-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmvtec_augment_data.py
571 lines (430 loc) · 19.2 KB
/
mvtec_augment_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
# region Imports
import os
import argparse
from os.path import join
from tqdm.notebook import tqdm
from copy import deepcopy
import pickle
from colorama import Fore as colrf, Back as colrb
from PIL import Image
import cv2
import numpy as np
import pandas as pd
import shutil
import matplotlib.pyplot as plt
from plotly.subplots import make_subplots
import plotly.express as px
from plotly import graph_objects as go
import torch
from torch import nn
import torch.nn.functional as F
from torchvision import transforms
import skimage as sk
from skimage.filters import gaussian
from io import BytesIO
from wand.image import Image as WandImage
from wand.api import library as wandlibrary
import wand.color as WandColor
import ctypes
from PIL import Image as PILImage
import cv2
from scipy.ndimage import zoom as scizoom
from scipy.ndimage.interpolation import map_coordinates
import warnings
warnings.simplefilter("ignore", UserWarning)
# endregion Imports
# region ImageNet-C Augmenerations
def disk(radius, alias_blur=0.1, dtype=np.float32):
if radius <= 8:
L = np.arange(-8, 8 + 1)
ksize = (3, 3)
else:
L = np.arange(-radius, radius + 1)
ksize = (5, 5)
X, Y = np.meshgrid(L, L)
aliased_disk = np.array((X ** 2 + Y ** 2) <= radius ** 2, dtype=dtype)
aliased_disk /= np.sum(aliased_disk)
# supersample disk to antialias
return cv2.GaussianBlur(aliased_disk, ksize=ksize, sigmaX=alias_blur)
# Tell Python about the C method
wandlibrary.MagickMotionBlurImage.argtypes = (ctypes.c_void_p, # wand
ctypes.c_double, # radius
ctypes.c_double, # sigma
ctypes.c_double) # angle
# Extend wand.image.Image class to include method signature
class MotionImage(WandImage):
def motion_blur(self, radius=0.0, sigma=0.0, angle=0.0):
wandlibrary.MagickMotionBlurImage(self.wand, radius, sigma, angle)
# modification of https://github.com/FLHerne/mapgen/blob/master/diamondsquare.py
def plasma_fractal(mapsize=256, wibbledecay=3):
"""
Generate a heightmap using diamond-square algorithm.
Return square 2d array, side length 'mapsize', of floats in range 0-255.
'mapsize' must be a power of two.
"""
assert (mapsize & (mapsize - 1) == 0)
maparray = np.empty((mapsize, mapsize), dtype=np.float_)
maparray[0, 0] = 0
stepsize = mapsize
wibble = 100
def wibbledmean(array):
return array / 4 + wibble * np.random.uniform(-wibble, wibble, array.shape)
def fillsquares():
"""For each square of points stepsize apart,
calculate middle value as mean of points + wibble"""
cornerref = maparray[0:mapsize:stepsize, 0:mapsize:stepsize]
squareaccum = cornerref + np.roll(cornerref, shift=-1, axis=0)
squareaccum += np.roll(squareaccum, shift=-1, axis=1)
maparray[stepsize // 2:mapsize:stepsize,
stepsize // 2:mapsize:stepsize] = wibbledmean(squareaccum)
def filldiamonds():
"""For each diamond of points stepsize apart,
calculate middle value as mean of points + wibble"""
mapsize = maparray.shape[0]
drgrid = maparray[stepsize // 2:mapsize:stepsize, stepsize // 2:mapsize:stepsize]
ulgrid = maparray[0:mapsize:stepsize, 0:mapsize:stepsize]
ldrsum = drgrid + np.roll(drgrid, 1, axis=0)
lulsum = ulgrid + np.roll(ulgrid, -1, axis=1)
ltsum = ldrsum + lulsum
maparray[0:mapsize:stepsize, stepsize // 2:mapsize:stepsize] = wibbledmean(ltsum)
tdrsum = drgrid + np.roll(drgrid, 1, axis=1)
tulsum = ulgrid + np.roll(ulgrid, -1, axis=0)
ttsum = tdrsum + tulsum
maparray[stepsize // 2:mapsize:stepsize, 0:mapsize:stepsize] = wibbledmean(ttsum)
while stepsize >= 2:
fillsquares()
filldiamonds()
stepsize //= 2
wibble /= wibbledecay
maparray -= maparray.min()
return maparray / maparray.max()
def clipped_zoom(img, zoom_factor):
h = img.shape[0]
# ceil crop height(= crop width)
ch = int(np.ceil(h / zoom_factor))
top = (h - ch) // 2
img = scizoom(img[top:top + ch, top:top + ch], (zoom_factor, zoom_factor, 1), order=1)
# trim off any extra pixels
trim_top = (img.shape[0] - h) // 2
return img[trim_top:trim_top + h, trim_top:trim_top + h]
# /////////////// End Distortion Helpers ///////////////
# /////////////// Distortions ///////////////
def gaussian_noise(x, severity=1):
c = [.08, .12, 0.18, 0.26, 0.38][severity - 1]
x = np.array(x) / 255.
return np.clip(x + np.random.normal(size=x.shape, scale=c), 0, 1) * 255
def shot_noise(x, severity=1):
c = [60, 25, 12, 5, 3][severity - 1]
x = np.array(x) / 255.
return np.clip(np.random.poisson(x * c) / c, 0, 1) * 255
def impulse_noise(x, severity=1):
c = [.03, .06, .09, 0.17, 0.27][severity - 1]
x = sk.util.random_noise(np.array(x) / 255., mode='s&p', amount=c)
return np.clip(x, 0, 1) * 255
def speckle_noise(x, severity=1):
c = [.15, .2, 0.35, 0.45, 0.6][severity - 1]
x = np.array(x) / 255.
return np.clip(x + x * np.random.normal(size=x.shape, scale=c), 0, 1) * 255
def fgsm(x, source_net, severity=1):
c = [8, 16, 32, 64, 128][severity - 1]
x = V(x, requires_grad=True)
logits = source_net(x)
source_net.zero_grad()
loss = F.cross_entropy(logits, V(logits.data.max(1)[1].squeeze_()), size_average=False)
loss.backward()
return standardize(torch.clamp(unstandardize(x.data) + c / 255. * unstandardize(torch.sign(x.grad.data)), 0, 1))
def gaussian_blur(x, severity=1):
c = [1, 2, 3, 4, 6][severity - 1]
x = gaussian(np.array(x) / 255., sigma=c, multichannel=True)
return np.clip(x, 0, 1) * 255
def glass_blur(x, severity=1):
img_size = x.shape[0]
# sigma, max_delta, iterations
c = [(0.7, 1, 2), (0.9, 2, 1), (1, 2, 3), (1.1, 3, 2), (1.5, 4, 2)][severity - 1]
x = np.uint8(gaussian(np.array(x) / 255., sigma=c[0], multichannel=True) * 255)
# locally shuffle pixels
for i in range(c[2]):
for h in range(img_size - c[1], c[1], -1):
for w in range(img_size - c[1], c[1], -1):
dx, dy = np.random.randint(-c[1], c[1], size=(2,))
h_prime, w_prime = h + dy, w + dx
# swap
x[h, w], x[h_prime, w_prime] = x[h_prime, w_prime], x[h, w]
return np.clip(gaussian(x / 255., sigma=c[0], multichannel=True), 0, 1) * 255
def defocus_blur(x, severity=1):
c = [(3, 0.1), (4, 0.5), (6, 0.5), (8, 0.5), (10, 0.5)][severity - 1]
x = np.array(x) / 255.
kernel = disk(radius=c[0], alias_blur=c[1])
channels = []
for d in range(3):
channels.append(cv2.filter2D(x[:, :, d], -1, kernel))
channels = np.array(channels).transpose((1, 2, 0)) # 3x img_size x img_size -> img_size x img_size x 3
return np.clip(channels, 0, 1) * 255
def motion_blur(x, severity=1):
img_size = x.shape[0]
c = [(10, 3), (15, 5), (15, 8), (15, 12), (20, 15)][severity - 1]
output = BytesIO()
x.save(output, format='PNG')
x = MotionImage(blob=output.getvalue())
x.motion_blur(radius=c[0], sigma=c[1], angle=np.random.uniform(-45, 45))
x = cv2.imdecode(np.fromstring(x.make_blob(), np.uint8),
cv2.IMREAD_UNCHANGED)
if x.shape != (img_size, img_size):
return np.clip(x[..., [2, 1, 0]], 0, 255) # BGR to RGB
else: # greyscale to RGB
return np.clip(np.array([x, x, x]).transpose((1, 2, 0)), 0, 255)
def zoom_blur(x, severity=1):
c = [np.arange(1, 1.11, 0.01),
np.arange(1, 1.16, 0.01),
np.arange(1, 1.21, 0.02),
np.arange(1, 1.26, 0.02),
np.arange(1, 1.31, 0.03)][severity - 1]
x = (np.array(x) / 255.).astype(np.float32)
out = np.zeros_like(x)
for zoom_factor in c:
out += clipped_zoom(x, zoom_factor)
x = (x + out) / (len(c) + 1)
return np.clip(x, 0, 1) * 255
# def barrel(x, severity=1):
# c = [(0,0.03,0.03), (0.05,0.05,0.05), (0.1,0.1,0.1),
# (0.2,0.2,0.2), (0.1,0.3,0.6)][severity - 1]
#
# output = BytesIO()
# x.save(output, format='PNG')
#
# x = WandImage(blob=output.getvalue())
# x.distort('barrel', c)
#
# x = cv2.imdecode(np.fromstring(x.make_blob(), np.uint8),
# cv2.IMREAD_UNCHANGED)
#
# if x.shape != (img_size, img_size):
# return np.clip(x[..., [2, 1, 0]], 0, 255) # BGR to RGB
# else: # greyscale to RGB
# return np.clip(np.array([x, x, x]).transpose((1, 2, 0)), 0, 255)
def fog(x, severity=1):
img_size = x.shape[0]
c = [(1.5, 2), (2, 2), (2.5, 1.7), (2.5, 1.5), (3, 1.4)][severity - 1]
x = np.array(x) / 255.
max_val = x.max()
x += c[0] * plasma_fractal(wibbledecay=c[1])[:img_size, :img_size][..., np.newaxis]
return np.clip(x * max_val / (max_val + c[0]), 0, 1) * 255
def frost(x, severity=1):
c = [(1, 0.4),
(0.8, 0.6),
(0.7, 0.7),
(0.65, 0.7),
(0.6, 0.75)][severity - 1]
idx = np.random.randint(5)
filename = ['./frost1.png', './frost2.png', './frost3.png', './frost4.jpg', './frost5.jpg', './frost6.jpg'][idx]
frost = cv2.imread(filename)
# randomly crop and convert to rgb
x_start, y_start = np.random.randint(0, frost.shape[0] - img_size), np.random.randint(0, frost.shape[1] - img_size)
frost = frost[x_start:x_start + img_size, y_start:y_start + img_size][..., [2, 1, 0]]
return np.clip(c[0] * np.array(x) + c[1] * frost, 0, 255)
def snow(x, severity=1):
img_size = x.shape[0]
c = [(0.1, 0.3, 3, 0.5, 10, 4, 0.8),
(0.2, 0.3, 2, 0.5, 12, 4, 0.7),
(0.55, 0.3, 4, 0.9, 12, 8, 0.7),
(0.55, 0.3, 4.5, 0.85, 12, 8, 0.65),
(0.55, 0.3, 2.5, 0.85, 12, 12, 0.55)][severity - 1]
x = np.array(x, dtype=np.float32) / 255.
snow_layer = np.random.normal(size=x.shape[:2], loc=c[0], scale=c[1]) # [:2] for monochrome
snow_layer = clipped_zoom(snow_layer[..., np.newaxis], c[2])
snow_layer[snow_layer < c[3]] = 0
snow_layer = PILImage.fromarray((np.clip(snow_layer.squeeze(), 0, 1) * 255).astype(np.uint8), mode='L')
output = BytesIO()
snow_layer.save(output, format='PNG')
snow_layer = MotionImage(blob=output.getvalue())
snow_layer.motion_blur(radius=c[4], sigma=c[5], angle=np.random.uniform(-135, -45))
snow_layer = cv2.imdecode(np.fromstring(snow_layer.make_blob(), np.uint8),
cv2.IMREAD_UNCHANGED) / 255.
snow_layer = snow_layer[..., np.newaxis]
x = c[6] * x + (1 - c[6]) * np.maximum(x, cv2.cvtColor(x, cv2.COLOR_RGB2GRAY).reshape(img_size, img_size,
1) * 1.5 + 0.5)
return np.clip(x + snow_layer + np.rot90(snow_layer, k=2), 0, 1) * 255
def spatter(x, severity=1):
c = [(0.65, 0.3, 4, 0.69, 0.6, 0),
(0.65, 0.3, 3, 0.68, 0.6, 0),
(0.65, 0.3, 2, 0.68, 0.5, 0),
(0.65, 0.3, 1, 0.65, 1.5, 1),
(0.67, 0.4, 1, 0.65, 1.5, 1)][severity - 1]
x = np.array(x, dtype=np.float32) / 255.
liquid_layer = np.random.normal(size=x.shape[:2], loc=c[0], scale=c[1])
liquid_layer = gaussian(liquid_layer, sigma=c[2])
liquid_layer[liquid_layer < c[3]] = 0
if c[5] == 0:
liquid_layer = (liquid_layer * 255).astype(np.uint8)
dist = 255 - cv2.Canny(liquid_layer, 50, 150)
dist = cv2.distanceTransform(dist, cv2.DIST_L2, 5)
_, dist = cv2.threshold(dist, 20, 20, cv2.THRESH_TRUNC)
dist = cv2.blur(dist, (3, 3)).astype(np.uint8)
dist = cv2.equalizeHist(dist)
# ker = np.array([[-1,-2,-3],[-2,0,0],[-3,0,1]], dtype=np.float32)
# ker -= np.mean(ker)
ker = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]])
dist = cv2.filter2D(dist, cv2.CV_8U, ker)
dist = cv2.blur(dist, (3, 3)).astype(np.float32)
m = cv2.cvtColor(liquid_layer * dist, cv2.COLOR_GRAY2BGRA)
m /= np.max(m, axis=(0, 1))
m *= c[4]
# water is pale turqouise
color = np.concatenate((175 / 255. * np.ones_like(m[..., :1]),
238 / 255. * np.ones_like(m[..., :1]),
238 / 255. * np.ones_like(m[..., :1])), axis=2)
color = cv2.cvtColor(color, cv2.COLOR_BGR2BGRA)
x = cv2.cvtColor(x, cv2.COLOR_BGR2BGRA)
return cv2.cvtColor(np.clip(x + m * color, 0, 1), cv2.COLOR_BGRA2BGR) * 255
else:
m = np.where(liquid_layer > c[3], 1, 0)
m = gaussian(m.astype(np.float32), sigma=c[4])
m[m < 0.8] = 0
# m = np.abs(m) ** (1/c[4])
# mud brown
color = np.concatenate((63 / 255. * np.ones_like(x[..., :1]),
42 / 255. * np.ones_like(x[..., :1]),
20 / 255. * np.ones_like(x[..., :1])), axis=2)
color *= m[..., np.newaxis]
x *= (1 - m[..., np.newaxis])
return np.clip(x + color, 0, 1) * 255
def contrast(x, severity=1):
c = [0.4, .3, .2, .1, .05][severity - 1]
x = np.array(x) / 255.
means = np.mean(x, axis=(0, 1), keepdims=True)
return np.clip((x - means) * c + means, 0, 1) * 255
def brightness(x, severity=1):
c = [.1, .2, .3, .4, .5][severity - 1]
x = np.array(x) / 255.
x = sk.color.rgb2hsv(x)
x[:, :, 2] = np.clip(x[:, :, 2] + c, 0, 1)
x = sk.color.hsv2rgb(x)
return np.clip(x, 0, 1) * 255
def saturate(x, severity=1):
c = [(0.3, 0), (0.1, 0), (2, 0), (5, 0.1), (20, 0.2)][severity - 1]
x = np.array(x) / 255.
x = sk.color.rgb2hsv(x)
x[:, :, 1] = np.clip(x[:, :, 1] * c[0] + c[1], 0, 1)
x = sk.color.hsv2rgb(x)
return np.clip(x, 0, 1) * 255
def jpeg_compression(x, severity=1):
c = [25, 18, 15, 10, 7][severity - 1]
output = BytesIO()
PILImage.fromarray(x).save(output, 'JPEG', quality=c)
x = PILImage.open(output)
return np.array(x)
def pixelate(x, severity=1):
img_size = x.shape[0]
c = [0.6, 0.5, 0.4, 0.3, 0.25][severity - 1]
x = x.resize((int(img_size * c), int(img_size * c)), PILImage.BOX)
x = x.resize((img_size, img_size), PILImage.BOX)
return x
# mod of https://gist.github.com/erniejunior/601cdf56d2b424757de5
def elastic_transform(image, severity=1):
img_size = image.size[0]
c = [(img_size * 2, img_size * 0.7, img_size * 0.1),
# img_size should have been img_size, but ultimately nothing is incorrect
(img_size * 2, img_size * 0.08, img_size * 0.2),
(img_size * 0.05, img_size * 0.01, img_size * 0.02),
(img_size * 0.07, img_size * 0.01, img_size * 0.02),
(img_size * 0.12, img_size * 0.01, img_size * 0.02)][severity - 1]
image = np.array(image, dtype=np.float32) / 255.
shape = image.shape
shape_size = shape[:2]
# random affine
center_square = np.float32(shape_size) // 2
square_size = min(shape_size) // 3
pts1 = np.float32([center_square + square_size,
[center_square[0] + square_size, center_square[1] - square_size],
center_square - square_size])
pts2 = pts1 + np.random.uniform(-c[2], c[2], size=pts1.shape).astype(np.float32)
M = cv2.getAffineTransform(pts1, pts2)
image = cv2.warpAffine(image, M, shape_size[::-1], borderMode=cv2.BORDER_REFLECT_101)
dx = (gaussian(np.random.uniform(-1, 1, size=shape[:2]),
c[1], mode='reflect', truncate=3) * c[0]).astype(np.float32)
dy = (gaussian(np.random.uniform(-1, 1, size=shape[:2]),
c[1], mode='reflect', truncate=3) * c[0]).astype(np.float32)
dx, dy = dx[..., np.newaxis], dy[..., np.newaxis]
x, y, z = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]), np.arange(shape[2]))
indices = np.reshape(y + dy, (-1, 1)), np.reshape(x + dx, (-1, 1)), np.reshape(z, (-1, 1))
return np.clip(map_coordinates(image, indices, order=1, mode='reflect').reshape(shape), 0, 1) * 255
import collections
# endregion ImageNet-C Augmenerations
augs = collections.OrderedDict()
augs['Gaussian_Noise'] = gaussian_noise
augs['Shot_Noise'] = shot_noise
augs['Impulse_Noise'] = impulse_noise
augs['Defocus_Blur'] = defocus_blur
augs['Glass_Blur'] = glass_blur
augs['Motion_Blur'] = motion_blur
augs['Zoom_Blur'] = zoom_blur
augs['Snow'] = snow
augs['Frost'] = frost
augs['Fog'] = fog
augs['Brightness'] = brightness
augs['Contrast'] = contrast
augs['Elastic'] = elastic_transform
augs['Pixelate'] = pixelate
augs['JPEG'] = jpeg_compression
augs['Speckle_Noise'] = speckle_noise
augs['Gaussian_Blur'] = gaussian_blur
augs['Spatter'] = spatter
augs['Saturate'] = saturate
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--aug', type=str, default='Gaussian_Noise')
parser.add_argument('--severity', type=int, default=5, help='severity of augmentation (1-5)',
choices=[1, 2, 3, 4, 5])
args = parser.parse_args()
aug = augs[args.aug]
mvtec_dir = f'mvtec'
for cls in os.listdir(mvtec_dir):
cls_dir = join(mvtec_dir, cls)
if not os.path.isdir(cls_dir):
continue
new_dir = f'{mvtec_dir}_{args.aug}_{args.severity}'
new_cls_dir = join(new_dir, cls)
os.makedirs(new_cls_dir, exist_ok=True)
os.makedirs(join(new_cls_dir, 'train'), exist_ok=True)
os.makedirs(join(new_cls_dir, 'test'), exist_ok=True)
# if os.path.isdir(join(new_cls_dir, 'ground_truth')):
# shutil.rmtree(join(new_cls_dir, 'ground_truth'))
# shutil.copytree(join(cls_dir, 'ground_truth'),
# join(new_cls_dir, 'ground_truth'))
for mode in ['train', 'test']:
counter = 0
cur_counter = 0
for cls in os.listdir(mvtec_dir):
cls_dir = join(mvtec_dir, cls)
for root, dirs, files in os.walk(join(cls_dir, mode)):
counter += len(files)
pbar = tqdm(range(counter), total=counter)
pbar.set_description(f'{mode}: {args.aug}_{args.severity}')
for cls in os.listdir(mvtec_dir):
cls_dir = join(mvtec_dir, cls)
for root, dirs, files in os.walk(join(cls_dir, mode)):
for file in files:
orig_img = Image.open(join(root, file))
new_root = join(f'{mvtec_dir}_{args.aug}_{args.severity}',
*root.split('/')[1:])
os.makedirs(new_root, exist_ok=True)
new_path = join(new_root, file)
try:
new_img = np.array(orig_img)
if len(new_img.shape) == 2:
new_img = new_img[..., np.newaxis]
new_img = np.tile(new_img, (1, 1, 3))
new_img = aug(np.array(orig_img), severity=args.severity)
except:
print(new_path)
continue
new_img = Image.fromarray(new_img.astype(np.uint8))
new_img.save(new_path)
cur_counter += 1
if cur_counter % 10 == 0:
pbar.update(10)
pbar.display()
elif cur_counter == counter:
pbar.update(counter - pbar.n)
pbar.display()
pbar.close()