-
Notifications
You must be signed in to change notification settings - Fork 0
/
lsqrSOL.m
334 lines (293 loc) · 11.6 KB
/
lsqrSOL.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
function [ x, istop, itn, r1norm, r2norm, Anorm, Acond, Arnorm, xnorm, var ]...
= lsqrSOL( m, n, A, b, damp, atol, btol, conlim, itnlim, show )
% [ x, istop, itn, r1norm, r2norm, Anorm, Acond, Arnorm, xnorm, var ]...
% = lsqrSOL( m, n, A, b, damp, atol, btol, conlim, itnlim, show );
%
% LSQR solves Ax = b or min ||b - Ax||_2 if damp = 0,
% or min ||(b) - ( A )x|| otherwise.
% ||(0) (damp*I) ||_2
% A is an m by n matrix (ideally sparse),
% or a function handle such that
% y = A(x,1) returns y = A*x (where x will be an n-vector);
% y = A(x,2) returns y = A'*x (where x will be an m-vector).
%-----------------------------------------------------------------------
% LSQR uses an iterative (conjugate-gradient-like) method.
% For further information, see
% 1. C. C. Paige and M. A. Saunders (1982a).
% LSQR: An algorithm for sparse linear equations and sparse least squares,
% ACM TOMS 8(1), 43-71.
% 2. C. C. Paige and M. A. Saunders (1982b).
% Algorithm 583. LSQR: Sparse linear equations and least squares problems,
% ACM TOMS 8(2), 195-209.
% 3. M. A. Saunders (1995). Solution of sparse rectangular systems using
% LSQR and CRAIG, BIT 35, 588-604.
%
% Input parameters:
% m , n are the dimensions of A.
% atol, btol are stopping tolerances. If both are 1.0e-9 (say),
% the final residual norm should be accurate to about 9 digits.
% (The final x will usually have fewer correct digits,
% depending on cond(A) and the size of damp.)
% conlim is also a stopping tolerance. lsqr terminates if an estimate
% of cond(A) exceeds conlim. For compatible systems Ax = b,
% conlim could be as large as 1.0e+12 (say). For least-squares
% problems, conlim should be less than 1.0e+8.
% Maximum precision can be obtained by setting
% atol = btol = conlim = zero, but the number of iterations
% may then be excessive.
% itnlim is an explicit limit on iterations (for safety).
% show = 1 gives an iteration log,
% show = 0 suppresses output.
%
% Output parameters:
% x is the final solution.
% istop gives the reason for termination.
% istop = 1 means x is an approximate solution to Ax = b.
% = 2 means x approximately solves the least-squares problem.
% r1norm = norm(r), where r = b - Ax.
% r2norm = sqrt( norm(r)^2 + damp^2 * norm(x)^2 )
% = r1norm if damp = 0.
% Anorm = estimate of Frobenius norm of Abar = [ A ].
% [damp*I]
% Acond = estimate of cond(Abar).
% Arnorm = estimate of norm(A'*r - damp^2*x).
% xnorm = norm(x).
% var (if present) estimates all diagonals of (A'A)^{-1} (if damp=0)
% or (A'A + damp^2*I)^{-1} if damp > 0.
% This is well defined if A has full column rank or damp > 0.
% More precisely, var = diag(Dk*Dk'), where Dk is the n*k
% matrix of search directions after k iterations. Theoretically
% Dk satisfies Dk'(A'A + damp^2*I)Dk = I for any A or damp.
%
%
% 1990: Derived from Fortran 77 version of LSQR.
% 22 May 1992: bbnorm was used incorrectly. Replaced by Anorm.
% 26 Oct 1992: More input and output parameters added.
% 01 Sep 1994: Print log reformatted.
% 14 Jun 1997: show added to allow printing or not.
% 30 Jun 1997: var added as an optional output parameter.
% 07 Aug 2002: Output parameter rnorm replaced by r1norm and r2norm.
% 03 May 2007: Allow A to be a matrix or a function handle.
% 04 Sep 2011: Description of y = A(x,1) and y = A(x,2) corrected.
% 04 Sep 2011: I would like to allow an input x0.
% If damp = 0 and x0 is nonzero, we could compute
% r0 = b - A*x0, solve min ||r0 - A*dx||, and return
% x = x0 + dx. The current updating of "xnorm" would
% give norm(dx), which we don't really need. Instead
% we would compute xnorm = norm(x0+dx) directly.
%
% If damp is nonzero, we would have to solve the bigger system
% min ||( r0 ) - ( A )dx||
% ||(-damp*x0) (damp*I) ||_2
% with no benefit from the special structure.
% Forget x0 for now and leave it to the user.
%
% Michael Saunders, Systems Optimization Laboratory,
% Dept of MS&E, Stanford University.
%-----------------------------------------------------------------------
% Initialize.
if isa(A,'numeric')
explicitA = true;
elseif isa(A,'function_handle')
explicitA = false;
else
error('SOL:lsqrSOL:Atype','%s','A must be numeric or a function handle');
end
wantvar = nargout >= 10;
if wantvar, var = zeros(n,1); end
msg=['The exact solution is x = 0 '
'Ax - b is small enough, given atol, btol '
'The least-squares solution is good enough, given atol '
'The estimate of cond(Abar) has exceeded conlim '
'Ax - b is small enough for this machine '
'The least-squares solution is good enough for this machine'
'Cond(Abar) seems to be too large for this machine '
'The iteration limit has been reached '];
if show
disp(' ')
disp('LSQR Least-squares solution of Ax = b')
str1 = sprintf('The matrix A has %8g rows and %8g cols', m,n);
str2 = sprintf('damp = %20.14e wantvar = %8g', damp,wantvar);
str3 = sprintf('atol = %8.2e conlim = %8.2e', atol,conlim);
str4 = sprintf('btol = %8.2e itnlim = %8g' , btol,itnlim);
disp(str1); disp(str2); disp(str3); disp(str4);
end
itn = 0; istop = 0;
ctol = 0; if conlim > 0, ctol = 1/conlim; end;
Anorm = 0; Acond = 0;
dampsq = damp^2; ddnorm = 0; res2 = 0;
xnorm = 0; xxnorm = 0; z = 0;
cs2 = -1; sn2 = 0;
% Set up the first vectors u and v for the bidiagonalization.
% These satisfy beta*u = b, alfa*v = A'u.
u = b(1:m); x = zeros(n,1);
alfa = 0; beta = norm(u);
if beta > 0
u = (1/beta)*u;
if explicitA
v = A'*u;
else
v = A(u,2);
end
alfa = norm(v);
end
if alfa > 0
v = (1/alfa)*v; w = v;
end
Arnorm = alfa*beta; if Arnorm == 0, disp(msg(1,:)); return, end
rhobar = alfa; phibar = beta; bnorm = beta;
rnorm = beta;
r1norm = rnorm;
r2norm = rnorm;
head1 = ' Itn x(1) r1norm r2norm ';
head2 = ' Compatible LS Norm A Cond A';
if show
disp(' ')
disp([head1 head2])
test1 = 1; test2 = alfa / beta;
str1 = sprintf( '%6g %12.5e', itn, x(1) );
str2 = sprintf( ' %10.3e %10.3e', r1norm, r2norm );
str3 = sprintf( ' %8.1e %8.1e', test1, test2 );
disp([str1 str2 str3])
end
%------------------------------------------------------------------
% Main iteration loop.
%------------------------------------------------------------------
while itn < itnlim
itn = itn + 1;
% Perform the next step of the bidiagonalization to obtain the
% next beta, u, alfa, v. These satisfy the relations
% beta*u = A*v - alfa*u,
% alfa*v = A'*u - beta*v.
if explicitA
u = A*v - alfa*u;
else
u = A(v,1) - alfa*u;
end
beta = norm(u);
if beta > 0
u = (1/beta)*u;
Anorm = norm([Anorm alfa beta damp]);
if explicitA
v = A'*u - beta*v;
else
v = A(u,2) - beta*v;
end
alfa = norm(v);
if alfa > 0, v = (1/alfa)*v; end
end
% Use a plane rotation to eliminate the damping parameter.
% This alters the diagonal (rhobar) of the lower-bidiagonal matrix.
rhobar1 = norm([rhobar damp]);
cs1 = rhobar/rhobar1;
sn1 = damp /rhobar1;
psi = sn1*phibar;
phibar = cs1*phibar;
% Use a plane rotation to eliminate the subdiagonal element (beta)
% of the lower-bidiagonal matrix, giving an upper-bidiagonal matrix.
rho = norm([rhobar1 beta]);
cs = rhobar1/rho;
sn = beta /rho;
theta = sn*alfa;
rhobar = - cs*alfa;
phi = cs*phibar;
phibar = sn*phibar;
tau = sn*phi;
% Update x and w.
t1 = phi /rho;
t2 = - theta/rho;
dk = (1/rho)*w;
x = x + t1*w;
w = v + t2*w;
ddnorm = ddnorm + norm(dk)^2;
if wantvar, var = var + dk.*dk; end
% Use a plane rotation on the right to eliminate the
% super-diagonal element (theta) of the upper-bidiagonal matrix.
% Then use the result to estimate norm(x).
delta = sn2*rho;
gambar = - cs2*rho;
rhs = phi - delta*z;
zbar = rhs/gambar;
xnorm = sqrt(xxnorm + zbar^2);
gamma = norm([gambar theta]);
cs2 = gambar/gamma;
sn2 = theta /gamma;
z = rhs /gamma;
xxnorm = xxnorm + z^2;
% Test for convergence.
% First, estimate the condition of the matrix Abar,
% and the norms of rbar and Abar'rbar.
Acond = Anorm*sqrt(ddnorm);
res1 = phibar^2;
res2 = res2 + psi^2;
rnorm = sqrt(res1 + res2);
Arnorm = alfa*abs(tau);
% 07 Aug 2002:
% Distinguish between
% r1norm = ||b - Ax|| and
% r2norm = rnorm in current code
% = sqrt(r1norm^2 + damp^2*||x||^2).
% Estimate r1norm from
% r1norm = sqrt(r2norm^2 - damp^2*||x||^2).
% Although there is cancellation, it might be accurate enough.
r1sq = rnorm^2 - dampsq*xxnorm;
r1norm = sqrt(abs(r1sq)); if r1sq < 0, r1norm = - r1norm; end
r2norm = rnorm;
% Now use these norms to estimate certain other quantities,
% some of which will be small near a solution.
test1 = rnorm /bnorm;
test2 = Arnorm/(Anorm*rnorm);
test3 = 1/Acond;
t1 = test1/(1 + Anorm*xnorm/bnorm);
rtol = btol + atol*Anorm*xnorm/bnorm;
% The following tests guard against extremely small values of
% atol, btol or ctol. (The user may have set any or all of
% the parameters atol, btol, conlim to 0.)
% The effect is equivalent to the normal tests using
% atol = eps, btol = eps, conlim = 1/eps.
if itn >= itnlim, istop = 7; end
if 1 + test3 <= 1, istop = 6; end
if 1 + test2 <= 1, istop = 5; end
if 1 + t1 <= 1, istop = 4; end
% Allow for tolerances set by the user.
if test3 <= ctol, istop = 3; end
if test2 <= atol, istop = 2; end
if test1 <= rtol, istop = 1; end
% See if it is time to print something.
prnt = 0;
if n <= 40 , prnt = 1; end
if itn <= 10 , prnt = 1; end
if itn >= itnlim-10, prnt = 1; end
if rem(itn,10) == 0 , prnt = 1; end
if test3 <= 2*ctol , prnt = 1; end
if test2 <= 10*atol , prnt = 1; end
if test1 <= 10*rtol , prnt = 1; end
if istop ~= 0 , prnt = 1; end
if prnt
if show
str1 = sprintf( '%6g %12.5e', itn, x(1) );
str2 = sprintf( ' %10.3e %10.3e', r1norm, r2norm );
str3 = sprintf( ' %8.1e %8.1e', test1, test2 );
str4 = sprintf( ' %8.1e %8.1e', Anorm, Acond );
disp([str1 str2 str3 str4])
end
end
if istop > 0, break, end
end
% End of iteration loop.
% Print the stopping condition.
if show
fprintf('\nlsqrSOL finished\n')
disp(msg(istop+1,:))
disp(' ')
str1 = sprintf( 'istop =%8g r1norm =%8.1e', istop, r1norm );
str2 = sprintf( 'Anorm =%8.1e Arnorm =%8.1e', Anorm, Arnorm );
str3 = sprintf( 'itn =%8g r2norm =%8.1e', itn, r2norm );
str4 = sprintf( 'Acond =%8.1e xnorm =%8.1e', Acond, xnorm );
disp([str1 ' ' str2])
disp([str3 ' ' str4])
disp(' ')
end
%-----------------------------------------------------------------------
% end function lsqrSOL
%-----------------------------------------------------------------------