-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun_rm_training.sh
executable file
·63 lines (43 loc) · 2.24 KB
/
run_rm_training.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/bin/bash
# This is an example where we use the lava model to train a reward model.
CUR_DIR=`pwd`
ROOT=${CUR_DIR}
export PYTHONPATH=${ROOT}:${PYTHONPATH}
VISION_MODEL=none
LLM=none
FROM_CHECKPOINT=/localnvme/application/sc_new/wangchenglong_56/base_models/llama-3.2-11b-vision-instruct
MODEL_ARCHITECTURE="llama-3.2-vision"
TEMPLATE="llama-3.2-vision"
EPOCH=1
ZERO_STAGE=3
lr=1e-6
# if you do train a reward based on a pre-trained reward model,
# this parameter does not need to be set
TRAINED_REWARD_MODEL=none
OUTPUT=models/test
DATA_PATH=/localnvme/application/sc_new/wangchenglong_56/rlhf_llama_vision/data/RLAIF-V-Dataset/rlaif_v_dataset_train.json
EVAL_DATA_PATH=/localnvme/application/sc_new/wangchenglong_56/rlhf_llama_vision/data/RLAIF-V-Dataset/rlaif_v_dataset_test.json
IMAGE_FOLDER=/localnvme/application/sc_new/wangchenglong_56/rlhf_llama_vision/data/RLAIF-V-Dataset/images
CANDIDATE_NUM=2
DATA="llava_reward"
DATA_SAMPLE="all"
IMAGE_PER_SAMPLE="1"
if [ "$ZERO_STAGE" == "" ]; then
ZERO_STAGE=0
fi
mkdir -p $OUTPUT
cp $0 $OUTPUT
# we assume the batch size is 128, which means Num_GPU * per_device_train_batch_size * gradient_accumulation_steps
nohup deepspeed --include localhost:0,1,2,3,4,5,6,7 --master_port 12335 training/reward_model_training/rm_training_main.py \
--max_seq_len 2048 --image_folder ${IMAGE_FOLDER} --template ${TEMPLATE} \
--data_path ${DATA_PATH} --eval_data_path ${EVAL_DATA_PATH} \
--dataset_names ${DATA} --dataset_samples ${DATA_SAMPLE} --dataset_concatenate_samples ${IMAGE_PER_SAMPLE} --max_num_image_per_sample 8 \
--lm_reward_model_name_or_path ${LLM} \
--vision_reward_model_name_or_path ${VISION_MODEL} \
--gradient_checkpointing --vis_proj baseline \
--gradient_accumulation_steps 2 --zero_stage $ZERO_STAGE --learning_rate $lr --num_warmup_steps 0.1 \
--per_device_train_batch_size 1 --per_device_eval_batch_size 8 --eval_step 200 \
--deepspeed --output_dir $OUTPUT --num_train_epochs ${EPOCH} \
--lang_decoder_update --enable_mmca_attention --model_architecture ${MODEL_ARCHITECTURE} \
--trained_reward_model $TRAINED_REWARD_MODEL --save_step 9900 \
--precision bf16 --ranked_candidate_num $CANDIDATE_NUM --from_checkpoint ${FROM_CHECKPOINT} > $OUTPUT/training.log &