From 4bf639dee6784b9eaa4c9b0f72c7b44740c08153 Mon Sep 17 00:00:00 2001 From: Garrett Michael Flynn Date: Mon, 3 Jun 2024 12:14:42 -0500 Subject: [PATCH] Always use run_conversion --- .../manageNeuroconv/manage_neuroconv.py | 138 +++++++++--------- 1 file changed, 67 insertions(+), 71 deletions(-) diff --git a/src/pyflask/manageNeuroconv/manage_neuroconv.py b/src/pyflask/manageNeuroconv/manage_neuroconv.py index 475d69e3c..3929ed454 100644 --- a/src/pyflask/manageNeuroconv/manage_neuroconv.py +++ b/src/pyflask/manageNeuroconv/manage_neuroconv.py @@ -863,22 +863,22 @@ def create_file( ) -> dict: import requests - from neuroconv.tools.nwb_helpers import ( - get_default_backend_configuration, - make_or_load_nwbfile, - ) from tqdm_publisher import TQDMProgressSubscriber + project_name = info.get("project_name") run_stub_test = info.get("stub_test", False) - backend_configuration = info.get("configuration") + overwrite = info.get("overwrite", False) + # Progress update info url = info.get("url") request_id = info.get("request_id") - will_configure_backend = backend_configuration is not None and run_stub_test is False + # Backend configuration info + backend_configuration = info.get("configuration") + backend = backend_configuration.get("backend", "hdf5") converter, metadata, path_info = get_conversion_info(info) @@ -894,60 +894,48 @@ def create_file( else: nwbfile_path.unlink() - if will_configure_backend: - - backend = backend_configuration.get("backend", "hdf5") - configuration_values = backend_configuration.get("results", {}).get(backend, {}) - - # Create NWB file with appropriate backend configuration - with make_or_load_nwbfile( - nwbfile_path=nwbfile_path, metadata=metadata, overwrite=overwrite, backend=backend - ) as nwbfile: - converter.add_to_nwbfile(nwbfile, metadata=metadata) - configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend) - configure_dataset_backends(nwbfile, configuration_values, configuration) - - else: + def update_conversion_progress(message): + update_dict = dict(request_id=request_id, **message) + if url or not run_stub_test: + requests.post(url=url, json=update_dict) + else: + progress_handler.announce(update_dict) - def update_conversion_progress(message): - update_dict = dict(request_id=request_id, **message) - if url or not run_stub_test: - requests.post(url=url, json=update_dict) - else: - progress_handler.announce(update_dict) + progress_bar_options = dict( + mininterval=0, + on_progress_update=update_conversion_progress, + ) - progress_bar_options = dict( - mininterval=0, - on_progress_update=update_conversion_progress, - ) + # Assume all interfaces have the same conversion options for now + available_options = converter.get_conversion_options_schema() + options = {interface: {} for interface in info["source_data"]} - # Assume all interfaces have the same conversion options for now - available_options = converter.get_conversion_options_schema() - options = {interface: {} for interface in info["source_data"]} + for interface in options: + available_opts = available_options.get("properties").get(interface).get("properties", {}) - for interface in options: - available_opts = available_options.get("properties").get(interface).get("properties", {}) + # Specify if stub test + if run_stub_test: + if available_opts.get("stub_test"): + options[interface]["stub_test"] = True - # Specify if stub test - if run_stub_test: - if available_opts.get("stub_test"): - options[interface]["stub_test"] = True + # Specify if iterator options are available + elif available_opts.get("iterator_opts"): + options[interface]["iterator_opts"] = dict( + display_progress=True, + progress_bar_class=TQDMProgressSubscriber, + progress_bar_options=progress_bar_options, + ) - # Specify if iterator options are available - elif available_opts.get("iterator_opts"): - options[interface]["iterator_opts"] = dict( - display_progress=True, - progress_bar_class=TQDMProgressSubscriber, - progress_bar_options=progress_bar_options, - ) - # Actually run the conversion - converter.run_conversion( - metadata=metadata, - nwbfile_path=nwbfile_path, - overwrite=overwrite, - conversion_options=options, - ) + # Actually run the conversion + converter.run_conversion( + metadata=metadata, + nwbfile_path=nwbfile_path, + overwrite=overwrite, + conversion_options=options, + backend=backend, + backend_configuration=extract_backend_configuration(info), + ) except Exception as e: if log_url: @@ -964,43 +952,51 @@ def update_conversion_progress(message): raise e -def get_backend_configuration(info: dict) -> dict: - - import numpy as np - - PROPS_TO_REMOVE = [ - # Immutable - "object_id", - "dataset_name", - "location_in_file", - "dtype", - ] - - PROPS_TO_IGNORE = ["full_shape"] - - info["overwrite"] = True # Always overwrite the file - +def extract_backend_configuration(info: dict) -> dict: + from neuroconv.tools.nwb_helpers import ( get_default_backend_configuration, make_nwbfile_from_metadata, ) + PROPS_TO_IGNORE = ["full_shape"] + backend_configuration = info.get("configuration", {}) backend = backend_configuration.get("backend", "hdf5") results = backend_configuration.get("results", {}).get(backend, {}) - # raise ValueError(f"This function is not currently supported. {results}") - converter, metadata, __ = get_conversion_info(info) nwbfile = make_nwbfile_from_metadata(metadata=metadata) converter.add_to_nwbfile(nwbfile, metadata=metadata) + configuration = get_default_backend_configuration(nwbfile=nwbfile, backend=backend) + for dataset_name, dataset_configuration in results.items(): for key, value in dataset_configuration.items(): if key not in PROPS_TO_IGNORE: setattr(configuration.dataset_configurations[dataset_name], key, value) + return configuration + + +def get_backend_configuration(info: dict) -> dict: + + import numpy as np + + PROPS_TO_REMOVE = [ + # Immutable + "object_id", + "dataset_name", + "location_in_file", + "dtype", + ] + + info["overwrite"] = True # Always overwrite the file + + backend = info.get("backend", "hdf5") + configuration = extract_backend_configuration(info) + def custom_encoder(obj): if isinstance(obj, np.ndarray): return obj.tolist()