-
Notifications
You must be signed in to change notification settings - Fork 0
/
AMPAd2.mod
138 lines (105 loc) · 3.94 KB
/
AMPAd2.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
TITLE AMPA synapse for nucleus accumbens model
: see comments below
NEURON {
POINT_PROCESS AMPAd2
RANGE gbar, tau_r, tau_d, scale, spkcnt, countflag, i, t1, ca_ratio, ical, itmp, qfact
NONSPECIFIC_CURRENT i
USEION cal WRITE ical VALENCE 2
}
UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(umho) = (micromho)
}
PARAMETER {
gbar = 8.5e-4 (umho) : approx 0.5:1 NMDA:AMPA ratio (Myme 2003)
: with mg = 0, vh = -70, one pulse, NMDA = 300 pS
: here AMPA = 593 pS (NMDA set to Dalby 2003)
tau_r = 2.2 (ms) : Gotz 1997, Table 1 - rise tau
tau_d = 11.5 (ms) : Gotz 1997, Table 1 - decay tau
Erev = 0 (mV) : reversal potential, Jahn 1998
saturate = 1.2 : causes the conductance to saturate - matched to
: Destexhe's reduced model in [1]
qfact = 2 : convert 22 degC to 35 degC
ca_ratio = 0.005 : ratio of calcium current to total current
} : Burnashev/Sakmann J Phys 1995 485:403-418
: with Carter/Sabatini Neuron 2004 44:483-493
ASSIGNED {
g (umho)
v (mV) : postsynaptic voltage
itmp (nA) : temp value of current
i (nA) : nonspecific current = g*(v - Erev)
ical (nA) : calcium current through AMPA synapse (Carter/Sabatini)
t1 (ms)
y1_add (/ms) : value added to y1 when a presynaptic spike is registered
y1_loc (/ms)
countflag : start/stop counting spikes delivered
spkcnt : counts number of events delivered to synapse
scale : scale allows the current to be scaled by weight
} : so NetCon(...,2) gives 2*the current as NetCon(...,1)
STATE {
y1 (/ms)
y2 : sum of beta-functions, describing the total conductance
}
INITIAL {
y1_add = 0
scale = 0
spkcnt = 0
countflag = 0
t1 = 0
y1_loc = 0
}
BREAKPOINT {
SOLVE betadyn METHOD cnexp
g = gbar * y2
itmp = scale * g * (v - Erev)
i = (1-ca_ratio) * itmp
ical = ca_ratio * itmp
}
DERIVATIVE betadyn {
: dynamics of the beta-function, from [2]
y1' = -y1 / (tau_d/qfact)
y2' = y1 - y2 / (tau_r/qfact)
}
NET_RECEIVE( weight, y1_loc (/ms) ) {
: updating the local y1 variable
y1_loc = y1_loc*exp( -(t - t1) / (tau_d/qfact) )
: y1_add is dependent on the present value of the local
: y1 variable, y1_loc
y1_add = (1 - y1_loc/saturate)
: update the local y1 variable
y1_loc = y1_loc + y1_add
: presynaptic spike is finaly registered
y1 = y1 + y1_add
: store the spike time
t1 = t
spkcnt = spkcnt + 1
scale = weight
}
COMMENT
Author Johan Hake (c) spring 2004
: Summate input from many presynaptic sources and saturate
: each one of them during heavy presynaptic firing
: [1] Destexhe, A., Z. F. Mainen and T. J. Sejnowski (1998)
: Kinetic models of synaptic transmission
: In C. Koch and I. Segev (Eds.), Methods in Neuronal Modeling
: [2] Rotter, S. and M. Diesmann (1999) Biol. Cybern. 81, 381-402
: Exact digital simulation of time-invariant linear systems with application
: to neural modeling
Dalby, N. O., and Mody, I. (2003). Activation of NMDA receptors in rat
dentate gyrus granule cells by spontaneous and evoked transmitter
release. J Neurophysiol 90, 786-797.
Gotz, T., Kraushaar, U., Geiger, J., Lubke, J., Berger, T., and Jonas,
P. (1997). Functional properties of AMPA and NMDA receptors expressed in
identified types of basal ganglia neurons. J Neurosci 17, 204-215.
Jahn K, Bufler J, Franke C (1998) Kinetics of AMPA-type glutamate
receptor channels in rat caudate-putamen neurones show a wide range of
desensitization but distinct recovery characteristics. Eur J Neurosci
10:664-672.
Myme, C. I., Sugino, K., Turrigiano, G. G., and Nelson, S. B. (2003).
The NMDA-to-AMPA ratio at synapses onto layer 2/3 pyramidal neurons is
conserved across prefrontal and visual cortices. J Neurophysiol 90,
771-779.
Gutfreund H, Kinetics for the Life Sciences, Cambridge University Press,
1995, pg 234. (suggested by Ted Carnevale)
ENDCOMMENT