea,[["__scopeId","data-v-c3508ec8"]]),Aa=m({__name:"Layout",setup(s){const{isOpen:e,open:t,close:o}=F(),n=ee();H(()=>n.path,o),_t(e,o);const{frontmatter:i}=V(),l=Me(),d=y(()=>!!l["home-hero-image"]);return he("hero-image-slot-exists",d),(v,b)=>{const L=K("Content");return r(i).layout!==!1?(a(),u("div",{key:0,class:M(["Layout",r(i).pageClass])},[c(v.$slots,"layout-top",{},void 0,!0),k(Ca),k(st,{class:"backdrop",show:r(e),onClick:r(o)},null,8,["show","onClick"]),k(ya,null,{"nav-bar-title-before":f(()=>[c(v.$slots,"nav-bar-title-before",{},void 0,!0)]),"nav-bar-title-after":f(()=>[c(v.$slots,"nav-bar-title-after",{},void 0,!0)]),"nav-bar-content-before":f(()=>[c(v.$slots,"nav-bar-content-before",{},void 0,!0)]),"nav-bar-content-after":f(()=>[c(v.$slots,"nav-bar-content-after",{},void 0,!0)]),"nav-screen-content-before":f(()=>[c(v.$slots,"nav-screen-content-before",{},void 0,!0)]),"nav-screen-content-after":f(()=>[c(v.$slots,"nav-screen-content-after",{},void 0,!0)]),_:3}),k(ho,{open:r(e),onOpenMenu:r(t)},null,8,["open","onOpenMenu"]),k(Ia,{open:r(e)},{"sidebar-nav-before":f(()=>[c(v.$slots,"sidebar-nav-before",{},void 0,!0)]),"sidebar-nav-after":f(()=>[c(v.$slots,"sidebar-nav-after",{},void 0,!0)]),_:3},8,["open"]),k(Zn,null,{"page-top":f(()=>[c(v.$slots,"page-top",{},void 0,!0)]),"page-bottom":f(()=>[c(v.$slots,"page-bottom",{},void 0,!0)]),"not-found":f(()=>[c(v.$slots,"not-found",{},void 0,!0)]),"home-hero-before":f(()=>[c(v.$slots,"home-hero-before",{},void 0,!0)]),"home-hero-info-before":f(()=>[c(v.$slots,"home-hero-info-before",{},void 0,!0)]),"home-hero-info":f(()=>[c(v.$slots,"home-hero-info",{},void 0,!0)]),"home-hero-info-after":f(()=>[c(v.$slots,"home-hero-info-after",{},void 0,!0)]),"home-hero-actions-after":f(()=>[c(v.$slots,"home-hero-actions-after",{},void 0,!0)]),"home-hero-image":f(()=>[c(v.$slots,"home-hero-image",{},void 0,!0)]),"home-hero-after":f(()=>[c(v.$slots,"home-hero-after",{},void 0,!0)]),"home-features-before":f(()=>[c(v.$slots,"home-features-before",{},void 0,!0)]),"home-features-after":f(()=>[c(v.$slots,"home-features-after",{},void 0,!0)]),"doc-footer-before":f(()=>[c(v.$slots,"doc-footer-before",{},void 0,!0)]),"doc-before":f(()=>[c(v.$slots,"doc-before",{},void 0,!0)]),"doc-after":f(()=>[c(v.$slots,"doc-after",{},void 0,!0)]),"doc-top":f(()=>[c(v.$slots,"doc-top",{},void 0,!0)]),"doc-bottom":f(()=>[c(v.$slots,"doc-bottom",{},void 0,!0)]),"aside-top":f(()=>[c(v.$slots,"aside-top",{},void 0,!0)]),"aside-bottom":f(()=>[c(v.$slots,"aside-bottom",{},void 0,!0)]),"aside-outline-before":f(()=>[c(v.$slots,"aside-outline-before",{},void 0,!0)]),"aside-outline-after":f(()=>[c(v.$slots,"aside-outline-after",{},void 0,!0)]),"aside-ads-before":f(()=>[c(v.$slots,"aside-ads-before",{},void 0,!0)]),"aside-ads-after":f(()=>[c(v.$slots,"aside-ads-after",{},void 0,!0)]),_:3}),k(oo),c(v.$slots,"layout-bottom",{},void 0,!0)],2)):(a(),g(L,{key:1}))}}}),Ba=$(Aa,[["__scopeId","data-v-a9a9e638"]]),Ha={Layout:Ba,enhanceApp:({app:s})=>{s.component("Badge",tt)}},Da=s=>{if(typeof document>"u")return{stabilizeScrollPosition:n=>async(...i)=>n(...i)};const e=document.documentElement;return{stabilizeScrollPosition:o=>async(...n)=>{const i=o(...n),l=s.value;if(!l)return i;const d=l.offsetTop-e.scrollTop;return await Te(),e.scrollTop=l.offsetTop-d,i}}},De="vitepress:tabSharedState",J=typeof localStorage<"u"?localStorage:null,Oe="vitepress:tabsSharedState",Oa=()=>{const s=J==null?void 0:J.getItem(Oe);if(s)try{return JSON.parse(s)}catch{}return{}},Fa=s=>{J&&J.setItem(Oe,JSON.stringify(s))},Ua=s=>{const e=xe({});H(()=>e.content,(t,o)=>{t&&o&&Fa(t)},{deep:!0}),s.provide(De,e)},Ra=(s,e)=>{const t=q(De);if(!t)throw new Error("[vitepress-plugin-tabs] TabsSharedState should be injected");G(()=>{t.content||(t.content=Oa())});const o=T(),n=y({get(){var v;const l=e.value,d=s.value;if(l){const b=(v=t.content)==null?void 0:v[l];if(b&&d.includes(b))return b}else{const b=o.value;if(b)return b}return d[0]},set(l){const d=e.value;d?t.content&&(t.content[d]=l):o.value=l}});return{selected:n,select:l=>{n.value=l}}};let Pe=0;const Ga=()=>(Pe++,""+Pe);function ja(){const s=Me();return y(()=>{var o;const t=(o=s.default)==null?void 0:o.call(s);return t?t.filter(n=>typeof n.type=="object"&&"__name"in n.type&&n.type.__name==="PluginTabsTab"&&n.props).map(n=>{var i;return(i=n.props)==null?void 0:i.label}):[]})}const Fe="vitepress:tabSingleState",za=s=>{he(Fe,s)},Ka=()=>{const s=q(Fe);if(!s)throw new Error("[vitepress-plugin-tabs] TabsSingleState should be injected");return s},Wa={class:"plugin-tabs"},qa=["id","aria-selected","aria-controls","tabindex","onClick"],Ja=m({__name:"PluginTabs",props:{sharedStateKey:{}},setup(s){const e=s,t=ja(),{selected:o,select:n}=Ra(t,et(e,"sharedStateKey")),i=T(),{stabilizeScrollPosition:l}=Da(i),d=l(n),v=T([]),b=_=>{var E;const P=t.value.indexOf(o.value);let S;_.key==="ArrowLeft"?S=P>=1?P-1:t.value.length-1:_.key==="ArrowRight"&&(S=P(a(),u("div",Wa,[p("div",{ref_key:"tablist",ref:i,class:"plugin-tabs--tab-list",role:"tablist",onKeydown:b},[(a(!0),u(I,null,A(r(t),S=>(a(),u("button",{id:`tab-${S}-${r(L)}`,ref_for:!0,ref_key:"buttonRefs",ref:v,key:S,role:"tab",class:"plugin-tabs--tab","aria-selected":S===r(o),"aria-controls":`panel-${S}-${r(L)}`,tabindex:S===r(o)?0:-1,onClick:()=>r(d)(S)},w(S),9,qa))),128))],544),c(_.$slots,"default")]))}}),Ya=["id","aria-labelledby"],Xa=m({__name:"PluginTabsTab",props:{label:{}},setup(s){const{uid:e,selected:t}=Ka();return(o,n)=>r(t)===o.label?(a(),u("div",{key:0,id:`panel-${o.label}-${r(e)}`,class:"plugin-tabs--content",role:"tabpanel",tabindex:"0","aria-labelledby":`tab-${o.label}-${r(e)}`},[c(o.$slots,"default",{},void 0,!0)],8,Ya)):h("",!0)}}),Qa=$(Xa,[["__scopeId","data-v-9b0d03d2"]]),Za=s=>{Ua(s),s.component("PluginTabs",Ja),s.component("PluginTabsTab",Qa)},er={extends:Ha,async enhanceApp({app:s,router:e,siteData:t}){if(Za(s),typeof window<"u"){let o=function(){if(!(window.DOCUMENTER_NEWEST===void 0||window.DOCUMENTER_CURRENT_VERSION===void 0||window.DOCUMENTER_STABLE===void 0)&&window.DOCUMENTER_NEWEST===window.DOCUMENTER_CURRENT_VERSION){const n=window.location.href.replace(window.DOCUMENTER_CURRENT_VERSION,window.DOCUMENTER_STABLE);window.history.replaceState({additionalInformation:"URL rewritten to stable"},"DimensionalData",n);return}};H(()=>e.route.data.relativePath,o,{immediate:!0}),document.addEventListener("DOMContentLoaded",o)}}};export{er as R,bs as c,V as u}; diff --git a/previews/PR298/assets/teoyafz.DVQRnJSE.png b/previews/PR298/assets/ddktigp.DVQRnJSE.png similarity index 100% rename from previews/PR298/assets/teoyafz.DVQRnJSE.png rename to previews/PR298/assets/ddktigp.DVQRnJSE.png diff --git a/previews/PR298/assets/gfmvopt.BKS8fzbs.png b/previews/PR298/assets/efdoffe.BKS8fzbs.png similarity index 100% rename from previews/PR298/assets/gfmvopt.BKS8fzbs.png rename to previews/PR298/assets/efdoffe.BKS8fzbs.png diff --git a/previews/PR298/assets/examples_parametric_via_three_wave_mixing.md.C_TUhlcu.js b/previews/PR298/assets/examples_parametric_via_three_wave_mixing.md.CDmqTf3s.js similarity index 99% rename from previews/PR298/assets/examples_parametric_via_three_wave_mixing.md.C_TUhlcu.js rename to previews/PR298/assets/examples_parametric_via_three_wave_mixing.md.CDmqTf3s.js index 5a5eb9ee..bcc3acaa 100644 --- a/previews/PR298/assets/examples_parametric_via_three_wave_mixing.md.C_TUhlcu.js +++ b/previews/PR298/assets/examples_parametric_via_three_wave_mixing.md.CDmqTf3s.js @@ -1,4 +1,4 @@ -import{_ as h,c as a,a4 as l,j as s,a as t,o as n}from"./chunks/framework.DcvNxhjd.js";const e="/HarmonicBalance.jl/previews/PR298/assets/teoyafz.DVQRnJSE.png",p="/HarmonicBalance.jl/previews/PR298/assets/icvvgjo.2MzQm7AU.png",k="/HarmonicBalance.jl/previews/PR298/assets/pdqqpav.Br8cARbP.png",r="/HarmonicBalance.jl/previews/PR298/assets/ddktigp.B-Cc1T24.png",w=JSON.parse('{"title":"Parametric Pumping via Three-Wave Mixing","description":"","frontmatter":{},"headers":[],"relativePath":"examples/parametric_via_three_wave_mixing.md","filePath":"examples/parametric_via_three_wave_mixing.md"}'),d={name:"examples/parametric_via_three_wave_mixing.md"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.281ex",height:"2.034ex",role:"img",focusable:"false",viewBox:"0 -705 566 899","aria-hidden":"true"},o={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},T={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.889ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.212ex",height:"3.096ex",role:"img",focusable:"false",viewBox:"0 -975.7 4955.8 1368.6","aria-hidden":"true"},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.448ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 640 453","aria-hidden":"true"},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.302ex",height:"1.927ex",role:"img",focusable:"false",viewBox:"0 -694 1459.4 851.8","aria-hidden":"true"};function F(u,i,C,v,x,f){return n(),a("div",null,[i[13]||(i[13]=l(`

Parametric Pumping via Three-Wave Mixing

julia
using HarmonicBalance, Plots
+import{_ as h,c as a,a4 as l,j as s,a as t,o as n}from"./chunks/framework.DcvNxhjd.js";const e="/HarmonicBalance.jl/previews/PR298/assets/ddktigp.DVQRnJSE.png",p="/HarmonicBalance.jl/previews/PR298/assets/zmnmjvi.2MzQm7AU.png",k="/HarmonicBalance.jl/previews/PR298/assets/olopefk.Br8cARbP.png",r="/HarmonicBalance.jl/previews/PR298/assets/jcitgik.B-Cc1T24.png",w=JSON.parse('{"title":"Parametric Pumping via Three-Wave Mixing","description":"","frontmatter":{},"headers":[],"relativePath":"examples/parametric_via_three_wave_mixing.md","filePath":"examples/parametric_via_three_wave_mixing.md"}'),d={name:"examples/parametric_via_three_wave_mixing.md"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.281ex",height:"2.034ex",role:"img",focusable:"false",viewBox:"0 -705 566 899","aria-hidden":"true"},o={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},T={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.889ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.212ex",height:"3.096ex",role:"img",focusable:"false",viewBox:"0 -975.7 4955.8 1368.6","aria-hidden":"true"},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.448ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 640 453","aria-hidden":"true"},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.302ex",height:"1.927ex",role:"img",focusable:"false",viewBox:"0 -694 1459.4 851.8","aria-hidden":"true"};function F(u,i,C,v,x,f){return n(),a("div",null,[i[13]||(i[13]=l(`

Parametric Pumping via Three-Wave Mixing

julia
using HarmonicBalance, Plots
 using Plots.Measures
 using Random

System

julia
@variables β α ω ω0 F γ t x(t) # declare constant variables and a function x(t)
 diff_eq = DifferentialEquation(
diff --git a/previews/PR298/assets/examples_parametric_via_three_wave_mixing.md.C_TUhlcu.lean.js b/previews/PR298/assets/examples_parametric_via_three_wave_mixing.md.CDmqTf3s.lean.js
similarity index 99%
rename from previews/PR298/assets/examples_parametric_via_three_wave_mixing.md.C_TUhlcu.lean.js
rename to previews/PR298/assets/examples_parametric_via_three_wave_mixing.md.CDmqTf3s.lean.js
index 5a5eb9ee..bcc3acaa 100644
--- a/previews/PR298/assets/examples_parametric_via_three_wave_mixing.md.C_TUhlcu.lean.js
+++ b/previews/PR298/assets/examples_parametric_via_three_wave_mixing.md.CDmqTf3s.lean.js
@@ -1,4 +1,4 @@
-import{_ as h,c as a,a4 as l,j as s,a as t,o as n}from"./chunks/framework.DcvNxhjd.js";const e="/HarmonicBalance.jl/previews/PR298/assets/teoyafz.DVQRnJSE.png",p="/HarmonicBalance.jl/previews/PR298/assets/icvvgjo.2MzQm7AU.png",k="/HarmonicBalance.jl/previews/PR298/assets/pdqqpav.Br8cARbP.png",r="/HarmonicBalance.jl/previews/PR298/assets/ddktigp.B-Cc1T24.png",w=JSON.parse('{"title":"Parametric Pumping via Three-Wave Mixing","description":"","frontmatter":{},"headers":[],"relativePath":"examples/parametric_via_three_wave_mixing.md","filePath":"examples/parametric_via_three_wave_mixing.md"}'),d={name:"examples/parametric_via_three_wave_mixing.md"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.281ex",height:"2.034ex",role:"img",focusable:"false",viewBox:"0 -705 566 899","aria-hidden":"true"},o={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},T={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.889ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.212ex",height:"3.096ex",role:"img",focusable:"false",viewBox:"0 -975.7 4955.8 1368.6","aria-hidden":"true"},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.448ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 640 453","aria-hidden":"true"},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.302ex",height:"1.927ex",role:"img",focusable:"false",viewBox:"0 -694 1459.4 851.8","aria-hidden":"true"};function F(u,i,C,v,x,f){return n(),a("div",null,[i[13]||(i[13]=l(`

Parametric Pumping via Three-Wave Mixing

julia
using HarmonicBalance, Plots
+import{_ as h,c as a,a4 as l,j as s,a as t,o as n}from"./chunks/framework.DcvNxhjd.js";const e="/HarmonicBalance.jl/previews/PR298/assets/ddktigp.DVQRnJSE.png",p="/HarmonicBalance.jl/previews/PR298/assets/zmnmjvi.2MzQm7AU.png",k="/HarmonicBalance.jl/previews/PR298/assets/olopefk.Br8cARbP.png",r="/HarmonicBalance.jl/previews/PR298/assets/jcitgik.B-Cc1T24.png",w=JSON.parse('{"title":"Parametric Pumping via Three-Wave Mixing","description":"","frontmatter":{},"headers":[],"relativePath":"examples/parametric_via_three_wave_mixing.md","filePath":"examples/parametric_via_three_wave_mixing.md"}'),d={name:"examples/parametric_via_three_wave_mixing.md"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.439ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.281ex",height:"2.034ex",role:"img",focusable:"false",viewBox:"0 -705 566 899","aria-hidden":"true"},o={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},T={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.889ex"},xmlns:"http://www.w3.org/2000/svg",width:"11.212ex",height:"3.096ex",role:"img",focusable:"false",viewBox:"0 -975.7 4955.8 1368.6","aria-hidden":"true"},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.448ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 640 453","aria-hidden":"true"},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.302ex",height:"1.927ex",role:"img",focusable:"false",viewBox:"0 -694 1459.4 851.8","aria-hidden":"true"};function F(u,i,C,v,x,f){return n(),a("div",null,[i[13]||(i[13]=l(`

Parametric Pumping via Three-Wave Mixing

julia
using HarmonicBalance, Plots
 using Plots.Measures
 using Random

System

julia
@variables β α ω ω0 F γ t x(t) # declare constant variables and a function x(t)
 diff_eq = DifferentialEquation(
diff --git a/previews/PR298/assets/examples_parametron.md.CppdrFjS.js b/previews/PR298/assets/examples_parametron.md.BisKADsJ.js
similarity index 99%
rename from previews/PR298/assets/examples_parametron.md.CppdrFjS.js
rename to previews/PR298/assets/examples_parametron.md.BisKADsJ.js
index 1132a8bf..06a40e90 100644
--- a/previews/PR298/assets/examples_parametron.md.CppdrFjS.js
+++ b/previews/PR298/assets/examples_parametron.md.BisKADsJ.js
@@ -36,9 +36,9 @@ import{_ as n,c as e,j as t,a as s,a4 as Q,o as i}from"./chunks/framework.DcvNxh
 plot!(result, "sqrt(u1^2 + v1^2)"; not_class="large")

Alternatively, we may visualise all underlying solutions, including complex ones,

julia
plot(result, "sqrt(u1^2 + v1^2)"; class="all")

2D parameters

',12)),t("p",null,[a[49]||(a[49]=s(`The parametrically driven oscillator boasts a stability diagram called "Arnold's tongues" delineating zones where the oscillator is stable from those where it is exponentially unstable (if the nonlinearity was absence). We can retrieve this diagram by calculating the steady states as a function of external detuning `)),t("mjx-container",Z,[(i(),e("svg",B,a[45]||(a[45]=[Q('',1)]))),a[46]||(a[46]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"δ"),t("mo",null,"="),t("msub",null,[t("mi",null,"ω"),t("mi",null,"L")]),t("mo",null,"−"),t("msub",null,[t("mi",null,"ω"),t("mn",null,"0")])])],-1))]),a[50]||(a[50]=s(" and the parametric drive strength ")),t("mjx-container",j,[(i(),e("svg",A,a[47]||(a[47]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D706",d:"M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z",style:{"stroke-width":"3"}})])])],-1)]))),a[48]||(a[48]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"λ")])],-1))]),a[51]||(a[51]=s("."))]),t("p",null,[a[56]||(a[56]=s("To perform a 2D sweep over driving frequency ")),t("mjx-container",q,[(i(),e("svg",O,a[52]||(a[52]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D714",d:"M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z",style:{"stroke-width":"3"}})])])],-1)]))),a[53]||(a[53]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"ω")])],-1))]),a[57]||(a[57]=s(" and parametric drive strength ")),t("mjx-container",R,[(i(),e("svg",P,a[54]||(a[54]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D706",d:"M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z",style:{"stroke-width":"3"}})])])],-1)]))),a[55]||(a[55]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"λ")])],-1))]),a[58]||(a[58]=s(", we keep ")),a[59]||(a[59]=t("code",null,"fixed",-1)),a[60]||(a[60]=s(" from before but include 2 variables in ")),a[61]||(a[61]=t("code",null,"varied",-1))]),a[70]||(a[70]=Q(`
julia
fixed = (ω₀ => 1.0, γ => 1e-2, F => 1e-3, α => 1.0, η => 0.3)
 varied ==> range(0.8, 1.2, 50), λ => range(0.001, 0.6, 50))
 result_2D = get_steady_states(harmonic_eq, varied, fixed);

-Solving for 2500 parameters...  50%|██████████          |  ETA: 0:00:01\x1B[K
-  # parameters solved:  1253\x1B[K
-  # paths tracked:      6265\x1B[K
+Solving for 2500 parameters...  51%|██████████▏         |  ETA: 0:00:01\x1B[K
+  # parameters solved:  1263\x1B[K
+  # paths tracked:      6315\x1B[K
 \x1B[A
 \x1B[A
 
@@ -46,8 +46,8 @@ import{_ as n,c as e,j as t,a as s,a4 as Q,o as i}from"./chunks/framework.DcvNxh
 \x1B[K\x1B[A
 \x1B[K\x1B[A
 Solving for 2500 parameters...  79%|███████████████▊    |  ETA: 0:00:00\x1B[K
-  # parameters solved:  1964\x1B[K
-  # paths tracked:      9820\x1B[K
+  # parameters solved:  1973\x1B[K
+  # paths tracked:      9865\x1B[K
 \x1B[A
 \x1B[A
 
diff --git a/previews/PR298/assets/examples_parametron.md.CppdrFjS.lean.js b/previews/PR298/assets/examples_parametron.md.BisKADsJ.lean.js
similarity index 99%
rename from previews/PR298/assets/examples_parametron.md.CppdrFjS.lean.js
rename to previews/PR298/assets/examples_parametron.md.BisKADsJ.lean.js
index 1132a8bf..06a40e90 100644
--- a/previews/PR298/assets/examples_parametron.md.CppdrFjS.lean.js
+++ b/previews/PR298/assets/examples_parametron.md.BisKADsJ.lean.js
@@ -36,9 +36,9 @@ import{_ as n,c as e,j as t,a as s,a4 as Q,o as i}from"./chunks/framework.DcvNxh
 plot!(result, "sqrt(u1^2 + v1^2)"; not_class="large")

Alternatively, we may visualise all underlying solutions, including complex ones,

julia
plot(result, "sqrt(u1^2 + v1^2)"; class="all")

2D parameters

',12)),t("p",null,[a[49]||(a[49]=s(`The parametrically driven oscillator boasts a stability diagram called "Arnold's tongues" delineating zones where the oscillator is stable from those where it is exponentially unstable (if the nonlinearity was absence). We can retrieve this diagram by calculating the steady states as a function of external detuning `)),t("mjx-container",Z,[(i(),e("svg",B,a[45]||(a[45]=[Q('',1)]))),a[46]||(a[46]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"δ"),t("mo",null,"="),t("msub",null,[t("mi",null,"ω"),t("mi",null,"L")]),t("mo",null,"−"),t("msub",null,[t("mi",null,"ω"),t("mn",null,"0")])])],-1))]),a[50]||(a[50]=s(" and the parametric drive strength ")),t("mjx-container",j,[(i(),e("svg",A,a[47]||(a[47]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D706",d:"M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z",style:{"stroke-width":"3"}})])])],-1)]))),a[48]||(a[48]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"λ")])],-1))]),a[51]||(a[51]=s("."))]),t("p",null,[a[56]||(a[56]=s("To perform a 2D sweep over driving frequency ")),t("mjx-container",q,[(i(),e("svg",O,a[52]||(a[52]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D714",d:"M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z",style:{"stroke-width":"3"}})])])],-1)]))),a[53]||(a[53]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"ω")])],-1))]),a[57]||(a[57]=s(" and parametric drive strength ")),t("mjx-container",R,[(i(),e("svg",P,a[54]||(a[54]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D706",d:"M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z",style:{"stroke-width":"3"}})])])],-1)]))),a[55]||(a[55]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"λ")])],-1))]),a[58]||(a[58]=s(", we keep ")),a[59]||(a[59]=t("code",null,"fixed",-1)),a[60]||(a[60]=s(" from before but include 2 variables in ")),a[61]||(a[61]=t("code",null,"varied",-1))]),a[70]||(a[70]=Q(`
julia
fixed = (ω₀ => 1.0, γ => 1e-2, F => 1e-3, α => 1.0, η => 0.3)
 varied ==> range(0.8, 1.2, 50), λ => range(0.001, 0.6, 50))
 result_2D = get_steady_states(harmonic_eq, varied, fixed);

-Solving for 2500 parameters...  50%|██████████          |  ETA: 0:00:01\x1B[K
-  # parameters solved:  1253\x1B[K
-  # paths tracked:      6265\x1B[K
+Solving for 2500 parameters...  51%|██████████▏         |  ETA: 0:00:01\x1B[K
+  # parameters solved:  1263\x1B[K
+  # paths tracked:      6315\x1B[K
 \x1B[A
 \x1B[A
 
@@ -46,8 +46,8 @@ import{_ as n,c as e,j as t,a as s,a4 as Q,o as i}from"./chunks/framework.DcvNxh
 \x1B[K\x1B[A
 \x1B[K\x1B[A
 Solving for 2500 parameters...  79%|███████████████▊    |  ETA: 0:00:00\x1B[K
-  # parameters solved:  1964\x1B[K
-  # paths tracked:      9820\x1B[K
+  # parameters solved:  1973\x1B[K
+  # paths tracked:      9865\x1B[K
 \x1B[A
 \x1B[A
 
diff --git a/previews/PR298/assets/examples_wave_mixing.md.Bn8hc4od.js b/previews/PR298/assets/examples_wave_mixing.md.nPQR0uea.js
similarity index 99%
rename from previews/PR298/assets/examples_wave_mixing.md.Bn8hc4od.js
rename to previews/PR298/assets/examples_wave_mixing.md.nPQR0uea.js
index 5a7d9617..cad26b58 100644
--- a/previews/PR298/assets/examples_wave_mixing.md.Bn8hc4od.js
+++ b/previews/PR298/assets/examples_wave_mixing.md.nPQR0uea.js
@@ -1,4 +1,4 @@
-import{_ as l,c as t,a4 as e,j as s,a,o as n}from"./chunks/framework.DcvNxhjd.js";const h="/HarmonicBalance.jl/previews/PR298/assets/rkshfdy.CDefs9HS.png",p="/HarmonicBalance.jl/previews/PR298/assets/bkiujaz.y7rNhHvU.png",r="/HarmonicBalance.jl/previews/PR298/assets/rqglgfs.BWuHbhjm.png",K=JSON.parse('{"title":"Three Wave Mixing vs four wave mixing","description":"","frontmatter":{},"headers":[],"relativePath":"examples/wave_mixing.md","filePath":"examples/wave_mixing.md"}'),k={name:"examples/wave_mixing.md"},o={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.448ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 640 453","aria-hidden":"true"},T={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.532ex",role:"img",focusable:"false",viewBox:"0 -666 1122 677","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.448ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 640 453","aria-hidden":"true"},u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.532ex",role:"img",focusable:"false",viewBox:"0 -666 1122 677","aria-hidden":"true"},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.395ex",height:"1.342ex",role:"img",focusable:"false",viewBox:"0 -443 1058.6 593","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},w={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.395ex",height:"1.342ex",role:"img",focusable:"false",viewBox:"0 -443 1058.6 593","aria-hidden":"true"},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"14.728ex",height:"1.881ex",role:"img",focusable:"false",viewBox:"0 -666 6509.7 831.6","aria-hidden":"true"},f={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},C={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.807ex",height:"1.694ex",role:"img",focusable:"false",viewBox:"0 -583 3450.7 748.6","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.938ex",height:"1.881ex",role:"img",focusable:"false",viewBox:"0 -666 3950.7 831.6","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.448ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 640 453","aria-hidden":"true"},B={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.532ex",role:"img",focusable:"false",viewBox:"0 -666 1122 677","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.395ex",height:"1.342ex",role:"img",focusable:"false",viewBox:"0 -443 1058.6 593","aria-hidden":"true"},Z={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.395ex",height:"1.342ex",role:"img",focusable:"false",viewBox:"0 -443 1058.6 593","aria-hidden":"true"},q={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"14.728ex",height:"1.881ex",role:"img",focusable:"false",viewBox:"0 -666 6509.7 831.6","aria-hidden":"true"},S={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.807ex",height:"1.694ex",role:"img",focusable:"false",viewBox:"0 -583 3450.7 748.6","aria-hidden":"true"},G={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},P={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.938ex",height:"1.881ex",role:"img",focusable:"false",viewBox:"0 -666 3950.7 831.6","aria-hidden":"true"};function W(N,i,R,$,I,O){return n(),t("div",null,[i[53]||(i[53]=e(`

Three Wave Mixing vs four wave mixing

Packages

We load the following packages into our environment:

julia
using HarmonicBalance, Plots
+import{_ as l,c as t,a4 as e,j as s,a,o as n}from"./chunks/framework.DcvNxhjd.js";const h="/HarmonicBalance.jl/previews/PR298/assets/nyukexf.CDefs9HS.png",p="/HarmonicBalance.jl/previews/PR298/assets/wyxykfg.y7rNhHvU.png",r="/HarmonicBalance.jl/previews/PR298/assets/rlkrksp.BWuHbhjm.png",K=JSON.parse('{"title":"Three Wave Mixing vs four wave mixing","description":"","frontmatter":{},"headers":[],"relativePath":"examples/wave_mixing.md","filePath":"examples/wave_mixing.md"}'),k={name:"examples/wave_mixing.md"},o={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.448ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 640 453","aria-hidden":"true"},T={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.532ex",role:"img",focusable:"false",viewBox:"0 -666 1122 677","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.448ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 640 453","aria-hidden":"true"},u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.532ex",role:"img",focusable:"false",viewBox:"0 -666 1122 677","aria-hidden":"true"},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.395ex",height:"1.342ex",role:"img",focusable:"false",viewBox:"0 -443 1058.6 593","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},w={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.395ex",height:"1.342ex",role:"img",focusable:"false",viewBox:"0 -443 1058.6 593","aria-hidden":"true"},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"14.728ex",height:"1.881ex",role:"img",focusable:"false",viewBox:"0 -666 6509.7 831.6","aria-hidden":"true"},f={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},C={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.807ex",height:"1.694ex",role:"img",focusable:"false",viewBox:"0 -583 3450.7 748.6","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.938ex",height:"1.881ex",role:"img",focusable:"false",viewBox:"0 -666 3950.7 831.6","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.448ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 640 453","aria-hidden":"true"},B={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.532ex",role:"img",focusable:"false",viewBox:"0 -666 1122 677","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.395ex",height:"1.342ex",role:"img",focusable:"false",viewBox:"0 -443 1058.6 593","aria-hidden":"true"},Z={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.395ex",height:"1.342ex",role:"img",focusable:"false",viewBox:"0 -443 1058.6 593","aria-hidden":"true"},q={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"14.728ex",height:"1.881ex",role:"img",focusable:"false",viewBox:"0 -666 6509.7 831.6","aria-hidden":"true"},S={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.807ex",height:"1.694ex",role:"img",focusable:"false",viewBox:"0 -583 3450.7 748.6","aria-hidden":"true"},G={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},P={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.938ex",height:"1.881ex",role:"img",focusable:"false",viewBox:"0 -666 3950.7 831.6","aria-hidden":"true"};function W(N,i,R,$,I,O){return n(),t("div",null,[i[53]||(i[53]=e(`

Three Wave Mixing vs four wave mixing

Packages

We load the following packages into our environment:

julia
using HarmonicBalance, Plots
 using Plots.Measures
 using Random
 
diff --git a/previews/PR298/assets/examples_wave_mixing.md.Bn8hc4od.lean.js b/previews/PR298/assets/examples_wave_mixing.md.nPQR0uea.lean.js
similarity index 99%
rename from previews/PR298/assets/examples_wave_mixing.md.Bn8hc4od.lean.js
rename to previews/PR298/assets/examples_wave_mixing.md.nPQR0uea.lean.js
index 5a7d9617..cad26b58 100644
--- a/previews/PR298/assets/examples_wave_mixing.md.Bn8hc4od.lean.js
+++ b/previews/PR298/assets/examples_wave_mixing.md.nPQR0uea.lean.js
@@ -1,4 +1,4 @@
-import{_ as l,c as t,a4 as e,j as s,a,o as n}from"./chunks/framework.DcvNxhjd.js";const h="/HarmonicBalance.jl/previews/PR298/assets/rkshfdy.CDefs9HS.png",p="/HarmonicBalance.jl/previews/PR298/assets/bkiujaz.y7rNhHvU.png",r="/HarmonicBalance.jl/previews/PR298/assets/rqglgfs.BWuHbhjm.png",K=JSON.parse('{"title":"Three Wave Mixing vs four wave mixing","description":"","frontmatter":{},"headers":[],"relativePath":"examples/wave_mixing.md","filePath":"examples/wave_mixing.md"}'),k={name:"examples/wave_mixing.md"},o={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.448ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 640 453","aria-hidden":"true"},T={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.532ex",role:"img",focusable:"false",viewBox:"0 -666 1122 677","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.448ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 640 453","aria-hidden":"true"},u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.532ex",role:"img",focusable:"false",viewBox:"0 -666 1122 677","aria-hidden":"true"},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.395ex",height:"1.342ex",role:"img",focusable:"false",viewBox:"0 -443 1058.6 593","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},w={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.395ex",height:"1.342ex",role:"img",focusable:"false",viewBox:"0 -443 1058.6 593","aria-hidden":"true"},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"14.728ex",height:"1.881ex",role:"img",focusable:"false",viewBox:"0 -666 6509.7 831.6","aria-hidden":"true"},f={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},C={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.807ex",height:"1.694ex",role:"img",focusable:"false",viewBox:"0 -583 3450.7 748.6","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.938ex",height:"1.881ex",role:"img",focusable:"false",viewBox:"0 -666 3950.7 831.6","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.448ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 640 453","aria-hidden":"true"},B={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.532ex",role:"img",focusable:"false",viewBox:"0 -666 1122 677","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.395ex",height:"1.342ex",role:"img",focusable:"false",viewBox:"0 -443 1058.6 593","aria-hidden":"true"},Z={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.395ex",height:"1.342ex",role:"img",focusable:"false",viewBox:"0 -443 1058.6 593","aria-hidden":"true"},q={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"14.728ex",height:"1.881ex",role:"img",focusable:"false",viewBox:"0 -666 6509.7 831.6","aria-hidden":"true"},S={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.807ex",height:"1.694ex",role:"img",focusable:"false",viewBox:"0 -583 3450.7 748.6","aria-hidden":"true"},G={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},P={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.938ex",height:"1.881ex",role:"img",focusable:"false",viewBox:"0 -666 3950.7 831.6","aria-hidden":"true"};function W(N,i,R,$,I,O){return n(),t("div",null,[i[53]||(i[53]=e(`

Three Wave Mixing vs four wave mixing

Packages

We load the following packages into our environment:

julia
using HarmonicBalance, Plots
+import{_ as l,c as t,a4 as e,j as s,a,o as n}from"./chunks/framework.DcvNxhjd.js";const h="/HarmonicBalance.jl/previews/PR298/assets/nyukexf.CDefs9HS.png",p="/HarmonicBalance.jl/previews/PR298/assets/wyxykfg.y7rNhHvU.png",r="/HarmonicBalance.jl/previews/PR298/assets/rlkrksp.BWuHbhjm.png",K=JSON.parse('{"title":"Three Wave Mixing vs four wave mixing","description":"","frontmatter":{},"headers":[],"relativePath":"examples/wave_mixing.md","filePath":"examples/wave_mixing.md"}'),k={name:"examples/wave_mixing.md"},o={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.448ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 640 453","aria-hidden":"true"},T={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.532ex",role:"img",focusable:"false",viewBox:"0 -666 1122 677","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.448ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 640 453","aria-hidden":"true"},u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.532ex",role:"img",focusable:"false",viewBox:"0 -666 1122 677","aria-hidden":"true"},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.395ex",height:"1.342ex",role:"img",focusable:"false",viewBox:"0 -443 1058.6 593","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},w={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.395ex",height:"1.342ex",role:"img",focusable:"false",viewBox:"0 -443 1058.6 593","aria-hidden":"true"},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"14.728ex",height:"1.881ex",role:"img",focusable:"false",viewBox:"0 -666 6509.7 831.6","aria-hidden":"true"},f={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},C={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.807ex",height:"1.694ex",role:"img",focusable:"false",viewBox:"0 -583 3450.7 748.6","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.938ex",height:"1.881ex",role:"img",focusable:"false",viewBox:"0 -666 3950.7 831.6","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.448ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 640 453","aria-hidden":"true"},B={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.532ex",role:"img",focusable:"false",viewBox:"0 -666 1122 677","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},A={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.395ex",height:"1.342ex",role:"img",focusable:"false",viewBox:"0 -443 1058.6 593","aria-hidden":"true"},Z={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.395ex",height:"1.342ex",role:"img",focusable:"false",viewBox:"0 -443 1058.6 593","aria-hidden":"true"},q={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"14.728ex",height:"1.881ex",role:"img",focusable:"false",viewBox:"0 -666 6509.7 831.6","aria-hidden":"true"},S={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.807ex",height:"1.694ex",role:"img",focusable:"false",viewBox:"0 -583 3450.7 748.6","aria-hidden":"true"},G={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},P={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.938ex",height:"1.881ex",role:"img",focusable:"false",viewBox:"0 -666 3950.7 831.6","aria-hidden":"true"};function W(N,i,R,$,I,O){return n(),t("div",null,[i[53]||(i[53]=e(`

Three Wave Mixing vs four wave mixing

Packages

We load the following packages into our environment:

julia
using HarmonicBalance, Plots
 using Plots.Measures
 using Random
 
diff --git a/previews/PR298/assets/vbkkbtx.DaP9_FvO.png b/previews/PR298/assets/fxvcubu.DaP9_FvO.png
similarity index 100%
rename from previews/PR298/assets/vbkkbtx.DaP9_FvO.png
rename to previews/PR298/assets/fxvcubu.DaP9_FvO.png
diff --git a/previews/PR298/assets/rlkrksp.TE4cNA4T.png b/previews/PR298/assets/gfmvopt.TE4cNA4T.png
similarity index 100%
rename from previews/PR298/assets/rlkrksp.TE4cNA4T.png
rename to previews/PR298/assets/gfmvopt.TE4cNA4T.png
diff --git a/previews/PR298/assets/wyxykfg.BUn_Tigz.png b/previews/PR298/assets/hapmwqe.BUn_Tigz.png
similarity index 100%
rename from previews/PR298/assets/wyxykfg.BUn_Tigz.png
rename to previews/PR298/assets/hapmwqe.BUn_Tigz.png
diff --git a/previews/PR298/assets/ivufurx.B0Aj9aMC.png b/previews/PR298/assets/icvvgjo.B0Aj9aMC.png
similarity index 100%
rename from previews/PR298/assets/ivufurx.B0Aj9aMC.png
rename to previews/PR298/assets/icvvgjo.B0Aj9aMC.png
diff --git a/previews/PR298/assets/introduction_index.md.DWcINcP4.js b/previews/PR298/assets/introduction_index.md.BoGsh2BE.js
similarity index 99%
rename from previews/PR298/assets/introduction_index.md.DWcINcP4.js
rename to previews/PR298/assets/introduction_index.md.BoGsh2BE.js
index e6207b7e..7c31a3d9 100644
--- a/previews/PR298/assets/introduction_index.md.DWcINcP4.js
+++ b/previews/PR298/assets/introduction_index.md.BoGsh2BE.js
@@ -1,4 +1,4 @@
-import{_ as i,c as s,a4 as Q,j as a,o as T}from"./chunks/framework.DcvNxhjd.js";const e="/HarmonicBalance.jl/previews/PR298/assets/omwflhu.B1eISI2b.png",V=JSON.parse('{"title":"Installation","description":"","frontmatter":{},"headers":[],"relativePath":"introduction/index.md","filePath":"introduction/index.md"}'),n={name:"introduction/index.md"},l={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},h={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-4.03ex"},xmlns:"http://www.w3.org/2000/svg",width:"48.629ex",height:"6.03ex",role:"img",focusable:"false",viewBox:"0 -883.9 21494.2 2665.1","aria-hidden":"true"};function r(d,t,p,o,k,m){return T(),s("div",null,[t[2]||(t[2]=Q(`

Installation

It is easy to install HarmonicBalance.jl as we are registered in the Julia General registry. You can simply run the following command in the Julia REPL:

julia
julia> using Pkg
+import{_ as i,c as s,a4 as Q,j as a,o as T}from"./chunks/framework.DcvNxhjd.js";const e="/HarmonicBalance.jl/previews/PR298/assets/rqglgfs.B1eISI2b.png",V=JSON.parse('{"title":"Installation","description":"","frontmatter":{},"headers":[],"relativePath":"introduction/index.md","filePath":"introduction/index.md"}'),n={name:"introduction/index.md"},l={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},h={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-4.03ex"},xmlns:"http://www.w3.org/2000/svg",width:"48.629ex",height:"6.03ex",role:"img",focusable:"false",viewBox:"0 -883.9 21494.2 2665.1","aria-hidden":"true"};function r(d,t,p,o,k,m){return T(),s("div",null,[t[2]||(t[2]=Q(`

Installation

It is easy to install HarmonicBalance.jl as we are registered in the Julia General registry. You can simply run the following command in the Julia REPL:

julia
julia> using Pkg
 julia> Pkg.add("HarmonicBalance")

or

julia
julia> ] # \`]\` should be pressed
 julia> Pkg.add("HarmonicBalance")

You can check which version you have installled with the command

julia
julia> ]
 julia> status HarmonicBalance

Getting Started

Let us find the steady states of an external driven Duffing oscillator with nonlinear damping. Its equation of motion is:

`,9)),a("mjx-container",l,[(T(),s("svg",h,t[0]||(t[0]=[Q('',1)]))),t[1]||(t[1]=a("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[a("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[a("munder",null,[a("mrow",{"data-mjx-texclass":"OP"},[a("munder",null,[a("mrow",null,[a("mrow",{"data-mjx-texclass":"ORD"},[a("mover",null,[a("mi",null,"x"),a("mo",null,"¨")])]),a("mo",{stretchy:"false"},"("),a("mi",null,"t"),a("mo",{stretchy:"false"},")"),a("mo",null,"+"),a("mi",null,"γ"),a("mrow",{"data-mjx-texclass":"ORD"},[a("mover",null,[a("mi",null,"x"),a("mo",null,"˙")])]),a("mo",{stretchy:"false"},"("),a("mi",null,"t"),a("mo",{stretchy:"false"},")"),a("mo",null,"+"),a("msubsup",null,[a("mi",null,"ω"),a("mn",null,"0"),a("mn",null,"2")]),a("mi",null,"x"),a("mo",{stretchy:"false"},"("),a("mi",null,"t"),a("mo",{stretchy:"false"},")")]),a("mo",null,"⏟")])]),a("mrow",{"data-mjx-texclass":"ORD"},[a("mtext",null,"damped harmonic oscillator")])]),a("mo",null,"+"),a("munder",null,[a("mrow",{"data-mjx-texclass":"OP"},[a("munder",null,[a("mrow",null,[a("mi",null,"α"),a("mi",null,"x"),a("mo",{stretchy:"false"},"("),a("mi",null,"t"),a("msup",null,[a("mo",{stretchy:"false"},")"),a("mn",null,"3")])]),a("mo",null,"⏟")])]),a("mrow",{"data-mjx-texclass":"ORD"},[a("mtext",null,"Duffing coefficient")])]),a("mo",null,"="),a("munder",null,[a("mrow",{"data-mjx-texclass":"OP"},[a("munder",null,[a("mrow",null,[a("mi",null,"F"),a("mi",null,"cos"),a("mo",{"data-mjx-texclass":"NONE"},"⁡"),a("mo",{stretchy:"false"},"("),a("mi",null,"ω"),a("mi",null,"t"),a("mo",{stretchy:"false"},")")]),a("mo",null,"⏟")])]),a("mrow",{"data-mjx-texclass":"ORD"},[a("mtext",null,"periodic drive")])])])],-1))]),t[3]||(t[3]=Q(`
julia
using HarmonicBalance
diff --git a/previews/PR298/assets/introduction_index.md.DWcINcP4.lean.js b/previews/PR298/assets/introduction_index.md.BoGsh2BE.lean.js
similarity index 99%
rename from previews/PR298/assets/introduction_index.md.DWcINcP4.lean.js
rename to previews/PR298/assets/introduction_index.md.BoGsh2BE.lean.js
index e6207b7e..7c31a3d9 100644
--- a/previews/PR298/assets/introduction_index.md.DWcINcP4.lean.js
+++ b/previews/PR298/assets/introduction_index.md.BoGsh2BE.lean.js
@@ -1,4 +1,4 @@
-import{_ as i,c as s,a4 as Q,j as a,o as T}from"./chunks/framework.DcvNxhjd.js";const e="/HarmonicBalance.jl/previews/PR298/assets/omwflhu.B1eISI2b.png",V=JSON.parse('{"title":"Installation","description":"","frontmatter":{},"headers":[],"relativePath":"introduction/index.md","filePath":"introduction/index.md"}'),n={name:"introduction/index.md"},l={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},h={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-4.03ex"},xmlns:"http://www.w3.org/2000/svg",width:"48.629ex",height:"6.03ex",role:"img",focusable:"false",viewBox:"0 -883.9 21494.2 2665.1","aria-hidden":"true"};function r(d,t,p,o,k,m){return T(),s("div",null,[t[2]||(t[2]=Q(`

Installation

It is easy to install HarmonicBalance.jl as we are registered in the Julia General registry. You can simply run the following command in the Julia REPL:

julia
julia> using Pkg
+import{_ as i,c as s,a4 as Q,j as a,o as T}from"./chunks/framework.DcvNxhjd.js";const e="/HarmonicBalance.jl/previews/PR298/assets/rqglgfs.B1eISI2b.png",V=JSON.parse('{"title":"Installation","description":"","frontmatter":{},"headers":[],"relativePath":"introduction/index.md","filePath":"introduction/index.md"}'),n={name:"introduction/index.md"},l={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},h={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-4.03ex"},xmlns:"http://www.w3.org/2000/svg",width:"48.629ex",height:"6.03ex",role:"img",focusable:"false",viewBox:"0 -883.9 21494.2 2665.1","aria-hidden":"true"};function r(d,t,p,o,k,m){return T(),s("div",null,[t[2]||(t[2]=Q(`

Installation

It is easy to install HarmonicBalance.jl as we are registered in the Julia General registry. You can simply run the following command in the Julia REPL:

julia
julia> using Pkg
 julia> Pkg.add("HarmonicBalance")

or

julia
julia> ] # \`]\` should be pressed
 julia> Pkg.add("HarmonicBalance")

You can check which version you have installled with the command

julia
julia> ]
 julia> status HarmonicBalance

Getting Started

Let us find the steady states of an external driven Duffing oscillator with nonlinear damping. Its equation of motion is:

`,9)),a("mjx-container",l,[(T(),s("svg",h,t[0]||(t[0]=[Q('',1)]))),t[1]||(t[1]=a("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[a("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[a("munder",null,[a("mrow",{"data-mjx-texclass":"OP"},[a("munder",null,[a("mrow",null,[a("mrow",{"data-mjx-texclass":"ORD"},[a("mover",null,[a("mi",null,"x"),a("mo",null,"¨")])]),a("mo",{stretchy:"false"},"("),a("mi",null,"t"),a("mo",{stretchy:"false"},")"),a("mo",null,"+"),a("mi",null,"γ"),a("mrow",{"data-mjx-texclass":"ORD"},[a("mover",null,[a("mi",null,"x"),a("mo",null,"˙")])]),a("mo",{stretchy:"false"},"("),a("mi",null,"t"),a("mo",{stretchy:"false"},")"),a("mo",null,"+"),a("msubsup",null,[a("mi",null,"ω"),a("mn",null,"0"),a("mn",null,"2")]),a("mi",null,"x"),a("mo",{stretchy:"false"},"("),a("mi",null,"t"),a("mo",{stretchy:"false"},")")]),a("mo",null,"⏟")])]),a("mrow",{"data-mjx-texclass":"ORD"},[a("mtext",null,"damped harmonic oscillator")])]),a("mo",null,"+"),a("munder",null,[a("mrow",{"data-mjx-texclass":"OP"},[a("munder",null,[a("mrow",null,[a("mi",null,"α"),a("mi",null,"x"),a("mo",{stretchy:"false"},"("),a("mi",null,"t"),a("msup",null,[a("mo",{stretchy:"false"},")"),a("mn",null,"3")])]),a("mo",null,"⏟")])]),a("mrow",{"data-mjx-texclass":"ORD"},[a("mtext",null,"Duffing coefficient")])]),a("mo",null,"="),a("munder",null,[a("mrow",{"data-mjx-texclass":"OP"},[a("munder",null,[a("mrow",null,[a("mi",null,"F"),a("mi",null,"cos"),a("mo",{"data-mjx-texclass":"NONE"},"⁡"),a("mo",{stretchy:"false"},"("),a("mi",null,"ω"),a("mi",null,"t"),a("mo",{stretchy:"false"},")")]),a("mo",null,"⏟")])]),a("mrow",{"data-mjx-texclass":"ORD"},[a("mtext",null,"periodic drive")])])])],-1))]),t[3]||(t[3]=Q(`
julia
using HarmonicBalance
diff --git a/previews/PR298/assets/ivufurx.-rvD5x0j.png b/previews/PR298/assets/ivufurx.-rvD5x0j.png
new file mode 100644
index 0000000000000000000000000000000000000000..5c2275e8d4c2c1d3676bc6817cd94541a465cda4
GIT binary patch
literal 14300
zcmZvD2RxPi`~UHzC<;kN*`n-SnGa4BBAJmrA|u(GkdaZ6l@*d?@4ZqXD|@dp!m;=M
zU-!}X`99y*|976(t4BKLKKK2(KiB(ukLwP+ryz6o4AmJF3U&6*ZS;K<>Msox3g;F6
zU+|j)^}u%c-zft*88qq$`R`p-S~v=}wbYTN%?$<(CXWOL@=t@tLUXdp}UtcQmALQ!#mJ_Vc?F)O)@
zI-FN+7_l#$j48e({Ei=&9)-fE@+L;1aL-EMqv-Ibrlz7ewRvOYx7bxPdT!mi)$3{}
zq^+Z)BPDf$rO1{EKH#-BRPFAnqm!VJcIl>#QFtw5@)fzr{gnpVo}Qki>OD^3G)_J~
z+n!IVyfGLbBC)G%Y_{l#G9Nlzl(h|E{rmUtw|90#cYmimd-iP1V=v2oHiAu^^I<75
zE$vvz6J15ccI^rWl8(>M31-?8X{o4$+;`Wnk2=*$kj(`2E6fN`5Q-nHhgVd%YG`Q4
z%gcv%zIgFM*JJ1F*RRGu-bvKe)nQilwwA6_g`5vG8ZLdx5Z0(bb^=9A6?WTh>N}aZ
zxHtnVJGGta$8)UIB5TvVQ!DbE>I;3^^_QmC1w
zlQUEP?Q*_c(DHO^?3F85BqSuz7s$!Cc4iWDv`X6Uzm15Pnwen{vs!ktFw{s^5>q|?Q^K?tZZcqPam)ke}bl$*HhdcHz0U_i}f-
zaza7^rZ_4}-O4K4-VFXIDJe-^kJ9y^Pi`063l0dD{uRb3BL>@GFaGBB>sz(LEX9;v
z7$wWt(sF~`lnfM|o%-QwNJ@tF6BC9gFK;}WZ{4)|pR`2T)m7drDkyAjZIxicnv5*M
z>y3ERd*;T+^~A+%N=r*?jt-V$VqzleRakpME?w`pj8~YMpU=3TZYM-tk(QmUz;xc(
z*}14#Y#~6~`(8>%ZlV}T)6^<#BIeY{8uklkzK&El4lKZ}elk>S*`KR_0`FYqSPa+0
zQayeu?FGTY()vqP{;1P*!4cn5Dk#TZz8sznN
zwh#RHF+M#l=(IduWZswW%1_n$PQpi0N=j5jgu;&`5FHT_;dAQjPyLE9KTPMz$;Cx0
zZi;@(DxLPwQq9|`ox8g(a_K6p#wCUZ24efmQh6F8w$m-JWUQ>R3}O8#Z79@br|5Ii
zevR_-=DHkl*0o+Z$f;Xc@KX@(Z7yh)TGNvp?2R4K2s^NooTcP_pPikZpP!$Xx3azR
zi>q?kJ19s_R`!hR%N8Q>eXk1XA%?408#^%RW&
z(i6B&5x8rx@$cNdYj1B~Br}4ly|z*;{Duft+&rhM*nQ8zPrrI+IyOPn^?b)#yLe)B
z^ldaO$R$CG#BuW8(u%s+Sz9lYDvIQ}Zdq}0aaHLYweYnEpp%Kjw&^%HTKoDOXWHWL
zGQ0kT!apNr^qH~iCR6?x>0GPH8tfce=gBbFNU9L&EVcRhdGo5YPoG}IuR4o2M{$WS
zx1BD?b9cLCjdu<8Xi%>2cm1%y-%O
z49$?IAmO0cd<`Fk(zA{B2L$IL3`_r7@poM@g5>+3xq~SUeJ@KA|Aks6(Dc1r|Mmrf
z@1`Wk-=!>LZsA+{(G{jFJ2!9)Ma$yo*)AA=N1N-@&^H`^oH*vPHl9Qs1-27tB1iP*
zkqo8B$3bmB*KhQtmpq63?1aZ5$*CWVZ4?}mC{x8a`|rL2d|`p;(Cp`4bl7*(^YY+J
zE@FR{Hj)l{B}KuAi$Y0A1-)X_usVyPIsXm+rXO^H@k?R8DS5
z>iMhEzM1l0BqI|Tc%Z5Zpc(ivDM=!&YhbQ(`!saOS}qKQJ``G_?ZRNu&d!eiIqDZL
zU*=?I7jr^aAtWN&T3JzIjgU>X`4T{aE_7Nk@bo+qbKec76|YW8s`DUk#`{fm5*p#a
zzyKgTSIs^z3AMO~+d#f?5II-zo9USuT_{;@?pFb!mv5fGcu^WXQf@D7J?^E#x-d|X
zmh!2U^3U>wG~icNRmsW84J_2w*8coyFyBcp<+r`JN2&w>XK86UR_z{moBiU}!ca+e
zcAH<%I0tUhuZfr{)Lne*2Lk38ilnoO6x7tnr85{%Ff%e5PJDjen`&|9d`F+I=RuqB
zQtl8{h)F{zb#-+$RGG`s!IrzbyQKzgwFGvzNp<^OOp;DPx}juJE`}uNYkGQmud7;)
z4mB;UxC5qtTKuqq){~!~zqGtO|H;v2Nll)(6D-`;sOyud?-5zm!J8*wQO605cpn%T
zB&RwzECQrQmdL!MxsrS<=;Fv)!*z>(ZtL;C9fnN#7YB>xpOfp*C3|_HHu2&qfVOz)
zM*Ei%6y8i%dHd=WF%6AJd#79!XGCOV_3m5-y3n{e@|yC8=vI^PCZ@34{U><&_~6j3
zR%4}44ZA+vRsJCV^y$+MQ~so+B+JUz4u4^9FkzTwqRdCN3>L+N%=_uRSz2iwru`pA
zJ5%Ly9+u@puicD}z5YZ~NJ&acDm*+Ks{9s1M_asb))O9kS%g-xutdoAWow%|H!Hk~
z7Iw_8)62y?tafuw6m##l47<&5IammJvmL7>ub=t}Q9W9;F0
zO3XSeP5E%?J@r{n-Vn`XKH=tttyz+C=`vsBCvrc0?UaYdcvBDMdd;o(Up47l^v~PS
zCcz{&_^_sNpWg)HNd~<#+|I;7{r%$y19B9*5F0{?elfiWO4NiNg-CRiGWPrR@!J_E
zFC6{`stU+~ocOZHF&sJh!TF|PK?^~sq>ZzGK%<{pE!>O@zKalh|9(?V9j_?zL8Q!)
z1LYpn*_fl+&Y6eUoWWi@4`~dAlDRIC$O4dr7ePUker7r<>$GKYjYnsor$ypNdaSO}%#Q8rp7udj+;8hfZbxuGc`pBO+=cekLX+=v4tN
zCTmbJZa=@AW}xCTX@MdTJ6Kot?~c24ygC+DU*49KIGUMVtDvT!(0KT8cpnJaDSko0
z{3q>+;!AUL-w`%zWMtHz%PaEdel-?fZ$`_=JQ*$x3!w08YHZXfwbl7TU4Aa9
zKfrh~2>NH%R;EtXZWBx5Wnl-4@Wg}PDKGo$&y$kAynNGuH->$y8yY8&#Nvn2d(U7g
ztxv%(d3ZX;#>QM;$}<;Kwl+1@Wq6=CZXo^5aMCp`Nkv)Oel3=#cL$DGDW0AJCHJS!69%q=A`I1QiK|#W{(}W~|%a2AYo#P%B
zLpcDNO}@WBJ6L4S@udFq=Kxdq7niDp03rK1Bf;33qeEA9^}a-p-8<|TNjutQZdj6`+;eW&K1%LK^P}f<
zF|sJJb#G1&cu=TApf7R`r$4`beLh6`*YvbB
znx39s{BS$Pp4i0L7^t~}FcZ_{d`?XQ++jFjf-`4!;jDmgR#u9vhYb>|#o)x&Kjs~m
z$D9`gjrvFW!B2N(0p(K*-@o?_P>2`$x_A>BCVZ<$&4tX5AGu>&eZTsn-noMm2gc4p
zTTk3eHT6c@`-dKPY3csh!ADRRdfd?3niH5)i;9XOX)`l3A6B_+K*L&coCe+Cr;i5A
zFiiwVIpOolx`40*!|N`Yt}91MYpr7CKY)gJ+Zu6%R=6c>
ztEV^aQzL~!x%GSwS-(g~QXinX_w(Iq+jmZh{uCLal#WI#^P)lEH5yTyvt2S7J^4eh
ztVqd})By1>8FgV}XJ=<*thW#xN-+Q|zuTW`-rdz@`};@I^XJbIN&||BEvHfv4O)%X
zZMiN<%HP1i;EO??TE@oe>h4CL?xU7y3G@=+($^sJ_IP1+UEQ3n*`L3DEhzDzyd3I+
zcStYi_r=F#sAUaSI6m?4@PHZ#fBib(qvz2fa48cxpbpl{;}T)F*D(d{n@eMf0p8x;
zf1Nln&*z;M6OZf3q>73?-_xX-TURfG8{;vmxD!+l(4%O4!1Bj&$2Xg3VI(>D`U_kdP2qJqD$&Hv+M(V4YwXqA&^H
zzsovIYe`A@)afm+uI5XHZ2zU5g3xxc=)U4L{JzWw${HF@+shLjDKhG+st?F}`ucKU
zd%|s;@5@OPan5ftVn7TQAa)I3z5tIL<)vDEe3e!
zJMYE{rmK8vpmDVTItLsRGpK`^ECCX@G*ZzAFYrW>ay5
z1hoCl9DaqFd3SG5YY9slZ{EDg5Efv$FHi#e5WI!ZOV>jYn*oqB?QX0z8V3gl$X}7|
z2sNR^)rTO3hD4-Zt)A;*^f&mNOnEo{V%i0ES=UY@ng+9U>ao0gpn)t+t6C4EJHA>6MLSQ5L*^dL!L*7(uenAu4QYfX-8g{W#(f5e{
zQDoefRE%iS{8nVqE4%#YC2{p*v5n%Cp>N#h|LDfQeW!YB&qS))ifHAqpWu)}1Ok!w
zE2(4JLU9TCW&MBN4Ex_FTL~*HxAC-7pr=SGm-?u9S*KmC8P8U-`j=j-uKUg#hb5at
z<2cZaH~
z>Rs6}x3yNS5-V`9U~}ZVdTdYlLn-NSM!^wscUBZW^hf{`Eq(${>87P?_o;1mx6!A~
z%^mhQUTR>bfJs7q(`GW5k`J~I*p9vL3zL%Qp{WWA7DEGKVQH`sCGQ9wX2iclMRouF
z{bI|ZUf@?ViJl%%m(ZEC%I#)zY7XDV#kIJT;h@H!9gEYNnwkxo7N0R{)D+nP<0_-J)O&4hYyj+*^v(-GMt{
zZf*|9H@)6!ghI(Yu1Dzy)jd#CL%1g5J8*Jl1HuFSL>Jo4cGiH^jb86oR@5%Dxs}s5
zzp=}vo-G1KolThtC+8wCbe3eWw?JbghBrG_1q60JOG9U%u7j0DJx5UuXFB7uh`-CukP;d
z@^T@61SaYF*Jnv(Q(vDIG4Evz7#$sj{ZhJeS<4d4GlixWWQFcweF0p=Won6%MQn&RKh|9D^h
z(HjrO}5`ra{_Rnbn%pn(!OK**G+{27|%X
z#}XbMho4k4q=PA*Lg$}Og`g-~g;n*i;qYJ&_UXaF0fHN(q~Vc~COPwy0I~?d0lik?
zxRekU_O!iI!sir7v$p~A%w6U7^XJc>fBg6{h~ut0AH1#K9rex4K||k#P}n|j<1%9$
zFsGLawKQgwwvnrg$W_Nh3vDX+N-{FzX4z%1WGpw}%klf|f&h!}?wP92jcWikov(q8|I(nGXv3Eg`~$^L+oF
zX_KR#8#vwa=BCLQ6`@~pa&oqI#b7#ft!=dIQ^jardZTEuIv&>|fWi>tJoV?20B`!&
zKBcGg#I}NHjqHTYFE(j*oIP1;sRHZm?&}lpehL-+s>=IEYisN3(U2bZZKm^bVHFh>
z(A_L73g2i-t~_I4WXw`LiTY7pT2UdsO{bM3aE7Bmo%qzLQ;&-@9kkNA>@ocv_a~>P
zKd7+U3sLVCgCZ<1G={Xacmo%OdIs-hW@d)wjJy|eBi{gz!=0J8Z>bn$A(WBZaB;tP
z??*iz0=)0c-$-qq`3x=yyb^(sLR*LtcI4da&VXb$^35A!klsOpR>Mwk7r^&&-yC>^
z?(Xj|g@%j4VB+H9fN5w6Dd3=R@w!+_uNYu%TCTwc;*Dw9pY;ungD-Z_VcPzhIV#3X7YHr;S)oevtp$Hd^L5z`)}2zgvKI3bX*FaAGGEiu^e;
z3-B+7JSqV$!$0Ugh{F;q`|KL&GK!EyEpmbwo60ckwyS(rtD^b%;ll^uUOOJ~3LuFU
z(Iy3D$;sX$P24R&Ag#u#ExXu$T|;UMp{FCd5)yU)hF#cDYU$u}D!mjxbaHmSNkU2J
z_n^Q8JTd^x)v=?)l6cNA@gD+bz{X<0zIb_g7ax4*Zdv)&5F%}8XIGe!!G=XuNE#7v
z9#D{VmU|&$Jm74`2!q9RbJ1VW6!H_cMABCsGy3$OoDGzGxv9>Nq(GkEIjM|B*N>
znn4tAfq@toQuZrsY#DiZVR@ha2BXfLt*aVQWpU3Qaw^Kpum4GnVKU*Fc&Y2wB3xCo
z5iii#Ukxw$2ve{rvDT-qSvPn01ywVTzYz@}A6qU2HazM1^PlVMX;+gXb515G#P
zdLTUje~XNs
z2Tl}8Scj=fx(c8in%{NPBJ4K!gJ7tN?@W?1yyY?c1{}>mFt+*ocbGpQCL{aWWGoE+
z+mE)wE>)AFYl^rtgWujjn#OD$48z%kG=rY7w`GGk=KvNh;eLuuv9pat%PI&
zps4oCoS*&BEPViW`f+-22wV18-H}Y3-hizwDg13M{X#S^j-@Y@$iJD$x&K55lz#Ml
zuU}zvi~rs6D6dDk`Ginl<4jJx5x_FW+e!7al&r8i6Yu8#5-&m!f>A5bf68;3dOTaH(~y0G^+D1f5n
z4-tAq@pFL0mF2
zGn+sFxLGbg`ZvTVwN1Cs$O|l+;Q~9D%>iMi${Jx(aP!KQskxpE!um{&JO&VrP!rJG
zF84*cV$B*t*FIBoUCXKIX*E^VTWD&SB4A@Pr0@%XYKL~lE}Gf~28!3w6V_XozMaFd
z2yKov21WJF3Nuvl1Xw&cG65idR9Sm~Wf}7h$Z=JDd0>1Qo3vfGjJc<)q{L%6$UiR_
zC(pdMIrN0=%-8yTC%`8cmtE+U0k=U2>sCKx4hO>&t{|93v>Ys#tSm)gZ)}86UKS%KXXshU5NT2>s=>kUg8NZ`cdd5vY=
z-9ftbp!)F`IQm3nIKk%$sfY{7C20P4b(20-+H_jEKRGC
za&QN)gTTeY~a&%7TX)7QThZOX5F9
z(TBTonPr1X%%6|rK@d&P>3kgs*}kG`6a5kSM48E6e@ybY31eDAvwdMqAc?wEm;7qE
zRGnE8h>CwzmLtV~R2Kws&5&q<^;LL+f&jNpADn9tJO4}wv~xoNLy}?5J)cg}3%AnS
zkLS;ff}cJjiv9rsgt)sBk`@Bpzl>50L79^HoZfhNyb4m_a{agAUPg^1p*TK^NGc$J
z<8%t!s^Rhpd}57D|FMYbLb>n$^^Sx4%Xd5P!(k#Rcm_A%Dn{
zow)_8{PbyFs%ZATtFp4Pi;fL%q*Hi)WgDPOOK28#x&0_?GjuHtxG8LGZ6jo_kT|=z
zfN`Rk(?@&5n(pe=0MXjMzAZ4$Erp$3^`q#z=Qj{Ps~F7y6AXErSs5AT_Xj7PQaUtr
zbv@hp`g(dMkVDsi_Vgh#I9#(BRjV3&Us*YfFmN^2h{&j@jGo8y(=Rl$tcIF~2r7oz
zQ&dU^T
za|&DMx$d4GP*9wLg1sGNX0+K4%NQ;O0iB`N4%?h48S`*m?~nmuu?xCB=LxW?5
z*sbPrdlPiiRTN?cTXz+tV&pe#kJJneQ|uX4na&Hq5C+WbUB5|1MWv|~v-y=%0vY{q
zSO6`M(IYJ*bNyQD_wV_fXNiblcB~K+7#LVK7K3ag$S8+LMznMK_I7p#QdZm23JVcB
z-8t=dk(*HY{(W!H0ovEnDNpU~H#RpN>~0PE!)E;P;~t2|_C3L)O0YbEXg(NA=DHX}
zyFIoF&Oo75!0oiIo!woSG@Snyn3Izu%GyE;AsZyGcT(@e!p(JK?lqo+Su5L7qVYnS)t@Lx@~NH#Z?0v2m5G=sk*Y{cfA^d
z4M;>QhFM(XjA{m-Bj9$HT2w^D*~>Rx1!Ti19_~A*bReNW=ogZ(I=yW;6A-^JCkwH#
z=qFqhoxEn&Cd{wG>9mV(4MVi#f^7}%Zf<{C1K4^Hxj};ni=PvOc@V&jeV8D9SYj2g
zndLDP?+Cw~{LPlj<$4mx*Rro#1_wL4QHe3{gZ2c`KsX;QW|e*L`JnSdvI(IY2GUXY
ziO(l}>Xs+N6*b51{(6I`6*^N5yGsaT1LlMB{+5%b$W2%Pgb=LJ)z#JU@o`9vv0%U
z)pg(K8L#sJUr-#b1KeWGD6l*oVEzRh4VXiEQne8&&zzB-{-Dz7X^qDLGR>#|*|)Lr
zHiHW$uK~Wn-{1e`%XTEUFmkp_Qv&x7GFwoQ!PLT=T%J2};hiv$p(wUv)cA@X4*2U^
z$oyat8%Y-Ml^Zu814RVx9;N_sZ=3jDGPH{=9#~jlplg2%rtGS6b!3?9N+S~1dI#6frj}{_
z#opQoAP!uW42W5a9;>c(dLGQ{in^?S{PYR(6~k}A^vNJ*LHENfvN5m^3=d|>1`Y|b
z7$BC@*FJma`9wIa$F}~?>J-KSoM)Jww4X&R2H;EF@-Tb>UqI=1M^O>RTTSGC{rUx2
zGKHTroaMm4J4#AQ7`dFtKfH|0{Q}>w=LTn`U1TlT9=71`-mFV|I98*TJ0p%`#uO%-
zm;snkGNAyi2rAxBbQOR?2kPQjQnxYwk>v?SN;!qhWYm*ja>~-2%2{oDRyL!fyv=
zss~=eXf3og`J6s2Szwu&VBYr_fyRT*7GMfD1A})psu^Ab0($lJ^|~&zsSqm)nQOhe
z65gb_&9(>72!1;qgQMeCXJ;oe6y`|=2^)M|AyI5$VxrDN7A}{80nD=5S?Bg-2p2Df
zNN=jM^YgzsxXe!b4$V+zKd*M@&S{d3-yN`pD8XN{UCg;i^4!mFbcrgf<~E!>Oc>E6
zLt+gx*;P-0uyb&5h={}mK*KI5D9G}RdUj&}jO2Vz`M^eLmK@*^d-Hl(d3huZl?>QI
zqA|_pVykSs2w@X&M=g&7rt?jJJ{+mQoFl)w^tZnVfO5%n)PWTEaE+-E#v%BfH6!1>
zdGki2TF|Df5*qT3y3!5ZtjGtR=OV9c#JWASAWnb|54;vWbO0rPS>-{4`OX+WNQ8(E
z)51gTYWw+%j|6ak4pHcb_mqIWn
zK<%#ijmWUr=||SgfY`e)zcUBLI?i@Jr_P-nD40oCPJ<}rw>a%M?5!i%05IgRSsw#v
z1F#iv74`xzuMM~oak?*jC_|*>xc(Y>M87>as5#+Qq}jV~t4HxokDFijktZl*jQTum
z=b#ra4DdFdf0**@dP^&{<#G?F|5A;nFGo&qJj{DgQkKEgiBH|%XrMHZJtTS_?m!OW
zxjbG6V?n;ppBK5Edh}W6+FGL7yH+j-zy=`ryU+|^w0Vee_h%3n3>|m^V8eI@xOs38
zs*rCse!!PtklEIa%#AMWwuq=`EEn!kt!QX^b_y&oWJe7RGEC=pwzv6rtYNyD*avb3^BQ^9P~y`kob+pX*9ckdmhKJRVq>&Uk{fCn|nZc-#TL1)AF#0s_Ot
z-gTH}fHM&R4o-yYQ-CANtT@7c^=dTOKM1w#n{NoY
zB!h-W6JU%2!P=gTsGOW9fE|#BuR@BQ+W>6n^k!cUSU)iHfpGv@0ycfD8(9kW#nDVG
zyrrID45KLd{O0V5Qu6Y_Qzw96!7pU*-qkKJIa?vq2;1rCt|5%c`TF_gA6fGd{#so0
zsA2i-9ly+muj{t*H7@QlL+AVkEFGrH8r-G+21$?I*)%*N8m442HZ^t-g-qu`mL4u0
z9deOSgNY993mUgN*4+XyMR%|6jwt9sN2od6WkcR!2c9>uyvIdC0Eq{CbXTsVf_a{u
zZ3Xi~K;RjZxvIArL`CBR)G{?zz;=d*34*Bv9z)werWs&KVFNhJ=)8=FLIQ#+16}xA
zgiPpV=hewO46=9b=!-W23D>XpyLRElop5I0|43M&tgk3P{3i$>DKe<7Ue1rv-LxL$CS1$$uX>CbJDlQg;S$*bkNOj-5nQRQohbXKOhfB>`aEE?N%pYq1-^HN7d}#O1)2l%qxSIF*Gz(QF&v0a|h@K
z(5#~Td>gR!4i67QD`{LmWo8cN83I?30ZJPb)LdxR6>yc0uK?Bz(>1ucI5Iyy?ErTX
z7QU>ag0y32Z3af8Gd_JXFf<$x-u;x30oK_2`|0r9kegejVNPRq8}Jmkb1>nbrFMyg
zga={}KR>^gmKKO_I@~>w*m-7d&ILv<~9v;KrO$ZeGM>9f}V$75L_)j?3h7%RNT>m4Fd|Ne2z?!bx=^4Pyo;gVPctBVYC
z(r@6PIN>d(&~6!}gH7|hz%gKBYbNQzL4mrJ_zm}d4W4I!$N;G?c;>-qYiqvm2@I{B
z%c4SAL*OL|jrOTSj19vs?4+#3IC3hgxo9CAlt1`gcD;(~HFmSFr=CdwtC1%D3m+^7
z-$h_Km~a!|E68IX&>M)u6w%YPyHUm@fr!F*2Y2M5fBm4@|)f>GMa?`9?7Mf
z07Kifw246GVM^x3*X@%y)*joUcuB7FStTGkVBiiY^2E{-SJ-W2SQYLm1WaQcswYsK
t<8_q?z5QcO{9g<6|3BXLzw3A)?wC6AIHp*38UkU|om&d%Y)L)u{|845<$3@B

literal 0
HcmV?d00001

diff --git a/previews/PR298/assets/ddktigp.B-Cc1T24.png b/previews/PR298/assets/jcitgik.B-Cc1T24.png
similarity index 100%
rename from previews/PR298/assets/ddktigp.B-Cc1T24.png
rename to previews/PR298/assets/jcitgik.B-Cc1T24.png
diff --git a/previews/PR298/assets/manual_Krylov-Bogoliubov_method.md.DVmZeoVi.js b/previews/PR298/assets/manual_Krylov-Bogoliubov_method.md.DoOiZlmG.js
similarity index 99%
rename from previews/PR298/assets/manual_Krylov-Bogoliubov_method.md.DVmZeoVi.js
rename to previews/PR298/assets/manual_Krylov-Bogoliubov_method.md.DoOiZlmG.js
index 117d77ed..68025fcb 100644
--- a/previews/PR298/assets/manual_Krylov-Bogoliubov_method.md.DVmZeoVi.js
+++ b/previews/PR298/assets/manual_Krylov-Bogoliubov_method.md.DoOiZlmG.js
@@ -26,4 +26,4 @@ import{_ as h,c as t,j as i,a,a4 as n,G as k,B as p,o as e}from"./chunks/framewo
 
 ((1//2)*^2)*v1(T) - (1//2)*(ω0^2)*v1(T)) / ω ~ Differential(T)(u1(T))
 
-((1//2)*(ω0^2)*u1(T) - (1//2)*F - (1//2)*^2)*u1(T)) / ω ~ Differential(T)(v1(T))

source

`,7))]),s[13]||(s[13]=i("p",null,[a("For further information and a detailed understanding of this method, refer to "),i("a",{href:"https://en.wikipedia.org/wiki/Krylov%E2%80%93Bogoliubov_averaging_method",target:"_blank",rel:"noreferrer"},"Krylov-Bogoliubov averaging method on Wikipedia"),a(".")],-1))])}const f=h(r,[["render",E]]);export{C as __pageData,f as default}; +((1//2)*(ω0^2)*u1(T) - (1//2)*F - (1//2)*^2)*u1(T)) / ω ~ Differential(T)(v1(T))

source

`,7))]),s[13]||(s[13]=i("p",null,[a("For further information and a detailed understanding of this method, refer to "),i("a",{href:"https://en.wikipedia.org/wiki/Krylov%E2%80%93Bogoliubov_averaging_method",target:"_blank",rel:"noreferrer"},"Krylov-Bogoliubov averaging method on Wikipedia"),a(".")],-1))])}const f=h(r,[["render",E]]);export{C as __pageData,f as default}; diff --git a/previews/PR298/assets/manual_Krylov-Bogoliubov_method.md.DVmZeoVi.lean.js b/previews/PR298/assets/manual_Krylov-Bogoliubov_method.md.DoOiZlmG.lean.js similarity index 99% rename from previews/PR298/assets/manual_Krylov-Bogoliubov_method.md.DVmZeoVi.lean.js rename to previews/PR298/assets/manual_Krylov-Bogoliubov_method.md.DoOiZlmG.lean.js index 117d77ed..68025fcb 100644 --- a/previews/PR298/assets/manual_Krylov-Bogoliubov_method.md.DVmZeoVi.lean.js +++ b/previews/PR298/assets/manual_Krylov-Bogoliubov_method.md.DoOiZlmG.lean.js @@ -26,4 +26,4 @@ import{_ as h,c as t,j as i,a,a4 as n,G as k,B as p,o as e}from"./chunks/framewo ((1//2)*^2)*v1(T) - (1//2)*(ω0^2)*v1(T)) / ω ~ Differential(T)(u1(T)) -((1//2)*(ω0^2)*u1(T) - (1//2)*F - (1//2)*^2)*u1(T)) / ω ~ Differential(T)(v1(T))

source

`,7))]),s[13]||(s[13]=i("p",null,[a("For further information and a detailed understanding of this method, refer to "),i("a",{href:"https://en.wikipedia.org/wiki/Krylov%E2%80%93Bogoliubov_averaging_method",target:"_blank",rel:"noreferrer"},"Krylov-Bogoliubov averaging method on Wikipedia"),a(".")],-1))])}const f=h(r,[["render",E]]);export{C as __pageData,f as default}; +((1//2)*(ω0^2)*u1(T) - (1//2)*F - (1//2)*^2)*u1(T)) / ω ~ Differential(T)(v1(T))

source

`,7))]),s[13]||(s[13]=i("p",null,[a("For further information and a detailed understanding of this method, refer to "),i("a",{href:"https://en.wikipedia.org/wiki/Krylov%E2%80%93Bogoliubov_averaging_method",target:"_blank",rel:"noreferrer"},"Krylov-Bogoliubov averaging method on Wikipedia"),a(".")],-1))])}const f=h(r,[["render",E]]);export{C as __pageData,f as default}; diff --git a/previews/PR298/assets/manual_entering_eom.md.DCB_x1bm.js b/previews/PR298/assets/manual_entering_eom.md.C-sG7qQL.js similarity index 97% rename from previews/PR298/assets/manual_entering_eom.md.DCB_x1bm.js rename to previews/PR298/assets/manual_entering_eom.md.C-sG7qQL.js index 84e5b567..66e04aa9 100644 --- a/previews/PR298/assets/manual_entering_eom.md.DCB_x1bm.js +++ b/previews/PR298/assets/manual_entering_eom.md.C-sG7qQL.js @@ -1,11 +1,11 @@ -import{_ as e,c as h,j as s,a,G as t,a4 as l,B as k,o as p}from"./chunks/framework.DcvNxhjd.js";const b=JSON.parse('{"title":"Entering equations of motion","description":"","frontmatter":{},"headers":[],"relativePath":"manual/entering_eom.md","filePath":"manual/entering_eom.md"}'),r={name:"manual/entering_eom.md"},d={class:"jldocstring custom-block",open:""},E={class:"jldocstring custom-block",open:""},o={class:"jldocstring custom-block",open:""},g={class:"jldocstring custom-block",open:""};function y(c,i,F,u,f,m){const n=k("Badge");return p(),h("div",null,[i[12]||(i[12]=s("h1",{id:"Entering-equations-of-motion",tabindex:"-1"},[a("Entering equations of motion "),s("a",{class:"header-anchor",href:"#Entering-equations-of-motion","aria-label":'Permalink to "Entering equations of motion {#Entering-equations-of-motion}"'},"​")],-1)),i[13]||(i[13]=s("p",null,[a("The struct "),s("code",null,"DifferentialEquation"),a(" is the primary input method; it holds an ODE or a coupled system of ODEs composed of terms with harmonic time-dependence The dependent variables are specified during input, any other symbols are identified as parameters. Information on which variable is to be expanded in which harmonic is specified using "),s("code",null,"add_harmonic!"),a(".")],-1)),i[14]||(i[14]=s("p",null,[s("code",null,"DifferentialEquation.equations"),a(" stores a dictionary assigning variables to equations. This information is necessary because the harmonics belonging to a variable are later used to Fourier-transform its corresponding ODE.")],-1)),s("details",d,[s("summary",null,[i[0]||(i[0]=s("a",{id:"HarmonicBalance.DifferentialEquation",href:"#HarmonicBalance.DifferentialEquation"},[s("span",{class:"jlbinding"},"HarmonicBalance.DifferentialEquation")],-1)),i[1]||(i[1]=a()),t(n,{type:"info",class:"jlObjectType jlType",text:"Type"})]),i[2]||(i[2]=l(`
julia
mutable struct DifferentialEquation

Holds differential equation(s) of motion and a set of harmonics to expand each variable. This is the primary input for HarmonicBalance.jl ; after inputting the equations, the harmonics ansatz needs to be specified using add_harmonic!.

Fields

  • equations::OrderedCollections.OrderedDict{Num, Equation}: Assigns to each variable an equation of motion.

  • harmonics::OrderedCollections.OrderedDict{Num, OrderedCollections.OrderedSet{Num}}: Assigns to each variable a set of harmonics.

Example

julia
julia> @variables t, x(t), y(t), ω0, ω, F, k;
+import{_ as e,c as h,j as s,a,G as t,a4 as l,B as k,o as p}from"./chunks/framework.DcvNxhjd.js";const C=JSON.parse('{"title":"Entering equations of motion","description":"","frontmatter":{},"headers":[],"relativePath":"manual/entering_eom.md","filePath":"manual/entering_eom.md"}'),r={name:"manual/entering_eom.md"},d={class:"jldocstring custom-block",open:""},E={class:"jldocstring custom-block",open:""},o={class:"jldocstring custom-block",open:""},g={class:"jldocstring custom-block",open:""};function y(c,i,F,u,m,f){const n=k("Badge");return p(),h("div",null,[i[12]||(i[12]=s("h1",{id:"Entering-equations-of-motion",tabindex:"-1"},[a("Entering equations of motion "),s("a",{class:"header-anchor",href:"#Entering-equations-of-motion","aria-label":'Permalink to "Entering equations of motion {#Entering-equations-of-motion}"'},"​")],-1)),i[13]||(i[13]=s("p",null,[a("The struct "),s("code",null,"DifferentialEquation"),a(" is the primary input method; it holds an ODE or a coupled system of ODEs composed of terms with harmonic time-dependence The dependent variables are specified during input, any other symbols are identified as parameters. Information on which variable is to be expanded in which harmonic is specified using "),s("code",null,"add_harmonic!"),a(".")],-1)),i[14]||(i[14]=s("p",null,[s("code",null,"DifferentialEquation.equations"),a(" stores a dictionary assigning variables to equations. This information is necessary because the harmonics belonging to a variable are later used to Fourier-transform its corresponding ODE.")],-1)),s("details",d,[s("summary",null,[i[0]||(i[0]=s("a",{id:"HarmonicBalance.DifferentialEquation",href:"#HarmonicBalance.DifferentialEquation"},[s("span",{class:"jlbinding"},"HarmonicBalance.DifferentialEquation")],-1)),i[1]||(i[1]=a()),t(n,{type:"info",class:"jlObjectType jlType",text:"Type"})]),i[2]||(i[2]=l(`
julia
mutable struct DifferentialEquation

Holds differential equation(s) of motion and a set of harmonics to expand each variable. This is the primary input for HarmonicBalance.jl ; after inputting the equations, the harmonics ansatz needs to be specified using add_harmonic!.

Fields

  • equations::OrderedCollections.OrderedDict{Num, Equation}: Assigns to each variable an equation of motion.

  • harmonics::OrderedCollections.OrderedDict{Num, OrderedCollections.OrderedSet{Num}}: Assigns to each variable a set of harmonics.

Example

julia
julia> @variables t, x(t), y(t), ω0, ω, F, k;
 
 # equivalent ways to enter the simple harmonic oscillator
 julia> DifferentialEquation(d(x,t,2) + ω0^2 * x - F * cos*t), x);
 julia> DifferentialEquation(d(x,t,2) + ω0^2 * x ~ F * cos*t), x);
 
 # two coupled oscillators, one of them driven
-julia> DifferentialEquation([d(x,t,2) + ω0^2 * x - k*y, d(y,t,2) + ω0^2 * y - k*x] .~ [F * cos*t), 0], [x,y]);

source

`,7))]),s("details",E,[s("summary",null,[i[3]||(i[3]=s("a",{id:"HarmonicBalance.add_harmonic!",href:"#HarmonicBalance.add_harmonic!"},[s("span",{class:"jlbinding"},"HarmonicBalance.add_harmonic!")],-1)),i[4]||(i[4]=a()),t(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),i[5]||(i[5]=l(`
julia
add_harmonic!(diff_eom::DifferentialEquation, var::Num, ω)

Add the harmonic ω to the harmonic ansatz used to expand the variable var in diff_eom.

Example

define the simple harmonic oscillator and specify that x(t) oscillates with frequency ω

julia
julia> @variables t, x(t), y(t), ω0, ω, F, k;
+julia> DifferentialEquation([d(x,t,2) + ω0^2 * x - k*y, d(y,t,2) + ω0^2 * y - k*x] .~ [F * cos*t), 0], [x,y]);

source

`,7))]),s("details",E,[s("summary",null,[i[3]||(i[3]=s("a",{id:"HarmonicBalance.add_harmonic!",href:"#HarmonicBalance.add_harmonic!"},[s("span",{class:"jlbinding"},"HarmonicBalance.add_harmonic!")],-1)),i[4]||(i[4]=a()),t(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),i[5]||(i[5]=l(`
julia
add_harmonic!(diff_eom::DifferentialEquation, var::Num, ω)

Add the harmonic ω to the harmonic ansatz used to expand the variable var in diff_eom.

Example

define the simple harmonic oscillator and specify that x(t) oscillates with frequency ω

julia
julia> @variables t, x(t), y(t), ω0, ω, F, k;
 julia> diff_eq = DifferentialEquation(d(x,t,2) + ω0^2 * x ~ F * cos*t), x);
 julia> add_harmonic!(diff_eq, x, ω) # expand x using ω
 
@@ -13,6 +13,6 @@ import{_ as e,c as h,j as s,a,G as t,a4 as l,B as k,o as p}from"./chunks/framewo
 Variables:       x(t)
 Harmonic ansatz: x(t) => ω;
 
-(ω0^2)*x(t) + Differential(t)(Differential(t)(x(t))) ~ F*cos(t*ω)

source

`,6))]),s("details",o,[s("summary",null,[i[6]||(i[6]=s("a",{id:"Symbolics.get_variables-Tuple{DifferentialEquation}",href:"#Symbolics.get_variables-Tuple{DifferentialEquation}"},[s("span",{class:"jlbinding"},"Symbolics.get_variables")],-1)),i[7]||(i[7]=a()),t(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[8]||(i[8]=l('
julia
get_variables(diff_eom::DifferentialEquation) -> Vector{Num}

Return the dependent variables of diff_eom.

source

',3))]),s("details",g,[s("summary",null,[i[9]||(i[9]=s("a",{id:"HarmonicBalance.get_independent_variables-Tuple{DifferentialEquation}",href:"#HarmonicBalance.get_independent_variables-Tuple{DifferentialEquation}"},[s("span",{class:"jlbinding"},"HarmonicBalance.get_independent_variables")],-1)),i[10]||(i[10]=a()),t(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[11]||(i[11]=l(`
julia
get_independent_variables(
+(ω0^2)*x(t) + Differential(t)(Differential(t)(x(t))) ~ F*cos(t*ω)

source

`,6))]),s("details",o,[s("summary",null,[i[6]||(i[6]=s("a",{id:"Symbolics.get_variables-Tuple{DifferentialEquation}",href:"#Symbolics.get_variables-Tuple{DifferentialEquation}"},[s("span",{class:"jlbinding"},"Symbolics.get_variables")],-1)),i[7]||(i[7]=a()),t(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[8]||(i[8]=l('
julia
get_variables(diff_eom::DifferentialEquation) -> Vector{Num}

Return the dependent variables of diff_eom.

source

',3))]),s("details",g,[s("summary",null,[i[9]||(i[9]=s("a",{id:"HarmonicBalance.get_independent_variables-Tuple{DifferentialEquation}",href:"#HarmonicBalance.get_independent_variables-Tuple{DifferentialEquation}"},[s("span",{class:"jlbinding"},"HarmonicBalance.get_independent_variables")],-1)),i[10]||(i[10]=a()),t(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[11]||(i[11]=l(`
julia
get_independent_variables(
     diff_eom::DifferentialEquation
-) -> Any

Return the independent dependent variables of diff_eom.

source

`,3))])])}const D=e(r,[["render",y]]);export{b as __pageData,D as default}; +) -> Any

Return the independent dependent variables of diff_eom.

source

`,3))])])}const D=e(r,[["render",y]]);export{C as __pageData,D as default}; diff --git a/previews/PR298/assets/manual_entering_eom.md.DCB_x1bm.lean.js b/previews/PR298/assets/manual_entering_eom.md.C-sG7qQL.lean.js similarity index 97% rename from previews/PR298/assets/manual_entering_eom.md.DCB_x1bm.lean.js rename to previews/PR298/assets/manual_entering_eom.md.C-sG7qQL.lean.js index 84e5b567..66e04aa9 100644 --- a/previews/PR298/assets/manual_entering_eom.md.DCB_x1bm.lean.js +++ b/previews/PR298/assets/manual_entering_eom.md.C-sG7qQL.lean.js @@ -1,11 +1,11 @@ -import{_ as e,c as h,j as s,a,G as t,a4 as l,B as k,o as p}from"./chunks/framework.DcvNxhjd.js";const b=JSON.parse('{"title":"Entering equations of motion","description":"","frontmatter":{},"headers":[],"relativePath":"manual/entering_eom.md","filePath":"manual/entering_eom.md"}'),r={name:"manual/entering_eom.md"},d={class:"jldocstring custom-block",open:""},E={class:"jldocstring custom-block",open:""},o={class:"jldocstring custom-block",open:""},g={class:"jldocstring custom-block",open:""};function y(c,i,F,u,f,m){const n=k("Badge");return p(),h("div",null,[i[12]||(i[12]=s("h1",{id:"Entering-equations-of-motion",tabindex:"-1"},[a("Entering equations of motion "),s("a",{class:"header-anchor",href:"#Entering-equations-of-motion","aria-label":'Permalink to "Entering equations of motion {#Entering-equations-of-motion}"'},"​")],-1)),i[13]||(i[13]=s("p",null,[a("The struct "),s("code",null,"DifferentialEquation"),a(" is the primary input method; it holds an ODE or a coupled system of ODEs composed of terms with harmonic time-dependence The dependent variables are specified during input, any other symbols are identified as parameters. Information on which variable is to be expanded in which harmonic is specified using "),s("code",null,"add_harmonic!"),a(".")],-1)),i[14]||(i[14]=s("p",null,[s("code",null,"DifferentialEquation.equations"),a(" stores a dictionary assigning variables to equations. This information is necessary because the harmonics belonging to a variable are later used to Fourier-transform its corresponding ODE.")],-1)),s("details",d,[s("summary",null,[i[0]||(i[0]=s("a",{id:"HarmonicBalance.DifferentialEquation",href:"#HarmonicBalance.DifferentialEquation"},[s("span",{class:"jlbinding"},"HarmonicBalance.DifferentialEquation")],-1)),i[1]||(i[1]=a()),t(n,{type:"info",class:"jlObjectType jlType",text:"Type"})]),i[2]||(i[2]=l(`
julia
mutable struct DifferentialEquation

Holds differential equation(s) of motion and a set of harmonics to expand each variable. This is the primary input for HarmonicBalance.jl ; after inputting the equations, the harmonics ansatz needs to be specified using add_harmonic!.

Fields

  • equations::OrderedCollections.OrderedDict{Num, Equation}: Assigns to each variable an equation of motion.

  • harmonics::OrderedCollections.OrderedDict{Num, OrderedCollections.OrderedSet{Num}}: Assigns to each variable a set of harmonics.

Example

julia
julia> @variables t, x(t), y(t), ω0, ω, F, k;
+import{_ as e,c as h,j as s,a,G as t,a4 as l,B as k,o as p}from"./chunks/framework.DcvNxhjd.js";const C=JSON.parse('{"title":"Entering equations of motion","description":"","frontmatter":{},"headers":[],"relativePath":"manual/entering_eom.md","filePath":"manual/entering_eom.md"}'),r={name:"manual/entering_eom.md"},d={class:"jldocstring custom-block",open:""},E={class:"jldocstring custom-block",open:""},o={class:"jldocstring custom-block",open:""},g={class:"jldocstring custom-block",open:""};function y(c,i,F,u,m,f){const n=k("Badge");return p(),h("div",null,[i[12]||(i[12]=s("h1",{id:"Entering-equations-of-motion",tabindex:"-1"},[a("Entering equations of motion "),s("a",{class:"header-anchor",href:"#Entering-equations-of-motion","aria-label":'Permalink to "Entering equations of motion {#Entering-equations-of-motion}"'},"​")],-1)),i[13]||(i[13]=s("p",null,[a("The struct "),s("code",null,"DifferentialEquation"),a(" is the primary input method; it holds an ODE or a coupled system of ODEs composed of terms with harmonic time-dependence The dependent variables are specified during input, any other symbols are identified as parameters. Information on which variable is to be expanded in which harmonic is specified using "),s("code",null,"add_harmonic!"),a(".")],-1)),i[14]||(i[14]=s("p",null,[s("code",null,"DifferentialEquation.equations"),a(" stores a dictionary assigning variables to equations. This information is necessary because the harmonics belonging to a variable are later used to Fourier-transform its corresponding ODE.")],-1)),s("details",d,[s("summary",null,[i[0]||(i[0]=s("a",{id:"HarmonicBalance.DifferentialEquation",href:"#HarmonicBalance.DifferentialEquation"},[s("span",{class:"jlbinding"},"HarmonicBalance.DifferentialEquation")],-1)),i[1]||(i[1]=a()),t(n,{type:"info",class:"jlObjectType jlType",text:"Type"})]),i[2]||(i[2]=l(`
julia
mutable struct DifferentialEquation

Holds differential equation(s) of motion and a set of harmonics to expand each variable. This is the primary input for HarmonicBalance.jl ; after inputting the equations, the harmonics ansatz needs to be specified using add_harmonic!.

Fields

  • equations::OrderedCollections.OrderedDict{Num, Equation}: Assigns to each variable an equation of motion.

  • harmonics::OrderedCollections.OrderedDict{Num, OrderedCollections.OrderedSet{Num}}: Assigns to each variable a set of harmonics.

Example

julia
julia> @variables t, x(t), y(t), ω0, ω, F, k;
 
 # equivalent ways to enter the simple harmonic oscillator
 julia> DifferentialEquation(d(x,t,2) + ω0^2 * x - F * cos*t), x);
 julia> DifferentialEquation(d(x,t,2) + ω0^2 * x ~ F * cos*t), x);
 
 # two coupled oscillators, one of them driven
-julia> DifferentialEquation([d(x,t,2) + ω0^2 * x - k*y, d(y,t,2) + ω0^2 * y - k*x] .~ [F * cos*t), 0], [x,y]);

source

`,7))]),s("details",E,[s("summary",null,[i[3]||(i[3]=s("a",{id:"HarmonicBalance.add_harmonic!",href:"#HarmonicBalance.add_harmonic!"},[s("span",{class:"jlbinding"},"HarmonicBalance.add_harmonic!")],-1)),i[4]||(i[4]=a()),t(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),i[5]||(i[5]=l(`
julia
add_harmonic!(diff_eom::DifferentialEquation, var::Num, ω)

Add the harmonic ω to the harmonic ansatz used to expand the variable var in diff_eom.

Example

define the simple harmonic oscillator and specify that x(t) oscillates with frequency ω

julia
julia> @variables t, x(t), y(t), ω0, ω, F, k;
+julia> DifferentialEquation([d(x,t,2) + ω0^2 * x - k*y, d(y,t,2) + ω0^2 * y - k*x] .~ [F * cos*t), 0], [x,y]);

source

`,7))]),s("details",E,[s("summary",null,[i[3]||(i[3]=s("a",{id:"HarmonicBalance.add_harmonic!",href:"#HarmonicBalance.add_harmonic!"},[s("span",{class:"jlbinding"},"HarmonicBalance.add_harmonic!")],-1)),i[4]||(i[4]=a()),t(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),i[5]||(i[5]=l(`
julia
add_harmonic!(diff_eom::DifferentialEquation, var::Num, ω)

Add the harmonic ω to the harmonic ansatz used to expand the variable var in diff_eom.

Example

define the simple harmonic oscillator and specify that x(t) oscillates with frequency ω

julia
julia> @variables t, x(t), y(t), ω0, ω, F, k;
 julia> diff_eq = DifferentialEquation(d(x,t,2) + ω0^2 * x ~ F * cos*t), x);
 julia> add_harmonic!(diff_eq, x, ω) # expand x using ω
 
@@ -13,6 +13,6 @@ import{_ as e,c as h,j as s,a,G as t,a4 as l,B as k,o as p}from"./chunks/framewo
 Variables:       x(t)
 Harmonic ansatz: x(t) => ω;
 
-(ω0^2)*x(t) + Differential(t)(Differential(t)(x(t))) ~ F*cos(t*ω)

source

`,6))]),s("details",o,[s("summary",null,[i[6]||(i[6]=s("a",{id:"Symbolics.get_variables-Tuple{DifferentialEquation}",href:"#Symbolics.get_variables-Tuple{DifferentialEquation}"},[s("span",{class:"jlbinding"},"Symbolics.get_variables")],-1)),i[7]||(i[7]=a()),t(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[8]||(i[8]=l('
julia
get_variables(diff_eom::DifferentialEquation) -> Vector{Num}

Return the dependent variables of diff_eom.

source

',3))]),s("details",g,[s("summary",null,[i[9]||(i[9]=s("a",{id:"HarmonicBalance.get_independent_variables-Tuple{DifferentialEquation}",href:"#HarmonicBalance.get_independent_variables-Tuple{DifferentialEquation}"},[s("span",{class:"jlbinding"},"HarmonicBalance.get_independent_variables")],-1)),i[10]||(i[10]=a()),t(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[11]||(i[11]=l(`
julia
get_independent_variables(
+(ω0^2)*x(t) + Differential(t)(Differential(t)(x(t))) ~ F*cos(t*ω)

source

`,6))]),s("details",o,[s("summary",null,[i[6]||(i[6]=s("a",{id:"Symbolics.get_variables-Tuple{DifferentialEquation}",href:"#Symbolics.get_variables-Tuple{DifferentialEquation}"},[s("span",{class:"jlbinding"},"Symbolics.get_variables")],-1)),i[7]||(i[7]=a()),t(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[8]||(i[8]=l('
julia
get_variables(diff_eom::DifferentialEquation) -> Vector{Num}

Return the dependent variables of diff_eom.

source

',3))]),s("details",g,[s("summary",null,[i[9]||(i[9]=s("a",{id:"HarmonicBalance.get_independent_variables-Tuple{DifferentialEquation}",href:"#HarmonicBalance.get_independent_variables-Tuple{DifferentialEquation}"},[s("span",{class:"jlbinding"},"HarmonicBalance.get_independent_variables")],-1)),i[10]||(i[10]=a()),t(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),i[11]||(i[11]=l(`
julia
get_independent_variables(
     diff_eom::DifferentialEquation
-) -> Any

Return the independent dependent variables of diff_eom.

source

`,3))])])}const D=e(r,[["render",y]]);export{b as __pageData,D as default}; +) -> Any

Return the independent dependent variables of diff_eom.

source

`,3))])])}const D=e(r,[["render",y]]);export{C as __pageData,D as default}; diff --git a/previews/PR298/assets/manual_extracting_harmonics.md.BF5zlRR-.js b/previews/PR298/assets/manual_extracting_harmonics.md.Cpv7m-2B.js similarity index 98% rename from previews/PR298/assets/manual_extracting_harmonics.md.BF5zlRR-.js rename to previews/PR298/assets/manual_extracting_harmonics.md.Cpv7m-2B.js index ed94e209..b13bbcb7 100644 --- a/previews/PR298/assets/manual_extracting_harmonics.md.BF5zlRR-.js +++ b/previews/PR298/assets/manual_extracting_harmonics.md.Cpv7m-2B.js @@ -1,4 +1,4 @@ -import{_ as T,c as e,a4 as t,j as s,a as i,G as o,B as Q,o as n}from"./chunks/framework.DcvNxhjd.js";const S=JSON.parse('{"title":"Extracting harmonic equations","description":"","frontmatter":{},"headers":[],"relativePath":"manual/extracting_harmonics.md","filePath":"manual/extracting_harmonics.md"}'),r={name:"manual/extracting_harmonics.md"},h={class:"jldocstring custom-block",open:""},d={class:"jldocstring custom-block",open:""},p={class:"jldocstring custom-block",open:""},k={class:"jldocstring custom-block",open:""},m={class:"jldocstring custom-block",open:""},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.972ex"},xmlns:"http://www.w3.org/2000/svg",width:"47.051ex",height:"3.144ex",role:"img",focusable:"false",viewBox:"0 -960 20796.4 1389.6","aria-hidden":"true"},u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.666ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.845ex",height:"2.363ex",role:"img",focusable:"false",viewBox:"0 -750 3909.4 1044.2","aria-hidden":"true"},E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.666ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.251ex",height:"1.668ex",role:"img",focusable:"false",viewBox:"0 -443 1436.9 737.2","aria-hidden":"true"},x={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},w={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.611ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2038 1000","aria-hidden":"true"},H={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},b={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.611ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2038 1000","aria-hidden":"true"},F={class:"jldocstring custom-block",open:""},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.009ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 888 683","aria-hidden":"true"},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"5.518ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 2439 683","aria-hidden":"true"},B={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"5.518ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 2439 683","aria-hidden":"true"},V={class:"jldocstring custom-block",open:""};function A(q,a,O,N,z,_){const l=Q("Badge");return n(),e("div",null,[a[56]||(a[56]=t('

Extracting harmonic equations

Harmonic Balance method

Once a DifferentialEquation is defined and its harmonics specified, one can extract the harmonic equations using get_harmonic_equations, which itself is composed of the subroutines harmonic_ansatz, slow_flow, fourier_transform! and drop_powers.

The harmonic equations use an additional time variable specified as slow_time in get_harmonic_equations. This is essentially a label distinguishing the time dependence of the harmonic variables (expected to be slow) from that of the oscillating terms (expeted to be fast). When the equations are Fourier-transformed to remove oscillating terms, slow_time is treated as a constant. Such an approach is exact when looking for steady states.

',4)),s("details",h,[s("summary",null,[a[0]||(a[0]=s("a",{id:"HarmonicBalance.get_harmonic_equations",href:"#HarmonicBalance.get_harmonic_equations"},[s("span",{class:"jlbinding"},"HarmonicBalance.get_harmonic_equations")],-1)),a[1]||(a[1]=i()),o(l,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[2]||(a[2]=t(`
julia
get_harmonic_equations(diff_eom::DifferentialEquation; fast_time=nothing, slow_time=nothing)

Apply the harmonic ansatz, followed by the slow-flow, Fourier transform and dropping higher-order derivatives to obtain a set of ODEs (the harmonic equations) governing the harmonics of diff_eom.

The harmonics evolve in slow_time, the oscillating terms themselves in fast_time. If no input is used, a variable T is defined for slow_time and fast_time is taken as the independent variable of diff_eom.

By default, all products of order > 1 of slow_time-derivatives are dropped, which means the equations are linear in the time-derivatives.

Example

julia
julia> @variables t, x(t), ω0, ω, F;
+import{_ as T,c as e,a4 as t,j as s,a as i,G as o,B as Q,o as n}from"./chunks/framework.DcvNxhjd.js";const S=JSON.parse('{"title":"Extracting harmonic equations","description":"","frontmatter":{},"headers":[],"relativePath":"manual/extracting_harmonics.md","filePath":"manual/extracting_harmonics.md"}'),r={name:"manual/extracting_harmonics.md"},h={class:"jldocstring custom-block",open:""},d={class:"jldocstring custom-block",open:""},p={class:"jldocstring custom-block",open:""},k={class:"jldocstring custom-block",open:""},m={class:"jldocstring custom-block",open:""},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.972ex"},xmlns:"http://www.w3.org/2000/svg",width:"47.051ex",height:"3.144ex",role:"img",focusable:"false",viewBox:"0 -960 20796.4 1389.6","aria-hidden":"true"},u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.666ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.845ex",height:"2.363ex",role:"img",focusable:"false",viewBox:"0 -750 3909.4 1044.2","aria-hidden":"true"},E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.666ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.251ex",height:"1.668ex",role:"img",focusable:"false",viewBox:"0 -443 1436.9 737.2","aria-hidden":"true"},f={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},b={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.611ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2038 1000","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.611ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2038 1000","aria-hidden":"true"},F={class:"jldocstring custom-block",open:""},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.009ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 888 683","aria-hidden":"true"},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"5.518ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 2439 683","aria-hidden":"true"},B={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"5.518ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 2439 683","aria-hidden":"true"},V={class:"jldocstring custom-block",open:""};function A(q,a,O,N,z,_){const l=Q("Badge");return n(),e("div",null,[a[56]||(a[56]=t('

Extracting harmonic equations

Harmonic Balance method

Once a DifferentialEquation is defined and its harmonics specified, one can extract the harmonic equations using get_harmonic_equations, which itself is composed of the subroutines harmonic_ansatz, slow_flow, fourier_transform! and drop_powers.

The harmonic equations use an additional time variable specified as slow_time in get_harmonic_equations. This is essentially a label distinguishing the time dependence of the harmonic variables (expected to be slow) from that of the oscillating terms (expeted to be fast). When the equations are Fourier-transformed to remove oscillating terms, slow_time is treated as a constant. Such an approach is exact when looking for steady states.

',4)),s("details",h,[s("summary",null,[a[0]||(a[0]=s("a",{id:"HarmonicBalance.get_harmonic_equations",href:"#HarmonicBalance.get_harmonic_equations"},[s("span",{class:"jlbinding"},"HarmonicBalance.get_harmonic_equations")],-1)),a[1]||(a[1]=i()),o(l,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[2]||(a[2]=t(`
julia
get_harmonic_equations(diff_eom::DifferentialEquation; fast_time=nothing, slow_time=nothing)

Apply the harmonic ansatz, followed by the slow-flow, Fourier transform and dropping higher-order derivatives to obtain a set of ODEs (the harmonic equations) governing the harmonics of diff_eom.

The harmonics evolve in slow_time, the oscillating terms themselves in fast_time. If no input is used, a variable T is defined for slow_time and fast_time is taken as the independent variable of diff_eom.

By default, all products of order > 1 of slow_time-derivatives are dropped, which means the equations are linear in the time-derivatives.

Example

julia
julia> @variables t, x(t), ω0, ω, F;
 
 # enter the simple harmonic oscillator
 julia> diff_eom = DifferentialEquation( d(x,t,2) + ω0^2 * x ~ F *cos*t), x);
@@ -20,13 +20,13 @@ import{_ as T,c as e,a4 as t,j as s,a as i,G as o,B as Q,o as n}from"./chunks/fr
 
 (ω0^2)*u1(T) + (2//1)*ω*Differential(T)(v1(T)) -^2)*u1(T) ~ F
 
-(ω0^2)*v1(T) -^2)*v1(T) - (2//1)*ω*Differential(T)(u1(T)) ~ 0

source

`,7))]),s("details",d,[s("summary",null,[a[3]||(a[3]=s("a",{id:"HarmonicBalance.harmonic_ansatz",href:"#HarmonicBalance.harmonic_ansatz"},[s("span",{class:"jlbinding"},"HarmonicBalance.harmonic_ansatz")],-1)),a[4]||(a[4]=i()),o(l,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[5]||(a[5]=t('
julia
harmonic_ansatz(eom::DifferentialEquation, time::Num; coordinates="Cartesian")

Expand each variable of diff_eom using the harmonics assigned to it with time as the time variable. For each harmonic of each variable, instance(s) of HarmonicVariable are automatically created and named.

source

',3))]),s("details",p,[s("summary",null,[a[6]||(a[6]=s("a",{id:"HarmonicBalance.slow_flow",href:"#HarmonicBalance.slow_flow"},[s("span",{class:"jlbinding"},"HarmonicBalance.slow_flow")],-1)),a[7]||(a[7]=i()),o(l,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[8]||(a[8]=t('
julia
slow_flow(eom::HarmonicEquation; fast_time::Num, slow_time::Num, degree=2)

Removes all derivatives w.r.t fast_time (and their products) in eom of power degree. In the remaining derivatives, fast_time is replaced by slow_time.

source

',3))]),s("details",k,[s("summary",null,[a[9]||(a[9]=s("a",{id:"HarmonicBalance.fourier_transform",href:"#HarmonicBalance.fourier_transform"},[s("span",{class:"jlbinding"},"HarmonicBalance.fourier_transform")],-1)),a[10]||(a[10]=i()),o(l,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[11]||(a[11]=t(`
julia
fourier_transform(
+(ω0^2)*v1(T) -^2)*v1(T) - (2//1)*ω*Differential(T)(u1(T)) ~ 0

source

`,7))]),s("details",d,[s("summary",null,[a[3]||(a[3]=s("a",{id:"HarmonicBalance.harmonic_ansatz",href:"#HarmonicBalance.harmonic_ansatz"},[s("span",{class:"jlbinding"},"HarmonicBalance.harmonic_ansatz")],-1)),a[4]||(a[4]=i()),o(l,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[5]||(a[5]=t('
julia
harmonic_ansatz(eom::DifferentialEquation, time::Num; coordinates="Cartesian")

Expand each variable of diff_eom using the harmonics assigned to it with time as the time variable. For each harmonic of each variable, instance(s) of HarmonicVariable are automatically created and named.

source

',3))]),s("details",p,[s("summary",null,[a[6]||(a[6]=s("a",{id:"HarmonicBalance.slow_flow",href:"#HarmonicBalance.slow_flow"},[s("span",{class:"jlbinding"},"HarmonicBalance.slow_flow")],-1)),a[7]||(a[7]=i()),o(l,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[8]||(a[8]=t('
julia
slow_flow(eom::HarmonicEquation; fast_time::Num, slow_time::Num, degree=2)

Removes all derivatives w.r.t fast_time (and their products) in eom of power degree. In the remaining derivatives, fast_time is replaced by slow_time.

source

',3))]),s("details",k,[s("summary",null,[a[9]||(a[9]=s("a",{id:"HarmonicBalance.fourier_transform",href:"#HarmonicBalance.fourier_transform"},[s("span",{class:"jlbinding"},"HarmonicBalance.fourier_transform")],-1)),a[10]||(a[10]=i()),o(l,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[11]||(a[11]=t(`
julia
fourier_transform(
     eom::HarmonicEquation,
     time::Num
-) -> HarmonicEquation

Extract the Fourier components of eom corresponding to the harmonics specified in eom.variables. For each non-zero harmonic of each variable, 2 equations are generated (cos and sin Fourier coefficients). For each zero (constant) harmonic, 1 equation is generated time does not appear in the resulting equations anymore.

Underlying assumption: all time-dependences are harmonic.

source

`,4))]),s("details",m,[s("summary",null,[a[12]||(a[12]=s("a",{id:"HarmonicBalance.ExprUtils.drop_powers",href:"#HarmonicBalance.ExprUtils.drop_powers"},[s("span",{class:"jlbinding"},"HarmonicBalance.ExprUtils.drop_powers")],-1)),a[13]||(a[13]=i()),o(l,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[14]||(a[14]=t(`
julia
drop_powers(expr, vars, deg)

Remove parts of expr where the combined power of vars is => deg.

Example

julia
julia> @variables x,y;
+) -> HarmonicEquation

Extract the Fourier components of eom corresponding to the harmonics specified in eom.variables. For each non-zero harmonic of each variable, 2 equations are generated (cos and sin Fourier coefficients). For each zero (constant) harmonic, 1 equation is generated time does not appear in the resulting equations anymore.

Underlying assumption: all time-dependences are harmonic.

source

`,4))]),s("details",m,[s("summary",null,[a[12]||(a[12]=s("a",{id:"HarmonicBalance.ExprUtils.drop_powers",href:"#HarmonicBalance.ExprUtils.drop_powers"},[s("span",{class:"jlbinding"},"HarmonicBalance.ExprUtils.drop_powers")],-1)),a[13]||(a[13]=i()),o(l,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[14]||(a[14]=t(`
julia
drop_powers(expr, vars, deg)

Remove parts of expr where the combined power of vars is => deg.

Example

julia
julia> @variables x,y;
 julia>drop_powers((x+y)^2, x, 2)
 y^2 + 2*x*y
 julia>drop_powers((x+y)^2, [x,y], 2)
 0
 julia>drop_powers((x+y)^2 + (x+y)^3, [x,y], 3)
-x^2 + y^2 + 2*x*y

source

`,5))]),a[57]||(a[57]=s("h2",{id:"HarmonicVariable-and-HarmonicEquation-types",tabindex:"-1"},[i("HarmonicVariable and HarmonicEquation types "),s("a",{class:"header-anchor",href:"#HarmonicVariable-and-HarmonicEquation-types","aria-label":'Permalink to "HarmonicVariable and HarmonicEquation types {#HarmonicVariable-and-HarmonicEquation-types}"'},"​")],-1)),s("p",null,[a[25]||(a[25]=i("The equations governing the harmonics are stored using the two following structs. When going from the original to the harmonic equations, the harmonic ansatz ")),s("mjx-container",g,[(n(),e("svg",c,a[15]||(a[15]=[t('',1)]))),a[16]||(a[16]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("msub",null,[s("mi",null,"x"),s("mi",null,"i")]),s("mo",{stretchy:"false"},"("),s("mi",null,"t"),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("munderover",null,[s("mo",{"data-mjx-texclass":"OP"},"∑"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"j"),s("mo",null,"="),s("mn",null,"1")]),s("mi",null,"M")]),s("msub",null,[s("mi",null,"u"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mo",{stretchy:"false"},"("),s("mi",null,"T"),s("mo",{stretchy:"false"},")"),s("mi",null,"cos"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"ω"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mi",null,"t"),s("mo",{stretchy:"false"},")"),s("mo",null,"+"),s("msub",null,[s("mi",null,"v"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mo",{stretchy:"false"},"("),s("mi",null,"T"),s("mo",{stretchy:"false"},")"),s("mi",null,"sin"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"ω"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mi",null,"t"),s("mo",{stretchy:"false"},")")])],-1))]),a[26]||(a[26]=i(" is used. Internally, each pair ")),s("mjx-container",u,[(n(),e("svg",y,a[17]||(a[17]=[t('',1)]))),a[18]||(a[18]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"u"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mo",null,","),s("msub",null,[s("mi",null,"v"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mo",{stretchy:"false"},")")])],-1))]),a[27]||(a[27]=i(" is stored as a ")),a[28]||(a[28]=s("code",null,"HarmonicVariable",-1)),a[29]||(a[29]=i(". This includes the identification of ")),s("mjx-container",E,[(n(),e("svg",f,a[19]||(a[19]=[t('',1)]))),a[20]||(a[20]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("msub",null,[s("mi",null,"ω"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])])])],-1))]),a[30]||(a[30]=i(" and ")),s("mjx-container",x,[(n(),e("svg",w,a[21]||(a[21]=[t('',1)]))),a[22]||(a[22]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("msub",null,[s("mi",null,"x"),s("mi",null,"i")]),s("mo",{stretchy:"false"},"("),s("mi",null,"t"),s("mo",{stretchy:"false"},")")])],-1))]),a[31]||(a[31]=i(", which is needed to later reconstruct ")),s("mjx-container",H,[(n(),e("svg",b,a[23]||(a[23]=[t('',1)]))),a[24]||(a[24]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("msub",null,[s("mi",null,"x"),s("mi",null,"i")]),s("mo",{stretchy:"false"},"("),s("mi",null,"t"),s("mo",{stretchy:"false"},")")])],-1))]),a[32]||(a[32]=i("."))]),s("details",F,[s("summary",null,[a[33]||(a[33]=s("a",{id:"HarmonicBalance.HarmonicVariable",href:"#HarmonicBalance.HarmonicVariable"},[s("span",{class:"jlbinding"},"HarmonicBalance.HarmonicVariable")],-1)),a[34]||(a[34]=i()),o(l,{type:"info",class:"jlObjectType jlType",text:"Type"})]),a[35]||(a[35]=t('
julia
mutable struct HarmonicVariable

Holds a variable stored under symbol describing the harmonic ω of natural_variable.

Fields

  • symbol::Num: Symbol of the variable in the HarmonicBalance namespace.

  • name::String: Human-readable labels of the variable, used for plotting.

  • type::String: Type of the variable (u or v for quadratures, a for a constant, Hopf for Hopf etc.)

  • ω::Num: The harmonic being described.

  • natural_variable::Num: The natural variable whose harmonic is being described.

source

',5))]),s("p",null,[a[44]||(a[44]=i("When the full set of equations of motion is expanded using the harmonic ansatz, the result is stored as a ")),a[45]||(a[45]=s("code",null,"HarmonicEquation",-1)),a[46]||(a[46]=i(". For an initial equation of motion consisting of ")),s("mjx-container",v,[(n(),e("svg",L,a[36]||(a[36]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),a[37]||(a[37]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"M")])],-1))]),a[47]||(a[47]=i(" variables, each expanded in ")),s("mjx-container",C,[(n(),e("svg",D,a[38]||(a[38]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D441",d:"M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z",style:{"stroke-width":"3"}})])])],-1)]))),a[39]||(a[39]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"N")])],-1))]),a[48]||(a[48]=i(" harmonics, the resulting ")),a[49]||(a[49]=s("code",null,"HarmonicEquation",-1)),a[50]||(a[50]=i(" holds ")),s("mjx-container",M,[(n(),e("svg",j,a[40]||(a[40]=[t('',1)]))),a[41]||(a[41]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mn",null,"2"),s("mi",null,"N"),s("mi",null,"M")])],-1))]),a[51]||(a[51]=i(" equations of ")),s("mjx-container",B,[(n(),e("svg",Z,a[42]||(a[42]=[t('',1)]))),a[43]||(a[43]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mn",null,"2"),s("mi",null,"N"),s("mi",null,"M")])],-1))]),a[52]||(a[52]=i(" variables. Each symbol not corresponding to a variable is identified as a parameter."))]),a[58]||(a[58]=s("p",null,[i("A "),s("code",null,"HarmonicEquation"),i(" can be either parsed into a steady-state "),s("code",null,"Problem"),i(" or solved using a dynamical ODE solver.")],-1)),s("details",V,[s("summary",null,[a[53]||(a[53]=s("a",{id:"HarmonicBalance.HarmonicEquation",href:"#HarmonicBalance.HarmonicEquation"},[s("span",{class:"jlbinding"},"HarmonicBalance.HarmonicEquation")],-1)),a[54]||(a[54]=i()),o(l,{type:"info",class:"jlObjectType jlType",text:"Type"})]),a[55]||(a[55]=t('
julia
mutable struct HarmonicEquation

Holds a set of algebraic equations governing the harmonics of a DifferentialEquation.

Fields

  • equations::Vector{Equation}: A set of equations governing the harmonics.

  • variables::Vector{HarmonicVariable}: A set of variables describing the harmonics.

  • parameters::Vector{Num}: The parameters of the equation set.

  • natural_equation::DifferentialEquation: The natural equation (before the harmonic ansatz was used).

source

',5))])])}const G=T(r,[["render",A]]);export{S as __pageData,G as default}; +x^2 + y^2 + 2*x*y

source

`,5))]),a[57]||(a[57]=s("h2",{id:"HarmonicVariable-and-HarmonicEquation-types",tabindex:"-1"},[i("HarmonicVariable and HarmonicEquation types "),s("a",{class:"header-anchor",href:"#HarmonicVariable-and-HarmonicEquation-types","aria-label":'Permalink to "HarmonicVariable and HarmonicEquation types {#HarmonicVariable-and-HarmonicEquation-types}"'},"​")],-1)),s("p",null,[a[25]||(a[25]=i("The equations governing the harmonics are stored using the two following structs. When going from the original to the harmonic equations, the harmonic ansatz ")),s("mjx-container",g,[(n(),e("svg",c,a[15]||(a[15]=[t('',1)]))),a[16]||(a[16]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("msub",null,[s("mi",null,"x"),s("mi",null,"i")]),s("mo",{stretchy:"false"},"("),s("mi",null,"t"),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("munderover",null,[s("mo",{"data-mjx-texclass":"OP"},"∑"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"j"),s("mo",null,"="),s("mn",null,"1")]),s("mi",null,"M")]),s("msub",null,[s("mi",null,"u"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mo",{stretchy:"false"},"("),s("mi",null,"T"),s("mo",{stretchy:"false"},")"),s("mi",null,"cos"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"ω"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mi",null,"t"),s("mo",{stretchy:"false"},")"),s("mo",null,"+"),s("msub",null,[s("mi",null,"v"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mo",{stretchy:"false"},"("),s("mi",null,"T"),s("mo",{stretchy:"false"},")"),s("mi",null,"sin"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"ω"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mi",null,"t"),s("mo",{stretchy:"false"},")")])],-1))]),a[26]||(a[26]=i(" is used. Internally, each pair ")),s("mjx-container",u,[(n(),e("svg",y,a[17]||(a[17]=[t('',1)]))),a[18]||(a[18]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"u"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mo",null,","),s("msub",null,[s("mi",null,"v"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mo",{stretchy:"false"},")")])],-1))]),a[27]||(a[27]=i(" is stored as a ")),a[28]||(a[28]=s("code",null,"HarmonicVariable",-1)),a[29]||(a[29]=i(". This includes the identification of ")),s("mjx-container",E,[(n(),e("svg",x,a[19]||(a[19]=[t('',1)]))),a[20]||(a[20]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("msub",null,[s("mi",null,"ω"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])])])],-1))]),a[30]||(a[30]=i(" and ")),s("mjx-container",f,[(n(),e("svg",b,a[21]||(a[21]=[t('',1)]))),a[22]||(a[22]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("msub",null,[s("mi",null,"x"),s("mi",null,"i")]),s("mo",{stretchy:"false"},"("),s("mi",null,"t"),s("mo",{stretchy:"false"},")")])],-1))]),a[31]||(a[31]=i(", which is needed to later reconstruct ")),s("mjx-container",w,[(n(),e("svg",H,a[23]||(a[23]=[t('',1)]))),a[24]||(a[24]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("msub",null,[s("mi",null,"x"),s("mi",null,"i")]),s("mo",{stretchy:"false"},"("),s("mi",null,"t"),s("mo",{stretchy:"false"},")")])],-1))]),a[32]||(a[32]=i("."))]),s("details",F,[s("summary",null,[a[33]||(a[33]=s("a",{id:"HarmonicBalance.HarmonicVariable",href:"#HarmonicBalance.HarmonicVariable"},[s("span",{class:"jlbinding"},"HarmonicBalance.HarmonicVariable")],-1)),a[34]||(a[34]=i()),o(l,{type:"info",class:"jlObjectType jlType",text:"Type"})]),a[35]||(a[35]=t('
julia
mutable struct HarmonicVariable

Holds a variable stored under symbol describing the harmonic ω of natural_variable.

Fields

  • symbol::Num: Symbol of the variable in the HarmonicBalance namespace.

  • name::String: Human-readable labels of the variable, used for plotting.

  • type::String: Type of the variable (u or v for quadratures, a for a constant, Hopf for Hopf etc.)

  • ω::Num: The harmonic being described.

  • natural_variable::Num: The natural variable whose harmonic is being described.

source

',5))]),s("p",null,[a[44]||(a[44]=i("When the full set of equations of motion is expanded using the harmonic ansatz, the result is stored as a ")),a[45]||(a[45]=s("code",null,"HarmonicEquation",-1)),a[46]||(a[46]=i(". For an initial equation of motion consisting of ")),s("mjx-container",v,[(n(),e("svg",L,a[36]||(a[36]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),a[37]||(a[37]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"M")])],-1))]),a[47]||(a[47]=i(" variables, each expanded in ")),s("mjx-container",C,[(n(),e("svg",D,a[38]||(a[38]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D441",d:"M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z",style:{"stroke-width":"3"}})])])],-1)]))),a[39]||(a[39]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"N")])],-1))]),a[48]||(a[48]=i(" harmonics, the resulting ")),a[49]||(a[49]=s("code",null,"HarmonicEquation",-1)),a[50]||(a[50]=i(" holds ")),s("mjx-container",M,[(n(),e("svg",j,a[40]||(a[40]=[t('',1)]))),a[41]||(a[41]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mn",null,"2"),s("mi",null,"N"),s("mi",null,"M")])],-1))]),a[51]||(a[51]=i(" equations of ")),s("mjx-container",B,[(n(),e("svg",Z,a[42]||(a[42]=[t('',1)]))),a[43]||(a[43]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mn",null,"2"),s("mi",null,"N"),s("mi",null,"M")])],-1))]),a[52]||(a[52]=i(" variables. Each symbol not corresponding to a variable is identified as a parameter."))]),a[58]||(a[58]=s("p",null,[i("A "),s("code",null,"HarmonicEquation"),i(" can be either parsed into a steady-state "),s("code",null,"Problem"),i(" or solved using a dynamical ODE solver.")],-1)),s("details",V,[s("summary",null,[a[53]||(a[53]=s("a",{id:"HarmonicBalance.HarmonicEquation",href:"#HarmonicBalance.HarmonicEquation"},[s("span",{class:"jlbinding"},"HarmonicBalance.HarmonicEquation")],-1)),a[54]||(a[54]=i()),o(l,{type:"info",class:"jlObjectType jlType",text:"Type"})]),a[55]||(a[55]=t('
julia
mutable struct HarmonicEquation

Holds a set of algebraic equations governing the harmonics of a DifferentialEquation.

Fields

  • equations::Vector{Equation}: A set of equations governing the harmonics.

  • variables::Vector{HarmonicVariable}: A set of variables describing the harmonics.

  • parameters::Vector{Num}: The parameters of the equation set.

  • natural_equation::DifferentialEquation: The natural equation (before the harmonic ansatz was used).

source

',5))])])}const G=T(r,[["render",A]]);export{S as __pageData,G as default}; diff --git a/previews/PR298/assets/manual_extracting_harmonics.md.BF5zlRR-.lean.js b/previews/PR298/assets/manual_extracting_harmonics.md.Cpv7m-2B.lean.js similarity index 98% rename from previews/PR298/assets/manual_extracting_harmonics.md.BF5zlRR-.lean.js rename to previews/PR298/assets/manual_extracting_harmonics.md.Cpv7m-2B.lean.js index ed94e209..b13bbcb7 100644 --- a/previews/PR298/assets/manual_extracting_harmonics.md.BF5zlRR-.lean.js +++ b/previews/PR298/assets/manual_extracting_harmonics.md.Cpv7m-2B.lean.js @@ -1,4 +1,4 @@ -import{_ as T,c as e,a4 as t,j as s,a as i,G as o,B as Q,o as n}from"./chunks/framework.DcvNxhjd.js";const S=JSON.parse('{"title":"Extracting harmonic equations","description":"","frontmatter":{},"headers":[],"relativePath":"manual/extracting_harmonics.md","filePath":"manual/extracting_harmonics.md"}'),r={name:"manual/extracting_harmonics.md"},h={class:"jldocstring custom-block",open:""},d={class:"jldocstring custom-block",open:""},p={class:"jldocstring custom-block",open:""},k={class:"jldocstring custom-block",open:""},m={class:"jldocstring custom-block",open:""},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.972ex"},xmlns:"http://www.w3.org/2000/svg",width:"47.051ex",height:"3.144ex",role:"img",focusable:"false",viewBox:"0 -960 20796.4 1389.6","aria-hidden":"true"},u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.666ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.845ex",height:"2.363ex",role:"img",focusable:"false",viewBox:"0 -750 3909.4 1044.2","aria-hidden":"true"},E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.666ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.251ex",height:"1.668ex",role:"img",focusable:"false",viewBox:"0 -443 1436.9 737.2","aria-hidden":"true"},x={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},w={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.611ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2038 1000","aria-hidden":"true"},H={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},b={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.611ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2038 1000","aria-hidden":"true"},F={class:"jldocstring custom-block",open:""},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.009ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 888 683","aria-hidden":"true"},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"5.518ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 2439 683","aria-hidden":"true"},B={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"5.518ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 2439 683","aria-hidden":"true"},V={class:"jldocstring custom-block",open:""};function A(q,a,O,N,z,_){const l=Q("Badge");return n(),e("div",null,[a[56]||(a[56]=t('

Extracting harmonic equations

Harmonic Balance method

Once a DifferentialEquation is defined and its harmonics specified, one can extract the harmonic equations using get_harmonic_equations, which itself is composed of the subroutines harmonic_ansatz, slow_flow, fourier_transform! and drop_powers.

The harmonic equations use an additional time variable specified as slow_time in get_harmonic_equations. This is essentially a label distinguishing the time dependence of the harmonic variables (expected to be slow) from that of the oscillating terms (expeted to be fast). When the equations are Fourier-transformed to remove oscillating terms, slow_time is treated as a constant. Such an approach is exact when looking for steady states.

',4)),s("details",h,[s("summary",null,[a[0]||(a[0]=s("a",{id:"HarmonicBalance.get_harmonic_equations",href:"#HarmonicBalance.get_harmonic_equations"},[s("span",{class:"jlbinding"},"HarmonicBalance.get_harmonic_equations")],-1)),a[1]||(a[1]=i()),o(l,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[2]||(a[2]=t(`
julia
get_harmonic_equations(diff_eom::DifferentialEquation; fast_time=nothing, slow_time=nothing)

Apply the harmonic ansatz, followed by the slow-flow, Fourier transform and dropping higher-order derivatives to obtain a set of ODEs (the harmonic equations) governing the harmonics of diff_eom.

The harmonics evolve in slow_time, the oscillating terms themselves in fast_time. If no input is used, a variable T is defined for slow_time and fast_time is taken as the independent variable of diff_eom.

By default, all products of order > 1 of slow_time-derivatives are dropped, which means the equations are linear in the time-derivatives.

Example

julia
julia> @variables t, x(t), ω0, ω, F;
+import{_ as T,c as e,a4 as t,j as s,a as i,G as o,B as Q,o as n}from"./chunks/framework.DcvNxhjd.js";const S=JSON.parse('{"title":"Extracting harmonic equations","description":"","frontmatter":{},"headers":[],"relativePath":"manual/extracting_harmonics.md","filePath":"manual/extracting_harmonics.md"}'),r={name:"manual/extracting_harmonics.md"},h={class:"jldocstring custom-block",open:""},d={class:"jldocstring custom-block",open:""},p={class:"jldocstring custom-block",open:""},k={class:"jldocstring custom-block",open:""},m={class:"jldocstring custom-block",open:""},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.972ex"},xmlns:"http://www.w3.org/2000/svg",width:"47.051ex",height:"3.144ex",role:"img",focusable:"false",viewBox:"0 -960 20796.4 1389.6","aria-hidden":"true"},u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.666ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.845ex",height:"2.363ex",role:"img",focusable:"false",viewBox:"0 -750 3909.4 1044.2","aria-hidden":"true"},E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.666ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.251ex",height:"1.668ex",role:"img",focusable:"false",viewBox:"0 -443 1436.9 737.2","aria-hidden":"true"},f={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},b={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.611ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2038 1000","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.611ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2038 1000","aria-hidden":"true"},F={class:"jldocstring custom-block",open:""},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.378ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 1051 683","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"2.009ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 888 683","aria-hidden":"true"},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"5.518ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 2439 683","aria-hidden":"true"},B={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"5.518ex",height:"1.545ex",role:"img",focusable:"false",viewBox:"0 -683 2439 683","aria-hidden":"true"},V={class:"jldocstring custom-block",open:""};function A(q,a,O,N,z,_){const l=Q("Badge");return n(),e("div",null,[a[56]||(a[56]=t('

Extracting harmonic equations

Harmonic Balance method

Once a DifferentialEquation is defined and its harmonics specified, one can extract the harmonic equations using get_harmonic_equations, which itself is composed of the subroutines harmonic_ansatz, slow_flow, fourier_transform! and drop_powers.

The harmonic equations use an additional time variable specified as slow_time in get_harmonic_equations. This is essentially a label distinguishing the time dependence of the harmonic variables (expected to be slow) from that of the oscillating terms (expeted to be fast). When the equations are Fourier-transformed to remove oscillating terms, slow_time is treated as a constant. Such an approach is exact when looking for steady states.

',4)),s("details",h,[s("summary",null,[a[0]||(a[0]=s("a",{id:"HarmonicBalance.get_harmonic_equations",href:"#HarmonicBalance.get_harmonic_equations"},[s("span",{class:"jlbinding"},"HarmonicBalance.get_harmonic_equations")],-1)),a[1]||(a[1]=i()),o(l,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[2]||(a[2]=t(`
julia
get_harmonic_equations(diff_eom::DifferentialEquation; fast_time=nothing, slow_time=nothing)

Apply the harmonic ansatz, followed by the slow-flow, Fourier transform and dropping higher-order derivatives to obtain a set of ODEs (the harmonic equations) governing the harmonics of diff_eom.

The harmonics evolve in slow_time, the oscillating terms themselves in fast_time. If no input is used, a variable T is defined for slow_time and fast_time is taken as the independent variable of diff_eom.

By default, all products of order > 1 of slow_time-derivatives are dropped, which means the equations are linear in the time-derivatives.

Example

julia
julia> @variables t, x(t), ω0, ω, F;
 
 # enter the simple harmonic oscillator
 julia> diff_eom = DifferentialEquation( d(x,t,2) + ω0^2 * x ~ F *cos*t), x);
@@ -20,13 +20,13 @@ import{_ as T,c as e,a4 as t,j as s,a as i,G as o,B as Q,o as n}from"./chunks/fr
 
 (ω0^2)*u1(T) + (2//1)*ω*Differential(T)(v1(T)) -^2)*u1(T) ~ F
 
-(ω0^2)*v1(T) -^2)*v1(T) - (2//1)*ω*Differential(T)(u1(T)) ~ 0

source

`,7))]),s("details",d,[s("summary",null,[a[3]||(a[3]=s("a",{id:"HarmonicBalance.harmonic_ansatz",href:"#HarmonicBalance.harmonic_ansatz"},[s("span",{class:"jlbinding"},"HarmonicBalance.harmonic_ansatz")],-1)),a[4]||(a[4]=i()),o(l,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[5]||(a[5]=t('
julia
harmonic_ansatz(eom::DifferentialEquation, time::Num; coordinates="Cartesian")

Expand each variable of diff_eom using the harmonics assigned to it with time as the time variable. For each harmonic of each variable, instance(s) of HarmonicVariable are automatically created and named.

source

',3))]),s("details",p,[s("summary",null,[a[6]||(a[6]=s("a",{id:"HarmonicBalance.slow_flow",href:"#HarmonicBalance.slow_flow"},[s("span",{class:"jlbinding"},"HarmonicBalance.slow_flow")],-1)),a[7]||(a[7]=i()),o(l,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[8]||(a[8]=t('
julia
slow_flow(eom::HarmonicEquation; fast_time::Num, slow_time::Num, degree=2)

Removes all derivatives w.r.t fast_time (and their products) in eom of power degree. In the remaining derivatives, fast_time is replaced by slow_time.

source

',3))]),s("details",k,[s("summary",null,[a[9]||(a[9]=s("a",{id:"HarmonicBalance.fourier_transform",href:"#HarmonicBalance.fourier_transform"},[s("span",{class:"jlbinding"},"HarmonicBalance.fourier_transform")],-1)),a[10]||(a[10]=i()),o(l,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[11]||(a[11]=t(`
julia
fourier_transform(
+(ω0^2)*v1(T) -^2)*v1(T) - (2//1)*ω*Differential(T)(u1(T)) ~ 0

source

`,7))]),s("details",d,[s("summary",null,[a[3]||(a[3]=s("a",{id:"HarmonicBalance.harmonic_ansatz",href:"#HarmonicBalance.harmonic_ansatz"},[s("span",{class:"jlbinding"},"HarmonicBalance.harmonic_ansatz")],-1)),a[4]||(a[4]=i()),o(l,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[5]||(a[5]=t('
julia
harmonic_ansatz(eom::DifferentialEquation, time::Num; coordinates="Cartesian")

Expand each variable of diff_eom using the harmonics assigned to it with time as the time variable. For each harmonic of each variable, instance(s) of HarmonicVariable are automatically created and named.

source

',3))]),s("details",p,[s("summary",null,[a[6]||(a[6]=s("a",{id:"HarmonicBalance.slow_flow",href:"#HarmonicBalance.slow_flow"},[s("span",{class:"jlbinding"},"HarmonicBalance.slow_flow")],-1)),a[7]||(a[7]=i()),o(l,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[8]||(a[8]=t('
julia
slow_flow(eom::HarmonicEquation; fast_time::Num, slow_time::Num, degree=2)

Removes all derivatives w.r.t fast_time (and their products) in eom of power degree. In the remaining derivatives, fast_time is replaced by slow_time.

source

',3))]),s("details",k,[s("summary",null,[a[9]||(a[9]=s("a",{id:"HarmonicBalance.fourier_transform",href:"#HarmonicBalance.fourier_transform"},[s("span",{class:"jlbinding"},"HarmonicBalance.fourier_transform")],-1)),a[10]||(a[10]=i()),o(l,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[11]||(a[11]=t(`
julia
fourier_transform(
     eom::HarmonicEquation,
     time::Num
-) -> HarmonicEquation

Extract the Fourier components of eom corresponding to the harmonics specified in eom.variables. For each non-zero harmonic of each variable, 2 equations are generated (cos and sin Fourier coefficients). For each zero (constant) harmonic, 1 equation is generated time does not appear in the resulting equations anymore.

Underlying assumption: all time-dependences are harmonic.

source

`,4))]),s("details",m,[s("summary",null,[a[12]||(a[12]=s("a",{id:"HarmonicBalance.ExprUtils.drop_powers",href:"#HarmonicBalance.ExprUtils.drop_powers"},[s("span",{class:"jlbinding"},"HarmonicBalance.ExprUtils.drop_powers")],-1)),a[13]||(a[13]=i()),o(l,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[14]||(a[14]=t(`
julia
drop_powers(expr, vars, deg)

Remove parts of expr where the combined power of vars is => deg.

Example

julia
julia> @variables x,y;
+) -> HarmonicEquation

Extract the Fourier components of eom corresponding to the harmonics specified in eom.variables. For each non-zero harmonic of each variable, 2 equations are generated (cos and sin Fourier coefficients). For each zero (constant) harmonic, 1 equation is generated time does not appear in the resulting equations anymore.

Underlying assumption: all time-dependences are harmonic.

source

`,4))]),s("details",m,[s("summary",null,[a[12]||(a[12]=s("a",{id:"HarmonicBalance.ExprUtils.drop_powers",href:"#HarmonicBalance.ExprUtils.drop_powers"},[s("span",{class:"jlbinding"},"HarmonicBalance.ExprUtils.drop_powers")],-1)),a[13]||(a[13]=i()),o(l,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[14]||(a[14]=t(`
julia
drop_powers(expr, vars, deg)

Remove parts of expr where the combined power of vars is => deg.

Example

julia
julia> @variables x,y;
 julia>drop_powers((x+y)^2, x, 2)
 y^2 + 2*x*y
 julia>drop_powers((x+y)^2, [x,y], 2)
 0
 julia>drop_powers((x+y)^2 + (x+y)^3, [x,y], 3)
-x^2 + y^2 + 2*x*y

source

`,5))]),a[57]||(a[57]=s("h2",{id:"HarmonicVariable-and-HarmonicEquation-types",tabindex:"-1"},[i("HarmonicVariable and HarmonicEquation types "),s("a",{class:"header-anchor",href:"#HarmonicVariable-and-HarmonicEquation-types","aria-label":'Permalink to "HarmonicVariable and HarmonicEquation types {#HarmonicVariable-and-HarmonicEquation-types}"'},"​")],-1)),s("p",null,[a[25]||(a[25]=i("The equations governing the harmonics are stored using the two following structs. When going from the original to the harmonic equations, the harmonic ansatz ")),s("mjx-container",g,[(n(),e("svg",c,a[15]||(a[15]=[t('',1)]))),a[16]||(a[16]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("msub",null,[s("mi",null,"x"),s("mi",null,"i")]),s("mo",{stretchy:"false"},"("),s("mi",null,"t"),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("munderover",null,[s("mo",{"data-mjx-texclass":"OP"},"∑"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"j"),s("mo",null,"="),s("mn",null,"1")]),s("mi",null,"M")]),s("msub",null,[s("mi",null,"u"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mo",{stretchy:"false"},"("),s("mi",null,"T"),s("mo",{stretchy:"false"},")"),s("mi",null,"cos"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"ω"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mi",null,"t"),s("mo",{stretchy:"false"},")"),s("mo",null,"+"),s("msub",null,[s("mi",null,"v"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mo",{stretchy:"false"},"("),s("mi",null,"T"),s("mo",{stretchy:"false"},")"),s("mi",null,"sin"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"ω"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mi",null,"t"),s("mo",{stretchy:"false"},")")])],-1))]),a[26]||(a[26]=i(" is used. Internally, each pair ")),s("mjx-container",u,[(n(),e("svg",y,a[17]||(a[17]=[t('',1)]))),a[18]||(a[18]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"u"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mo",null,","),s("msub",null,[s("mi",null,"v"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mo",{stretchy:"false"},")")])],-1))]),a[27]||(a[27]=i(" is stored as a ")),a[28]||(a[28]=s("code",null,"HarmonicVariable",-1)),a[29]||(a[29]=i(". This includes the identification of ")),s("mjx-container",E,[(n(),e("svg",f,a[19]||(a[19]=[t('',1)]))),a[20]||(a[20]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("msub",null,[s("mi",null,"ω"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])])])],-1))]),a[30]||(a[30]=i(" and ")),s("mjx-container",x,[(n(),e("svg",w,a[21]||(a[21]=[t('',1)]))),a[22]||(a[22]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("msub",null,[s("mi",null,"x"),s("mi",null,"i")]),s("mo",{stretchy:"false"},"("),s("mi",null,"t"),s("mo",{stretchy:"false"},")")])],-1))]),a[31]||(a[31]=i(", which is needed to later reconstruct ")),s("mjx-container",H,[(n(),e("svg",b,a[23]||(a[23]=[t('',1)]))),a[24]||(a[24]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("msub",null,[s("mi",null,"x"),s("mi",null,"i")]),s("mo",{stretchy:"false"},"("),s("mi",null,"t"),s("mo",{stretchy:"false"},")")])],-1))]),a[32]||(a[32]=i("."))]),s("details",F,[s("summary",null,[a[33]||(a[33]=s("a",{id:"HarmonicBalance.HarmonicVariable",href:"#HarmonicBalance.HarmonicVariable"},[s("span",{class:"jlbinding"},"HarmonicBalance.HarmonicVariable")],-1)),a[34]||(a[34]=i()),o(l,{type:"info",class:"jlObjectType jlType",text:"Type"})]),a[35]||(a[35]=t('
julia
mutable struct HarmonicVariable

Holds a variable stored under symbol describing the harmonic ω of natural_variable.

Fields

  • symbol::Num: Symbol of the variable in the HarmonicBalance namespace.

  • name::String: Human-readable labels of the variable, used for plotting.

  • type::String: Type of the variable (u or v for quadratures, a for a constant, Hopf for Hopf etc.)

  • ω::Num: The harmonic being described.

  • natural_variable::Num: The natural variable whose harmonic is being described.

source

',5))]),s("p",null,[a[44]||(a[44]=i("When the full set of equations of motion is expanded using the harmonic ansatz, the result is stored as a ")),a[45]||(a[45]=s("code",null,"HarmonicEquation",-1)),a[46]||(a[46]=i(". For an initial equation of motion consisting of ")),s("mjx-container",v,[(n(),e("svg",L,a[36]||(a[36]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),a[37]||(a[37]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"M")])],-1))]),a[47]||(a[47]=i(" variables, each expanded in ")),s("mjx-container",C,[(n(),e("svg",D,a[38]||(a[38]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D441",d:"M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z",style:{"stroke-width":"3"}})])])],-1)]))),a[39]||(a[39]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"N")])],-1))]),a[48]||(a[48]=i(" harmonics, the resulting ")),a[49]||(a[49]=s("code",null,"HarmonicEquation",-1)),a[50]||(a[50]=i(" holds ")),s("mjx-container",M,[(n(),e("svg",j,a[40]||(a[40]=[t('',1)]))),a[41]||(a[41]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mn",null,"2"),s("mi",null,"N"),s("mi",null,"M")])],-1))]),a[51]||(a[51]=i(" equations of ")),s("mjx-container",B,[(n(),e("svg",Z,a[42]||(a[42]=[t('',1)]))),a[43]||(a[43]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mn",null,"2"),s("mi",null,"N"),s("mi",null,"M")])],-1))]),a[52]||(a[52]=i(" variables. Each symbol not corresponding to a variable is identified as a parameter."))]),a[58]||(a[58]=s("p",null,[i("A "),s("code",null,"HarmonicEquation"),i(" can be either parsed into a steady-state "),s("code",null,"Problem"),i(" or solved using a dynamical ODE solver.")],-1)),s("details",V,[s("summary",null,[a[53]||(a[53]=s("a",{id:"HarmonicBalance.HarmonicEquation",href:"#HarmonicBalance.HarmonicEquation"},[s("span",{class:"jlbinding"},"HarmonicBalance.HarmonicEquation")],-1)),a[54]||(a[54]=i()),o(l,{type:"info",class:"jlObjectType jlType",text:"Type"})]),a[55]||(a[55]=t('
julia
mutable struct HarmonicEquation

Holds a set of algebraic equations governing the harmonics of a DifferentialEquation.

Fields

  • equations::Vector{Equation}: A set of equations governing the harmonics.

  • variables::Vector{HarmonicVariable}: A set of variables describing the harmonics.

  • parameters::Vector{Num}: The parameters of the equation set.

  • natural_equation::DifferentialEquation: The natural equation (before the harmonic ansatz was used).

source

',5))])])}const G=T(r,[["render",A]]);export{S as __pageData,G as default}; +x^2 + y^2 + 2*x*y

source

`,5))]),a[57]||(a[57]=s("h2",{id:"HarmonicVariable-and-HarmonicEquation-types",tabindex:"-1"},[i("HarmonicVariable and HarmonicEquation types "),s("a",{class:"header-anchor",href:"#HarmonicVariable-and-HarmonicEquation-types","aria-label":'Permalink to "HarmonicVariable and HarmonicEquation types {#HarmonicVariable-and-HarmonicEquation-types}"'},"​")],-1)),s("p",null,[a[25]||(a[25]=i("The equations governing the harmonics are stored using the two following structs. When going from the original to the harmonic equations, the harmonic ansatz ")),s("mjx-container",g,[(n(),e("svg",c,a[15]||(a[15]=[t('',1)]))),a[16]||(a[16]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("msub",null,[s("mi",null,"x"),s("mi",null,"i")]),s("mo",{stretchy:"false"},"("),s("mi",null,"t"),s("mo",{stretchy:"false"},")"),s("mo",null,"="),s("munderover",null,[s("mo",{"data-mjx-texclass":"OP"},"∑"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"j"),s("mo",null,"="),s("mn",null,"1")]),s("mi",null,"M")]),s("msub",null,[s("mi",null,"u"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mo",{stretchy:"false"},"("),s("mi",null,"T"),s("mo",{stretchy:"false"},")"),s("mi",null,"cos"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"ω"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mi",null,"t"),s("mo",{stretchy:"false"},")"),s("mo",null,"+"),s("msub",null,[s("mi",null,"v"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mo",{stretchy:"false"},"("),s("mi",null,"T"),s("mo",{stretchy:"false"},")"),s("mi",null,"sin"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"ω"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mi",null,"t"),s("mo",{stretchy:"false"},")")])],-1))]),a[26]||(a[26]=i(" is used. Internally, each pair ")),s("mjx-container",u,[(n(),e("svg",y,a[17]||(a[17]=[t('',1)]))),a[18]||(a[18]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mo",{stretchy:"false"},"("),s("msub",null,[s("mi",null,"u"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mo",null,","),s("msub",null,[s("mi",null,"v"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])]),s("mo",{stretchy:"false"},")")])],-1))]),a[27]||(a[27]=i(" is stored as a ")),a[28]||(a[28]=s("code",null,"HarmonicVariable",-1)),a[29]||(a[29]=i(". This includes the identification of ")),s("mjx-container",E,[(n(),e("svg",x,a[19]||(a[19]=[t('',1)]))),a[20]||(a[20]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("msub",null,[s("mi",null,"ω"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mi",null,"i"),s("mo",null,","),s("mi",null,"j")])])])],-1))]),a[30]||(a[30]=i(" and ")),s("mjx-container",f,[(n(),e("svg",b,a[21]||(a[21]=[t('',1)]))),a[22]||(a[22]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("msub",null,[s("mi",null,"x"),s("mi",null,"i")]),s("mo",{stretchy:"false"},"("),s("mi",null,"t"),s("mo",{stretchy:"false"},")")])],-1))]),a[31]||(a[31]=i(", which is needed to later reconstruct ")),s("mjx-container",w,[(n(),e("svg",H,a[23]||(a[23]=[t('',1)]))),a[24]||(a[24]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("msub",null,[s("mi",null,"x"),s("mi",null,"i")]),s("mo",{stretchy:"false"},"("),s("mi",null,"t"),s("mo",{stretchy:"false"},")")])],-1))]),a[32]||(a[32]=i("."))]),s("details",F,[s("summary",null,[a[33]||(a[33]=s("a",{id:"HarmonicBalance.HarmonicVariable",href:"#HarmonicBalance.HarmonicVariable"},[s("span",{class:"jlbinding"},"HarmonicBalance.HarmonicVariable")],-1)),a[34]||(a[34]=i()),o(l,{type:"info",class:"jlObjectType jlType",text:"Type"})]),a[35]||(a[35]=t('
julia
mutable struct HarmonicVariable

Holds a variable stored under symbol describing the harmonic ω of natural_variable.

Fields

  • symbol::Num: Symbol of the variable in the HarmonicBalance namespace.

  • name::String: Human-readable labels of the variable, used for plotting.

  • type::String: Type of the variable (u or v for quadratures, a for a constant, Hopf for Hopf etc.)

  • ω::Num: The harmonic being described.

  • natural_variable::Num: The natural variable whose harmonic is being described.

source

',5))]),s("p",null,[a[44]||(a[44]=i("When the full set of equations of motion is expanded using the harmonic ansatz, the result is stored as a ")),a[45]||(a[45]=s("code",null,"HarmonicEquation",-1)),a[46]||(a[46]=i(". For an initial equation of motion consisting of ")),s("mjx-container",v,[(n(),e("svg",L,a[36]||(a[36]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D440",d:"M289 629Q289 635 232 637Q208 637 201 638T194 648Q194 649 196 659Q197 662 198 666T199 671T201 676T203 679T207 681T212 683T220 683T232 684Q238 684 262 684T307 683Q386 683 398 683T414 678Q415 674 451 396L487 117L510 154Q534 190 574 254T662 394Q837 673 839 675Q840 676 842 678T846 681L852 683H948Q965 683 988 683T1017 684Q1051 684 1051 673Q1051 668 1048 656T1045 643Q1041 637 1008 637Q968 636 957 634T939 623Q936 618 867 340T797 59Q797 55 798 54T805 50T822 48T855 46H886Q892 37 892 35Q892 19 885 5Q880 0 869 0Q864 0 828 1T736 2Q675 2 644 2T609 1Q592 1 592 11Q592 13 594 25Q598 41 602 43T625 46Q652 46 685 49Q699 52 704 61Q706 65 742 207T813 490T848 631L654 322Q458 10 453 5Q451 4 449 3Q444 0 433 0Q418 0 415 7Q413 11 374 317L335 624L267 354Q200 88 200 79Q206 46 272 46H282Q288 41 289 37T286 19Q282 3 278 1Q274 0 267 0Q265 0 255 0T221 1T157 2Q127 2 95 1T58 0Q43 0 39 2T35 11Q35 13 38 25T43 40Q45 46 65 46Q135 46 154 86Q158 92 223 354T289 629Z",style:{"stroke-width":"3"}})])])],-1)]))),a[37]||(a[37]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"M")])],-1))]),a[47]||(a[47]=i(" variables, each expanded in ")),s("mjx-container",C,[(n(),e("svg",D,a[38]||(a[38]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D441",d:"M234 637Q231 637 226 637Q201 637 196 638T191 649Q191 676 202 682Q204 683 299 683Q376 683 387 683T401 677Q612 181 616 168L670 381Q723 592 723 606Q723 633 659 637Q635 637 635 648Q635 650 637 660Q641 676 643 679T653 683Q656 683 684 682T767 680Q817 680 843 681T873 682Q888 682 888 672Q888 650 880 642Q878 637 858 637Q787 633 769 597L620 7Q618 0 599 0Q585 0 582 2Q579 5 453 305L326 604L261 344Q196 88 196 79Q201 46 268 46H278Q284 41 284 38T282 19Q278 6 272 0H259Q228 2 151 2Q123 2 100 2T63 2T46 1Q31 1 31 10Q31 14 34 26T39 40Q41 46 62 46Q130 49 150 85Q154 91 221 362L289 634Q287 635 234 637Z",style:{"stroke-width":"3"}})])])],-1)]))),a[39]||(a[39]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"N")])],-1))]),a[48]||(a[48]=i(" harmonics, the resulting ")),a[49]||(a[49]=s("code",null,"HarmonicEquation",-1)),a[50]||(a[50]=i(" holds ")),s("mjx-container",M,[(n(),e("svg",j,a[40]||(a[40]=[t('',1)]))),a[41]||(a[41]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mn",null,"2"),s("mi",null,"N"),s("mi",null,"M")])],-1))]),a[51]||(a[51]=i(" equations of ")),s("mjx-container",B,[(n(),e("svg",Z,a[42]||(a[42]=[t('',1)]))),a[43]||(a[43]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mn",null,"2"),s("mi",null,"N"),s("mi",null,"M")])],-1))]),a[52]||(a[52]=i(" variables. Each symbol not corresponding to a variable is identified as a parameter."))]),a[58]||(a[58]=s("p",null,[i("A "),s("code",null,"HarmonicEquation"),i(" can be either parsed into a steady-state "),s("code",null,"Problem"),i(" or solved using a dynamical ODE solver.")],-1)),s("details",V,[s("summary",null,[a[53]||(a[53]=s("a",{id:"HarmonicBalance.HarmonicEquation",href:"#HarmonicBalance.HarmonicEquation"},[s("span",{class:"jlbinding"},"HarmonicBalance.HarmonicEquation")],-1)),a[54]||(a[54]=i()),o(l,{type:"info",class:"jlObjectType jlType",text:"Type"})]),a[55]||(a[55]=t('
julia
mutable struct HarmonicEquation

Holds a set of algebraic equations governing the harmonics of a DifferentialEquation.

Fields

  • equations::Vector{Equation}: A set of equations governing the harmonics.

  • variables::Vector{HarmonicVariable}: A set of variables describing the harmonics.

  • parameters::Vector{Num}: The parameters of the equation set.

  • natural_equation::DifferentialEquation: The natural equation (before the harmonic ansatz was used).

source

',5))])])}const G=T(r,[["render",A]]);export{S as __pageData,G as default}; diff --git a/previews/PR298/assets/manual_linear_response.md.0Nnqm4c-.js b/previews/PR298/assets/manual_linear_response.md.K1dOkrxg.js similarity index 94% rename from previews/PR298/assets/manual_linear_response.md.0Nnqm4c-.js rename to previews/PR298/assets/manual_linear_response.md.K1dOkrxg.js index dd9be135..4b40d999 100644 --- a/previews/PR298/assets/manual_linear_response.md.0Nnqm4c-.js +++ b/previews/PR298/assets/manual_linear_response.md.K1dOkrxg.js @@ -1,5 +1,5 @@ -import{_ as r,c as o,a4 as i,j as s,a,G as n,B as p,o as l}from"./chunks/framework.DcvNxhjd.js";const B=JSON.parse('{"title":"Linear response (WIP)","description":"","frontmatter":{},"headers":[],"relativePath":"manual/linear_response.md","filePath":"manual/linear_response.md"}'),d={name:"manual/linear_response.md"},h={class:"jldocstring custom-block",open:""},c={class:"jldocstring custom-block",open:""},k={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.027ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.319ex",height:"1.597ex",role:"img",focusable:"false",viewBox:"0 -694 583 706","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.247ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2319 1000","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.278ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2333 1000","aria-hidden":"true"},f={class:"jldocstring custom-block",open:""},T={class:"jldocstring custom-block",open:""},Q={class:"jldocstring custom-block",open:""},x={class:"jldocstring custom-block",open:""},E={class:"jldocstring custom-block",open:""};function H(v,e,j,w,L,F){const t=p("Badge");return l(),o("div",null,[e[31]||(e[31]=i('

Linear response (WIP)

This module currently has two goals. One is calculating the first-order Jacobian, used to obtain stability and approximate (but inexpensive) the linear response of steady states. The other is calculating the full response matrix as a function of frequency; this is more accurate but more expensive.

The methodology used is explained in Jan Kosata phd thesis.

Stability

The Jacobian is used to evaluate stability of the solutions. It can be shown explicitly,

',5)),s("details",h,[s("summary",null,[e[0]||(e[0]=s("a",{id:"HarmonicBalance.LinearResponse.get_Jacobian",href:"#HarmonicBalance.LinearResponse.get_Jacobian"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.get_Jacobian")],-1)),e[1]||(e[1]=a()),n(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[2]||(e[2]=i('
julia
get_Jacobian(eom)

Obtain the symbolic Jacobian matrix of eom (either a HarmonicEquation or a DifferentialEquation). This is the linearised left-hand side of F(u) = du/dT.

source

Obtain a Jacobian from a DifferentialEquation by first converting it into a HarmonicEquation.

source

Get the Jacobian of a set of equations eqs with respect to the variables vars.

source

',7))]),e[32]||(e[32]=s("h2",{id:"Linear-response",tabindex:"-1"},[a("Linear response "),s("a",{class:"header-anchor",href:"#Linear-response","aria-label":'Permalink to "Linear response {#Linear-response}"'},"​")],-1)),e[33]||(e[33]=s("p",null,[a("The response to white noise can be shown with "),s("code",null,"plot_linear_response"),a(". Depending on the "),s("code",null,"order"),a(" argument, different methods are used.")],-1)),s("details",c,[s("summary",null,[e[3]||(e[3]=s("a",{id:"HarmonicBalance.LinearResponse.plot_linear_response",href:"#HarmonicBalance.LinearResponse.plot_linear_response"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.plot_linear_response")],-1)),e[4]||(e[4]=a()),n(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[5]||(e[5]=i('
julia
plot_linear_response(res::Result, nat_var::Num; Ω_range, branch::Int, order=1, logscale=false, show_progress=true, kwargs...)

Plot the linear response to white noise of the variable nat_var for Result res on branch for input frequencies Ω_range. Slow-time derivatives up to order are kept in the process.

Any kwargs are fed to Plots' gr().

Solutions not belonging to the physical class are ignored.

source

',5))]),e[34]||(e[34]=s("h3",{id:"First-order",tabindex:"-1"},[a("First order "),s("a",{class:"header-anchor",href:"#First-order","aria-label":'Permalink to "First order {#First-order}"'},"​")],-1)),s("p",null,[e[12]||(e[12]=a("The simplest way to extract the linear response of a steady state is to evaluate the Jacobian of the harmonic equations. Each of its eigenvalues ")),s("mjx-container",k,[(l(),o("svg",m,e[6]||(e[6]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D706",d:"M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z",style:{"stroke-width":"3"}})])])],-1)]))),e[7]||(e[7]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"λ")])],-1))]),e[13]||(e[13]=a(" describes a Lorentzian peak in the response; ")),s("mjx-container",g,[(l(),o("svg",u,e[8]||(e[8]=[i('',1)]))),e[9]||(e[9]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mtext",null,"Re"),s("mo",{stretchy:"false"},"["),s("mi",null,"λ"),s("mo",{stretchy:"false"},"]")])],-1))]),e[14]||(e[14]=a(" gives its center and ")),s("mjx-container",b,[(l(),o("svg",y,e[10]||(e[10]=[i('',1)]))),e[11]||(e[11]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mtext",null,"Im"),s("mo",{stretchy:"false"},"["),s("mi",null,"λ"),s("mo",{stretchy:"false"},"]")])],-1))]),e[15]||(e[15]=a(" its width. Transforming the harmonic variables into the non-rotating frame (that is, inverting the harmonic ansatz) then gives the response as it would be observed in an experiment."))]),e[35]||(e[35]=s("p",null,"The advantage of this method is that for a given parameter set, only one matrix diagonalization is needed to fully describe the response spectrum. However, the method is inaccurate for response frequencies far from the frequencies used in the harmonic ansatz (it relies on the response oscillating slowly in the rotating frame).",-1)),e[36]||(e[36]=s("p",null,[a("Behind the scenes, the spectra are stored using the dedicated structs "),s("code",null,"Lorentzian"),a(" and "),s("code",null,"JacobianSpectrum"),a(".")],-1)),s("details",f,[s("summary",null,[e[16]||(e[16]=s("a",{id:"HarmonicBalance.LinearResponse.JacobianSpectrum",href:"#HarmonicBalance.LinearResponse.JacobianSpectrum"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.JacobianSpectrum")],-1)),e[17]||(e[17]=a()),n(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[18]||(e[18]=i('
julia
mutable struct JacobianSpectrum

Holds a set of Lorentzian objects belonging to a variable.

Fields

  • peaks::Vector{HarmonicBalance.LinearResponse.Lorentzian}

Constructor

julia
JacobianSpectrum(res::Result; index::Int, branch::Int)

source

',7))]),s("details",T,[s("summary",null,[e[19]||(e[19]=s("a",{id:"HarmonicBalance.LinearResponse.Lorentzian",href:"#HarmonicBalance.LinearResponse.Lorentzian"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.Lorentzian")],-1)),e[20]||(e[20]=a()),n(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[21]||(e[21]=i('
julia
struct Lorentzian

Holds the three parameters of a Lorentzian peak, defined as A / sqrt((ω-ω0)² + Γ²).

Fields

  • ω0::Float64

  • Γ::Float64

  • A::Float64

source

',5))]),e[37]||(e[37]=s("h3",{id:"Higher-orders",tabindex:"-1"},[a("Higher orders "),s("a",{class:"header-anchor",href:"#Higher-orders","aria-label":'Permalink to "Higher orders {#Higher-orders}"'},"​")],-1)),e[38]||(e[38]=s("p",null,[a("Setting "),s("code",null,"order > 1"),a(" increases the accuracy of the response spectra. However, unlike for the Jacobian, here we must perform a matrix inversion for each response frequency.")],-1)),s("details",Q,[s("summary",null,[e[22]||(e[22]=s("a",{id:"HarmonicBalance.LinearResponse.ResponseMatrix",href:"#HarmonicBalance.LinearResponse.ResponseMatrix"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.ResponseMatrix")],-1)),e[23]||(e[23]=a()),n(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[24]||(e[24]=i('
julia
struct ResponseMatrix

Holds the compiled response matrix of a system.

Fields

  • matrix::Matrix{Function}: The response matrix (compiled).

  • symbols::Vector{Num}: Any symbolic variables in matrix to be substituted at evaluation.

  • variables::Vector{HarmonicVariable}: The frequencies of the harmonic variables underlying matrix. These are needed to transform the harmonic variables to the non-rotating frame.

source

',5))]),s("details",x,[s("summary",null,[e[25]||(e[25]=s("a",{id:"HarmonicBalance.LinearResponse.get_response",href:"#HarmonicBalance.LinearResponse.get_response"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.get_response")],-1)),e[26]||(e[26]=a()),n(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[27]||(e[27]=i(`
julia
get_response(
+import{_ as r,c as o,a4 as i,j as s,a,G as n,B as p,o as l}from"./chunks/framework.DcvNxhjd.js";const B=JSON.parse('{"title":"Linear response (WIP)","description":"","frontmatter":{},"headers":[],"relativePath":"manual/linear_response.md","filePath":"manual/linear_response.md"}'),d={name:"manual/linear_response.md"},h={class:"jldocstring custom-block",open:""},c={class:"jldocstring custom-block",open:""},k={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.027ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.319ex",height:"1.597ex",role:"img",focusable:"false",viewBox:"0 -694 583 706","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.247ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2319 1000","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.278ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2333 1000","aria-hidden":"true"},T={class:"jldocstring custom-block",open:""},f={class:"jldocstring custom-block",open:""},Q={class:"jldocstring custom-block",open:""},x={class:"jldocstring custom-block",open:""},E={class:"jldocstring custom-block",open:""};function H(v,e,j,w,L,F){const t=p("Badge");return l(),o("div",null,[e[31]||(e[31]=i('

Linear response (WIP)

This module currently has two goals. One is calculating the first-order Jacobian, used to obtain stability and approximate (but inexpensive) the linear response of steady states. The other is calculating the full response matrix as a function of frequency; this is more accurate but more expensive.

The methodology used is explained in Jan Kosata phd thesis.

Stability

The Jacobian is used to evaluate stability of the solutions. It can be shown explicitly,

',5)),s("details",h,[s("summary",null,[e[0]||(e[0]=s("a",{id:"HarmonicBalance.LinearResponse.get_Jacobian",href:"#HarmonicBalance.LinearResponse.get_Jacobian"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.get_Jacobian")],-1)),e[1]||(e[1]=a()),n(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[2]||(e[2]=i('
julia
get_Jacobian(eom)

Obtain the symbolic Jacobian matrix of eom (either a HarmonicEquation or a DifferentialEquation). This is the linearised left-hand side of F(u) = du/dT.

source

Obtain a Jacobian from a DifferentialEquation by first converting it into a HarmonicEquation.

source

Get the Jacobian of a set of equations eqs with respect to the variables vars.

source

',7))]),e[32]||(e[32]=s("h2",{id:"Linear-response",tabindex:"-1"},[a("Linear response "),s("a",{class:"header-anchor",href:"#Linear-response","aria-label":'Permalink to "Linear response {#Linear-response}"'},"​")],-1)),e[33]||(e[33]=s("p",null,[a("The response to white noise can be shown with "),s("code",null,"plot_linear_response"),a(". Depending on the "),s("code",null,"order"),a(" argument, different methods are used.")],-1)),s("details",c,[s("summary",null,[e[3]||(e[3]=s("a",{id:"HarmonicBalance.LinearResponse.plot_linear_response",href:"#HarmonicBalance.LinearResponse.plot_linear_response"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.plot_linear_response")],-1)),e[4]||(e[4]=a()),n(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[5]||(e[5]=i('
julia
plot_linear_response(res::Result, nat_var::Num; Ω_range, branch::Int, order=1, logscale=false, show_progress=true, kwargs...)

Plot the linear response to white noise of the variable nat_var for Result res on branch for input frequencies Ω_range. Slow-time derivatives up to order are kept in the process.

Any kwargs are fed to Plots' gr().

Solutions not belonging to the physical class are ignored.

source

',5))]),e[34]||(e[34]=s("h3",{id:"First-order",tabindex:"-1"},[a("First order "),s("a",{class:"header-anchor",href:"#First-order","aria-label":'Permalink to "First order {#First-order}"'},"​")],-1)),s("p",null,[e[12]||(e[12]=a("The simplest way to extract the linear response of a steady state is to evaluate the Jacobian of the harmonic equations. Each of its eigenvalues ")),s("mjx-container",k,[(l(),o("svg",m,e[6]||(e[6]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D706",d:"M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z",style:{"stroke-width":"3"}})])])],-1)]))),e[7]||(e[7]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"λ")])],-1))]),e[13]||(e[13]=a(" describes a Lorentzian peak in the response; ")),s("mjx-container",g,[(l(),o("svg",u,e[8]||(e[8]=[i('',1)]))),e[9]||(e[9]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mtext",null,"Re"),s("mo",{stretchy:"false"},"["),s("mi",null,"λ"),s("mo",{stretchy:"false"},"]")])],-1))]),e[14]||(e[14]=a(" gives its center and ")),s("mjx-container",b,[(l(),o("svg",y,e[10]||(e[10]=[i('',1)]))),e[11]||(e[11]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mtext",null,"Im"),s("mo",{stretchy:"false"},"["),s("mi",null,"λ"),s("mo",{stretchy:"false"},"]")])],-1))]),e[15]||(e[15]=a(" its width. Transforming the harmonic variables into the non-rotating frame (that is, inverting the harmonic ansatz) then gives the response as it would be observed in an experiment."))]),e[35]||(e[35]=s("p",null,"The advantage of this method is that for a given parameter set, only one matrix diagonalization is needed to fully describe the response spectrum. However, the method is inaccurate for response frequencies far from the frequencies used in the harmonic ansatz (it relies on the response oscillating slowly in the rotating frame).",-1)),e[36]||(e[36]=s("p",null,[a("Behind the scenes, the spectra are stored using the dedicated structs "),s("code",null,"Lorentzian"),a(" and "),s("code",null,"JacobianSpectrum"),a(".")],-1)),s("details",T,[s("summary",null,[e[16]||(e[16]=s("a",{id:"HarmonicBalance.LinearResponse.JacobianSpectrum",href:"#HarmonicBalance.LinearResponse.JacobianSpectrum"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.JacobianSpectrum")],-1)),e[17]||(e[17]=a()),n(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[18]||(e[18]=i('
julia
mutable struct JacobianSpectrum

Holds a set of Lorentzian objects belonging to a variable.

Fields

  • peaks::Vector{HarmonicBalance.LinearResponse.Lorentzian}

Constructor

julia
JacobianSpectrum(res::Result; index::Int, branch::Int)

source

',7))]),s("details",f,[s("summary",null,[e[19]||(e[19]=s("a",{id:"HarmonicBalance.LinearResponse.Lorentzian",href:"#HarmonicBalance.LinearResponse.Lorentzian"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.Lorentzian")],-1)),e[20]||(e[20]=a()),n(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[21]||(e[21]=i('
julia
struct Lorentzian

Holds the three parameters of a Lorentzian peak, defined as A / sqrt((ω-ω0)² + Γ²).

Fields

  • ω0::Float64

  • Γ::Float64

  • A::Float64

source

',5))]),e[37]||(e[37]=s("h3",{id:"Higher-orders",tabindex:"-1"},[a("Higher orders "),s("a",{class:"header-anchor",href:"#Higher-orders","aria-label":'Permalink to "Higher orders {#Higher-orders}"'},"​")],-1)),e[38]||(e[38]=s("p",null,[a("Setting "),s("code",null,"order > 1"),a(" increases the accuracy of the response spectra. However, unlike for the Jacobian, here we must perform a matrix inversion for each response frequency.")],-1)),s("details",Q,[s("summary",null,[e[22]||(e[22]=s("a",{id:"HarmonicBalance.LinearResponse.ResponseMatrix",href:"#HarmonicBalance.LinearResponse.ResponseMatrix"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.ResponseMatrix")],-1)),e[23]||(e[23]=a()),n(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[24]||(e[24]=i('
julia
struct ResponseMatrix

Holds the compiled response matrix of a system.

Fields

  • matrix::Matrix{Function}: The response matrix (compiled).

  • symbols::Vector{Num}: Any symbolic variables in matrix to be substituted at evaluation.

  • variables::Vector{HarmonicVariable}: The frequencies of the harmonic variables underlying matrix. These are needed to transform the harmonic variables to the non-rotating frame.

source

',5))]),s("details",x,[s("summary",null,[e[25]||(e[25]=s("a",{id:"HarmonicBalance.LinearResponse.get_response",href:"#HarmonicBalance.LinearResponse.get_response"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.get_response")],-1)),e[26]||(e[26]=a()),n(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[27]||(e[27]=i(`
julia
get_response(
     rmat::HarmonicBalance.LinearResponse.ResponseMatrix,
     s::OrderedCollections.OrderedDict{Num, ComplexF64},
     Ω
-) -> Any

For rmat and a solution dictionary s, calculate the total response to a perturbative force at frequency Ω.

source

`,3))]),s("details",E,[s("summary",null,[e[28]||(e[28]=s("a",{id:"HarmonicBalance.LinearResponse.get_response_matrix",href:"#HarmonicBalance.LinearResponse.get_response_matrix"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.get_response_matrix")],-1)),e[29]||(e[29]=a()),n(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[30]||(e[30]=i('
julia
get_response_matrix(diff_eq::DifferentialEquation, freq::Num; order=2)

Obtain the symbolic linear response matrix of a diff_eq corresponding to a perturbation frequency freq. This routine cannot accept a HarmonicEquation since there, some time-derivatives are already dropped. order denotes the highest differential order to be considered.

source

',3))])])}const V=r(d,[["render",H]]);export{B as __pageData,V as default}; +) -> Any

For rmat and a solution dictionary s, calculate the total response to a perturbative force at frequency Ω.

source

`,3))]),s("details",E,[s("summary",null,[e[28]||(e[28]=s("a",{id:"HarmonicBalance.LinearResponse.get_response_matrix",href:"#HarmonicBalance.LinearResponse.get_response_matrix"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.get_response_matrix")],-1)),e[29]||(e[29]=a()),n(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[30]||(e[30]=i('
julia
get_response_matrix(diff_eq::DifferentialEquation, freq::Num; order=2)

Obtain the symbolic linear response matrix of a diff_eq corresponding to a perturbation frequency freq. This routine cannot accept a HarmonicEquation since there, some time-derivatives are already dropped. order denotes the highest differential order to be considered.

source

',3))])])}const V=r(d,[["render",H]]);export{B as __pageData,V as default}; diff --git a/previews/PR298/assets/manual_linear_response.md.0Nnqm4c-.lean.js b/previews/PR298/assets/manual_linear_response.md.K1dOkrxg.lean.js similarity index 94% rename from previews/PR298/assets/manual_linear_response.md.0Nnqm4c-.lean.js rename to previews/PR298/assets/manual_linear_response.md.K1dOkrxg.lean.js index dd9be135..4b40d999 100644 --- a/previews/PR298/assets/manual_linear_response.md.0Nnqm4c-.lean.js +++ b/previews/PR298/assets/manual_linear_response.md.K1dOkrxg.lean.js @@ -1,5 +1,5 @@ -import{_ as r,c as o,a4 as i,j as s,a,G as n,B as p,o as l}from"./chunks/framework.DcvNxhjd.js";const B=JSON.parse('{"title":"Linear response (WIP)","description":"","frontmatter":{},"headers":[],"relativePath":"manual/linear_response.md","filePath":"manual/linear_response.md"}'),d={name:"manual/linear_response.md"},h={class:"jldocstring custom-block",open:""},c={class:"jldocstring custom-block",open:""},k={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.027ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.319ex",height:"1.597ex",role:"img",focusable:"false",viewBox:"0 -694 583 706","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.247ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2319 1000","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.278ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2333 1000","aria-hidden":"true"},f={class:"jldocstring custom-block",open:""},T={class:"jldocstring custom-block",open:""},Q={class:"jldocstring custom-block",open:""},x={class:"jldocstring custom-block",open:""},E={class:"jldocstring custom-block",open:""};function H(v,e,j,w,L,F){const t=p("Badge");return l(),o("div",null,[e[31]||(e[31]=i('

Linear response (WIP)

This module currently has two goals. One is calculating the first-order Jacobian, used to obtain stability and approximate (but inexpensive) the linear response of steady states. The other is calculating the full response matrix as a function of frequency; this is more accurate but more expensive.

The methodology used is explained in Jan Kosata phd thesis.

Stability

The Jacobian is used to evaluate stability of the solutions. It can be shown explicitly,

',5)),s("details",h,[s("summary",null,[e[0]||(e[0]=s("a",{id:"HarmonicBalance.LinearResponse.get_Jacobian",href:"#HarmonicBalance.LinearResponse.get_Jacobian"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.get_Jacobian")],-1)),e[1]||(e[1]=a()),n(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[2]||(e[2]=i('
julia
get_Jacobian(eom)

Obtain the symbolic Jacobian matrix of eom (either a HarmonicEquation or a DifferentialEquation). This is the linearised left-hand side of F(u) = du/dT.

source

Obtain a Jacobian from a DifferentialEquation by first converting it into a HarmonicEquation.

source

Get the Jacobian of a set of equations eqs with respect to the variables vars.

source

',7))]),e[32]||(e[32]=s("h2",{id:"Linear-response",tabindex:"-1"},[a("Linear response "),s("a",{class:"header-anchor",href:"#Linear-response","aria-label":'Permalink to "Linear response {#Linear-response}"'},"​")],-1)),e[33]||(e[33]=s("p",null,[a("The response to white noise can be shown with "),s("code",null,"plot_linear_response"),a(". Depending on the "),s("code",null,"order"),a(" argument, different methods are used.")],-1)),s("details",c,[s("summary",null,[e[3]||(e[3]=s("a",{id:"HarmonicBalance.LinearResponse.plot_linear_response",href:"#HarmonicBalance.LinearResponse.plot_linear_response"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.plot_linear_response")],-1)),e[4]||(e[4]=a()),n(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[5]||(e[5]=i('
julia
plot_linear_response(res::Result, nat_var::Num; Ω_range, branch::Int, order=1, logscale=false, show_progress=true, kwargs...)

Plot the linear response to white noise of the variable nat_var for Result res on branch for input frequencies Ω_range. Slow-time derivatives up to order are kept in the process.

Any kwargs are fed to Plots' gr().

Solutions not belonging to the physical class are ignored.

source

',5))]),e[34]||(e[34]=s("h3",{id:"First-order",tabindex:"-1"},[a("First order "),s("a",{class:"header-anchor",href:"#First-order","aria-label":'Permalink to "First order {#First-order}"'},"​")],-1)),s("p",null,[e[12]||(e[12]=a("The simplest way to extract the linear response of a steady state is to evaluate the Jacobian of the harmonic equations. Each of its eigenvalues ")),s("mjx-container",k,[(l(),o("svg",m,e[6]||(e[6]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D706",d:"M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z",style:{"stroke-width":"3"}})])])],-1)]))),e[7]||(e[7]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"λ")])],-1))]),e[13]||(e[13]=a(" describes a Lorentzian peak in the response; ")),s("mjx-container",g,[(l(),o("svg",u,e[8]||(e[8]=[i('',1)]))),e[9]||(e[9]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mtext",null,"Re"),s("mo",{stretchy:"false"},"["),s("mi",null,"λ"),s("mo",{stretchy:"false"},"]")])],-1))]),e[14]||(e[14]=a(" gives its center and ")),s("mjx-container",b,[(l(),o("svg",y,e[10]||(e[10]=[i('',1)]))),e[11]||(e[11]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mtext",null,"Im"),s("mo",{stretchy:"false"},"["),s("mi",null,"λ"),s("mo",{stretchy:"false"},"]")])],-1))]),e[15]||(e[15]=a(" its width. Transforming the harmonic variables into the non-rotating frame (that is, inverting the harmonic ansatz) then gives the response as it would be observed in an experiment."))]),e[35]||(e[35]=s("p",null,"The advantage of this method is that for a given parameter set, only one matrix diagonalization is needed to fully describe the response spectrum. However, the method is inaccurate for response frequencies far from the frequencies used in the harmonic ansatz (it relies on the response oscillating slowly in the rotating frame).",-1)),e[36]||(e[36]=s("p",null,[a("Behind the scenes, the spectra are stored using the dedicated structs "),s("code",null,"Lorentzian"),a(" and "),s("code",null,"JacobianSpectrum"),a(".")],-1)),s("details",f,[s("summary",null,[e[16]||(e[16]=s("a",{id:"HarmonicBalance.LinearResponse.JacobianSpectrum",href:"#HarmonicBalance.LinearResponse.JacobianSpectrum"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.JacobianSpectrum")],-1)),e[17]||(e[17]=a()),n(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[18]||(e[18]=i('
julia
mutable struct JacobianSpectrum

Holds a set of Lorentzian objects belonging to a variable.

Fields

  • peaks::Vector{HarmonicBalance.LinearResponse.Lorentzian}

Constructor

julia
JacobianSpectrum(res::Result; index::Int, branch::Int)

source

',7))]),s("details",T,[s("summary",null,[e[19]||(e[19]=s("a",{id:"HarmonicBalance.LinearResponse.Lorentzian",href:"#HarmonicBalance.LinearResponse.Lorentzian"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.Lorentzian")],-1)),e[20]||(e[20]=a()),n(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[21]||(e[21]=i('
julia
struct Lorentzian

Holds the three parameters of a Lorentzian peak, defined as A / sqrt((ω-ω0)² + Γ²).

Fields

  • ω0::Float64

  • Γ::Float64

  • A::Float64

source

',5))]),e[37]||(e[37]=s("h3",{id:"Higher-orders",tabindex:"-1"},[a("Higher orders "),s("a",{class:"header-anchor",href:"#Higher-orders","aria-label":'Permalink to "Higher orders {#Higher-orders}"'},"​")],-1)),e[38]||(e[38]=s("p",null,[a("Setting "),s("code",null,"order > 1"),a(" increases the accuracy of the response spectra. However, unlike for the Jacobian, here we must perform a matrix inversion for each response frequency.")],-1)),s("details",Q,[s("summary",null,[e[22]||(e[22]=s("a",{id:"HarmonicBalance.LinearResponse.ResponseMatrix",href:"#HarmonicBalance.LinearResponse.ResponseMatrix"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.ResponseMatrix")],-1)),e[23]||(e[23]=a()),n(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[24]||(e[24]=i('
julia
struct ResponseMatrix

Holds the compiled response matrix of a system.

Fields

  • matrix::Matrix{Function}: The response matrix (compiled).

  • symbols::Vector{Num}: Any symbolic variables in matrix to be substituted at evaluation.

  • variables::Vector{HarmonicVariable}: The frequencies of the harmonic variables underlying matrix. These are needed to transform the harmonic variables to the non-rotating frame.

source

',5))]),s("details",x,[s("summary",null,[e[25]||(e[25]=s("a",{id:"HarmonicBalance.LinearResponse.get_response",href:"#HarmonicBalance.LinearResponse.get_response"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.get_response")],-1)),e[26]||(e[26]=a()),n(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[27]||(e[27]=i(`
julia
get_response(
+import{_ as r,c as o,a4 as i,j as s,a,G as n,B as p,o as l}from"./chunks/framework.DcvNxhjd.js";const B=JSON.parse('{"title":"Linear response (WIP)","description":"","frontmatter":{},"headers":[],"relativePath":"manual/linear_response.md","filePath":"manual/linear_response.md"}'),d={name:"manual/linear_response.md"},h={class:"jldocstring custom-block",open:""},c={class:"jldocstring custom-block",open:""},k={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.027ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.319ex",height:"1.597ex",role:"img",focusable:"false",viewBox:"0 -694 583 706","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.247ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2319 1000","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.278ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2333 1000","aria-hidden":"true"},T={class:"jldocstring custom-block",open:""},f={class:"jldocstring custom-block",open:""},Q={class:"jldocstring custom-block",open:""},x={class:"jldocstring custom-block",open:""},E={class:"jldocstring custom-block",open:""};function H(v,e,j,w,L,F){const t=p("Badge");return l(),o("div",null,[e[31]||(e[31]=i('

Linear response (WIP)

This module currently has two goals. One is calculating the first-order Jacobian, used to obtain stability and approximate (but inexpensive) the linear response of steady states. The other is calculating the full response matrix as a function of frequency; this is more accurate but more expensive.

The methodology used is explained in Jan Kosata phd thesis.

Stability

The Jacobian is used to evaluate stability of the solutions. It can be shown explicitly,

',5)),s("details",h,[s("summary",null,[e[0]||(e[0]=s("a",{id:"HarmonicBalance.LinearResponse.get_Jacobian",href:"#HarmonicBalance.LinearResponse.get_Jacobian"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.get_Jacobian")],-1)),e[1]||(e[1]=a()),n(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[2]||(e[2]=i('
julia
get_Jacobian(eom)

Obtain the symbolic Jacobian matrix of eom (either a HarmonicEquation or a DifferentialEquation). This is the linearised left-hand side of F(u) = du/dT.

source

Obtain a Jacobian from a DifferentialEquation by first converting it into a HarmonicEquation.

source

Get the Jacobian of a set of equations eqs with respect to the variables vars.

source

',7))]),e[32]||(e[32]=s("h2",{id:"Linear-response",tabindex:"-1"},[a("Linear response "),s("a",{class:"header-anchor",href:"#Linear-response","aria-label":'Permalink to "Linear response {#Linear-response}"'},"​")],-1)),e[33]||(e[33]=s("p",null,[a("The response to white noise can be shown with "),s("code",null,"plot_linear_response"),a(". Depending on the "),s("code",null,"order"),a(" argument, different methods are used.")],-1)),s("details",c,[s("summary",null,[e[3]||(e[3]=s("a",{id:"HarmonicBalance.LinearResponse.plot_linear_response",href:"#HarmonicBalance.LinearResponse.plot_linear_response"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.plot_linear_response")],-1)),e[4]||(e[4]=a()),n(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[5]||(e[5]=i('
julia
plot_linear_response(res::Result, nat_var::Num; Ω_range, branch::Int, order=1, logscale=false, show_progress=true, kwargs...)

Plot the linear response to white noise of the variable nat_var for Result res on branch for input frequencies Ω_range. Slow-time derivatives up to order are kept in the process.

Any kwargs are fed to Plots' gr().

Solutions not belonging to the physical class are ignored.

source

',5))]),e[34]||(e[34]=s("h3",{id:"First-order",tabindex:"-1"},[a("First order "),s("a",{class:"header-anchor",href:"#First-order","aria-label":'Permalink to "First order {#First-order}"'},"​")],-1)),s("p",null,[e[12]||(e[12]=a("The simplest way to extract the linear response of a steady state is to evaluate the Jacobian of the harmonic equations. Each of its eigenvalues ")),s("mjx-container",k,[(l(),o("svg",m,e[6]||(e[6]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D706",d:"M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z",style:{"stroke-width":"3"}})])])],-1)]))),e[7]||(e[7]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"λ")])],-1))]),e[13]||(e[13]=a(" describes a Lorentzian peak in the response; ")),s("mjx-container",g,[(l(),o("svg",u,e[8]||(e[8]=[i('',1)]))),e[9]||(e[9]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mtext",null,"Re"),s("mo",{stretchy:"false"},"["),s("mi",null,"λ"),s("mo",{stretchy:"false"},"]")])],-1))]),e[14]||(e[14]=a(" gives its center and ")),s("mjx-container",b,[(l(),o("svg",y,e[10]||(e[10]=[i('',1)]))),e[11]||(e[11]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mtext",null,"Im"),s("mo",{stretchy:"false"},"["),s("mi",null,"λ"),s("mo",{stretchy:"false"},"]")])],-1))]),e[15]||(e[15]=a(" its width. Transforming the harmonic variables into the non-rotating frame (that is, inverting the harmonic ansatz) then gives the response as it would be observed in an experiment."))]),e[35]||(e[35]=s("p",null,"The advantage of this method is that for a given parameter set, only one matrix diagonalization is needed to fully describe the response spectrum. However, the method is inaccurate for response frequencies far from the frequencies used in the harmonic ansatz (it relies on the response oscillating slowly in the rotating frame).",-1)),e[36]||(e[36]=s("p",null,[a("Behind the scenes, the spectra are stored using the dedicated structs "),s("code",null,"Lorentzian"),a(" and "),s("code",null,"JacobianSpectrum"),a(".")],-1)),s("details",T,[s("summary",null,[e[16]||(e[16]=s("a",{id:"HarmonicBalance.LinearResponse.JacobianSpectrum",href:"#HarmonicBalance.LinearResponse.JacobianSpectrum"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.JacobianSpectrum")],-1)),e[17]||(e[17]=a()),n(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[18]||(e[18]=i('
julia
mutable struct JacobianSpectrum

Holds a set of Lorentzian objects belonging to a variable.

Fields

  • peaks::Vector{HarmonicBalance.LinearResponse.Lorentzian}

Constructor

julia
JacobianSpectrum(res::Result; index::Int, branch::Int)

source

',7))]),s("details",f,[s("summary",null,[e[19]||(e[19]=s("a",{id:"HarmonicBalance.LinearResponse.Lorentzian",href:"#HarmonicBalance.LinearResponse.Lorentzian"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.Lorentzian")],-1)),e[20]||(e[20]=a()),n(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[21]||(e[21]=i('
julia
struct Lorentzian

Holds the three parameters of a Lorentzian peak, defined as A / sqrt((ω-ω0)² + Γ²).

Fields

  • ω0::Float64

  • Γ::Float64

  • A::Float64

source

',5))]),e[37]||(e[37]=s("h3",{id:"Higher-orders",tabindex:"-1"},[a("Higher orders "),s("a",{class:"header-anchor",href:"#Higher-orders","aria-label":'Permalink to "Higher orders {#Higher-orders}"'},"​")],-1)),e[38]||(e[38]=s("p",null,[a("Setting "),s("code",null,"order > 1"),a(" increases the accuracy of the response spectra. However, unlike for the Jacobian, here we must perform a matrix inversion for each response frequency.")],-1)),s("details",Q,[s("summary",null,[e[22]||(e[22]=s("a",{id:"HarmonicBalance.LinearResponse.ResponseMatrix",href:"#HarmonicBalance.LinearResponse.ResponseMatrix"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.ResponseMatrix")],-1)),e[23]||(e[23]=a()),n(t,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[24]||(e[24]=i('
julia
struct ResponseMatrix

Holds the compiled response matrix of a system.

Fields

  • matrix::Matrix{Function}: The response matrix (compiled).

  • symbols::Vector{Num}: Any symbolic variables in matrix to be substituted at evaluation.

  • variables::Vector{HarmonicVariable}: The frequencies of the harmonic variables underlying matrix. These are needed to transform the harmonic variables to the non-rotating frame.

source

',5))]),s("details",x,[s("summary",null,[e[25]||(e[25]=s("a",{id:"HarmonicBalance.LinearResponse.get_response",href:"#HarmonicBalance.LinearResponse.get_response"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.get_response")],-1)),e[26]||(e[26]=a()),n(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[27]||(e[27]=i(`
julia
get_response(
     rmat::HarmonicBalance.LinearResponse.ResponseMatrix,
     s::OrderedCollections.OrderedDict{Num, ComplexF64},
     Ω
-) -> Any

For rmat and a solution dictionary s, calculate the total response to a perturbative force at frequency Ω.

source

`,3))]),s("details",E,[s("summary",null,[e[28]||(e[28]=s("a",{id:"HarmonicBalance.LinearResponse.get_response_matrix",href:"#HarmonicBalance.LinearResponse.get_response_matrix"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.get_response_matrix")],-1)),e[29]||(e[29]=a()),n(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[30]||(e[30]=i('
julia
get_response_matrix(diff_eq::DifferentialEquation, freq::Num; order=2)

Obtain the symbolic linear response matrix of a diff_eq corresponding to a perturbation frequency freq. This routine cannot accept a HarmonicEquation since there, some time-derivatives are already dropped. order denotes the highest differential order to be considered.

source

',3))])])}const V=r(d,[["render",H]]);export{B as __pageData,V as default}; +) -> Any

For rmat and a solution dictionary s, calculate the total response to a perturbative force at frequency Ω.

source

`,3))]),s("details",E,[s("summary",null,[e[28]||(e[28]=s("a",{id:"HarmonicBalance.LinearResponse.get_response_matrix",href:"#HarmonicBalance.LinearResponse.get_response_matrix"},[s("span",{class:"jlbinding"},"HarmonicBalance.LinearResponse.get_response_matrix")],-1)),e[29]||(e[29]=a()),n(t,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[30]||(e[30]=i('
julia
get_response_matrix(diff_eq::DifferentialEquation, freq::Num; order=2)

Obtain the symbolic linear response matrix of a diff_eq corresponding to a perturbation frequency freq. This routine cannot accept a HarmonicEquation since there, some time-derivatives are already dropped. order denotes the highest differential order to be considered.

source

',3))])])}const V=r(d,[["render",H]]);export{B as __pageData,V as default}; diff --git a/previews/PR298/assets/manual_methods.md.-11YqXIu.js b/previews/PR298/assets/manual_methods.md.-11YqXIu.js new file mode 100644 index 00000000..abbe9330 --- /dev/null +++ b/previews/PR298/assets/manual_methods.md.-11YqXIu.js @@ -0,0 +1 @@ +import{_ as r,c as l,j as t,a as o,G as i,a4 as a,B as Q,o as n}from"./chunks/framework.DcvNxhjd.js";const v=JSON.parse('{"title":"Methods","description":"","frontmatter":{},"headers":[],"relativePath":"manual/methods.md","filePath":"manual/methods.md"}'),d={name:"manual/methods.md"},T={class:"jldocstring custom-block",open:""},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},p={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"30.769ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 13600.1 1000","aria-hidden":"true"},h={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.452ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.349ex",height:"2.384ex",role:"img",focusable:"false",viewBox:"0 -853.7 4574.1 1053.7","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.452ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.534ex",height:"2.149ex",role:"img",focusable:"false",viewBox:"0 -750 1120 950","aria-hidden":"true"},f={class:"jldocstring custom-block",open:""},y={class:"jldocstring custom-block",open:""};function H(b,e,x,w,k,M){const s=Q("Badge");return n(),l("div",null,[e[24]||(e[24]=t("h1",{id:"methods",tabindex:"-1"},[o("Methods "),t("a",{class:"header-anchor",href:"#methods","aria-label":'Permalink to "Methods"'},"​")],-1)),e[25]||(e[25]=t("p",null,"We offer several methods for solving the nonlinear algebraic equations that arise from the harmonic balance procedure. Each method has different tradeoffs between speed, robustness, and completeness.",-1)),e[26]||(e[26]=t("h2",{id:"Total-Degree-Method",tabindex:"-1"},[o("Total Degree Method "),t("a",{class:"header-anchor",href:"#Total-Degree-Method","aria-label":'Permalink to "Total Degree Method {#Total-Degree-Method}"'},"​")],-1)),t("details",T,[t("summary",null,[e[0]||(e[0]=t("a",{id:"HarmonicBalance.TotalDegree",href:"#HarmonicBalance.TotalDegree"},[t("span",{class:"jlbinding"},"HarmonicBalance.TotalDegree")],-1)),e[1]||(e[1]=o()),i(s,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[16]||(e[16]=a('
julia
TotalDegree
',1)),t("p",null,[e[8]||(e[8]=o("The Total Degree homotopy method. Performs a homotopy ")),t("mjx-container",m,[(n(),l("svg",p,e[2]||(e[2]=[a('',1)]))),e[3]||(e[3]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"H"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",null,","),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mi",null,"γ"),t("mi",null,"t"),t("mi",null,"G"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,"+"),t("mo",{stretchy:"false"},"("),t("mn",null,"1"),t("mo",null,"−"),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mi",null,"F"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")])],-1))]),e[9]||(e[9]=o(" from the trivial polynomial system ")),t("mjx-container",h,[(n(),l("svg",c,e[4]||(e[4]=[a('',1)]))),e[5]||(e[5]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x"),t("msup",null,[t("mi",null,"ᵢ"),t("mi",null,"d")]),t("mi",null,"ᵢ"),t("mo",null,"+"),t("mi",null,"a"),t("mi",null,"ᵢ")])],-1))]),e[10]||(e[10]=o(" with the maximal degree ")),t("mjx-container",g,[(n(),l("svg",u,e[6]||(e[6]=[a('',1)]))),e[7]||(e[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"d"),t("mi",null,"ᵢ")])],-1))]),e[11]||(e[11]=o(" determined by the ")),e[12]||(e[12]=t("a",{href:"https://en.wikipedia.org/wiki/B%C3%A9zout%27s_theorem",target:"_blank",rel:"noreferrer"},"Bezout bound",-1)),e[13]||(e[13]=o(". The method guarantees to find all solutions, however, it comes with a high computational cost. See ")),e[14]||(e[14]=t("a",{href:"https://www.juliahomotopycontinuation.org/guides/totaldegree/",target:"_blank",rel:"noreferrer"},"HomotopyContinuation.jl",-1)),e[15]||(e[15]=o(" for more information."))]),e[17]||(e[17]=a('

Fields

  • gamma::Complex: Complex multiplying factor of the start system G(x) for the homotopy

  • thread::Bool: Boolean indicating if threading is enabled.

  • tracker_options::HomotopyContinuation.TrackerOptions: Options for the tracker.

  • endgame_options::HomotopyContinuation.EndgameOptions: Options for the endgame.

  • compile::Union{Bool, Symbol}: Compilation options.

  • seed::UInt32: Seed for random number generation.

source

',3))]),e[27]||(e[27]=t("h2",{id:"Polyhedral-Method",tabindex:"-1"},[o("Polyhedral Method "),t("a",{class:"header-anchor",href:"#Polyhedral-Method","aria-label":'Permalink to "Polyhedral Method {#Polyhedral-Method}"'},"​")],-1)),t("details",f,[t("summary",null,[e[18]||(e[18]=t("a",{id:"HarmonicBalance.Polyhedral",href:"#HarmonicBalance.Polyhedral"},[t("span",{class:"jlbinding"},"HarmonicBalance.Polyhedral")],-1)),e[19]||(e[19]=o()),i(s,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[20]||(e[20]=a('
julia
Polyhedral

The Polyhedral homotopy method. This method constructs a homotopy based on the polyhedral structure of the polynomial system. It is more efficient than the Total Degree method for sparse systems, meaning most of the coefficients are zero. It can be especially useful if you don't need to find the zero solutions (only_non_zero = true), resulting in speed up. See HomotopyContinuation.jl for more information.

Fields

  • only_non_zero::Bool: Boolean indicating if only non-zero solutions are considered.

  • thread::Bool: Boolean indicating if threading is enabled.

  • tracker_options::HomotopyContinuation.TrackerOptions: Options for the tracker.

  • endgame_options::HomotopyContinuation.EndgameOptions: Options for the endgame.

  • compile::Union{Bool, Symbol}: Compilation options.

  • seed::UInt32: Seed for random number generation.

source

',5))]),e[28]||(e[28]=t("h2",{id:"Warm-Up-Method",tabindex:"-1"},[o("Warm Up Method "),t("a",{class:"header-anchor",href:"#Warm-Up-Method","aria-label":'Permalink to "Warm Up Method {#Warm-Up-Method}"'},"​")],-1)),t("details",y,[t("summary",null,[e[21]||(e[21]=t("a",{id:"HarmonicBalance.WarmUp",href:"#HarmonicBalance.WarmUp"},[t("span",{class:"jlbinding"},"HarmonicBalance.WarmUp")],-1)),e[22]||(e[22]=o()),i(s,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[23]||(e[23]=a('
julia
WarmUp

The Warm Up method. This method prepares a warmup system using the parameter at index perturbed by perturbation_size and performs a homotopy using the warmup system to all other systems in the parameter sweep. It is very efficient for systems with less bifurcation in the parameter sweep. The Warm Up method does not guarantee to find all solutions. See HomotopyContinuation.jl for more information.

Fields

  • perturbation_size::ComplexF64: Size of the perturbation.

  • index::Union{Int64, EndpointRanges.Endpoint}: Index for the endpoint.

  • thread::Bool: Boolean indicating if threading is enabled.

  • tracker_options::HomotopyContinuation.TrackerOptions: Options for the tracker.

  • endgame_options::HomotopyContinuation.EndgameOptions: Options for the endgame.

  • compile::Union{Bool, Symbol}: Compilation options.

  • seed::UInt32: Seed for random number generation.

source

',5))])])}const j=r(d,[["render",H]]);export{v as __pageData,j as default}; diff --git a/previews/PR298/assets/manual_methods.md.-11YqXIu.lean.js b/previews/PR298/assets/manual_methods.md.-11YqXIu.lean.js new file mode 100644 index 00000000..abbe9330 --- /dev/null +++ b/previews/PR298/assets/manual_methods.md.-11YqXIu.lean.js @@ -0,0 +1 @@ +import{_ as r,c as l,j as t,a as o,G as i,a4 as a,B as Q,o as n}from"./chunks/framework.DcvNxhjd.js";const v=JSON.parse('{"title":"Methods","description":"","frontmatter":{},"headers":[],"relativePath":"manual/methods.md","filePath":"manual/methods.md"}'),d={name:"manual/methods.md"},T={class:"jldocstring custom-block",open:""},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},p={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"30.769ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 13600.1 1000","aria-hidden":"true"},h={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.452ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.349ex",height:"2.384ex",role:"img",focusable:"false",viewBox:"0 -853.7 4574.1 1053.7","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.452ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.534ex",height:"2.149ex",role:"img",focusable:"false",viewBox:"0 -750 1120 950","aria-hidden":"true"},f={class:"jldocstring custom-block",open:""},y={class:"jldocstring custom-block",open:""};function H(b,e,x,w,k,M){const s=Q("Badge");return n(),l("div",null,[e[24]||(e[24]=t("h1",{id:"methods",tabindex:"-1"},[o("Methods "),t("a",{class:"header-anchor",href:"#methods","aria-label":'Permalink to "Methods"'},"​")],-1)),e[25]||(e[25]=t("p",null,"We offer several methods for solving the nonlinear algebraic equations that arise from the harmonic balance procedure. Each method has different tradeoffs between speed, robustness, and completeness.",-1)),e[26]||(e[26]=t("h2",{id:"Total-Degree-Method",tabindex:"-1"},[o("Total Degree Method "),t("a",{class:"header-anchor",href:"#Total-Degree-Method","aria-label":'Permalink to "Total Degree Method {#Total-Degree-Method}"'},"​")],-1)),t("details",T,[t("summary",null,[e[0]||(e[0]=t("a",{id:"HarmonicBalance.TotalDegree",href:"#HarmonicBalance.TotalDegree"},[t("span",{class:"jlbinding"},"HarmonicBalance.TotalDegree")],-1)),e[1]||(e[1]=o()),i(s,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[16]||(e[16]=a('
julia
TotalDegree
',1)),t("p",null,[e[8]||(e[8]=o("The Total Degree homotopy method. Performs a homotopy ")),t("mjx-container",m,[(n(),l("svg",p,e[2]||(e[2]=[a('',1)]))),e[3]||(e[3]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"H"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",null,","),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mi",null,"γ"),t("mi",null,"t"),t("mi",null,"G"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,"+"),t("mo",{stretchy:"false"},"("),t("mn",null,"1"),t("mo",null,"−"),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mi",null,"F"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")])],-1))]),e[9]||(e[9]=o(" from the trivial polynomial system ")),t("mjx-container",h,[(n(),l("svg",c,e[4]||(e[4]=[a('',1)]))),e[5]||(e[5]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x"),t("msup",null,[t("mi",null,"ᵢ"),t("mi",null,"d")]),t("mi",null,"ᵢ"),t("mo",null,"+"),t("mi",null,"a"),t("mi",null,"ᵢ")])],-1))]),e[10]||(e[10]=o(" with the maximal degree ")),t("mjx-container",g,[(n(),l("svg",u,e[6]||(e[6]=[a('',1)]))),e[7]||(e[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"d"),t("mi",null,"ᵢ")])],-1))]),e[11]||(e[11]=o(" determined by the ")),e[12]||(e[12]=t("a",{href:"https://en.wikipedia.org/wiki/B%C3%A9zout%27s_theorem",target:"_blank",rel:"noreferrer"},"Bezout bound",-1)),e[13]||(e[13]=o(". The method guarantees to find all solutions, however, it comes with a high computational cost. See ")),e[14]||(e[14]=t("a",{href:"https://www.juliahomotopycontinuation.org/guides/totaldegree/",target:"_blank",rel:"noreferrer"},"HomotopyContinuation.jl",-1)),e[15]||(e[15]=o(" for more information."))]),e[17]||(e[17]=a('

Fields

  • gamma::Complex: Complex multiplying factor of the start system G(x) for the homotopy

  • thread::Bool: Boolean indicating if threading is enabled.

  • tracker_options::HomotopyContinuation.TrackerOptions: Options for the tracker.

  • endgame_options::HomotopyContinuation.EndgameOptions: Options for the endgame.

  • compile::Union{Bool, Symbol}: Compilation options.

  • seed::UInt32: Seed for random number generation.

source

',3))]),e[27]||(e[27]=t("h2",{id:"Polyhedral-Method",tabindex:"-1"},[o("Polyhedral Method "),t("a",{class:"header-anchor",href:"#Polyhedral-Method","aria-label":'Permalink to "Polyhedral Method {#Polyhedral-Method}"'},"​")],-1)),t("details",f,[t("summary",null,[e[18]||(e[18]=t("a",{id:"HarmonicBalance.Polyhedral",href:"#HarmonicBalance.Polyhedral"},[t("span",{class:"jlbinding"},"HarmonicBalance.Polyhedral")],-1)),e[19]||(e[19]=o()),i(s,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[20]||(e[20]=a('
julia
Polyhedral

The Polyhedral homotopy method. This method constructs a homotopy based on the polyhedral structure of the polynomial system. It is more efficient than the Total Degree method for sparse systems, meaning most of the coefficients are zero. It can be especially useful if you don't need to find the zero solutions (only_non_zero = true), resulting in speed up. See HomotopyContinuation.jl for more information.

Fields

  • only_non_zero::Bool: Boolean indicating if only non-zero solutions are considered.

  • thread::Bool: Boolean indicating if threading is enabled.

  • tracker_options::HomotopyContinuation.TrackerOptions: Options for the tracker.

  • endgame_options::HomotopyContinuation.EndgameOptions: Options for the endgame.

  • compile::Union{Bool, Symbol}: Compilation options.

  • seed::UInt32: Seed for random number generation.

source

',5))]),e[28]||(e[28]=t("h2",{id:"Warm-Up-Method",tabindex:"-1"},[o("Warm Up Method "),t("a",{class:"header-anchor",href:"#Warm-Up-Method","aria-label":'Permalink to "Warm Up Method {#Warm-Up-Method}"'},"​")],-1)),t("details",y,[t("summary",null,[e[21]||(e[21]=t("a",{id:"HarmonicBalance.WarmUp",href:"#HarmonicBalance.WarmUp"},[t("span",{class:"jlbinding"},"HarmonicBalance.WarmUp")],-1)),e[22]||(e[22]=o()),i(s,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[23]||(e[23]=a('
julia
WarmUp

The Warm Up method. This method prepares a warmup system using the parameter at index perturbed by perturbation_size and performs a homotopy using the warmup system to all other systems in the parameter sweep. It is very efficient for systems with less bifurcation in the parameter sweep. The Warm Up method does not guarantee to find all solutions. See HomotopyContinuation.jl for more information.

Fields

  • perturbation_size::ComplexF64: Size of the perturbation.

  • index::Union{Int64, EndpointRanges.Endpoint}: Index for the endpoint.

  • thread::Bool: Boolean indicating if threading is enabled.

  • tracker_options::HomotopyContinuation.TrackerOptions: Options for the tracker.

  • endgame_options::HomotopyContinuation.EndgameOptions: Options for the endgame.

  • compile::Union{Bool, Symbol}: Compilation options.

  • seed::UInt32: Seed for random number generation.

source

',5))])])}const j=r(d,[["render",H]]);export{v as __pageData,j as default}; diff --git a/previews/PR298/assets/manual_methods.md.Djy_jbuV.js b/previews/PR298/assets/manual_methods.md.Djy_jbuV.js deleted file mode 100644 index 6d32d0e5..00000000 --- a/previews/PR298/assets/manual_methods.md.Djy_jbuV.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as r,c as l,j as t,a,G as i,a4 as o,B as Q,o as n}from"./chunks/framework.DcvNxhjd.js";const v=JSON.parse('{"title":"Methods","description":"","frontmatter":{},"headers":[],"relativePath":"manual/methods.md","filePath":"manual/methods.md"}'),d={name:"manual/methods.md"},T={class:"jldocstring custom-block",open:""},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},p={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"30.769ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 13600.1 1000","aria-hidden":"true"},h={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.452ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.349ex",height:"2.384ex",role:"img",focusable:"false",viewBox:"0 -853.7 4574.1 1053.7","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.452ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.534ex",height:"2.149ex",role:"img",focusable:"false",viewBox:"0 -750 1120 950","aria-hidden":"true"},u={class:"jldocstring custom-block",open:""},y={class:"jldocstring custom-block",open:""};function H(b,e,x,w,k,M){const s=Q("Badge");return n(),l("div",null,[e[24]||(e[24]=t("h1",{id:"methods",tabindex:"-1"},[a("Methods "),t("a",{class:"header-anchor",href:"#methods","aria-label":'Permalink to "Methods"'},"​")],-1)),e[25]||(e[25]=t("p",null,"We offer several methods for solving the nonlinear algebraic equations that arise from the harmonic balance procedure. Each method has different tradeoffs between speed, robustness, and completeness.",-1)),e[26]||(e[26]=t("h2",{id:"Total-Degree-Method",tabindex:"-1"},[a("Total Degree Method "),t("a",{class:"header-anchor",href:"#Total-Degree-Method","aria-label":'Permalink to "Total Degree Method {#Total-Degree-Method}"'},"​")],-1)),t("details",T,[t("summary",null,[e[0]||(e[0]=t("a",{id:"HarmonicBalance.TotalDegree",href:"#HarmonicBalance.TotalDegree"},[t("span",{class:"jlbinding"},"HarmonicBalance.TotalDegree")],-1)),e[1]||(e[1]=a()),i(s,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[16]||(e[16]=o('
julia
TotalDegree
',1)),t("p",null,[e[8]||(e[8]=a("The Total Degree homotopy method. Performs a homotopy ")),t("mjx-container",m,[(n(),l("svg",p,e[2]||(e[2]=[o('',1)]))),e[3]||(e[3]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"H"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",null,","),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mi",null,"γ"),t("mi",null,"t"),t("mi",null,"G"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,"+"),t("mo",{stretchy:"false"},"("),t("mn",null,"1"),t("mo",null,"−"),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mi",null,"F"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")])],-1))]),e[9]||(e[9]=a(" from the trivial polynomial system ")),t("mjx-container",h,[(n(),l("svg",c,e[4]||(e[4]=[o('',1)]))),e[5]||(e[5]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x"),t("msup",null,[t("mi",null,"ᵢ"),t("mi",null,"d")]),t("mi",null,"ᵢ"),t("mo",null,"+"),t("mi",null,"a"),t("mi",null,"ᵢ")])],-1))]),e[10]||(e[10]=a(" with the maximal degree ")),t("mjx-container",g,[(n(),l("svg",f,e[6]||(e[6]=[o('',1)]))),e[7]||(e[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"d"),t("mi",null,"ᵢ")])],-1))]),e[11]||(e[11]=a(" determined by the ")),e[12]||(e[12]=t("a",{href:"https://en.wikipedia.org/wiki/B%C3%A9zout%27s_theorem",target:"_blank",rel:"noreferrer"},"Bezout bound",-1)),e[13]||(e[13]=a(". The method guarantees to find all solutions, however, it comes with a high computational cost. See ")),e[14]||(e[14]=t("a",{href:"https://www.juliahomotopycontinuation.org/guides/totaldegree/",target:"_blank",rel:"noreferrer"},"HomotopyContinuation.jl",-1)),e[15]||(e[15]=a(" for more information."))]),e[17]||(e[17]=o('

Fields

  • gamma::Complex: Complex multiplying factor of the start system G(x) for the homotopy

  • thread::Bool: Boolean indicating if threading is enabled.

  • tracker_options::HomotopyContinuation.TrackerOptions: Options for the tracker.

  • endgame_options::HomotopyContinuation.EndgameOptions: Options for the endgame.

  • compile::Union{Bool, Symbol}: Compilation options.

  • seed::UInt32: Seed for random number generation.

source

',3))]),e[27]||(e[27]=t("h2",{id:"Polyhedral-Method",tabindex:"-1"},[a("Polyhedral Method "),t("a",{class:"header-anchor",href:"#Polyhedral-Method","aria-label":'Permalink to "Polyhedral Method {#Polyhedral-Method}"'},"​")],-1)),t("details",u,[t("summary",null,[e[18]||(e[18]=t("a",{id:"HarmonicBalance.Polyhedral",href:"#HarmonicBalance.Polyhedral"},[t("span",{class:"jlbinding"},"HarmonicBalance.Polyhedral")],-1)),e[19]||(e[19]=a()),i(s,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[20]||(e[20]=o('
julia
Polyhedral

The Polyhedral homotopy method. This method constructs a homotopy based on the polyhedral structure of the polynomial system. It is more efficient than the Total Degree method for sparse systems, meaning most of the coefficients are zero. It can be especially useful if you don't need to find the zero solutions (only_non_zero = true), resulting in speed up. See HomotopyContinuation.jl for more information.

Fields

  • only_non_zero::Bool: Boolean indicating if only non-zero solutions are considered.

  • thread::Bool: Boolean indicating if threading is enabled.

  • tracker_options::HomotopyContinuation.TrackerOptions: Options for the tracker.

  • endgame_options::HomotopyContinuation.EndgameOptions: Options for the endgame.

  • compile::Union{Bool, Symbol}: Compilation options.

  • seed::UInt32: Seed for random number generation.

source

',5))]),e[28]||(e[28]=t("h2",{id:"Warm-Up-Method",tabindex:"-1"},[a("Warm Up Method "),t("a",{class:"header-anchor",href:"#Warm-Up-Method","aria-label":'Permalink to "Warm Up Method {#Warm-Up-Method}"'},"​")],-1)),t("details",y,[t("summary",null,[e[21]||(e[21]=t("a",{id:"HarmonicBalance.WarmUp",href:"#HarmonicBalance.WarmUp"},[t("span",{class:"jlbinding"},"HarmonicBalance.WarmUp")],-1)),e[22]||(e[22]=a()),i(s,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[23]||(e[23]=o('
julia
WarmUp

The Warm Up method. This method prepares a warmup system using the parameter at index perturbed by perturbation_size and performs a homotopy using the warmup system to all other systems in the parameter sweep. It is very efficient for systems with less bifurcation in the parameter sweep. The Warm Up method does not guarantee to find all solutions. See HomotopyContinuation.jl for more information.

Fields

  • perturbation_size::ComplexF64: Size of the perturbation.

  • index::Union{Int64, EndpointRanges.Endpoint}: Index for the endpoint.

  • thread::Bool: Boolean indicating if threading is enabled.

  • tracker_options::HomotopyContinuation.TrackerOptions: Options for the tracker.

  • endgame_options::HomotopyContinuation.EndgameOptions: Options for the endgame.

  • compile::Union{Bool, Symbol}: Compilation options.

  • seed::UInt32: Seed for random number generation.

source

',5))])])}const j=r(d,[["render",H]]);export{v as __pageData,j as default}; diff --git a/previews/PR298/assets/manual_methods.md.Djy_jbuV.lean.js b/previews/PR298/assets/manual_methods.md.Djy_jbuV.lean.js deleted file mode 100644 index 6d32d0e5..00000000 --- a/previews/PR298/assets/manual_methods.md.Djy_jbuV.lean.js +++ /dev/null @@ -1 +0,0 @@ -import{_ as r,c as l,j as t,a,G as i,a4 as o,B as Q,o as n}from"./chunks/framework.DcvNxhjd.js";const v=JSON.parse('{"title":"Methods","description":"","frontmatter":{},"headers":[],"relativePath":"manual/methods.md","filePath":"manual/methods.md"}'),d={name:"manual/methods.md"},T={class:"jldocstring custom-block",open:""},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},p={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"30.769ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 13600.1 1000","aria-hidden":"true"},h={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.452ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.349ex",height:"2.384ex",role:"img",focusable:"false",viewBox:"0 -853.7 4574.1 1053.7","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.452ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.534ex",height:"2.149ex",role:"img",focusable:"false",viewBox:"0 -750 1120 950","aria-hidden":"true"},u={class:"jldocstring custom-block",open:""},y={class:"jldocstring custom-block",open:""};function H(b,e,x,w,k,M){const s=Q("Badge");return n(),l("div",null,[e[24]||(e[24]=t("h1",{id:"methods",tabindex:"-1"},[a("Methods "),t("a",{class:"header-anchor",href:"#methods","aria-label":'Permalink to "Methods"'},"​")],-1)),e[25]||(e[25]=t("p",null,"We offer several methods for solving the nonlinear algebraic equations that arise from the harmonic balance procedure. Each method has different tradeoffs between speed, robustness, and completeness.",-1)),e[26]||(e[26]=t("h2",{id:"Total-Degree-Method",tabindex:"-1"},[a("Total Degree Method "),t("a",{class:"header-anchor",href:"#Total-Degree-Method","aria-label":'Permalink to "Total Degree Method {#Total-Degree-Method}"'},"​")],-1)),t("details",T,[t("summary",null,[e[0]||(e[0]=t("a",{id:"HarmonicBalance.TotalDegree",href:"#HarmonicBalance.TotalDegree"},[t("span",{class:"jlbinding"},"HarmonicBalance.TotalDegree")],-1)),e[1]||(e[1]=a()),i(s,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[16]||(e[16]=o('
julia
TotalDegree
',1)),t("p",null,[e[8]||(e[8]=a("The Total Degree homotopy method. Performs a homotopy ")),t("mjx-container",m,[(n(),l("svg",p,e[2]||(e[2]=[o('',1)]))),e[3]||(e[3]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"H"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",null,","),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mi",null,"γ"),t("mi",null,"t"),t("mi",null,"G"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")"),t("mo",null,"+"),t("mo",{stretchy:"false"},"("),t("mn",null,"1"),t("mo",null,"−"),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mi",null,"F"),t("mo",{stretchy:"false"},"("),t("mi",null,"x"),t("mo",{stretchy:"false"},")")])],-1))]),e[9]||(e[9]=a(" from the trivial polynomial system ")),t("mjx-container",h,[(n(),l("svg",c,e[4]||(e[4]=[o('',1)]))),e[5]||(e[5]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x"),t("msup",null,[t("mi",null,"ᵢ"),t("mi",null,"d")]),t("mi",null,"ᵢ"),t("mo",null,"+"),t("mi",null,"a"),t("mi",null,"ᵢ")])],-1))]),e[10]||(e[10]=a(" with the maximal degree ")),t("mjx-container",g,[(n(),l("svg",f,e[6]||(e[6]=[o('',1)]))),e[7]||(e[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"d"),t("mi",null,"ᵢ")])],-1))]),e[11]||(e[11]=a(" determined by the ")),e[12]||(e[12]=t("a",{href:"https://en.wikipedia.org/wiki/B%C3%A9zout%27s_theorem",target:"_blank",rel:"noreferrer"},"Bezout bound",-1)),e[13]||(e[13]=a(". The method guarantees to find all solutions, however, it comes with a high computational cost. See ")),e[14]||(e[14]=t("a",{href:"https://www.juliahomotopycontinuation.org/guides/totaldegree/",target:"_blank",rel:"noreferrer"},"HomotopyContinuation.jl",-1)),e[15]||(e[15]=a(" for more information."))]),e[17]||(e[17]=o('

Fields

  • gamma::Complex: Complex multiplying factor of the start system G(x) for the homotopy

  • thread::Bool: Boolean indicating if threading is enabled.

  • tracker_options::HomotopyContinuation.TrackerOptions: Options for the tracker.

  • endgame_options::HomotopyContinuation.EndgameOptions: Options for the endgame.

  • compile::Union{Bool, Symbol}: Compilation options.

  • seed::UInt32: Seed for random number generation.

source

',3))]),e[27]||(e[27]=t("h2",{id:"Polyhedral-Method",tabindex:"-1"},[a("Polyhedral Method "),t("a",{class:"header-anchor",href:"#Polyhedral-Method","aria-label":'Permalink to "Polyhedral Method {#Polyhedral-Method}"'},"​")],-1)),t("details",u,[t("summary",null,[e[18]||(e[18]=t("a",{id:"HarmonicBalance.Polyhedral",href:"#HarmonicBalance.Polyhedral"},[t("span",{class:"jlbinding"},"HarmonicBalance.Polyhedral")],-1)),e[19]||(e[19]=a()),i(s,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[20]||(e[20]=o('
julia
Polyhedral

The Polyhedral homotopy method. This method constructs a homotopy based on the polyhedral structure of the polynomial system. It is more efficient than the Total Degree method for sparse systems, meaning most of the coefficients are zero. It can be especially useful if you don't need to find the zero solutions (only_non_zero = true), resulting in speed up. See HomotopyContinuation.jl for more information.

Fields

  • only_non_zero::Bool: Boolean indicating if only non-zero solutions are considered.

  • thread::Bool: Boolean indicating if threading is enabled.

  • tracker_options::HomotopyContinuation.TrackerOptions: Options for the tracker.

  • endgame_options::HomotopyContinuation.EndgameOptions: Options for the endgame.

  • compile::Union{Bool, Symbol}: Compilation options.

  • seed::UInt32: Seed for random number generation.

source

',5))]),e[28]||(e[28]=t("h2",{id:"Warm-Up-Method",tabindex:"-1"},[a("Warm Up Method "),t("a",{class:"header-anchor",href:"#Warm-Up-Method","aria-label":'Permalink to "Warm Up Method {#Warm-Up-Method}"'},"​")],-1)),t("details",y,[t("summary",null,[e[21]||(e[21]=t("a",{id:"HarmonicBalance.WarmUp",href:"#HarmonicBalance.WarmUp"},[t("span",{class:"jlbinding"},"HarmonicBalance.WarmUp")],-1)),e[22]||(e[22]=a()),i(s,{type:"info",class:"jlObjectType jlType",text:"Type"})]),e[23]||(e[23]=o('
julia
WarmUp

The Warm Up method. This method prepares a warmup system using the parameter at index perturbed by perturbation_size and performs a homotopy using the warmup system to all other systems in the parameter sweep. It is very efficient for systems with less bifurcation in the parameter sweep. The Warm Up method does not guarantee to find all solutions. See HomotopyContinuation.jl for more information.

Fields

  • perturbation_size::ComplexF64: Size of the perturbation.

  • index::Union{Int64, EndpointRanges.Endpoint}: Index for the endpoint.

  • thread::Bool: Boolean indicating if threading is enabled.

  • tracker_options::HomotopyContinuation.TrackerOptions: Options for the tracker.

  • endgame_options::HomotopyContinuation.EndgameOptions: Options for the endgame.

  • compile::Union{Bool, Symbol}: Compilation options.

  • seed::UInt32: Seed for random number generation.

source

',5))])])}const j=r(d,[["render",H]]);export{v as __pageData,j as default}; diff --git a/previews/PR298/assets/manual_plotting.md.BsDV_6pI.js b/previews/PR298/assets/manual_plotting.md.B3Zx1lZ_.js similarity index 92% rename from previews/PR298/assets/manual_plotting.md.BsDV_6pI.js rename to previews/PR298/assets/manual_plotting.md.B3Zx1lZ_.js index ba3695b6..eeeca757 100644 --- a/previews/PR298/assets/manual_plotting.md.BsDV_6pI.js +++ b/previews/PR298/assets/manual_plotting.md.B3Zx1lZ_.js @@ -1,18 +1,18 @@ -import{_ as l,c as o,j as a,a as t,G as n,a4 as e,B as p,o as r}from"./chunks/framework.DcvNxhjd.js";const j=JSON.parse('{"title":"Analysis and plotting","description":"","frontmatter":{},"headers":[],"relativePath":"manual/plotting.md","filePath":"manual/plotting.md"}'),d={name:"manual/plotting.md"},h={class:"jldocstring custom-block",open:""},c={class:"jldocstring custom-block",open:""},g={class:"jldocstring custom-block",open:""},k={class:"jldocstring custom-block",open:""};function u(b,s,y,m,E,f){const i=p("Badge");return r(),o("div",null,[s[12]||(s[12]=a("h1",{id:"Analysis-and-plotting",tabindex:"-1"},[t("Analysis and plotting "),a("a",{class:"header-anchor",href:"#Analysis-and-plotting","aria-label":'Permalink to "Analysis and plotting {#Analysis-and-plotting}"'},"​")],-1)),s[13]||(s[13]=a("p",null,[t("The key method for visualization is "),a("code",null,"transform_solutions"),t(", which parses a string into a symbolic expression and evaluates it for every steady state solution.")],-1)),a("details",h,[a("summary",null,[s[0]||(s[0]=a("a",{id:"HarmonicBalance.transform_solutions",href:"#HarmonicBalance.transform_solutions"},[a("span",{class:"jlbinding"},"HarmonicBalance.transform_solutions")],-1)),s[1]||(s[1]=t()),n(i,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[2]||(s[2]=e(`
julia
transform_solutions(
+import{_ as l,c as o,j as a,a as t,G as e,a4 as n,B as p,o as r}from"./chunks/framework.DcvNxhjd.js";const j=JSON.parse('{"title":"Analysis and plotting","description":"","frontmatter":{},"headers":[],"relativePath":"manual/plotting.md","filePath":"manual/plotting.md"}'),d={name:"manual/plotting.md"},h={class:"jldocstring custom-block",open:""},c={class:"jldocstring custom-block",open:""},g={class:"jldocstring custom-block",open:""},k={class:"jldocstring custom-block",open:""};function u(b,s,y,m,E,f){const i=p("Badge");return r(),o("div",null,[s[12]||(s[12]=a("h1",{id:"Analysis-and-plotting",tabindex:"-1"},[t("Analysis and plotting "),a("a",{class:"header-anchor",href:"#Analysis-and-plotting","aria-label":'Permalink to "Analysis and plotting {#Analysis-and-plotting}"'},"​")],-1)),s[13]||(s[13]=a("p",null,[t("The key method for visualization is "),a("code",null,"transform_solutions"),t(", which parses a string into a symbolic expression and evaluates it for every steady state solution.")],-1)),a("details",h,[a("summary",null,[s[0]||(s[0]=a("a",{id:"HarmonicBalance.transform_solutions",href:"#HarmonicBalance.transform_solutions"},[a("span",{class:"jlbinding"},"HarmonicBalance.transform_solutions")],-1)),s[1]||(s[1]=t()),e(i,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[2]||(s[2]=n(`
julia
transform_solutions(
     res::HarmonicBalance.Result,
     func;
     branches,
     realify
-) -> Vector

Takes a Result object and a string f representing a Symbolics.jl expression. Returns an array with the values of f evaluated for the respective solutions. Additional substitution rules can be specified in rules in the format ("a" => val) or (a => val)

source

`,3))]),s[14]||(s[14]=a("h2",{id:"Plotting-solutions",tabindex:"-1"},[t("Plotting solutions "),a("a",{class:"header-anchor",href:"#Plotting-solutions","aria-label":'Permalink to "Plotting solutions {#Plotting-solutions}"'},"​")],-1)),s[15]||(s[15]=a("p",null,[t("The function "),a("code",null,"plot"),t(" is multiple-dispatched to plot 1D and 2D datasets. In 1D, the solutions are colour-coded according to the branches obtained by "),a("code",null,"sort_solutions"),t(".")],-1)),a("details",c,[a("summary",null,[s[3]||(s[3]=a("a",{id:"RecipesBase.plot-Tuple{HarmonicBalance.Result, Vararg{Any}}",href:"#RecipesBase.plot-Tuple{HarmonicBalance.Result, Vararg{Any}}"},[a("span",{class:"jlbinding"},"RecipesBase.plot")],-1)),s[4]||(s[4]=t()),n(i,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[5]||(s[5]=e(`
julia
plot(
+) -> Vector

Takes a Result object and a string f representing a Symbolics.jl expression. Returns an array with the values of f evaluated for the respective solutions. Additional substitution rules can be specified in rules in the format ("a" => val) or (a => val)

source

`,3))]),s[14]||(s[14]=a("h2",{id:"Plotting-solutions",tabindex:"-1"},[t("Plotting solutions "),a("a",{class:"header-anchor",href:"#Plotting-solutions","aria-label":'Permalink to "Plotting solutions {#Plotting-solutions}"'},"​")],-1)),s[15]||(s[15]=a("p",null,[t("The function "),a("code",null,"plot"),t(" is multiple-dispatched to plot 1D and 2D datasets. In 1D, the solutions are colour-coded according to the branches obtained by "),a("code",null,"sort_solutions"),t(".")],-1)),a("details",c,[a("summary",null,[s[3]||(s[3]=a("a",{id:"RecipesBase.plot-Tuple{HarmonicBalance.Result, Vararg{Any}}",href:"#RecipesBase.plot-Tuple{HarmonicBalance.Result, Vararg{Any}}"},[a("span",{class:"jlbinding"},"RecipesBase.plot")],-1)),s[4]||(s[4]=t()),e(i,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[5]||(s[5]=n(`
julia
plot(
     res::HarmonicBalance.Result,
     varargs...;
     cut,
     kwargs...
 ) -> Plots.Plot

Plot a Result object.

Class selection done by passing String or Vector{String} as kwarg:

class       :   only plot solutions in this class(es) ("all" --> plot everything)
 not_class   :   do not plot solutions in this class(es)

Other kwargs are passed onto Plots.gr().

See also plot!

The x,y,z arguments are Strings compatible with Symbolics.jl, e.g., y=2*sqrt(u1^2+v1^2) plots the amplitude of the first quadratures multiplied by 2.

1D plots

plot(res::Result; x::String, y::String, class="default", not_class=[], kwargs...)
-plot(res::Result, y::String; kwargs...) # take x automatically from Result

Default behaviour is to plot stable solutions as full lines, unstable as dashed.

If a sweep in two parameters were done, i.e., dim(res)==2, a one dimensional cut can be plotted by using the keyword cut were it takes a Pair{Num, Float64} type entry. For example, plot(res, y="sqrt(u1^2+v1^2), cut=(λ => 0.2)) plots a cut at λ = 0.2.


2D plots

plot(res::Result; z::String, branch::Int64, class="physical", not_class=[], kwargs...)

To make the 2d plot less chaotic it is required to specify the specific branch to plot, labeled by a Int64.

The x and y axes are taken automatically from res

source

`,17))]),s[16]||(s[16]=a("h2",{id:"Plotting-phase-diagrams",tabindex:"-1"},[t("Plotting phase diagrams "),a("a",{class:"header-anchor",href:"#Plotting-phase-diagrams","aria-label":'Permalink to "Plotting phase diagrams {#Plotting-phase-diagrams}"'},"​")],-1)),s[17]||(s[17]=a("p",null,[t("In many problems, rather than in any property of the solutions themselves, we are interested in the phase diagrams, encoding the number of (stable) solutions in different regions of the parameter space. "),a("code",null,"plot_phase_diagram"),t(" handles this for 1D and 2D datasets.")],-1)),a("details",g,[a("summary",null,[s[6]||(s[6]=a("a",{id:"HarmonicBalance.plot_phase_diagram",href:"#HarmonicBalance.plot_phase_diagram"},[a("span",{class:"jlbinding"},"HarmonicBalance.plot_phase_diagram")],-1)),s[7]||(s[7]=t()),n(i,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[8]||(s[8]=e(`
julia
plot_phase_diagram(
+plot(res::Result, y::String; kwargs...) # take x automatically from Result

Default behaviour is to plot stable solutions as full lines, unstable as dashed.

If a sweep in two parameters were done, i.e., dim(res)==2, a one dimensional cut can be plotted by using the keyword cut were it takes a Pair{Num, Float64} type entry. For example, plot(res, y="sqrt(u1^2+v1^2), cut=(λ => 0.2)) plots a cut at λ = 0.2.


2D plots

plot(res::Result; z::String, branch::Int64, class="physical", not_class=[], kwargs...)

To make the 2d plot less chaotic it is required to specify the specific branch to plot, labeled by a Int64.

The x and y axes are taken automatically from res

source

`,17))]),s[16]||(s[16]=a("h2",{id:"Plotting-phase-diagrams",tabindex:"-1"},[t("Plotting phase diagrams "),a("a",{class:"header-anchor",href:"#Plotting-phase-diagrams","aria-label":'Permalink to "Plotting phase diagrams {#Plotting-phase-diagrams}"'},"​")],-1)),s[17]||(s[17]=a("p",null,[t("In many problems, rather than in any property of the solutions themselves, we are interested in the phase diagrams, encoding the number of (stable) solutions in different regions of the parameter space. "),a("code",null,"plot_phase_diagram"),t(" handles this for 1D and 2D datasets.")],-1)),a("details",g,[a("summary",null,[s[6]||(s[6]=a("a",{id:"HarmonicBalance.plot_phase_diagram",href:"#HarmonicBalance.plot_phase_diagram"},[a("span",{class:"jlbinding"},"HarmonicBalance.plot_phase_diagram")],-1)),s[7]||(s[7]=t()),e(i,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[8]||(s[8]=n(`
julia
plot_phase_diagram(
     res::HarmonicBalance.Result;
     kwargs...
 ) -> Plots.Plot

Plot the number of solutions in a Result object as a function of the parameters. Works with 1D and 2D datasets.

Class selection done by passing String or Vector{String} as kwarg:

class::String       :   only count solutions in this class ("all" --> plot everything)
-not_class::String   :   do not count solutions in this class

Other kwargs are passed onto Plots.gr()

source

`,6))]),s[18]||(s[18]=a("h2",{id:"Plot-spaghetti-plot",tabindex:"-1"},[t("Plot spaghetti plot "),a("a",{class:"header-anchor",href:"#Plot-spaghetti-plot","aria-label":'Permalink to "Plot spaghetti plot {#Plot-spaghetti-plot}"'},"​")],-1)),s[19]||(s[19]=a("p",null,[t("Sometimes, it is useful to plot the quadratures of the steady states (u, v) in function of a swept parameter. This is done with "),a("code",null,"plot_spaghetti"),t(".")],-1)),a("details",k,[a("summary",null,[s[9]||(s[9]=a("a",{id:"HarmonicBalance.plot_spaghetti",href:"#HarmonicBalance.plot_spaghetti"},[a("span",{class:"jlbinding"},"HarmonicBalance.plot_spaghetti")],-1)),s[10]||(s[10]=t()),n(i,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[11]||(s[11]=e(`
julia
plot_spaghetti(res::Result; x, y, z, kwargs...)

Plot a three dimension line plot of a Result object as a function of the parameters. Works with 1D and 2D datasets.

Class selection done by passing String or Vector{String} as kwarg:

class::String       :   only count solutions in this class ("all" --> plot everything)
-not_class::String   :   do not count solutions in this class

Other kwargs are passed onto Plots.gr()

source

`,6))])])}const C=l(d,[["render",u]]);export{j as __pageData,C as default}; +not_class::String : do not count solutions in this class

Other kwargs are passed onto Plots.gr()

source

`,6))]),s[18]||(s[18]=a("h2",{id:"Plot-spaghetti-plot",tabindex:"-1"},[t("Plot spaghetti plot "),a("a",{class:"header-anchor",href:"#Plot-spaghetti-plot","aria-label":'Permalink to "Plot spaghetti plot {#Plot-spaghetti-plot}"'},"​")],-1)),s[19]||(s[19]=a("p",null,[t("Sometimes, it is useful to plot the quadratures of the steady states (u, v) in function of a swept parameter. This is done with "),a("code",null,"plot_spaghetti"),t(".")],-1)),a("details",k,[a("summary",null,[s[9]||(s[9]=a("a",{id:"HarmonicBalance.plot_spaghetti",href:"#HarmonicBalance.plot_spaghetti"},[a("span",{class:"jlbinding"},"HarmonicBalance.plot_spaghetti")],-1)),s[10]||(s[10]=t()),e(i,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[11]||(s[11]=n(`
julia
plot_spaghetti(res::Result; x, y, z, kwargs...)

Plot a three dimension line plot of a Result object as a function of the parameters. Works with 1D and 2D datasets.

Class selection done by passing String or Vector{String} as kwarg:

class::String       :   only count solutions in this class ("all" --> plot everything)
+not_class::String   :   do not count solutions in this class

Other kwargs are passed onto Plots.gr()

source

`,6))])])}const C=l(d,[["render",u]]);export{j as __pageData,C as default}; diff --git a/previews/PR298/assets/manual_plotting.md.BsDV_6pI.lean.js b/previews/PR298/assets/manual_plotting.md.B3Zx1lZ_.lean.js similarity index 92% rename from previews/PR298/assets/manual_plotting.md.BsDV_6pI.lean.js rename to previews/PR298/assets/manual_plotting.md.B3Zx1lZ_.lean.js index ba3695b6..eeeca757 100644 --- a/previews/PR298/assets/manual_plotting.md.BsDV_6pI.lean.js +++ b/previews/PR298/assets/manual_plotting.md.B3Zx1lZ_.lean.js @@ -1,18 +1,18 @@ -import{_ as l,c as o,j as a,a as t,G as n,a4 as e,B as p,o as r}from"./chunks/framework.DcvNxhjd.js";const j=JSON.parse('{"title":"Analysis and plotting","description":"","frontmatter":{},"headers":[],"relativePath":"manual/plotting.md","filePath":"manual/plotting.md"}'),d={name:"manual/plotting.md"},h={class:"jldocstring custom-block",open:""},c={class:"jldocstring custom-block",open:""},g={class:"jldocstring custom-block",open:""},k={class:"jldocstring custom-block",open:""};function u(b,s,y,m,E,f){const i=p("Badge");return r(),o("div",null,[s[12]||(s[12]=a("h1",{id:"Analysis-and-plotting",tabindex:"-1"},[t("Analysis and plotting "),a("a",{class:"header-anchor",href:"#Analysis-and-plotting","aria-label":'Permalink to "Analysis and plotting {#Analysis-and-plotting}"'},"​")],-1)),s[13]||(s[13]=a("p",null,[t("The key method for visualization is "),a("code",null,"transform_solutions"),t(", which parses a string into a symbolic expression and evaluates it for every steady state solution.")],-1)),a("details",h,[a("summary",null,[s[0]||(s[0]=a("a",{id:"HarmonicBalance.transform_solutions",href:"#HarmonicBalance.transform_solutions"},[a("span",{class:"jlbinding"},"HarmonicBalance.transform_solutions")],-1)),s[1]||(s[1]=t()),n(i,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[2]||(s[2]=e(`
julia
transform_solutions(
+import{_ as l,c as o,j as a,a as t,G as e,a4 as n,B as p,o as r}from"./chunks/framework.DcvNxhjd.js";const j=JSON.parse('{"title":"Analysis and plotting","description":"","frontmatter":{},"headers":[],"relativePath":"manual/plotting.md","filePath":"manual/plotting.md"}'),d={name:"manual/plotting.md"},h={class:"jldocstring custom-block",open:""},c={class:"jldocstring custom-block",open:""},g={class:"jldocstring custom-block",open:""},k={class:"jldocstring custom-block",open:""};function u(b,s,y,m,E,f){const i=p("Badge");return r(),o("div",null,[s[12]||(s[12]=a("h1",{id:"Analysis-and-plotting",tabindex:"-1"},[t("Analysis and plotting "),a("a",{class:"header-anchor",href:"#Analysis-and-plotting","aria-label":'Permalink to "Analysis and plotting {#Analysis-and-plotting}"'},"​")],-1)),s[13]||(s[13]=a("p",null,[t("The key method for visualization is "),a("code",null,"transform_solutions"),t(", which parses a string into a symbolic expression and evaluates it for every steady state solution.")],-1)),a("details",h,[a("summary",null,[s[0]||(s[0]=a("a",{id:"HarmonicBalance.transform_solutions",href:"#HarmonicBalance.transform_solutions"},[a("span",{class:"jlbinding"},"HarmonicBalance.transform_solutions")],-1)),s[1]||(s[1]=t()),e(i,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[2]||(s[2]=n(`
julia
transform_solutions(
     res::HarmonicBalance.Result,
     func;
     branches,
     realify
-) -> Vector

Takes a Result object and a string f representing a Symbolics.jl expression. Returns an array with the values of f evaluated for the respective solutions. Additional substitution rules can be specified in rules in the format ("a" => val) or (a => val)

source

`,3))]),s[14]||(s[14]=a("h2",{id:"Plotting-solutions",tabindex:"-1"},[t("Plotting solutions "),a("a",{class:"header-anchor",href:"#Plotting-solutions","aria-label":'Permalink to "Plotting solutions {#Plotting-solutions}"'},"​")],-1)),s[15]||(s[15]=a("p",null,[t("The function "),a("code",null,"plot"),t(" is multiple-dispatched to plot 1D and 2D datasets. In 1D, the solutions are colour-coded according to the branches obtained by "),a("code",null,"sort_solutions"),t(".")],-1)),a("details",c,[a("summary",null,[s[3]||(s[3]=a("a",{id:"RecipesBase.plot-Tuple{HarmonicBalance.Result, Vararg{Any}}",href:"#RecipesBase.plot-Tuple{HarmonicBalance.Result, Vararg{Any}}"},[a("span",{class:"jlbinding"},"RecipesBase.plot")],-1)),s[4]||(s[4]=t()),n(i,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[5]||(s[5]=e(`
julia
plot(
+) -> Vector

Takes a Result object and a string f representing a Symbolics.jl expression. Returns an array with the values of f evaluated for the respective solutions. Additional substitution rules can be specified in rules in the format ("a" => val) or (a => val)

source

`,3))]),s[14]||(s[14]=a("h2",{id:"Plotting-solutions",tabindex:"-1"},[t("Plotting solutions "),a("a",{class:"header-anchor",href:"#Plotting-solutions","aria-label":'Permalink to "Plotting solutions {#Plotting-solutions}"'},"​")],-1)),s[15]||(s[15]=a("p",null,[t("The function "),a("code",null,"plot"),t(" is multiple-dispatched to plot 1D and 2D datasets. In 1D, the solutions are colour-coded according to the branches obtained by "),a("code",null,"sort_solutions"),t(".")],-1)),a("details",c,[a("summary",null,[s[3]||(s[3]=a("a",{id:"RecipesBase.plot-Tuple{HarmonicBalance.Result, Vararg{Any}}",href:"#RecipesBase.plot-Tuple{HarmonicBalance.Result, Vararg{Any}}"},[a("span",{class:"jlbinding"},"RecipesBase.plot")],-1)),s[4]||(s[4]=t()),e(i,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[5]||(s[5]=n(`
julia
plot(
     res::HarmonicBalance.Result,
     varargs...;
     cut,
     kwargs...
 ) -> Plots.Plot

Plot a Result object.

Class selection done by passing String or Vector{String} as kwarg:

class       :   only plot solutions in this class(es) ("all" --> plot everything)
 not_class   :   do not plot solutions in this class(es)

Other kwargs are passed onto Plots.gr().

See also plot!

The x,y,z arguments are Strings compatible with Symbolics.jl, e.g., y=2*sqrt(u1^2+v1^2) plots the amplitude of the first quadratures multiplied by 2.

1D plots

plot(res::Result; x::String, y::String, class="default", not_class=[], kwargs...)
-plot(res::Result, y::String; kwargs...) # take x automatically from Result

Default behaviour is to plot stable solutions as full lines, unstable as dashed.

If a sweep in two parameters were done, i.e., dim(res)==2, a one dimensional cut can be plotted by using the keyword cut were it takes a Pair{Num, Float64} type entry. For example, plot(res, y="sqrt(u1^2+v1^2), cut=(λ => 0.2)) plots a cut at λ = 0.2.


2D plots

plot(res::Result; z::String, branch::Int64, class="physical", not_class=[], kwargs...)

To make the 2d plot less chaotic it is required to specify the specific branch to plot, labeled by a Int64.

The x and y axes are taken automatically from res

source

`,17))]),s[16]||(s[16]=a("h2",{id:"Plotting-phase-diagrams",tabindex:"-1"},[t("Plotting phase diagrams "),a("a",{class:"header-anchor",href:"#Plotting-phase-diagrams","aria-label":'Permalink to "Plotting phase diagrams {#Plotting-phase-diagrams}"'},"​")],-1)),s[17]||(s[17]=a("p",null,[t("In many problems, rather than in any property of the solutions themselves, we are interested in the phase diagrams, encoding the number of (stable) solutions in different regions of the parameter space. "),a("code",null,"plot_phase_diagram"),t(" handles this for 1D and 2D datasets.")],-1)),a("details",g,[a("summary",null,[s[6]||(s[6]=a("a",{id:"HarmonicBalance.plot_phase_diagram",href:"#HarmonicBalance.plot_phase_diagram"},[a("span",{class:"jlbinding"},"HarmonicBalance.plot_phase_diagram")],-1)),s[7]||(s[7]=t()),n(i,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[8]||(s[8]=e(`
julia
plot_phase_diagram(
+plot(res::Result, y::String; kwargs...) # take x automatically from Result

Default behaviour is to plot stable solutions as full lines, unstable as dashed.

If a sweep in two parameters were done, i.e., dim(res)==2, a one dimensional cut can be plotted by using the keyword cut were it takes a Pair{Num, Float64} type entry. For example, plot(res, y="sqrt(u1^2+v1^2), cut=(λ => 0.2)) plots a cut at λ = 0.2.


2D plots

plot(res::Result; z::String, branch::Int64, class="physical", not_class=[], kwargs...)

To make the 2d plot less chaotic it is required to specify the specific branch to plot, labeled by a Int64.

The x and y axes are taken automatically from res

source

`,17))]),s[16]||(s[16]=a("h2",{id:"Plotting-phase-diagrams",tabindex:"-1"},[t("Plotting phase diagrams "),a("a",{class:"header-anchor",href:"#Plotting-phase-diagrams","aria-label":'Permalink to "Plotting phase diagrams {#Plotting-phase-diagrams}"'},"​")],-1)),s[17]||(s[17]=a("p",null,[t("In many problems, rather than in any property of the solutions themselves, we are interested in the phase diagrams, encoding the number of (stable) solutions in different regions of the parameter space. "),a("code",null,"plot_phase_diagram"),t(" handles this for 1D and 2D datasets.")],-1)),a("details",g,[a("summary",null,[s[6]||(s[6]=a("a",{id:"HarmonicBalance.plot_phase_diagram",href:"#HarmonicBalance.plot_phase_diagram"},[a("span",{class:"jlbinding"},"HarmonicBalance.plot_phase_diagram")],-1)),s[7]||(s[7]=t()),e(i,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[8]||(s[8]=n(`
julia
plot_phase_diagram(
     res::HarmonicBalance.Result;
     kwargs...
 ) -> Plots.Plot

Plot the number of solutions in a Result object as a function of the parameters. Works with 1D and 2D datasets.

Class selection done by passing String or Vector{String} as kwarg:

class::String       :   only count solutions in this class ("all" --> plot everything)
-not_class::String   :   do not count solutions in this class

Other kwargs are passed onto Plots.gr()

source

`,6))]),s[18]||(s[18]=a("h2",{id:"Plot-spaghetti-plot",tabindex:"-1"},[t("Plot spaghetti plot "),a("a",{class:"header-anchor",href:"#Plot-spaghetti-plot","aria-label":'Permalink to "Plot spaghetti plot {#Plot-spaghetti-plot}"'},"​")],-1)),s[19]||(s[19]=a("p",null,[t("Sometimes, it is useful to plot the quadratures of the steady states (u, v) in function of a swept parameter. This is done with "),a("code",null,"plot_spaghetti"),t(".")],-1)),a("details",k,[a("summary",null,[s[9]||(s[9]=a("a",{id:"HarmonicBalance.plot_spaghetti",href:"#HarmonicBalance.plot_spaghetti"},[a("span",{class:"jlbinding"},"HarmonicBalance.plot_spaghetti")],-1)),s[10]||(s[10]=t()),n(i,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[11]||(s[11]=e(`
julia
plot_spaghetti(res::Result; x, y, z, kwargs...)

Plot a three dimension line plot of a Result object as a function of the parameters. Works with 1D and 2D datasets.

Class selection done by passing String or Vector{String} as kwarg:

class::String       :   only count solutions in this class ("all" --> plot everything)
-not_class::String   :   do not count solutions in this class

Other kwargs are passed onto Plots.gr()

source

`,6))])])}const C=l(d,[["render",u]]);export{j as __pageData,C as default}; +not_class::String : do not count solutions in this class

Other kwargs are passed onto Plots.gr()

source

`,6))]),s[18]||(s[18]=a("h2",{id:"Plot-spaghetti-plot",tabindex:"-1"},[t("Plot spaghetti plot "),a("a",{class:"header-anchor",href:"#Plot-spaghetti-plot","aria-label":'Permalink to "Plot spaghetti plot {#Plot-spaghetti-plot}"'},"​")],-1)),s[19]||(s[19]=a("p",null,[t("Sometimes, it is useful to plot the quadratures of the steady states (u, v) in function of a swept parameter. This is done with "),a("code",null,"plot_spaghetti"),t(".")],-1)),a("details",k,[a("summary",null,[s[9]||(s[9]=a("a",{id:"HarmonicBalance.plot_spaghetti",href:"#HarmonicBalance.plot_spaghetti"},[a("span",{class:"jlbinding"},"HarmonicBalance.plot_spaghetti")],-1)),s[10]||(s[10]=t()),e(i,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[11]||(s[11]=n(`
julia
plot_spaghetti(res::Result; x, y, z, kwargs...)

Plot a three dimension line plot of a Result object as a function of the parameters. Works with 1D and 2D datasets.

Class selection done by passing String or Vector{String} as kwarg:

class::String       :   only count solutions in this class ("all" --> plot everything)
+not_class::String   :   do not count solutions in this class

Other kwargs are passed onto Plots.gr()

source

`,6))])])}const C=l(d,[["render",u]]);export{j as __pageData,C as default}; diff --git a/previews/PR298/assets/manual_saving.md.Dsqj9lkP.js b/previews/PR298/assets/manual_saving.md.DxkqPXKw.js similarity index 66% rename from previews/PR298/assets/manual_saving.md.Dsqj9lkP.js rename to previews/PR298/assets/manual_saving.md.DxkqPXKw.js index 75a1138d..330c916e 100644 --- a/previews/PR298/assets/manual_saving.md.Dsqj9lkP.js +++ b/previews/PR298/assets/manual_saving.md.DxkqPXKw.js @@ -1 +1 @@ -import{_ as t,c as l,a4 as s,j as e,a as i,G as o,B as c,o as d}from"./chunks/framework.DcvNxhjd.js";const y=JSON.parse('{"title":"Saving and loading","description":"","frontmatter":{},"headers":[],"relativePath":"manual/saving.md","filePath":"manual/saving.md"}'),r={name:"manual/saving.md"},p={class:"jldocstring custom-block",open:""},g={class:"jldocstring custom-block",open:""},u={class:"jldocstring custom-block",open:""};function b(h,a,m,v,f,k){const n=c("Badge");return d(),l("div",null,[a[9]||(a[9]=s('

Saving and loading

All of the types native to HarmonicBalance.jl can be saved into a .jld2 file using save and loaded using load. Most of the saving/loading is performed using the package JLD2.jl, with the addition of reinstating the symbolic variables in the HarmonicBalance namespace (needed to parse expressions used in the plotting functions) and recompiling stored functions (needed to evaluate Jacobians). As a consequence, composite objects such as Result can be saved and loaded with no loss of information.

The function export_csv saves a .csv file which can be plot elsewhere.

',3)),e("details",p,[e("summary",null,[a[0]||(a[0]=e("a",{id:"HarmonicBalance.save",href:"#HarmonicBalance.save"},[e("span",{class:"jlbinding"},"HarmonicBalance.save")],-1)),a[1]||(a[1]=i()),o(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[2]||(a[2]=s('
julia
save(filename, object)

Saves object into .jld2 file filename (the suffix is added automatically if not entered). The resulting file contains a dictionary with a single entry.

source

',3))]),e("details",g,[e("summary",null,[a[3]||(a[3]=e("a",{id:"HarmonicBalance.load",href:"#HarmonicBalance.load"},[e("span",{class:"jlbinding"},"HarmonicBalance.load")],-1)),a[4]||(a[4]=i()),o(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[5]||(a[5]=s('
julia
load(filename)

Loads an object from filename. For objects containing symbolic expressions such as HarmonicEquation, the symbolic variables are reinstated in the HarmonicBalance namespace.

source

',3))]),e("details",u,[e("summary",null,[a[6]||(a[6]=e("a",{id:"HarmonicBalance.export_csv",href:"#HarmonicBalance.export_csv"},[e("span",{class:"jlbinding"},"HarmonicBalance.export_csv")],-1)),a[7]||(a[7]=i()),o(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[8]||(a[8]=s('
julia
export_csv(filename, res, branch)

Saves into filename a specified solution branch of the Result res.

source

',3))]),a[10]||(a[10]=s('
',1))])}const B=t(r,[["render",b]]);export{y as __pageData,B as default}; +import{_ as t,c as l,a4 as s,j as a,a as i,G as o,B as c,o as d}from"./chunks/framework.DcvNxhjd.js";const y=JSON.parse('{"title":"Saving and loading","description":"","frontmatter":{},"headers":[],"relativePath":"manual/saving.md","filePath":"manual/saving.md"}'),r={name:"manual/saving.md"},p={class:"jldocstring custom-block",open:""},g={class:"jldocstring custom-block",open:""},u={class:"jldocstring custom-block",open:""};function b(h,e,m,v,f,k){const n=c("Badge");return d(),l("div",null,[e[9]||(e[9]=s('

Saving and loading

All of the types native to HarmonicBalance.jl can be saved into a .jld2 file using save and loaded using load. Most of the saving/loading is performed using the package JLD2.jl, with the addition of reinstating the symbolic variables in the HarmonicBalance namespace (needed to parse expressions used in the plotting functions) and recompiling stored functions (needed to evaluate Jacobians). As a consequence, composite objects such as Result can be saved and loaded with no loss of information.

The function export_csv saves a .csv file which can be plot elsewhere.

',3)),a("details",p,[a("summary",null,[e[0]||(e[0]=a("a",{id:"HarmonicBalance.save",href:"#HarmonicBalance.save"},[a("span",{class:"jlbinding"},"HarmonicBalance.save")],-1)),e[1]||(e[1]=i()),o(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[2]||(e[2]=s('
julia
save(filename, object)

Saves object into .jld2 file filename (the suffix is added automatically if not entered). The resulting file contains a dictionary with a single entry.

source

',3))]),a("details",g,[a("summary",null,[e[3]||(e[3]=a("a",{id:"HarmonicBalance.load",href:"#HarmonicBalance.load"},[a("span",{class:"jlbinding"},"HarmonicBalance.load")],-1)),e[4]||(e[4]=i()),o(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[5]||(e[5]=s('
julia
load(filename)

Loads an object from filename. For objects containing symbolic expressions such as HarmonicEquation, the symbolic variables are reinstated in the HarmonicBalance namespace.

source

',3))]),a("details",u,[a("summary",null,[e[6]||(e[6]=a("a",{id:"HarmonicBalance.export_csv",href:"#HarmonicBalance.export_csv"},[a("span",{class:"jlbinding"},"HarmonicBalance.export_csv")],-1)),e[7]||(e[7]=i()),o(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[8]||(e[8]=s('
julia
export_csv(filename, res, branch)

Saves into filename a specified solution branch of the Result res.

source

',3))]),e[10]||(e[10]=s('
',1))])}const B=t(r,[["render",b]]);export{y as __pageData,B as default}; diff --git a/previews/PR298/assets/manual_saving.md.Dsqj9lkP.lean.js b/previews/PR298/assets/manual_saving.md.DxkqPXKw.lean.js similarity index 66% rename from previews/PR298/assets/manual_saving.md.Dsqj9lkP.lean.js rename to previews/PR298/assets/manual_saving.md.DxkqPXKw.lean.js index 75a1138d..330c916e 100644 --- a/previews/PR298/assets/manual_saving.md.Dsqj9lkP.lean.js +++ b/previews/PR298/assets/manual_saving.md.DxkqPXKw.lean.js @@ -1 +1 @@ -import{_ as t,c as l,a4 as s,j as e,a as i,G as o,B as c,o as d}from"./chunks/framework.DcvNxhjd.js";const y=JSON.parse('{"title":"Saving and loading","description":"","frontmatter":{},"headers":[],"relativePath":"manual/saving.md","filePath":"manual/saving.md"}'),r={name:"manual/saving.md"},p={class:"jldocstring custom-block",open:""},g={class:"jldocstring custom-block",open:""},u={class:"jldocstring custom-block",open:""};function b(h,a,m,v,f,k){const n=c("Badge");return d(),l("div",null,[a[9]||(a[9]=s('

Saving and loading

All of the types native to HarmonicBalance.jl can be saved into a .jld2 file using save and loaded using load. Most of the saving/loading is performed using the package JLD2.jl, with the addition of reinstating the symbolic variables in the HarmonicBalance namespace (needed to parse expressions used in the plotting functions) and recompiling stored functions (needed to evaluate Jacobians). As a consequence, composite objects such as Result can be saved and loaded with no loss of information.

The function export_csv saves a .csv file which can be plot elsewhere.

',3)),e("details",p,[e("summary",null,[a[0]||(a[0]=e("a",{id:"HarmonicBalance.save",href:"#HarmonicBalance.save"},[e("span",{class:"jlbinding"},"HarmonicBalance.save")],-1)),a[1]||(a[1]=i()),o(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[2]||(a[2]=s('
julia
save(filename, object)

Saves object into .jld2 file filename (the suffix is added automatically if not entered). The resulting file contains a dictionary with a single entry.

source

',3))]),e("details",g,[e("summary",null,[a[3]||(a[3]=e("a",{id:"HarmonicBalance.load",href:"#HarmonicBalance.load"},[e("span",{class:"jlbinding"},"HarmonicBalance.load")],-1)),a[4]||(a[4]=i()),o(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[5]||(a[5]=s('
julia
load(filename)

Loads an object from filename. For objects containing symbolic expressions such as HarmonicEquation, the symbolic variables are reinstated in the HarmonicBalance namespace.

source

',3))]),e("details",u,[e("summary",null,[a[6]||(a[6]=e("a",{id:"HarmonicBalance.export_csv",href:"#HarmonicBalance.export_csv"},[e("span",{class:"jlbinding"},"HarmonicBalance.export_csv")],-1)),a[7]||(a[7]=i()),o(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[8]||(a[8]=s('
julia
export_csv(filename, res, branch)

Saves into filename a specified solution branch of the Result res.

source

',3))]),a[10]||(a[10]=s('
',1))])}const B=t(r,[["render",b]]);export{y as __pageData,B as default}; +import{_ as t,c as l,a4 as s,j as a,a as i,G as o,B as c,o as d}from"./chunks/framework.DcvNxhjd.js";const y=JSON.parse('{"title":"Saving and loading","description":"","frontmatter":{},"headers":[],"relativePath":"manual/saving.md","filePath":"manual/saving.md"}'),r={name:"manual/saving.md"},p={class:"jldocstring custom-block",open:""},g={class:"jldocstring custom-block",open:""},u={class:"jldocstring custom-block",open:""};function b(h,e,m,v,f,k){const n=c("Badge");return d(),l("div",null,[e[9]||(e[9]=s('

Saving and loading

All of the types native to HarmonicBalance.jl can be saved into a .jld2 file using save and loaded using load. Most of the saving/loading is performed using the package JLD2.jl, with the addition of reinstating the symbolic variables in the HarmonicBalance namespace (needed to parse expressions used in the plotting functions) and recompiling stored functions (needed to evaluate Jacobians). As a consequence, composite objects such as Result can be saved and loaded with no loss of information.

The function export_csv saves a .csv file which can be plot elsewhere.

',3)),a("details",p,[a("summary",null,[e[0]||(e[0]=a("a",{id:"HarmonicBalance.save",href:"#HarmonicBalance.save"},[a("span",{class:"jlbinding"},"HarmonicBalance.save")],-1)),e[1]||(e[1]=i()),o(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[2]||(e[2]=s('
julia
save(filename, object)

Saves object into .jld2 file filename (the suffix is added automatically if not entered). The resulting file contains a dictionary with a single entry.

source

',3))]),a("details",g,[a("summary",null,[e[3]||(e[3]=a("a",{id:"HarmonicBalance.load",href:"#HarmonicBalance.load"},[a("span",{class:"jlbinding"},"HarmonicBalance.load")],-1)),e[4]||(e[4]=i()),o(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[5]||(e[5]=s('
julia
load(filename)

Loads an object from filename. For objects containing symbolic expressions such as HarmonicEquation, the symbolic variables are reinstated in the HarmonicBalance namespace.

source

',3))]),a("details",u,[a("summary",null,[e[6]||(e[6]=a("a",{id:"HarmonicBalance.export_csv",href:"#HarmonicBalance.export_csv"},[a("span",{class:"jlbinding"},"HarmonicBalance.export_csv")],-1)),e[7]||(e[7]=i()),o(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),e[8]||(e[8]=s('
julia
export_csv(filename, res, branch)

Saves into filename a specified solution branch of the Result res.

source

',3))]),e[10]||(e[10]=s('
',1))])}const B=t(r,[["render",b]]);export{y as __pageData,B as default}; diff --git a/previews/PR298/assets/manual_solving_harmonics.md.BNtGzorW.js b/previews/PR298/assets/manual_solving_harmonics.md.CUoAwVIW.js similarity index 73% rename from previews/PR298/assets/manual_solving_harmonics.md.BNtGzorW.js rename to previews/PR298/assets/manual_solving_harmonics.md.CUoAwVIW.js index 4088c6f3..273ebf9b 100644 --- a/previews/PR298/assets/manual_solving_harmonics.md.BNtGzorW.js +++ b/previews/PR298/assets/manual_solving_harmonics.md.CUoAwVIW.js @@ -1,10 +1,13 @@ -import{_ as h,c as l,a4 as t,j as s,a as i,G as n,B as p,o}from"./chunks/framework.DcvNxhjd.js";const w=JSON.parse('{"title":"Solving harmonic equations","description":"","frontmatter":{},"headers":[],"relativePath":"manual/solving_harmonics.md","filePath":"manual/solving_harmonics.md"}'),r={name:"manual/solving_harmonics.md"},d={class:"jldocstring custom-block",open:""},k={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.687ex"},xmlns:"http://www.w3.org/2000/svg",width:"27.124ex",height:"2.573ex",role:"img",focusable:"false",viewBox:"0 -833.9 11988.7 1137.4","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},m={class:"jldocstring custom-block",open:""},u={class:"jldocstring custom-block",open:""},E={class:"jldocstring custom-block",open:""};function T(y,a,b,f,F,C){const e=p("Badge");return o(),l("div",null,[a[19]||(a[19]=t('

Solving harmonic equations

Once a differential equation of motion has been defined in DifferentialEquation and converted to a HarmonicEquation, we may use the homotopy continuation method (as implemented in HomotopyContinuation.jl) to find steady states. This means that, having called get_harmonic_equations, we need to set all time-derivatives to zero and parse the resulting algebraic equations into a Problem.

Problem holds the steady-state equations, and (optionally) the symbolic Jacobian which is needed for stability / linear response calculations.

Once defined, a Problem can be solved for a set of input parameters using get_steady_states to obtain Result.

Missing docstring.

Missing docstring for Problem. Check Documenter's build log for details.

',5)),s("details",d,[s("summary",null,[a[0]||(a[0]=s("a",{id:"HarmonicBalance.get_steady_states",href:"#HarmonicBalance.get_steady_states"},[s("span",{class:"jlbinding"},"HarmonicBalance.get_steady_states")],-1)),a[1]||(a[1]=i()),n(e,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[8]||(a[8]=t(`
julia
get_steady_states(problem::HarmonicEquation,
+import{_ as h,c as l,a4 as t,j as s,a,G as n,B as p,o}from"./chunks/framework.DcvNxhjd.js";const H=JSON.parse('{"title":"Solving harmonic equations","description":"","frontmatter":{},"headers":[],"relativePath":"manual/solving_harmonics.md","filePath":"manual/solving_harmonics.md"}'),r={name:"manual/solving_harmonics.md"},d={class:"jldocstring custom-block",open:""},k={class:"jldocstring custom-block",open:""},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.687ex"},xmlns:"http://www.w3.org/2000/svg",width:"27.124ex",height:"2.573ex",role:"img",focusable:"false",viewBox:"0 -833.9 11988.7 1137.4","aria-hidden":"true"},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},u={class:"jldocstring custom-block",open:""},y={class:"jldocstring custom-block",open:""},Q={class:"jldocstring custom-block",open:""};function T(b,i,F,f,C,v){const e=p("Badge");return o(),l("div",null,[i[22]||(i[22]=t('

Solving harmonic equations

Once a differential equation of motion has been defined in DifferentialEquation and converted to a HarmonicEquation, we may use the homotopy continuation method (as implemented in HomotopyContinuation.jl) to find steady states. This means that, having called get_harmonic_equations, we need to set all time-derivatives to zero and parse the resulting algebraic equations into a Problem.

Problem holds the steady-state equations, and (optionally) the symbolic Jacobian which is needed for stability / linear response calculations.

Once defined, a Problem can be solved for a set of input parameters using get_steady_states to obtain Result.

',4)),s("details",d,[s("summary",null,[i[0]||(i[0]=s("a",{id:"HarmonicBalance.Problem",href:"#HarmonicBalance.Problem"},[s("span",{class:"jlbinding"},"HarmonicBalance.Problem")],-1)),i[1]||(i[1]=a()),n(e,{type:"info",class:"jlObjectType jlType",text:"Type"})]),i[2]||(i[2]=t(`
julia
mutable struct Problem

Holds a set of algebraic equations describing the steady state of a system.

Fields

  • variables::Vector{Num}: The harmonic variables to be solved for.

  • parameters::Vector{Num}: All symbols which are not the harmonic variables.

  • system::HomotopyContinuation.ModelKit.System: The input object for HomotopyContinuation.jl solver methods.

  • jacobian::Any: The Jacobian matrix (possibly symbolic). If false, the Jacobian is ignored (may be calculated implicitly after solving).

  • eom::HarmonicEquation: The HarmonicEquation object used to generate this Problem.

Constructors

julia
Problem(eom::HarmonicEquation; Jacobian=true) # find and store the symbolic Jacobian
+Problem(eom::HarmonicEquation; Jacobian="implicit") # ignore the Jacobian for now, compute implicitly later
+Problem(eom::HarmonicEquation; Jacobian=J) # use J as the Jacobian (a function that takes a Dict)
+Problem(eom::HarmonicEquation; Jacobian=false) # ignore the Jacobian

source

`,7))]),s("details",k,[s("summary",null,[i[3]||(i[3]=s("a",{id:"HarmonicBalance.get_steady_states",href:"#HarmonicBalance.get_steady_states"},[s("span",{class:"jlbinding"},"HarmonicBalance.get_steady_states")],-1)),i[4]||(i[4]=a()),n(e,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),i[11]||(i[11]=t(`
julia
get_steady_states(problem::HarmonicEquation,
                     method::HarmonicBalanceMethod,
                     swept_parameters::ParameterRange,
                     fixed_parameters::ParameterList;
                     show_progress=true,
                     sorting="nearest",
-                    classify_default=true)

Solves problem with the method over the ranges specified by swept_parameters, keeping fixed_parameters constant. swept_parameters accepts pairs mapping symbolic variables to arrays or ranges. fixed_parameters accepts pairs mapping symbolic variables to numbers.

Keyword arguments

  • show_progress: Indicate whether a progress bar should be displayed.

  • sorting: the method used by sort_solutions to get continuous solutions branches. The current options are "hilbert" (1D sorting along a Hilbert curve), "nearest" (nearest-neighbor sorting) and "none".

  • classify_default: If true, the solutions will be classified using the default classification method.

Example

`,5)),s("p",null,[a[6]||(a[6]=i("solving a simple harmonic oscillator ")),s("mjx-container",k,[(o(),l("svg",c,a[2]||(a[2]=[t('',1)]))),a[3]||(a[3]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"m"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mover",null,[s("mi",null,"x"),s("mo",null,"¨")])]),s("mo",null,"+"),s("mi",null,"γ"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mover",null,[s("mi",null,"x"),s("mo",null,"˙")])]),s("mo",null,"+"),s("msubsup",null,[s("mi",null,"ω"),s("mn",null,"0"),s("mn",null,"2")]),s("mi",null,"x"),s("mo",null,"="),s("mi",null,"F"),s("mi",null,"cos"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mo",{stretchy:"false"},"("),s("mi",null,"ω"),s("mi",null,"t"),s("mo",{stretchy:"false"},")")])],-1))]),a[7]||(a[7]=i(" to obtain the response as a function of ")),s("mjx-container",g,[(o(),l("svg",Q,a[4]||(a[4]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D714",d:"M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z",style:{"stroke-width":"3"}})])])],-1)]))),a[5]||(a[5]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"ω")])],-1))])]),a[9]||(a[9]=t(`
julia
# having obtained a Problem object, let's find steady states
+                    classify_default=true)

Solves problem with the method over the ranges specified by swept_parameters, keeping fixed_parameters constant. swept_parameters accepts pairs mapping symbolic variables to arrays or ranges. fixed_parameters accepts pairs mapping symbolic variables to numbers.

Keyword arguments

  • show_progress: Indicate whether a progress bar should be displayed.

  • sorting: the method used by sort_solutions to get continuous solutions branches. The current options are "hilbert" (1D sorting along a Hilbert curve), "nearest" (nearest-neighbor sorting) and "none".

  • classify_default: If true, the solutions will be classified using the default classification method.

Example

`,5)),s("p",null,[i[9]||(i[9]=a("solving a simple harmonic oscillator ")),s("mjx-container",c,[(o(),l("svg",g,i[5]||(i[5]=[t('',1)]))),i[6]||(i[6]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"m"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mover",null,[s("mi",null,"x"),s("mo",null,"¨")])]),s("mo",null,"+"),s("mi",null,"γ"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mover",null,[s("mi",null,"x"),s("mo",null,"˙")])]),s("mo",null,"+"),s("msubsup",null,[s("mi",null,"ω"),s("mn",null,"0"),s("mn",null,"2")]),s("mi",null,"x"),s("mo",null,"="),s("mi",null,"F"),s("mi",null,"cos"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mo",{stretchy:"false"},"("),s("mi",null,"ω"),s("mi",null,"t"),s("mo",{stretchy:"false"},")")])],-1))]),i[10]||(i[10]=a(" to obtain the response as a function of ")),s("mjx-container",m,[(o(),l("svg",E,i[7]||(i[7]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D714",d:"M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z",style:{"stroke-width":"3"}})])])],-1)]))),i[8]||(i[8]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"ω")])],-1))])]),i[12]||(i[12]=t(`
julia
# having obtained a Problem object, let's find steady states
 julia> range = ParameterRange=> LinRange(0.8,1.2,100) ) # 100 parameter sets to solve
 julia> fixed = ParameterList(m => 1, γ => 0.01, F => 0.5, ω_0 => 1)
 julia> get_steady_states(problem, range, fixed)
@@ -27,7 +30,7 @@ import{_ as h,c as l,a4 as t,j as s,a as i,G as n,B as p,o}from"./chunks/framewo
        of which real:    1
        of which stable:  1
 
-    Classes: stable, physical, Hopf, binary_labels

source

`,4))]),s("details",m,[s("summary",null,[a[10]||(a[10]=s("a",{id:"HarmonicBalance.Result",href:"#HarmonicBalance.Result"},[s("span",{class:"jlbinding"},"HarmonicBalance.Result")],-1)),a[11]||(a[11]=i()),n(e,{type:"info",class:"jlObjectType jlType",text:"Type"})]),a[12]||(a[12]=t('
julia
mutable struct Result

Stores the steady states of a HarmonicEquation.

Fields

  • solutions::Array{Vector{Vector{ComplexF64}}}: The variable values of steady-state solutions.

  • swept_parameters::OrderedCollections.OrderedDict{Num, Vector{Union{Float64, ComplexF64}}}: Values of all parameters for all solutions.

  • fixed_parameters::OrderedCollections.OrderedDict{Num, Float64}: The parameters fixed throughout the solutions.

  • problem::HarmonicBalance.Problem: The Problem used to generate this.

  • classes::Dict{String, Array}: Maps strings such as "stable", "physical" etc to arrays of values, classifying the solutions (see method classify_solutions!).

  • jacobian::Function: The Jacobian with fixed_parameters already substituted. Accepts a dictionary specifying the solution. If problem.jacobian is a symbolic matrix, this holds a compiled function. If problem.jacobian was false, this holds a function that rearranges the equations to find J only after numerical values are inserted (preferable in cases where the symbolic J would be very large).

  • seed::UInt32: Seed used for the solver

source

',5))]),a[20]||(a[20]=s("h2",{id:"Classifying-solutions",tabindex:"-1"},[i("Classifying solutions "),s("a",{class:"header-anchor",href:"#Classifying-solutions","aria-label":'Permalink to "Classifying solutions {#Classifying-solutions}"'},"​")],-1)),a[21]||(a[21]=s("p",null,[i("The solutions in "),s("code",null,"Result"),i(" are accompanied by similarly-sized boolean arrays stored in the dictionary "),s("code",null,"Result.classes"),i(". The classes can be used by the plotting functions to show/hide/label certain solutions.")],-1)),a[22]||(a[22]=s("p",null,[i('By default, classes "physical", "stable" and "binary_labels" are created. User-defined classification is possible with '),s("code",null,"classify_solutions!"),i(".")],-1)),s("details",u,[s("summary",null,[a[13]||(a[13]=s("a",{id:"HarmonicBalance.classify_solutions!",href:"#HarmonicBalance.classify_solutions!"},[s("span",{class:"jlbinding"},"HarmonicBalance.classify_solutions!")],-1)),a[14]||(a[14]=i()),n(e,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[15]||(a[15]=t(`
julia
classify_solutions!(
+    Classes: stable, physical, Hopf, binary_labels

source

`,4))]),s("details",u,[s("summary",null,[i[13]||(i[13]=s("a",{id:"HarmonicBalance.Result",href:"#HarmonicBalance.Result"},[s("span",{class:"jlbinding"},"HarmonicBalance.Result")],-1)),i[14]||(i[14]=a()),n(e,{type:"info",class:"jlObjectType jlType",text:"Type"})]),i[15]||(i[15]=t('
julia
mutable struct Result

Stores the steady states of a HarmonicEquation.

Fields

  • solutions::Array{Vector{Vector{ComplexF64}}}: The variable values of steady-state solutions.

  • swept_parameters::OrderedCollections.OrderedDict{Num, Vector{Union{Float64, ComplexF64}}}: Values of all parameters for all solutions.

  • fixed_parameters::OrderedCollections.OrderedDict{Num, Float64}: The parameters fixed throughout the solutions.

  • problem::HarmonicBalance.Problem: The Problem used to generate this.

  • classes::Dict{String, Array}: Maps strings such as "stable", "physical" etc to arrays of values, classifying the solutions (see method classify_solutions!).

  • jacobian::Function: The Jacobian with fixed_parameters already substituted. Accepts a dictionary specifying the solution. If problem.jacobian is a symbolic matrix, this holds a compiled function. If problem.jacobian was false, this holds a function that rearranges the equations to find J only after numerical values are inserted (preferable in cases where the symbolic J would be very large).

  • seed::UInt32: Seed used for the solver

source

',5))]),i[23]||(i[23]=s("h2",{id:"Classifying-solutions",tabindex:"-1"},[a("Classifying solutions "),s("a",{class:"header-anchor",href:"#Classifying-solutions","aria-label":'Permalink to "Classifying solutions {#Classifying-solutions}"'},"​")],-1)),i[24]||(i[24]=s("p",null,[a("The solutions in "),s("code",null,"Result"),a(" are accompanied by similarly-sized boolean arrays stored in the dictionary "),s("code",null,"Result.classes"),a(". The classes can be used by the plotting functions to show/hide/label certain solutions.")],-1)),i[25]||(i[25]=s("p",null,[a('By default, classes "physical", "stable" and "binary_labels" are created. User-defined classification is possible with '),s("code",null,"classify_solutions!"),a(".")],-1)),s("details",y,[s("summary",null,[i[16]||(i[16]=s("a",{id:"HarmonicBalance.classify_solutions!",href:"#HarmonicBalance.classify_solutions!"},[s("span",{class:"jlbinding"},"HarmonicBalance.classify_solutions!")],-1)),i[17]||(i[17]=a()),n(e,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),i[18]||(i[18]=t(`
julia
classify_solutions!(
     res::HarmonicBalance.Result,
     func::Union{Function, String},
     name::String;
@@ -36,8 +39,8 @@ import{_ as h,c as l,a4 as t,j as s,a as i,G as n,B as p,o}from"./chunks/framewo
 res = get_steady_states(problem, swept_parameters, fixed_parameters)
 
 # classify, store in result.classes["large_amplitude"]
-classify_solutions!(res, "sqrt(u1^2 + v1^2) > 1.0" , "large_amplitude")

source

`,7))]),a[23]||(a[23]=t('

Sorting solutions

Solving a steady-state problem over a range of parameters returns a solution set for each parameter. For a continuous change of parameters, each solution in a set usually also changes continuously; it is said to form a ''solution branch''. For an example, see the three colour-coded branches for the Duffing oscillator in Example 1.

For stable states, the branches describe a system's behaviour under adiabatic parameter changes.

Therefore, after solving for a parameter range, we want to order each solution set such that the solutions' order reflects the branches.

The function sort_solutions goes over the the raw output of get_steady_states and sorts each entry such that neighboring solution sets minimize Euclidean distance.

Currently, sort_solutions is compatible with 1D and 2D arrays of solution sets.

',6)),s("details",E,[s("summary",null,[a[16]||(a[16]=s("a",{id:"HarmonicBalance.sort_solutions",href:"#HarmonicBalance.sort_solutions"},[s("span",{class:"jlbinding"},"HarmonicBalance.sort_solutions")],-1)),a[17]||(a[17]=i()),n(e,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[18]||(a[18]=t(`
julia
sort_solutions(
+classify_solutions!(res, "sqrt(u1^2 + v1^2) > 1.0" , "large_amplitude")

source

`,7))]),i[26]||(i[26]=t('

Sorting solutions

Solving a steady-state problem over a range of parameters returns a solution set for each parameter. For a continuous change of parameters, each solution in a set usually also changes continuously; it is said to form a ''solution branch''. For an example, see the three colour-coded branches for the Duffing oscillator in Example 1.

For stable states, the branches describe a system's behaviour under adiabatic parameter changes.

Therefore, after solving for a parameter range, we want to order each solution set such that the solutions' order reflects the branches.

The function sort_solutions goes over the the raw output of get_steady_states and sorts each entry such that neighboring solution sets minimize Euclidean distance.

Currently, sort_solutions is compatible with 1D and 2D arrays of solution sets.

',6)),s("details",Q,[s("summary",null,[i[19]||(i[19]=s("a",{id:"HarmonicBalance.sort_solutions",href:"#HarmonicBalance.sort_solutions"},[s("span",{class:"jlbinding"},"HarmonicBalance.sort_solutions")],-1)),i[20]||(i[20]=a()),n(e,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),i[21]||(i[21]=t(`
julia
sort_solutions(
     solutions::Array;
     sorting,
     show_progress
-) -> Array

Sorts solutions into branches according to the method sorting.

solutions is an n-dimensional array of Vector{Vector}. Each element describes a set of solutions for a given parameter set. The output is a similar array, with each solution set rearranged such that neighboring solution sets have the smallest Euclidean distance.

Keyword arguments

  • sorting: the method used by sort_solutions to get continuous solutions branches. The current options are "hilbert" (1D sorting along a Hilbert curve), "nearest" (nearest-neighbor sorting) and "none".

  • show_progress: Indicate whether a progress bar should be displayed.

source

`,6))])])}const x=h(r,[["render",T]]);export{w as __pageData,x as default}; +) -> Array

Sorts solutions into branches according to the method sorting.

solutions is an n-dimensional array of Vector{Vector}. Each element describes a set of solutions for a given parameter set. The output is a similar array, with each solution set rearranged such that neighboring solution sets have the smallest Euclidean distance.

Keyword arguments

  • sorting: the method used by sort_solutions to get continuous solutions branches. The current options are "hilbert" (1D sorting along a Hilbert curve), "nearest" (nearest-neighbor sorting) and "none".

  • show_progress: Indicate whether a progress bar should be displayed.

source

`,6))])])}const w=h(r,[["render",T]]);export{H as __pageData,w as default}; diff --git a/previews/PR298/assets/manual_solving_harmonics.md.BNtGzorW.lean.js b/previews/PR298/assets/manual_solving_harmonics.md.CUoAwVIW.lean.js similarity index 73% rename from previews/PR298/assets/manual_solving_harmonics.md.BNtGzorW.lean.js rename to previews/PR298/assets/manual_solving_harmonics.md.CUoAwVIW.lean.js index 4088c6f3..273ebf9b 100644 --- a/previews/PR298/assets/manual_solving_harmonics.md.BNtGzorW.lean.js +++ b/previews/PR298/assets/manual_solving_harmonics.md.CUoAwVIW.lean.js @@ -1,10 +1,13 @@ -import{_ as h,c as l,a4 as t,j as s,a as i,G as n,B as p,o}from"./chunks/framework.DcvNxhjd.js";const w=JSON.parse('{"title":"Solving harmonic equations","description":"","frontmatter":{},"headers":[],"relativePath":"manual/solving_harmonics.md","filePath":"manual/solving_harmonics.md"}'),r={name:"manual/solving_harmonics.md"},d={class:"jldocstring custom-block",open:""},k={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.687ex"},xmlns:"http://www.w3.org/2000/svg",width:"27.124ex",height:"2.573ex",role:"img",focusable:"false",viewBox:"0 -833.9 11988.7 1137.4","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},m={class:"jldocstring custom-block",open:""},u={class:"jldocstring custom-block",open:""},E={class:"jldocstring custom-block",open:""};function T(y,a,b,f,F,C){const e=p("Badge");return o(),l("div",null,[a[19]||(a[19]=t('

Solving harmonic equations

Once a differential equation of motion has been defined in DifferentialEquation and converted to a HarmonicEquation, we may use the homotopy continuation method (as implemented in HomotopyContinuation.jl) to find steady states. This means that, having called get_harmonic_equations, we need to set all time-derivatives to zero and parse the resulting algebraic equations into a Problem.

Problem holds the steady-state equations, and (optionally) the symbolic Jacobian which is needed for stability / linear response calculations.

Once defined, a Problem can be solved for a set of input parameters using get_steady_states to obtain Result.

Missing docstring.

Missing docstring for Problem. Check Documenter's build log for details.

',5)),s("details",d,[s("summary",null,[a[0]||(a[0]=s("a",{id:"HarmonicBalance.get_steady_states",href:"#HarmonicBalance.get_steady_states"},[s("span",{class:"jlbinding"},"HarmonicBalance.get_steady_states")],-1)),a[1]||(a[1]=i()),n(e,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[8]||(a[8]=t(`
julia
get_steady_states(problem::HarmonicEquation,
+import{_ as h,c as l,a4 as t,j as s,a,G as n,B as p,o}from"./chunks/framework.DcvNxhjd.js";const H=JSON.parse('{"title":"Solving harmonic equations","description":"","frontmatter":{},"headers":[],"relativePath":"manual/solving_harmonics.md","filePath":"manual/solving_harmonics.md"}'),r={name:"manual/solving_harmonics.md"},d={class:"jldocstring custom-block",open:""},k={class:"jldocstring custom-block",open:""},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.687ex"},xmlns:"http://www.w3.org/2000/svg",width:"27.124ex",height:"2.573ex",role:"img",focusable:"false",viewBox:"0 -833.9 11988.7 1137.4","aria-hidden":"true"},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},u={class:"jldocstring custom-block",open:""},y={class:"jldocstring custom-block",open:""},Q={class:"jldocstring custom-block",open:""};function T(b,i,F,f,C,v){const e=p("Badge");return o(),l("div",null,[i[22]||(i[22]=t('

Solving harmonic equations

Once a differential equation of motion has been defined in DifferentialEquation and converted to a HarmonicEquation, we may use the homotopy continuation method (as implemented in HomotopyContinuation.jl) to find steady states. This means that, having called get_harmonic_equations, we need to set all time-derivatives to zero and parse the resulting algebraic equations into a Problem.

Problem holds the steady-state equations, and (optionally) the symbolic Jacobian which is needed for stability / linear response calculations.

Once defined, a Problem can be solved for a set of input parameters using get_steady_states to obtain Result.

',4)),s("details",d,[s("summary",null,[i[0]||(i[0]=s("a",{id:"HarmonicBalance.Problem",href:"#HarmonicBalance.Problem"},[s("span",{class:"jlbinding"},"HarmonicBalance.Problem")],-1)),i[1]||(i[1]=a()),n(e,{type:"info",class:"jlObjectType jlType",text:"Type"})]),i[2]||(i[2]=t(`
julia
mutable struct Problem

Holds a set of algebraic equations describing the steady state of a system.

Fields

  • variables::Vector{Num}: The harmonic variables to be solved for.

  • parameters::Vector{Num}: All symbols which are not the harmonic variables.

  • system::HomotopyContinuation.ModelKit.System: The input object for HomotopyContinuation.jl solver methods.

  • jacobian::Any: The Jacobian matrix (possibly symbolic). If false, the Jacobian is ignored (may be calculated implicitly after solving).

  • eom::HarmonicEquation: The HarmonicEquation object used to generate this Problem.

Constructors

julia
Problem(eom::HarmonicEquation; Jacobian=true) # find and store the symbolic Jacobian
+Problem(eom::HarmonicEquation; Jacobian="implicit") # ignore the Jacobian for now, compute implicitly later
+Problem(eom::HarmonicEquation; Jacobian=J) # use J as the Jacobian (a function that takes a Dict)
+Problem(eom::HarmonicEquation; Jacobian=false) # ignore the Jacobian

source

`,7))]),s("details",k,[s("summary",null,[i[3]||(i[3]=s("a",{id:"HarmonicBalance.get_steady_states",href:"#HarmonicBalance.get_steady_states"},[s("span",{class:"jlbinding"},"HarmonicBalance.get_steady_states")],-1)),i[4]||(i[4]=a()),n(e,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),i[11]||(i[11]=t(`
julia
get_steady_states(problem::HarmonicEquation,
                     method::HarmonicBalanceMethod,
                     swept_parameters::ParameterRange,
                     fixed_parameters::ParameterList;
                     show_progress=true,
                     sorting="nearest",
-                    classify_default=true)

Solves problem with the method over the ranges specified by swept_parameters, keeping fixed_parameters constant. swept_parameters accepts pairs mapping symbolic variables to arrays or ranges. fixed_parameters accepts pairs mapping symbolic variables to numbers.

Keyword arguments

  • show_progress: Indicate whether a progress bar should be displayed.

  • sorting: the method used by sort_solutions to get continuous solutions branches. The current options are "hilbert" (1D sorting along a Hilbert curve), "nearest" (nearest-neighbor sorting) and "none".

  • classify_default: If true, the solutions will be classified using the default classification method.

Example

`,5)),s("p",null,[a[6]||(a[6]=i("solving a simple harmonic oscillator ")),s("mjx-container",k,[(o(),l("svg",c,a[2]||(a[2]=[t('',1)]))),a[3]||(a[3]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"m"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mover",null,[s("mi",null,"x"),s("mo",null,"¨")])]),s("mo",null,"+"),s("mi",null,"γ"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mover",null,[s("mi",null,"x"),s("mo",null,"˙")])]),s("mo",null,"+"),s("msubsup",null,[s("mi",null,"ω"),s("mn",null,"0"),s("mn",null,"2")]),s("mi",null,"x"),s("mo",null,"="),s("mi",null,"F"),s("mi",null,"cos"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mo",{stretchy:"false"},"("),s("mi",null,"ω"),s("mi",null,"t"),s("mo",{stretchy:"false"},")")])],-1))]),a[7]||(a[7]=i(" to obtain the response as a function of ")),s("mjx-container",g,[(o(),l("svg",Q,a[4]||(a[4]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D714",d:"M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z",style:{"stroke-width":"3"}})])])],-1)]))),a[5]||(a[5]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"ω")])],-1))])]),a[9]||(a[9]=t(`
julia
# having obtained a Problem object, let's find steady states
+                    classify_default=true)

Solves problem with the method over the ranges specified by swept_parameters, keeping fixed_parameters constant. swept_parameters accepts pairs mapping symbolic variables to arrays or ranges. fixed_parameters accepts pairs mapping symbolic variables to numbers.

Keyword arguments

  • show_progress: Indicate whether a progress bar should be displayed.

  • sorting: the method used by sort_solutions to get continuous solutions branches. The current options are "hilbert" (1D sorting along a Hilbert curve), "nearest" (nearest-neighbor sorting) and "none".

  • classify_default: If true, the solutions will be classified using the default classification method.

Example

`,5)),s("p",null,[i[9]||(i[9]=a("solving a simple harmonic oscillator ")),s("mjx-container",c,[(o(),l("svg",g,i[5]||(i[5]=[t('',1)]))),i[6]||(i[6]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"m"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mover",null,[s("mi",null,"x"),s("mo",null,"¨")])]),s("mo",null,"+"),s("mi",null,"γ"),s("mrow",{"data-mjx-texclass":"ORD"},[s("mover",null,[s("mi",null,"x"),s("mo",null,"˙")])]),s("mo",null,"+"),s("msubsup",null,[s("mi",null,"ω"),s("mn",null,"0"),s("mn",null,"2")]),s("mi",null,"x"),s("mo",null,"="),s("mi",null,"F"),s("mi",null,"cos"),s("mo",{"data-mjx-texclass":"NONE"},"⁡"),s("mo",{stretchy:"false"},"("),s("mi",null,"ω"),s("mi",null,"t"),s("mo",{stretchy:"false"},")")])],-1))]),i[10]||(i[10]=a(" to obtain the response as a function of ")),s("mjx-container",m,[(o(),l("svg",E,i[7]||(i[7]=[s("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[s("g",{"data-mml-node":"math"},[s("g",{"data-mml-node":"mi"},[s("path",{"data-c":"1D714",d:"M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z",style:{"stroke-width":"3"}})])])],-1)]))),i[8]||(i[8]=s("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[s("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[s("mi",null,"ω")])],-1))])]),i[12]||(i[12]=t(`
julia
# having obtained a Problem object, let's find steady states
 julia> range = ParameterRange=> LinRange(0.8,1.2,100) ) # 100 parameter sets to solve
 julia> fixed = ParameterList(m => 1, γ => 0.01, F => 0.5, ω_0 => 1)
 julia> get_steady_states(problem, range, fixed)
@@ -27,7 +30,7 @@ import{_ as h,c as l,a4 as t,j as s,a as i,G as n,B as p,o}from"./chunks/framewo
        of which real:    1
        of which stable:  1
 
-    Classes: stable, physical, Hopf, binary_labels

source

`,4))]),s("details",m,[s("summary",null,[a[10]||(a[10]=s("a",{id:"HarmonicBalance.Result",href:"#HarmonicBalance.Result"},[s("span",{class:"jlbinding"},"HarmonicBalance.Result")],-1)),a[11]||(a[11]=i()),n(e,{type:"info",class:"jlObjectType jlType",text:"Type"})]),a[12]||(a[12]=t('
julia
mutable struct Result

Stores the steady states of a HarmonicEquation.

Fields

  • solutions::Array{Vector{Vector{ComplexF64}}}: The variable values of steady-state solutions.

  • swept_parameters::OrderedCollections.OrderedDict{Num, Vector{Union{Float64, ComplexF64}}}: Values of all parameters for all solutions.

  • fixed_parameters::OrderedCollections.OrderedDict{Num, Float64}: The parameters fixed throughout the solutions.

  • problem::HarmonicBalance.Problem: The Problem used to generate this.

  • classes::Dict{String, Array}: Maps strings such as "stable", "physical" etc to arrays of values, classifying the solutions (see method classify_solutions!).

  • jacobian::Function: The Jacobian with fixed_parameters already substituted. Accepts a dictionary specifying the solution. If problem.jacobian is a symbolic matrix, this holds a compiled function. If problem.jacobian was false, this holds a function that rearranges the equations to find J only after numerical values are inserted (preferable in cases where the symbolic J would be very large).

  • seed::UInt32: Seed used for the solver

source

',5))]),a[20]||(a[20]=s("h2",{id:"Classifying-solutions",tabindex:"-1"},[i("Classifying solutions "),s("a",{class:"header-anchor",href:"#Classifying-solutions","aria-label":'Permalink to "Classifying solutions {#Classifying-solutions}"'},"​")],-1)),a[21]||(a[21]=s("p",null,[i("The solutions in "),s("code",null,"Result"),i(" are accompanied by similarly-sized boolean arrays stored in the dictionary "),s("code",null,"Result.classes"),i(". The classes can be used by the plotting functions to show/hide/label certain solutions.")],-1)),a[22]||(a[22]=s("p",null,[i('By default, classes "physical", "stable" and "binary_labels" are created. User-defined classification is possible with '),s("code",null,"classify_solutions!"),i(".")],-1)),s("details",u,[s("summary",null,[a[13]||(a[13]=s("a",{id:"HarmonicBalance.classify_solutions!",href:"#HarmonicBalance.classify_solutions!"},[s("span",{class:"jlbinding"},"HarmonicBalance.classify_solutions!")],-1)),a[14]||(a[14]=i()),n(e,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[15]||(a[15]=t(`
julia
classify_solutions!(
+    Classes: stable, physical, Hopf, binary_labels

source

`,4))]),s("details",u,[s("summary",null,[i[13]||(i[13]=s("a",{id:"HarmonicBalance.Result",href:"#HarmonicBalance.Result"},[s("span",{class:"jlbinding"},"HarmonicBalance.Result")],-1)),i[14]||(i[14]=a()),n(e,{type:"info",class:"jlObjectType jlType",text:"Type"})]),i[15]||(i[15]=t('
julia
mutable struct Result

Stores the steady states of a HarmonicEquation.

Fields

  • solutions::Array{Vector{Vector{ComplexF64}}}: The variable values of steady-state solutions.

  • swept_parameters::OrderedCollections.OrderedDict{Num, Vector{Union{Float64, ComplexF64}}}: Values of all parameters for all solutions.

  • fixed_parameters::OrderedCollections.OrderedDict{Num, Float64}: The parameters fixed throughout the solutions.

  • problem::HarmonicBalance.Problem: The Problem used to generate this.

  • classes::Dict{String, Array}: Maps strings such as "stable", "physical" etc to arrays of values, classifying the solutions (see method classify_solutions!).

  • jacobian::Function: The Jacobian with fixed_parameters already substituted. Accepts a dictionary specifying the solution. If problem.jacobian is a symbolic matrix, this holds a compiled function. If problem.jacobian was false, this holds a function that rearranges the equations to find J only after numerical values are inserted (preferable in cases where the symbolic J would be very large).

  • seed::UInt32: Seed used for the solver

source

',5))]),i[23]||(i[23]=s("h2",{id:"Classifying-solutions",tabindex:"-1"},[a("Classifying solutions "),s("a",{class:"header-anchor",href:"#Classifying-solutions","aria-label":'Permalink to "Classifying solutions {#Classifying-solutions}"'},"​")],-1)),i[24]||(i[24]=s("p",null,[a("The solutions in "),s("code",null,"Result"),a(" are accompanied by similarly-sized boolean arrays stored in the dictionary "),s("code",null,"Result.classes"),a(". The classes can be used by the plotting functions to show/hide/label certain solutions.")],-1)),i[25]||(i[25]=s("p",null,[a('By default, classes "physical", "stable" and "binary_labels" are created. User-defined classification is possible with '),s("code",null,"classify_solutions!"),a(".")],-1)),s("details",y,[s("summary",null,[i[16]||(i[16]=s("a",{id:"HarmonicBalance.classify_solutions!",href:"#HarmonicBalance.classify_solutions!"},[s("span",{class:"jlbinding"},"HarmonicBalance.classify_solutions!")],-1)),i[17]||(i[17]=a()),n(e,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),i[18]||(i[18]=t(`
julia
classify_solutions!(
     res::HarmonicBalance.Result,
     func::Union{Function, String},
     name::String;
@@ -36,8 +39,8 @@ import{_ as h,c as l,a4 as t,j as s,a as i,G as n,B as p,o}from"./chunks/framewo
 res = get_steady_states(problem, swept_parameters, fixed_parameters)
 
 # classify, store in result.classes["large_amplitude"]
-classify_solutions!(res, "sqrt(u1^2 + v1^2) > 1.0" , "large_amplitude")

source

`,7))]),a[23]||(a[23]=t('

Sorting solutions

Solving a steady-state problem over a range of parameters returns a solution set for each parameter. For a continuous change of parameters, each solution in a set usually also changes continuously; it is said to form a ''solution branch''. For an example, see the three colour-coded branches for the Duffing oscillator in Example 1.

For stable states, the branches describe a system's behaviour under adiabatic parameter changes.

Therefore, after solving for a parameter range, we want to order each solution set such that the solutions' order reflects the branches.

The function sort_solutions goes over the the raw output of get_steady_states and sorts each entry such that neighboring solution sets minimize Euclidean distance.

Currently, sort_solutions is compatible with 1D and 2D arrays of solution sets.

',6)),s("details",E,[s("summary",null,[a[16]||(a[16]=s("a",{id:"HarmonicBalance.sort_solutions",href:"#HarmonicBalance.sort_solutions"},[s("span",{class:"jlbinding"},"HarmonicBalance.sort_solutions")],-1)),a[17]||(a[17]=i()),n(e,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),a[18]||(a[18]=t(`
julia
sort_solutions(
+classify_solutions!(res, "sqrt(u1^2 + v1^2) > 1.0" , "large_amplitude")

source

`,7))]),i[26]||(i[26]=t('

Sorting solutions

Solving a steady-state problem over a range of parameters returns a solution set for each parameter. For a continuous change of parameters, each solution in a set usually also changes continuously; it is said to form a ''solution branch''. For an example, see the three colour-coded branches for the Duffing oscillator in Example 1.

For stable states, the branches describe a system's behaviour under adiabatic parameter changes.

Therefore, after solving for a parameter range, we want to order each solution set such that the solutions' order reflects the branches.

The function sort_solutions goes over the the raw output of get_steady_states and sorts each entry such that neighboring solution sets minimize Euclidean distance.

Currently, sort_solutions is compatible with 1D and 2D arrays of solution sets.

',6)),s("details",Q,[s("summary",null,[i[19]||(i[19]=s("a",{id:"HarmonicBalance.sort_solutions",href:"#HarmonicBalance.sort_solutions"},[s("span",{class:"jlbinding"},"HarmonicBalance.sort_solutions")],-1)),i[20]||(i[20]=a()),n(e,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),i[21]||(i[21]=t(`
julia
sort_solutions(
     solutions::Array;
     sorting,
     show_progress
-) -> Array

Sorts solutions into branches according to the method sorting.

solutions is an n-dimensional array of Vector{Vector}. Each element describes a set of solutions for a given parameter set. The output is a similar array, with each solution set rearranged such that neighboring solution sets have the smallest Euclidean distance.

Keyword arguments

  • sorting: the method used by sort_solutions to get continuous solutions branches. The current options are "hilbert" (1D sorting along a Hilbert curve), "nearest" (nearest-neighbor sorting) and "none".

  • show_progress: Indicate whether a progress bar should be displayed.

source

`,6))])])}const x=h(r,[["render",T]]);export{w as __pageData,x as default}; +) -> Array

Sorts solutions into branches according to the method sorting.

solutions is an n-dimensional array of Vector{Vector}. Each element describes a set of solutions for a given parameter set. The output is a similar array, with each solution set rearranged such that neighboring solution sets have the smallest Euclidean distance.

Keyword arguments

  • sorting: the method used by sort_solutions to get continuous solutions branches. The current options are "hilbert" (1D sorting along a Hilbert curve), "nearest" (nearest-neighbor sorting) and "none".

  • show_progress: Indicate whether a progress bar should be displayed.

source

`,6))])])}const w=h(r,[["render",T]]);export{H as __pageData,w as default}; diff --git a/previews/PR298/assets/manual_time_dependent.md.Du-_Z03b.js b/previews/PR298/assets/manual_time_dependent.md.DklFRcLU.js similarity index 97% rename from previews/PR298/assets/manual_time_dependent.md.Du-_Z03b.js rename to previews/PR298/assets/manual_time_dependent.md.DklFRcLU.js index a9ba7be3..c47bf62d 100644 --- a/previews/PR298/assets/manual_time_dependent.md.Du-_Z03b.js +++ b/previews/PR298/assets/manual_time_dependent.md.DklFRcLU.js @@ -1,10 +1,10 @@ -import{_ as l,c as p,a4 as e,j as i,a,G as t,B as h,o as k}from"./chunks/framework.DcvNxhjd.js";const f=JSON.parse('{"title":"Time evolution","description":"","frontmatter":{},"headers":[],"relativePath":"manual/time_dependent.md","filePath":"manual/time_dependent.md"}'),o={name:"manual/time_dependent.md"},r={class:"jldocstring custom-block",open:""},d={class:"jldocstring custom-block",open:""},E={class:"jldocstring custom-block",open:""},c={class:"jldocstring custom-block",open:""};function g(y,s,u,m,b,F){const n=h("Badge");return k(),p("div",null,[s[12]||(s[12]=e('

Time evolution

Generally, solving the ODE of oscillatory systems in time requires numerically tracking the oscillations. This is a computationally expensive process; however, using the harmonic ansatz removes the oscillatory time-dependence. Simulating instead the harmonic variables of a HarmonicEquation is vastly more efficient - a steady state of the system appears as a fixed point in multidimensional space rather than an oscillatory function.

The Extention TimeEvolution is used to interface HarmonicEquation with the solvers contained in OrdinaryDiffEq.jl. Time-dependent parameter sweeps are defined using the object AdiabaticSweep. To use the TimeEvolution extension, one must first load the OrdinaryDiffEq.jl package.

',3)),i("details",r,[i("summary",null,[s[0]||(s[0]=i("a",{id:"SciMLBase.ODEProblem-Tuple{HarmonicEquation, Any}",href:"#SciMLBase.ODEProblem-Tuple{HarmonicEquation, Any}"},[i("span",{class:"jlbinding"},"SciMLBase.ODEProblem")],-1)),s[1]||(s[1]=a()),t(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[2]||(s[2]=e(`
julia
ODEProblem(
+import{_ as l,c as p,a4 as e,j as i,a,G as t,B as h,o as k}from"./chunks/framework.DcvNxhjd.js";const v=JSON.parse('{"title":"Time evolution","description":"","frontmatter":{},"headers":[],"relativePath":"manual/time_dependent.md","filePath":"manual/time_dependent.md"}'),o={name:"manual/time_dependent.md"},r={class:"jldocstring custom-block",open:""},d={class:"jldocstring custom-block",open:""},E={class:"jldocstring custom-block",open:""},c={class:"jldocstring custom-block",open:""};function g(y,s,u,m,b,F){const n=h("Badge");return k(),p("div",null,[s[12]||(s[12]=e('

Time evolution

Generally, solving the ODE of oscillatory systems in time requires numerically tracking the oscillations. This is a computationally expensive process; however, using the harmonic ansatz removes the oscillatory time-dependence. Simulating instead the harmonic variables of a HarmonicEquation is vastly more efficient - a steady state of the system appears as a fixed point in multidimensional space rather than an oscillatory function.

The Extention TimeEvolution is used to interface HarmonicEquation with the solvers contained in OrdinaryDiffEq.jl. Time-dependent parameter sweeps are defined using the object AdiabaticSweep. To use the TimeEvolution extension, one must first load the OrdinaryDiffEq.jl package.

',3)),i("details",r,[i("summary",null,[s[0]||(s[0]=i("a",{id:"SciMLBase.ODEProblem-Tuple{HarmonicEquation, Any}",href:"#SciMLBase.ODEProblem-Tuple{HarmonicEquation, Any}"},[i("span",{class:"jlbinding"},"SciMLBase.ODEProblem")],-1)),s[1]||(s[1]=a()),t(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[2]||(s[2]=e(`
julia
ODEProblem(
         eom::HarmonicEquation;
         fixed_parameters,
         u0::Vector,
         sweep::AdiabaticSweep,
         timespan::Tuple
-        )

Creates an ODEProblem object used by OrdinaryDiffEqTsit5.jl from the equations in eom to simulate time-evolution within timespan. fixed_parameters must be a dictionary mapping parameters+variables to numbers (possible to use a solution index, e.g. solutions[x][y] for branch y of solution x). If u0 is specified, it is used as an initial condition; otherwise the values from fixed_parameters are used.

source

`,3))]),i("details",d,[i("summary",null,[s[3]||(s[3]=i("a",{id:"HarmonicBalance.AdiabaticSweep",href:"#HarmonicBalance.AdiabaticSweep"},[i("span",{class:"jlbinding"},"HarmonicBalance.AdiabaticSweep")],-1)),s[4]||(s[4]=a()),t(n,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[5]||(s[5]=e(`

Represents a sweep of one or more parameters of a HarmonicEquation. During a sweep, the selected parameters vary linearly over some timespan and are constant elsewhere.

Sweeps of different variables can be combined using +.

Fields

  • functions::Dict{Num, Function}: Maps each swept parameter to a function.

Examples

julia
# create a sweep of parameter a from 0 to 1 over time 0 -> 100
+        )

Creates an ODEProblem object used by OrdinaryDiffEqTsit5.jl from the equations in eom to simulate time-evolution within timespan. fixed_parameters must be a dictionary mapping parameters+variables to numbers (possible to use a solution index, e.g. solutions[x][y] for branch y of solution x). If u0 is specified, it is used as an initial condition; otherwise the values from fixed_parameters are used.

source

`,3))]),i("details",d,[i("summary",null,[s[3]||(s[3]=i("a",{id:"HarmonicBalance.AdiabaticSweep",href:"#HarmonicBalance.AdiabaticSweep"},[i("span",{class:"jlbinding"},"HarmonicBalance.AdiabaticSweep")],-1)),s[4]||(s[4]=a()),t(n,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[5]||(s[5]=e(`

Represents a sweep of one or more parameters of a HarmonicEquation. During a sweep, the selected parameters vary linearly over some timespan and are constant elsewhere.

Sweeps of different variables can be combined using +.

Fields

  • functions::Dict{Num, Function}: Maps each swept parameter to a function.

Examples

julia
# create a sweep of parameter a from 0 to 1 over time 0 -> 100
 julia> @variables a,b;
 julia> sweep = AdiabaticSweep(a => [0., 1.], (0, 100));
 julia> sweep[a](50)
@@ -16,14 +16,14 @@ import{_ as l,c as p,a4 as e,j as i,a,G as t,B as h,o as k}from"./chunks/framewo
 julia> sweep = AdiabaticSweep([a => [0.,1.], b => [0., 1.]], (0,100))

Successive sweeps can be combined,

julia
sweep1 = AdiabaticSweep=> [0.95, 1.0], (0, 2e4))
 sweep2 = AdiabaticSweep=> [0.05, 0.01], (2e4, 4e4))
 sweep = sweep1 + sweep2

multiple parameters can be swept simultaneously,

julia
sweep = AdiabaticSweep([ω => [0.95;1.0], λ => [5e-2;1e-2]], (0, 2e4))

and custom sweep functions may be used.

julia
ωfunc(t) = cos(t)
-sweep = AdiabaticSweep=> ωfunc)

source

`,13))]),s[13]||(s[13]=i("h2",{id:"plotting",tabindex:"-1"},[a("Plotting "),i("a",{class:"header-anchor",href:"#plotting","aria-label":'Permalink to "Plotting"'},"​")],-1)),i("details",E,[i("summary",null,[s[6]||(s[6]=i("a",{id:"RecipesBase.plot-Tuple{ODESolution, Any, HarmonicEquation}",href:"#RecipesBase.plot-Tuple{ODESolution, Any, HarmonicEquation}"},[i("span",{class:"jlbinding"},"RecipesBase.plot")],-1)),s[7]||(s[7]=a()),t(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[8]||(s[8]=e('
julia
plot(soln::ODESolution, f::String, harm_eq::HarmonicEquation; kwargs...)

Plot a function f of a time-dependent solution soln of harm_eq.

As a function of time

plot(soln::ODESolution, f::String, harm_eq::HarmonicEquation; kwargs...)

f is parsed by Symbolics.jl

parametric plots

plot(soln::ODESolution, f::Vector{String}, harm_eq::HarmonicEquation; kwargs...)

Parametric plot of f[1] against f[2]

Also callable as plot!

source

',10))]),s[14]||(s[14]=i("h2",{id:"miscellaneous",tabindex:"-1"},[a("Miscellaneous "),i("a",{class:"header-anchor",href:"#miscellaneous","aria-label":'Permalink to "Miscellaneous"'},"​")],-1)),s[15]||(s[15]=i("p",null,"Using a time-dependent simulation can verify solution stability in cases where the Jacobian is too expensive to compute.",-1)),i("details",c,[i("summary",null,[s[9]||(s[9]=i("a",{id:"HarmonicBalance.is_stable",href:"#HarmonicBalance.is_stable"},[i("span",{class:"jlbinding"},"HarmonicBalance.is_stable")],-1)),s[10]||(s[10]=a()),t(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[11]||(s[11]=e(`
julia
is_stable(
+sweep = AdiabaticSweep=> ωfunc)

source

`,13))]),s[13]||(s[13]=i("h2",{id:"plotting",tabindex:"-1"},[a("Plotting "),i("a",{class:"header-anchor",href:"#plotting","aria-label":'Permalink to "Plotting"'},"​")],-1)),i("details",E,[i("summary",null,[s[6]||(s[6]=i("a",{id:"RecipesBase.plot-Tuple{ODESolution, Any, HarmonicEquation}",href:"#RecipesBase.plot-Tuple{ODESolution, Any, HarmonicEquation}"},[i("span",{class:"jlbinding"},"RecipesBase.plot")],-1)),s[7]||(s[7]=a()),t(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[8]||(s[8]=e('
julia
plot(soln::ODESolution, f::String, harm_eq::HarmonicEquation; kwargs...)

Plot a function f of a time-dependent solution soln of harm_eq.

As a function of time

plot(soln::ODESolution, f::String, harm_eq::HarmonicEquation; kwargs...)

f is parsed by Symbolics.jl

parametric plots

plot(soln::ODESolution, f::Vector{String}, harm_eq::HarmonicEquation; kwargs...)

Parametric plot of f[1] against f[2]

Also callable as plot!

source

',10))]),s[14]||(s[14]=i("h2",{id:"miscellaneous",tabindex:"-1"},[a("Miscellaneous "),i("a",{class:"header-anchor",href:"#miscellaneous","aria-label":'Permalink to "Miscellaneous"'},"​")],-1)),s[15]||(s[15]=i("p",null,"Using a time-dependent simulation can verify solution stability in cases where the Jacobian is too expensive to compute.",-1)),i("details",c,[i("summary",null,[s[9]||(s[9]=i("a",{id:"HarmonicBalance.is_stable",href:"#HarmonicBalance.is_stable"},[i("span",{class:"jlbinding"},"HarmonicBalance.is_stable")],-1)),s[10]||(s[10]=a()),t(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[11]||(s[11]=e(`
julia
is_stable(
     soln::OrderedCollections.OrderedDict{Num, ComplexF64},
     eom::HarmonicEquation;
     timespan,
     tol,
     perturb_initial
-)

Numerically investigate the stability of a solution soln of eom within timespan. The initial condition is displaced by perturb_initial.

Return true the solution evolves within tol of the initial value (interpreted as stable).

source

julia
is_stable(
+)

Numerically investigate the stability of a solution soln of eom within timespan. The initial condition is displaced by perturb_initial.

Return true the solution evolves within tol of the initial value (interpreted as stable).

source

julia
is_stable(
     soln::OrderedCollections.OrderedDict{Num, ComplexF64},
     res::HarmonicBalance.Result;
     kwargs...
-) -> Any

Returns true if the solution soln of the Result res is stable. Stable solutions are real and have all Jacobian eigenvalues Re[λ] <= 0. im_tol : an absolute threshold to distinguish real/complex numbers. rel_tol: Re(λ) considered <=0 if real.(λ) < rel_tol*abs(λmax)

source

`,7))])])}const v=l(o,[["render",g]]);export{f as __pageData,v as default}; +) -> Any

Returns true if the solution soln of the Result res is stable. Stable solutions are real and have all Jacobian eigenvalues Re[λ] <= 0. im_tol : an absolute threshold to distinguish real/complex numbers. rel_tol: Re(λ) considered <=0 if real.(λ) < rel_tol*abs(λmax)

source

`,7))])])}const f=l(o,[["render",g]]);export{v as __pageData,f as default}; diff --git a/previews/PR298/assets/manual_time_dependent.md.Du-_Z03b.lean.js b/previews/PR298/assets/manual_time_dependent.md.DklFRcLU.lean.js similarity index 97% rename from previews/PR298/assets/manual_time_dependent.md.Du-_Z03b.lean.js rename to previews/PR298/assets/manual_time_dependent.md.DklFRcLU.lean.js index a9ba7be3..c47bf62d 100644 --- a/previews/PR298/assets/manual_time_dependent.md.Du-_Z03b.lean.js +++ b/previews/PR298/assets/manual_time_dependent.md.DklFRcLU.lean.js @@ -1,10 +1,10 @@ -import{_ as l,c as p,a4 as e,j as i,a,G as t,B as h,o as k}from"./chunks/framework.DcvNxhjd.js";const f=JSON.parse('{"title":"Time evolution","description":"","frontmatter":{},"headers":[],"relativePath":"manual/time_dependent.md","filePath":"manual/time_dependent.md"}'),o={name:"manual/time_dependent.md"},r={class:"jldocstring custom-block",open:""},d={class:"jldocstring custom-block",open:""},E={class:"jldocstring custom-block",open:""},c={class:"jldocstring custom-block",open:""};function g(y,s,u,m,b,F){const n=h("Badge");return k(),p("div",null,[s[12]||(s[12]=e('

Time evolution

Generally, solving the ODE of oscillatory systems in time requires numerically tracking the oscillations. This is a computationally expensive process; however, using the harmonic ansatz removes the oscillatory time-dependence. Simulating instead the harmonic variables of a HarmonicEquation is vastly more efficient - a steady state of the system appears as a fixed point in multidimensional space rather than an oscillatory function.

The Extention TimeEvolution is used to interface HarmonicEquation with the solvers contained in OrdinaryDiffEq.jl. Time-dependent parameter sweeps are defined using the object AdiabaticSweep. To use the TimeEvolution extension, one must first load the OrdinaryDiffEq.jl package.

',3)),i("details",r,[i("summary",null,[s[0]||(s[0]=i("a",{id:"SciMLBase.ODEProblem-Tuple{HarmonicEquation, Any}",href:"#SciMLBase.ODEProblem-Tuple{HarmonicEquation, Any}"},[i("span",{class:"jlbinding"},"SciMLBase.ODEProblem")],-1)),s[1]||(s[1]=a()),t(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[2]||(s[2]=e(`
julia
ODEProblem(
+import{_ as l,c as p,a4 as e,j as i,a,G as t,B as h,o as k}from"./chunks/framework.DcvNxhjd.js";const v=JSON.parse('{"title":"Time evolution","description":"","frontmatter":{},"headers":[],"relativePath":"manual/time_dependent.md","filePath":"manual/time_dependent.md"}'),o={name:"manual/time_dependent.md"},r={class:"jldocstring custom-block",open:""},d={class:"jldocstring custom-block",open:""},E={class:"jldocstring custom-block",open:""},c={class:"jldocstring custom-block",open:""};function g(y,s,u,m,b,F){const n=h("Badge");return k(),p("div",null,[s[12]||(s[12]=e('

Time evolution

Generally, solving the ODE of oscillatory systems in time requires numerically tracking the oscillations. This is a computationally expensive process; however, using the harmonic ansatz removes the oscillatory time-dependence. Simulating instead the harmonic variables of a HarmonicEquation is vastly more efficient - a steady state of the system appears as a fixed point in multidimensional space rather than an oscillatory function.

The Extention TimeEvolution is used to interface HarmonicEquation with the solvers contained in OrdinaryDiffEq.jl. Time-dependent parameter sweeps are defined using the object AdiabaticSweep. To use the TimeEvolution extension, one must first load the OrdinaryDiffEq.jl package.

',3)),i("details",r,[i("summary",null,[s[0]||(s[0]=i("a",{id:"SciMLBase.ODEProblem-Tuple{HarmonicEquation, Any}",href:"#SciMLBase.ODEProblem-Tuple{HarmonicEquation, Any}"},[i("span",{class:"jlbinding"},"SciMLBase.ODEProblem")],-1)),s[1]||(s[1]=a()),t(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[2]||(s[2]=e(`
julia
ODEProblem(
         eom::HarmonicEquation;
         fixed_parameters,
         u0::Vector,
         sweep::AdiabaticSweep,
         timespan::Tuple
-        )

Creates an ODEProblem object used by OrdinaryDiffEqTsit5.jl from the equations in eom to simulate time-evolution within timespan. fixed_parameters must be a dictionary mapping parameters+variables to numbers (possible to use a solution index, e.g. solutions[x][y] for branch y of solution x). If u0 is specified, it is used as an initial condition; otherwise the values from fixed_parameters are used.

source

`,3))]),i("details",d,[i("summary",null,[s[3]||(s[3]=i("a",{id:"HarmonicBalance.AdiabaticSweep",href:"#HarmonicBalance.AdiabaticSweep"},[i("span",{class:"jlbinding"},"HarmonicBalance.AdiabaticSweep")],-1)),s[4]||(s[4]=a()),t(n,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[5]||(s[5]=e(`

Represents a sweep of one or more parameters of a HarmonicEquation. During a sweep, the selected parameters vary linearly over some timespan and are constant elsewhere.

Sweeps of different variables can be combined using +.

Fields

  • functions::Dict{Num, Function}: Maps each swept parameter to a function.

Examples

julia
# create a sweep of parameter a from 0 to 1 over time 0 -> 100
+        )

Creates an ODEProblem object used by OrdinaryDiffEqTsit5.jl from the equations in eom to simulate time-evolution within timespan. fixed_parameters must be a dictionary mapping parameters+variables to numbers (possible to use a solution index, e.g. solutions[x][y] for branch y of solution x). If u0 is specified, it is used as an initial condition; otherwise the values from fixed_parameters are used.

source

`,3))]),i("details",d,[i("summary",null,[s[3]||(s[3]=i("a",{id:"HarmonicBalance.AdiabaticSweep",href:"#HarmonicBalance.AdiabaticSweep"},[i("span",{class:"jlbinding"},"HarmonicBalance.AdiabaticSweep")],-1)),s[4]||(s[4]=a()),t(n,{type:"info",class:"jlObjectType jlType",text:"Type"})]),s[5]||(s[5]=e(`

Represents a sweep of one or more parameters of a HarmonicEquation. During a sweep, the selected parameters vary linearly over some timespan and are constant elsewhere.

Sweeps of different variables can be combined using +.

Fields

  • functions::Dict{Num, Function}: Maps each swept parameter to a function.

Examples

julia
# create a sweep of parameter a from 0 to 1 over time 0 -> 100
 julia> @variables a,b;
 julia> sweep = AdiabaticSweep(a => [0., 1.], (0, 100));
 julia> sweep[a](50)
@@ -16,14 +16,14 @@ import{_ as l,c as p,a4 as e,j as i,a,G as t,B as h,o as k}from"./chunks/framewo
 julia> sweep = AdiabaticSweep([a => [0.,1.], b => [0., 1.]], (0,100))

Successive sweeps can be combined,

julia
sweep1 = AdiabaticSweep=> [0.95, 1.0], (0, 2e4))
 sweep2 = AdiabaticSweep=> [0.05, 0.01], (2e4, 4e4))
 sweep = sweep1 + sweep2

multiple parameters can be swept simultaneously,

julia
sweep = AdiabaticSweep([ω => [0.95;1.0], λ => [5e-2;1e-2]], (0, 2e4))

and custom sweep functions may be used.

julia
ωfunc(t) = cos(t)
-sweep = AdiabaticSweep=> ωfunc)

source

`,13))]),s[13]||(s[13]=i("h2",{id:"plotting",tabindex:"-1"},[a("Plotting "),i("a",{class:"header-anchor",href:"#plotting","aria-label":'Permalink to "Plotting"'},"​")],-1)),i("details",E,[i("summary",null,[s[6]||(s[6]=i("a",{id:"RecipesBase.plot-Tuple{ODESolution, Any, HarmonicEquation}",href:"#RecipesBase.plot-Tuple{ODESolution, Any, HarmonicEquation}"},[i("span",{class:"jlbinding"},"RecipesBase.plot")],-1)),s[7]||(s[7]=a()),t(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[8]||(s[8]=e('
julia
plot(soln::ODESolution, f::String, harm_eq::HarmonicEquation; kwargs...)

Plot a function f of a time-dependent solution soln of harm_eq.

As a function of time

plot(soln::ODESolution, f::String, harm_eq::HarmonicEquation; kwargs...)

f is parsed by Symbolics.jl

parametric plots

plot(soln::ODESolution, f::Vector{String}, harm_eq::HarmonicEquation; kwargs...)

Parametric plot of f[1] against f[2]

Also callable as plot!

source

',10))]),s[14]||(s[14]=i("h2",{id:"miscellaneous",tabindex:"-1"},[a("Miscellaneous "),i("a",{class:"header-anchor",href:"#miscellaneous","aria-label":'Permalink to "Miscellaneous"'},"​")],-1)),s[15]||(s[15]=i("p",null,"Using a time-dependent simulation can verify solution stability in cases where the Jacobian is too expensive to compute.",-1)),i("details",c,[i("summary",null,[s[9]||(s[9]=i("a",{id:"HarmonicBalance.is_stable",href:"#HarmonicBalance.is_stable"},[i("span",{class:"jlbinding"},"HarmonicBalance.is_stable")],-1)),s[10]||(s[10]=a()),t(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[11]||(s[11]=e(`
julia
is_stable(
+sweep = AdiabaticSweep=> ωfunc)

source

`,13))]),s[13]||(s[13]=i("h2",{id:"plotting",tabindex:"-1"},[a("Plotting "),i("a",{class:"header-anchor",href:"#plotting","aria-label":'Permalink to "Plotting"'},"​")],-1)),i("details",E,[i("summary",null,[s[6]||(s[6]=i("a",{id:"RecipesBase.plot-Tuple{ODESolution, Any, HarmonicEquation}",href:"#RecipesBase.plot-Tuple{ODESolution, Any, HarmonicEquation}"},[i("span",{class:"jlbinding"},"RecipesBase.plot")],-1)),s[7]||(s[7]=a()),t(n,{type:"info",class:"jlObjectType jlMethod",text:"Method"})]),s[8]||(s[8]=e('
julia
plot(soln::ODESolution, f::String, harm_eq::HarmonicEquation; kwargs...)

Plot a function f of a time-dependent solution soln of harm_eq.

As a function of time

plot(soln::ODESolution, f::String, harm_eq::HarmonicEquation; kwargs...)

f is parsed by Symbolics.jl

parametric plots

plot(soln::ODESolution, f::Vector{String}, harm_eq::HarmonicEquation; kwargs...)

Parametric plot of f[1] against f[2]

Also callable as plot!

source

',10))]),s[14]||(s[14]=i("h2",{id:"miscellaneous",tabindex:"-1"},[a("Miscellaneous "),i("a",{class:"header-anchor",href:"#miscellaneous","aria-label":'Permalink to "Miscellaneous"'},"​")],-1)),s[15]||(s[15]=i("p",null,"Using a time-dependent simulation can verify solution stability in cases where the Jacobian is too expensive to compute.",-1)),i("details",c,[i("summary",null,[s[9]||(s[9]=i("a",{id:"HarmonicBalance.is_stable",href:"#HarmonicBalance.is_stable"},[i("span",{class:"jlbinding"},"HarmonicBalance.is_stable")],-1)),s[10]||(s[10]=a()),t(n,{type:"info",class:"jlObjectType jlFunction",text:"Function"})]),s[11]||(s[11]=e(`
julia
is_stable(
     soln::OrderedCollections.OrderedDict{Num, ComplexF64},
     eom::HarmonicEquation;
     timespan,
     tol,
     perturb_initial
-)

Numerically investigate the stability of a solution soln of eom within timespan. The initial condition is displaced by perturb_initial.

Return true the solution evolves within tol of the initial value (interpreted as stable).

source

julia
is_stable(
+)

Numerically investigate the stability of a solution soln of eom within timespan. The initial condition is displaced by perturb_initial.

Return true the solution evolves within tol of the initial value (interpreted as stable).

source

julia
is_stable(
     soln::OrderedCollections.OrderedDict{Num, ComplexF64},
     res::HarmonicBalance.Result;
     kwargs...
-) -> Any

Returns true if the solution soln of the Result res is stable. Stable solutions are real and have all Jacobian eigenvalues Re[λ] <= 0. im_tol : an absolute threshold to distinguish real/complex numbers. rel_tol: Re(λ) considered <=0 if real.(λ) < rel_tol*abs(λmax)

source

`,7))])])}const v=l(o,[["render",g]]);export{f as __pageData,v as default}; +) -> Any

Returns true if the solution soln of the Result res is stable. Stable solutions are real and have all Jacobian eigenvalues Re[λ] <= 0. im_tol : an absolute threshold to distinguish real/complex numbers. rel_tol: Re(λ) considered <=0 if real.(λ) < rel_tol*abs(λmax)

source

`,7))])])}const f=l(o,[["render",g]]);export{v as __pageData,f as default}; diff --git a/previews/PR298/assets/rkshfdy.CDefs9HS.png b/previews/PR298/assets/nyukexf.CDefs9HS.png similarity index 100% rename from previews/PR298/assets/rkshfdy.CDefs9HS.png rename to previews/PR298/assets/nyukexf.CDefs9HS.png diff --git a/previews/PR298/assets/pdqqpav.Br8cARbP.png b/previews/PR298/assets/olopefk.Br8cARbP.png similarity index 100% rename from previews/PR298/assets/pdqqpav.Br8cARbP.png rename to previews/PR298/assets/olopefk.Br8cARbP.png diff --git a/previews/PR298/assets/olopefk.CY3KP9Dg.png b/previews/PR298/assets/omwflhu.CY3KP9Dg.png similarity index 100% rename from previews/PR298/assets/olopefk.CY3KP9Dg.png rename to previews/PR298/assets/omwflhu.CY3KP9Dg.png diff --git a/previews/PR298/assets/szvkzhc.B3J9_Und.png b/previews/PR298/assets/pdqqpav.B3J9_Und.png similarity index 100% rename from previews/PR298/assets/szvkzhc.B3J9_Und.png rename to previews/PR298/assets/pdqqpav.B3J9_Und.png diff --git a/previews/PR298/assets/jcitgik.UTcoxLl5.png b/previews/PR298/assets/rkshfdy.UTcoxLl5.png similarity index 100% rename from previews/PR298/assets/jcitgik.UTcoxLl5.png rename to previews/PR298/assets/rkshfdy.UTcoxLl5.png diff --git a/previews/PR298/assets/rqglgfs.BWuHbhjm.png b/previews/PR298/assets/rlkrksp.BWuHbhjm.png similarity index 100% rename from previews/PR298/assets/rqglgfs.BWuHbhjm.png rename to previews/PR298/assets/rlkrksp.BWuHbhjm.png diff --git a/previews/PR298/assets/omwflhu.B1eISI2b.png b/previews/PR298/assets/rqglgfs.B1eISI2b.png similarity index 100% rename from previews/PR298/assets/omwflhu.B1eISI2b.png rename to previews/PR298/assets/rqglgfs.B1eISI2b.png diff --git a/previews/PR298/assets/nyukexf.C1mRfhhg.png b/previews/PR298/assets/sstwmep.C1mRfhhg.png similarity index 100% rename from previews/PR298/assets/nyukexf.C1mRfhhg.png rename to previews/PR298/assets/sstwmep.C1mRfhhg.png diff --git a/previews/PR298/assets/szvkzhc.DOOv3P5U.png b/previews/PR298/assets/szvkzhc.DOOv3P5U.png new file mode 100644 index 0000000000000000000000000000000000000000..a1a1d9657c2debece6acea156ea805c07fc72dec GIT binary patch literal 13975 zcma)j1yq!47w)LUV1h_EDmaRQAfQr8I}##|l%ygc4BZ{-AV?}oiFAXMfHW8g($dnR zGz{H&_lKwcweDT(&N<6-gqbhi@7>RSV$X90ImsgjF$Ym7)DfxMVoE5~esvUT-wX79 z_{p}~^Je%DnVz(y7-|>!C$>E06$*70B_(!K+3_v0-$hH=?$_>ov*jszvi1jPYAH$@ z1+k}%^&0r(bBTucLJN6p3K&9?GR?YmDh9KYI@0e=7`_}SG1dqTQ=*bRqBI}vATBFT zntk}X78$)^(`-;)W79DjukbGqMweY17`+#7oECX>+HrB+wQ0a8(+(e`1j7YGkj|o%+6e>u9a=)kKxBB|}#>Vmvna6#7eT!qw0<)J`S^1rp zQv1!-677#XKTCpIExiBf$-|mJvmZGRK6>u!%GS+R-RLpN)-JLf>MORHEn5sMd-T

W#y&umITQl zhA>Xufe&Vp{pKF4{SGlMGsWZMt6^ zs;Y*9LXL6UMNZD_EbUSWF|ltoDJdzMnX0mvX+*X=H^*t{qf>{ zd5@a;!_0r=#2M6wF0AxB3`V_tNkvaTJ~DD)m%)6XY<**S>QQrarfCSxNILCMUbAp7 zT%06>lRn%R`7s7tj`!WB)E8ywuUr279(OB6KE{2djs{ybxU*7NRaN!i%d^aTdC5Jx zY$(scb6D)q;OrsFC+BjV0qPScUdO~_ zTYAxq2Gb6G^`o<~vH9}lix(v<*7nb*$AmYhxg?EMRaK3QQsq*paZDF4?raY3Mqe}V z?Z69p?6_vAW}Z8DE}b+b@7=q1=fgObr~9RYnK(IlR;KWab(oTa9o0GpC)kf8e8pgczMWjkq_~wpI&Ef`a5VG~S$VB~Zd{ zke8EV5OmC0cHOXq4t)Q6gZk3h3YQG7*@5!Shn$-YNq*XjL}w}?C&^oC`{ryb z8zwrxs}v=*aqdohsJTs}nK+f*xzUiq{^i+`Lx&F8Ot(zfTEDvW!EMvNv|re)Cm%lu z4_W%oonhjyU%y_wpiF2{*V39UOZgCDtfh6FaPd{`{0uo68SRM^%4|o_=of{{&f5hh zUBkquS&psr`(If~kg9nP&!Dl0wi z+___GyCf?ebVeXFGIH~mALl_VEvJqkzMZAC-#o9|)y=KcZfa$*S)|^ZhL+Zz*i&#f zMJ^;HWP#yTZ9AN^M>W~XN{a44OSGrNa}hvcnZz1+3U&H7#n3JNa6 zhPnCqh$|01XEvQ?WSpIvn)2m8;JM#C@(B(tg)V)8-%KAOz}7i0;lH-E*u1$s754fy z6QA6G`=;4?81dud1M+XLE9&T&=c>!Sy?#~y8)do9?)O{AYA1^D9qDR1PD#;OI!Ris z=MEn`=D?i+Yp0QKG^Eu7wQ+#_==Crt$g<6u((H;2yr`&X7>9PUd`xs`=qQm$^ex$E zDUF{wYG%2!vvY{{vZd=u8k!4)aBkz^K0OLFT0Q6fO+!P&d-u9iV%%9Jm!ZJn)s>~a zIs8g~z;UcH(n^ZbeyX!kFZWyTSW}d=l+;VUKt_>)N{`*wuU{`M*^afEbY;1%kA!iS z&EZ5vKXzoO_2wJjI=FxCez11?1EDa@mAR9L$)0{vFne_We(Z0RN5~*s;;j&~SC#`e4=z_rO88Zaw@Bs(W*FmXV5T9?B|9tN7aW z>p%2z1vkbMFae{De1lr0_GY(le=8hxFV(L-uGW4Kg&~zfp9+#udr@sCpIX>Ugxe{d z%8DFhGcC|)G|XFUyses1kebTE&7J?urYTwowsmRd%f9}mGl`yh80oI@s6HNifvd@- zx5~X-%q#7N`ucs7h9}!UdOiO&GGdo;;skDOV?(v{LRVK;;phnxRO~=8{y7gywEs5l z2fpmkiDf@PUb~k}wN3PKPtZ7&0-Xlopvh^6C=}}FxqS3KQEev0uzQ45t|#BU-p-C0 zvXUyyV(MQ%@6lt3`@HvlDYWLTu1^V9BoNf!`vm=YWqQEm$#YVlt115+^^6ALj-Edy z>Sv1))qW$HKD#;sS1BcLobkAZBjpoHRJ-``&ljl(byzr~8Mi%L!{6^_C5&{U`moh# z8l;c(7)|?AvHI*?vk?`m-&GvSQ!+suPKNVScmO>o)sM+|`gp$`a-`HZ%$G0RJ;ILj znwKPpZq#xPxm7~7YMAQ5AoKL|f6i-n>U@5Ohl=2Vn?F$L0ZuvJ52GHzIsE@U^f`)v zfC=h@zskw>KF(2w-z*^-OG`_$)7A%U%17}V6!vBixg%s2ByQgPWKnr8o-D8!tT-jTyHZ#=Vaxv|yE9W$O+&-EOWOhY1(Y+=ed;-s*~c-Y zC_XxBx!tiI! zeFLci>93w+ViH5=8nwhzP+$Be@a6O8R*7F!d#dwct~WZB+A3r>PjPyR%O+a|o<(>k%YpVav- zAi||fms(m{92{N6#l2KBLJITp@}f=!>bfnf#0a|$pS^tfa@kn43tls#`s;Zz+`d?< zmxLT?odUNGOI%)e8PE!@M@{+$24@89WzY`_Gy)`kPqd|s99URfjCyK0{OzSgf+9NC zeR~6Xjr~ktcSu<89Bft3&Bf(q?R=w`i(x<_>}(xZW(P%BS?d&glBC0Kc^_rhF3C4; zOOA0{iDl4GPmyQwM)tI#BLmhkdmoA+fHtlqr|vL{;Y;EbWSb@pScKke{8Mko?af0K zDLrg~cVXC(iY<}YtBuL_GJVV>9dZqN*=_N?P_qi<;dk~G*5I!x96*jDajPpe_^+ZZ zkq7~{=2>$4I6F>!UgyBy2a`f~VpNXrZ6%6;sH-?q;BY6tzJA^tFP?g3z~rBD>q`BM z{#^Z7#Sqnul@bhBQ~a|-92w%`*Afo=DRj@0IYFEk93b}EaqR@(b4XPn;E-wY=P(~f z)Mb-Z|Aq@3a!BNUq9y-1(~q^BKFrS-7HN{G}=zZxM!%`DeGwHzoUEG%qn zY~18xKABs?@G7WfYPnfxRSWv3ib@ERRN#SOP2)ZUq-R7^+LDr!pLu!Rm<9S%xLrM4 zv1$J81(rW5%V}{`z<&A#Q>_sVWF10>qYT~_1c&#mXg$HxPfb$+-OaOfejD+(&_ zCXYrMG#D;IT{OMD@hT+bLePGVOx1)I$BiXpY*p2BK&`TA`%UQi{3e~3u~kJ@zj@7i z^b30z7Z;yCeF_(t+F-|bLW6+%xdSYTj$LDTYXm6&h~_QtV~o*&pUaaSbUKb$4h}gq zRO9?;q=k83QEpk;7SL~#oI7k@d);IflUYMeMo!Lr;etxZu5RI&qty5 zP3?r#lm8ZN#Nd|th4zC;oqcY+c5ts@pmAPT|LLLzOaWqk3O7mOT=ZB;PkecgUk-#G zwD&%BTg?alREW|-${%U1dzHl`Wtr!{SKgRk5a=)SrGwk%z&q|H%K*!=i zN7!TfVQFaz;LdLPM~gVk0aVBxs$fv)mR~2{5TTA&WNx;T>6>l@v1Z4%-oD`JLkXv_n z@=QkU$EYGEQy@zjT~i}w#ih&Dp9w)64vNnU3)b1Xd37~4DP?7S=7j<)%53cH>~^jXA3PY6 zWOU27ooLmJDvpoG1&<4oe^>7&uJn?{{WLsjP|SorLUzl_Dz{8qNvSnaikdTpSF4~E z2xVO_Z=~7A(uA)2x`Dp_aAs3qy!ast&eBGj5HeI(#*lal&$MZ)usLWNLILWgsvRgKt(Ayw;R zyQ`%1i%8Tq8+jDbZCU|HZEKqkoM83Di4z0@0gVNW8C5^jpxpxCJ$X(fyzoOdMlSr- zD=v$HGT`yEy@j*Yt&NdL5ms$@WW9!G_Jz{h6AD&;)+|yzga_AqeeOS+cfN zqP)Buq$O+xKU#JUt)jD>4^Pt4b^=27W|NK4BJJ*^6iadPLYJ-wyG3G3%CR&2$_XuK z`CuPyMlJVi{(SWI_BK3$_=JSn zxiw$kgHG>3d?O|eFrlsOZ90&xpoOw4cQ)d@8G@hY!0Q?F{$lbyx}83I75JDd5H5s| z85&{^KPxJ_p3#9he%yNQ=O^IAAc0ptdmS1CRS!U6X*rjwm>>~=QMq^T65+PI{4A)p z6uGF$Jl@G$z+X0@4QK*C`z;Nw%yqaqRQ!=Mqn8(&PuoDKCI!;t-Al~UPH#n4lN z^*@{pw3Bv;ZQ7^%;n%HxJq!|B`EpF;vPM1&Xa-*7We*h&%xcPE1(XYA@&QM)PhS@EYfqyL374z1N4z1Gs?;Xl!UGo60JE z{q8i%F`l0^vR3~MbUdAGhw1sh%HAd+J)Ko*V^$=&#fX)SErSRK-8(xoOh_cj0|SGR zwfWy+?3(t#{QOVfupavCW!4Mk7O~J{YrY1ny3sE=k7wk7TD%44N`w)|0YDH-df z{t^$NZ~dBF5OLb-Cpj(`GCPR3Cl@`^M{rMy3)Q>NJOL(cnPfB9WA>rE!Q1L z2A>0xHw!q-^c7hpEUu;N0f=wshV_qrU6Q1E!0J_(`^G>0t^2xsp^zakN)L?~on9^% zH*OI`2e2b3wlFN^q?ytNyqE$D;7-ZFz_B_<>@Qsfk789RgVW&Q@8dWS$T7GV~nGI=YB{-o%d(OE(`L(tiqG)BrGr z7Qr|Gial0&QtED{e2i%0-=LBDs44GK_?M#MlOa7B)&ODZ{Ufgz18Jr*$qCVeogrL0V_T!+(QYI$R8%XLgCp=F#% zWG94+cB# zwYmZeDtti?ShoNqr~JUb0#mz8TV4G}X0OM^q1Rzy0@X+J-oJNVong07gGFCzkp$m; zWpR-!LgwYmmjzj}37K{z+?e1)!sTm#{ zBPS)T?FG@?EV5hHZ(i7KinJ*JcWuX9R#87nRNvs+8#X}7y58O60{IA>1zQCVkQLhFpsq_jIC{Lu!`+zcfnk4L-DBYHRij6Z1oT(NH(W5fEDW`diBDE zq@H7~R1Nw=)9Jgq%j|LKuXci?UQvvChE~=O{vcr)RZ5 z2XvkPN_XqoVX51<9hW=QGD5P{bAQ36fXe{I2lw)rGQOzD5yS?hYt`~1+r#m!`$T^$ zc+(WtHV%GNxw+ON$#?|R0on?B$`%9!z^tq}+;+ED89lbFuwu|w+ge+v?OhZUzQZ<} zEu9sn>mWyYMp~`!aZoyAV`D7k5QChFUYQ&E0w%e8#zB;C zT54)h!f&8dFEXBdZ*Fd$-__R9nSqppr4?Vm8<`0bSaA~lwRaLgVKEIAYt@1;C=^Mp z=)#CMYS9otk6wvvT(GyYng`-YWC3%Ki~exnqbINluZMNYB($_!2mz2bsoV^I^JdZ! zZ4K|7_1Ja6R>9uVRZ==fxDBZT_`=eTj%!imSd=3Pm~+GFXOV?3H196~AuTVwt`CB6 z;e7UJQ&ePRBpV?d3=IfK0#Dz#2J8Vj5?WD3rNDCNGe`<^5OC1B0|W1(=B~@cD1=H_ zkK{M9sb!7Z@`JW*YlU(Lw?tBCwDOIR%Sw%oeIy;*mty7_jNQ*HMF+c$5t06t@Pcm1 z-JR}@p6Kl)FEvs#j}9L;V@Bo6xcv+Ckra|n06FkDVTNPN8`ZD zVEr|e(Qt*sXZIYMrb?R`iFBbNl)bYQp~rxW({SjoM)A}sq-xK0Ksf7i+|5+rk*p)w zyO+YRJwA0c=#N2v41WBdb_8t#Ih7lF&uNSWdGXIN#LoXT-1}_r3&MSalcan8eajYq zNRDcD@3jaS@1tkl_Y(PNfhx%k6uECZgAs_xZR_#xaX{fVO0R|N9Xhe662F9?x<@M)@J4|`i*xVLsnIQ%R&adl2t4eruvpG}5Z zwz;P>n-}5*$`CijO=d8lsIn_7E6e&J6#&abS>P;?BJeT5;MiG!j>IhY7Jc~e2^_)8 z3o^)w0n7^z@EJ@hlXIRuq{9C~=(E6BYH; zVp@GoOGDGK%acx~odEI$gY6h{`pd-+{78*kTU$#^N}5=9j%*w?YBlD@)DW*6_1N7U z99bEB!(*}o9M5j5Q`S2Dqip5Zs6G9-|G$G*aW}1FC=h(sN4bHsz&1 z+%)Jo(V7HLHZ&?q$nvLX&AfeSIS^FPrU$hpZk>h4ZZPwc~ zz7Gux+uYoQwg-ZNXifP>Ci&a9Z_p9FpFQg_<+ZSw1vUwC!K9$4L^p5}VK1!bDFVtn zvoYMpt;3JW8Lm6d#Zu~l2l$Fvo)&i*Qdy`$oX_y^FkpCTe{@U?G=(_eum`a^&J#(X zfe&JVJZ69(*M970E{aK0%+$RC?J}r*nwN9o6plMx#ZXN==Lg(fb-euHJ zQn>cpw<2Rdq#Y^&CPQbowY3Eog)%-pJv}y7bmk7E9g)0d@HY&k-Gb^YgdYVaVYT}B zp8T`~(upi2_*qVyrS+9anCQp|TV!BlWUTRw|8(E+*K_7{HyC`-o-96&|07_BvJ~6* zgxuYfNCSmOhd=E5%Mkp-grIu4!GOF+g2h}75y=U=M4ft`p&{e)zomCnJ7Lc_G+>hY zA%z=3Jl+3R9|s@Q#n6P9J@8_A(30x8~+qgcNqkZtRDKWm4Fi5FgKt384H1#Rt?7TH!y` za9}Ed0ilL<-#d_##ItmueJS#mN53RLXa8U+)KOk?04dFvtCGar-iItgtm#wvVFr{L+ z9tBc?fGVCx8m}-y)+ITAU*Fhv4H5e|HFxf0A06TUA3H9LvgE~)B4 zmK0+X^$_0V+n&V5LkLW41yOji1II}R7|kPitMaC1kDbX8>dIH>-qxKc?ocvy}Y~( z9z80p*g!^z#*cc{wHs$D0+$5(BPJ<1sQx-U+$dLlnE3hgXRsQ%9DvJzWB&$-{if0I z25IHmFF){ynqx#fAo73*fAJMOvGkd)R{Ek{78Vq@uzgx*wk8CuwFiy~TF(8v`G-Bq zM_(qWgX7S5$Qhm}a)c;>RdBl|0sn!D1qC%9;w-zL2WZ$k7ULmoGb&@iQ4;qZy5cIb z96iymC%kYz%+ZeVKz?xOD7n@3u^55C*S)Xd3gzVG`66TxCMK&HF++eg4=H|1 zu~3lIVgzCGNEs5pUcL-zChT2_-vKo#$;q7-XOy9w$RE5R!5o2NMW`q17ii008?XIo z+YE#m1@7a)$2JKlp!(xP1HvU!5u{Rn zmZb>D2Ho&D9{|wbP)4WshD3o5v}kC?6HBnfVUHStMZ{UTbqyRvSY)jdqn2|(6*5&d zH8l9`r`54lpzSMQq6K{C?akH7g*rAs5RPEgK?r>b8GdQ4htorVvO3j;*z>zu zifkyO(@fazBp5Cb9tpl6jhsFurqO4ow4)hLn>BZzr7}@=vWv@+*duTrJI`@8=(lp4h;!WVav2H z>%eCMk)MdDud6G{pcnmZkk@VQ@nUHz&&g!DqyPx-*k}#Ru}zI=^gWX{54{Q;eU6QT z!yIhu#v~B*MMXbyYX*_mZt|lK;JP_60*MF<4Xv)OE{R{5c?5A6q(+}UeLAB3QX=-< zyJ_$TftFc}`*I%zb9rHY{<*)uDe^aw?WMcWb{PiW7Qo0(xsL9amu`})(*h-r%$hB( z&{zAP{Oy_&CztYSmmT3x&tX!iuCA^py007(An*W+?tj|v)N9J?0Fkl=4B3U+7y~JQ z5cZ)w4hK_MTMPA^B6A-PfEA#ZOL+DSxx6vh3qwOgea!aEOj31?jU#-UXMpYw3=Du> zYK&YJ46OP2`!6jo+xe4pWP?!ShDoD!S~uVe>x0)Y0fE)ex=oK#P*{nRVmQM{9sqX& zD*>D{7)vlT9EA*(KncC2v99ioh=)5KKMC?<+P*X_tZSyfbay_;10J&Q+Rvv*0d!^c z1K)yF-6Mmm5KKJyH!GD3#f^vYhjJA~J-zs^dM^thZ9bFQDes zfw3_N*qg#Sy}oq!8HBm7U$=kfQKC{K#iB%oU}@^=SmCL+B_H8aSB5YE_z$>Z@F$?& zoYAE727yVcEk$1b_U$6)Wjq9$AoioA8x0qs{J>5C^N`o{N6wy9t}l)`Omz}}etP<_+P@e|FG_lKcCb?KtMAb> z{HLLO3%YdLCTt-SM|@#Dy{Lt~d62cNY_h2}4b7y-KCS7{VoNUB7QNeE@bL4~3*w8}qBN*H54ZE>cm`VaF zE)$#xM@FK|;Kb#ru4AWoWjJKz=`oj1TI8YV)ny#?t&FjEvfEx;q#N|vX2 zA?b!PxD#v(6Q4BUch3lG=c@W~8wG{uTX4j|4_3D6o*h=xAwO z&b~-}<_tJ18rZ55yQyKmD_5?}!O0ddIbbs)+!e;H`U==tV2|@`g_Hvm0T+e>o3BBH zP?JNaYm|Y%XFy;e zEe@J4JhzVZM<)*|s8RA~cd}>K5VbI;Pfx2SH~02#LRELHycO}-sir9pNh@CP_4Q?C zWj!t84(@N$6ge3w=?&VcmxF9b%#*X&1cS(ax-lfhVC~}N>lavHo;)x}7G~MZ&1V7_ z#hcfSIvUp9EH9_&5{bc2=inJZNVyGt6d5iT4KZ`%*_C?*gUk0aRmWmR0ADYu-a;1y zP^oIVmFDNS7b70T4n)T#P;|rJsHB1+Ig4=`jR1t`C9c3`fgG#AtQQ)=bqRBG!KVVb z>X(~5lvOqR%0PiHc*<&N^}+B0ys;|V;yw&A0pchtDq<^dz~EuM$^039+qM2# z_ms6H?kgD`ljGu)h3e=EIKPds22bg{+Y6>Nn0=|XTVVzd)FU66ep*{|bW#{>Yu^$e zRzIw2WKc$_-Bt6;8SN+m*dK)P43!Mkkg%{rSPK$8s$k`hl#r12P=>+* zh;D(voT7VDNsNA$W`4`Yow32t24+OKF|zPydif0q|LnG`gM55ml#&Q36a)qQzL{Cb zFX6b7k`b56hK4Dw(?N0-R?Eb)vNGsBM^9d30v-=B6U;Fzw7r4mA#C(L78$wt9($A6 zTNtJ(!YA}pV19KqC@?T|_v34(+UDkL7*=Q^e|z0ZugZriNN~aDtKP|L`aYEBAiTSD z$ruy@eDW9tg>ml(;;*lMB3pB}*4N&@zZSGTKh>Vr1_(AngohIz9*$@HiVXU}n2b}m z9^Z~p$2;gHfrbIU-EQB$ZCUo1)-MTu0P%K=`$k$>%_|WNWb2TUkcdf0)KwNSNr7G2 z;T}4KpFH>(CZC)E<8WxduSyyktRhDq!7c2~E0lqjfM;+52YB)b=ocoy5Pa3$MUma} zgdY`dE_!-;GBW-xM*g5j>g%a-?PczTr@~?Q8%8z3dH`sGXuYhw93pgBz~RbcpsgU1 zR0Eb09W4xu7h8pRUSO>4wI0L9H}DmSj%?jZfGREYgKH6Tkat4V|E!FGE&~V~Ox=N$ ze5h3nVy4udcpT>skmAm4V{PrcGM&~n72`aa2D@WDTK$&uIgi3~aQ9>_+;dt=*KvToke&JCCImo$PpBuuy@b!q9)+A{Vg-Unt zj)+u3?hLwc1Yq*rr>v@F5VG#>J0taBBTcN>D&5_Uu4BS$qUfstsSq<@#ej#yFA)cS z-4jZm?!<}fm?xk?UwG8Rh~M%tkF}?#ni~|EJJ@rPuLMBe2L}g*zs_3;zAOYbz_6F# z{LsG(H8KIUL+NHinT%o3LN%kKrsffBqJ@)C;y^Yt+9sH!Fx*B8w{-mdq=NHdrNFxd zlMK{@vx`fw>4$(*d`Ic8z$yT?!6a^8_ZH0dfUd(}{#esr9`zX5JR@&aEx zLP2rEdC3TDNkOJupbcPr=)g_^Jn{GOp~L}U8HEL1Xde)ELz<#Qa3UZN%(3vhho0Ja zBj`5?+6{G~1w{^13-G@`TR@9?NNp^WMs3g@XC{TJ@+R>@0Qc#)j{fi5iE~Uj~kcmiOY#);qE{AKj#boA^-pY literal 0 HcmV?d00001 diff --git a/previews/PR298/assets/teoyafz.CHo32oEM.png b/previews/PR298/assets/teoyafz.CHo32oEM.png new file mode 100644 index 0000000000000000000000000000000000000000..28dcda75ac0a55be339ae2bc2d2bc1a6cab6be22 GIT binary patch literal 13747 zcmZ{L2|Sc**!Pr{QI;u+5Dh{U*=5ZLP4jn?%;Xk{~)l|=*Hj#glN>U?Gs3R!+8AUyhClg%+V?Ec>s+p;2o6F4F{=zg^ zMZGioXe9_)FD?0TR?!wW;$ky9lAkx{biG-3oN8_|6c^~~{N!{(qo$VQC1)JVi@vF~ z?6h>NA6mPfY}>_bS-0NbnUD|^i2Ks}uJ~!#a=%BZf5l=jmA(A%t-3`kZv1`}%7dSD ze-e4#2S;|GJjCu|P(K>bIMi)bF7!4OdkB0P_AoIqF($^nNM`5k?5v<^@kn7xe*V(Z zOh28!(xYy1Zup(JQstn72~v*cjVT)UcGH(S_N$OvB)dKOW6XRD9D2)Tri!^pm&n%5 zvx7Bc!wDn%k_*PhSssJ~%9!n^87Mxh3&q97+o*P_KR$`&mv0tN&tQo`A(~gb4H8nM5>kCHN`m6^I9N^$E z%O<~ih8ol@?T#ui0ceC`*BWt;0$ zw-zVYzh4c@HYATt_g3U+xE1;IRX#{hPp|N&PZYlTu{qPg4@20POJvx;UnQ9NwOv=C zH6a^?@(o#9TB=vrG)80b=PfOVBDCa3+v5@wIhdLGgvRGr?%ut-w&q=8Dnz2*vxlFL zPdmS2kF%Px$LP10uuCo3MtiZlXqczp@80h{Tij>q~B?enBNlL$YorQ_Aqqo#&72acD5O%oa)?#5E93dRdv+WGAG4P~eKz_!4tr%Gs& ze(Gd?tln#l!Wpld?!F6Iu9X4%o;`b3CoY|!DR}CdjQgaE6dS}}=7OI}^6M8b&Y0$1 zJdVX;RgxRbU+3rid9Y`nuQ`>j-nnzf&(E*fkZSw(0gDn-!upD<=Q13kfPU6UV`@DW zy{to#9EY4&lVz@F(M>A`RA;p{S(>n|JCvKdNN>EXYHfWzA|fI=IoZC=3l1I5#lX~4 z8U5O2^jkx+stg-lQP<@7ct`H_`b6Iqe0Nq_TAFGYyGfB-c2-to>tpp4c33=5G$hDK zbK4Da`|PZfXPY(InrzsrPaqJkKf6gbTwh-w9E3=T6}`T)w50w-YR2tWXi(7H{Jg7b z;cyosN5DUqY#JnMp#<0b8%Mn(>_XEa!?%#Rza%8Q+|qsEz;^=z)yZ>no)g#`t5 zyuMl$d`OgtsR}*Zk?+`_q9TRIu ztMQbZT1M&ja;|CUs7hum>RqzVzU{XQrHHTgYA7w1-@_15NrK@Rw+Bb`=wMarWJm3N z`~kv9lSt+~!&Q;ZXf@0H`;PFllPYPypYu7V-odNHzYm8~PCNPg@x|yKG`dz}|2{v* z;lGz~QiqfXUf2_6m%+7l<$hOIuD7iO16eA?0F~fNmS4GrRnkuW`!34+S!5_$d;yCr zuq*pn{HHS}#zTuvoH#)?%$6i6I1dF^^rq!~yC(8^FC=@}Mu1)@v@_R7RcM>lj4S>H z1qFK#9v|tTOx>Z{ZD+SWm$;eLI7+km=1Rr=Z{NPbv8L*#YC_7cFLc;#twGu8kAd&8JjDCxsKl zHwc$QhWZhSXl(THOCpYaXFM&etgLXjyD>4UPsF*As|JK|A4GZa&ZU;dWZU5Xeup|iNAXPjcO>NjrO@G9vp_*hlND<{|GszIBg zmAJ83wrOHYM?>>O^t$Hd%Rk=Tp^|YKnTEV4`un%$DTJWmC^hbArmErb)U>p&CdrMX zlS4KdJdN+~?M`?U8xhf1>^Y~IAWe;pleG8!@ow8)jMa|E7P~a=yQF5Gw*TDIqj2if zDQW2yK?*4??W;9;)=5({)TVc-*}!ams>h73{Q2|e(632(2{(*o&5tmmSoY!3{sR{} z3}|J<;%kfCCZwUCy16YpVBjTUB;sqW#GcCC((g`6N_r=bPV`y0l-$5a{GRW46;iR# zb$qC<;--fl5%u-g^2&il zxtbw`gwo5Luq%bxuzQu2mDU1WoSaW;ZnnR@(U=lqV-q82Qs^>zKFmj3^mlv`P5MR| ze#a+cX&9!sbt^stcmj-$eNCHT=7Icye3QyLiib{9`nD~I9Tgl*@2ZsQ_d&pJmhBolF9dbUD+^gowbH- zsA((MwIo6KD_n+33$9GpQQmq7ST1;s_3u;vN#U{bbe-R?i2TBzw@1@|aIw)A9%8w` zcmS3NQbHHKNdIrP2^~9@o|VOjlVYQb_{>d;Y+ZQBcX<>2U!UcTzKb_{?_j*W|S*Wt414*Rmh z61I;uQ*D|vnsZEwxbY$^AqRt$?Z{hjW^(MU^q-3C`uNhv|0fM`0n2m4i;#e+jj`$} z0RiX`mBvg1QeU6BXD+m+Ke%HrROTcRa@qNmp&*MdmUD2Qx&)b+goG1e+uLm=k{di0 zeqO?!F*J;eiHWJ`T^fkc8u}8;MPyd+U4!lh*ilhY(ZRt1vM2J?<@2VsplJ#&Pw*cg&0C;9!O|nD+IEdSK!skxf0VKs#`aFq&eddR@ zdJ$wsFZKMM-}UxA!x+LYHp9lV8SfSy`-&M`&(LWKR**&kt$|jkH)NooPff-lDGd2r zzV#4ywXX#4+m4cDL83hP#Up62XSOa_CH}sEr%RvtZ&Pa`USD{w2)z)YPOgu*-+vH+ zJl=NtCS(%h)89AWzx`ZauSIIr0v6Mfb*V1p&6_vSp1e2L7jXfQS;wK!eR(WAIy&k+ z^rd0c<;s;S$toezP6Gk)(z{S&s>*5Hl;C|sgM+c^JP_vCGsrqQCgbgK2?;mFSOy1y zO=MllRYAYLUjGzYBQ;jq?Wf1u(o9AMzq<b7;~`F&3n2&Sagni{W?4PaD&u&JmL zvOPULaRET`KHE4sIk9_E(BGc$mT+@;v+#G4J()YKBpF6!z1YEb1kVOF~4b}J_>?IAZ_3A5em2^(G2;d|O} zj&C~m6L;NvZ~ppI&C#Prp#wYf^weh8#!JS;Ot`HA^ebJPt@-rnQ^y2C`qCDa{qNnm zCWf+%eNQr|@cX41{^P!va)CwgD<~5Z@fxPkm%0jFoo`OGWXHGJM#tE9<~zcM*3@ti z)@E4ki}xKk5EUCc>LAtGAdEs~II1Z#Gcq;-X>Cl^qS*KNLMH;o`W(Y4AYildYqST5 zkGFSmSXfw_Egc=*Mz24|$1n~d;?mUS#uQSSfKokwUT*%H`{>bvWG2Uw@YK(X0vMB@|8pt=$9Fx|O`4wok)it~BJu@69QZsZmF`%qm(72<*t$fgX zgkSTb()Mbl832rI+DSS8F1yn)TOE&oK%uykV-qbPsDar(2n}t4z8_a!UjFbQ23rZ} zKEe5p_=P7dJ0Tx9z8E2`{!4AG$*aqXfRyRjq#T^#9gIXpMTJZXBje%hcUT3=mc0Q9Wf{EYM0;-VH{ ztI*KWnh8)v2I7y}N_6yn2ujt6ADWsf1I~FJ;LcElX{QMcc4^C@PZBc;c zMdoL1w(@R2zXKnEiU54c);6owaxXRYDeol*VBl3Dtcy^ey%)ROU%q_#{{4G^wa_M9 zEG%APIJvlz?R!cA1()E!Hchw%*uR`_F9|0n~u$6IKe$m z+-9Ns)>MM5=Xtb_sp-ZyHK7|~aUi+~nHGOH@lR(V%Zpo6I?9%Z;z7E(fB$}AveM~@ zs%%E>i=ZaJ2ZX8tE#MkQk*G6zI@X z>J!1E0iqgVzS*Fpq@=5r7d3s21uJ$w+sswh)U@<^J^Q`)M~G-Ty6!Rp!P9g3V+dN4(YsA{9%5i9UgTljErP#&6IQj!74R#IWt%#`GdLRMx*&_ zB9WM%6WN-dTruVtbi^1Sz@mr3-oMmWZ8%i>x;&EbG z83FpKi_0$)J2O+$$*Cz0Xg#Gqw=$bqFc@teoqg==-5|}FmUtatVycM;eXhV#F~TKC zxSZ~=v^SiGB*!wKO%p>yXyo4m1NSJe>_V}p(@_z{ccr%3)_wkb>ehm-zJAO9&Ct-o z7S)lYvJFG@3~;>?h!|YJOn;Sq+nW!)4vdV9V)os#f`Xb4lI^4@=yCvVo}OJRoN*vW zfdFj%HAzupBT^V8cGTC`H<7U6dH#I(nic>@fY>U^%G6jyP|45F2jB?DFApUc2cR)v zv@w+c!3Gr1hthQtY^&3hMTX9!V<^B1uzSJuB~<=RG2( zZ|J}1(KXh_1=PCvZhF*h-Gr&VXAYknmH7G)SS{t<)yI(^jFbOr5lYH`R1B^ik~RVe zz?%osh4~BpQ2Z4alB)sik$>p#k!tRh$34%jL$Z*=Tto3+1c@Xyf(TuqI_!sv!q0VM zY;lw!?a)8#j6LraR^PhjZ?zIJ7SA~TSLD#&q0G_t>1lZqbv>J-fKUaXHvx+`| z5YcKVYnOIlliZ9I_v9b==MEWAi?#?P$6f8MN)voWIgRh{4Ny(~f!c})Ka@W|Vdicw z5*x~Ps?R~n&Q98M_8M8-GPlh#mm2%it?2W$j4-A1LR-|5t9kH3E~3iKk2M3(tCj2l zLZ73dpGk%^1u5b($a43As|5xIzEq3Jvu%3=kQEx5kf5Mje?tZ;Rb^Y!gUpPKmFWt4 z_lfqSL}po!X~-AQBL{73Yiqk+T~Pwk<%a<}e@sB2(V7gg0&0Uq{0Tw9x|+-fG3pv? z)2Jk!j8@&`)y1hrsE08|WNQS8wX?9Z%U^zX8(Pnf9Xr^dk4^u0KfCh%`}dKN5uU`m zcLOn2#*gi4m71m|7=Xihm6)2gjL+}fxicqQC0WPxV!lJ~UZLV6LLCze7B$g+{{AEo z_#x0kLPK-v>C$PCbJR`6Q#5#VfgXuY6EX7g@&Kygz3nJ6q(`8HM@2;t~ zUfhOf)A`p(1Aqe@8Xs=zIT#fj94yVIdKE;R)4CXD=EvdT`&n4Vj6s5d+JGsy5;Hu0 z(DP-RtpqcTBw-mm6X??8Yr_hg%k_`AR9BXl{qEl%8W_kgn4%3vLNnb*8M*=p()ONo zqFC&EYjSmsva&KjqsSP*(g|1nLH-9dGa?2yU4CUG`I(YGtO9iokg(xmiq4IdyLfwvIGc8ZgD5l-XY;Ny$jnJeM?BlAs)k?2m^w+ZxfQMF z*2~As-O6L7*WU@fD`^yAi8f?nZg=Z`QbVe5-MQ)|P{^>Q(f z9$gWMP0>tf2l}~d)7gA!MsnrkFCNY#5+d;9p9>}G`5%DkBv9)7+)L0bSssI2^` z=jq?3WpNfra~E+f^x5wE@q@^JGgop~Z*PS^RL}ALeo>F<%N&VgJ$y1UMK4}d*4Nv= zyS=S0Dpf17)N9^)svA0z07_d9&-I8{?bw>$pyW^IGxLE7T%w?`Fa#ZDl5-#cpuGW2 zhcE=0;tmD?`j8lODFxXR&LsQA+{9 zP#bw3UYjucnb!{k%?q!k1*`^m9$;U3+3DNyD^#d=Cjg&AHZ&J|I(wett&l8tGIxS zjEoOKOaM=P0C_;yb$cqc6BSl5!BG9}>}2uHxv}OUg?41spW2Agl5BCSm-JoY6BV6{rXNzS?Ueb@4r;8fk`3^d zu9dEBsC=#=U^nxmQL%@BZrcC=erV zk4;}TJu0k%{-epsGyW0s^Z#gb^onUm{+4E|J`YR#e!!qxaW22(+13pY^8-iwX91CL z%$MWIM-bG?R9j|uG^=?$RGp_0iUbhiT8&ncSqzh1XTHv*OUH!3*kL>6^a8A^jZpQM zTg@tcfyCki28&HgR>Sx_PT)x^U0{rG)$)S8B{QI9mx2 z2CG#H8x6VFwLZV3qO66d5RdG*opR*l$&YeY+N=C zMI79&LqP8_oMK{Pyu7^P;>`sm6}@~Q3^Y9V%kHW=gF+oJMrHwU{tX!9d}538_x!Rn z%$E2qv=5~ai90fz`GuGc9GL&vrfVuFBm|wW2Y4N5cY{bVc=YHI?3;Dlo0na7iwg^a zf`XHvTj*zIulA;~10+Zi3I8f(y`G^6g&omhz^UGg1&v1rnmx8M@PNQBS{801oMB){ zh^rJEG)3sZcr`T!T=B|SCdh~faR_d-FI`UAzPszT*!kqRvdcii~ao2xo6$DG6l?Sc_vC3qla26gXN&g{# zhc!dCz*f{F?%pHRQ6Mhe9z!I)KX%s+RMZvALr6w$aM-=Ha$o^T9AUR(N_78NVsOnP zNc=4ozN+Et;c0G!YzA`+gOdLb%cOkBW~B9twTMLY#eWznjc5&D&_B0wZ9qR*MMoi5 zRG+;&yoCZC4D#>l;Q=FZ|E&{<2)aP6j5I?D_17tI+tb;?rX!~NBkTkM|GU;x)in6w zJ5rxl9HaZ&Wx;ySLM(bOeD>@CC+6p%YmoDu;rc{qOgcI`EFmgr$NrBYw{N3B3oPpL z?f*!7@4fcax(>Z&2t3cHdakUAOcgjYBS>Ox?XU6nr8gwvH#glQHo$vIR3P}m&+vG> z(>SERVV>-t8 zD;keaKD&^q4-y&!ZfSXWqPyf4fFZy_Ht;W%t1)(KU%i{HZkkajgiT*?&OHm@7eKdk zx=Bk-4VBGoVDJ_UbAVVf>jX_A`T27@Pj>Qy8!M`4R7j{wIATfI{|^)heR>m2;NwIG zDYn?ySkTlWG39m?A)~yX;G&UASH{4S?{rJbcn7E>Ny4?@St(4LKx5jrZ5uL;VAuA> z;x`y%+cXfh7K^K{t~Q$Ng^`k5L$TMx!^4Rf;GAI1A$CdV+qZ844i>Vha{Y#bz@HrZ zDqp=iIn2Vr!I7ZJOFX$H|C_?@+Iv!u&?~Hc1*lBT!1HMn`2S#Rs#=#KJ9uf!i+4;5VP7218>1KU~kc!iN}$TwwwA2YIL_W$;EU{`0V%s%ggoX@UO& zvmgi9**E6u6||npg4LRzhj^+rHENm7(b3VNtdg2&M~G?rvULf0`Hdg%?~zIt3{RiF zjd%qa!_miDpl&0T!*y%`wEHO;`=(AO>$h*-IDtpWhk?Xihd@-LSyG@E9&GE|7hE2CJjMKU7X_{M6y~O%Mdn-ZN}lcgzVq` z1;liWuC{3eGX5rzqRta>FEenPn4$Y3tNQ-%Yuqi^N4* zhZF3*U}mlnBseg+?@ylP($?2^8~OSSq#tn?RTh8I>vb?mbVfx*0{I(Q7q3A`(UM;t zfZF`a%ZJv8j=AyryT|h6uCn)+nPuFv#-r{7blxy^E9$!R;CBgYpDe!NtcGzL{bted zTzU3Qo9*Pcmuh4fKeKIZ0d5U0&~O~wrDI|lIaVclxfjjW+4?qcid_xMDZ}M{d%?#W zl73wTV{fLW>}73J;h(R~E-cuAS*7Iu!jW0n{LHm$FGwVkGk2P=4{#;WqH|(KR+pAO z_0(92Ne9v9wz2Ks-xo?JW@<-W4#Nq{tE=&~L-5WZ$AJX3Rgs=1Bp?+DCNaQ@1V0)E zYhVIxW1d8yrJ?Z#MGhjr83-^ujOOE$y>7Qatb<}Q(baGrWz}?_p2N53e*mp?O>sIF zN!kLFGG8A6fB?u&o^${fi3`{o)mz)m?r|DD1DV7j@BQ5}7gR_=ELIVbSxdqC{PE** z&<7FoO0>HRHA=PxgmMtvnK(EUKt%(f&cnka;S#1-X#yxhn;styh4I8eHJFabfA^dP zQus&1V;97uhmvqxRkyW~mm41^d{xEUdkyXbvrB;32HGJxzz~Uj_|O65El?aQ5o|S7 zpD5JhGBP!#VEKg^TM3mPViEGy1p=ehjL-#>Mv9@z+W-|C<~v*gwoK0kXA?gd(K5GT9zK`j8c)6=s+KhtL{ zJ(Y+7?GqW^09_OA3|g(L5Q%5ieE^y+Je)ARC#cpv-r1Xg`Eqk}!R`mGLIg%0&CJYl z+hhSZLe#@7DyO)(I1i5sx&hkEvfZ8O>1h}X5wCRQy9V4I5H$!SF#nTZFrVPwJqq;R z(eZVImAZz;0h}!a1dwl-AGk!ZODGOm%k2c{3$zrfVh-SoKz05wArRD~_;%nc0sFWHT3)<(0qhDN{tH?tpdNg9WNhrIs~>5O zu999s(hdy`oeS5ycyVc|KdeY1DkcV;LsMU>vZcPDvb8~QuS#aC1
{J8PJGG=CG zW}{&_koUC!EP+}VDUaG26&-B~gDjxRtbpNVZ=mWSS9UTx>q|>G~%I|z?OkPUM(4>s;mr@=UfAoHh96Hz$dJ^9iqAat!hC!q(Hgv3Pv5rL&W2rt+O;Mx z)pHsue@%?g@ZjKe6k!dK%ZBM`_Uv)eY~d<1zy(0%X^mnMGG*NK+CKobI#cdMP4d9t;3)+O z*Z?r)B?*jj!^sy!TNmG-dg)81sL_=p@)sC^pr)7>I9X7+=JhtO$!O>s8{6i#8502T zm1bR}$2Li*T)eq3@$K9B))s}eUV4R%rK=><5*V!E!JofzV-y6`lUK@j_*a1PfV5f& zL>SH+qX^5@`mC?%RUde(?KB{@?7B6h~p-_ zWrty+{Cp`-?ViS_HJOQ_o0Zw@dMI~Y1Lcczwp|Q7>LXCt0Mo*(ksk)=4vd2>|F}mF z*gg{|Ck1?IFj0r(#E#BBI=5L!`)lZ)31DsL6F`=2K#CB34g=iY=H`8{26)2jYioe5 z0UtQi0|kfZ-^1a@vb3_YYv;}`*?nt=TgBAfS>wi6FH6K5y|sGQU}Xp<#zbv_+eF-4 z%q=kKz0ZB6y0H3PilfP^=qB+xp^zo8@a{=@`R?VBf%xk^b@laA4arqdGvPMn6&1i^ z22#aCK+l2VgV@v$u}VS=ZQePC4^K=4W$^L%E^v`p#I2hUR7N)R zr)A|K^6~M(1Oc0b?M3(*m~HJ8d&Eixexco6nw9nCDq#%_c`x97o&|6?JUl7ws;@!E zhba=rguHxe!dvT>bY0%-m-@Xq`uh75?30?UCqSL?@>=0d^yVbZ420>|mNi}jRs?%8 zDry5~#6Y*+G-TFfd#dW9jefo1L5U!-&`SbnQUKqy0I2F}R=VT>agW8Mu~>(G~(*;y7ThaWJ9e~frCRvn~a zUznq2o%QIKCL9@M{h5#|>`yPEP{EZQZrUzw4K$q0&(%O$iUH45fH zX(I@gPdGln%s5ECCD1uRaGp&xGsr<`UNwW3Y{O;MK3_WjE)MBqlGQMJcgo&Jp*=Rlz;(DG+*(&2U(1a+3bA}23~d9V4i)?MyGSVc(06e6W&!f zYofED(N@B&!0G6*WBAf9_5gw$9UUS5%e z`(bQkG&NCzB?K1$wLaUdtQ0^aI69}+*8rXPZY&Q&c!P59fB(M3z)Zfbj!px-D2$y0 zdI#O|W9VT4;-~8Bb1>eXNCS^14ICFDQf}^xD1dIXBR~=WAh6AgW6f%%&!^xWfWU8T zYyf0~0mUm}pR(!LW%FTt2})ybTPL7EkQrb|9R~Ag*`%~Phg59=96<2I2$``9n-ka0 z7Q?Kdaj{3kH4)@4FfM})tE!C_Gyz#1>TOMRH2_9-n9hYUD3D4#&zi&0L2D_3bs@^w z_U*$GFT#@!*2D}N-2$ts2gEjfI3QjIX6BK#OLikyXOCy>#i3A1eCI$c%{%>Cfz(mI9+{J=+m=yW?Oo{b{0xW>pZVt#Ce4fla5tv~C!vkALby^2z zL%RTh{Q_{Yy0Wqdo25Svm}6j`nwlEgyUo{}ZQ9!v(OMLMt)6jC*h(1oA6^+K25ad4 zC|gf6e*7lI|DUb-U-t{X+}v9e YYZx)+QClassifying solutions

Given that you obtained some steady states for a parameter sweep of a specific model it can be useful to classify these solution. Let us consider a simple pametric oscillator

julia
using HarmonicBalance
-
-@variables ω₀ γ λ α ω t x(t)
-
-natural_equation = d(d(x, t), t) + γ * d(x, t) + (ω₀^2 - λ * cos(2 * ω * t)) * x + α * x^3
-diff_eq = DifferentialEquation(natural_equation, x)
-
-add_harmonic!(diff_eq, x, ω);
-
-harmonic_eq = get_harmonic_equations(diff_eq)
A set of 2 harmonic equations
-Variables: u1(T), v1(T)
-Parameters: ω, α, γ, ω₀, λ
-
-Harmonic ansatz: 
-x(t) = u1(T)*cos(ωt) + v1(T)*sin(ωt)
-
-Harmonic equations:
-
--(1//2)*u1(T)*λ + (2//1)*Differential(T)(v1(T))*ω + Differential(T)(u1(T))*γ - u1(T)*(ω^2) + u1(T)*(ω₀^2) + v1(T)*γ*ω + (3//4)*(u1(T)^3)*α + (3//4)*u1(T)*(v1(T)^2)*α ~ 0
-
-Differential(T)(v1(T))*γ + (1//2)*v1(T)*λ - (2//1)*Differential(T)(u1(T))*ω - u1(T)*γ*ω - v1(T)*(ω^2) + v1(T)*(ω₀^2) + (3//4)*(u1(T)^2)*v1(T)*α + (3//4)*(v1(T)^3)*α ~ 0
`,4)),a("p",null,[s[4]||(s[4]=i("We performe a 2d sweep in the driving frequency ")),a("mjx-container",o,[(n(),e("svg",h,s[0]||(s[0]=[a("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[a("g",{"data-mml-node":"math"},[a("g",{"data-mml-node":"mi"},[a("path",{"data-c":"1D714",d:"M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z",style:{"stroke-width":"3"}})])])],-1)]))),s[1]||(s[1]=a("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[a("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[a("mi",null,"ω")])],-1))]),s[5]||(s[5]=i(" and driving strength ")),a("mjx-container",r,[(n(),e("svg",d,s[2]||(s[2]=[a("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[a("g",{"data-mml-node":"math"},[a("g",{"data-mml-node":"mi"},[a("path",{"data-c":"1D706",d:"M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z",style:{"stroke-width":"3"}})])])],-1)]))),s[3]||(s[3]=a("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[a("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[a("mi",null,"λ")])],-1))]),s[6]||(s[6]=i(":"))]),s[12]||(s[12]=t(`
@example
fixed = (ω₀ => 1.0, γ => 0.002, α => 1.0)
-varied = (ω => range(0.99, 1.01, 100), λ => range(1e-6, 0.03, 100))
-
-result_2D = get_steady_states(harmonic_eq, varied, fixed, threading=true)

By default the steady states of the system are classified by four different catogaries:

  • physical: Solutions that are physical, i.e., all variables are purely real.

  • stable: Solutions that are stable, i.e., all eigenvalues of the Jacobian have negative real parts.

  • Hopf: Solutions that are physical and have exactly two Jacobian eigenvalues with positive real parts, which are complex conjugates of each other. The class can help to identify regions where a limit cycle is present due to a Hopf bifurcation. See also the tutorial on limit cycles.

  • binary_labels: each region in the parameter sweep receives an identifier based on its permutation of stable branches. This allows to distinguish between different phases, which may have the same number of stable solutions.

We can plot the number of stable solutions, giving the phase diagram

@example
plot_phase_diagram(result_2D, class="stable")
`,5)),a("p",null,[s[9]||(s[9]=i("If we plot the a cut at ")),a("mjx-container",c,[(n(),e("svg",u,s[7]||(s[7]=[t('',1)]))),s[8]||(s[8]=a("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[a("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[a("mi",null,"λ"),a("mo",null,"="),a("mn",null,"0.01")])],-1))]),s[10]||(s[10]=i(", we see that in the blue region only one stable solution exists with zero amplitude:"))]),s[13]||(s[13]=t(`
@example
plot(result_2D, y="√(u1^2+v1^2)", cut=λ => 0.01, class="stable") |> display
@example
get_single_solution(result_2D; branch=1, index=(1, 1))

This solution becomes stable again outside the green lobe. Also called Mathieu lobe. Indeed, we can classify the zero amplitude solution by adding an extra catagory as a class:

@example
classify_solutions!(result_2D, "sqrt(u1^2 + v1^2) < 0.001", "zero")
-result_2D

We can visualize the zero amplitude solution:

@example
plot_phase_diagram(result_2D, class=["zero", "stable"])

This shows that inside the Mathieu lobe the zero amplitude solution becomes unstable due to the parametric drive being resonant with the oscillator.

We can also visualize the equi-amplitude curves of the solutions:

@example
classify_solutions!(result_2D, "sqrt(u1^2 + v1^2) > 0.12", "large amplitude")
-plot_phase_diagram(result_2D, class=["large amplitude", "stable"])
`,9))])}const f=l(p,[["render",k]]);export{T as __pageData,f as default}; diff --git a/previews/PR298/assets/tutorials_classification.md.CJnBmxA2.lean.js b/previews/PR298/assets/tutorials_classification.md.CJnBmxA2.lean.js deleted file mode 100644 index 33e68dc0..00000000 --- a/previews/PR298/assets/tutorials_classification.md.CJnBmxA2.lean.js +++ /dev/null @@ -1,26 +0,0 @@ -import{_ as l,c as e,a4 as t,j as a,a as i,o as n}from"./chunks/framework.DcvNxhjd.js";const T=JSON.parse('{"title":"Classifying solutions","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/classification.md","filePath":"tutorials/classification.md"}'),p={name:"tutorials/classification.md"},o={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},r={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.027ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.319ex",height:"1.597ex",role:"img",focusable:"false",viewBox:"0 -694 583 706","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.359ex",height:"1.756ex",role:"img",focusable:"false",viewBox:"0 -694 3694.6 776","aria-hidden":"true"};function k(g,s,m,y,x,b){return n(),e("div",null,[s[11]||(s[11]=t(`

Classifying solutions

Given that you obtained some steady states for a parameter sweep of a specific model it can be useful to classify these solution. Let us consider a simple pametric oscillator

julia
using HarmonicBalance
-
-@variables ω₀ γ λ α ω t x(t)
-
-natural_equation = d(d(x, t), t) + γ * d(x, t) + (ω₀^2 - λ * cos(2 * ω * t)) * x + α * x^3
-diff_eq = DifferentialEquation(natural_equation, x)
-
-add_harmonic!(diff_eq, x, ω);
-
-harmonic_eq = get_harmonic_equations(diff_eq)
A set of 2 harmonic equations
-Variables: u1(T), v1(T)
-Parameters: ω, α, γ, ω₀, λ
-
-Harmonic ansatz: 
-x(t) = u1(T)*cos(ωt) + v1(T)*sin(ωt)
-
-Harmonic equations:
-
--(1//2)*u1(T)*λ + (2//1)*Differential(T)(v1(T))*ω + Differential(T)(u1(T))*γ - u1(T)*(ω^2) + u1(T)*(ω₀^2) + v1(T)*γ*ω + (3//4)*(u1(T)^3)*α + (3//4)*u1(T)*(v1(T)^2)*α ~ 0
-
-Differential(T)(v1(T))*γ + (1//2)*v1(T)*λ - (2//1)*Differential(T)(u1(T))*ω - u1(T)*γ*ω - v1(T)*(ω^2) + v1(T)*(ω₀^2) + (3//4)*(u1(T)^2)*v1(T)*α + (3//4)*(v1(T)^3)*α ~ 0
`,4)),a("p",null,[s[4]||(s[4]=i("We performe a 2d sweep in the driving frequency ")),a("mjx-container",o,[(n(),e("svg",h,s[0]||(s[0]=[a("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[a("g",{"data-mml-node":"math"},[a("g",{"data-mml-node":"mi"},[a("path",{"data-c":"1D714",d:"M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z",style:{"stroke-width":"3"}})])])],-1)]))),s[1]||(s[1]=a("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[a("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[a("mi",null,"ω")])],-1))]),s[5]||(s[5]=i(" and driving strength ")),a("mjx-container",r,[(n(),e("svg",d,s[2]||(s[2]=[a("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[a("g",{"data-mml-node":"math"},[a("g",{"data-mml-node":"mi"},[a("path",{"data-c":"1D706",d:"M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z",style:{"stroke-width":"3"}})])])],-1)]))),s[3]||(s[3]=a("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[a("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[a("mi",null,"λ")])],-1))]),s[6]||(s[6]=i(":"))]),s[12]||(s[12]=t(`
@example
fixed = (ω₀ => 1.0, γ => 0.002, α => 1.0)
-varied = (ω => range(0.99, 1.01, 100), λ => range(1e-6, 0.03, 100))
-
-result_2D = get_steady_states(harmonic_eq, varied, fixed, threading=true)

By default the steady states of the system are classified by four different catogaries:

  • physical: Solutions that are physical, i.e., all variables are purely real.

  • stable: Solutions that are stable, i.e., all eigenvalues of the Jacobian have negative real parts.

  • Hopf: Solutions that are physical and have exactly two Jacobian eigenvalues with positive real parts, which are complex conjugates of each other. The class can help to identify regions where a limit cycle is present due to a Hopf bifurcation. See also the tutorial on limit cycles.

  • binary_labels: each region in the parameter sweep receives an identifier based on its permutation of stable branches. This allows to distinguish between different phases, which may have the same number of stable solutions.

We can plot the number of stable solutions, giving the phase diagram

@example
plot_phase_diagram(result_2D, class="stable")
`,5)),a("p",null,[s[9]||(s[9]=i("If we plot the a cut at ")),a("mjx-container",c,[(n(),e("svg",u,s[7]||(s[7]=[t('',1)]))),s[8]||(s[8]=a("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[a("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[a("mi",null,"λ"),a("mo",null,"="),a("mn",null,"0.01")])],-1))]),s[10]||(s[10]=i(", we see that in the blue region only one stable solution exists with zero amplitude:"))]),s[13]||(s[13]=t(`
@example
plot(result_2D, y="√(u1^2+v1^2)", cut=λ => 0.01, class="stable") |> display
@example
get_single_solution(result_2D; branch=1, index=(1, 1))

This solution becomes stable again outside the green lobe. Also called Mathieu lobe. Indeed, we can classify the zero amplitude solution by adding an extra catagory as a class:

@example
classify_solutions!(result_2D, "sqrt(u1^2 + v1^2) < 0.001", "zero")
-result_2D

We can visualize the zero amplitude solution:

@example
plot_phase_diagram(result_2D, class=["zero", "stable"])

This shows that inside the Mathieu lobe the zero amplitude solution becomes unstable due to the parametric drive being resonant with the oscillator.

We can also visualize the equi-amplitude curves of the solutions:

@example
classify_solutions!(result_2D, "sqrt(u1^2 + v1^2) > 0.12", "large amplitude")
-plot_phase_diagram(result_2D, class=["large amplitude", "stable"])
`,9))])}const f=l(p,[["render",k]]);export{T as __pageData,f as default}; diff --git a/previews/PR298/assets/tutorials_classification.md.Cgq0-zEf.js b/previews/PR298/assets/tutorials_classification.md.Cgq0-zEf.js new file mode 100644 index 00000000..f016eb53 --- /dev/null +++ b/previews/PR298/assets/tutorials_classification.md.Cgq0-zEf.js @@ -0,0 +1,45 @@ +import{_ as l,c as t,a4 as n,j as i,a,o as e}from"./chunks/framework.DcvNxhjd.js";const p="/HarmonicBalance.jl/previews/PR298/assets/ivufurx.-rvD5x0j.png",h="/HarmonicBalance.jl/previews/PR298/assets/szvkzhc.DOOv3P5U.png",k="/HarmonicBalance.jl/previews/PR298/assets/teoyafz.CHo32oEM.png",T=JSON.parse('{"title":"Classifying solutions","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/classification.md","filePath":"tutorials/classification.md"}'),r={name:"tutorials/classification.md"},o={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.027ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.319ex",height:"1.597ex",role:"img",focusable:"false",viewBox:"0 -694 583 706","aria-hidden":"true"},E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.359ex",height:"1.756ex",role:"img",focusable:"false",viewBox:"0 -694 3694.6 776","aria-hidden":"true"};function y(m,s,F,b,v,C){return e(),t("div",null,[s[11]||(s[11]=n(`

Classifying solutions

Given that you obtained some steady states for a parameter sweep of a specific model it can be useful to classify these solution. Let us consider a simple pametric oscillator

julia
using HarmonicBalance
+
+@variables ω₀ γ λ α ω t x(t)
+
+natural_equation = d(d(x, t), t) + γ * d(x, t) + (ω₀^2 - λ * cos(2 * ω * t)) * x + α * x^3
+diff_eq = DifferentialEquation(natural_equation, x)
+
+add_harmonic!(diff_eq, x, ω);
+
+harmonic_eq = get_harmonic_equations(diff_eq)
A set of 2 harmonic equations
+Variables: u1(T), v1(T)
+Parameters: ω, α, γ, ω₀, λ
+
+Harmonic ansatz: 
+x(t) = u1(T)*cos(ωt) + v1(T)*sin(ωt)
+
+Harmonic equations:
+
+-(1//2)*u1(T)*λ + (2//1)*Differential(T)(v1(T))*ω + Differential(T)(u1(T))*γ - u1(T)*(ω^2) + u1(T)*(ω₀^2) + v1(T)*γ*ω + (3//4)*(u1(T)^3)*α + (3//4)*u1(T)*(v1(T)^2)*α ~ 0
+
+Differential(T)(v1(T))*γ + (1//2)*v1(T)*λ - (2//1)*Differential(T)(u1(T))*ω - u1(T)*γ*ω - v1(T)*(ω^2) + v1(T)*(ω₀^2) + (3//4)*(u1(T)^2)*v1(T)*α + (3//4)*(v1(T)^3)*α ~ 0
`,4)),i("p",null,[s[4]||(s[4]=a("We performe a 2d sweep in the driving frequency ")),i("mjx-container",o,[(e(),t("svg",d,s[0]||(s[0]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D714",d:"M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z",style:{"stroke-width":"3"}})])])],-1)]))),s[1]||(s[1]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"ω")])],-1))]),s[5]||(s[5]=a(" and driving strength ")),i("mjx-container",g,[(e(),t("svg",c,s[2]||(s[2]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D706",d:"M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z",style:{"stroke-width":"3"}})])])],-1)]))),s[3]||(s[3]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"λ")])],-1))]),s[6]||(s[6]=a(":"))]),s[12]||(s[12]=n(`
julia
fixed = (ω₀ => 1.0, γ => 0.002, α => 1.0)
+varied ==> range(0.99, 1.01, 100), λ => range(1e-6, 0.03, 100))
+
+result_2D = get_steady_states(harmonic_eq, varied, fixed)
A steady state result for 10000 parameter points
+
+Solution branches:   5
+   of which real:    5
+   of which stable:  3
+
+Classes: stable, physical, Hopf, binary_labels

By default the steady states of the system are classified by four different catogaries:

  • physical: Solutions that are physical, i.e., all variables are purely real.

  • stable: Solutions that are stable, i.e., all eigenvalues of the Jacobian have negative real parts.

  • Hopf: Solutions that are physical and have exactly two Jacobian eigenvalues with positive real parts, which are complex conjugates of each other. The class can help to identify regions where a limit cycle is present due to a Hopf bifurcation. See also the tutorial on limit cycles.

  • binary_labels: each region in the parameter sweep receives an identifier based on its permutation of stable branches. This allows to distinguish between different phases, which may have the same number of stable solutions.

We can plot the number of stable solutions, giving the phase diagram

julia
plot_phase_diagram(result_2D, class="stable")

',7)),i("p",null,[s[9]||(s[9]=a("If we plot the a cut at ")),i("mjx-container",E,[(e(),t("svg",u,s[7]||(s[7]=[n('',1)]))),s[8]||(s[8]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"λ"),i("mo",null,"="),i("mn",null,"0.01")])],-1))]),s[10]||(s[10]=a(", we see that in the blue region only one stable solution exists with zero amplitude:"))]),s[13]||(s[13]=n(`
julia
plot(result_2D, y="√(u1^2+v1^2)", cut=λ => 0.01, class="stable") |> display
julia
get_single_solution(result_2D; branch=1, index=(1, 1))
OrderedCollections.OrderedDict{Num, ComplexF64} with 7 entries:
+  u1 => 0.0-2.12299e-248im
+  v1 => -6.13785e-253+9.83278e-248im
+  ω  => 0.99+0.0im
+  λ  => 1.0e-6+0.0im
+  ω₀ => 1.0+0.0im
+  γ  => 0.002+0.0im
+  α  => 1.0+0.0im

This solution becomes stable again outside the green lobe. Also called Mathieu lobe. Indeed, we can classify the zero amplitude solution by adding an extra catagory as a class:

julia
classify_solutions!(result_2D, "sqrt(u1^2 + v1^2) < 0.001", "zero")
+result_2D
A steady state result for 10000 parameter points
+
+Solution branches:   5
+   of which real:    5
+   of which stable:  3
+
+Classes: zero, stable, physical, Hopf, binary_labels

We can visualize the zero amplitude solution:

julia
plot_phase_diagram(result_2D, class=["zero", "stable"])

This shows that inside the Mathieu lobe the zero amplitude solution becomes unstable due to the parametric drive being resonant with the oscillator.

We can also visualize the equi-amplitude curves of the solutions:

julia
classify_solutions!(result_2D, "sqrt(u1^2 + v1^2) > 0.12", "large amplitude")
+plot_phase_diagram(result_2D, class=["large amplitude", "stable"])

',13))])}const x=l(r,[["render",y]]);export{T as __pageData,x as default}; diff --git a/previews/PR298/assets/tutorials_classification.md.Cgq0-zEf.lean.js b/previews/PR298/assets/tutorials_classification.md.Cgq0-zEf.lean.js new file mode 100644 index 00000000..f016eb53 --- /dev/null +++ b/previews/PR298/assets/tutorials_classification.md.Cgq0-zEf.lean.js @@ -0,0 +1,45 @@ +import{_ as l,c as t,a4 as n,j as i,a,o as e}from"./chunks/framework.DcvNxhjd.js";const p="/HarmonicBalance.jl/previews/PR298/assets/ivufurx.-rvD5x0j.png",h="/HarmonicBalance.jl/previews/PR298/assets/szvkzhc.DOOv3P5U.png",k="/HarmonicBalance.jl/previews/PR298/assets/teoyafz.CHo32oEM.png",T=JSON.parse('{"title":"Classifying solutions","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/classification.md","filePath":"tutorials/classification.md"}'),r={name:"tutorials/classification.md"},o={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.027ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.319ex",height:"1.597ex",role:"img",focusable:"false",viewBox:"0 -694 583 706","aria-hidden":"true"},E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"8.359ex",height:"1.756ex",role:"img",focusable:"false",viewBox:"0 -694 3694.6 776","aria-hidden":"true"};function y(m,s,F,b,v,C){return e(),t("div",null,[s[11]||(s[11]=n(`

Classifying solutions

Given that you obtained some steady states for a parameter sweep of a specific model it can be useful to classify these solution. Let us consider a simple pametric oscillator

julia
using HarmonicBalance
+
+@variables ω₀ γ λ α ω t x(t)
+
+natural_equation = d(d(x, t), t) + γ * d(x, t) + (ω₀^2 - λ * cos(2 * ω * t)) * x + α * x^3
+diff_eq = DifferentialEquation(natural_equation, x)
+
+add_harmonic!(diff_eq, x, ω);
+
+harmonic_eq = get_harmonic_equations(diff_eq)
A set of 2 harmonic equations
+Variables: u1(T), v1(T)
+Parameters: ω, α, γ, ω₀, λ
+
+Harmonic ansatz: 
+x(t) = u1(T)*cos(ωt) + v1(T)*sin(ωt)
+
+Harmonic equations:
+
+-(1//2)*u1(T)*λ + (2//1)*Differential(T)(v1(T))*ω + Differential(T)(u1(T))*γ - u1(T)*(ω^2) + u1(T)*(ω₀^2) + v1(T)*γ*ω + (3//4)*(u1(T)^3)*α + (3//4)*u1(T)*(v1(T)^2)*α ~ 0
+
+Differential(T)(v1(T))*γ + (1//2)*v1(T)*λ - (2//1)*Differential(T)(u1(T))*ω - u1(T)*γ*ω - v1(T)*(ω^2) + v1(T)*(ω₀^2) + (3//4)*(u1(T)^2)*v1(T)*α + (3//4)*(v1(T)^3)*α ~ 0
`,4)),i("p",null,[s[4]||(s[4]=a("We performe a 2d sweep in the driving frequency ")),i("mjx-container",o,[(e(),t("svg",d,s[0]||(s[0]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D714",d:"M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z",style:{"stroke-width":"3"}})])])],-1)]))),s[1]||(s[1]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"ω")])],-1))]),s[5]||(s[5]=a(" and driving strength ")),i("mjx-container",g,[(e(),t("svg",c,s[2]||(s[2]=[i("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[i("g",{"data-mml-node":"math"},[i("g",{"data-mml-node":"mi"},[i("path",{"data-c":"1D706",d:"M166 673Q166 685 183 694H202Q292 691 316 644Q322 629 373 486T474 207T524 67Q531 47 537 34T546 15T551 6T555 2T556 -2T550 -11H482Q457 3 450 18T399 152L354 277L340 262Q327 246 293 207T236 141Q211 112 174 69Q123 9 111 -1T83 -12Q47 -12 47 20Q47 37 61 52T199 187Q229 216 266 252T321 306L338 322Q338 323 288 462T234 612Q214 657 183 657Q166 657 166 673Z",style:{"stroke-width":"3"}})])])],-1)]))),s[3]||(s[3]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"λ")])],-1))]),s[6]||(s[6]=a(":"))]),s[12]||(s[12]=n(`
julia
fixed = (ω₀ => 1.0, γ => 0.002, α => 1.0)
+varied ==> range(0.99, 1.01, 100), λ => range(1e-6, 0.03, 100))
+
+result_2D = get_steady_states(harmonic_eq, varied, fixed)
A steady state result for 10000 parameter points
+
+Solution branches:   5
+   of which real:    5
+   of which stable:  3
+
+Classes: stable, physical, Hopf, binary_labels

By default the steady states of the system are classified by four different catogaries:

  • physical: Solutions that are physical, i.e., all variables are purely real.

  • stable: Solutions that are stable, i.e., all eigenvalues of the Jacobian have negative real parts.

  • Hopf: Solutions that are physical and have exactly two Jacobian eigenvalues with positive real parts, which are complex conjugates of each other. The class can help to identify regions where a limit cycle is present due to a Hopf bifurcation. See also the tutorial on limit cycles.

  • binary_labels: each region in the parameter sweep receives an identifier based on its permutation of stable branches. This allows to distinguish between different phases, which may have the same number of stable solutions.

We can plot the number of stable solutions, giving the phase diagram

julia
plot_phase_diagram(result_2D, class="stable")

',7)),i("p",null,[s[9]||(s[9]=a("If we plot the a cut at ")),i("mjx-container",E,[(e(),t("svg",u,s[7]||(s[7]=[n('',1)]))),s[8]||(s[8]=i("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[i("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[i("mi",null,"λ"),i("mo",null,"="),i("mn",null,"0.01")])],-1))]),s[10]||(s[10]=a(", we see that in the blue region only one stable solution exists with zero amplitude:"))]),s[13]||(s[13]=n(`
julia
plot(result_2D, y="√(u1^2+v1^2)", cut=λ => 0.01, class="stable") |> display
julia
get_single_solution(result_2D; branch=1, index=(1, 1))
OrderedCollections.OrderedDict{Num, ComplexF64} with 7 entries:
+  u1 => 0.0-2.12299e-248im
+  v1 => -6.13785e-253+9.83278e-248im
+  ω  => 0.99+0.0im
+  λ  => 1.0e-6+0.0im
+  ω₀ => 1.0+0.0im
+  γ  => 0.002+0.0im
+  α  => 1.0+0.0im

This solution becomes stable again outside the green lobe. Also called Mathieu lobe. Indeed, we can classify the zero amplitude solution by adding an extra catagory as a class:

julia
classify_solutions!(result_2D, "sqrt(u1^2 + v1^2) < 0.001", "zero")
+result_2D
A steady state result for 10000 parameter points
+
+Solution branches:   5
+   of which real:    5
+   of which stable:  3
+
+Classes: zero, stable, physical, Hopf, binary_labels

We can visualize the zero amplitude solution:

julia
plot_phase_diagram(result_2D, class=["zero", "stable"])

This shows that inside the Mathieu lobe the zero amplitude solution becomes unstable due to the parametric drive being resonant with the oscillator.

We can also visualize the equi-amplitude curves of the solutions:

julia
classify_solutions!(result_2D, "sqrt(u1^2 + v1^2) > 0.12", "large amplitude")
+plot_phase_diagram(result_2D, class=["large amplitude", "stable"])

',13))])}const x=l(r,[["render",y]]);export{T as __pageData,x as default}; diff --git a/previews/PR298/assets/tutorials_limit_cycles.md.C1gWwotW.js b/previews/PR298/assets/tutorials_limit_cycles.md.B6_qaUZm.js similarity index 99% rename from previews/PR298/assets/tutorials_limit_cycles.md.C1gWwotW.js rename to previews/PR298/assets/tutorials_limit_cycles.md.B6_qaUZm.js index e56c0c14..25da419c 100644 --- a/previews/PR298/assets/tutorials_limit_cycles.md.C1gWwotW.js +++ b/previews/PR298/assets/tutorials_limit_cycles.md.B6_qaUZm.js @@ -1,4 +1,4 @@ -import{_ as T,c as i,a4 as e,j as t,a as s,o as l}from"./chunks/framework.DcvNxhjd.js";const n="/HarmonicBalance.jl/previews/PR298/assets/ivufurx.B0Aj9aMC.png",Q="/HarmonicBalance.jl/previews/PR298/assets/szvkzhc.B3J9_Und.png",m1=JSON.parse('{"title":"Limit cycles","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/limit_cycles.md","filePath":"tutorials/limit_cycles.md"}'),o={name:"tutorials/limit_cycles.md"},r={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.871ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 1711 1000","aria-hidden":"true"},p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.764ex",height:"1.359ex",role:"img",focusable:"false",viewBox:"0 -443 1221.9 600.8","aria-hidden":"true"},h={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.896ex",height:"1.861ex",role:"img",focusable:"false",viewBox:"0 -665 1721.9 822.8","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.896ex",height:"1.864ex",role:"img",focusable:"false",viewBox:"0 -666 1721.9 823.8","aria-hidden":"true"},k={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.764ex",height:"1.359ex",role:"img",focusable:"false",viewBox:"0 -443 1221.9 600.8","aria-hidden":"true"},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.764ex",height:"1.359ex",role:"img",focusable:"false",viewBox:"0 -443 1221.9 600.8","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.575ex"},xmlns:"http://www.w3.org/2000/svg",width:"19.987ex",height:"4.878ex",role:"img",focusable:"false",viewBox:"0 -1460 8834.1 2156","aria-hidden":"true"},H={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},b={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.799ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2121 1000","aria-hidden":"true"},D={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.844ex",height:"2.672ex",role:"img",focusable:"false",viewBox:"0 -931 2141 1181","aria-hidden":"true"},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.799ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2121 1000","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.282ex",height:"1.339ex",role:"img",focusable:"false",viewBox:"0 -442 1008.6 592","aria-hidden":"true"},F={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},C={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.282ex",height:"1.339ex",role:"img",focusable:"false",viewBox:"0 -442 1008.6 592","aria-hidden":"true"},j={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-2.368ex"},xmlns:"http://www.w3.org/2000/svg",width:"50.887ex",height:"5.866ex",role:"img",focusable:"false",viewBox:"0 -1546.5 22491.9 2593","aria-hidden":"true"},A={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},_={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},R={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},O={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.442ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 1079.6 845.6","aria-hidden":"true"},S={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.613ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 4691.1 845.6","aria-hidden":"true"},G={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},P={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.442ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 1079.6 845.6","aria-hidden":"true"},X={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.613ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 4691.1 845.6","aria-hidden":"true"},I={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},W={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.442ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 1079.6 845.6","aria-hidden":"true"},$={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},K={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.442ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 1079.6 845.6","aria-hidden":"true"},U={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.927ex",height:"1.717ex",role:"img",focusable:"false",viewBox:"0 -677 3503.6 759","aria-hidden":"true"},t1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},a1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.635ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2490.6 1000","aria-hidden":"true"},s1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},e1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.294ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 572 453","aria-hidden":"true"},i1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},l1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.097ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 485 454","aria-hidden":"true"};function T1(n1,a,Q1,o1,r1,d1){return l(),i("div",null,[a[103]||(a[103]=e(`

Limit cycles

In contrast to the previous tutorials, limit cycle problems feature harmonic(s) whose numerical value is not imposed externally. We shall construct our HarmonicEquation as usual, but identify this harmonic as an extra variable, rather than a fixed parameter.

Non-driven system - the van der Pol oscillator

Here we solve the equation of motion of the van der Pol oscillator. This is a single-variable second-order ODE with continuous time-translation symmetry (i.e., no 'clock' imposing a frequency and/or phase), which displays periodic solutions known as relaxation oscillations. For more detail, refer also to arXiv:2308.06092.

julia
using HarmonicBalance
+import{_ as T,c as i,a4 as e,j as t,a as s,o as l}from"./chunks/framework.DcvNxhjd.js";const n="/HarmonicBalance.jl/previews/PR298/assets/icvvgjo.B0Aj9aMC.png",Q="/HarmonicBalance.jl/previews/PR298/assets/pdqqpav.B3J9_Und.png",m1=JSON.parse('{"title":"Limit cycles","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/limit_cycles.md","filePath":"tutorials/limit_cycles.md"}'),o={name:"tutorials/limit_cycles.md"},r={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.871ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 1711 1000","aria-hidden":"true"},p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.764ex",height:"1.359ex",role:"img",focusable:"false",viewBox:"0 -443 1221.9 600.8","aria-hidden":"true"},h={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.896ex",height:"1.861ex",role:"img",focusable:"false",viewBox:"0 -665 1721.9 822.8","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.896ex",height:"1.864ex",role:"img",focusable:"false",viewBox:"0 -666 1721.9 823.8","aria-hidden":"true"},k={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.764ex",height:"1.359ex",role:"img",focusable:"false",viewBox:"0 -443 1221.9 600.8","aria-hidden":"true"},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.764ex",height:"1.359ex",role:"img",focusable:"false",viewBox:"0 -443 1221.9 600.8","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.575ex"},xmlns:"http://www.w3.org/2000/svg",width:"19.987ex",height:"4.878ex",role:"img",focusable:"false",viewBox:"0 -1460 8834.1 2156","aria-hidden":"true"},H={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},b={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.799ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2121 1000","aria-hidden":"true"},D={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.844ex",height:"2.672ex",role:"img",focusable:"false",viewBox:"0 -931 2141 1181","aria-hidden":"true"},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.799ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2121 1000","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.282ex",height:"1.339ex",role:"img",focusable:"false",viewBox:"0 -442 1008.6 592","aria-hidden":"true"},F={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},C={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.282ex",height:"1.339ex",role:"img",focusable:"false",viewBox:"0 -442 1008.6 592","aria-hidden":"true"},j={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-2.368ex"},xmlns:"http://www.w3.org/2000/svg",width:"50.887ex",height:"5.866ex",role:"img",focusable:"false",viewBox:"0 -1546.5 22491.9 2593","aria-hidden":"true"},A={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},_={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},R={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},O={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.442ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 1079.6 845.6","aria-hidden":"true"},S={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.613ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 4691.1 845.6","aria-hidden":"true"},G={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},P={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.442ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 1079.6 845.6","aria-hidden":"true"},X={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.613ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 4691.1 845.6","aria-hidden":"true"},I={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},W={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.442ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 1079.6 845.6","aria-hidden":"true"},$={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},K={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.442ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 1079.6 845.6","aria-hidden":"true"},U={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.927ex",height:"1.717ex",role:"img",focusable:"false",viewBox:"0 -677 3503.6 759","aria-hidden":"true"},t1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},a1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.635ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2490.6 1000","aria-hidden":"true"},s1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},e1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.294ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 572 453","aria-hidden":"true"},i1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},l1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.097ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 485 454","aria-hidden":"true"};function T1(n1,a,Q1,o1,r1,d1){return l(),i("div",null,[a[103]||(a[103]=e(`

Limit cycles

In contrast to the previous tutorials, limit cycle problems feature harmonic(s) whose numerical value is not imposed externally. We shall construct our HarmonicEquation as usual, but identify this harmonic as an extra variable, rather than a fixed parameter.

Non-driven system - the van der Pol oscillator

Here we solve the equation of motion of the van der Pol oscillator. This is a single-variable second-order ODE with continuous time-translation symmetry (i.e., no 'clock' imposing a frequency and/or phase), which displays periodic solutions known as relaxation oscillations. For more detail, refer also to arXiv:2308.06092.

julia
using HarmonicBalance
 @variables ω_lc, t, ω0, x(t), μ
 diff_eq = DifferentialEquation(d(d(x,t),t) - μ*(1-x^2) * d(x,t) + x, x)
System of 1 differential equations
 Variables:       x(t)
diff --git a/previews/PR298/assets/tutorials_limit_cycles.md.C1gWwotW.lean.js b/previews/PR298/assets/tutorials_limit_cycles.md.B6_qaUZm.lean.js
similarity index 99%
rename from previews/PR298/assets/tutorials_limit_cycles.md.C1gWwotW.lean.js
rename to previews/PR298/assets/tutorials_limit_cycles.md.B6_qaUZm.lean.js
index e56c0c14..25da419c 100644
--- a/previews/PR298/assets/tutorials_limit_cycles.md.C1gWwotW.lean.js
+++ b/previews/PR298/assets/tutorials_limit_cycles.md.B6_qaUZm.lean.js
@@ -1,4 +1,4 @@
-import{_ as T,c as i,a4 as e,j as t,a as s,o as l}from"./chunks/framework.DcvNxhjd.js";const n="/HarmonicBalance.jl/previews/PR298/assets/ivufurx.B0Aj9aMC.png",Q="/HarmonicBalance.jl/previews/PR298/assets/szvkzhc.B3J9_Und.png",m1=JSON.parse('{"title":"Limit cycles","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/limit_cycles.md","filePath":"tutorials/limit_cycles.md"}'),o={name:"tutorials/limit_cycles.md"},r={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.871ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 1711 1000","aria-hidden":"true"},p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.764ex",height:"1.359ex",role:"img",focusable:"false",viewBox:"0 -443 1221.9 600.8","aria-hidden":"true"},h={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.896ex",height:"1.861ex",role:"img",focusable:"false",viewBox:"0 -665 1721.9 822.8","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.896ex",height:"1.864ex",role:"img",focusable:"false",viewBox:"0 -666 1721.9 823.8","aria-hidden":"true"},k={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.764ex",height:"1.359ex",role:"img",focusable:"false",viewBox:"0 -443 1221.9 600.8","aria-hidden":"true"},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.764ex",height:"1.359ex",role:"img",focusable:"false",viewBox:"0 -443 1221.9 600.8","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.575ex"},xmlns:"http://www.w3.org/2000/svg",width:"19.987ex",height:"4.878ex",role:"img",focusable:"false",viewBox:"0 -1460 8834.1 2156","aria-hidden":"true"},H={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},b={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.799ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2121 1000","aria-hidden":"true"},D={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.844ex",height:"2.672ex",role:"img",focusable:"false",viewBox:"0 -931 2141 1181","aria-hidden":"true"},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.799ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2121 1000","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.282ex",height:"1.339ex",role:"img",focusable:"false",viewBox:"0 -442 1008.6 592","aria-hidden":"true"},F={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},C={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.282ex",height:"1.339ex",role:"img",focusable:"false",viewBox:"0 -442 1008.6 592","aria-hidden":"true"},j={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-2.368ex"},xmlns:"http://www.w3.org/2000/svg",width:"50.887ex",height:"5.866ex",role:"img",focusable:"false",viewBox:"0 -1546.5 22491.9 2593","aria-hidden":"true"},A={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},_={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},R={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},O={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.442ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 1079.6 845.6","aria-hidden":"true"},S={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.613ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 4691.1 845.6","aria-hidden":"true"},G={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},P={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.442ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 1079.6 845.6","aria-hidden":"true"},X={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.613ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 4691.1 845.6","aria-hidden":"true"},I={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},W={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.442ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 1079.6 845.6","aria-hidden":"true"},$={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},K={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.442ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 1079.6 845.6","aria-hidden":"true"},U={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.927ex",height:"1.717ex",role:"img",focusable:"false",viewBox:"0 -677 3503.6 759","aria-hidden":"true"},t1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},a1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.635ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2490.6 1000","aria-hidden":"true"},s1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},e1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.294ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 572 453","aria-hidden":"true"},i1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},l1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.097ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 485 454","aria-hidden":"true"};function T1(n1,a,Q1,o1,r1,d1){return l(),i("div",null,[a[103]||(a[103]=e(`

Limit cycles

In contrast to the previous tutorials, limit cycle problems feature harmonic(s) whose numerical value is not imposed externally. We shall construct our HarmonicEquation as usual, but identify this harmonic as an extra variable, rather than a fixed parameter.

Non-driven system - the van der Pol oscillator

Here we solve the equation of motion of the van der Pol oscillator. This is a single-variable second-order ODE with continuous time-translation symmetry (i.e., no 'clock' imposing a frequency and/or phase), which displays periodic solutions known as relaxation oscillations. For more detail, refer also to arXiv:2308.06092.

julia
using HarmonicBalance
+import{_ as T,c as i,a4 as e,j as t,a as s,o as l}from"./chunks/framework.DcvNxhjd.js";const n="/HarmonicBalance.jl/previews/PR298/assets/icvvgjo.B0Aj9aMC.png",Q="/HarmonicBalance.jl/previews/PR298/assets/pdqqpav.B3J9_Und.png",m1=JSON.parse('{"title":"Limit cycles","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/limit_cycles.md","filePath":"tutorials/limit_cycles.md"}'),o={name:"tutorials/limit_cycles.md"},r={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.871ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 1711 1000","aria-hidden":"true"},p={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.764ex",height:"1.359ex",role:"img",focusable:"false",viewBox:"0 -443 1221.9 600.8","aria-hidden":"true"},h={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.896ex",height:"1.861ex",role:"img",focusable:"false",viewBox:"0 -665 1721.9 822.8","aria-hidden":"true"},g={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.896ex",height:"1.864ex",role:"img",focusable:"false",viewBox:"0 -666 1721.9 823.8","aria-hidden":"true"},k={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.764ex",height:"1.359ex",role:"img",focusable:"false",viewBox:"0 -443 1221.9 600.8","aria-hidden":"true"},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.764ex",height:"1.359ex",role:"img",focusable:"false",viewBox:"0 -443 1221.9 600.8","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.575ex"},xmlns:"http://www.w3.org/2000/svg",width:"19.987ex",height:"4.878ex",role:"img",focusable:"false",viewBox:"0 -1460 8834.1 2156","aria-hidden":"true"},H={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},b={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.799ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2121 1000","aria-hidden":"true"},D={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},E={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.844ex",height:"2.672ex",role:"img",focusable:"false",viewBox:"0 -931 2141 1181","aria-hidden":"true"},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.799ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2121 1000","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.282ex",height:"1.339ex",role:"img",focusable:"false",viewBox:"0 -442 1008.6 592","aria-hidden":"true"},F={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},C={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.339ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.282ex",height:"1.339ex",role:"img",focusable:"false",viewBox:"0 -442 1008.6 592","aria-hidden":"true"},j={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-2.368ex"},xmlns:"http://www.w3.org/2000/svg",width:"50.887ex",height:"5.866ex",role:"img",focusable:"false",viewBox:"0 -1546.5 22491.9 2593","aria-hidden":"true"},A={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},_={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},R={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},O={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.442ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 1079.6 845.6","aria-hidden":"true"},S={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.613ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 4691.1 845.6","aria-hidden":"true"},G={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},P={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.442ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 1079.6 845.6","aria-hidden":"true"},X={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.613ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 4691.1 845.6","aria-hidden":"true"},I={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},W={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.442ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 1079.6 845.6","aria-hidden":"true"},$={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},K={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.442ex",height:"1.913ex",role:"img",focusable:"false",viewBox:"0 -680 1079.6 845.6","aria-hidden":"true"},U={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Y={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.927ex",height:"1.717ex",role:"img",focusable:"false",viewBox:"0 -677 3503.6 759","aria-hidden":"true"},t1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},a1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"5.635ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2490.6 1000","aria-hidden":"true"},s1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},e1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.294ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 572 453","aria-hidden":"true"},i1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},l1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.097ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 485 454","aria-hidden":"true"};function T1(n1,a,Q1,o1,r1,d1){return l(),i("div",null,[a[103]||(a[103]=e(`

Limit cycles

In contrast to the previous tutorials, limit cycle problems feature harmonic(s) whose numerical value is not imposed externally. We shall construct our HarmonicEquation as usual, but identify this harmonic as an extra variable, rather than a fixed parameter.

Non-driven system - the van der Pol oscillator

Here we solve the equation of motion of the van der Pol oscillator. This is a single-variable second-order ODE with continuous time-translation symmetry (i.e., no 'clock' imposing a frequency and/or phase), which displays periodic solutions known as relaxation oscillations. For more detail, refer also to arXiv:2308.06092.

julia
using HarmonicBalance
 @variables ω_lc, t, ω0, x(t), μ
 diff_eq = DifferentialEquation(d(d(x,t),t) - μ*(1-x^2) * d(x,t) + x, x)
System of 1 differential equations
 Variables:       x(t)
diff --git a/previews/PR298/assets/tutorials_linear_response.md.PMCbi141.js b/previews/PR298/assets/tutorials_linear_response.md.BYTLHXLI.js
similarity index 99%
rename from previews/PR298/assets/tutorials_linear_response.md.PMCbi141.js
rename to previews/PR298/assets/tutorials_linear_response.md.BYTLHXLI.js
index 4748adc5..83833532 100644
--- a/previews/PR298/assets/tutorials_linear_response.md.PMCbi141.js
+++ b/previews/PR298/assets/tutorials_linear_response.md.BYTLHXLI.js
@@ -1,4 +1,4 @@
-import{_ as l,c as t,a4 as n,j as i,a,o as e}from"./chunks/framework.DcvNxhjd.js";const h="/HarmonicBalance.jl/previews/PR298/assets/nyukexf.C1mRfhhg.png",p="/HarmonicBalance.jl/previews/PR298/assets/wyxykfg.BUn_Tigz.png",r="/HarmonicBalance.jl/previews/PR298/assets/rlkrksp.TE4cNA4T.png",k="/HarmonicBalance.jl/previews/PR298/assets/sstwmep.CF_iK7k1.png",o="/HarmonicBalance.jl/previews/PR298/assets/hapmwqe.BoTXYRl4.png",d="/HarmonicBalance.jl/previews/PR298/assets/gfmvopt.BKS8fzbs.png",g="/HarmonicBalance.jl/previews/PR298/assets/vbkkbtx.DaP9_FvO.png",O=JSON.parse('{"title":"Linear response","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/linear_response.md","filePath":"tutorials/linear_response.md"}'),E={name:"tutorials/linear_response.md"},Q={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.206ex",height:"2.158ex",role:"img",focusable:"false",viewBox:"0 -871.8 4069.2 953.8","aria-hidden":"true"},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},T={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.34ex",height:"1.927ex",role:"img",focusable:"false",viewBox:"0 -694 1034.4 851.8","aria-hidden":"true"},u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.395ex",height:"1.377ex",role:"img",focusable:"false",viewBox:"0 -443 1058.6 608.6","aria-hidden":"true"},x={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},C={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"12.474ex",height:"2.139ex",role:"img",focusable:"false",viewBox:"0 -863.3 5513.7 945.3","aria-hidden":"true"},D={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.819ex",height:"1.694ex",role:"img",focusable:"false",viewBox:"0 -583 3014.1 748.6","aria-hidden":"true"},A={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.819ex",height:"1.694ex",role:"img",focusable:"false",viewBox:"0 -583 3014.1 748.6","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.695ex",height:"1.538ex",role:"img",focusable:"false",viewBox:"0 -680 749 680","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.695ex",height:"1.538ex",role:"img",focusable:"false",viewBox:"0 -680 749 680","aria-hidden":"true"},Z={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},P={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.695ex",height:"1.538ex",role:"img",focusable:"false",viewBox:"0 -680 749 680","aria-hidden":"true"};function z(R,s,_,S,J,G){return e(),t("div",null,[s[50]||(s[50]=n(`

Linear response

In HarmonicBalance.jl, the stability and linear response are treated using the LinearResponse module.

Here we calculate the white noise response of a simple nonlinear system. A set of reference results may be found in Huber et al. in Phys. Rev. X 10, 021066 (2020). We start by defining the Duffing oscillator

julia
using HarmonicBalance, Plots
+import{_ as l,c as t,a4 as n,j as i,a,o as e}from"./chunks/framework.DcvNxhjd.js";const h="/HarmonicBalance.jl/previews/PR298/assets/sstwmep.C1mRfhhg.png",p="/HarmonicBalance.jl/previews/PR298/assets/hapmwqe.BUn_Tigz.png",r="/HarmonicBalance.jl/previews/PR298/assets/gfmvopt.TE4cNA4T.png",k="/HarmonicBalance.jl/previews/PR298/assets/vbkkbtx.CF_iK7k1.png",o="/HarmonicBalance.jl/previews/PR298/assets/cfcmjbv.BoTXYRl4.png",d="/HarmonicBalance.jl/previews/PR298/assets/efdoffe.BKS8fzbs.png",g="/HarmonicBalance.jl/previews/PR298/assets/fxvcubu.DaP9_FvO.png",O=JSON.parse('{"title":"Linear response","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/linear_response.md","filePath":"tutorials/linear_response.md"}'),E={name:"tutorials/linear_response.md"},Q={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.206ex",height:"2.158ex",role:"img",focusable:"false",viewBox:"0 -871.8 4069.2 953.8","aria-hidden":"true"},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},T={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.34ex",height:"1.927ex",role:"img",focusable:"false",viewBox:"0 -694 1034.4 851.8","aria-hidden":"true"},u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.395ex",height:"1.377ex",role:"img",focusable:"false",viewBox:"0 -443 1058.6 608.6","aria-hidden":"true"},x={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},C={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"12.474ex",height:"2.139ex",role:"img",focusable:"false",viewBox:"0 -863.3 5513.7 945.3","aria-hidden":"true"},D={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.819ex",height:"1.694ex",role:"img",focusable:"false",viewBox:"0 -583 3014.1 748.6","aria-hidden":"true"},A={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.819ex",height:"1.694ex",role:"img",focusable:"false",viewBox:"0 -583 3014.1 748.6","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.695ex",height:"1.538ex",role:"img",focusable:"false",viewBox:"0 -680 749 680","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.695ex",height:"1.538ex",role:"img",focusable:"false",viewBox:"0 -680 749 680","aria-hidden":"true"},Z={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},P={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.695ex",height:"1.538ex",role:"img",focusable:"false",viewBox:"0 -680 749 680","aria-hidden":"true"};function z(R,s,_,S,J,G){return e(),t("div",null,[s[50]||(s[50]=n(`

Linear response

In HarmonicBalance.jl, the stability and linear response are treated using the LinearResponse module.

Here we calculate the white noise response of a simple nonlinear system. A set of reference results may be found in Huber et al. in Phys. Rev. X 10, 021066 (2020). We start by defining the Duffing oscillator

julia
using HarmonicBalance, Plots
 using Plots.Measures: mm
 @variables α, ω, ω0, F, γ, t, x(t); # declare constant variables and a function x(t)
 
diff --git a/previews/PR298/assets/tutorials_linear_response.md.PMCbi141.lean.js b/previews/PR298/assets/tutorials_linear_response.md.BYTLHXLI.lean.js
similarity index 99%
rename from previews/PR298/assets/tutorials_linear_response.md.PMCbi141.lean.js
rename to previews/PR298/assets/tutorials_linear_response.md.BYTLHXLI.lean.js
index 4748adc5..83833532 100644
--- a/previews/PR298/assets/tutorials_linear_response.md.PMCbi141.lean.js
+++ b/previews/PR298/assets/tutorials_linear_response.md.BYTLHXLI.lean.js
@@ -1,4 +1,4 @@
-import{_ as l,c as t,a4 as n,j as i,a,o as e}from"./chunks/framework.DcvNxhjd.js";const h="/HarmonicBalance.jl/previews/PR298/assets/nyukexf.C1mRfhhg.png",p="/HarmonicBalance.jl/previews/PR298/assets/wyxykfg.BUn_Tigz.png",r="/HarmonicBalance.jl/previews/PR298/assets/rlkrksp.TE4cNA4T.png",k="/HarmonicBalance.jl/previews/PR298/assets/sstwmep.CF_iK7k1.png",o="/HarmonicBalance.jl/previews/PR298/assets/hapmwqe.BoTXYRl4.png",d="/HarmonicBalance.jl/previews/PR298/assets/gfmvopt.BKS8fzbs.png",g="/HarmonicBalance.jl/previews/PR298/assets/vbkkbtx.DaP9_FvO.png",O=JSON.parse('{"title":"Linear response","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/linear_response.md","filePath":"tutorials/linear_response.md"}'),E={name:"tutorials/linear_response.md"},Q={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.206ex",height:"2.158ex",role:"img",focusable:"false",viewBox:"0 -871.8 4069.2 953.8","aria-hidden":"true"},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},T={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.34ex",height:"1.927ex",role:"img",focusable:"false",viewBox:"0 -694 1034.4 851.8","aria-hidden":"true"},u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.395ex",height:"1.377ex",role:"img",focusable:"false",viewBox:"0 -443 1058.6 608.6","aria-hidden":"true"},x={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},C={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"12.474ex",height:"2.139ex",role:"img",focusable:"false",viewBox:"0 -863.3 5513.7 945.3","aria-hidden":"true"},D={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.819ex",height:"1.694ex",role:"img",focusable:"false",viewBox:"0 -583 3014.1 748.6","aria-hidden":"true"},A={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.819ex",height:"1.694ex",role:"img",focusable:"false",viewBox:"0 -583 3014.1 748.6","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.695ex",height:"1.538ex",role:"img",focusable:"false",viewBox:"0 -680 749 680","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.695ex",height:"1.538ex",role:"img",focusable:"false",viewBox:"0 -680 749 680","aria-hidden":"true"},Z={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},P={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.695ex",height:"1.538ex",role:"img",focusable:"false",viewBox:"0 -680 749 680","aria-hidden":"true"};function z(R,s,_,S,J,G){return e(),t("div",null,[s[50]||(s[50]=n(`

Linear response

In HarmonicBalance.jl, the stability and linear response are treated using the LinearResponse module.

Here we calculate the white noise response of a simple nonlinear system. A set of reference results may be found in Huber et al. in Phys. Rev. X 10, 021066 (2020). We start by defining the Duffing oscillator

julia
using HarmonicBalance, Plots
+import{_ as l,c as t,a4 as n,j as i,a,o as e}from"./chunks/framework.DcvNxhjd.js";const h="/HarmonicBalance.jl/previews/PR298/assets/sstwmep.C1mRfhhg.png",p="/HarmonicBalance.jl/previews/PR298/assets/hapmwqe.BUn_Tigz.png",r="/HarmonicBalance.jl/previews/PR298/assets/gfmvopt.TE4cNA4T.png",k="/HarmonicBalance.jl/previews/PR298/assets/vbkkbtx.CF_iK7k1.png",o="/HarmonicBalance.jl/previews/PR298/assets/cfcmjbv.BoTXYRl4.png",d="/HarmonicBalance.jl/previews/PR298/assets/efdoffe.BKS8fzbs.png",g="/HarmonicBalance.jl/previews/PR298/assets/fxvcubu.DaP9_FvO.png",O=JSON.parse('{"title":"Linear response","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/linear_response.md","filePath":"tutorials/linear_response.md"}'),E={name:"tutorials/linear_response.md"},Q={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},m={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.206ex",height:"2.158ex",role:"img",focusable:"false",viewBox:"0 -871.8 4069.2 953.8","aria-hidden":"true"},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},T={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.357ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.34ex",height:"1.927ex",role:"img",focusable:"false",viewBox:"0 -694 1034.4 851.8","aria-hidden":"true"},u={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},c={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.395ex",height:"1.377ex",role:"img",focusable:"false",viewBox:"0 -443 1058.6 608.6","aria-hidden":"true"},x={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},F={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},C={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},v={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"12.474ex",height:"2.139ex",role:"img",focusable:"false",viewBox:"0 -863.3 5513.7 945.3","aria-hidden":"true"},D={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},H={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.819ex",height:"1.694ex",role:"img",focusable:"false",viewBox:"0 -583 3014.1 748.6","aria-hidden":"true"},A={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},M={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.819ex",height:"1.694ex",role:"img",focusable:"false",viewBox:"0 -583 3014.1 748.6","aria-hidden":"true"},L={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.695ex",height:"1.538ex",role:"img",focusable:"false",viewBox:"0 -680 749 680","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.695ex",height:"1.538ex",role:"img",focusable:"false",viewBox:"0 -680 749 680","aria-hidden":"true"},Z={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},P={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"0"},xmlns:"http://www.w3.org/2000/svg",width:"1.695ex",height:"1.538ex",role:"img",focusable:"false",viewBox:"0 -680 749 680","aria-hidden":"true"};function z(R,s,_,S,J,G){return e(),t("div",null,[s[50]||(s[50]=n(`

Linear response

In HarmonicBalance.jl, the stability and linear response are treated using the LinearResponse module.

Here we calculate the white noise response of a simple nonlinear system. A set of reference results may be found in Huber et al. in Phys. Rev. X 10, 021066 (2020). We start by defining the Duffing oscillator

julia
using HarmonicBalance, Plots
 using Plots.Measures: mm
 @variables α, ω, ω0, F, γ, t, x(t); # declare constant variables and a function x(t)
 
diff --git a/previews/PR298/assets/tutorials_steady_states.md.gkR3833J.js b/previews/PR298/assets/tutorials_steady_states.md.BySfj_zT.js
similarity index 99%
rename from previews/PR298/assets/tutorials_steady_states.md.gkR3833J.js
rename to previews/PR298/assets/tutorials_steady_states.md.BySfj_zT.js
index 2b7fd615..9c402385 100644
--- a/previews/PR298/assets/tutorials_steady_states.md.gkR3833J.js
+++ b/previews/PR298/assets/tutorials_steady_states.md.BySfj_zT.js
@@ -1,4 +1,4 @@
-import{_ as l,c as T,j as t,a as Q,a4 as e,o as s}from"./chunks/framework.DcvNxhjd.js";const n="/HarmonicBalance.jl/previews/PR298/assets/zmnmjvi.B07IzMp6.png",i="/HarmonicBalance.jl/previews/PR298/assets/olopefk.CY3KP9Dg.png",o="/HarmonicBalance.jl/previews/PR298/assets/jcitgik.UTcoxLl5.png",r="/HarmonicBalance.jl/previews/PR298/assets/absnpig.BNXvpC22.png",N1=JSON.parse('{"title":"Finding the staedy states of a Duffing oscillator","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/steady_states.md","filePath":"tutorials/steady_states.md"}'),d={name:"tutorials/steady_states.md"},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.871ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 1711 1000","aria-hidden":"true"},p={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-4.03ex"},xmlns:"http://www.w3.org/2000/svg",width:"48.629ex",height:"6.03ex",role:"img",focusable:"false",viewBox:"0 -883.9 21494.2 2665.1","aria-hidden":"true"},H={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},k={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"28.664ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 12669.3 1000","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.871ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 1711 1000","aria-hidden":"true"},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.735ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 767 705","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.735ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 767 705","aria-hidden":"true"},E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.267ex",height:"2.072ex",role:"img",focusable:"false",viewBox:"0 -833.9 2770.1 915.9","aria-hidden":"true"},F={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},A={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.212ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.403ex",height:"2.398ex",role:"img",focusable:"false",viewBox:"0 -966.5 4598.1 1060","aria-hidden":"true"},z={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},O={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},G={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.448ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 640 453","aria-hidden":"true"},R={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},P={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.594ex"},xmlns:"http://www.w3.org/2000/svg",width:"42.859ex",height:"2.594ex",role:"img",focusable:"false",viewBox:"0 -883.9 18943.7 1146.5","aria-hidden":"true"},X={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},U={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"0.919ex",height:"1ex",role:"img",focusable:"false",viewBox:"0 -431 406 442","aria-hidden":"true"},W={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},I={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"23.227ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 10266.3 1000","aria-hidden":"true"},$={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},K={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"20.29ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 8968.1 1000","aria-hidden":"true"},Y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.859ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2147.6 1000","aria-hidden":"true"},t1={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},a1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-2.827ex"},xmlns:"http://www.w3.org/2000/svg",width:"58.986ex",height:"6.785ex",role:"img",focusable:"false",viewBox:"0 -1749.5 26071.8 2999","aria-hidden":"true"},Q1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},T1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"24.358ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 10766.3 1000","aria-hidden":"true"},s1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},e1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},l1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.554ex",role:"img",focusable:"false",viewBox:"0 -665 1122 687","aria-hidden":"true"},i1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},r1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.554ex",role:"img",focusable:"false",viewBox:"0 -665 1122 687","aria-hidden":"true"},m1={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},h1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"57.19ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 25277.8 1000","aria-hidden":"true"},p1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},H1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.554ex",role:"img",focusable:"false",viewBox:"0 -665 1122 687","aria-hidden":"true"},c1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.398ex",height:"2.09ex",role:"img",focusable:"false",viewBox:"0 -841.7 3270.1 923.7","aria-hidden":"true"},w1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},y1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.554ex",role:"img",focusable:"false",viewBox:"0 -665 1122 687","aria-hidden":"true"},V1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.082ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4014.1 1000","aria-hidden":"true"},M1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.95ex",height:"1.879ex",role:"img",focusable:"false",viewBox:"0 -665 3514.1 830.6","aria-hidden":"true"},b1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.287ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.781ex",height:"4.208ex",role:"img",focusable:"false",viewBox:"0 -1291.1 4765.1 1860","aria-hidden":"true"},E1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.287ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.781ex",height:"4.208ex",role:"img",focusable:"false",viewBox:"0 -1291.1 4765.1 1860","aria-hidden":"true"},C1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},F1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.554ex",role:"img",focusable:"false",viewBox:"0 -665 1122 687","aria-hidden":"true"};function A1(q1,a,z1,S1,O1,J1){return s(),T("div",null,[a[162]||(a[162]=t("h1",{id:"Duffing",tabindex:"-1"},[Q("Finding the staedy states of a Duffing oscillator "),t("a",{class:"header-anchor",href:"#Duffing","aria-label":'Permalink to "Finding the staedy states of a Duffing oscillator {#Duffing}"'},"​")],-1)),t("p",null,[a[2]||(a[2]=Q("Here we show the workflow of HarmonicBalance.jl on a simple example - the driven Duffing oscillator. The equation of motion for the displacement ")),t("mjx-container",m,[(s(),T("svg",h,a[0]||(a[0]=[e('',1)]))),a[1]||(a[1]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x"),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")")])],-1))]),a[3]||(a[3]=Q(" reads"))]),t("mjx-container",p,[(s(),T("svg",g,a[4]||(a[4]=[e('',1)]))),a[5]||(a[5]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("munder",null,[t("mrow",{"data-mjx-texclass":"OP"},[t("munder",null,[t("mrow",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mover",null,[t("mi",null,"x"),t("mo",null,"¨")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mo",null,"+"),t("mi",null,"γ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mover",null,[t("mi",null,"x"),t("mo",null,"˙")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mo",null,"+"),t("msubsup",null,[t("mi",null,"ω"),t("mn",null,"0"),t("mn",null,"2")]),t("mi",null,"x"),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")")]),t("mo",null,"⏟")])]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mtext",null,"damped harmonic oscillator")])]),t("mo",null,"+"),t("munder",null,[t("mrow",{"data-mjx-texclass":"OP"},[t("munder",null,[t("mrow",null,[t("mi",null,"α"),t("mi",null,"x"),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("msup",null,[t("mo",{stretchy:"false"},")"),t("mn",null,"3")])]),t("mo",null,"⏟")])]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mtext",null,"Duffing coefficient")])]),t("mo",null,"="),t("munder",null,[t("mrow",{"data-mjx-texclass":"OP"},[t("munder",null,[t("mrow",null,[t("mi",null,"F"),t("mi",null,"cos"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mi",null,"ω"),t("mi",null,"t"),t("mo",{stretchy:"false"},")")]),t("mo",null,"⏟")])]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mtext",null,"periodic drive")])])])],-1))]),t("p",null,[a[8]||(a[8]=Q("In general, there is no analytical solution to the differential equation. Fortunately, some harmonics are more important than others. By truncating the infinite-dimensional Fourier space to a set of judiciously chosen harmonics, we may obtain a soluble system. For the Duffing resonator, we can well try to only consider the drive frequency ")),t("mjx-container",H,[(s(),T("svg",u,a[6]||(a[6]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D714",d:"M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z",style:{"stroke-width":"3"}})])])],-1)]))),a[7]||(a[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"ω")])],-1))]),a[9]||(a[9]=Q(". To implement this, we use the ")),a[10]||(a[10]=t("em",null,"harmonic ansatz",-1))]),t("mjx-container",c,[(s(),T("svg",k,a[11]||(a[11]=[e('',1)]))),a[12]||(a[12]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("mi",null,"x"),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mi",null,"U"),t("mi",null,"cos"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mi",null,"ω"),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mo",null,"+"),t("mi",null,"V"),t("mi",null,"sin"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mi",null,"ω"),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mstyle",{scriptlevel:"0"},[t("mspace",{width:"0.167em"})]),t("mo",null,",")])],-1))]),t("p",null,[a[19]||(a[19]=Q("which constraints the spectrum of ")),t("mjx-container",w,[(s(),T("svg",x,a[13]||(a[13]=[e('',1)]))),a[14]||(a[14]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x"),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")")])],-1))]),a[20]||(a[20]=Q(" to a single harmonic. Fixing the quadratures ")),t("mjx-container",y,[(s(),T("svg",f,a[15]||(a[15]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D448",d:"M107 637Q73 637 71 641Q70 643 70 649Q70 673 81 682Q83 683 98 683Q139 681 234 681Q268 681 297 681T342 682T362 682Q378 682 378 672Q378 670 376 658Q371 641 366 638H364Q362 638 359 638T352 638T343 637T334 637Q295 636 284 634T266 623Q265 621 238 518T184 302T154 169Q152 155 152 140Q152 86 183 55T269 24Q336 24 403 69T501 205L552 406Q599 598 599 606Q599 633 535 637Q511 637 511 648Q511 650 513 660Q517 676 519 679T529 683Q532 683 561 682T645 680Q696 680 723 681T752 682Q767 682 767 672Q767 650 759 642Q756 637 737 637Q666 633 648 597Q646 592 598 404Q557 235 548 205Q515 105 433 42T263 -22Q171 -22 116 34T60 167V183Q60 201 115 421Q164 622 164 628Q164 635 107 637Z",style:{"stroke-width":"3"}})])])],-1)]))),a[16]||(a[16]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"U")])],-1))]),a[21]||(a[21]=Q(" and ")),t("mjx-container",V,[(s(),T("svg",L,a[17]||(a[17]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D449",d:"M52 648Q52 670 65 683H76Q118 680 181 680Q299 680 320 683H330Q336 677 336 674T334 656Q329 641 325 637H304Q282 635 274 635Q245 630 242 620Q242 618 271 369T301 118L374 235Q447 352 520 471T595 594Q599 601 599 609Q599 633 555 637Q537 637 537 648Q537 649 539 661Q542 675 545 679T558 683Q560 683 570 683T604 682T668 681Q737 681 755 683H762Q769 676 769 672Q769 655 760 640Q757 637 743 637Q730 636 719 635T698 630T682 623T670 615T660 608T652 599T645 592L452 282Q272 -9 266 -16Q263 -18 259 -21L241 -22H234Q216 -22 216 -15Q213 -9 177 305Q139 623 138 626Q133 637 76 637H59Q52 642 52 648Z",style:{"stroke-width":"3"}})])])],-1)]))),a[18]||(a[18]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"V")])],-1))]),a[22]||(a[22]=Q(" to be constant then reduces the differential equation to two coupled cubic polynomial equations (for more details on this step, see the appendices in the ")),a[23]||(a[23]=t("a",{href:"https://scipost.org/SciPostPhysCodeb.6",target:"_blank",rel:"noreferrer"},"white paper",-1)),a[24]||(a[24]=Q("). Finding the roots of coupled polynomials is in general very hard. We here apply the method of homotopy continuation, as implemented in ")),a[25]||(a[25]=t("a",{href:"https://www.juliahomotopycontinuation.org/",target:"_blank",rel:"noreferrer"},"HomotopyContinuation.jl",-1)),a[26]||(a[26]=Q(" which is guaranteed to find the complete set of roots."))]),a[163]||(a[163]=e(`

First we need to declare the symbolic variables (the excellent Symbolics.jl is used here).

julia
using HarmonicBalance
+import{_ as l,c as T,j as t,a as Q,a4 as e,o as s}from"./chunks/framework.DcvNxhjd.js";const n="/HarmonicBalance.jl/previews/PR298/assets/absnpig.B07IzMp6.png",i="/HarmonicBalance.jl/previews/PR298/assets/omwflhu.CY3KP9Dg.png",o="/HarmonicBalance.jl/previews/PR298/assets/rkshfdy.UTcoxLl5.png",r="/HarmonicBalance.jl/previews/PR298/assets/bkiujaz.BNXvpC22.png",N1=JSON.parse('{"title":"Finding the staedy states of a Duffing oscillator","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/steady_states.md","filePath":"tutorials/steady_states.md"}'),d={name:"tutorials/steady_states.md"},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.871ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 1711 1000","aria-hidden":"true"},p={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-4.03ex"},xmlns:"http://www.w3.org/2000/svg",width:"48.629ex",height:"6.03ex",role:"img",focusable:"false",viewBox:"0 -883.9 21494.2 2665.1","aria-hidden":"true"},H={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},k={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"28.664ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 12669.3 1000","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.871ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 1711 1000","aria-hidden":"true"},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.735ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 767 705","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.735ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 767 705","aria-hidden":"true"},E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.267ex",height:"2.072ex",role:"img",focusable:"false",viewBox:"0 -833.9 2770.1 915.9","aria-hidden":"true"},F={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},A={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.212ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.403ex",height:"2.398ex",role:"img",focusable:"false",viewBox:"0 -966.5 4598.1 1060","aria-hidden":"true"},z={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},O={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},G={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.448ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 640 453","aria-hidden":"true"},R={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},P={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.594ex"},xmlns:"http://www.w3.org/2000/svg",width:"42.859ex",height:"2.594ex",role:"img",focusable:"false",viewBox:"0 -883.9 18943.7 1146.5","aria-hidden":"true"},X={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},U={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"0.919ex",height:"1ex",role:"img",focusable:"false",viewBox:"0 -431 406 442","aria-hidden":"true"},W={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},I={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"23.227ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 10266.3 1000","aria-hidden":"true"},$={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},K={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"20.29ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 8968.1 1000","aria-hidden":"true"},Y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.859ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2147.6 1000","aria-hidden":"true"},t1={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},a1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-2.827ex"},xmlns:"http://www.w3.org/2000/svg",width:"58.986ex",height:"6.785ex",role:"img",focusable:"false",viewBox:"0 -1749.5 26071.8 2999","aria-hidden":"true"},Q1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},T1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"24.358ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 10766.3 1000","aria-hidden":"true"},s1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},e1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},l1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.554ex",role:"img",focusable:"false",viewBox:"0 -665 1122 687","aria-hidden":"true"},i1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},r1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.554ex",role:"img",focusable:"false",viewBox:"0 -665 1122 687","aria-hidden":"true"},m1={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},h1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"57.19ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 25277.8 1000","aria-hidden":"true"},p1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},H1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.554ex",role:"img",focusable:"false",viewBox:"0 -665 1122 687","aria-hidden":"true"},c1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.398ex",height:"2.09ex",role:"img",focusable:"false",viewBox:"0 -841.7 3270.1 923.7","aria-hidden":"true"},w1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},y1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.554ex",role:"img",focusable:"false",viewBox:"0 -665 1122 687","aria-hidden":"true"},V1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.082ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4014.1 1000","aria-hidden":"true"},M1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.95ex",height:"1.879ex",role:"img",focusable:"false",viewBox:"0 -665 3514.1 830.6","aria-hidden":"true"},b1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.287ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.781ex",height:"4.208ex",role:"img",focusable:"false",viewBox:"0 -1291.1 4765.1 1860","aria-hidden":"true"},E1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.287ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.781ex",height:"4.208ex",role:"img",focusable:"false",viewBox:"0 -1291.1 4765.1 1860","aria-hidden":"true"},C1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},F1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.554ex",role:"img",focusable:"false",viewBox:"0 -665 1122 687","aria-hidden":"true"};function A1(q1,a,z1,S1,O1,J1){return s(),T("div",null,[a[162]||(a[162]=t("h1",{id:"Duffing",tabindex:"-1"},[Q("Finding the staedy states of a Duffing oscillator "),t("a",{class:"header-anchor",href:"#Duffing","aria-label":'Permalink to "Finding the staedy states of a Duffing oscillator {#Duffing}"'},"​")],-1)),t("p",null,[a[2]||(a[2]=Q("Here we show the workflow of HarmonicBalance.jl on a simple example - the driven Duffing oscillator. The equation of motion for the displacement ")),t("mjx-container",m,[(s(),T("svg",h,a[0]||(a[0]=[e('',1)]))),a[1]||(a[1]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x"),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")")])],-1))]),a[3]||(a[3]=Q(" reads"))]),t("mjx-container",p,[(s(),T("svg",g,a[4]||(a[4]=[e('',1)]))),a[5]||(a[5]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("munder",null,[t("mrow",{"data-mjx-texclass":"OP"},[t("munder",null,[t("mrow",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mover",null,[t("mi",null,"x"),t("mo",null,"¨")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mo",null,"+"),t("mi",null,"γ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mover",null,[t("mi",null,"x"),t("mo",null,"˙")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mo",null,"+"),t("msubsup",null,[t("mi",null,"ω"),t("mn",null,"0"),t("mn",null,"2")]),t("mi",null,"x"),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")")]),t("mo",null,"⏟")])]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mtext",null,"damped harmonic oscillator")])]),t("mo",null,"+"),t("munder",null,[t("mrow",{"data-mjx-texclass":"OP"},[t("munder",null,[t("mrow",null,[t("mi",null,"α"),t("mi",null,"x"),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("msup",null,[t("mo",{stretchy:"false"},")"),t("mn",null,"3")])]),t("mo",null,"⏟")])]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mtext",null,"Duffing coefficient")])]),t("mo",null,"="),t("munder",null,[t("mrow",{"data-mjx-texclass":"OP"},[t("munder",null,[t("mrow",null,[t("mi",null,"F"),t("mi",null,"cos"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mi",null,"ω"),t("mi",null,"t"),t("mo",{stretchy:"false"},")")]),t("mo",null,"⏟")])]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mtext",null,"periodic drive")])])])],-1))]),t("p",null,[a[8]||(a[8]=Q("In general, there is no analytical solution to the differential equation. Fortunately, some harmonics are more important than others. By truncating the infinite-dimensional Fourier space to a set of judiciously chosen harmonics, we may obtain a soluble system. For the Duffing resonator, we can well try to only consider the drive frequency ")),t("mjx-container",H,[(s(),T("svg",u,a[6]||(a[6]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D714",d:"M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z",style:{"stroke-width":"3"}})])])],-1)]))),a[7]||(a[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"ω")])],-1))]),a[9]||(a[9]=Q(". To implement this, we use the ")),a[10]||(a[10]=t("em",null,"harmonic ansatz",-1))]),t("mjx-container",c,[(s(),T("svg",k,a[11]||(a[11]=[e('',1)]))),a[12]||(a[12]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("mi",null,"x"),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mi",null,"U"),t("mi",null,"cos"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mi",null,"ω"),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mo",null,"+"),t("mi",null,"V"),t("mi",null,"sin"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mi",null,"ω"),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mstyle",{scriptlevel:"0"},[t("mspace",{width:"0.167em"})]),t("mo",null,",")])],-1))]),t("p",null,[a[19]||(a[19]=Q("which constraints the spectrum of ")),t("mjx-container",w,[(s(),T("svg",x,a[13]||(a[13]=[e('',1)]))),a[14]||(a[14]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x"),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")")])],-1))]),a[20]||(a[20]=Q(" to a single harmonic. Fixing the quadratures ")),t("mjx-container",y,[(s(),T("svg",f,a[15]||(a[15]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D448",d:"M107 637Q73 637 71 641Q70 643 70 649Q70 673 81 682Q83 683 98 683Q139 681 234 681Q268 681 297 681T342 682T362 682Q378 682 378 672Q378 670 376 658Q371 641 366 638H364Q362 638 359 638T352 638T343 637T334 637Q295 636 284 634T266 623Q265 621 238 518T184 302T154 169Q152 155 152 140Q152 86 183 55T269 24Q336 24 403 69T501 205L552 406Q599 598 599 606Q599 633 535 637Q511 637 511 648Q511 650 513 660Q517 676 519 679T529 683Q532 683 561 682T645 680Q696 680 723 681T752 682Q767 682 767 672Q767 650 759 642Q756 637 737 637Q666 633 648 597Q646 592 598 404Q557 235 548 205Q515 105 433 42T263 -22Q171 -22 116 34T60 167V183Q60 201 115 421Q164 622 164 628Q164 635 107 637Z",style:{"stroke-width":"3"}})])])],-1)]))),a[16]||(a[16]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"U")])],-1))]),a[21]||(a[21]=Q(" and ")),t("mjx-container",V,[(s(),T("svg",L,a[17]||(a[17]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D449",d:"M52 648Q52 670 65 683H76Q118 680 181 680Q299 680 320 683H330Q336 677 336 674T334 656Q329 641 325 637H304Q282 635 274 635Q245 630 242 620Q242 618 271 369T301 118L374 235Q447 352 520 471T595 594Q599 601 599 609Q599 633 555 637Q537 637 537 648Q537 649 539 661Q542 675 545 679T558 683Q560 683 570 683T604 682T668 681Q737 681 755 683H762Q769 676 769 672Q769 655 760 640Q757 637 743 637Q730 636 719 635T698 630T682 623T670 615T660 608T652 599T645 592L452 282Q272 -9 266 -16Q263 -18 259 -21L241 -22H234Q216 -22 216 -15Q213 -9 177 305Q139 623 138 626Q133 637 76 637H59Q52 642 52 648Z",style:{"stroke-width":"3"}})])])],-1)]))),a[18]||(a[18]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"V")])],-1))]),a[22]||(a[22]=Q(" to be constant then reduces the differential equation to two coupled cubic polynomial equations (for more details on this step, see the appendices in the ")),a[23]||(a[23]=t("a",{href:"https://scipost.org/SciPostPhysCodeb.6",target:"_blank",rel:"noreferrer"},"white paper",-1)),a[24]||(a[24]=Q("). Finding the roots of coupled polynomials is in general very hard. We here apply the method of homotopy continuation, as implemented in ")),a[25]||(a[25]=t("a",{href:"https://www.juliahomotopycontinuation.org/",target:"_blank",rel:"noreferrer"},"HomotopyContinuation.jl",-1)),a[26]||(a[26]=Q(" which is guaranteed to find the complete set of roots."))]),a[163]||(a[163]=e(`

First we need to declare the symbolic variables (the excellent Symbolics.jl is used here).

julia
using HarmonicBalance
 @variables α ω ω0 F γ t x(t) # declare constant variables and a function x(t)

Next, we have to input the equations of motion. This will be stored as a DifferentialEquation. The input needs to specify that only x is a mathematical variable, the other symbols are parameters:

julia
diff_eq = DifferentialEquation(d(x,t,2) + ω0^2*x + α*x^3 + γ*d(x,t) ~ F*cos*t), x)
System of 1 differential equations
 Variables:       x(t)
 Harmonic ansatz: x(t) => ;   
diff --git a/previews/PR298/assets/tutorials_steady_states.md.gkR3833J.lean.js b/previews/PR298/assets/tutorials_steady_states.md.BySfj_zT.lean.js
similarity index 99%
rename from previews/PR298/assets/tutorials_steady_states.md.gkR3833J.lean.js
rename to previews/PR298/assets/tutorials_steady_states.md.BySfj_zT.lean.js
index 2b7fd615..9c402385 100644
--- a/previews/PR298/assets/tutorials_steady_states.md.gkR3833J.lean.js
+++ b/previews/PR298/assets/tutorials_steady_states.md.BySfj_zT.lean.js
@@ -1,4 +1,4 @@
-import{_ as l,c as T,j as t,a as Q,a4 as e,o as s}from"./chunks/framework.DcvNxhjd.js";const n="/HarmonicBalance.jl/previews/PR298/assets/zmnmjvi.B07IzMp6.png",i="/HarmonicBalance.jl/previews/PR298/assets/olopefk.CY3KP9Dg.png",o="/HarmonicBalance.jl/previews/PR298/assets/jcitgik.UTcoxLl5.png",r="/HarmonicBalance.jl/previews/PR298/assets/absnpig.BNXvpC22.png",N1=JSON.parse('{"title":"Finding the staedy states of a Duffing oscillator","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/steady_states.md","filePath":"tutorials/steady_states.md"}'),d={name:"tutorials/steady_states.md"},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.871ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 1711 1000","aria-hidden":"true"},p={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-4.03ex"},xmlns:"http://www.w3.org/2000/svg",width:"48.629ex",height:"6.03ex",role:"img",focusable:"false",viewBox:"0 -883.9 21494.2 2665.1","aria-hidden":"true"},H={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},k={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"28.664ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 12669.3 1000","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.871ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 1711 1000","aria-hidden":"true"},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.735ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 767 705","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.735ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 767 705","aria-hidden":"true"},E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.267ex",height:"2.072ex",role:"img",focusable:"false",viewBox:"0 -833.9 2770.1 915.9","aria-hidden":"true"},F={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},A={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.212ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.403ex",height:"2.398ex",role:"img",focusable:"false",viewBox:"0 -966.5 4598.1 1060","aria-hidden":"true"},z={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},O={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},G={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.448ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 640 453","aria-hidden":"true"},R={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},P={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.594ex"},xmlns:"http://www.w3.org/2000/svg",width:"42.859ex",height:"2.594ex",role:"img",focusable:"false",viewBox:"0 -883.9 18943.7 1146.5","aria-hidden":"true"},X={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},U={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"0.919ex",height:"1ex",role:"img",focusable:"false",viewBox:"0 -431 406 442","aria-hidden":"true"},W={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},I={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"23.227ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 10266.3 1000","aria-hidden":"true"},$={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},K={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"20.29ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 8968.1 1000","aria-hidden":"true"},Y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.859ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2147.6 1000","aria-hidden":"true"},t1={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},a1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-2.827ex"},xmlns:"http://www.w3.org/2000/svg",width:"58.986ex",height:"6.785ex",role:"img",focusable:"false",viewBox:"0 -1749.5 26071.8 2999","aria-hidden":"true"},Q1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},T1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"24.358ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 10766.3 1000","aria-hidden":"true"},s1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},e1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},l1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.554ex",role:"img",focusable:"false",viewBox:"0 -665 1122 687","aria-hidden":"true"},i1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},r1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.554ex",role:"img",focusable:"false",viewBox:"0 -665 1122 687","aria-hidden":"true"},m1={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},h1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"57.19ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 25277.8 1000","aria-hidden":"true"},p1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},H1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.554ex",role:"img",focusable:"false",viewBox:"0 -665 1122 687","aria-hidden":"true"},c1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.398ex",height:"2.09ex",role:"img",focusable:"false",viewBox:"0 -841.7 3270.1 923.7","aria-hidden":"true"},w1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},y1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.554ex",role:"img",focusable:"false",viewBox:"0 -665 1122 687","aria-hidden":"true"},V1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.082ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4014.1 1000","aria-hidden":"true"},M1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.95ex",height:"1.879ex",role:"img",focusable:"false",viewBox:"0 -665 3514.1 830.6","aria-hidden":"true"},b1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.287ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.781ex",height:"4.208ex",role:"img",focusable:"false",viewBox:"0 -1291.1 4765.1 1860","aria-hidden":"true"},E1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.287ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.781ex",height:"4.208ex",role:"img",focusable:"false",viewBox:"0 -1291.1 4765.1 1860","aria-hidden":"true"},C1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},F1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.554ex",role:"img",focusable:"false",viewBox:"0 -665 1122 687","aria-hidden":"true"};function A1(q1,a,z1,S1,O1,J1){return s(),T("div",null,[a[162]||(a[162]=t("h1",{id:"Duffing",tabindex:"-1"},[Q("Finding the staedy states of a Duffing oscillator "),t("a",{class:"header-anchor",href:"#Duffing","aria-label":'Permalink to "Finding the staedy states of a Duffing oscillator {#Duffing}"'},"​")],-1)),t("p",null,[a[2]||(a[2]=Q("Here we show the workflow of HarmonicBalance.jl on a simple example - the driven Duffing oscillator. The equation of motion for the displacement ")),t("mjx-container",m,[(s(),T("svg",h,a[0]||(a[0]=[e('',1)]))),a[1]||(a[1]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x"),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")")])],-1))]),a[3]||(a[3]=Q(" reads"))]),t("mjx-container",p,[(s(),T("svg",g,a[4]||(a[4]=[e('',1)]))),a[5]||(a[5]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("munder",null,[t("mrow",{"data-mjx-texclass":"OP"},[t("munder",null,[t("mrow",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mover",null,[t("mi",null,"x"),t("mo",null,"¨")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mo",null,"+"),t("mi",null,"γ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mover",null,[t("mi",null,"x"),t("mo",null,"˙")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mo",null,"+"),t("msubsup",null,[t("mi",null,"ω"),t("mn",null,"0"),t("mn",null,"2")]),t("mi",null,"x"),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")")]),t("mo",null,"⏟")])]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mtext",null,"damped harmonic oscillator")])]),t("mo",null,"+"),t("munder",null,[t("mrow",{"data-mjx-texclass":"OP"},[t("munder",null,[t("mrow",null,[t("mi",null,"α"),t("mi",null,"x"),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("msup",null,[t("mo",{stretchy:"false"},")"),t("mn",null,"3")])]),t("mo",null,"⏟")])]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mtext",null,"Duffing coefficient")])]),t("mo",null,"="),t("munder",null,[t("mrow",{"data-mjx-texclass":"OP"},[t("munder",null,[t("mrow",null,[t("mi",null,"F"),t("mi",null,"cos"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mi",null,"ω"),t("mi",null,"t"),t("mo",{stretchy:"false"},")")]),t("mo",null,"⏟")])]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mtext",null,"periodic drive")])])])],-1))]),t("p",null,[a[8]||(a[8]=Q("In general, there is no analytical solution to the differential equation. Fortunately, some harmonics are more important than others. By truncating the infinite-dimensional Fourier space to a set of judiciously chosen harmonics, we may obtain a soluble system. For the Duffing resonator, we can well try to only consider the drive frequency ")),t("mjx-container",H,[(s(),T("svg",u,a[6]||(a[6]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D714",d:"M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z",style:{"stroke-width":"3"}})])])],-1)]))),a[7]||(a[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"ω")])],-1))]),a[9]||(a[9]=Q(". To implement this, we use the ")),a[10]||(a[10]=t("em",null,"harmonic ansatz",-1))]),t("mjx-container",c,[(s(),T("svg",k,a[11]||(a[11]=[e('',1)]))),a[12]||(a[12]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("mi",null,"x"),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mi",null,"U"),t("mi",null,"cos"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mi",null,"ω"),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mo",null,"+"),t("mi",null,"V"),t("mi",null,"sin"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mi",null,"ω"),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mstyle",{scriptlevel:"0"},[t("mspace",{width:"0.167em"})]),t("mo",null,",")])],-1))]),t("p",null,[a[19]||(a[19]=Q("which constraints the spectrum of ")),t("mjx-container",w,[(s(),T("svg",x,a[13]||(a[13]=[e('',1)]))),a[14]||(a[14]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x"),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")")])],-1))]),a[20]||(a[20]=Q(" to a single harmonic. Fixing the quadratures ")),t("mjx-container",y,[(s(),T("svg",f,a[15]||(a[15]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D448",d:"M107 637Q73 637 71 641Q70 643 70 649Q70 673 81 682Q83 683 98 683Q139 681 234 681Q268 681 297 681T342 682T362 682Q378 682 378 672Q378 670 376 658Q371 641 366 638H364Q362 638 359 638T352 638T343 637T334 637Q295 636 284 634T266 623Q265 621 238 518T184 302T154 169Q152 155 152 140Q152 86 183 55T269 24Q336 24 403 69T501 205L552 406Q599 598 599 606Q599 633 535 637Q511 637 511 648Q511 650 513 660Q517 676 519 679T529 683Q532 683 561 682T645 680Q696 680 723 681T752 682Q767 682 767 672Q767 650 759 642Q756 637 737 637Q666 633 648 597Q646 592 598 404Q557 235 548 205Q515 105 433 42T263 -22Q171 -22 116 34T60 167V183Q60 201 115 421Q164 622 164 628Q164 635 107 637Z",style:{"stroke-width":"3"}})])])],-1)]))),a[16]||(a[16]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"U")])],-1))]),a[21]||(a[21]=Q(" and ")),t("mjx-container",V,[(s(),T("svg",L,a[17]||(a[17]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D449",d:"M52 648Q52 670 65 683H76Q118 680 181 680Q299 680 320 683H330Q336 677 336 674T334 656Q329 641 325 637H304Q282 635 274 635Q245 630 242 620Q242 618 271 369T301 118L374 235Q447 352 520 471T595 594Q599 601 599 609Q599 633 555 637Q537 637 537 648Q537 649 539 661Q542 675 545 679T558 683Q560 683 570 683T604 682T668 681Q737 681 755 683H762Q769 676 769 672Q769 655 760 640Q757 637 743 637Q730 636 719 635T698 630T682 623T670 615T660 608T652 599T645 592L452 282Q272 -9 266 -16Q263 -18 259 -21L241 -22H234Q216 -22 216 -15Q213 -9 177 305Q139 623 138 626Q133 637 76 637H59Q52 642 52 648Z",style:{"stroke-width":"3"}})])])],-1)]))),a[18]||(a[18]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"V")])],-1))]),a[22]||(a[22]=Q(" to be constant then reduces the differential equation to two coupled cubic polynomial equations (for more details on this step, see the appendices in the ")),a[23]||(a[23]=t("a",{href:"https://scipost.org/SciPostPhysCodeb.6",target:"_blank",rel:"noreferrer"},"white paper",-1)),a[24]||(a[24]=Q("). Finding the roots of coupled polynomials is in general very hard. We here apply the method of homotopy continuation, as implemented in ")),a[25]||(a[25]=t("a",{href:"https://www.juliahomotopycontinuation.org/",target:"_blank",rel:"noreferrer"},"HomotopyContinuation.jl",-1)),a[26]||(a[26]=Q(" which is guaranteed to find the complete set of roots."))]),a[163]||(a[163]=e(`

First we need to declare the symbolic variables (the excellent Symbolics.jl is used here).

julia
using HarmonicBalance
+import{_ as l,c as T,j as t,a as Q,a4 as e,o as s}from"./chunks/framework.DcvNxhjd.js";const n="/HarmonicBalance.jl/previews/PR298/assets/absnpig.B07IzMp6.png",i="/HarmonicBalance.jl/previews/PR298/assets/omwflhu.CY3KP9Dg.png",o="/HarmonicBalance.jl/previews/PR298/assets/rkshfdy.UTcoxLl5.png",r="/HarmonicBalance.jl/previews/PR298/assets/bkiujaz.BNXvpC22.png",N1=JSON.parse('{"title":"Finding the staedy states of a Duffing oscillator","description":"","frontmatter":{},"headers":[],"relativePath":"tutorials/steady_states.md","filePath":"tutorials/steady_states.md"}'),d={name:"tutorials/steady_states.md"},m={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},h={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.871ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 1711 1000","aria-hidden":"true"},p={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},g={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-4.03ex"},xmlns:"http://www.w3.org/2000/svg",width:"48.629ex",height:"6.03ex",role:"img",focusable:"false",viewBox:"0 -883.9 21494.2 2665.1","aria-hidden":"true"},H={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},c={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},k={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"28.664ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 12669.3 1000","aria-hidden":"true"},w={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"3.871ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 1711 1000","aria-hidden":"true"},y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.735ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 767 705","aria-hidden":"true"},V={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},M={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},b={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.735ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 767 705","aria-hidden":"true"},E={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.74ex",height:"1.595ex",role:"img",focusable:"false",viewBox:"0 -683 769 705","aria-hidden":"true"},C={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"6.267ex",height:"2.072ex",role:"img",focusable:"false",viewBox:"0 -833.9 2770.1 915.9","aria-hidden":"true"},F={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},A={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},q={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.212ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.403ex",height:"2.398ex",role:"img",focusable:"false",viewBox:"0 -966.5 4598.1 1060","aria-hidden":"true"},z={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},S={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},O={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},J={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},G={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},N={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.448ex",height:"1.025ex",role:"img",focusable:"false",viewBox:"0 -442 640 453","aria-hidden":"true"},R={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},P={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.594ex"},xmlns:"http://www.w3.org/2000/svg",width:"42.859ex",height:"2.594ex",role:"img",focusable:"false",viewBox:"0 -883.9 18943.7 1146.5","aria-hidden":"true"},X={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},U={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"0.919ex",height:"1ex",role:"img",focusable:"false",viewBox:"0 -431 406 442","aria-hidden":"true"},W={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},I={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"23.227ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 10266.3 1000","aria-hidden":"true"},$={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},K={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"20.29ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 8968.1 1000","aria-hidden":"true"},Y={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},_={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"4.859ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 2147.6 1000","aria-hidden":"true"},t1={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},a1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-2.827ex"},xmlns:"http://www.w3.org/2000/svg",width:"58.986ex",height:"6.785ex",role:"img",focusable:"false",viewBox:"0 -1749.5 26071.8 2999","aria-hidden":"true"},Q1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},T1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"24.358ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 10766.3 1000","aria-hidden":"true"},s1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},e1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},l1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},n1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.554ex",role:"img",focusable:"false",viewBox:"0 -665 1122 687","aria-hidden":"true"},i1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},o1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},r1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},d1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.554ex",role:"img",focusable:"false",viewBox:"0 -665 1122 687","aria-hidden":"true"},m1={class:"MathJax",jax:"SVG",display:"true",style:{direction:"ltr",display:"block","text-align":"center",margin:"1em 0",position:"relative"}},h1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"57.19ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 25277.8 1000","aria-hidden":"true"},p1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},g1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},H1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},u1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.554ex",role:"img",focusable:"false",viewBox:"0 -665 1122 687","aria-hidden":"true"},c1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},k1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.186ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.398ex",height:"2.09ex",role:"img",focusable:"false",viewBox:"0 -841.7 3270.1 923.7","aria-hidden":"true"},w1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},x1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},y1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},f1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.554ex",role:"img",focusable:"false",viewBox:"0 -665 1122 687","aria-hidden":"true"},V1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},L1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.566ex"},xmlns:"http://www.w3.org/2000/svg",width:"9.082ex",height:"2.262ex",role:"img",focusable:"false",viewBox:"0 -750 4014.1 1000","aria-hidden":"true"},M1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},v1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.375ex"},xmlns:"http://www.w3.org/2000/svg",width:"7.95ex",height:"1.879ex",role:"img",focusable:"false",viewBox:"0 -665 3514.1 830.6","aria-hidden":"true"},b1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},Z1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.287ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.781ex",height:"4.208ex",role:"img",focusable:"false",viewBox:"0 -1291.1 4765.1 1860","aria-hidden":"true"},E1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},D1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-1.287ex"},xmlns:"http://www.w3.org/2000/svg",width:"10.781ex",height:"4.208ex",role:"img",focusable:"false",viewBox:"0 -1291.1 4765.1 1860","aria-hidden":"true"},C1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},j1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.025ex"},xmlns:"http://www.w3.org/2000/svg",width:"1.407ex",height:"1.027ex",role:"img",focusable:"false",viewBox:"0 -443 622 454","aria-hidden":"true"},F1={class:"MathJax",jax:"SVG",style:{direction:"ltr",position:"relative"}},B1={style:{overflow:"visible","min-height":"1px","min-width":"1px","vertical-align":"-0.05ex"},xmlns:"http://www.w3.org/2000/svg",width:"2.538ex",height:"1.554ex",role:"img",focusable:"false",viewBox:"0 -665 1122 687","aria-hidden":"true"};function A1(q1,a,z1,S1,O1,J1){return s(),T("div",null,[a[162]||(a[162]=t("h1",{id:"Duffing",tabindex:"-1"},[Q("Finding the staedy states of a Duffing oscillator "),t("a",{class:"header-anchor",href:"#Duffing","aria-label":'Permalink to "Finding the staedy states of a Duffing oscillator {#Duffing}"'},"​")],-1)),t("p",null,[a[2]||(a[2]=Q("Here we show the workflow of HarmonicBalance.jl on a simple example - the driven Duffing oscillator. The equation of motion for the displacement ")),t("mjx-container",m,[(s(),T("svg",h,a[0]||(a[0]=[e('',1)]))),a[1]||(a[1]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x"),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")")])],-1))]),a[3]||(a[3]=Q(" reads"))]),t("mjx-container",p,[(s(),T("svg",g,a[4]||(a[4]=[e('',1)]))),a[5]||(a[5]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("munder",null,[t("mrow",{"data-mjx-texclass":"OP"},[t("munder",null,[t("mrow",null,[t("mrow",{"data-mjx-texclass":"ORD"},[t("mover",null,[t("mi",null,"x"),t("mo",null,"¨")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mo",null,"+"),t("mi",null,"γ"),t("mrow",{"data-mjx-texclass":"ORD"},[t("mover",null,[t("mi",null,"x"),t("mo",null,"˙")])]),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mo",null,"+"),t("msubsup",null,[t("mi",null,"ω"),t("mn",null,"0"),t("mn",null,"2")]),t("mi",null,"x"),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")")]),t("mo",null,"⏟")])]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mtext",null,"damped harmonic oscillator")])]),t("mo",null,"+"),t("munder",null,[t("mrow",{"data-mjx-texclass":"OP"},[t("munder",null,[t("mrow",null,[t("mi",null,"α"),t("mi",null,"x"),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("msup",null,[t("mo",{stretchy:"false"},")"),t("mn",null,"3")])]),t("mo",null,"⏟")])]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mtext",null,"Duffing coefficient")])]),t("mo",null,"="),t("munder",null,[t("mrow",{"data-mjx-texclass":"OP"},[t("munder",null,[t("mrow",null,[t("mi",null,"F"),t("mi",null,"cos"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mi",null,"ω"),t("mi",null,"t"),t("mo",{stretchy:"false"},")")]),t("mo",null,"⏟")])]),t("mrow",{"data-mjx-texclass":"ORD"},[t("mtext",null,"periodic drive")])])])],-1))]),t("p",null,[a[8]||(a[8]=Q("In general, there is no analytical solution to the differential equation. Fortunately, some harmonics are more important than others. By truncating the infinite-dimensional Fourier space to a set of judiciously chosen harmonics, we may obtain a soluble system. For the Duffing resonator, we can well try to only consider the drive frequency ")),t("mjx-container",H,[(s(),T("svg",u,a[6]||(a[6]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D714",d:"M495 384Q495 406 514 424T555 443Q574 443 589 425T604 364Q604 334 592 278T555 155T483 38T377 -11Q297 -11 267 66Q266 68 260 61Q201 -11 125 -11Q15 -11 15 139Q15 230 56 325T123 434Q135 441 147 436Q160 429 160 418Q160 406 140 379T94 306T62 208Q61 202 61 187Q61 124 85 100T143 76Q201 76 245 129L253 137V156Q258 297 317 297Q348 297 348 261Q348 243 338 213T318 158L308 135Q309 133 310 129T318 115T334 97T358 83T393 76Q456 76 501 148T546 274Q546 305 533 325T508 357T495 384Z",style:{"stroke-width":"3"}})])])],-1)]))),a[7]||(a[7]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"ω")])],-1))]),a[9]||(a[9]=Q(". To implement this, we use the ")),a[10]||(a[10]=t("em",null,"harmonic ansatz",-1))]),t("mjx-container",c,[(s(),T("svg",k,a[11]||(a[11]=[e('',1)]))),a[12]||(a[12]=t("mjx-assistive-mml",{unselectable:"on",display:"block",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",overflow:"hidden",width:"100%"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML",display:"block"},[t("mi",null,"x"),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mo",null,"="),t("mi",null,"U"),t("mi",null,"cos"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mi",null,"ω"),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mo",null,"+"),t("mi",null,"V"),t("mi",null,"sin"),t("mo",{"data-mjx-texclass":"NONE"},"⁡"),t("mo",{stretchy:"false"},"("),t("mi",null,"ω"),t("mi",null,"t"),t("mo",{stretchy:"false"},")"),t("mstyle",{scriptlevel:"0"},[t("mspace",{width:"0.167em"})]),t("mo",null,",")])],-1))]),t("p",null,[a[19]||(a[19]=Q("which constraints the spectrum of ")),t("mjx-container",w,[(s(),T("svg",x,a[13]||(a[13]=[e('',1)]))),a[14]||(a[14]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"x"),t("mo",{stretchy:"false"},"("),t("mi",null,"t"),t("mo",{stretchy:"false"},")")])],-1))]),a[20]||(a[20]=Q(" to a single harmonic. Fixing the quadratures ")),t("mjx-container",y,[(s(),T("svg",f,a[15]||(a[15]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D448",d:"M107 637Q73 637 71 641Q70 643 70 649Q70 673 81 682Q83 683 98 683Q139 681 234 681Q268 681 297 681T342 682T362 682Q378 682 378 672Q378 670 376 658Q371 641 366 638H364Q362 638 359 638T352 638T343 637T334 637Q295 636 284 634T266 623Q265 621 238 518T184 302T154 169Q152 155 152 140Q152 86 183 55T269 24Q336 24 403 69T501 205L552 406Q599 598 599 606Q599 633 535 637Q511 637 511 648Q511 650 513 660Q517 676 519 679T529 683Q532 683 561 682T645 680Q696 680 723 681T752 682Q767 682 767 672Q767 650 759 642Q756 637 737 637Q666 633 648 597Q646 592 598 404Q557 235 548 205Q515 105 433 42T263 -22Q171 -22 116 34T60 167V183Q60 201 115 421Q164 622 164 628Q164 635 107 637Z",style:{"stroke-width":"3"}})])])],-1)]))),a[16]||(a[16]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"U")])],-1))]),a[21]||(a[21]=Q(" and ")),t("mjx-container",V,[(s(),T("svg",L,a[17]||(a[17]=[t("g",{stroke:"currentColor",fill:"currentColor","stroke-width":"0",transform:"scale(1,-1)"},[t("g",{"data-mml-node":"math"},[t("g",{"data-mml-node":"mi"},[t("path",{"data-c":"1D449",d:"M52 648Q52 670 65 683H76Q118 680 181 680Q299 680 320 683H330Q336 677 336 674T334 656Q329 641 325 637H304Q282 635 274 635Q245 630 242 620Q242 618 271 369T301 118L374 235Q447 352 520 471T595 594Q599 601 599 609Q599 633 555 637Q537 637 537 648Q537 649 539 661Q542 675 545 679T558 683Q560 683 570 683T604 682T668 681Q737 681 755 683H762Q769 676 769 672Q769 655 760 640Q757 637 743 637Q730 636 719 635T698 630T682 623T670 615T660 608T652 599T645 592L452 282Q272 -9 266 -16Q263 -18 259 -21L241 -22H234Q216 -22 216 -15Q213 -9 177 305Q139 623 138 626Q133 637 76 637H59Q52 642 52 648Z",style:{"stroke-width":"3"}})])])],-1)]))),a[18]||(a[18]=t("mjx-assistive-mml",{unselectable:"on",display:"inline",style:{top:"0px",left:"0px",clip:"rect(1px, 1px, 1px, 1px)","-webkit-touch-callout":"none","-webkit-user-select":"none","-khtml-user-select":"none","-moz-user-select":"none","-ms-user-select":"none","user-select":"none",position:"absolute",padding:"1px 0px 0px 0px",border:"0px",display:"block",width:"auto",overflow:"hidden"}},[t("math",{xmlns:"http://www.w3.org/1998/Math/MathML"},[t("mi",null,"V")])],-1))]),a[22]||(a[22]=Q(" to be constant then reduces the differential equation to two coupled cubic polynomial equations (for more details on this step, see the appendices in the ")),a[23]||(a[23]=t("a",{href:"https://scipost.org/SciPostPhysCodeb.6",target:"_blank",rel:"noreferrer"},"white paper",-1)),a[24]||(a[24]=Q("). Finding the roots of coupled polynomials is in general very hard. We here apply the method of homotopy continuation, as implemented in ")),a[25]||(a[25]=t("a",{href:"https://www.juliahomotopycontinuation.org/",target:"_blank",rel:"noreferrer"},"HomotopyContinuation.jl",-1)),a[26]||(a[26]=Q(" which is guaranteed to find the complete set of roots."))]),a[163]||(a[163]=e(`

First we need to declare the symbolic variables (the excellent Symbolics.jl is used here).

julia
using HarmonicBalance
 @variables α ω ω0 F γ t x(t) # declare constant variables and a function x(t)

Next, we have to input the equations of motion. This will be stored as a DifferentialEquation. The input needs to specify that only x is a mathematical variable, the other symbols are parameters:

julia
diff_eq = DifferentialEquation(d(x,t,2) + ω0^2*x + α*x^3 + γ*d(x,t) ~ F*cos*t), x)
System of 1 differential equations
 Variables:       x(t)
 Harmonic ansatz: x(t) => ;   
diff --git a/previews/PR298/assets/sstwmep.CF_iK7k1.png b/previews/PR298/assets/vbkkbtx.CF_iK7k1.png
similarity index 100%
rename from previews/PR298/assets/sstwmep.CF_iK7k1.png
rename to previews/PR298/assets/vbkkbtx.CF_iK7k1.png
diff --git a/previews/PR298/assets/bkiujaz.y7rNhHvU.png b/previews/PR298/assets/wyxykfg.y7rNhHvU.png
similarity index 100%
rename from previews/PR298/assets/bkiujaz.y7rNhHvU.png
rename to previews/PR298/assets/wyxykfg.y7rNhHvU.png
diff --git a/previews/PR298/assets/icvvgjo.2MzQm7AU.png b/previews/PR298/assets/zmnmjvi.2MzQm7AU.png
similarity index 100%
rename from previews/PR298/assets/icvvgjo.2MzQm7AU.png
rename to previews/PR298/assets/zmnmjvi.2MzQm7AU.png
diff --git a/previews/PR298/background/harmonic_balance.html b/previews/PR298/background/harmonic_balance.html
index 3c663916..d6c84e11 100644
--- a/previews/PR298/background/harmonic_balance.html
+++ b/previews/PR298/background/harmonic_balance.html
@@ -8,9 +8,9 @@
     
     
     
-    
+    
     
-    
+    
     
     
     
@@ -22,7 +22,7 @@
   
   
     
Skip to content

The method of harmonic balance

Frequency conversion in oscillating nonlinear systems

HarmonicBalance.jl focuses on harmonically-driven nonlinear systems, i.e., dynamical systems governed by equations of motion where all explicitly time-dependent terms are harmonic. Let us take a general nonlinear system of N second-order ODEs with real variables xi(t), i=1,2,,N and time t as the independent variable,

x¨(t)+F(x(t),t)=0.

The vector x(t)=(x1(t),...,xN(t))T fully describes the state of the system. Physically, x(t) encompasses the amplitudes of either point-like or collective oscillators (e.g., mechanical resonators, voltage oscillations in RLC circuits, an oscillating electrical dipole moment, or standing modes of an optical cavity).

As the simplest example, let us first solve the harmonic oscillator in frequency space. The equation of motion is

x¨(t)+γx˙(t)+ω02x(t)=Fcos(ωdt)

where γ is the damping coefficient and ω0 the natural frequency. Fourier-transforming both sides of this equation gives

(ω02ω2+iωγ)x~(ω)=F2[δ(ω+ωd)+δ(ωωd)].

Evidently, x~(ω) is only nonvanishing for ω=±ωd. The system thus responds at the driving frequency only - the behaviour can be captured by a single harmonic. This illustrates the general point that linear systems are exactly solvable by transforming to Fourier space, where the equations are diagonal.

The situation becomes more complex if nonlinear terms are present, as these cause frequency conversion. Suppose we add a quadratic nonlinearity βx2(t) to the equations of motion; an attempt to Fourier-transform gives

FT[x2](ω)=x2(t)eiωtdt=+x~(ω)x~(ω)δ(ω+ωω)dωdω,

which couples all harmonics ω,ω,ω such that ω+ω+ω=0. To lowest order, this means the induced motion at the drive frequency generates a higher harmonic, ωd2ωd. To higher orders however, the frequency conversion propagates through the spectrum, coupling an infinite number of harmonics. The system is not solvable in Fourier space anymore!

Harmonic ansatz & harmonic equations

Even though we need an infinity of Fourier components to describe our system exactly, some components are more important than others. The strategy of harmonic balance is to describe the motion of any variable xi(t) in a truncated Fourier space

xi(t)=j=1Miui,j(T)cos(ωi,jt)+vi,j(T)sin(ωi,jt).

Within this space, the system is described by a finite-dimensional vector

u(T)=(u1,1(T),v1,1(T),uN,MN(T),vN,MN(T))

Under the assumption that u(T) evolves at much slower timescales than the oscillatory terms ωi,jt, we may neglect all of its higher order time derivatives. Notice that once ansatz \eqref{eq:harmansatz} is used in Eq. \eqref{eq:ode}, all terms become oscillatory - each prefactor of cos(ωi,jt) and sin(ωi,jt) thus generates a separate equation. Collecting these, we obtain a 1st order nonlinear ODEs,

du(T)dT=F¯(u),

which we call the harmonic equations. The main purpose of HarmonicBalance.jl is to obtain and solve them. We are primarily interested in steady states u0 defined by F¯(u0)=0.

The process of obtaining the harmonic equations is best shown on an example.

Example: the Duffing oscillator

Here, we derive the harmonic equations for a single Duffing resonator, governed by the equation

x¨(t)+ω02x(t)+αx3(t)=Fcos(ωdt+θ).

As explained in above, for a periodic driving at frequency ωd and a weak nonlinearity α, we expect the response at frequency ωd to dominate, followed by a response at 3ωd due to frequency conversion.

Single-frequency ansatz

We first attempt to describe the steady states of Eq. \eqref{eq:duffing} using only one harmonic, ωd. The starting point is the harmonic ansatz for x

x(t)=u(T)cos(ωdt)+v(T)sin(ωdt),

with the harmonic variables u and v. The slow time T is, for now, equivalent to t. Substituting this ansatz into mechanical equations of motion results in

[u¨+2ωdv˙+u(ω02ωd2)+3α(u3+uv2)4+Fcosθ]cos(ωdt)+[v¨2ωdu˙+v(ω02ωd2)+3α(v3+u2v)4Fsinθ]sin(ωdt)+α(u33uv2)4cos(3ωdt)+α(3u2vv3)4sin(3ωdt)=0.

We see that the x3 term has generated terms that oscillate at 3ωd, describing the process of frequency upconversion. We now Fourier-transform both sides of Eq. \eqref{eq:ansatz1} with respect to ωd to obtain the harmonic equations. This process is equivalent to extracting the respective coefficients of cos(ωdt) and sin(ωdt). Here the distinction between t and T becomes important: since the evolution of u(T) and v(T) is assumed to be slow, they are treated as constant for the purpose of the Fourier transformation. Since we are interested in steady states, we drop the higher-order derivatives and rearrange the resulting equation to

ddT(uv)=18ωd(4v(ω02ωd2)+3α(v3+u2v)4Fsinθ4u(ωd2ω02)3α(u3+uv2)4Fcosθ).

Steady states can now be found by setting the l.h.s. to zero, i.e., assuming u(T) and v(T) constant and neglecting any transient behaviour. This results in a set of 2 nonlinear polynomial equations of order 3, for which the maximum number of solutions set by Bézout's theorem is 32=9. Depending on the parameters, the number of real solutions is known to be between 1 and 3.

Sidenote: perturbative approach

The steady states describe a response that may be recast as x0(t)=X0cos(ωdt+ϕ), where X0=u2+v2 and ϕ=atan(v/u). Frequency conversion from ωd to 3ωd can be found by setting x(t)x0(t)+δx(t) with |δx(t)||x0(t)| and expanding Eq. \eqref{eq:duffing} to first-order in δx(t). The resulting equation

δx¨(t)+[ω02+3αX024]δx(t)=αX034cos(3ωdt+3ϕ),

describes a simple harmonic oscillator, which is exactly soluble. Correspondingly, a response of δx(t) at frequency 3ωd is observed. Since this response is obtained 'on top of' each steady state of the equations of motion, no previously-unknown solutions are generated in the process.

Two-frequency ansatz

An approach in the spirit of harmonic balance is to use both harmonics ωd and 3ωd on the same footing, i.e., to insert the ansatz

x(t)=u1(T)cos(ωdt)+v1(T)sin(ωdt)+u2(T)cos(3ωdt)+v2(T)sin(3ωdt),

with u1,u2,v1,v2 being the harmonic variables. As before we substitute the ansatz into Eq. \eqref{eq:duffing}, drop second derivatives with respect to T and Fourier-transform both sides. Now, the respective coefficients correspond to cos(ωdt), sin(ωdt), cos(3ωdt) and sin(3ωdt). Rearranging, we obtain

du1dT=12ωd[(ω02ωd2)v1+3α4(v13+u12v1+u12v2v12v2+2u22v1+2v22v12u1u2v1)+Fsinθ],dv1dT=12ωd[(ωd2ω02)u13α4(u13+u12u2+v12u1v12u2+2u22u1+2v22u1+2u1v1v2)Fcosθ],du2dT=16ωd[(ω029ωd2)v2+α4(v13+3v23+3u12v1+6u12v2+3u22v2+6v12v2)],dv2dT=16ωd[(9ωd2ω02)u2α4(u13+3u23+6u12u23v12u1+3v22u2+6v12u2)].

In contrast to the single-frequency ansatz, we now have 4 equations of order 3, allowing up to 34=81 solutions (the number of unique real ones is again generally far smaller). The larger number of solutions is explained by higher harmonics which cannot be captured perturbatively by the single-frequency ansatz. In particular, those where the 3ωd component is significant. Such solutions appear, e.g., for ωdω0/3 where the generated 3ωd harmonic is close to the natural resonant frequency. See the examples for numerical results.

- + \ No newline at end of file diff --git a/previews/PR298/background/limit_cycles.html b/previews/PR298/background/limit_cycles.html index 5978e58b..db263edf 100644 --- a/previews/PR298/background/limit_cycles.html +++ b/previews/PR298/background/limit_cycles.html @@ -8,9 +8,9 @@ - + - + @@ -22,7 +22,7 @@
Skip to content

Limit cycles

We explain how HarmonicBalance.jl uses a new technique to find limit cycles in systems of nonlinear ODEs. For a more in depth overwiew see Chapter 6 in Jan Košata's PhD theses or del_Pino_2024.

Limit cycles from a Hopf bifurcation

The end product of the harmonic balance technique are what we call the harmonic equations, i.e., first-order ODEs for the harmonic variables U(T):

dU(T)dT=G(U)

These Odes have no explicit time-dependence - they are autonomous. We have mostly been searching for steady states, which likewise show no time dependence. However, time-dependent solutions to autonomous ODEs can also exist. One mechanism for their creation is a Hopf bifurcation - a critical point where a stable solution transitions into an unstable one. For a stable solution, the associated eigenvalues λ of the linearisation all satisfy Re(λ)<0. When a Hopf bifurcation takes place, one complex-conjugate pair of eigenvalues crosses the real axis such that Re(λ)>0. The state is then, strictly speaking, unstable. However, instead of evolving into another steady state, the system may assume a periodic orbit in phase space, giving a solution of the form

U(T)=U0+Ulccos(ωlcT+ϕ)

which is an example of a limit cycle. We denote the originating steady state as Hopf-unstable.

We can continue to use harmonic balance as the solution still describes a harmonic response Allwright (1977). If we translate back to the the lab frame [variable x(t)], clearly, each frequency ωj constituting our harmonic ansatz [U(T)], we obtain frequencies ωj as well as ωj±ωlc  in the lab frame. Furthermore, as multiple harmonics now co-exist in the system, frequency conversion may take place, spawning further pairs ωj±kωlc  with integer k. Therefore, to construct a harmonic ansatz capturing limit cycles, we simply add an integer number K of such pairs to our existing set of M harmonics,

{ω1,,ωM}{ω1,ω1±ωlc,ω1±2ωlc,,ωM±Kωlc}

Ansatz

Original ansatz

Having seen how limit cycles are formed, we now proceed to tackle a key problem: how to find their frequency ωlc. We again demonstrate by considering a single variable x(t). We may try the simplest ansatz for a system driven at frequency ω,

x(t)=u1(T)cos(ωt)+v1(T)sin(ωt)

In this formulation, limit cycles may be obtained by solving the resulting harmonic equations with a Runge-Kutta type solver to obtain the time evolution of u1(T) and v1(T). See the limit cycle tutorial for an example.

Extended ansatz

Including newly-emergent pairs of harmonics is in principle straightforward. Suppose a limit cycle has formed in our system with a frequency ωlc, prompting the ansatz

x(t)=u1cos(ωt)+v1sin(ωt)+u2cos[(ω+ωlc)t]+v2sin[(ω+ωlc)t]+u3cos[(ωωlc)t]+v3sin[(ωωlc)t]+

where each of the ω±kωlc  pairs contributes 4 harmonic variables. The limit cycle frequency ωlc is also a variable in this formulation, but does not contribute a harmonic equation, since dωlc/dT=0 by construction. We thus arrive at a total of 2+4K harmonic equations in 2+4K+1 variables. To obtain steady states, we must thus solve an underdetermined system, which has an infinite number of solutions. Given that we expect the limit cycles to possess U(1) gauge freedom, this is a sensible observation. We may still use iterative numerical procedures such as the Newton method to find solutions one by one, but homotopy continuation is not applicable. In this formulation, steady staes states are characterised by zero entries for u2,v2,u2K+1,v2K+1. The variable ωlc  is redundant and may take any value - the states therefore also appear infinitely degenerate, which, however, has no physical grounds. Oppositely, solutions may appear for which some of the limit cycle variables u2,v2,u2K+1,v2K+1 are nonzero, but ωlc =0. These violate our assumption of distinct harmonic variables corresponding to distinct frequencies and are therefore discarded.

Gauge fixing

We now constrain the system to remove the U(1) gauge freedom. This is best done by explicitly writing out the free phase. Recall that our solution must be symmetric under a time translation symmetry, that is, taking tt+2π/ω. Applying this n times transforms x(t) into

x(t)=u1cos(ωt)+v1sin(ωt)+u2cos[(ω+ωlc)t+ϕ]+v2sin[(ω+ωlc)t+ϕ]+u3cos[(ωωlc)tϕ]+v3sin[(ωωlc)tϕ]+

where we defined ϕ=2πnωlc /ω. Since ϕ is free, we can fix it to, for example,

ϕ=arctanu2/v2

which turns into

x(t)=u1cos(ωt)+v1sin(ωt)+(v2cosϕu2sinϕ)sin[(ω+ωlc)t]+(u3cosϕv3sinϕ)cos[(ωωlc)t]+(v3cosϕ+u3sinϕ)[(ωωlc)t]+

We see that fixing the free phase has effectively removed one of the variables, since cos[(ω+ωlc )t] does not appear any more. Discarding u2, we can therefore use 2+4K variables as our harmonic ansatz, i.e.,

U=(u1v1v2v2K+1ωlc)

to remove the infinite degeneracy. Note that ϕ is only defined modulo π, but its effect on the harmonic variables is not. Choosing ϕ=arctanu2/v2+π would invert the signs of v2,u3,v3. As a result, each solution is doubly degenerate. Combined with the sign ambiguity of ωlc , we conclude that under the new ansatz, a limit cycle solution appears as a fourfold-degenerate steady state.

The harmonic equations can now be solved using homotopy continuation to obtain all steady states. Compared to the single-harmonic ansatz however, we have significantly enlarged the polynomial system to be solved. As the number of solutions scales exponentially (Bézout bound), we expect vast numbers of solutions even for fairly small systems.

- + \ No newline at end of file diff --git a/previews/PR298/background/stability_response.html b/previews/PR298/background/stability_response.html index 1721f4b6..93b20b17 100644 --- a/previews/PR298/background/stability_response.html +++ b/previews/PR298/background/stability_response.html @@ -8,9 +8,9 @@ - + - + @@ -22,7 +22,7 @@
Skip to content

Stability and linear response

The core of the harmonic balance method is expressing the system's behaviour in terms of Fourier components or harmonics. For an N-coordinate system, we choose a set of Mi harmonics to describe each coordinate xi :

xi(t)=j=1Miui,j(T)cos(ωi,jt)+vi,j(T)sin(ωi,jt),

This means the system is now described using a discrete set of variables ui,j and vi,j. Constructing the vector

u(T)=(u1,1(T),v1,1(T),uN,MN(T),vN,MN(T)),

we may obtain the harmonic equations (see an example of this procedure)

du(T)dT=F¯(u)

where F¯(u) is a nonlinear function. A steady state u0 is defined by F¯(u0)=0.

Stability

Let us assume that we found a steady state u0. When the system is in this state, it responds to small perturbations either by returning to u0 over some characteristic timescale (stable state) or by evolving away from u0 (unstable state). To analyze the stability of u0, we linearize the equations of motion around u0 for a small perturbation δu=uu0 to obtain

ddT[δu(T)]=J(u0)δu(T),

where J(u0)=uF¯|u=u0 is the Jacobian matrix of the system evaluated at u=u0.

The linearised system is exactly solvable for δu(T) given an initial condition δu(T0). The solution can be expanded in terms of the complex eigenvalues λr and eigenvectors vr of J(u0), namely

δu(T)=rcrvreλrT.

The dynamical behaviour near the steady states is thus governed by eλrT: if Re(λr)<0 for all λr, the state u0 is stable. Conversely, if Re(λr)>0 for at least one λr, the state is unstable - perturbations such as noise or a small applied drive will force the system away from u0.

Linear response

The response of a stable steady state to an additional oscillatory force, caused by weak probes or noise, is often of interest. It can be calculated by solving for the perturbation δu(T) in the presence of an additional drive term.

ddT[δu(T)]=J(u0)δu(T)+ξeiΩT,

Suppose we have found an eigenvector of J(u0) such that J(u)v=λv. To solve the linearised equations of motion, we insert δu(T)=A(Ω)veiΩT. Projecting each side onto v gives

A(Ω)(iΩλ)=ξvA(Ω)=ξvRe[λ]+i(ΩIm[λ])

We see that each eigenvalue λ results in a linear response that is a Lorentzian centered at Ω=Im[λ]. Effectively, the linear response matches that of a harmonic oscillator with resonance frequency Im[λ] and damping Re[λ].

Knowing the response of the harmonic variables u(T), what is the corresponding behaviour of the "natural" variables xi(t)? To find this out, we insert the perturbation back into the harmonic ansatz. Since we require real variables, let us use δu(T)=A(Ω)(veiΩT+veiΩT). Plugging this into

δxi(t)=j=1Miδui,j(t)cos(ωi,jt)+δvi,j(t)sin(ωi,jt)

and multiplying out the sines and cosines gives

δxi(t)=j=1Mi{(Re[δui,j]Im[δvi,j])cos[(ωi,jΩ)t]+(Im[δui,j]+Re[δvi,j])sin[(ωi,jΩ)t]+(Re[δui,j]+Im[δvi,j])cos[(ωi,j+Ω)t]+(Im[δui,j]+Re[δvi,j])sin[(ωi,j+Ω)t]}

where δui,j and δvi,j are the components of δu corresponding to the respective harmonics ωi,j.

We see that a motion of the harmonic variables at frequency Ω appears as motion of δxi(t) at frequencies ωi,j±Ω.

To make sense of this, we normalize the vector δu and use normalised components δu^i,j and δv^i,j. We also define the Lorentzian distribution

L(x)x0,γ=1(xx0)2+γ2

We see that all components of δxi(t) are proportional to L(Ω)Im[λ],Re[λ]. The first and last two summands are Lorentzians centered at ±Ω which oscillate at ωi,j±Ω, respectively. From this, we can extract the linear response function in Fourier space, χ(ω~)

|χ[δxi](ω~)|2=j=1Mi{[(Re[δu^i,j]Im[δv^i,j])2+(Im[δu^i,j]+Re[δv^i,j])2]L(ωi,jω~)Im[λ],Re[λ]+[(Re[δu^i,j]+Im[δv^i,j])2+(Re[δv^i,j]Im[δu^i,j])2]L(ω~ωi,j)Im[λ],Re[λ]}

Keeping in mind that L(x)x0,γ=L(x+Δ)x0+Δ,γ and the normalization δu^i,j2+δv^i,j2=1, we can rewrite this as

|χ[δxi](ω~)|2=j=1Mi(1+αi,j)L(ω~)ωi,jIm[λ],Re[λ]+(1αi,j)L(ω~)ωi,j+Im[λ],Re[λ]

where

αi,j=2(Im[δu^i,j]Re[δv^i,j]Re[δu^i,j]Im[δv^i,j])

The above solution applies to every eigenvalue λ of the Jacobian. It is now clear that the linear response function χ[δxi](ω~) contains for each eigenvalue λr and harmonic ωi,j :

  • A Lorentzian centered at ωi,jIm[λr] with amplitude 1+αi,j(r)

  • A Lorentzian centered at ωi,j+Im[λr] with amplitude 1αi,j(r)

Sidenote: As J a real matrix, there is an eigenvalue λr for each λr. The maximum number of peaks in the linear response is thus equal to the dimensionality of u(T).

The linear response of the system in the state u0 is thus fully specified by the complex eigenvalues and eigenvectors of J(u0). In HarmonicBalance.jl, the module LinearResponse creates a set of plottable Lorentzian objects to represent this.

Check out this example of the linear response module of HarmonicBalance.jl

- + \ No newline at end of file diff --git a/previews/PR298/examples/index.html b/previews/PR298/examples/index.html index 9102f840..824b45d0 100644 --- a/previews/PR298/examples/index.html +++ b/previews/PR298/examples/index.html @@ -8,9 +8,9 @@ - + - + @@ -23,7 +23,7 @@ - + \ No newline at end of file diff --git a/previews/PR298/examples/parametric_via_three_wave_mixing.html b/previews/PR298/examples/parametric_via_three_wave_mixing.html index 2142ab39..af1db72e 100644 --- a/previews/PR298/examples/parametric_via_three_wave_mixing.html +++ b/previews/PR298/examples/parametric_via_three_wave_mixing.html @@ -8,11 +8,11 @@ - + - + - + @@ -32,11 +32,11 @@ fixed ==> 1.0, β => 1.0, ω0 => 1.0, γ => 0.005, F => 0.0025) # fixed parameters result = get_steady_states(harmonic_eq, varied, fixed) -plot(result; y="u1^2+v1^2")

If we set the cubic nonlinearity to zero, we recover the driven damped harmonic oscillator. Indeed, thefirst order the quadratic nonlinearity has no affect on the system.

If we set the cubic nonlinearity to zero, we recover the driven damped harmonic oscillator. Indeed, thefirst order the quadratic nonlinearity has no affect on the system.

2nd order Krylov expansion

The quadratic nonlinearity β together with the drive at 2ω gives the effective parametric drive λeff=2F1β3mω2. But the cubic nonlinearity α is still needed to get the period doubling bifurcation through λeff.

julia
@variables β α ω ω0 F γ t x(t)
+plot(result; y="u1^2+v1^2")

2nd order Krylov expansion

The quadratic nonlinearity β together with the drive at 2ω gives the effective parametric drive λeff=2F1β3mω2. But the cubic nonlinearity α is still needed to get the period doubling bifurcation through λeff.

julia
@variables β α ω ω0 F γ t x(t)
 diff_eq = DifferentialEquation(
     d(x, t, 2) + ω0^2 * x + β * x^2 + α * x^3 + γ * d(x, t) ~ F * cos(2ω * t), x
 )
@@ -57,13 +57,13 @@
 fixed ==> 1.0, β => 2.0, ω0 => 1.0, γ => 0.001, F => 0.005)
 
 result = get_steady_states(harmonic_eq2, varied, fixed)
-plot(result; y="v1")

julia
varied ==> range(0.4, 0.6, 100), F => range(1e-6, 0.01, 50))
+plot(result; y="v1")

julia
varied ==> range(0.4, 0.6, 100), F => range(1e-6, 0.01, 50))
 fixed ==> 1.0, β => 2.0, ω0 => 1.0, γ => 0.01)
 
 method = TotalDegree()
 result = get_steady_states(harmonic_eq2, method, varied, fixed)
-plot_phase_diagram(result; class="stable")


This page was generated using Literate.jl.

- +plot_phase_diagram(result; class="stable")


This page was generated using Literate.jl.

+ \ No newline at end of file diff --git a/previews/PR298/examples/parametron.html b/previews/PR298/examples/parametron.html index e9b8ba93..69d29fd9 100644 --- a/previews/PR298/examples/parametron.html +++ b/previews/PR298/examples/parametron.html @@ -8,11 +8,11 @@ - + - + - + @@ -59,9 +59,9 @@ plot!(result, "sqrt(u1^2 + v1^2)"; not_class="large")

Alternatively, we may visualise all underlying solutions, including complex ones,

julia
plot(result, "sqrt(u1^2 + v1^2)"; class="all")

2D parameters

The parametrically driven oscillator boasts a stability diagram called "Arnold's tongues" delineating zones where the oscillator is stable from those where it is exponentially unstable (if the nonlinearity was absence). We can retrieve this diagram by calculating the steady states as a function of external detuning δ=ωLω0 and the parametric drive strength λ.

To perform a 2D sweep over driving frequency ω and parametric drive strength λ, we keep fixed from before but include 2 variables in varied

julia
fixed = (ω₀ => 1.0, γ => 1e-2, F => 1e-3, α => 1.0, η => 0.3)
 varied ==> range(0.8, 1.2, 50), λ => range(0.001, 0.6, 50))
 result_2D = get_steady_states(harmonic_eq, varied, fixed);

-Solving for 2500 parameters...  50%|██████████          |  ETA: 0:00:01
-  # parameters solved:  1253
-  # paths tracked:      6265
+Solving for 2500 parameters...  51%|██████████▏         |  ETA: 0:00:01
+  # parameters solved:  1263
+  # paths tracked:      6315
 
 
 
@@ -69,8 +69,8 @@
 
 
 Solving for 2500 parameters...  79%|███████████████▊    |  ETA: 0:00:00
-  # parameters solved:  1964
-  # paths tracked:      9820
+  # parameters solved:  1973
+  # paths tracked:      9865
 
 
 
@@ -82,7 +82,7 @@
   # paths tracked:      12500

Now, we count the number of solutions for each point and represent the corresponding phase diagram in parameter space. This is done using plot_phase_diagram. Only counting stable solutions,

julia
plot_phase_diagram(result_2D; class="stable")

In addition to phase diagrams, we can plot functions of the solution. The syntax is identical to 1D plotting. Let us overlay 2 branches into a single plot,

julia
# overlay branches with different colors
 plot(result_2D, "sqrt(u1^2 + v1^2)"; branch=1, class="stable", camera=(60, -40))
 plot!(result_2D, "sqrt(u1^2 + v1^2)"; branch=2, class="stable", color=:red)

Note that solutions are ordered in parameter space according to their closest neighbors. Plots can again be limited to a given class (e.g stable solutions only) through the keyword argument class.


This page was generated using Literate.jl.

- + \ No newline at end of file diff --git a/previews/PR298/examples/wave_mixing.html b/previews/PR298/examples/wave_mixing.html index 574fb8bb..c4781c35 100644 --- a/previews/PR298/examples/wave_mixing.html +++ b/previews/PR298/examples/wave_mixing.html @@ -8,11 +8,11 @@ - + - + - + @@ -60,22 +60,22 @@ p1 = plot(result; y="√(u1^2+v1^2)", legend=:best) p2 = plot(result; y="√(u2^2+v2^2)", legend=:best, ylims=(-0.1, 0.1)) p3 = plot(result; y="√(u3^2+v3^2)", legend=:best) -plot(p1, p2, p3; layout=(1, 3), size=(900, 300), margin=5mm)

Three wave mixing

If we only have a cubic nonlineariy α, we observe the normal duffing oscillator response with no response at 2ω.

We would like to investigate the three-wave mixing of the driven Duffing oscillator. This means we can excite the system resonantly if the oscillation frequencies ω1 and ω2 fullfil the conditions ω1±ω2=±ω0. Here, we will especially focus on the degenerate three wave mixing, where ω2=ω0 such that 2ω0=ω1. This is a very important process in quantum optics, since it allows us to generate photons with a frequency in the visible range from photons with a frequency in the infrared range. This is called frequency doubling and is used in many applications, e.g. in laser pointers.

julia
varied ==> range(0.9, 1.2, 200))
+plot(p1, p2, p3; layout=(1, 3), size=(900, 300), margin=5mm)

Three wave mixing

If we only have a cubic nonlineariy α, we observe the normal duffing oscillator response with no response at 2ω.

We would like to investigate the three-wave mixing of the driven Duffing oscillator. This means we can excite the system resonantly if the oscillation frequencies ω1 and ω2 fullfil the conditions ω1±ω2=±ω0. Here, we will especially focus on the degenerate three wave mixing, where ω2=ω0 such that 2ω0=ω1. This is a very important process in quantum optics, since it allows us to generate photons with a frequency in the visible range from photons with a frequency in the infrared range. This is called frequency doubling and is used in many applications, e.g. in laser pointers.

julia
varied ==> range(0.9, 1.2, 200))
 fixed ==> 0.0, β => 1.0, ω0 => 1.0, γ => 0.005, F => 0.0025)
 result = get_steady_states(harmonic_eq, varied, fixed)
 
 p1 = plot(result; y="√(u1^2+v1^2)", legend=:best)
 p2 = plot(result; y="√(u2^2+v2^2)", legend=:best, ylims=(-0.1, 0.1))
 p3 = plot(result; y="√(u3^2+v3^2)", legend=:best)
-plot(p1, p2, p3; layout=(1, 3), size=(900, 300), margin=5mm)

Both

If we only have a cubic nonlineariy α, we observe the normal duffing oscillator response with no response at 2ω.

We would like to investigate the three-wave mixing of the driven Duffing oscillator. This means we can excite the system resonantly if the oscillation frequencies ω1 and ω2 fullfil the conditions ω1±ω2=±ω0. Here, we will especially focus on the degenerate three wave mixing, where ω2=ω0 such that 2ω0=ω1. This is a very important process in quantum optics, since it allows us to generate photons with a frequency in the visible range from photons with a frequency in the infrared range. This is called frequency doubling and is used in many applications, e.g. in laser pointers.

julia
varied ==> range(0.9, 1.2, 200))
+plot(p1, p2, p3; layout=(1, 3), size=(900, 300), margin=5mm)

Both

If we only have a cubic nonlineariy α, we observe the normal duffing oscillator response with no response at 2ω.

We would like to investigate the three-wave mixing of the driven Duffing oscillator. This means we can excite the system resonantly if the oscillation frequencies ω1 and ω2 fullfil the conditions ω1±ω2=±ω0. Here, we will especially focus on the degenerate three wave mixing, where ω2=ω0 such that 2ω0=ω1. This is a very important process in quantum optics, since it allows us to generate photons with a frequency in the visible range from photons with a frequency in the infrared range. This is called frequency doubling and is used in many applications, e.g. in laser pointers.

julia
varied ==> range(0.9, 1.2, 200))
 fixed ==> 1.0, β => 1.0, ω0 => 1.0, γ => 0.005, F => 0.0025)
 result = get_steady_states(harmonic_eq, varied, fixed)
 
 p1 = plot(result; y="√(u1^2+v1^2)", legend=:best)
 p2 = plot(result; y="√(u2^2+v2^2)", legend=:best, ylims=(-0.1, 0.1))
 p3 = plot(result; y="√(u3^2+v3^2)", legend=:best)
-plot(p1, p2, p3; layout=(1, 3), size=(900, 300), margin=5mm)


This page was generated using Literate.jl.

- +plot(p1, p2, p3; layout=(1, 3), size=(900, 300), margin=5mm)


This page was generated using Literate.jl.

+ \ No newline at end of file diff --git a/previews/PR298/hashmap.json b/previews/PR298/hashmap.json index c8da55ab..c8316695 100644 --- a/previews/PR298/hashmap.json +++ b/previews/PR298/hashmap.json @@ -1 +1 @@ -{"background_harmonic_balance.md":"DLAraYI1","background_limit_cycles.md":"CFaJ5DXy","background_stability_response.md":"C2O8TKow","examples_index.md":"BDcHa8Hd","examples_parametric_via_three_wave_mixing.md":"C_TUhlcu","examples_parametron.md":"CppdrFjS","examples_wave_mixing.md":"Bn8hc4od","index.md":"CaBhjcds","introduction_citation.md":"Bb4cfish","introduction_index.md":"DWcINcP4","introduction_resources.md":"_pUQbhkJ","manual_entering_eom.md":"DCB_x1bm","manual_extracting_harmonics.md":"BF5zlRR-","manual_krylov-bogoliubov_method.md":"DVmZeoVi","manual_linear_response.md":"0Nnqm4c-","manual_methods.md":"Djy_jbuV","manual_plotting.md":"BsDV_6pI","manual_saving.md":"Dsqj9lkP","manual_solving_harmonics.md":"BNtGzorW","manual_time_dependent.md":"Du-_Z03b","tutorials_classification.md":"CJnBmxA2","tutorials_index.md":"DHHThvfZ","tutorials_limit_cycles.md":"C1gWwotW","tutorials_linear_response.md":"PMCbi141","tutorials_steady_states.md":"gkR3833J","tutorials_time_dependent.md":"C34cYXXy"} +{"background_harmonic_balance.md":"DLAraYI1","background_limit_cycles.md":"CFaJ5DXy","background_stability_response.md":"C2O8TKow","examples_index.md":"BDcHa8Hd","examples_parametric_via_three_wave_mixing.md":"CDmqTf3s","examples_parametron.md":"BisKADsJ","examples_wave_mixing.md":"nPQR0uea","index.md":"CaBhjcds","introduction_citation.md":"Bb4cfish","introduction_index.md":"BoGsh2BE","introduction_resources.md":"_pUQbhkJ","manual_entering_eom.md":"C-sG7qQL","manual_extracting_harmonics.md":"Cpv7m-2B","manual_krylov-bogoliubov_method.md":"DoOiZlmG","manual_linear_response.md":"K1dOkrxg","manual_methods.md":"-11YqXIu","manual_plotting.md":"B3Zx1lZ_","manual_saving.md":"DxkqPXKw","manual_solving_harmonics.md":"CUoAwVIW","manual_time_dependent.md":"DklFRcLU","tutorials_classification.md":"Cgq0-zEf","tutorials_index.md":"DHHThvfZ","tutorials_limit_cycles.md":"B6_qaUZm","tutorials_linear_response.md":"BYTLHXLI","tutorials_steady_states.md":"BySfj_zT","tutorials_time_dependent.md":"C34cYXXy"} diff --git a/previews/PR298/index.html b/previews/PR298/index.html index 4d33be93..c3aa4267 100644 --- a/previews/PR298/index.html +++ b/previews/PR298/index.html @@ -8,9 +8,9 @@ - + - + @@ -22,7 +22,7 @@
Skip to content

HarmonicBalance.jl

Efficient Floquet expansions for nonlinear driven systems

A Julia suite for nonlinear dynamics using harmonic balance

HarmonicBalance.jl
- + \ No newline at end of file diff --git a/previews/PR298/introduction/citation.html b/previews/PR298/introduction/citation.html index e9958d8b..eb925146 100644 --- a/previews/PR298/introduction/citation.html +++ b/previews/PR298/introduction/citation.html @@ -8,9 +8,9 @@ - + - + @@ -22,7 +22,7 @@
Skip to content

Citation

If you use HarmonicBalance.jl in your project, we kindly ask you to cite this paper, namely:

HarmonicBalance.jl: A Julia suite for nonlinear dynamics using harmonic balance, Jan Košata, Javier del Pino, Toni L. Heugel, Oded Zilberberg, SciPost Phys. Codebases 6 (2022)

The limit cycle finding algorithm is based on the work of this paper:

Limit cycles as stationary states of an extended harmonic balance ansatz J. del Pino, J. Košata, and O. Zilberberg, Phys. Rev. Res. 6, 033180 (2024).

- + \ No newline at end of file diff --git a/previews/PR298/introduction/index.html b/previews/PR298/introduction/index.html index ccd8844d..52fbefc2 100644 --- a/previews/PR298/introduction/index.html +++ b/previews/PR298/introduction/index.html @@ -8,11 +8,11 @@ - + - + - + @@ -41,8 +41,8 @@ of which real: 3 of which stable: 2 -Classes: stable, physical, Hopf, binary_labels

The obtained steady states can be plotted as a function of the driving frequency:

julia
plot(result, "sqrt(u1^2 + v1^2)")

If you want learn more on what you can do with HarmonicBalance.jl, check out the tutorials. We also have collected some examples of different physical systems.

- +Classes: stable, physical, Hopf, binary_labels

The obtained steady states can be plotted as a function of the driving frequency:

julia
plot(result, "sqrt(u1^2 + v1^2)")

If you want learn more on what you can do with HarmonicBalance.jl, check out the tutorials. We also have collected some examples of different physical systems.

+ \ No newline at end of file diff --git a/previews/PR298/introduction/resources.html b/previews/PR298/introduction/resources.html index c192d3c3..3ac82af8 100644 --- a/previews/PR298/introduction/resources.html +++ b/previews/PR298/introduction/resources.html @@ -8,9 +8,9 @@ - + - + @@ -22,7 +22,7 @@ - + \ No newline at end of file diff --git a/previews/PR298/manual/Krylov-Bogoliubov_method.html b/previews/PR298/manual/Krylov-Bogoliubov_method.html index 84b0b84d..53ccd3b4 100644 --- a/previews/PR298/manual/Krylov-Bogoliubov_method.html +++ b/previews/PR298/manual/Krylov-Bogoliubov_method.html @@ -8,11 +8,11 @@ - + - + - + @@ -49,8 +49,8 @@ ((1//2)*^2)*v1(T) - (1//2)*(ω0^2)*v1(T)) / ω ~ Differential(T)(u1(T)) -((1//2)*(ω0^2)*u1(T) - (1//2)*F - (1//2)*^2)*u1(T)) / ω ~ Differential(T)(v1(T))

source

For further information and a detailed understanding of this method, refer to Krylov-Bogoliubov averaging method on Wikipedia.

- +((1//2)*(ω0^2)*u1(T) - (1//2)*F - (1//2)*^2)*u1(T)) / ω ~ Differential(T)(v1(T))

source

For further information and a detailed understanding of this method, refer to Krylov-Bogoliubov averaging method on Wikipedia.

+ \ No newline at end of file diff --git a/previews/PR298/manual/entering_eom.html b/previews/PR298/manual/entering_eom.html index 740fe910..be2a20fe 100644 --- a/previews/PR298/manual/entering_eom.html +++ b/previews/PR298/manual/entering_eom.html @@ -8,11 +8,11 @@ - + - + - + @@ -28,7 +28,7 @@ julia> DifferentialEquation(d(x,t,2) + ω0^2 * x ~ F * cos*t), x); # two coupled oscillators, one of them driven -julia> DifferentialEquation([d(x,t,2) + ω0^2 * x - k*y, d(y,t,2) + ω0^2 * y - k*x] .~ [F * cos*t), 0], [x,y]);

source

HarmonicBalance.add_harmonic! Function
julia
add_harmonic!(diff_eom::DifferentialEquation, var::Num, ω)

Add the harmonic ω to the harmonic ansatz used to expand the variable var in diff_eom.

Example

define the simple harmonic oscillator and specify that x(t) oscillates with frequency ω

julia
julia> @variables t, x(t), y(t), ω0, ω, F, k;
+julia> DifferentialEquation([d(x,t,2) + ω0^2 * x - k*y, d(y,t,2) + ω0^2 * y - k*x] .~ [F * cos*t), 0], [x,y]);

source

HarmonicBalance.add_harmonic! Function
julia
add_harmonic!(diff_eom::DifferentialEquation, var::Num, ω)

Add the harmonic ω to the harmonic ansatz used to expand the variable var in diff_eom.

Example

define the simple harmonic oscillator and specify that x(t) oscillates with frequency ω

julia
julia> @variables t, x(t), y(t), ω0, ω, F, k;
 julia> diff_eq = DifferentialEquation(d(x,t,2) + ω0^2 * x ~ F * cos*t), x);
 julia> add_harmonic!(diff_eq, x, ω) # expand x using ω
 
@@ -36,10 +36,10 @@
 Variables:       x(t)
 Harmonic ansatz: x(t) => ω;
 
-(ω0^2)*x(t) + Differential(t)(Differential(t)(x(t))) ~ F*cos(t*ω)

source

Symbolics.get_variables Method
julia
get_variables(diff_eom::DifferentialEquation) -> Vector{Num}

Return the dependent variables of diff_eom.

source

HarmonicBalance.get_independent_variables Method
julia
get_independent_variables(
+(ω0^2)*x(t) + Differential(t)(Differential(t)(x(t))) ~ F*cos(t*ω)

source

Symbolics.get_variables Method
julia
get_variables(diff_eom::DifferentialEquation) -> Vector{Num}

Return the dependent variables of diff_eom.

source

HarmonicBalance.get_independent_variables Method
julia
get_independent_variables(
     diff_eom::DifferentialEquation
-) -> Any

Return the independent dependent variables of diff_eom.

source

- +) -> Any

Return the independent dependent variables of diff_eom.

source

+ \ No newline at end of file diff --git a/previews/PR298/manual/extracting_harmonics.html b/previews/PR298/manual/extracting_harmonics.html index 31c6f340..0956f0d8 100644 --- a/previews/PR298/manual/extracting_harmonics.html +++ b/previews/PR298/manual/extracting_harmonics.html @@ -8,11 +8,11 @@ - + - + - + @@ -43,17 +43,17 @@ (ω0^2)*u1(T) + (2//1)*ω*Differential(T)(v1(T)) -^2)*u1(T) ~ F -(ω0^2)*v1(T) -^2)*v1(T) - (2//1)*ω*Differential(T)(u1(T)) ~ 0

source

HarmonicBalance.harmonic_ansatz Function
julia
harmonic_ansatz(eom::DifferentialEquation, time::Num; coordinates="Cartesian")

Expand each variable of diff_eom using the harmonics assigned to it with time as the time variable. For each harmonic of each variable, instance(s) of HarmonicVariable are automatically created and named.

source

HarmonicBalance.slow_flow Function
julia
slow_flow(eom::HarmonicEquation; fast_time::Num, slow_time::Num, degree=2)

Removes all derivatives w.r.t fast_time (and their products) in eom of power degree. In the remaining derivatives, fast_time is replaced by slow_time.

source

HarmonicBalance.fourier_transform Function
julia
fourier_transform(
+(ω0^2)*v1(T) -^2)*v1(T) - (2//1)*ω*Differential(T)(u1(T)) ~ 0

source

HarmonicBalance.harmonic_ansatz Function
julia
harmonic_ansatz(eom::DifferentialEquation, time::Num; coordinates="Cartesian")

Expand each variable of diff_eom using the harmonics assigned to it with time as the time variable. For each harmonic of each variable, instance(s) of HarmonicVariable are automatically created and named.

source

HarmonicBalance.slow_flow Function
julia
slow_flow(eom::HarmonicEquation; fast_time::Num, slow_time::Num, degree=2)

Removes all derivatives w.r.t fast_time (and their products) in eom of power degree. In the remaining derivatives, fast_time is replaced by slow_time.

source

HarmonicBalance.fourier_transform Function
julia
fourier_transform(
     eom::HarmonicEquation,
     time::Num
-) -> HarmonicEquation

Extract the Fourier components of eom corresponding to the harmonics specified in eom.variables. For each non-zero harmonic of each variable, 2 equations are generated (cos and sin Fourier coefficients). For each zero (constant) harmonic, 1 equation is generated time does not appear in the resulting equations anymore.

Underlying assumption: all time-dependences are harmonic.

source

HarmonicBalance.ExprUtils.drop_powers Function
julia
drop_powers(expr, vars, deg)

Remove parts of expr where the combined power of vars is => deg.

Example

julia
julia> @variables x,y;
+) -> HarmonicEquation

Extract the Fourier components of eom corresponding to the harmonics specified in eom.variables. For each non-zero harmonic of each variable, 2 equations are generated (cos and sin Fourier coefficients). For each zero (constant) harmonic, 1 equation is generated time does not appear in the resulting equations anymore.

Underlying assumption: all time-dependences are harmonic.

source

HarmonicBalance.ExprUtils.drop_powers Function
julia
drop_powers(expr, vars, deg)

Remove parts of expr where the combined power of vars is => deg.

Example

julia
julia> @variables x,y;
 julia>drop_powers((x+y)^2, x, 2)
 y^2 + 2*x*y
 julia>drop_powers((x+y)^2, [x,y], 2)
 0
 julia>drop_powers((x+y)^2 + (x+y)^3, [x,y], 3)
-x^2 + y^2 + 2*x*y

source

HarmonicVariable and HarmonicEquation types

The equations governing the harmonics are stored using the two following structs. When going from the original to the harmonic equations, the harmonic ansatz xi(t)=j=1Mui,j(T)cos(ωi,jt)+vi,j(T)sin(ωi,jt) is used. Internally, each pair (ui,j,vi,j) is stored as a HarmonicVariable. This includes the identification of ωi,j and xi(t), which is needed to later reconstruct xi(t).

HarmonicBalance.HarmonicVariable Type
julia
mutable struct HarmonicVariable

Holds a variable stored under symbol describing the harmonic ω of natural_variable.

Fields

  • symbol::Num: Symbol of the variable in the HarmonicBalance namespace.

  • name::String: Human-readable labels of the variable, used for plotting.

  • type::String: Type of the variable (u or v for quadratures, a for a constant, Hopf for Hopf etc.)

  • ω::Num: The harmonic being described.

  • natural_variable::Num: The natural variable whose harmonic is being described.

source

When the full set of equations of motion is expanded using the harmonic ansatz, the result is stored as a HarmonicEquation. For an initial equation of motion consisting of M variables, each expanded in N harmonics, the resulting HarmonicEquation holds 2NM equations of 2NM variables. Each symbol not corresponding to a variable is identified as a parameter.

A HarmonicEquation can be either parsed into a steady-state Problem or solved using a dynamical ODE solver.

HarmonicBalance.HarmonicEquation Type
julia
mutable struct HarmonicEquation

Holds a set of algebraic equations governing the harmonics of a DifferentialEquation.

Fields

  • equations::Vector{Equation}: A set of equations governing the harmonics.

  • variables::Vector{HarmonicVariable}: A set of variables describing the harmonics.

  • parameters::Vector{Num}: The parameters of the equation set.

  • natural_equation::DifferentialEquation: The natural equation (before the harmonic ansatz was used).

source

- +x^2 + y^2 + 2*x*y

source

HarmonicVariable and HarmonicEquation types

The equations governing the harmonics are stored using the two following structs. When going from the original to the harmonic equations, the harmonic ansatz xi(t)=j=1Mui,j(T)cos(ωi,jt)+vi,j(T)sin(ωi,jt) is used. Internally, each pair (ui,j,vi,j) is stored as a HarmonicVariable. This includes the identification of ωi,j and xi(t), which is needed to later reconstruct xi(t).

HarmonicBalance.HarmonicVariable Type
julia
mutable struct HarmonicVariable

Holds a variable stored under symbol describing the harmonic ω of natural_variable.

Fields

  • symbol::Num: Symbol of the variable in the HarmonicBalance namespace.

  • name::String: Human-readable labels of the variable, used for plotting.

  • type::String: Type of the variable (u or v for quadratures, a for a constant, Hopf for Hopf etc.)

  • ω::Num: The harmonic being described.

  • natural_variable::Num: The natural variable whose harmonic is being described.

source

When the full set of equations of motion is expanded using the harmonic ansatz, the result is stored as a HarmonicEquation. For an initial equation of motion consisting of M variables, each expanded in N harmonics, the resulting HarmonicEquation holds 2NM equations of 2NM variables. Each symbol not corresponding to a variable is identified as a parameter.

A HarmonicEquation can be either parsed into a steady-state Problem or solved using a dynamical ODE solver.

HarmonicBalance.HarmonicEquation Type
julia
mutable struct HarmonicEquation

Holds a set of algebraic equations governing the harmonics of a DifferentialEquation.

Fields

  • equations::Vector{Equation}: A set of equations governing the harmonics.

  • variables::Vector{HarmonicVariable}: A set of variables describing the harmonics.

  • parameters::Vector{Num}: The parameters of the equation set.

  • natural_equation::DifferentialEquation: The natural equation (before the harmonic ansatz was used).

source

+ \ No newline at end of file diff --git a/previews/PR298/manual/linear_response.html b/previews/PR298/manual/linear_response.html index b67e3e38..ec198d7f 100644 --- a/previews/PR298/manual/linear_response.html +++ b/previews/PR298/manual/linear_response.html @@ -8,11 +8,11 @@ - + - + - + @@ -21,12 +21,12 @@ -
Skip to content

Linear response (WIP)

This module currently has two goals. One is calculating the first-order Jacobian, used to obtain stability and approximate (but inexpensive) the linear response of steady states. The other is calculating the full response matrix as a function of frequency; this is more accurate but more expensive.

The methodology used is explained in Jan Kosata phd thesis.

Stability

The Jacobian is used to evaluate stability of the solutions. It can be shown explicitly,

HarmonicBalance.LinearResponse.get_Jacobian Function
julia
get_Jacobian(eom)

Obtain the symbolic Jacobian matrix of eom (either a HarmonicEquation or a DifferentialEquation). This is the linearised left-hand side of F(u) = du/dT.

source

Obtain a Jacobian from a DifferentialEquation by first converting it into a HarmonicEquation.

source

Get the Jacobian of a set of equations eqs with respect to the variables vars.

source

Linear response

The response to white noise can be shown with plot_linear_response. Depending on the order argument, different methods are used.

HarmonicBalance.LinearResponse.plot_linear_response Function
julia
plot_linear_response(res::Result, nat_var::Num; Ω_range, branch::Int, order=1, logscale=false, show_progress=true, kwargs...)

Plot the linear response to white noise of the variable nat_var for Result res on branch for input frequencies Ω_range. Slow-time derivatives up to order are kept in the process.

Any kwargs are fed to Plots' gr().

Solutions not belonging to the physical class are ignored.

source

First order

The simplest way to extract the linear response of a steady state is to evaluate the Jacobian of the harmonic equations. Each of its eigenvalues λ describes a Lorentzian peak in the response; Re[λ] gives its center and Im[λ] its width. Transforming the harmonic variables into the non-rotating frame (that is, inverting the harmonic ansatz) then gives the response as it would be observed in an experiment.

The advantage of this method is that for a given parameter set, only one matrix diagonalization is needed to fully describe the response spectrum. However, the method is inaccurate for response frequencies far from the frequencies used in the harmonic ansatz (it relies on the response oscillating slowly in the rotating frame).

Behind the scenes, the spectra are stored using the dedicated structs Lorentzian and JacobianSpectrum.

HarmonicBalance.LinearResponse.JacobianSpectrum Type
julia
mutable struct JacobianSpectrum

Holds a set of Lorentzian objects belonging to a variable.

Fields

  • peaks::Vector{HarmonicBalance.LinearResponse.Lorentzian}

Constructor

julia
JacobianSpectrum(res::Result; index::Int, branch::Int)

source

HarmonicBalance.LinearResponse.Lorentzian Type
julia
struct Lorentzian

Holds the three parameters of a Lorentzian peak, defined as A / sqrt((ω-ω0)² + Γ²).

Fields

  • ω0::Float64

  • Γ::Float64

  • A::Float64

source

Higher orders

Setting order > 1 increases the accuracy of the response spectra. However, unlike for the Jacobian, here we must perform a matrix inversion for each response frequency.

HarmonicBalance.LinearResponse.ResponseMatrix Type
julia
struct ResponseMatrix

Holds the compiled response matrix of a system.

Fields

  • matrix::Matrix{Function}: The response matrix (compiled).

  • symbols::Vector{Num}: Any symbolic variables in matrix to be substituted at evaluation.

  • variables::Vector{HarmonicVariable}: The frequencies of the harmonic variables underlying matrix. These are needed to transform the harmonic variables to the non-rotating frame.

source

HarmonicBalance.LinearResponse.get_response Function
julia
get_response(
+    
Skip to content

Linear response (WIP)

This module currently has two goals. One is calculating the first-order Jacobian, used to obtain stability and approximate (but inexpensive) the linear response of steady states. The other is calculating the full response matrix as a function of frequency; this is more accurate but more expensive.

The methodology used is explained in Jan Kosata phd thesis.

Stability

The Jacobian is used to evaluate stability of the solutions. It can be shown explicitly,

HarmonicBalance.LinearResponse.get_Jacobian Function
julia
get_Jacobian(eom)

Obtain the symbolic Jacobian matrix of eom (either a HarmonicEquation or a DifferentialEquation). This is the linearised left-hand side of F(u) = du/dT.

source

Obtain a Jacobian from a DifferentialEquation by first converting it into a HarmonicEquation.

source

Get the Jacobian of a set of equations eqs with respect to the variables vars.

source

Linear response

The response to white noise can be shown with plot_linear_response. Depending on the order argument, different methods are used.

HarmonicBalance.LinearResponse.plot_linear_response Function
julia
plot_linear_response(res::Result, nat_var::Num; Ω_range, branch::Int, order=1, logscale=false, show_progress=true, kwargs...)

Plot the linear response to white noise of the variable nat_var for Result res on branch for input frequencies Ω_range. Slow-time derivatives up to order are kept in the process.

Any kwargs are fed to Plots' gr().

Solutions not belonging to the physical class are ignored.

source

First order

The simplest way to extract the linear response of a steady state is to evaluate the Jacobian of the harmonic equations. Each of its eigenvalues λ describes a Lorentzian peak in the response; Re[λ] gives its center and Im[λ] its width. Transforming the harmonic variables into the non-rotating frame (that is, inverting the harmonic ansatz) then gives the response as it would be observed in an experiment.

The advantage of this method is that for a given parameter set, only one matrix diagonalization is needed to fully describe the response spectrum. However, the method is inaccurate for response frequencies far from the frequencies used in the harmonic ansatz (it relies on the response oscillating slowly in the rotating frame).

Behind the scenes, the spectra are stored using the dedicated structs Lorentzian and JacobianSpectrum.

HarmonicBalance.LinearResponse.JacobianSpectrum Type
julia
mutable struct JacobianSpectrum

Holds a set of Lorentzian objects belonging to a variable.

Fields

  • peaks::Vector{HarmonicBalance.LinearResponse.Lorentzian}

Constructor

julia
JacobianSpectrum(res::Result; index::Int, branch::Int)

source

HarmonicBalance.LinearResponse.Lorentzian Type
julia
struct Lorentzian

Holds the three parameters of a Lorentzian peak, defined as A / sqrt((ω-ω0)² + Γ²).

Fields

  • ω0::Float64

  • Γ::Float64

  • A::Float64

source

Higher orders

Setting order > 1 increases the accuracy of the response spectra. However, unlike for the Jacobian, here we must perform a matrix inversion for each response frequency.

HarmonicBalance.LinearResponse.ResponseMatrix Type
julia
struct ResponseMatrix

Holds the compiled response matrix of a system.

Fields

  • matrix::Matrix{Function}: The response matrix (compiled).

  • symbols::Vector{Num}: Any symbolic variables in matrix to be substituted at evaluation.

  • variables::Vector{HarmonicVariable}: The frequencies of the harmonic variables underlying matrix. These are needed to transform the harmonic variables to the non-rotating frame.

source

HarmonicBalance.LinearResponse.get_response Function
julia
get_response(
     rmat::HarmonicBalance.LinearResponse.ResponseMatrix,
     s::OrderedCollections.OrderedDict{Num, ComplexF64},
     Ω
-) -> Any

For rmat and a solution dictionary s, calculate the total response to a perturbative force at frequency Ω.

source

HarmonicBalance.LinearResponse.get_response_matrix Function
julia
get_response_matrix(diff_eq::DifferentialEquation, freq::Num; order=2)

Obtain the symbolic linear response matrix of a diff_eq corresponding to a perturbation frequency freq. This routine cannot accept a HarmonicEquation since there, some time-derivatives are already dropped. order denotes the highest differential order to be considered.

source

- +) -> Any

For rmat and a solution dictionary s, calculate the total response to a perturbative force at frequency Ω.

source

HarmonicBalance.LinearResponse.get_response_matrix Function
julia
get_response_matrix(diff_eq::DifferentialEquation, freq::Num; order=2)

Obtain the symbolic linear response matrix of a diff_eq corresponding to a perturbation frequency freq. This routine cannot accept a HarmonicEquation since there, some time-derivatives are already dropped. order denotes the highest differential order to be considered.

source

+ \ No newline at end of file diff --git a/previews/PR298/manual/methods.html b/previews/PR298/manual/methods.html index 7b58f0e1..2cc8b345 100644 --- a/previews/PR298/manual/methods.html +++ b/previews/PR298/manual/methods.html @@ -8,11 +8,11 @@ - + - + - + @@ -21,8 +21,8 @@ -
Skip to content

Methods

We offer several methods for solving the nonlinear algebraic equations that arise from the harmonic balance procedure. Each method has different tradeoffs between speed, robustness, and completeness.

Total Degree Method

HarmonicBalance.TotalDegree Type
julia
TotalDegree

The Total Degree homotopy method. Performs a homotopy H(x,t)=γtG(x)+(1t)F(x) from the trivial polynomial system xd+a with the maximal degree d determined by the Bezout bound. The method guarantees to find all solutions, however, it comes with a high computational cost. See HomotopyContinuation.jl for more information.

Fields

  • gamma::Complex: Complex multiplying factor of the start system G(x) for the homotopy

  • thread::Bool: Boolean indicating if threading is enabled.

  • tracker_options::HomotopyContinuation.TrackerOptions: Options for the tracker.

  • endgame_options::HomotopyContinuation.EndgameOptions: Options for the endgame.

  • compile::Union{Bool, Symbol}: Compilation options.

  • seed::UInt32: Seed for random number generation.

source

Polyhedral Method

HarmonicBalance.Polyhedral Type
julia
Polyhedral

The Polyhedral homotopy method. This method constructs a homotopy based on the polyhedral structure of the polynomial system. It is more efficient than the Total Degree method for sparse systems, meaning most of the coefficients are zero. It can be especially useful if you don't need to find the zero solutions (only_non_zero = true), resulting in speed up. See HomotopyContinuation.jl for more information.

Fields

  • only_non_zero::Bool: Boolean indicating if only non-zero solutions are considered.

  • thread::Bool: Boolean indicating if threading is enabled.

  • tracker_options::HomotopyContinuation.TrackerOptions: Options for the tracker.

  • endgame_options::HomotopyContinuation.EndgameOptions: Options for the endgame.

  • compile::Union{Bool, Symbol}: Compilation options.

  • seed::UInt32: Seed for random number generation.

source

Warm Up Method

HarmonicBalance.WarmUp Type
julia
WarmUp

The Warm Up method. This method prepares a warmup system using the parameter at index perturbed by perturbation_size and performs a homotopy using the warmup system to all other systems in the parameter sweep. It is very efficient for systems with less bifurcation in the parameter sweep. The Warm Up method does not guarantee to find all solutions. See HomotopyContinuation.jl for more information.

Fields

  • perturbation_size::ComplexF64: Size of the perturbation.

  • index::Union{Int64, EndpointRanges.Endpoint}: Index for the endpoint.

  • thread::Bool: Boolean indicating if threading is enabled.

  • tracker_options::HomotopyContinuation.TrackerOptions: Options for the tracker.

  • endgame_options::HomotopyContinuation.EndgameOptions: Options for the endgame.

  • compile::Union{Bool, Symbol}: Compilation options.

  • seed::UInt32: Seed for random number generation.

source

- +
Skip to content

Methods

We offer several methods for solving the nonlinear algebraic equations that arise from the harmonic balance procedure. Each method has different tradeoffs between speed, robustness, and completeness.

Total Degree Method

HarmonicBalance.TotalDegree Type
julia
TotalDegree

The Total Degree homotopy method. Performs a homotopy H(x,t)=γtG(x)+(1t)F(x) from the trivial polynomial system xd+a with the maximal degree d determined by the Bezout bound. The method guarantees to find all solutions, however, it comes with a high computational cost. See HomotopyContinuation.jl for more information.

Fields

  • gamma::Complex: Complex multiplying factor of the start system G(x) for the homotopy

  • thread::Bool: Boolean indicating if threading is enabled.

  • tracker_options::HomotopyContinuation.TrackerOptions: Options for the tracker.

  • endgame_options::HomotopyContinuation.EndgameOptions: Options for the endgame.

  • compile::Union{Bool, Symbol}: Compilation options.

  • seed::UInt32: Seed for random number generation.

source

Polyhedral Method

HarmonicBalance.Polyhedral Type
julia
Polyhedral

The Polyhedral homotopy method. This method constructs a homotopy based on the polyhedral structure of the polynomial system. It is more efficient than the Total Degree method for sparse systems, meaning most of the coefficients are zero. It can be especially useful if you don't need to find the zero solutions (only_non_zero = true), resulting in speed up. See HomotopyContinuation.jl for more information.

Fields

  • only_non_zero::Bool: Boolean indicating if only non-zero solutions are considered.

  • thread::Bool: Boolean indicating if threading is enabled.

  • tracker_options::HomotopyContinuation.TrackerOptions: Options for the tracker.

  • endgame_options::HomotopyContinuation.EndgameOptions: Options for the endgame.

  • compile::Union{Bool, Symbol}: Compilation options.

  • seed::UInt32: Seed for random number generation.

source

Warm Up Method

HarmonicBalance.WarmUp Type
julia
WarmUp

The Warm Up method. This method prepares a warmup system using the parameter at index perturbed by perturbation_size and performs a homotopy using the warmup system to all other systems in the parameter sweep. It is very efficient for systems with less bifurcation in the parameter sweep. The Warm Up method does not guarantee to find all solutions. See HomotopyContinuation.jl for more information.

Fields

  • perturbation_size::ComplexF64: Size of the perturbation.

  • index::Union{Int64, EndpointRanges.Endpoint}: Index for the endpoint.

  • thread::Bool: Boolean indicating if threading is enabled.

  • tracker_options::HomotopyContinuation.TrackerOptions: Options for the tracker.

  • endgame_options::HomotopyContinuation.EndgameOptions: Options for the endgame.

  • compile::Union{Bool, Symbol}: Compilation options.

  • seed::UInt32: Seed for random number generation.

source

+ \ No newline at end of file diff --git a/previews/PR298/manual/plotting.html b/previews/PR298/manual/plotting.html index ae8d50b9..800da7ad 100644 --- a/previews/PR298/manual/plotting.html +++ b/previews/PR298/manual/plotting.html @@ -8,11 +8,11 @@ - + - + - + @@ -26,20 +26,20 @@ func; branches, realify -) -> Vector

Takes a Result object and a string f representing a Symbolics.jl expression. Returns an array with the values of f evaluated for the respective solutions. Additional substitution rules can be specified in rules in the format ("a" => val) or (a => val)

source

Plotting solutions

The function plot is multiple-dispatched to plot 1D and 2D datasets. In 1D, the solutions are colour-coded according to the branches obtained by sort_solutions.

RecipesBase.plot Method
julia
plot(
+) -> Vector

Takes a Result object and a string f representing a Symbolics.jl expression. Returns an array with the values of f evaluated for the respective solutions. Additional substitution rules can be specified in rules in the format ("a" => val) or (a => val)

source

Plotting solutions

The function plot is multiple-dispatched to plot 1D and 2D datasets. In 1D, the solutions are colour-coded according to the branches obtained by sort_solutions.

RecipesBase.plot Method
julia
plot(
     res::HarmonicBalance.Result,
     varargs...;
     cut,
     kwargs...
 ) -> Plots.Plot

Plot a Result object.

Class selection done by passing String or Vector{String} as kwarg:

class       :   only plot solutions in this class(es) ("all" --> plot everything)
 not_class   :   do not plot solutions in this class(es)

Other kwargs are passed onto Plots.gr().

See also plot!

The x,y,z arguments are Strings compatible with Symbolics.jl, e.g., y=2*sqrt(u1^2+v1^2) plots the amplitude of the first quadratures multiplied by 2.

1D plots

plot(res::Result; x::String, y::String, class="default", not_class=[], kwargs...)
-plot(res::Result, y::String; kwargs...) # take x automatically from Result

Default behaviour is to plot stable solutions as full lines, unstable as dashed.

If a sweep in two parameters were done, i.e., dim(res)==2, a one dimensional cut can be plotted by using the keyword cut were it takes a Pair{Num, Float64} type entry. For example, plot(res, y="sqrt(u1^2+v1^2), cut=(λ => 0.2)) plots a cut at λ = 0.2.


2D plots

plot(res::Result; z::String, branch::Int64, class="physical", not_class=[], kwargs...)

To make the 2d plot less chaotic it is required to specify the specific branch to plot, labeled by a Int64.

The x and y axes are taken automatically from res

source

Plotting phase diagrams

In many problems, rather than in any property of the solutions themselves, we are interested in the phase diagrams, encoding the number of (stable) solutions in different regions of the parameter space. plot_phase_diagram handles this for 1D and 2D datasets.

HarmonicBalance.plot_phase_diagram Function
julia
plot_phase_diagram(
+plot(res::Result, y::String; kwargs...) # take x automatically from Result

Default behaviour is to plot stable solutions as full lines, unstable as dashed.

If a sweep in two parameters were done, i.e., dim(res)==2, a one dimensional cut can be plotted by using the keyword cut were it takes a Pair{Num, Float64} type entry. For example, plot(res, y="sqrt(u1^2+v1^2), cut=(λ => 0.2)) plots a cut at λ = 0.2.


2D plots

plot(res::Result; z::String, branch::Int64, class="physical", not_class=[], kwargs...)

To make the 2d plot less chaotic it is required to specify the specific branch to plot, labeled by a Int64.

The x and y axes are taken automatically from res

source

Plotting phase diagrams

In many problems, rather than in any property of the solutions themselves, we are interested in the phase diagrams, encoding the number of (stable) solutions in different regions of the parameter space. plot_phase_diagram handles this for 1D and 2D datasets.

HarmonicBalance.plot_phase_diagram Function
julia
plot_phase_diagram(
     res::HarmonicBalance.Result;
     kwargs...
 ) -> Plots.Plot

Plot the number of solutions in a Result object as a function of the parameters. Works with 1D and 2D datasets.

Class selection done by passing String or Vector{String} as kwarg:

class::String       :   only count solutions in this class ("all" --> plot everything)
-not_class::String   :   do not count solutions in this class

Other kwargs are passed onto Plots.gr()

source

Plot spaghetti plot

Sometimes, it is useful to plot the quadratures of the steady states (u, v) in function of a swept parameter. This is done with plot_spaghetti.

HarmonicBalance.plot_spaghetti Function
julia
plot_spaghetti(res::Result; x, y, z, kwargs...)

Plot a three dimension line plot of a Result object as a function of the parameters. Works with 1D and 2D datasets.

Class selection done by passing String or Vector{String} as kwarg:

class::String       :   only count solutions in this class ("all" --> plot everything)
-not_class::String   :   do not count solutions in this class

Other kwargs are passed onto Plots.gr()

source

- +not_class::String : do not count solutions in this class

Other kwargs are passed onto Plots.gr()

source

Plot spaghetti plot

Sometimes, it is useful to plot the quadratures of the steady states (u, v) in function of a swept parameter. This is done with plot_spaghetti.

HarmonicBalance.plot_spaghetti Function
julia
plot_spaghetti(res::Result; x, y, z, kwargs...)

Plot a three dimension line plot of a Result object as a function of the parameters. Works with 1D and 2D datasets.

Class selection done by passing String or Vector{String} as kwarg:

class::String       :   only count solutions in this class ("all" --> plot everything)
+not_class::String   :   do not count solutions in this class

Other kwargs are passed onto Plots.gr()

source

+ \ No newline at end of file diff --git a/previews/PR298/manual/saving.html b/previews/PR298/manual/saving.html index b83cc31c..9158b190 100644 --- a/previews/PR298/manual/saving.html +++ b/previews/PR298/manual/saving.html @@ -8,11 +8,11 @@ - + - + - + @@ -21,8 +21,8 @@ -
Skip to content

Saving and loading

All of the types native to HarmonicBalance.jl can be saved into a .jld2 file using save and loaded using load. Most of the saving/loading is performed using the package JLD2.jl, with the addition of reinstating the symbolic variables in the HarmonicBalance namespace (needed to parse expressions used in the plotting functions) and recompiling stored functions (needed to evaluate Jacobians). As a consequence, composite objects such as Result can be saved and loaded with no loss of information.

The function export_csv saves a .csv file which can be plot elsewhere.

HarmonicBalance.save Function
julia
save(filename, object)

Saves object into .jld2 file filename (the suffix is added automatically if not entered). The resulting file contains a dictionary with a single entry.

source

HarmonicBalance.load Function
julia
load(filename)

Loads an object from filename. For objects containing symbolic expressions such as HarmonicEquation, the symbolic variables are reinstated in the HarmonicBalance namespace.

source

HarmonicBalance.export_csv Function
julia
export_csv(filename, res, branch)

Saves into filename a specified solution branch of the Result res.

source

- +
Skip to content

Saving and loading

All of the types native to HarmonicBalance.jl can be saved into a .jld2 file using save and loaded using load. Most of the saving/loading is performed using the package JLD2.jl, with the addition of reinstating the symbolic variables in the HarmonicBalance namespace (needed to parse expressions used in the plotting functions) and recompiling stored functions (needed to evaluate Jacobians). As a consequence, composite objects such as Result can be saved and loaded with no loss of information.

The function export_csv saves a .csv file which can be plot elsewhere.

HarmonicBalance.save Function
julia
save(filename, object)

Saves object into .jld2 file filename (the suffix is added automatically if not entered). The resulting file contains a dictionary with a single entry.

source

HarmonicBalance.load Function
julia
load(filename)

Loads an object from filename. For objects containing symbolic expressions such as HarmonicEquation, the symbolic variables are reinstated in the HarmonicBalance namespace.

source

HarmonicBalance.export_csv Function
julia
export_csv(filename, res, branch)

Saves into filename a specified solution branch of the Result res.

source

+ \ No newline at end of file diff --git a/previews/PR298/manual/solving_harmonics.html b/previews/PR298/manual/solving_harmonics.html index 0dbb9750..b496fbce 100644 --- a/previews/PR298/manual/solving_harmonics.html +++ b/previews/PR298/manual/solving_harmonics.html @@ -8,11 +8,11 @@ - + - + - + @@ -21,7 +21,10 @@ -
Skip to content

Solving harmonic equations

Once a differential equation of motion has been defined in DifferentialEquation and converted to a HarmonicEquation, we may use the homotopy continuation method (as implemented in HomotopyContinuation.jl) to find steady states. This means that, having called get_harmonic_equations, we need to set all time-derivatives to zero and parse the resulting algebraic equations into a Problem.

Problem holds the steady-state equations, and (optionally) the symbolic Jacobian which is needed for stability / linear response calculations.

Once defined, a Problem can be solved for a set of input parameters using get_steady_states to obtain Result.

Missing docstring.

Missing docstring for Problem. Check Documenter's build log for details.

HarmonicBalance.get_steady_states Function
julia
get_steady_states(problem::HarmonicEquation,
+    
Skip to content

Solving harmonic equations

Once a differential equation of motion has been defined in DifferentialEquation and converted to a HarmonicEquation, we may use the homotopy continuation method (as implemented in HomotopyContinuation.jl) to find steady states. This means that, having called get_harmonic_equations, we need to set all time-derivatives to zero and parse the resulting algebraic equations into a Problem.

Problem holds the steady-state equations, and (optionally) the symbolic Jacobian which is needed for stability / linear response calculations.

Once defined, a Problem can be solved for a set of input parameters using get_steady_states to obtain Result.

HarmonicBalance.Problem Type
julia
mutable struct Problem

Holds a set of algebraic equations describing the steady state of a system.

Fields

  • variables::Vector{Num}: The harmonic variables to be solved for.

  • parameters::Vector{Num}: All symbols which are not the harmonic variables.

  • system::HomotopyContinuation.ModelKit.System: The input object for HomotopyContinuation.jl solver methods.

  • jacobian::Any: The Jacobian matrix (possibly symbolic). If false, the Jacobian is ignored (may be calculated implicitly after solving).

  • eom::HarmonicEquation: The HarmonicEquation object used to generate this Problem.

Constructors

julia
Problem(eom::HarmonicEquation; Jacobian=true) # find and store the symbolic Jacobian
+Problem(eom::HarmonicEquation; Jacobian="implicit") # ignore the Jacobian for now, compute implicitly later
+Problem(eom::HarmonicEquation; Jacobian=J) # use J as the Jacobian (a function that takes a Dict)
+Problem(eom::HarmonicEquation; Jacobian=false) # ignore the Jacobian

source

HarmonicBalance.get_steady_states Function
julia
get_steady_states(problem::HarmonicEquation,
                     method::HarmonicBalanceMethod,
                     swept_parameters::ParameterRange,
                     fixed_parameters::ParameterList;
@@ -50,7 +53,7 @@
        of which real:    1
        of which stable:  1
 
-    Classes: stable, physical, Hopf, binary_labels

source

HarmonicBalance.Result Type
julia
mutable struct Result

Stores the steady states of a HarmonicEquation.

Fields

  • solutions::Array{Vector{Vector{ComplexF64}}}: The variable values of steady-state solutions.

  • swept_parameters::OrderedCollections.OrderedDict{Num, Vector{Union{Float64, ComplexF64}}}: Values of all parameters for all solutions.

  • fixed_parameters::OrderedCollections.OrderedDict{Num, Float64}: The parameters fixed throughout the solutions.

  • problem::HarmonicBalance.Problem: The Problem used to generate this.

  • classes::Dict{String, Array}: Maps strings such as "stable", "physical" etc to arrays of values, classifying the solutions (see method classify_solutions!).

  • jacobian::Function: The Jacobian with fixed_parameters already substituted. Accepts a dictionary specifying the solution. If problem.jacobian is a symbolic matrix, this holds a compiled function. If problem.jacobian was false, this holds a function that rearranges the equations to find J only after numerical values are inserted (preferable in cases where the symbolic J would be very large).

  • seed::UInt32: Seed used for the solver

source

Classifying solutions

The solutions in Result are accompanied by similarly-sized boolean arrays stored in the dictionary Result.classes. The classes can be used by the plotting functions to show/hide/label certain solutions.

By default, classes "physical", "stable" and "binary_labels" are created. User-defined classification is possible with classify_solutions!.

HarmonicBalance.classify_solutions! Function
julia
classify_solutions!(
+    Classes: stable, physical, Hopf, binary_labels

source

HarmonicBalance.Result Type
julia
mutable struct Result

Stores the steady states of a HarmonicEquation.

Fields

  • solutions::Array{Vector{Vector{ComplexF64}}}: The variable values of steady-state solutions.

  • swept_parameters::OrderedCollections.OrderedDict{Num, Vector{Union{Float64, ComplexF64}}}: Values of all parameters for all solutions.

  • fixed_parameters::OrderedCollections.OrderedDict{Num, Float64}: The parameters fixed throughout the solutions.

  • problem::HarmonicBalance.Problem: The Problem used to generate this.

  • classes::Dict{String, Array}: Maps strings such as "stable", "physical" etc to arrays of values, classifying the solutions (see method classify_solutions!).

  • jacobian::Function: The Jacobian with fixed_parameters already substituted. Accepts a dictionary specifying the solution. If problem.jacobian is a symbolic matrix, this holds a compiled function. If problem.jacobian was false, this holds a function that rearranges the equations to find J only after numerical values are inserted (preferable in cases where the symbolic J would be very large).

  • seed::UInt32: Seed used for the solver

source

Classifying solutions

The solutions in Result are accompanied by similarly-sized boolean arrays stored in the dictionary Result.classes. The classes can be used by the plotting functions to show/hide/label certain solutions.

By default, classes "physical", "stable" and "binary_labels" are created. User-defined classification is possible with classify_solutions!.

HarmonicBalance.classify_solutions! Function
julia
classify_solutions!(
     res::HarmonicBalance.Result,
     func::Union{Function, String},
     name::String;
@@ -59,12 +62,12 @@
 res = get_steady_states(problem, swept_parameters, fixed_parameters)
 
 # classify, store in result.classes["large_amplitude"]
-classify_solutions!(res, "sqrt(u1^2 + v1^2) > 1.0" , "large_amplitude")

source

Sorting solutions

Solving a steady-state problem over a range of parameters returns a solution set for each parameter. For a continuous change of parameters, each solution in a set usually also changes continuously; it is said to form a ''solution branch''. For an example, see the three colour-coded branches for the Duffing oscillator in Example 1.

For stable states, the branches describe a system's behaviour under adiabatic parameter changes.

Therefore, after solving for a parameter range, we want to order each solution set such that the solutions' order reflects the branches.

The function sort_solutions goes over the the raw output of get_steady_states and sorts each entry such that neighboring solution sets minimize Euclidean distance.

Currently, sort_solutions is compatible with 1D and 2D arrays of solution sets.

HarmonicBalance.sort_solutions Function
julia
sort_solutions(
+classify_solutions!(res, "sqrt(u1^2 + v1^2) > 1.0" , "large_amplitude")

source

Sorting solutions

Solving a steady-state problem over a range of parameters returns a solution set for each parameter. For a continuous change of parameters, each solution in a set usually also changes continuously; it is said to form a ''solution branch''. For an example, see the three colour-coded branches for the Duffing oscillator in Example 1.

For stable states, the branches describe a system's behaviour under adiabatic parameter changes.

Therefore, after solving for a parameter range, we want to order each solution set such that the solutions' order reflects the branches.

The function sort_solutions goes over the the raw output of get_steady_states and sorts each entry such that neighboring solution sets minimize Euclidean distance.

Currently, sort_solutions is compatible with 1D and 2D arrays of solution sets.

HarmonicBalance.sort_solutions Function
julia
sort_solutions(
     solutions::Array;
     sorting,
     show_progress
-) -> Array

Sorts solutions into branches according to the method sorting.

solutions is an n-dimensional array of Vector{Vector}. Each element describes a set of solutions for a given parameter set. The output is a similar array, with each solution set rearranged such that neighboring solution sets have the smallest Euclidean distance.

Keyword arguments

  • sorting: the method used by sort_solutions to get continuous solutions branches. The current options are "hilbert" (1D sorting along a Hilbert curve), "nearest" (nearest-neighbor sorting) and "none".

  • show_progress: Indicate whether a progress bar should be displayed.

source

- +) -> Array

Sorts solutions into branches according to the method sorting.

solutions is an n-dimensional array of Vector{Vector}. Each element describes a set of solutions for a given parameter set. The output is a similar array, with each solution set rearranged such that neighboring solution sets have the smallest Euclidean distance.

Keyword arguments

source

+ \ No newline at end of file diff --git a/previews/PR298/manual/time_dependent.html b/previews/PR298/manual/time_dependent.html index 385e87fa..c9d2e2b6 100644 --- a/previews/PR298/manual/time_dependent.html +++ b/previews/PR298/manual/time_dependent.html @@ -8,11 +8,11 @@ - + - + - + @@ -27,7 +27,7 @@ u0::Vector, sweep::AdiabaticSweep, timespan::Tuple - )

Creates an ODEProblem object used by OrdinaryDiffEqTsit5.jl from the equations in eom to simulate time-evolution within timespan. fixed_parameters must be a dictionary mapping parameters+variables to numbers (possible to use a solution index, e.g. solutions[x][y] for branch y of solution x). If u0 is specified, it is used as an initial condition; otherwise the values from fixed_parameters are used.

source

HarmonicBalance.AdiabaticSweep Type

Represents a sweep of one or more parameters of a HarmonicEquation. During a sweep, the selected parameters vary linearly over some timespan and are constant elsewhere.

Sweeps of different variables can be combined using +.

Fields

  • functions::Dict{Num, Function}: Maps each swept parameter to a function.

Examples

julia
# create a sweep of parameter a from 0 to 1 over time 0 -> 100
+        )

Creates an ODEProblem object used by OrdinaryDiffEqTsit5.jl from the equations in eom to simulate time-evolution within timespan. fixed_parameters must be a dictionary mapping parameters+variables to numbers (possible to use a solution index, e.g. solutions[x][y] for branch y of solution x). If u0 is specified, it is used as an initial condition; otherwise the values from fixed_parameters are used.

source

HarmonicBalance.AdiabaticSweep Type

Represents a sweep of one or more parameters of a HarmonicEquation. During a sweep, the selected parameters vary linearly over some timespan and are constant elsewhere.

Sweeps of different variables can be combined using +.

Fields

  • functions::Dict{Num, Function}: Maps each swept parameter to a function.

Examples

julia
# create a sweep of parameter a from 0 to 1 over time 0 -> 100
 julia> @variables a,b;
 julia> sweep = AdiabaticSweep(a => [0., 1.], (0, 100));
 julia> sweep[a](50)
@@ -39,18 +39,18 @@
 julia> sweep = AdiabaticSweep([a => [0.,1.], b => [0., 1.]], (0,100))

Successive sweeps can be combined,

julia
sweep1 = AdiabaticSweep=> [0.95, 1.0], (0, 2e4))
 sweep2 = AdiabaticSweep=> [0.05, 0.01], (2e4, 4e4))
 sweep = sweep1 + sweep2

multiple parameters can be swept simultaneously,

julia
sweep = AdiabaticSweep([ω => [0.95;1.0], λ => [5e-2;1e-2]], (0, 2e4))

and custom sweep functions may be used.

julia
ωfunc(t) = cos(t)
-sweep = AdiabaticSweep=> ωfunc)

source

Plotting

RecipesBase.plot Method
julia
plot(soln::ODESolution, f::String, harm_eq::HarmonicEquation; kwargs...)

Plot a function f of a time-dependent solution soln of harm_eq.

As a function of time

plot(soln::ODESolution, f::String, harm_eq::HarmonicEquation; kwargs...)

f is parsed by Symbolics.jl

parametric plots

plot(soln::ODESolution, f::Vector{String}, harm_eq::HarmonicEquation; kwargs...)

Parametric plot of f[1] against f[2]

Also callable as plot!

source

Miscellaneous

Using a time-dependent simulation can verify solution stability in cases where the Jacobian is too expensive to compute.

HarmonicBalance.is_stable Function
julia
is_stable(
+sweep = AdiabaticSweep=> ωfunc)

source

Plotting

RecipesBase.plot Method
julia
plot(soln::ODESolution, f::String, harm_eq::HarmonicEquation; kwargs...)

Plot a function f of a time-dependent solution soln of harm_eq.

As a function of time

plot(soln::ODESolution, f::String, harm_eq::HarmonicEquation; kwargs...)

f is parsed by Symbolics.jl

parametric plots

plot(soln::ODESolution, f::Vector{String}, harm_eq::HarmonicEquation; kwargs...)

Parametric plot of f[1] against f[2]

Also callable as plot!

source

Miscellaneous

Using a time-dependent simulation can verify solution stability in cases where the Jacobian is too expensive to compute.

HarmonicBalance.is_stable Function
julia
is_stable(
     soln::OrderedCollections.OrderedDict{Num, ComplexF64},
     eom::HarmonicEquation;
     timespan,
     tol,
     perturb_initial
-)

Numerically investigate the stability of a solution soln of eom within timespan. The initial condition is displaced by perturb_initial.

Return true the solution evolves within tol of the initial value (interpreted as stable).

source

julia
is_stable(
+)

Numerically investigate the stability of a solution soln of eom within timespan. The initial condition is displaced by perturb_initial.

Return true the solution evolves within tol of the initial value (interpreted as stable).

source

julia
is_stable(
     soln::OrderedCollections.OrderedDict{Num, ComplexF64},
     res::HarmonicBalance.Result;
     kwargs...
-) -> Any

Returns true if the solution soln of the Result res is stable. Stable solutions are real and have all Jacobian eigenvalues Re[λ] <= 0. im_tol : an absolute threshold to distinguish real/complex numbers. rel_tol: Re(λ) considered <=0 if real.(λ) < rel_tol*abs(λmax)

source

- +) -> Any

Returns true if the solution soln of the Result res is stable. Stable solutions are real and have all Jacobian eigenvalues Re[λ] <= 0. im_tol : an absolute threshold to distinguish real/complex numbers. rel_tol: Re(λ) considered <=0 if real.(λ) < rel_tol*abs(λmax)

source

+ \ No newline at end of file diff --git a/previews/PR298/tutorials/classification.html b/previews/PR298/tutorials/classification.html index c8a30b52..37640cdb 100644 --- a/previews/PR298/tutorials/classification.html +++ b/previews/PR298/tutorials/classification.html @@ -8,11 +8,11 @@ - + - + - + @@ -41,13 +41,32 @@ -(1//2)*u1(T)*λ + (2//1)*Differential(T)(v1(T))*ω + Differential(T)(u1(T))*γ - u1(T)*(ω^2) + u1(T)*(ω₀^2) + v1(T)*γ*ω + (3//4)*(u1(T)^3)*α + (3//4)*u1(T)*(v1(T)^2)*α ~ 0 -Differential(T)(v1(T))*γ + (1//2)*v1(T)*λ - (2//1)*Differential(T)(u1(T))*ω - u1(T)*γ*ω - v1(T)*(ω^2) + v1(T)*(ω₀^2) + (3//4)*(u1(T)^2)*v1(T)*α + (3//4)*(v1(T)^3)*α ~ 0

We performe a 2d sweep in the driving frequency ω and driving strength λ:

@example
fixed = (ω₀ => 1.0, γ => 0.002, α => 1.0)
-varied = (ω => range(0.99, 1.01, 100), λ => range(1e-6, 0.03, 100))
+Differential(T)(v1(T))*γ + (1//2)*v1(T)*λ - (2//1)*Differential(T)(u1(T))*ω - u1(T)*γ*ω - v1(T)*(ω^2) + v1(T)*(ω₀^2) + (3//4)*(u1(T)^2)*v1(T)*α + (3//4)*(v1(T)^3)*α ~ 0

We performe a 2d sweep in the driving frequency ω and driving strength λ:

julia
fixed = (ω₀ => 1.0, γ => 0.002, α => 1.0)
+varied ==> range(0.99, 1.01, 100), λ => range(1e-6, 0.03, 100))
+
+result_2D = get_steady_states(harmonic_eq, varied, fixed)
A steady state result for 10000 parameter points
+
+Solution branches:   5
+   of which real:    5
+   of which stable:  3
+
+Classes: stable, physical, Hopf, binary_labels

By default the steady states of the system are classified by four different catogaries:

We can plot the number of stable solutions, giving the phase diagram

julia
plot_phase_diagram(result_2D, class="stable")

If we plot the a cut at λ=0.01, we see that in the blue region only one stable solution exists with zero amplitude:

julia
plot(result_2D, y="√(u1^2+v1^2)", cut=λ => 0.01, class="stable") |> display
julia
get_single_solution(result_2D; branch=1, index=(1, 1))
OrderedCollections.OrderedDict{Num, ComplexF64} with 7 entries:
+  u1 => 0.0-2.12299e-248im
+  v1 => -6.13785e-253+9.83278e-248im
+  ω  => 0.99+0.0im
+  λ  => 1.0e-6+0.0im
+  ω₀ => 1.0+0.0im
+  γ  => 0.002+0.0im
+  α  => 1.0+0.0im

This solution becomes stable again outside the green lobe. Also called Mathieu lobe. Indeed, we can classify the zero amplitude solution by adding an extra catagory as a class:

julia
classify_solutions!(result_2D, "sqrt(u1^2 + v1^2) < 0.001", "zero")
+result_2D
A steady state result for 10000 parameter points
+
+Solution branches:   5
+   of which real:    5
+   of which stable:  3
 
-result_2D = get_steady_states(harmonic_eq, varied, fixed, threading=true)

By default the steady states of the system are classified by four different catogaries:

  • physical: Solutions that are physical, i.e., all variables are purely real.

  • stable: Solutions that are stable, i.e., all eigenvalues of the Jacobian have negative real parts.

  • Hopf: Solutions that are physical and have exactly two Jacobian eigenvalues with positive real parts, which are complex conjugates of each other. The class can help to identify regions where a limit cycle is present due to a Hopf bifurcation. See also the tutorial on limit cycles.

  • binary_labels: each region in the parameter sweep receives an identifier based on its permutation of stable branches. This allows to distinguish between different phases, which may have the same number of stable solutions.

We can plot the number of stable solutions, giving the phase diagram

@example
plot_phase_diagram(result_2D, class="stable")

If we plot the a cut at λ=0.01, we see that in the blue region only one stable solution exists with zero amplitude:

@example
plot(result_2D, y="√(u1^2+v1^2)", cut=λ => 0.01, class="stable") |> display
@example
get_single_solution(result_2D; branch=1, index=(1, 1))

This solution becomes stable again outside the green lobe. Also called Mathieu lobe. Indeed, we can classify the zero amplitude solution by adding an extra catagory as a class:

@example
classify_solutions!(result_2D, "sqrt(u1^2 + v1^2) < 0.001", "zero")
-result_2D

We can visualize the zero amplitude solution:

@example
plot_phase_diagram(result_2D, class=["zero", "stable"])

This shows that inside the Mathieu lobe the zero amplitude solution becomes unstable due to the parametric drive being resonant with the oscillator.

We can also visualize the equi-amplitude curves of the solutions:

@example
classify_solutions!(result_2D, "sqrt(u1^2 + v1^2) > 0.12", "large amplitude")
-plot_phase_diagram(result_2D, class=["large amplitude", "stable"])
- +Classes: zero, stable, physical, Hopf, binary_labels

We can visualize the zero amplitude solution:

julia
plot_phase_diagram(result_2D, class=["zero", "stable"])

This shows that inside the Mathieu lobe the zero amplitude solution becomes unstable due to the parametric drive being resonant with the oscillator.

We can also visualize the equi-amplitude curves of the solutions:

julia
classify_solutions!(result_2D, "sqrt(u1^2 + v1^2) > 0.12", "large amplitude")
+plot_phase_diagram(result_2D, class=["large amplitude", "stable"])

+ \ No newline at end of file diff --git a/previews/PR298/tutorials/index.html b/previews/PR298/tutorials/index.html index a335b479..f0152b36 100644 --- a/previews/PR298/tutorials/index.html +++ b/previews/PR298/tutorials/index.html @@ -8,9 +8,9 @@ - + - + @@ -23,7 +23,7 @@ - + \ No newline at end of file diff --git a/previews/PR298/tutorials/limit_cycles.html b/previews/PR298/tutorials/limit_cycles.html index 9aa2b133..74d89782 100644 --- a/previews/PR298/tutorials/limit_cycles.html +++ b/previews/PR298/tutorials/limit_cycles.html @@ -8,11 +8,11 @@ - + - + - + @@ -54,7 +54,7 @@ of which real: 4 of which stable: 4 -Classes: unique_cycle, stable, physical, Hopf, binary_labels

The results show a fourfold degeneracy of solutions:

julia
plot(result, y="ω_lc")

The automatically created solution class unique_cycle filters the degeneracy out:

julia
plot(result, y="ω_lc", class="unique_cycle")

Driven system - coupled Duffings

So far, we have largely focused on finding and analysing steady states, i.e., fixed points of the harmonic equations, which satisfy

du(T)dT=F¯(u)=0.

Fixed points are however merely a subset of possible solutions of Eq. \eqref{eq:harmeqfull} – strictly speaking, solutions where u(T) remains time-dependent are allowed. These are quite unusual, since F¯(u) is by construction time-independent and Eq. \eqref{eq:harmeqfull} thus possesses continuous time-translation symmetry. The appearance of explicitly time-dependent solutions then consitutes spontaneous time-translation symmetry breaking.

Such solutions, known as limit cycles, typically appear as closed periodic trajectories of the harmonic variables u(T). The simplest way to numerically characterise them is a time-dependent simulation, using a steady-state diagram as a guide.

Here we reconstruct the results of Zambon et al., Phys Rev. A 102, 023526 (2020), where limit cycles are shown to appear in a system of two coupled nonlinear oscillators. In this problem, two oscillators x1 and x2, have (the same) damping and Kerr nonlinearity and are linearly coupled,

x¨1+γx˙1+ω02x1+αx13+2J(x1x2)=F0cos(ωt)x¨2+γx˙2+ω02x2+αx23+2J(x2x1)=ηF0cos(ωt)
julia
using HarmonicBalance
+Classes: unique_cycle, stable, physical, Hopf, binary_labels

The results show a fourfold degeneracy of solutions:

julia
plot(result, y="ω_lc")

The automatically created solution class unique_cycle filters the degeneracy out:

julia
plot(result, y="ω_lc", class="unique_cycle")

Driven system - coupled Duffings

So far, we have largely focused on finding and analysing steady states, i.e., fixed points of the harmonic equations, which satisfy

du(T)dT=F¯(u)=0.

Fixed points are however merely a subset of possible solutions of Eq. \eqref{eq:harmeqfull} – strictly speaking, solutions where u(T) remains time-dependent are allowed. These are quite unusual, since F¯(u) is by construction time-independent and Eq. \eqref{eq:harmeqfull} thus possesses continuous time-translation symmetry. The appearance of explicitly time-dependent solutions then consitutes spontaneous time-translation symmetry breaking.

Such solutions, known as limit cycles, typically appear as closed periodic trajectories of the harmonic variables u(T). The simplest way to numerically characterise them is a time-dependent simulation, using a steady-state diagram as a guide.

Here we reconstruct the results of Zambon et al., Phys Rev. A 102, 023526 (2020), where limit cycles are shown to appear in a system of two coupled nonlinear oscillators. In this problem, two oscillators x1 and x2, have (the same) damping and Kerr nonlinearity and are linearly coupled,

x¨1+γx˙1+ω02x1+αx13+2J(x1x2)=F0cos(ωt)x¨2+γx˙2+ω02x2+αx23+2J(x2x1)=ηF0cos(ωt)
julia
using HarmonicBalance
 @variables γ F α ω0 F0 η ω J t x(t) y(t);
 eqs = [d(x,t,2) + γ*d(x,t) + ω0^2*x + α*x^3+ 2*J*ω0*(x-y) - F0*cos*t),
        d(y,t,2) + γ * d(y,t) + ω0^2 * y + α*y^3 + 2*J*ω0*(y-x) - η*F0*cos*t)]
@@ -107,7 +107,7 @@
 nothing # hide

Inspecting the amplitude as a function of time,

@example
plot(time_evo, "sqrt(u1^2 + v1^2)", harmonic_eq)

we see that initially the sweep is adiabatic as it proceeds along the steady-state branch 1. At around T=2e6, an instability occurs and u1(T) starts to rapidly oscillate. At that point, the sweep is stopped. Under free time evolution, the system then settles into a limit-cycle solution where the coordinates move along closed trajectories.

By plotting the u and v variables against each other, we observe the limit cycle shapes in phase space,

@example
p1 = plot(time_evo, ["u1", "v1"], harmonic_eq)
 p2 = plot(time_evo, ["u2", "v2"], harmonic_eq)
 plot(p1, p2)
- + \ No newline at end of file diff --git a/previews/PR298/tutorials/linear_response.html b/previews/PR298/tutorials/linear_response.html index fe439af9..9a998ad2 100644 --- a/previews/PR298/tutorials/linear_response.html +++ b/previews/PR298/tutorials/linear_response.html @@ -8,11 +8,11 @@ - + - + - + @@ -47,23 +47,23 @@ varied = ω => range(0.95, 1.05, 100) # range of parameter values result = get_steady_states(harmonic_eq, varied, fixed) -plot(result, "sqrt(u1^2 + v1^2)")

To find the fluctuation on the top of the steady state one often employs a Bogoliubov-de Gennes analyses. Here, we compute the eigenvalues λk of the Jacobian matrix at the steady state. The imaginary part of the eigenvalues gives characteristic frequencies of the "quasi-particle excitations". The real part gives the lifetime of these excitations.

One can plot the eigenvalues as follows

julia
plot(
+plot(result, "sqrt(u1^2 + v1^2)")

To find the fluctuation on the top of the steady state one often employs a Bogoliubov-de Gennes analyses. Here, we compute the eigenvalues λk of the Jacobian matrix at the steady state. The imaginary part of the eigenvalues gives characteristic frequencies of the "quasi-particle excitations". The real part gives the lifetime of these excitations.

One can plot the eigenvalues as follows

julia
plot(
     plot_eigenvalues(result, branch=1),
     plot_eigenvalues(result, branch=1, type=:real, ylims=(-0.003, 0)),
-)

We find a single pair of complex conjugate eigenvalues linearly changing with the driving frequency. Both real parts are negative, indicating stability.

As discussed in background section on linear response, the excitation manifest itself as a lorentenzian peak in a power spectral density (PSD) measurement. The PSD can be plotted using plot_linear_response:

julia
plot_linear_response(result, x, Ω_range=range(0.95, 1.05, 300), branch=1, logscale=true)

The response has a peak at ω0, irrespective of the driving frequency ω. Indeed, the eigenvalues shown before where plotted in the rotating frame at the frequency of the drive ω. Hence, the imaginary part of eigenvalues shows the frequency (energy) needed to excite the system at it natural frequency (The frequency its want to be excited at.)

Note the slight "bending" of the noise peak with ω - this is given by the failure of the first-order calculation to capture response far-detuned from the drive frequency.

Nonlinear regime

For strong driving, matters get more complicated. Let us now use a drive F=2103 :

julia
fixed ==> 1, ω0 => 1.0, γ => 0.005, F => 0.002)   # fixed parameters
+)

We find a single pair of complex conjugate eigenvalues linearly changing with the driving frequency. Both real parts are negative, indicating stability.

As discussed in background section on linear response, the excitation manifest itself as a lorentenzian peak in a power spectral density (PSD) measurement. The PSD can be plotted using plot_linear_response:

julia
plot_linear_response(result, x, Ω_range=range(0.95, 1.05, 300), branch=1, logscale=true)

The response has a peak at ω0, irrespective of the driving frequency ω. Indeed, the eigenvalues shown before where plotted in the rotating frame at the frequency of the drive ω. Hence, the imaginary part of eigenvalues shows the frequency (energy) needed to excite the system at it natural frequency (The frequency its want to be excited at.)

Note the slight "bending" of the noise peak with ω - this is given by the failure of the first-order calculation to capture response far-detuned from the drive frequency.

Nonlinear regime

For strong driving, matters get more complicated. Let us now use a drive F=2103 :

julia
fixed ==> 1, ω0 => 1.0, γ => 0.005, F => 0.002)   # fixed parameters
 varied = ω => range(0.95, 1.05, 100)           # range of parameter values
 result = get_steady_states(harmonic_eq, varied, fixed)
 
-plot(result, x="ω", y="sqrt(u1^2 + v1^2)");

The amplitude is the well-known Duffing curve. Let's look at the eigenvalues of the two stable branches, 1 and 2.

julia
plot(
+plot(result, x="ω", y="sqrt(u1^2 + v1^2)");

The amplitude is the well-known Duffing curve. Let's look at the eigenvalues of the two stable branches, 1 and 2.

julia
plot(
     plot_eigenvalues(result, branch=1),
     plot_eigenvalues(result, branch=1, type=:real, ylims=(-0.003, 0)),
     plot_eigenvalues(result, branch=2),
     plot_eigenvalues(result, branch=2, type=:real, ylims=(-0.003, 0)),
-)

Again every branch gives a single pair of complex conjugate eigenvalues. However, for branch 1, the characteristic frequencies due not change linearly with the driving frequency around ω=ω0. This is a sign of steady state becoming nonlinear at large amplitudes.

The same can be seen in the PSD:

julia
plot(
+)

Again every branch gives a single pair of complex conjugate eigenvalues. However, for branch 1, the characteristic frequencies due not change linearly with the driving frequency around ω=ω0. This is a sign of steady state becoming nonlinear at large amplitudes.

The same can be seen in the PSD:

julia
plot(
   plot_linear_response(result, x, branch=1, Ω_range=range(0.95,1.1,300), logscale=true),
   plot_linear_response(result, x, branch=2, Ω_range=range(0.9,1.1,300), logscale=true),
     size=(600, 250), margin=3mm
-)

In branch 1 the linear response to white noise shows more than one peak. This is a distinctly nonlinear phenomenon, indicitive if the squeezing of the steady state. Branch 2 is again quasi-linear, which stems from its low amplitude.

Following Huber et al., we may also fix ω=ω0 and plot the linear response as a function of F. The response turns out to be single-valued over a large range of driving strengths. Using a log scale for the x-axis:

julia
fixed ==> 1., ω0 => 1.0, γ => 1e-2, ω => 1)   # fixed parameters
+)

In branch 1 the linear response to white noise shows more than one peak. This is a distinctly nonlinear phenomenon, indicitive if the squeezing of the steady state. Branch 2 is again quasi-linear, which stems from its low amplitude.

Following Huber et al., we may also fix ω=ω0 and plot the linear response as a function of F. The response turns out to be single-valued over a large range of driving strengths. Using a log scale for the x-axis:

julia
fixed ==> 1., ω0 => 1.0, γ => 1e-2, ω => 1)   # fixed parameters
 swept = F => 10 .^ range(-6, -1, 200)           # range of parameter values
 result = get_steady_states(harmonic_eq, swept, fixed)
 
@@ -71,8 +71,8 @@
   plot(result, "sqrt(u1^2 + v1^2)", xscale=:log),
   plot_linear_response(result, x, branch=1, Ω_range=range(0.9,1.1,300), logscale=true, xscale=:log),
   size=(600, 250), margin=3mm
-)

We see that for low F, quasi-linear behaviour with a single Lorentzian response occurs, while for larger F, two peaks form in the noise response. The two peaks are strongly unequal in magnitude, which is an example of internal squeezing (See supplemental material of Huber et al.).

- +)

We see that for low F, quasi-linear behaviour with a single Lorentzian response occurs, while for larger F, two peaks form in the noise response. The two peaks are strongly unequal in magnitude, which is an example of internal squeezing (See supplemental material of Huber et al.).

+ \ No newline at end of file diff --git a/previews/PR298/tutorials/steady_states.html b/previews/PR298/tutorials/steady_states.html index d1079b39..7771ca9d 100644 --- a/previews/PR298/tutorials/steady_states.html +++ b/previews/PR298/tutorials/steady_states.html @@ -8,11 +8,11 @@ - + - + - + @@ -43,7 +43,7 @@ of which real: 3 of which stable: 2 -Classes: stable, physical, Hopf, binary_labels

The algorithm has found 3 solution branches in total (out of the hypothetically admissible 32=9). All of these are real – and thefore physically observable – for at least some values of ω. Only 2 branches are stable under infinitesimal perturbations. The "Classes" are boolean labels classifying each solution point, which may be used to select results for plotting.

We now want to visualize the results. Here we plot the solution amplitude, U2+V2 against the drive frequency ω:

julia
plot(result, "sqrt(u1^2 + v1^2)")

This is the expected response curve for the Duffing equation.

Using multiple harmonics

In the above section, we truncated the Fourier space to a single harmonic ω – the oscillator was assumed to only oscillate at the drive frequency. However, the Duffing oscillator can exhibit a rich spectrum of harmonics. We can obtain some intuition by treating α perturbatively in the equation of motion, i.e., by solving

x¨(t)+γx˙(t)+ω02x(t)+ϵαx(t)3=Fcos(ωt)

for small ϵ. To zeroth order, the response of the system is x0(t)=X0cos(ωt+ϕ0). Expanding x(t)=x0(t)+ϵx1(t), we find that the perturbation x1(t) satisfies to first order

x¨1(t)+γx˙1(t)[ω02+3αX024]x1(t)=αX034cos(3ωt+3ϕ0),

which gives a response of the form x1(t)=X1cos(3ωt+ϕ1). Clearly, the oscillator now responds not only at frequency ω, but also at 3ω! This effect is known as high harmonic generation or more generally frequency conversion. By continuing the procedure to higher orders, we eventually obtain an infinity of harmonics present in the response. In general, there is no analytical solution to such problems.

We argued that frequency conversion takes place, to first order from ω to 3ω. We can reflect this process by using a extended harmonic ansatz:

x(t)=U1cos(ωt)+V1sin(ωt)+U2cos(3ωt)+V2sin(3ωt).

Note that this is not a perturbative treatment! The harmonics ω and 3ω are on the same footing here. This is implemented as

julia
add_harmonic!(diff_eq, x, [ω, 3ω]) # specify the two-harmonics ansatz
+Classes: stable, physical, Hopf, binary_labels

The algorithm has found 3 solution branches in total (out of the hypothetically admissible 32=9). All of these are real – and thefore physically observable – for at least some values of ω. Only 2 branches are stable under infinitesimal perturbations. The "Classes" are boolean labels classifying each solution point, which may be used to select results for plotting.

We now want to visualize the results. Here we plot the solution amplitude, U2+V2 against the drive frequency ω:

julia
plot(result, "sqrt(u1^2 + v1^2)")

This is the expected response curve for the Duffing equation.

Using multiple harmonics

In the above section, we truncated the Fourier space to a single harmonic ω – the oscillator was assumed to only oscillate at the drive frequency. However, the Duffing oscillator can exhibit a rich spectrum of harmonics. We can obtain some intuition by treating α perturbatively in the equation of motion, i.e., by solving

x¨(t)+γx˙(t)+ω02x(t)+ϵαx(t)3=Fcos(ωt)

for small ϵ. To zeroth order, the response of the system is x0(t)=X0cos(ωt+ϕ0). Expanding x(t)=x0(t)+ϵx1(t), we find that the perturbation x1(t) satisfies to first order

x¨1(t)+γx˙1(t)[ω02+3αX024]x1(t)=αX034cos(3ωt+3ϕ0),

which gives a response of the form x1(t)=X1cos(3ωt+ϕ1). Clearly, the oscillator now responds not only at frequency ω, but also at 3ω! This effect is known as high harmonic generation or more generally frequency conversion. By continuing the procedure to higher orders, we eventually obtain an infinity of harmonics present in the response. In general, there is no analytical solution to such problems.

We argued that frequency conversion takes place, to first order from ω to 3ω. We can reflect this process by using a extended harmonic ansatz:

x(t)=U1cos(ωt)+V1sin(ωt)+U2cos(3ωt)+V2sin(3ωt).

Note that this is not a perturbative treatment! The harmonics ω and 3ω are on the same footing here. This is implemented as

julia
add_harmonic!(diff_eq, x, [ω, 3ω]) # specify the two-harmonics ansatz
 harmonic_eq = get_harmonic_equations(diff_eq)
A set of 4 harmonic equations
 Variables: u1(T), v1(T), u2(T), v2(T)
 Parameters: ω, ω0, γ, α, F
@@ -60,9 +60,9 @@
 Differential(T)(u2(T))*γ + (6//1)*Differential(T)(v2(T))*ω + (3//1)*v2(T)*γ*ω - (9//1)*u2(T)*(ω^2) + u2(T)*(ω0^2) + (1//4)*(u1(T)^3)*α + (3//2)*(u1(T)^2)*u2(T)*α - (3//4)*u1(T)*(v1(T)^2)*α + (3//4)*(v2(T)^2)*u2(T)*α + (3//2)*(v1(T)^2)*u2(T)*α + (3//4)*(u2(T)^3)*α ~ 0//1
 
 -(6//1)*Differential(T)(u2(T))*ω + Differential(T)(v2(T))*γ - (9//1)*v2(T)*(ω^2) + v2(T)*(ω0^2) - (3//1)*u2(T)*γ*ω + (3//2)*(u1(T)^2)*v2(T)*α + (3//4)*(u1(T)^2)*v1(T)*α + (3//4)*(v2(T)^3)*α + (3//2)*v2(T)*(v1(T)^2)*α + (3//4)*v2(T)*(u2(T)^2)*α - (1//4)*(v1(T)^3)*α ~ 0//1

The variables u1, v1 now encode ω and u2, v2 encode . We see this system is much harder to solve as we now have 4 harmonic variables, resulting in 4 coupled cubic equations. A maximum of 34=81 solutions may appear!

julia
result = get_steady_states(harmonic_eq, varied, fixed)
-plot(result, "sqrt(u1^2 + v1^2)")

For the above parameters (where a perturbative treatment would have been reasonable), the principal response at ω looks rather similar, with a much smaller upconverted component appearing at 3ω:

julia
p1=plot(result, "sqrt(u1^2 + v1^2)", legend=false)
+plot(result, "sqrt(u1^2 + v1^2)")

For the above parameters (where a perturbative treatment would have been reasonable), the principal response at ω looks rather similar, with a much smaller upconverted component appearing at 3ω:

julia
p1=plot(result, "sqrt(u1^2 + v1^2)", legend=false)
 p2=plot(result, "sqrt(u2^2 + v2^2)")
-plot(p1, p2)

The non-perturbative nature of the ansatz allows us to capture some behaviour which is not a mere extension of the usual single-harmonic Duffing response. Suppose we drive a strongly nonlinear resonator at frequency ωω0/3. Such a drive is far out of resonance, however, the upconverted harmonic 3ω=ω0 is not and may play an important role! Let us try this out:

julia
fixed ==> 10., ω0 => 3, F => 5, γ=>0.01)   # fixed parameters
+plot(p1, p2)

The non-perturbative nature of the ansatz allows us to capture some behaviour which is not a mere extension of the usual single-harmonic Duffing response. Suppose we drive a strongly nonlinear resonator at frequency ωω0/3. Such a drive is far out of resonance, however, the upconverted harmonic 3ω=ω0 is not and may play an important role! Let us try this out:

julia
fixed ==> 10., ω0 => 3, F => 5, γ=>0.01)   # fixed parameters
 varied = ω => range(0.9, 1.4, 100)           # range of parameter values
 result = get_steady_states(harmonic_eq, varied, fixed)
A steady state result for 100 parameter points
 
@@ -72,8 +72,8 @@
 
 Classes: stable, physical, Hopf, binary_labels

Although 9 branches were found in total, only 3 remain physical (real-valued). Let us visualise the amplitudes corresponding to the two harmonics, U12+V12 and U22+V22 :

julia
p1 = plot(result, "sqrt(u1^2 + v1^2)", legend=false)
 p2 = plot(result, "sqrt(u2^2 + v2^2)")
-plot(p1, p2)

The contributions of ω and 3ω are now comparable and the system shows some fairly complex behaviour! This demonstrates how an exact solution within an extended Fourier subspace goes beyond a perturbative treatment.

- +plot(p1, p2)

The contributions of ω and 3ω are now comparable and the system shows some fairly complex behaviour! This demonstrates how an exact solution within an extended Fourier subspace goes beyond a perturbative treatment.

+ \ No newline at end of file diff --git a/previews/PR298/tutorials/time_dependent.html b/previews/PR298/tutorials/time_dependent.html index 6c4e2175..3db5e706 100644 --- a/previews/PR298/tutorials/time_dependent.html +++ b/previews/PR298/tutorials/time_dependent.html @@ -8,9 +8,9 @@ - + - + @@ -57,7 +57,7 @@ plot(result, "sqrt(u1^2 + v1^2)")

Clearly when evolving from u0 = [0., 0.], the system ends up in the low-amplitude branch 2. With u0 = [0.2, 0.2], the system ends up in branch 3.

Adiabatic parameter sweeps

Experimentally, the primary means of exploring the steady state landscape is an adiabatic sweep one or more of the system parameters. This takes the system along a solution branch. If this branch disappears or becomes unstable, a jump occurs.

The object AdiabaticSweep specifies a sweep, which is then used as an optional sweep keyword in the ODEProblem constructor.

julia
sweep = AdiabaticSweep=> (0.9,1.1), (0, 2e4))
AdiabaticSweep(Dict{Num, Function}(ω => TimeEvolution.var"#f#1"{Tuple{Float64, Float64}, Float64, Int64}((0.9, 1.1), 20000.0, 0)))

The sweep linearly interpolates between ω=0.9 at time 0 and ω=1.1 at time 2e4. For earlier/later times, ω is constant.

Let us now define a new ODEProblem which incorporates sweep and again use solve:

julia
ode_problem = ODEProblem(harmonic_eq, fixed, sweep=sweep, u0=[0.1;0.0], timespan=(0, 2e4))
 time_evo = solve(ode_problem, Tsit5(), saveat=100)
 plot(time_evo, "sqrt(u1^2 + v1^2)", harmonic_eq)

We see the system first evolves from the initial condition towards the low-amplitude steady state. The amplitude increases as the sweep proceeds, with a jump occurring around ω=1.08 (i.e., time 18000).

- + \ No newline at end of file