You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hi, apologies in advance if my tries of solving this were not enough, I am a taking my first ML course.
I am trying to use Surprise to create a recommender system. when using the data_loader method of Dataset, I get ValueError: Sample larger than population or is negative.
I was not able to find this in the repo or online.. What can I do to fix it?
{
"name": "ValueError",
"message": "Sample larger than population or is negative",
"stack": "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)\nCell \u001b[1;32mIn [29], line 7\u001b[0m\n\u001b[0;32m 4\u001b[0m reader \u001b[39m=\u001b[39m Reader(rating_scale\u001b[39m=\u001b[39m(\u001b[39m1\u001b[39m, \u001b[39m4\u001b[39m))\n\u001b[0;32m 6\u001b[0m \u001b[39m# Loads Pandas dataframe\u001b[39;00m\n\u001b[1;32m----> 7\u001b[0m data \u001b[39m=\u001b[39m Dataset\u001b[39m.\u001b[39mload_from_df(train_data_groupped_by_event[[\u001b[39m"\u001b[39m\u001b[39msession\u001b[39m\u001b[39m"\u001b[39m, \u001b[39m"\u001b[39m\u001b[39marticle_id\u001b[39m\u001b[39m"\u001b[39m, \u001b[39m"\u001b[39m\u001b[39mrating\u001b[39m\u001b[39m"\u001b[39m]], reader)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\surprise\dataset.py:167\u001b[0m, in \u001b[0;36mDataset.load_from_df\u001b[1;34m(cls, df, reader)\u001b[0m\n\u001b[0;32m 150\u001b[0m \u001b[39m@classmethod\u001b[39m\n\u001b[0;32m 151\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mload_from_df\u001b[39m(\u001b[39mcls\u001b[39m, df, reader):\n\u001b[0;32m 152\u001b[0m \u001b[39m"""Load a dataset from a pandas dataframe.\u001b[39;00m\n\u001b[0;32m 153\u001b[0m \n\u001b[0;32m 154\u001b[0m \u001b[39m Use this if you want to use a custom dataset that is stored in a pandas\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 164\u001b[0m \u001b[39m specified.\u001b[39;00m\n\u001b[0;32m 165\u001b[0m \u001b[39m """\u001b[39;00m\n\u001b[1;32m--> 167\u001b[0m \u001b[39mreturn\u001b[39;00m DatasetAutoFolds(reader\u001b[39m=\u001b[39;49mreader, df\u001b[39m=\u001b[39;49mdf)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\surprise\dataset.py:262\u001b[0m, in \u001b[0;36mDatasetAutoFolds.init\u001b[1;34m(self, ratings_file, reader, df)\u001b[0m\n\u001b[0;32m 260\u001b[0m \u001b[39melif\u001b[39;00m df \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m 261\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdf \u001b[39m=\u001b[39m df\n\u001b[1;32m--> 262\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mraw_ratings \u001b[39m=\u001b[39m [\n\u001b[0;32m 263\u001b[0m (uid, iid, \u001b[39mfloat\u001b[39m(r), \u001b[39mNone\u001b[39;00m)\n\u001b[0;32m 264\u001b[0m \u001b[39mfor\u001b[39;00m (uid, iid, r) \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdf\u001b[39m.\u001b[39mitertuples(index\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m)\n\u001b[0;32m 265\u001b[0m ]\n\u001b[0;32m 266\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m 267\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\u001b[39m"\u001b[39m\u001b[39mMust specify ratings file or dataframe.\u001b[39m\u001b[39m"\u001b[39m)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\surprise\dataset.py:262\u001b[0m, in \u001b[0;36m\u001b[1;34m(.0)\u001b[0m\n\u001b[0;32m 260\u001b[0m \u001b[39melif\u001b[39;00m df \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m 261\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdf \u001b[39m=\u001b[39m df\n\u001b[1;32m--> 262\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mraw_ratings \u001b[39m=\u001b[39m [\n\u001b[0;32m 263\u001b[0m (uid, iid, \u001b[39mfloat\u001b[39m(r), \u001b[39mNone\u001b[39;00m)\n\u001b[0;32m 264\u001b[0m \u001b[39mfor\u001b[39;00m (uid, iid, r) \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdf\u001b[39m.\u001b[39mitertuples(index\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m)\n\u001b[0;32m 265\u001b[0m ]\n\u001b[0;32m 266\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m 267\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\u001b[39m"\u001b[39m\u001b[39mMust specify ratings file or dataframe.\u001b[39m\u001b[39m"\u001b[39m)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\pandas\dataframe.py:1286\u001b[0m, in \u001b[0;36mDataFrame.itertuples\u001b[1;34m(self, index, name)\u001b[0m\n\u001b[0;32m 1283\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mnext\u001b[39m(s\u001b[39m.\u001b[39m_to_pandas()\u001b[39m.\u001b[39mto_frame()\u001b[39m.\u001b[39mT\u001b[39m.\u001b[39mitertuples(index\u001b[39m=\u001b[39mindex, name\u001b[39m=\u001b[39mname))\n\u001b[0;32m 1285\u001b[0m partition_iterator \u001b[39m=\u001b[39m PartitionIterator(\u001b[39mself\u001b[39m, \u001b[39m0\u001b[39m, itertuples_builder)\n\u001b[1;32m-> 1286\u001b[0m \u001b[39mfor\u001b[39;00m v \u001b[39min\u001b[39;00m partition_iterator:\n\u001b[0;32m 1287\u001b[0m \u001b[39myield\u001b[39;00m v\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\pandas\iterator.py:70\u001b[0m, in \u001b[0;36mPartitionIterator.next\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 61\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 62\u001b[0m \u001b[39mImplement iterator interface.\u001b[39;00m\n\u001b[0;32m 63\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 67\u001b[0m \u001b[39m Incremented iterator object.\u001b[39;00m\n\u001b[0;32m 68\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 69\u001b[0m key \u001b[39m=\u001b[39m \u001b[39mnext\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mindex_iter)\n\u001b[1;32m---> 70\u001b[0m df \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mdf\u001b[39m.\u001b[39;49miloc[key]\n\u001b[0;32m 71\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mfunc(df)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\logging\logger_decorator.py:128\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[1;34m(args, kwargs)\u001b[0m\n\u001b[0;32m 113\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 114\u001b[0m \u001b[39mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[0;32m 115\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 125\u001b[0m \u001b[39mAny\u001b[39;00m\n\u001b[0;32m 126\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 127\u001b[0m \u001b[39mif\u001b[39;00m LogMode\u001b[39m.\u001b[39mget() \u001b[39m==\u001b[39m \u001b[39m"\u001b[39m\u001b[39mdisable\u001b[39m\u001b[39m"\u001b[39m:\n\u001b[1;32m--> 128\u001b[0m \u001b[39mreturn\u001b[39;00m obj(\u001b[39m\u001b[39margs, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs)\n\u001b[0;32m 130\u001b[0m logger \u001b[39m=\u001b[39m get_logger()\n\u001b[0;32m 131\u001b[0m logger_level \u001b[39m=\u001b[39m \u001b[39mgetattr\u001b[39m(logger, log_level)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\pandas\indexing.py:1067\u001b[0m, in \u001b[0;36m_iLocIndexer.getitem\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 1063\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_handle_boolean_masking(row_loc, col_loc)\n\u001b[0;32m 1065\u001b[0m row_lookup, col_lookup \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_compute_lookup(row_loc, col_loc)\n\u001b[1;32m-> 1067\u001b[0m result \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_getitem_positional(\n\u001b[0;32m 1068\u001b[0m row_lookup,\n\u001b[0;32m 1069\u001b[0m col_lookup,\n\u001b[0;32m 1070\u001b[0m row_multiindex_full_lookup\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m,\n\u001b[0;32m 1071\u001b[0m col_multiindex_full_lookup\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m,\n\u001b[0;32m 1072\u001b[0m row_scalar\u001b[39m=\u001b[39;49mrow_scalar,\n\u001b[0;32m 1073\u001b[0m col_scalar\u001b[39m=\u001b[39;49mcol_scalar,\n\u001b[0;32m 1074\u001b[0m ndim\u001b[39m=\u001b[39;49mndim,\n\u001b[0;32m 1075\u001b[0m )\n\u001b[0;32m 1077\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(result, Series):\n\u001b[0;32m 1078\u001b[0m result\u001b[39m.\u001b[39m_parent \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdf\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\logging\logger_decorator.py:128\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[1;34m(args, kwargs)\u001b[0m\n\u001b[0;32m 113\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 114\u001b[0m \u001b[39mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[0;32m 115\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 125\u001b[0m \u001b[39mAny\u001b[39;00m\n\u001b[0;32m 126\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 127\u001b[0m \u001b[39mif\u001b[39;00m LogMode\u001b[39m.\u001b[39mget() \u001b[39m==\u001b[39m \u001b[39m"\u001b[39m\u001b[39mdisable\u001b[39m\u001b[39m"\u001b[39m:\n\u001b[1;32m--> 128\u001b[0m \u001b[39mreturn\u001b[39;00m obj(\u001b[39m\u001b[39margs, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs)\n\u001b[0;32m 130\u001b[0m logger \u001b[39m=\u001b[39m get_logger()\n\u001b[0;32m 131\u001b[0m logger_level \u001b[39m=\u001b[39m \u001b[39mgetattr\u001b[39m(logger, log_level)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\pandas\indexing.py:404\u001b[0m, in \u001b[0;36m_LocationIndexerBase.getitem_positional\u001b[1;34m(self, row_lookup, col_lookup, row_multiindex_full_lookup, col_multiindex_full_lookup, row_scalar, col_scalar, ndim)\u001b[0m\n\u001b[0;32m 394\u001b[0m axis \u001b[39m=\u001b[39m (\n\u001b[0;32m 395\u001b[0m \u001b[39mNone\u001b[39;00m\n\u001b[0;32m 396\u001b[0m \u001b[39mif\u001b[39;00m (col_scalar \u001b[39mand\u001b[39;00m row_scalar)\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 400\u001b[0m \u001b[39melse\u001b[39;00m \u001b[39m0\u001b[39m\n\u001b[0;32m 401\u001b[0m )\n\u001b[0;32m 403\u001b[0m res_df \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdf\u001b[39m.\u001b[39m__constructor_(query_compiler\u001b[39m=\u001b[39mqc_view)\n\u001b[1;32m--> 404\u001b[0m \u001b[39mreturn\u001b[39;00m res_df\u001b[39m.\u001b[39;49msqueeze(axis\u001b[39m=\u001b[39;49maxis)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\logging\logger_decorator.py:128\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[1;34m(args, kwargs)\u001b[0m\n\u001b[0;32m 113\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 114\u001b[0m \u001b[39mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[0;32m 115\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 125\u001b[0m \u001b[39mAny\u001b[39;00m\n\u001b[0;32m 126\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 127\u001b[0m \u001b[39mif\u001b[39;00m LogMode\u001b[39m.\u001b[39mget() \u001b[39m==\u001b[39m \u001b[39m"\u001b[39m\u001b[39mdisable\u001b[39m\u001b[39m"\u001b[39m:\n\u001b[1;32m--> 128\u001b[0m \u001b[39mreturn\u001b[39;00m obj(\u001b[39m\u001b[39margs, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs)\n\u001b[0;32m 130\u001b[0m logger \u001b[39m=\u001b[39m get_logger()\n\u001b[0;32m 131\u001b[0m logger_level \u001b[39m=\u001b[39m \u001b[39mgetattr\u001b[39m(logger, log_level)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\pandas\dataframe.py:2037\u001b[0m, in \u001b[0;36mDataFrame.squeeze\u001b[1;34m(self, axis)\u001b[0m\n\u001b[0;32m 2035\u001b[0m \u001b[39mreturn\u001b[39;00m Series(query_compiler\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_query_compiler)\n\u001b[0;32m 2036\u001b[0m \u001b[39mif\u001b[39;00m axis \u001b[39m==\u001b[39m \u001b[39m0\u001b[39m \u001b[39mand\u001b[39;00m \u001b[39mlen\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mindex) \u001b[39m==\u001b[39m \u001b[39m1\u001b[39m:\n\u001b[1;32m-> 2037\u001b[0m \u001b[39mreturn\u001b[39;00m Series(query_compiler\u001b[39m=\u001b[39m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mT\u001b[39m.\u001b[39m_query_compiler)\n\u001b[0;32m 2038\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m 2039\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcopy()\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\pandas\base.py:3429\u001b[0m, in \u001b[0;36mBasePandasDataset.getattribute\u001b[1;34m(self, item)\u001b[0m\n\u001b[0;32m 3415\u001b[0m \u001b[39m@disable_logging\u001b[39m\n\u001b[0;32m 3416\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__getattribute__\u001b[39m(\u001b[39mself\u001b[39m, item):\n\u001b[0;32m 3417\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 3418\u001b[0m \u001b[39m Return item from the BasePandasDataset.\u001b[39;00m\n\u001b[0;32m 3419\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 3427\u001b[0m \u001b[39m Any\u001b[39;00m\n\u001b[0;32m 3428\u001b[0m \u001b[39m """\u001b[39;00m\n\u001b[1;32m-> 3429\u001b[0m attr \u001b[39m=\u001b[39m \u001b[39msuper\u001b[39;49m()\u001b[39m.\u001b[39;49m\u001b[39m__getattribute__\u001b[39;49m(item)\n\u001b[0;32m 3430\u001b[0m \u001b[39mif\u001b[39;00m item \u001b[39mnot\u001b[39;00m \u001b[39min\u001b[39;00m DEFAULT_BEHAVIOUR \u001b[39mand\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_query_compiler\u001b[39m.\u001b[39mlazy_execution:\n\u001b[0;32m 3431\u001b[0m \u001b[39m# We default to pandas on empty DataFrames. This avoids a large amount of\u001b[39;00m\n\u001b[0;32m 3432\u001b[0m \u001b[39m# pain in underlying implementation and returns a result immediately rather\u001b[39;00m\n\u001b[0;32m 3433\u001b[0m \u001b[39m# than dealing with the edge cases that empty DataFrames have.\u001b[39;00m\n\u001b[0;32m 3434\u001b[0m \u001b[39mif\u001b[39;00m callable(attr) \u001b[39mand\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mempty \u001b[39mand\u001b[39;00m \u001b[39mhasattr\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_pandas_class, item):\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\pandas\dataframe.py:538\u001b[0m, in \u001b[0;36mDataFrame.transpose\u001b[1;34m(self, copy, args)\u001b[0m\n\u001b[0;32m 533\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 534\u001b[0m \u001b[39mTranspose index and columns.\u001b[39;00m\n\u001b[0;32m 535\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 536\u001b[0m \u001b[39m# FIXME: Judging by pandas docs *args serves only compatibility purpose\u001b[39;00m\n\u001b[0;32m 537\u001b[0m \u001b[39m# and does not affect the result, we shouldn't pass it to the query compiler.\u001b[39;00m\n\u001b[1;32m--> 538\u001b[0m \u001b[39mreturn\u001b[39;00m DataFrame(query_compiler\u001b[39m=\u001b[39m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_query_compiler\u001b[39m.\u001b[39;49mtranspose(\u001b[39m\u001b[39;49margs))\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\logging\logger_decorator.py:128\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[1;34m(args, kwargs)\u001b[0m\n\u001b[0;32m 113\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 114\u001b[0m \u001b[39mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[0;32m 115\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 125\u001b[0m \u001b[39mAny\u001b[39;00m\n\u001b[0;32m 126\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 127\u001b[0m \u001b[39mif\u001b[39;00m LogMode\u001b[39m.\u001b[39mget() \u001b[39m==\u001b[39m \u001b[39m"\u001b[39m\u001b[39mdisable\u001b[39m\u001b[39m"\u001b[39m:\n\u001b[1;32m--> 128\u001b[0m \u001b[39mreturn\u001b[39;00m obj(\u001b[39m\u001b[39margs, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs)\n\u001b[0;32m 130\u001b[0m logger \u001b[39m=\u001b[39m get_logger()\n\u001b[0;32m 131\u001b[0m logger_level \u001b[39m=\u001b[39m \u001b[39mgetattr\u001b[39m(logger, log_level)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\core\storage_formats\pandas\query_compiler.py:704\u001b[0m, in \u001b[0;36mPandasQueryCompiler.transpose\u001b[1;34m(self, args, kwargs)\u001b[0m\n\u001b[0;32m 702\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mtranspose\u001b[39m(\u001b[39mself\u001b[39m, \u001b[39m\u001b[39margs, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs):\n\u001b[0;32m 703\u001b[0m \u001b[39m# Switch the index and columns and transpose the data within the blocks.\u001b[39;00m\n\u001b[1;32m--> 704\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m__constructor_(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_modin_frame\u001b[39m.\u001b[39;49mtranspose())\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\logging\logger_decorator.py:128\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[1;34m(args, kwargs)\u001b[0m\n\u001b[0;32m 113\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 114\u001b[0m \u001b[39mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[0;32m 115\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 125\u001b[0m \u001b[39mAny\u001b[39;00m\n\u001b[0;32m 126\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 127\u001b[0m \u001b[39mif\u001b[39;00m LogMode\u001b[39m.\u001b[39mget() \u001b[39m==\u001b[39m \u001b[39m"\u001b[39m\u001b[39mdisable\u001b[39m\u001b[39m"\u001b[39m:\n\u001b[1;32m--> 128\u001b[0m \u001b[39mreturn\u001b[39;00m obj(\u001b[39m\u001b[39margs, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs)\n\u001b[0;32m 130\u001b[0m logger \u001b[39m=\u001b[39m get_logger()\n\u001b[0;32m 131\u001b[0m logger_level \u001b[39m=\u001b[39m \u001b[39mgetattr\u001b[39m(logger, log_level)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\core\dataframe\pandas\dataframe\dataframe.py:125\u001b[0m, in \u001b[0;36mlazy_metadata_decorator..decorator..run_f_on_minimally_updated_metadata\u001b[1;34m(self, args, kwargs)\u001b[0m\n\u001b[0;32m 123\u001b[0m \u001b[39melif\u001b[39;00m apply_axis \u001b[39m==\u001b[39m \u001b[39m"\u001b[39m\u001b[39mrows\u001b[39m\u001b[39m"\u001b[39m:\n\u001b[0;32m 124\u001b[0m obj\u001b[39m.\u001b[39m_propagate_index_objs(axis\u001b[39m=\u001b[39m\u001b[39m0\u001b[39m)\n\u001b[1;32m--> 125\u001b[0m result \u001b[39m=\u001b[39m f(\u001b[39mself\u001b[39m, \u001b[39m\u001b[39margs, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs)\n\u001b[0;32m 126\u001b[0m \u001b[39mif\u001b[39;00m apply_axis \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39mand\u001b[39;00m \u001b[39mnot\u001b[39;00m transpose:\n\u001b[0;32m 127\u001b[0m result\u001b[39m.\u001b[39m_deferred_index \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_deferred_index\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\core\dataframe\pandas\dataframe\dataframe.py:3131\u001b[0m, in \u001b[0;36mPandasDataframe.transpose\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 3118\u001b[0m \u001b[39m@lazy_metadata_decorator\u001b[39m(apply_axis\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, transpose\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m)\n\u001b[0;32m 3119\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mtranspose\u001b[39m(\u001b[39mself\u001b[39m):\n\u001b[0;32m 3120\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 3121\u001b[0m \u001b[39m Transpose the index and columns of this Modin DataFrame.\u001b[39;00m\n\u001b[0;32m 3122\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 3129\u001b[0m \u001b[39m New Modin DataFrame.\u001b[39;00m\n\u001b[0;32m 3130\u001b[0m \u001b[39m """\u001b[39;00m\n\u001b[1;32m-> 3131\u001b[0m new_partitions \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_partition_mgr_cls\u001b[39m.\u001b[39;49mlazy_map_partitions(\n\u001b[0;32m 3132\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_partitions, \u001b[39mlambda\u001b[39;49;00m df: df\u001b[39m.\u001b[39;49mT\n\u001b[0;32m 3133\u001b[0m )\u001b[39m.\u001b[39mT\n\u001b[0;32m 3134\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_dtypes \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m 3135\u001b[0m new_dtypes \u001b[39m=\u001b[39m pandas\u001b[39m.\u001b[39mSeries(\n\u001b[0;32m 3136\u001b[0m np\u001b[39m.\u001b[39mfull(\u001b[39mlen\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mindex), find_common_type(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdtypes\u001b[39m.\u001b[39mvalues)),\n\u001b[0;32m 3137\u001b[0m index\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mindex,\n\u001b[0;32m 3138\u001b[0m )\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\logging\logger_decorator.py:128\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[1;34m(args, kwargs)\u001b[0m\n\u001b[0;32m 113\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 114\u001b[0m \u001b[39mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[0;32m 115\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 125\u001b[0m \u001b[39mAny\u001b[39;00m\n\u001b[0;32m 126\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 127\u001b[0m \u001b[39mif\u001b[39;00m LogMode\u001b[39m.\u001b[39mget() \u001b[39m==\u001b[39m \u001b[39m"\u001b[39m\u001b[39mdisable\u001b[39m\u001b[39m"\u001b[39m:\n\u001b[1;32m--> 128\u001b[0m \u001b[39mreturn\u001b[39;00m obj(\u001b[39m\u001b[39margs, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs)\n\u001b[0;32m 130\u001b[0m logger \u001b[39m=\u001b[39m get_logger()\n\u001b[0;32m 131\u001b[0m logger_level \u001b[39m=\u001b[39m \u001b[39mgetattr\u001b[39m(logger, log_level)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\core\dataframe\pandas\partitioning\partition_manager.py:58\u001b[0m, in \u001b[0;36mwait_computations_if_benchmark_mode..wait\u001b[1;34m(cls, args, kwargs)\u001b[0m\n\u001b[0;32m 55\u001b[0m \u001b[39m@wraps\u001b[39m(func)\n\u001b[0;32m 56\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mwait\u001b[39m(\u001b[39mcls\u001b[39m, \u001b[39m\u001b[39margs, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs):\n\u001b[0;32m 57\u001b[0m \u001b[39m"""Wait for computation results."""\u001b[39;00m\n\u001b[1;32m---> 58\u001b[0m result \u001b[39m=\u001b[39m func(\u001b[39mcls\u001b[39m, \u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[0;32m 59\u001b[0m \u001b[39mif\u001b[39;00m BenchmarkMode\u001b[39m.\u001b[39mget():\n\u001b[0;32m 60\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(result, \u001b[39mtuple\u001b[39m):\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\core\dataframe\pandas\partitioning\partition_manager.py:521\u001b[0m, in \u001b[0;36mPandasDataframePartitionManager.lazy_map_partitions\u001b[1;34m(cls, partitions, map_func)\u001b[0m\n\u001b[0;32m 503\u001b[0m \u001b[39m@classmethod\u001b[39m\n\u001b[0;32m 504\u001b[0m \u001b[39m@wait_computations_if_benchmark_mode\u001b[39m\n\u001b[0;32m 505\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mlazy_map_partitions\u001b[39m(\u001b[39mcls\u001b[39m, partitions, map_func):\n\u001b[0;32m 506\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 507\u001b[0m \u001b[39m Apply map_func to every partition in partitionslazily.\u001b[39;00m\n\u001b[0;32m 508\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 519\u001b[0m \u001b[39m An array of partitions\u001b[39;00m\n\u001b[0;32m 520\u001b[0m \u001b[39m """\u001b[39;00m\n\u001b[1;32m--> 521\u001b[0m preprocessed_map_func \u001b[39m=\u001b[39m \u001b[39mcls\u001b[39;49m\u001b[39m.\u001b[39;49mpreprocess_func(map_func)\n\u001b[0;32m 522\u001b[0m \u001b[39mreturn\u001b[39;00m np\u001b[39m.\u001b[39marray(\n\u001b[0;32m 523\u001b[0m [\n\u001b[0;32m 524\u001b[0m [part\u001b[39m.\u001b[39madd_to_apply_calls(preprocessed_map_func) \u001b[39mfor\u001b[39;00m part \u001b[39min\u001b[39;00m row]\n\u001b[0;32m 525\u001b[0m \u001b[39mfor\u001b[39;00m row \u001b[39min\u001b[39;00m partitions\n\u001b[0;32m 526\u001b[0m ]\n\u001b[0;32m 527\u001b[0m )\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\logging\logger_decorator.py:128\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[1;34m(args, kwargs)\u001b[0m\n\u001b[0;32m 113\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 114\u001b[0m \u001b[39mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[0;32m 115\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 125\u001b[0m \u001b[39mAny\u001b[39;00m\n\u001b[0;32m 126\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 127\u001b[0m \u001b[39mif\u001b[39;00m LogMode\u001b[39m.\u001b[39mget() \u001b[39m==\u001b[39m \u001b[39m"\u001b[39m\u001b[39mdisable\u001b[39m\u001b[39m"\u001b[39m:\n\u001b[1;32m--> 128\u001b[0m \u001b[39mreturn\u001b[39;00m obj(\u001b[39m\u001b[39margs, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs)\n\u001b[0;32m 130\u001b[0m logger \u001b[39m=\u001b[39m get_logger()\n\u001b[0;32m 131\u001b[0m logger_level \u001b[39m=\u001b[39m \u001b[39mgetattr\u001b[39m(logger, log_level)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\core\dataframe\pandas\partitioning\partition_manager.py:120\u001b[0m, in \u001b[0;36mPandasDataframePartitionManager.preprocess_func\u001b[1;34m(cls, map_func)\u001b[0m\n\u001b[0;32m 93\u001b[0m \u001b[39m@classmethod\u001b[39m\n\u001b[0;32m 94\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mpreprocess_func\u001b[39m(\u001b[39mcls\u001b[39m, map_func):\n\u001b[0;32m 95\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 96\u001b[0m \u001b[39m Preprocess a function to be applied to PandasDataframePartition objects.\u001b[39;00m\n\u001b[0;32m 97\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 118\u001b[0m \u001b[39m you are using does not require any modification to a given function.\u001b[39;00m\n\u001b[0;32m 119\u001b[0m \u001b[39m """\u001b[39;00m\n\u001b[1;32m--> 120\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mcls\u001b[39;49m\u001b[39m.\u001b[39;49m_partition_class\u001b[39m.\u001b[39;49mpreprocess_func(map_func)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\core\execution\dask\implementations\pandas_on_dask\partitioning\partition.py:257\u001b[0m, in \u001b[0;36mPandasOnDaskDataframePartition.preprocess_func\u001b[1;34m(cls, func)\u001b[0m\n\u001b[0;32m 242\u001b[0m \u001b[39m@classmethod\u001b[39m\n\u001b[0;32m 243\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mpreprocess_func\u001b[39m(\u001b[39mcls\u001b[39m, func):\n\u001b[0;32m 244\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 245\u001b[0m \u001b[39m Preprocess a function before an apply call.\u001b[39;00m\n\u001b[0;32m 246\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 255\u001b[0m \u001b[39m An object that can be accepted by apply.\u001b[39;00m\n\u001b[0;32m 256\u001b[0m \u001b[39m """\u001b[39;00m\n\u001b[1;32m--> 257\u001b[0m \u001b[39mreturn\u001b[39;00m DaskWrapper\u001b[39m.\u001b[39;49mput(func, \u001b[39mhash\u001b[39;49m\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m, broadcast\u001b[39m=\u001b[39;49m\u001b[39mTrue\u001b[39;49;00m)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\core\execution\dask\common\engine_wrapper.py:98\u001b[0m, in \u001b[0;36mDaskWrapper.put\u001b[1;34m(cls, data, kwargs)\u001b[0m\n\u001b[0;32m 83\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 84\u001b[0m \u001b[39mPut data into distributed memory.\u001b[39;00m\n\u001b[0;32m 85\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 95\u001b[0m \u001b[39mList, dict, iterator, or queue of futures matching the type of input.\u001b[39;00m\n\u001b[0;32m 96\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 97\u001b[0m client \u001b[39m=\u001b[39m default_client()\n\u001b[1;32m---> 98\u001b[0m \u001b[39mreturn\u001b[39;00m client\u001b[39m.\u001b[39mscatter(data, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\distributed\client.py:2506\u001b[0m, in \u001b[0;36mClient.scatter\u001b[1;34m(self, data, workers, broadcast, direct, hash, timeout, asynchronous)\u001b[0m\n\u001b[0;32m 2504\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m 2505\u001b[0m local_worker \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[1;32m-> 2506\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49msync(\n\u001b[0;32m 2507\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_scatter,\n\u001b[0;32m 2508\u001b[0m data,\n\u001b[0;32m 2509\u001b[0m workers\u001b[39m=\u001b[39;49mworkers,\n\u001b[0;32m 2510\u001b[0m broadcast\u001b[39m=\u001b[39;49mbroadcast,\n\u001b[0;32m 2511\u001b[0m direct\u001b[39m=\u001b[39;49mdirect,\n\u001b[0;32m 2512\u001b[0m local_worker\u001b[39m=\u001b[39;49mlocal_worker,\n\u001b[0;32m 2513\u001b[0m timeout\u001b[39m=\u001b[39;49mtimeout,\n\u001b[0;32m 2514\u001b[0m asynchronous\u001b[39m=\u001b[39;49masynchronous,\n\u001b[0;32m 2515\u001b[0m \u001b[39mhash\u001b[39;49m\u001b[39m=\u001b[39;49m\u001b[39mhash\u001b[39;49m,\n\u001b[0;32m 2516\u001b[0m )\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\distributed\utils.py:339\u001b[0m, in \u001b[0;36mSyncMethodMixin.sync\u001b[1;34m(self, func, asynchronous, callback_timeout, args, kwargs)\u001b[0m\n\u001b[0;32m 337\u001b[0m \u001b[39mreturn\u001b[39;00m future\n\u001b[0;32m 338\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m--> 339\u001b[0m \u001b[39mreturn\u001b[39;00m sync(\n\u001b[0;32m 340\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mloop, func, \u001b[39m\u001b[39margs, callback_timeout\u001b[39m=\u001b[39mcallback_timeout, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs\n\u001b[0;32m 341\u001b[0m )\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\distributed\utils.py:406\u001b[0m, in \u001b[0;36msync\u001b[1;34m(loop, func, callback_timeout, args, kwargs)\u001b[0m\n\u001b[0;32m 404\u001b[0m \u001b[39mif\u001b[39;00m error:\n\u001b[0;32m 405\u001b[0m typ, exc, tb \u001b[39m=\u001b[39m error\n\u001b[1;32m--> 406\u001b[0m \u001b[39mraise\u001b[39;00m exc\u001b[39m.\u001b[39mwith_traceback(tb)\n\u001b[0;32m 407\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m 408\u001b[0m \u001b[39mreturn\u001b[39;00m result\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\distributed\utils.py:379\u001b[0m, in \u001b[0;36msync..f\u001b[1;34m()\u001b[0m\n\u001b[0;32m 377\u001b[0m future \u001b[39m=\u001b[39m asyncio\u001b[39m.\u001b[39mwait_for(future, callback_timeout)\n\u001b[0;32m 378\u001b[0m future \u001b[39m=\u001b[39m asyncio\u001b[39m.\u001b[39mensure_future(future)\n\u001b[1;32m--> 379\u001b[0m result \u001b[39m=\u001b[39m \u001b[39myield\u001b[39;00m future\n\u001b[0;32m 380\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m:\n\u001b[0;32m 381\u001b[0m error \u001b[39m=\u001b[39m sys\u001b[39m.\u001b[39mexc_info()\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\tornado\gen.py:762\u001b[0m, in \u001b[0;36mRunner.run\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 759\u001b[0m exc_info \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[0;32m 761\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m--> 762\u001b[0m value \u001b[39m=\u001b[39m future\u001b[39m.\u001b[39;49mresult()\n\u001b[0;32m 763\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m:\n\u001b[0;32m 764\u001b[0m exc_info \u001b[39m=\u001b[39m sys\u001b[39m.\u001b[39mexc_info()\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\distributed\client.py:2386\u001b[0m, in \u001b[0;36mClient._scatter\u001b[1;34m(self, data, workers, broadcast, direct, local_worker, timeout, hash)\u001b[0m\n\u001b[0;32m 2382\u001b[0m \u001b[39mawait\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mscheduler\u001b[39m.\u001b[39mupdate_data(\n\u001b[0;32m 2383\u001b[0m who_has\u001b[39m=\u001b[39mwho_has, nbytes\u001b[39m=\u001b[39mnbytes, client\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mid\n\u001b[0;32m 2384\u001b[0m )\n\u001b[0;32m 2385\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m-> 2386\u001b[0m \u001b[39mawait\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mscheduler\u001b[39m.\u001b[39mscatter(\n\u001b[0;32m 2387\u001b[0m data\u001b[39m=\u001b[39mdata2,\n\u001b[0;32m 2388\u001b[0m workers\u001b[39m=\u001b[39mworkers,\n\u001b[0;32m 2389\u001b[0m client\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mid,\n\u001b[0;32m 2390\u001b[0m broadcast\u001b[39m=\u001b[39mbroadcast,\n\u001b[0;32m 2391\u001b[0m timeout\u001b[39m=\u001b[39mtimeout,\n\u001b[0;32m 2392\u001b[0m )\n\u001b[0;32m 2394\u001b[0m out \u001b[39m=\u001b[39m {k: Future(k, \u001b[39mself\u001b[39m, inform\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m) \u001b[39mfor\u001b[39;00m k \u001b[39min\u001b[39;00m data}\n\u001b[0;32m 2395\u001b[0m \u001b[39mfor\u001b[39;00m key, typ \u001b[39min\u001b[39;00m types\u001b[39m.\u001b[39mitems():\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\distributed\core.py:1163\u001b[0m, in \u001b[0;36mPooledRPCCall.getattr..send_recv_from_rpc\u001b[1;34m(kwargs)\u001b[0m\n\u001b[0;32m 1161\u001b[0m prev_name, comm\u001b[39m.\u001b[39mname \u001b[39m=\u001b[39m comm\u001b[39m.\u001b[39mname, \u001b[39m"\u001b[39m\u001b[39mConnectionPool.\u001b[39m\u001b[39m"\u001b[39m \u001b[39m+\u001b[39m key\n\u001b[0;32m 1162\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m-> 1163\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mawait\u001b[39;00m send_recv(comm\u001b[39m=\u001b[39mcomm, op\u001b[39m=\u001b[39mkey, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs)\n\u001b[0;32m 1164\u001b[0m \u001b[39mfinally\u001b[39;00m:\n\u001b[0;32m 1165\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mpool\u001b[39m.\u001b[39mreuse(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39maddr, comm)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\distributed\core.py:953\u001b[0m, in \u001b[0;36msend_recv\u001b[1;34m(comm, reply, serializers, deserializers, kwargs)\u001b[0m\n\u001b[0;32m 951\u001b[0m _, exc, tb \u001b[39m=\u001b[39m clean_exception(\u001b[39m\u001b[39m\u001b[39m\u001b[39mresponse)\n\u001b[0;32m 952\u001b[0m \u001b[39massert\u001b[39;00m exc\n\u001b[1;32m--> 953\u001b[0m \u001b[39mraise\u001b[39;00m exc\u001b[39m.\u001b[39mwith_traceback(tb)\n\u001b[0;32m 954\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m 955\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mException\u001b[39;00m(response[\u001b[39m"\u001b[39m\u001b[39mexception_text\u001b[39m\u001b[39m"\u001b[39m])\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\distributed\core.py:771\u001b[0m, in \u001b[0;36m_handle_comm\u001b[1;34m()\u001b[0m\n\u001b[0;32m 769\u001b[0m result \u001b[39m=\u001b[39m handler(\u001b[39m\u001b[39m\u001b[39m\u001b[39mmsg)\n\u001b[0;32m 770\u001b[0m \u001b[39mif\u001b[39;00m inspect\u001b[39m.\u001b[39miscoroutine(result):\n\u001b[1;32m--> 771\u001b[0m result \u001b[39m=\u001b[39m \u001b[39mawait\u001b[39;00m result\n\u001b[0;32m 772\u001b[0m \u001b[39melif\u001b[39;00m inspect\u001b[39m.\u001b[39misawaitable(result):\n\u001b[0;32m 773\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mRuntimeError\u001b[39;00m(\n\u001b[0;32m 774\u001b[0m \u001b[39mf\u001b[39m\u001b[39m"\u001b[39m\u001b[39mComm handler returned unknown awaitable. Expected coroutine, instead got \u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mtype\u001b[39m(result)\u001b[39m}\u001b[39;00m\u001b[39m"\u001b[39m\n\u001b[0;32m 775\u001b[0m )\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\distributed\scheduler.py:5707\u001b[0m, in \u001b[0;36mscatter\u001b[1;34m()\u001b[0m\n\u001b[0;32m 5705\u001b[0m \u001b[39mif\u001b[39;00m broadcast:\n\u001b[0;32m 5706\u001b[0m n \u001b[39m=\u001b[39m \u001b[39mlen\u001b[39m(nthreads) \u001b[39mif\u001b[39;00m broadcast \u001b[39mis\u001b[39;00m \u001b[39mTrue\u001b[39;00m \u001b[39melse\u001b[39;00m broadcast\n\u001b[1;32m-> 5707\u001b[0m \u001b[39mawait\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mreplicate(keys\u001b[39m=\u001b[39mkeys, workers\u001b[39m=\u001b[39mworkers, n\u001b[39m=\u001b[39mn)\n\u001b[0;32m 5709\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mlog_event(\n\u001b[0;32m 5710\u001b[0m [client, \u001b[39m"\u001b[39m\u001b[39mall\u001b[39m\u001b[39m"\u001b[39m], {\u001b[39m"\u001b[39m\u001b[39maction\u001b[39m\u001b[39m"\u001b[39m: \u001b[39m"\u001b[39m\u001b[39mscatter\u001b[39m\u001b[39m"\u001b[39m, \u001b[39m"\u001b[39m\u001b[39mclient\u001b[39m\u001b[39m"\u001b[39m: client, \u001b[39m"\u001b[39m\u001b[39mcount\u001b[39m\u001b[39m"\u001b[39m: \u001b[39mlen\u001b[39m(data)}\n\u001b[0;32m 5711\u001b[0m )\n\u001b[0;32m 5712\u001b[0m \u001b[39mreturn\u001b[39;00m keys\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\distributed\scheduler.py:6516\u001b[0m, in \u001b[0;36mreplicate\u001b[1;34m()\u001b[0m\n\u001b[0;32m 6513\u001b[0m count \u001b[39m=\u001b[39m \u001b[39mmin\u001b[39m(n_missing, branching_factor \u001b[39m\u001b[39m \u001b[39mlen\u001b[39m(ts\u001b[39m.\u001b[39mwho_has))\n\u001b[0;32m 6514\u001b[0m \u001b[39massert\u001b[39;00m count \u001b[39m>\u001b[39m \u001b[39m0\u001b[39m\n\u001b[1;32m-> 6516\u001b[0m \u001b[39mfor\u001b[39;00m ws \u001b[39min\u001b[39;00m random\u001b[39m.\u001b[39msample(\u001b[39mtuple\u001b[39m(workers \u001b[39m-\u001b[39m ts\u001b[39m.\u001b[39mwho_has), count):\n\u001b[0;32m 6517\u001b[0m gathers[ws\u001b[39m.\u001b[39maddress][ts\u001b[39m.\u001b[39mkey] \u001b[39m=\u001b[39m [\n\u001b[0;32m 6518\u001b[0m wws\u001b[39m.\u001b[39maddress \u001b[39mfor\u001b[39;00m wws \u001b[39min\u001b[39;00m ts\u001b[39m.\u001b[39mwho_has\n\u001b[0;32m 6519\u001b[0m ]\n\u001b[0;32m 6521\u001b[0m \u001b[39mawait\u001b[39;00m asyncio\u001b[39m.\u001b[39mgather(\n\u001b[0;32m 6522\u001b[0m \u001b[39m*\u001b[39m(\n\u001b[0;32m 6523\u001b[0m \u001b[39m# Note: this never raises exceptions\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 6526\u001b[0m )\n\u001b[0;32m 6527\u001b[0m )\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\random.py:482\u001b[0m, in \u001b[0;36msample\u001b[1;34m()\u001b[0m\n\u001b[0;32m 480\u001b[0m randbelow \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_randbelow\n\u001b[0;32m 481\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39m0\u001b[39m \u001b[39m<\u001b[39m\u001b[39m=\u001b[39m k \u001b[39m<\u001b[39m\u001b[39m=\u001b[39m n:\n\u001b[1;32m--> 482\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\u001b[39m"\u001b[39m\u001b[39mSample larger than population or is negative\u001b[39m\u001b[39m"\u001b[39m)\n\u001b[0;32m 483\u001b[0m result \u001b[39m=\u001b[39m [\u001b[39mNone\u001b[39;00m] \u001b[39m*\u001b[39m k\n\u001b[0;32m 484\u001b[0m setsize \u001b[39m=\u001b[39m \u001b[39m21\u001b[39m \u001b[39m# size of a small set minus size of an empty list\u001b[39;00m\n\n\u001b[1;31mValueError\u001b[0m: Sample larger than population or is negative"
}
The text was updated successfully, but these errors were encountered:
It's going to be impossible for me to help without looking at some code. It looks like you copy/pasted the content of a notebook, but this doesn't render properly here.
Could you please provide a reproducible code example?
Hi, apologies in advance if my tries of solving this were not enough, I am a taking my first ML course.
I am trying to use Surprise to create a recommender system. when using the data_loader method of Dataset, I get ValueError: Sample larger than population or is negative.
I was not able to find this in the repo or online.. What can I do to fix it?
{
"name": "ValueError",
"message": "Sample larger than population or is negative",
"stack": "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)\nCell \u001b[1;32mIn [29], line 7\u001b[0m\n\u001b[0;32m 4\u001b[0m reader \u001b[39m=\u001b[39m Reader(rating_scale\u001b[39m=\u001b[39m(\u001b[39m1\u001b[39m, \u001b[39m4\u001b[39m))\n\u001b[0;32m 6\u001b[0m \u001b[39m# Loads Pandas dataframe\u001b[39;00m\n\u001b[1;32m----> 7\u001b[0m data \u001b[39m=\u001b[39m Dataset\u001b[39m.\u001b[39mload_from_df(train_data_groupped_by_event[[\u001b[39m"\u001b[39m\u001b[39msession\u001b[39m\u001b[39m"\u001b[39m, \u001b[39m"\u001b[39m\u001b[39marticle_id\u001b[39m\u001b[39m"\u001b[39m, \u001b[39m"\u001b[39m\u001b[39mrating\u001b[39m\u001b[39m"\u001b[39m]], reader)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\surprise\dataset.py:167\u001b[0m, in \u001b[0;36mDataset.load_from_df\u001b[1;34m(cls, df, reader)\u001b[0m\n\u001b[0;32m 150\u001b[0m \u001b[39m@classmethod\u001b[39m\n\u001b[0;32m 151\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mload_from_df\u001b[39m(\u001b[39mcls\u001b[39m, df, reader):\n\u001b[0;32m 152\u001b[0m \u001b[39m"""Load a dataset from a pandas dataframe.\u001b[39;00m\n\u001b[0;32m 153\u001b[0m \n\u001b[0;32m 154\u001b[0m \u001b[39m Use this if you want to use a custom dataset that is stored in a pandas\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 164\u001b[0m \u001b[39m specified.\u001b[39;00m\n\u001b[0;32m 165\u001b[0m \u001b[39m """\u001b[39;00m\n\u001b[1;32m--> 167\u001b[0m \u001b[39mreturn\u001b[39;00m DatasetAutoFolds(reader\u001b[39m=\u001b[39;49mreader, df\u001b[39m=\u001b[39;49mdf)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\surprise\dataset.py:262\u001b[0m, in \u001b[0;36mDatasetAutoFolds.init\u001b[1;34m(self, ratings_file, reader, df)\u001b[0m\n\u001b[0;32m 260\u001b[0m \u001b[39melif\u001b[39;00m df \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m 261\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdf \u001b[39m=\u001b[39m df\n\u001b[1;32m--> 262\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mraw_ratings \u001b[39m=\u001b[39m [\n\u001b[0;32m 263\u001b[0m (uid, iid, \u001b[39mfloat\u001b[39m(r), \u001b[39mNone\u001b[39;00m)\n\u001b[0;32m 264\u001b[0m \u001b[39mfor\u001b[39;00m (uid, iid, r) \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdf\u001b[39m.\u001b[39mitertuples(index\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m)\n\u001b[0;32m 265\u001b[0m ]\n\u001b[0;32m 266\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m 267\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\u001b[39m"\u001b[39m\u001b[39mMust specify ratings file or dataframe.\u001b[39m\u001b[39m"\u001b[39m)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\surprise\dataset.py:262\u001b[0m, in \u001b[0;36m\u001b[1;34m(.0)\u001b[0m\n\u001b[0;32m 260\u001b[0m \u001b[39melif\u001b[39;00m df \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m 261\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdf \u001b[39m=\u001b[39m df\n\u001b[1;32m--> 262\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mraw_ratings \u001b[39m=\u001b[39m [\n\u001b[0;32m 263\u001b[0m (uid, iid, \u001b[39mfloat\u001b[39m(r), \u001b[39mNone\u001b[39;00m)\n\u001b[0;32m 264\u001b[0m \u001b[39mfor\u001b[39;00m (uid, iid, r) \u001b[39min\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdf\u001b[39m.\u001b[39mitertuples(index\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m)\n\u001b[0;32m 265\u001b[0m ]\n\u001b[0;32m 266\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m 267\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\u001b[39m"\u001b[39m\u001b[39mMust specify ratings file or dataframe.\u001b[39m\u001b[39m"\u001b[39m)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\pandas\dataframe.py:1286\u001b[0m, in \u001b[0;36mDataFrame.itertuples\u001b[1;34m(self, index, name)\u001b[0m\n\u001b[0;32m 1283\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mnext\u001b[39m(s\u001b[39m.\u001b[39m_to_pandas()\u001b[39m.\u001b[39mto_frame()\u001b[39m.\u001b[39mT\u001b[39m.\u001b[39mitertuples(index\u001b[39m=\u001b[39mindex, name\u001b[39m=\u001b[39mname))\n\u001b[0;32m 1285\u001b[0m partition_iterator \u001b[39m=\u001b[39m PartitionIterator(\u001b[39mself\u001b[39m, \u001b[39m0\u001b[39m, itertuples_builder)\n\u001b[1;32m-> 1286\u001b[0m \u001b[39mfor\u001b[39;00m v \u001b[39min\u001b[39;00m partition_iterator:\n\u001b[0;32m 1287\u001b[0m \u001b[39myield\u001b[39;00m v\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\pandas\iterator.py:70\u001b[0m, in \u001b[0;36mPartitionIterator.next\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 61\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 62\u001b[0m \u001b[39mImplement iterator interface.\u001b[39;00m\n\u001b[0;32m 63\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 67\u001b[0m \u001b[39m Incremented iterator object.\u001b[39;00m\n\u001b[0;32m 68\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 69\u001b[0m key \u001b[39m=\u001b[39m \u001b[39mnext\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mindex_iter)\n\u001b[1;32m---> 70\u001b[0m df \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mdf\u001b[39m.\u001b[39;49miloc[key]\n\u001b[0;32m 71\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mfunc(df)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\logging\logger_decorator.py:128\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[1;34m(args, kwargs)\u001b[0m\n\u001b[0;32m 113\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 114\u001b[0m \u001b[39mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[0;32m 115\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 125\u001b[0m \u001b[39mAny\u001b[39;00m\n\u001b[0;32m 126\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 127\u001b[0m \u001b[39mif\u001b[39;00m LogMode\u001b[39m.\u001b[39mget() \u001b[39m==\u001b[39m \u001b[39m"\u001b[39m\u001b[39mdisable\u001b[39m\u001b[39m"\u001b[39m:\n\u001b[1;32m--> 128\u001b[0m \u001b[39mreturn\u001b[39;00m obj(\u001b[39m\u001b[39margs, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs)\n\u001b[0;32m 130\u001b[0m logger \u001b[39m=\u001b[39m get_logger()\n\u001b[0;32m 131\u001b[0m logger_level \u001b[39m=\u001b[39m \u001b[39mgetattr\u001b[39m(logger, log_level)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\pandas\indexing.py:1067\u001b[0m, in \u001b[0;36m_iLocIndexer.getitem\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 1063\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_handle_boolean_masking(row_loc, col_loc)\n\u001b[0;32m 1065\u001b[0m row_lookup, col_lookup \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_compute_lookup(row_loc, col_loc)\n\u001b[1;32m-> 1067\u001b[0m result \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_getitem_positional(\n\u001b[0;32m 1068\u001b[0m row_lookup,\n\u001b[0;32m 1069\u001b[0m col_lookup,\n\u001b[0;32m 1070\u001b[0m row_multiindex_full_lookup\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m,\n\u001b[0;32m 1071\u001b[0m col_multiindex_full_lookup\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m,\n\u001b[0;32m 1072\u001b[0m row_scalar\u001b[39m=\u001b[39;49mrow_scalar,\n\u001b[0;32m 1073\u001b[0m col_scalar\u001b[39m=\u001b[39;49mcol_scalar,\n\u001b[0;32m 1074\u001b[0m ndim\u001b[39m=\u001b[39;49mndim,\n\u001b[0;32m 1075\u001b[0m )\n\u001b[0;32m 1077\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(result, Series):\n\u001b[0;32m 1078\u001b[0m result\u001b[39m.\u001b[39m_parent \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdf\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\logging\logger_decorator.py:128\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[1;34m(args, kwargs)\u001b[0m\n\u001b[0;32m 113\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 114\u001b[0m \u001b[39mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[0;32m 115\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 125\u001b[0m \u001b[39mAny\u001b[39;00m\n\u001b[0;32m 126\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 127\u001b[0m \u001b[39mif\u001b[39;00m LogMode\u001b[39m.\u001b[39mget() \u001b[39m==\u001b[39m \u001b[39m"\u001b[39m\u001b[39mdisable\u001b[39m\u001b[39m"\u001b[39m:\n\u001b[1;32m--> 128\u001b[0m \u001b[39mreturn\u001b[39;00m obj(\u001b[39m\u001b[39margs, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs)\n\u001b[0;32m 130\u001b[0m logger \u001b[39m=\u001b[39m get_logger()\n\u001b[0;32m 131\u001b[0m logger_level \u001b[39m=\u001b[39m \u001b[39mgetattr\u001b[39m(logger, log_level)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\pandas\indexing.py:404\u001b[0m, in \u001b[0;36m_LocationIndexerBase.getitem_positional\u001b[1;34m(self, row_lookup, col_lookup, row_multiindex_full_lookup, col_multiindex_full_lookup, row_scalar, col_scalar, ndim)\u001b[0m\n\u001b[0;32m 394\u001b[0m axis \u001b[39m=\u001b[39m (\n\u001b[0;32m 395\u001b[0m \u001b[39mNone\u001b[39;00m\n\u001b[0;32m 396\u001b[0m \u001b[39mif\u001b[39;00m (col_scalar \u001b[39mand\u001b[39;00m row_scalar)\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 400\u001b[0m \u001b[39melse\u001b[39;00m \u001b[39m0\u001b[39m\n\u001b[0;32m 401\u001b[0m )\n\u001b[0;32m 403\u001b[0m res_df \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdf\u001b[39m.\u001b[39m__constructor_(query_compiler\u001b[39m=\u001b[39mqc_view)\n\u001b[1;32m--> 404\u001b[0m \u001b[39mreturn\u001b[39;00m res_df\u001b[39m.\u001b[39;49msqueeze(axis\u001b[39m=\u001b[39;49maxis)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\logging\logger_decorator.py:128\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[1;34m(args, kwargs)\u001b[0m\n\u001b[0;32m 113\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 114\u001b[0m \u001b[39mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[0;32m 115\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 125\u001b[0m \u001b[39mAny\u001b[39;00m\n\u001b[0;32m 126\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 127\u001b[0m \u001b[39mif\u001b[39;00m LogMode\u001b[39m.\u001b[39mget() \u001b[39m==\u001b[39m \u001b[39m"\u001b[39m\u001b[39mdisable\u001b[39m\u001b[39m"\u001b[39m:\n\u001b[1;32m--> 128\u001b[0m \u001b[39mreturn\u001b[39;00m obj(\u001b[39m\u001b[39margs, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs)\n\u001b[0;32m 130\u001b[0m logger \u001b[39m=\u001b[39m get_logger()\n\u001b[0;32m 131\u001b[0m logger_level \u001b[39m=\u001b[39m \u001b[39mgetattr\u001b[39m(logger, log_level)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\pandas\dataframe.py:2037\u001b[0m, in \u001b[0;36mDataFrame.squeeze\u001b[1;34m(self, axis)\u001b[0m\n\u001b[0;32m 2035\u001b[0m \u001b[39mreturn\u001b[39;00m Series(query_compiler\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_query_compiler)\n\u001b[0;32m 2036\u001b[0m \u001b[39mif\u001b[39;00m axis \u001b[39m==\u001b[39m \u001b[39m0\u001b[39m \u001b[39mand\u001b[39;00m \u001b[39mlen\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mindex) \u001b[39m==\u001b[39m \u001b[39m1\u001b[39m:\n\u001b[1;32m-> 2037\u001b[0m \u001b[39mreturn\u001b[39;00m Series(query_compiler\u001b[39m=\u001b[39m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mT\u001b[39m.\u001b[39m_query_compiler)\n\u001b[0;32m 2038\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m 2039\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mcopy()\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\pandas\base.py:3429\u001b[0m, in \u001b[0;36mBasePandasDataset.getattribute\u001b[1;34m(self, item)\u001b[0m\n\u001b[0;32m 3415\u001b[0m \u001b[39m@disable_logging\u001b[39m\n\u001b[0;32m 3416\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39m__getattribute__\u001b[39m(\u001b[39mself\u001b[39m, item):\n\u001b[0;32m 3417\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 3418\u001b[0m \u001b[39m Return item from the
BasePandasDataset
.\u001b[39;00m\n\u001b[0;32m 3419\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 3427\u001b[0m \u001b[39m Any\u001b[39;00m\n\u001b[0;32m 3428\u001b[0m \u001b[39m """\u001b[39;00m\n\u001b[1;32m-> 3429\u001b[0m attr \u001b[39m=\u001b[39m \u001b[39msuper\u001b[39;49m()\u001b[39m.\u001b[39;49m\u001b[39m__getattribute__\u001b[39;49m(item)\n\u001b[0;32m 3430\u001b[0m \u001b[39mif\u001b[39;00m item \u001b[39mnot\u001b[39;00m \u001b[39min\u001b[39;00m DEFAULT_BEHAVIOUR \u001b[39mand\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_query_compiler\u001b[39m.\u001b[39mlazy_execution:\n\u001b[0;32m 3431\u001b[0m \u001b[39m# We default to pandas on empty DataFrames. This avoids a large amount of\u001b[39;00m\n\u001b[0;32m 3432\u001b[0m \u001b[39m# pain in underlying implementation and returns a result immediately rather\u001b[39;00m\n\u001b[0;32m 3433\u001b[0m \u001b[39m# than dealing with the edge cases that empty DataFrames have.\u001b[39;00m\n\u001b[0;32m 3434\u001b[0m \u001b[39mif\u001b[39;00m callable(attr) \u001b[39mand\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mempty \u001b[39mand\u001b[39;00m \u001b[39mhasattr\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_pandas_class, item):\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\pandas\dataframe.py:538\u001b[0m, in \u001b[0;36mDataFrame.transpose\u001b[1;34m(self, copy, args)\u001b[0m\n\u001b[0;32m 533\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 534\u001b[0m \u001b[39mTranspose index and columns.\u001b[39;00m\n\u001b[0;32m 535\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 536\u001b[0m \u001b[39m# FIXME: Judging by pandas docs*args
serves only compatibility purpose\u001b[39;00m\n\u001b[0;32m 537\u001b[0m \u001b[39m# and does not affect the result, we shouldn't pass it to the query compiler.\u001b[39;00m\n\u001b[1;32m--> 538\u001b[0m \u001b[39mreturn\u001b[39;00m DataFrame(query_compiler\u001b[39m=\u001b[39m\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_query_compiler\u001b[39m.\u001b[39;49mtranspose(\u001b[39m\u001b[39;49margs))\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\logging\logger_decorator.py:128\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[1;34m(args, kwargs)\u001b[0m\n\u001b[0;32m 113\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 114\u001b[0m \u001b[39mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[0;32m 115\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 125\u001b[0m \u001b[39mAny\u001b[39;00m\n\u001b[0;32m 126\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 127\u001b[0m \u001b[39mif\u001b[39;00m LogMode\u001b[39m.\u001b[39mget() \u001b[39m==\u001b[39m \u001b[39m"\u001b[39m\u001b[39mdisable\u001b[39m\u001b[39m"\u001b[39m:\n\u001b[1;32m--> 128\u001b[0m \u001b[39mreturn\u001b[39;00m obj(\u001b[39m\u001b[39margs, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs)\n\u001b[0;32m 130\u001b[0m logger \u001b[39m=\u001b[39m get_logger()\n\u001b[0;32m 131\u001b[0m logger_level \u001b[39m=\u001b[39m \u001b[39mgetattr\u001b[39m(logger, log_level)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\core\storage_formats\pandas\query_compiler.py:704\u001b[0m, in \u001b[0;36mPandasQueryCompiler.transpose\u001b[1;34m(self, args, kwargs)\u001b[0m\n\u001b[0;32m 702\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mtranspose\u001b[39m(\u001b[39mself\u001b[39m, \u001b[39m\u001b[39margs, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs):\n\u001b[0;32m 703\u001b[0m \u001b[39m# Switch the index and columns and transpose the data within the blocks.\u001b[39;00m\n\u001b[1;32m--> 704\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m__constructor_(\u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_modin_frame\u001b[39m.\u001b[39;49mtranspose())\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\logging\logger_decorator.py:128\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[1;34m(args, kwargs)\u001b[0m\n\u001b[0;32m 113\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 114\u001b[0m \u001b[39mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[0;32m 115\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 125\u001b[0m \u001b[39mAny\u001b[39;00m\n\u001b[0;32m 126\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 127\u001b[0m \u001b[39mif\u001b[39;00m LogMode\u001b[39m.\u001b[39mget() \u001b[39m==\u001b[39m \u001b[39m"\u001b[39m\u001b[39mdisable\u001b[39m\u001b[39m"\u001b[39m:\n\u001b[1;32m--> 128\u001b[0m \u001b[39mreturn\u001b[39;00m obj(\u001b[39m\u001b[39margs, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs)\n\u001b[0;32m 130\u001b[0m logger \u001b[39m=\u001b[39m get_logger()\n\u001b[0;32m 131\u001b[0m logger_level \u001b[39m=\u001b[39m \u001b[39mgetattr\u001b[39m(logger, log_level)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\core\dataframe\pandas\dataframe\dataframe.py:125\u001b[0m, in \u001b[0;36mlazy_metadata_decorator..decorator..run_f_on_minimally_updated_metadata\u001b[1;34m(self, args, kwargs)\u001b[0m\n\u001b[0;32m 123\u001b[0m \u001b[39melif\u001b[39;00m apply_axis \u001b[39m==\u001b[39m \u001b[39m"\u001b[39m\u001b[39mrows\u001b[39m\u001b[39m"\u001b[39m:\n\u001b[0;32m 124\u001b[0m obj\u001b[39m.\u001b[39m_propagate_index_objs(axis\u001b[39m=\u001b[39m\u001b[39m0\u001b[39m)\n\u001b[1;32m--> 125\u001b[0m result \u001b[39m=\u001b[39m f(\u001b[39mself\u001b[39m, \u001b[39m\u001b[39margs, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs)\n\u001b[0;32m 126\u001b[0m \u001b[39mif\u001b[39;00m apply_axis \u001b[39mis\u001b[39;00m \u001b[39mNone\u001b[39;00m \u001b[39mand\u001b[39;00m \u001b[39mnot\u001b[39;00m transpose:\n\u001b[0;32m 127\u001b[0m result\u001b[39m.\u001b[39m_deferred_index \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_deferred_index\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\core\dataframe\pandas\dataframe\dataframe.py:3131\u001b[0m, in \u001b[0;36mPandasDataframe.transpose\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 3118\u001b[0m \u001b[39m@lazy_metadata_decorator\u001b[39m(apply_axis\u001b[39m=\u001b[39m\u001b[39mNone\u001b[39;00m, transpose\u001b[39m=\u001b[39m\u001b[39mTrue\u001b[39;00m)\n\u001b[0;32m 3119\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mtranspose\u001b[39m(\u001b[39mself\u001b[39m):\n\u001b[0;32m 3120\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 3121\u001b[0m \u001b[39m Transpose the index and columns of this Modin DataFrame.\u001b[39;00m\n\u001b[0;32m 3122\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 3129\u001b[0m \u001b[39m New Modin DataFrame.\u001b[39;00m\n\u001b[0;32m 3130\u001b[0m \u001b[39m """\u001b[39;00m\n\u001b[1;32m-> 3131\u001b[0m new_partitions \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_partition_mgr_cls\u001b[39m.\u001b[39;49mlazy_map_partitions(\n\u001b[0;32m 3132\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_partitions, \u001b[39mlambda\u001b[39;49;00m df: df\u001b[39m.\u001b[39;49mT\n\u001b[0;32m 3133\u001b[0m )\u001b[39m.\u001b[39mT\n\u001b[0;32m 3134\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_dtypes \u001b[39mis\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mNone\u001b[39;00m:\n\u001b[0;32m 3135\u001b[0m new_dtypes \u001b[39m=\u001b[39m pandas\u001b[39m.\u001b[39mSeries(\n\u001b[0;32m 3136\u001b[0m np\u001b[39m.\u001b[39mfull(\u001b[39mlen\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mindex), find_common_type(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdtypes\u001b[39m.\u001b[39mvalues)),\n\u001b[0;32m 3137\u001b[0m index\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mindex,\n\u001b[0;32m 3138\u001b[0m )\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\logging\logger_decorator.py:128\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[1;34m(args, kwargs)\u001b[0m\n\u001b[0;32m 113\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 114\u001b[0m \u001b[39mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[0;32m 115\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 125\u001b[0m \u001b[39mAny\u001b[39;00m\n\u001b[0;32m 126\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 127\u001b[0m \u001b[39mif\u001b[39;00m LogMode\u001b[39m.\u001b[39mget() \u001b[39m==\u001b[39m \u001b[39m"\u001b[39m\u001b[39mdisable\u001b[39m\u001b[39m"\u001b[39m:\n\u001b[1;32m--> 128\u001b[0m \u001b[39mreturn\u001b[39;00m obj(\u001b[39m\u001b[39margs, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs)\n\u001b[0;32m 130\u001b[0m logger \u001b[39m=\u001b[39m get_logger()\n\u001b[0;32m 131\u001b[0m logger_level \u001b[39m=\u001b[39m \u001b[39mgetattr\u001b[39m(logger, log_level)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\core\dataframe\pandas\partitioning\partition_manager.py:58\u001b[0m, in \u001b[0;36mwait_computations_if_benchmark_mode..wait\u001b[1;34m(cls, args, kwargs)\u001b[0m\n\u001b[0;32m 55\u001b[0m \u001b[39m@wraps\u001b[39m(func)\n\u001b[0;32m 56\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mwait\u001b[39m(\u001b[39mcls\u001b[39m, \u001b[39m\u001b[39margs, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs):\n\u001b[0;32m 57\u001b[0m \u001b[39m"""Wait for computation results."""\u001b[39;00m\n\u001b[1;32m---> 58\u001b[0m result \u001b[39m=\u001b[39m func(\u001b[39mcls\u001b[39m, \u001b[39m*\u001b[39margs, \u001b[39m*\u001b[39m\u001b[39m*\u001b[39mkwargs)\n\u001b[0;32m 59\u001b[0m \u001b[39mif\u001b[39;00m BenchmarkMode\u001b[39m.\u001b[39mget():\n\u001b[0;32m 60\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(result, \u001b[39mtuple\u001b[39m):\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\core\dataframe\pandas\partitioning\partition_manager.py:521\u001b[0m, in \u001b[0;36mPandasDataframePartitionManager.lazy_map_partitions\u001b[1;34m(cls, partitions, map_func)\u001b[0m\n\u001b[0;32m 503\u001b[0m \u001b[39m@classmethod\u001b[39m\n\u001b[0;32m 504\u001b[0m \u001b[39m@wait_computations_if_benchmark_mode\u001b[39m\n\u001b[0;32m 505\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mlazy_map_partitions\u001b[39m(\u001b[39mcls\u001b[39m, partitions, map_func):\n\u001b[0;32m 506\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 507\u001b[0m \u001b[39m Applymap_func
to every partition inpartitions
lazily.\u001b[39;00m\n\u001b[0;32m 508\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 519\u001b[0m \u001b[39m An array of partitions\u001b[39;00m\n\u001b[0;32m 520\u001b[0m \u001b[39m """\u001b[39;00m\n\u001b[1;32m--> 521\u001b[0m preprocessed_map_func \u001b[39m=\u001b[39m \u001b[39mcls\u001b[39;49m\u001b[39m.\u001b[39;49mpreprocess_func(map_func)\n\u001b[0;32m 522\u001b[0m \u001b[39mreturn\u001b[39;00m np\u001b[39m.\u001b[39marray(\n\u001b[0;32m 523\u001b[0m [\n\u001b[0;32m 524\u001b[0m [part\u001b[39m.\u001b[39madd_to_apply_calls(preprocessed_map_func) \u001b[39mfor\u001b[39;00m part \u001b[39min\u001b[39;00m row]\n\u001b[0;32m 525\u001b[0m \u001b[39mfor\u001b[39;00m row \u001b[39min\u001b[39;00m partitions\n\u001b[0;32m 526\u001b[0m ]\n\u001b[0;32m 527\u001b[0m )\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\logging\logger_decorator.py:128\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[1;34m(args, kwargs)\u001b[0m\n\u001b[0;32m 113\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 114\u001b[0m \u001b[39mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[0;32m 115\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 125\u001b[0m \u001b[39mAny\u001b[39;00m\n\u001b[0;32m 126\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 127\u001b[0m \u001b[39mif\u001b[39;00m LogMode\u001b[39m.\u001b[39mget() \u001b[39m==\u001b[39m \u001b[39m"\u001b[39m\u001b[39mdisable\u001b[39m\u001b[39m"\u001b[39m:\n\u001b[1;32m--> 128\u001b[0m \u001b[39mreturn\u001b[39;00m obj(\u001b[39m\u001b[39margs, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs)\n\u001b[0;32m 130\u001b[0m logger \u001b[39m=\u001b[39m get_logger()\n\u001b[0;32m 131\u001b[0m logger_level \u001b[39m=\u001b[39m \u001b[39mgetattr\u001b[39m(logger, log_level)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\core\dataframe\pandas\partitioning\partition_manager.py:120\u001b[0m, in \u001b[0;36mPandasDataframePartitionManager.preprocess_func\u001b[1;34m(cls, map_func)\u001b[0m\n\u001b[0;32m 93\u001b[0m \u001b[39m@classmethod\u001b[39m\n\u001b[0;32m 94\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mpreprocess_func\u001b[39m(\u001b[39mcls\u001b[39m, map_func):\n\u001b[0;32m 95\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 96\u001b[0m \u001b[39m Preprocess a function to be applied toPandasDataframePartition
objects.\u001b[39;00m\n\u001b[0;32m 97\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 118\u001b[0m \u001b[39m you are using does not require any modification to a given function.\u001b[39;00m\n\u001b[0;32m 119\u001b[0m \u001b[39m """\u001b[39;00m\n\u001b[1;32m--> 120\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mcls\u001b[39;49m\u001b[39m.\u001b[39;49m_partition_class\u001b[39m.\u001b[39;49mpreprocess_func(map_func)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\core\execution\dask\implementations\pandas_on_dask\partitioning\partition.py:257\u001b[0m, in \u001b[0;36mPandasOnDaskDataframePartition.preprocess_func\u001b[1;34m(cls, func)\u001b[0m\n\u001b[0;32m 242\u001b[0m \u001b[39m@classmethod\u001b[39m\n\u001b[0;32m 243\u001b[0m \u001b[39mdef\u001b[39;00m \u001b[39mpreprocess_func\u001b[39m(\u001b[39mcls\u001b[39m, func):\n\u001b[0;32m 244\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 245\u001b[0m \u001b[39m Preprocess a function before anapply
call.\u001b[39;00m\n\u001b[0;32m 246\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 255\u001b[0m \u001b[39m An object that can be accepted byapply
.\u001b[39;00m\n\u001b[0;32m 256\u001b[0m \u001b[39m """\u001b[39;00m\n\u001b[1;32m--> 257\u001b[0m \u001b[39mreturn\u001b[39;00m DaskWrapper\u001b[39m.\u001b[39;49mput(func, \u001b[39mhash\u001b[39;49m\u001b[39m=\u001b[39;49m\u001b[39mFalse\u001b[39;49;00m, broadcast\u001b[39m=\u001b[39;49m\u001b[39mTrue\u001b[39;49;00m)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\modin\core\execution\dask\common\engine_wrapper.py:98\u001b[0m, in \u001b[0;36mDaskWrapper.put\u001b[1;34m(cls, data, kwargs)\u001b[0m\n\u001b[0;32m 83\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 84\u001b[0m \u001b[39mPut data into distributed memory.\u001b[39;00m\n\u001b[0;32m 85\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 95\u001b[0m \u001b[39mList, dict, iterator, or queue of futures matching the type of input.\u001b[39;00m\n\u001b[0;32m 96\u001b[0m \u001b[39m"""\u001b[39;00m\n\u001b[0;32m 97\u001b[0m client \u001b[39m=\u001b[39m default_client()\n\u001b[1;32m---> 98\u001b[0m \u001b[39mreturn\u001b[39;00m client\u001b[39m.\u001b[39mscatter(data, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\distributed\client.py:2506\u001b[0m, in \u001b[0;36mClient.scatter\u001b[1;34m(self, data, workers, broadcast, direct, hash, timeout, asynchronous)\u001b[0m\n\u001b[0;32m 2504\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m 2505\u001b[0m local_worker \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[1;32m-> 2506\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49msync(\n\u001b[0;32m 2507\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_scatter,\n\u001b[0;32m 2508\u001b[0m data,\n\u001b[0;32m 2509\u001b[0m workers\u001b[39m=\u001b[39;49mworkers,\n\u001b[0;32m 2510\u001b[0m broadcast\u001b[39m=\u001b[39;49mbroadcast,\n\u001b[0;32m 2511\u001b[0m direct\u001b[39m=\u001b[39;49mdirect,\n\u001b[0;32m 2512\u001b[0m local_worker\u001b[39m=\u001b[39;49mlocal_worker,\n\u001b[0;32m 2513\u001b[0m timeout\u001b[39m=\u001b[39;49mtimeout,\n\u001b[0;32m 2514\u001b[0m asynchronous\u001b[39m=\u001b[39;49masynchronous,\n\u001b[0;32m 2515\u001b[0m \u001b[39mhash\u001b[39;49m\u001b[39m=\u001b[39;49m\u001b[39mhash\u001b[39;49m,\n\u001b[0;32m 2516\u001b[0m )\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\distributed\utils.py:339\u001b[0m, in \u001b[0;36mSyncMethodMixin.sync\u001b[1;34m(self, func, asynchronous, callback_timeout, args, kwargs)\u001b[0m\n\u001b[0;32m 337\u001b[0m \u001b[39mreturn\u001b[39;00m future\n\u001b[0;32m 338\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m--> 339\u001b[0m \u001b[39mreturn\u001b[39;00m sync(\n\u001b[0;32m 340\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mloop, func, \u001b[39m\u001b[39margs, callback_timeout\u001b[39m=\u001b[39mcallback_timeout, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs\n\u001b[0;32m 341\u001b[0m )\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\distributed\utils.py:406\u001b[0m, in \u001b[0;36msync\u001b[1;34m(loop, func, callback_timeout, args, kwargs)\u001b[0m\n\u001b[0;32m 404\u001b[0m \u001b[39mif\u001b[39;00m error:\n\u001b[0;32m 405\u001b[0m typ, exc, tb \u001b[39m=\u001b[39m error\n\u001b[1;32m--> 406\u001b[0m \u001b[39mraise\u001b[39;00m exc\u001b[39m.\u001b[39mwith_traceback(tb)\n\u001b[0;32m 407\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m 408\u001b[0m \u001b[39mreturn\u001b[39;00m result\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\distributed\utils.py:379\u001b[0m, in \u001b[0;36msync..f\u001b[1;34m()\u001b[0m\n\u001b[0;32m 377\u001b[0m future \u001b[39m=\u001b[39m asyncio\u001b[39m.\u001b[39mwait_for(future, callback_timeout)\n\u001b[0;32m 378\u001b[0m future \u001b[39m=\u001b[39m asyncio\u001b[39m.\u001b[39mensure_future(future)\n\u001b[1;32m--> 379\u001b[0m result \u001b[39m=\u001b[39m \u001b[39myield\u001b[39;00m future\n\u001b[0;32m 380\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m:\n\u001b[0;32m 381\u001b[0m error \u001b[39m=\u001b[39m sys\u001b[39m.\u001b[39mexc_info()\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\tornado\gen.py:762\u001b[0m, in \u001b[0;36mRunner.run\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 759\u001b[0m exc_info \u001b[39m=\u001b[39m \u001b[39mNone\u001b[39;00m\n\u001b[0;32m 761\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m--> 762\u001b[0m value \u001b[39m=\u001b[39m future\u001b[39m.\u001b[39;49mresult()\n\u001b[0;32m 763\u001b[0m \u001b[39mexcept\u001b[39;00m \u001b[39mException\u001b[39;00m:\n\u001b[0;32m 764\u001b[0m exc_info \u001b[39m=\u001b[39m sys\u001b[39m.\u001b[39mexc_info()\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\distributed\client.py:2386\u001b[0m, in \u001b[0;36mClient._scatter\u001b[1;34m(self, data, workers, broadcast, direct, local_worker, timeout, hash)\u001b[0m\n\u001b[0;32m 2382\u001b[0m \u001b[39mawait\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mscheduler\u001b[39m.\u001b[39mupdate_data(\n\u001b[0;32m 2383\u001b[0m who_has\u001b[39m=\u001b[39mwho_has, nbytes\u001b[39m=\u001b[39mnbytes, client\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mid\n\u001b[0;32m 2384\u001b[0m )\n\u001b[0;32m 2385\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m-> 2386\u001b[0m \u001b[39mawait\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mscheduler\u001b[39m.\u001b[39mscatter(\n\u001b[0;32m 2387\u001b[0m data\u001b[39m=\u001b[39mdata2,\n\u001b[0;32m 2388\u001b[0m workers\u001b[39m=\u001b[39mworkers,\n\u001b[0;32m 2389\u001b[0m client\u001b[39m=\u001b[39m\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mid,\n\u001b[0;32m 2390\u001b[0m broadcast\u001b[39m=\u001b[39mbroadcast,\n\u001b[0;32m 2391\u001b[0m timeout\u001b[39m=\u001b[39mtimeout,\n\u001b[0;32m 2392\u001b[0m )\n\u001b[0;32m 2394\u001b[0m out \u001b[39m=\u001b[39m {k: Future(k, \u001b[39mself\u001b[39m, inform\u001b[39m=\u001b[39m\u001b[39mFalse\u001b[39;00m) \u001b[39mfor\u001b[39;00m k \u001b[39min\u001b[39;00m data}\n\u001b[0;32m 2395\u001b[0m \u001b[39mfor\u001b[39;00m key, typ \u001b[39min\u001b[39;00m types\u001b[39m.\u001b[39mitems():\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\distributed\core.py:1163\u001b[0m, in \u001b[0;36mPooledRPCCall.getattr..send_recv_from_rpc\u001b[1;34m(kwargs)\u001b[0m\n\u001b[0;32m 1161\u001b[0m prev_name, comm\u001b[39m.\u001b[39mname \u001b[39m=\u001b[39m comm\u001b[39m.\u001b[39mname, \u001b[39m"\u001b[39m\u001b[39mConnectionPool.\u001b[39m\u001b[39m"\u001b[39m \u001b[39m+\u001b[39m key\n\u001b[0;32m 1162\u001b[0m \u001b[39mtry\u001b[39;00m:\n\u001b[1;32m-> 1163\u001b[0m \u001b[39mreturn\u001b[39;00m \u001b[39mawait\u001b[39;00m send_recv(comm\u001b[39m=\u001b[39mcomm, op\u001b[39m=\u001b[39mkey, \u001b[39m\u001b[39m\u001b[39m\u001b[39mkwargs)\n\u001b[0;32m 1164\u001b[0m \u001b[39mfinally\u001b[39;00m:\n\u001b[0;32m 1165\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mpool\u001b[39m.\u001b[39mreuse(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39maddr, comm)\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\distributed\core.py:953\u001b[0m, in \u001b[0;36msend_recv\u001b[1;34m(comm, reply, serializers, deserializers, kwargs)\u001b[0m\n\u001b[0;32m 951\u001b[0m _, exc, tb \u001b[39m=\u001b[39m clean_exception(\u001b[39m\u001b[39m\u001b[39m\u001b[39mresponse)\n\u001b[0;32m 952\u001b[0m \u001b[39massert\u001b[39;00m exc\n\u001b[1;32m--> 953\u001b[0m \u001b[39mraise\u001b[39;00m exc\u001b[39m.\u001b[39mwith_traceback(tb)\n\u001b[0;32m 954\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m 955\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mException\u001b[39;00m(response[\u001b[39m"\u001b[39m\u001b[39mexception_text\u001b[39m\u001b[39m"\u001b[39m])\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\distributed\core.py:771\u001b[0m, in \u001b[0;36m_handle_comm\u001b[1;34m()\u001b[0m\n\u001b[0;32m 769\u001b[0m result \u001b[39m=\u001b[39m handler(\u001b[39m\u001b[39m\u001b[39m\u001b[39mmsg)\n\u001b[0;32m 770\u001b[0m \u001b[39mif\u001b[39;00m inspect\u001b[39m.\u001b[39miscoroutine(result):\n\u001b[1;32m--> 771\u001b[0m result \u001b[39m=\u001b[39m \u001b[39mawait\u001b[39;00m result\n\u001b[0;32m 772\u001b[0m \u001b[39melif\u001b[39;00m inspect\u001b[39m.\u001b[39misawaitable(result):\n\u001b[0;32m 773\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mRuntimeError\u001b[39;00m(\n\u001b[0;32m 774\u001b[0m \u001b[39mf\u001b[39m\u001b[39m"\u001b[39m\u001b[39mComm handler returned unknown awaitable. Expected coroutine, instead got \u001b[39m\u001b[39m{\u001b[39;00m\u001b[39mtype\u001b[39m(result)\u001b[39m}\u001b[39;00m\u001b[39m"\u001b[39m\n\u001b[0;32m 775\u001b[0m )\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\distributed\scheduler.py:5707\u001b[0m, in \u001b[0;36mscatter\u001b[1;34m()\u001b[0m\n\u001b[0;32m 5705\u001b[0m \u001b[39mif\u001b[39;00m broadcast:\n\u001b[0;32m 5706\u001b[0m n \u001b[39m=\u001b[39m \u001b[39mlen\u001b[39m(nthreads) \u001b[39mif\u001b[39;00m broadcast \u001b[39mis\u001b[39;00m \u001b[39mTrue\u001b[39;00m \u001b[39melse\u001b[39;00m broadcast\n\u001b[1;32m-> 5707\u001b[0m \u001b[39mawait\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mreplicate(keys\u001b[39m=\u001b[39mkeys, workers\u001b[39m=\u001b[39mworkers, n\u001b[39m=\u001b[39mn)\n\u001b[0;32m 5709\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mlog_event(\n\u001b[0;32m 5710\u001b[0m [client, \u001b[39m"\u001b[39m\u001b[39mall\u001b[39m\u001b[39m"\u001b[39m], {\u001b[39m"\u001b[39m\u001b[39maction\u001b[39m\u001b[39m"\u001b[39m: \u001b[39m"\u001b[39m\u001b[39mscatter\u001b[39m\u001b[39m"\u001b[39m, \u001b[39m"\u001b[39m\u001b[39mclient\u001b[39m\u001b[39m"\u001b[39m: client, \u001b[39m"\u001b[39m\u001b[39mcount\u001b[39m\u001b[39m"\u001b[39m: \u001b[39mlen\u001b[39m(data)}\n\u001b[0;32m 5711\u001b[0m )\n\u001b[0;32m 5712\u001b[0m \u001b[39mreturn\u001b[39;00m keys\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\site-packages\distributed\scheduler.py:6516\u001b[0m, in \u001b[0;36mreplicate\u001b[1;34m()\u001b[0m\n\u001b[0;32m 6513\u001b[0m count \u001b[39m=\u001b[39m \u001b[39mmin\u001b[39m(n_missing, branching_factor \u001b[39m\u001b[39m \u001b[39mlen\u001b[39m(ts\u001b[39m.\u001b[39mwho_has))\n\u001b[0;32m 6514\u001b[0m \u001b[39massert\u001b[39;00m count \u001b[39m>\u001b[39m \u001b[39m0\u001b[39m\n\u001b[1;32m-> 6516\u001b[0m \u001b[39mfor\u001b[39;00m ws \u001b[39min\u001b[39;00m random\u001b[39m.\u001b[39msample(\u001b[39mtuple\u001b[39m(workers \u001b[39m-\u001b[39m ts\u001b[39m.\u001b[39mwho_has), count):\n\u001b[0;32m 6517\u001b[0m gathers[ws\u001b[39m.\u001b[39maddress][ts\u001b[39m.\u001b[39mkey] \u001b[39m=\u001b[39m [\n\u001b[0;32m 6518\u001b[0m wws\u001b[39m.\u001b[39maddress \u001b[39mfor\u001b[39;00m wws \u001b[39min\u001b[39;00m ts\u001b[39m.\u001b[39mwho_has\n\u001b[0;32m 6519\u001b[0m ]\n\u001b[0;32m 6521\u001b[0m \u001b[39mawait\u001b[39;00m asyncio\u001b[39m.\u001b[39mgather(\n\u001b[0;32m 6522\u001b[0m \u001b[39m*\u001b[39m(\n\u001b[0;32m 6523\u001b[0m \u001b[39m# Note: this never raises exceptions\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 6526\u001b[0m )\n\u001b[0;32m 6527\u001b[0m )\n\nFile \u001b[1;32mc:\Users\oanaa\anaconda3\envs\CodeBase\lib\random.py:482\u001b[0m, in \u001b[0;36msample\u001b[1;34m()\u001b[0m\n\u001b[0;32m 480\u001b[0m randbelow \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_randbelow\n\u001b[0;32m 481\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39m0\u001b[39m \u001b[39m<\u001b[39m\u001b[39m=\u001b[39m k \u001b[39m<\u001b[39m\u001b[39m=\u001b[39m n:\n\u001b[1;32m--> 482\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mValueError\u001b[39;00m(\u001b[39m"\u001b[39m\u001b[39mSample larger than population or is negative\u001b[39m\u001b[39m"\u001b[39m)\n\u001b[0;32m 483\u001b[0m result \u001b[39m=\u001b[39m [\u001b[39mNone\u001b[39;00m] \u001b[39m*\u001b[39m k\n\u001b[0;32m 484\u001b[0m setsize \u001b[39m=\u001b[39m \u001b[39m21\u001b[39m \u001b[39m# size of a small set minus size of an empty list\u001b[39;00m\n\n\u001b[1;31mValueError\u001b[0m: Sample larger than population or is negative"}
The text was updated successfully, but these errors were encountered: