-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathitkm.m
84 lines (68 loc) · 1.81 KB
/
itkm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
function dico=itkm(data,K,S,maxit,dinit)
% syntax: dico=itkm(data,K,S,maxit,dinit)
%
% Iterative Thresholding& K signed Means
% dictionary learning algorithm as described in
% 'Local Identification of Overcomplete Dictionaries'
% arXiv:1401.6354
%
% input:
% data... d x N matrix containing the training signals as its columns
% K... number of dictionary atoms/dictionary size - default d
% S... desired/estimated sparsity level of the signals - default 1
% maxit... number of iterations - default 1000
% dinit... initialisation, d x K unit norm column matrix - default random
%
% output:
% dico... d x K dictionary
%
% Karin Schnass 24.01.14
%%%% preparations
if(nargin < 1)
disp('syntax: dico=itkm(data,K,S,maxit,dinit)');
dico=[];
return;
end
[d,N]=size(data);
if(nargin < 2)
K=d;
end
if (N < K+1)
disp('less training signals than atoms => trivial solution');
dico=data;
return;
end
if(nargin < 5)
dinit = randn(d,K);
scale = sum(dinit.*dinit);
dinit=dinit*diag(1./sqrt(scale));
end
if(nargin < 4)
maxit = 1000;
end
if(nargin < 3)
S=1;
end
if size(dinit)~=[d,K]
disp('initialisation does not match dictionary size - random initialisation used');
dinit = randn(d,K);
scale = sum(dinit.*dinit);
dinit=dinit*diag(1./sqrt(scale));
end
%%%% algorithm
dold=dinit;
for it=1: maxit
ip=dold'*data;
absip=abs(ip);
signip=sign(ip);
[sortip,I] = sort(absip,1,'descend');
dnew=zeros(d,K);
for n=1:N
dnew(:,I(1:S,n))=dnew(:,I(1:S,n))+ data(:,n)*signip(I(1:S,n),n)';
end
scale=sum(dnew.*dnew);
nonzero=find(scale > 0.001);
dnew(:,nonzero)=dnew(:,nonzero)*diag(1./sqrt(scale(nonzero)));
dold(:,nonzero)=dnew(:,nonzero);
end
dico=dold;