From d46adae26d9c988e703cb43ee5e9700ac0105819 Mon Sep 17 00:00:00 2001 From: ehennestad Date: Mon, 25 Nov 2024 14:25:49 +0100 Subject: [PATCH 1/6] Add MotionCorrection, CorrectedImageStack and DeltaFOverF to ophys tutorial (#629) * Add MotionCorrection, CorrectedImageStack and DeltaFOverF to ophys tutorial * Fix, add original of CorrectedImageStack as link --- +tests/+util/getPythonPath.m | 2 +- tutorials/html/ophys.html | 176 ++++++++++++++++++++++---------- tutorials/ophys.mlx | Bin 172455 -> 173820 bytes tutorials/private/mcode/ophys.m | 114 +++++++++++++++++---- 4 files changed, 218 insertions(+), 74 deletions(-) diff --git a/+tests/+util/getPythonPath.m b/+tests/+util/getPythonPath.m index b7b3c494..304cdd10 100644 --- a/+tests/+util/getPythonPath.m +++ b/+tests/+util/getPythonPath.m @@ -1,7 +1,7 @@ function pythonPath = getPythonPath() envPath = fullfile('+tests', 'env.mat'); - if isfile(envPath) + if isfile(fullfile(misc.getMatnwbDir, envPath)) Env = load(envPath, '-mat'); if isfield(Env, 'pythonPath') pythonPath = Env.pythonPath; diff --git a/tutorials/html/ophys.html b/tutorials/html/ophys.html index c9cab142..8290f7c9 100644 --- a/tutorials/html/ophys.html +++ b/tutorials/html/ophys.html @@ -39,11 +39,10 @@ .S12 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 18px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 17px; font-weight: 700; text-align: left; } .S13 { margin: 2px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: 400; text-align: center; } .S14 { border-left: 1px solid rgb(217, 217, 217); border-right: 1px solid rgb(217, 217, 217); border-top: 0px none rgb(33, 33, 33); border-bottom: 1px solid rgb(217, 217, 217); border-radius: 0px 0px 4px 4px; padding: 0px 45px 4px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; } -.S15 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 18px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 17px; font-weight: 700; text-align: left; } -.S16 { margin: 10px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: 400; text-align: left; } -.S17 { border-left: 1px solid rgb(217, 217, 217); border-right: 1px solid rgb(217, 217, 217); border-top: 1px solid rgb(217, 217, 217); border-bottom: 0px none rgb(33, 33, 33); border-radius: 0px; padding: 6px 45px 0px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; } -.S18 { border-left: 1px solid rgb(217, 217, 217); border-right: 1px solid rgb(217, 217, 217); border-top: 1px solid rgb(217, 217, 217); border-bottom: 1px solid rgb(217, 217, 217); border-radius: 4px; padding: 6px 45px 4px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; } -.S19 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 20px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 20px; font-weight: 700; text-align: left; } +.S15 { margin: 10px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: 400; text-align: left; } +.S16 { border-left: 1px solid rgb(217, 217, 217); border-right: 1px solid rgb(217, 217, 217); border-top: 1px solid rgb(217, 217, 217); border-bottom: 1px solid rgb(217, 217, 217); border-radius: 4px; padding: 6px 45px 4px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; } +.S17 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 18px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 17px; font-weight: 700; text-align: left; } +.S18 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 20px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 20px; font-weight: 700; text-align: left; } .variableValue { width: 100% !important; } .embeddedOutputsMatrixElement,.eoOutputWrapper .matrixElement { min-height: 18px; box-sizing: border-box;} .embeddedOutputsMatrixElement .matrixElement,.eoOutputWrapper .matrixElement,.rtcDataTipElement .matrixElement { position: relative;} @@ -70,25 +69,27 @@ .variableNameElement { margin-bottom: 3px; display: inline-block;} /* * Ellipses as base64 for HTML export. */.matrixElement .horizontalEllipsis,.rtcDataTipElement .matrixElement .horizontalEllipsis { display: inline-block; margin-top: 3px; /* base64 encoded version of images-liveeditor/HEllipsis.png */ width: 30px; height: 12px; background-repeat: no-repeat; background-image: url("");} .matrixElement .verticalEllipsis,.textElement .verticalEllipsis,.rtcDataTipElement .matrixElement .verticalEllipsis,.rtcDataTipElement .textElement .verticalEllipsis { margin-left: 35px; /* base64 encoded version of images-liveeditor/VEllipsis.png */ width: 12px; height: 30px; background-repeat: no-repeat; background-image: url("");} -.S20 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 28.8px; min-height: 0px; white-space: pre-wrap; color: rgb(192, 76, 11); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 24px; font-weight: 400; text-align: left; }

MatNWB Optical Physiology Tutorial

Introduction

In this tutorial, we will create fake data for a hypothetical optical physiology experiment with a freely moving animal. The types of data we will convert are:
It is recommended to first work through the Introduction to MatNWB tutorial, which demonstrates installing MatNWB and creating an NWB file with subject information, animal position, and trials, as well as writing and reading NWB files in MATLAB.

Set up the NWB file

An NWB file represents a single session of an experiment. Each file must have a session_description, identifier, and session start time. Create a new NWBFile object with those and additional metadata. For all MatNWB functions, we use the Matlab method of entering keyword argument pairs, where arguments are entered as name followed by value.
nwb = NwbFile( ...
'session_description', 'mouse in open exploration',...
'identifier', 'Mouse5_Day3', ...
'session_start_time', datetime(2018, 4, 25, 2, 30, 3, 'TimeZone', 'local'), ...
'timestamps_reference_time', datetime(2018, 4, 25, 3, 0, 45, 'TimeZone', 'local'), ...
'general_experimenter', 'LastName, FirstName', ... % optional
'general_session_id', 'session_1234', ... % optional
'general_institution', 'University of My Institution', ... % optional
'general_related_publications', {'DOI:10.1016/j.neuron.2016.12.011'}); % optional
nwb
nwb =
NwbFile with properties: - - nwb_version: '2.6.0' +.S19 { border-left: 1px solid rgb(217, 217, 217); border-right: 1px solid rgb(217, 217, 217); border-top: 1px solid rgb(217, 217, 217); border-bottom: 0px none rgb(33, 33, 33); border-radius: 0px; padding: 6px 45px 0px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; } +.S20 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 28.8px; min-height: 0px; white-space: pre-wrap; color: rgb(192, 76, 11); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 24px; font-weight: 400; text-align: left; }

MatNWB Optical Physiology Tutorial

Introduction

In this tutorial, we will create fake data for a hypothetical optical physiology experiment with a freely moving animal. The types of data we will convert are:
  • Acquired two-photon images
  • Image segmentation (ROIs)
  • Fluorescence and dF/F response
It is recommended to first work through the Introduction to MatNWB tutorial, which demonstrates installing MatNWB and creating an NWB file with subject information, animal position, and trials, as well as writing and reading NWB files in MATLAB.
Please note: The dimensions of timeseries data in MatNWB should be defined in the opposite order of how it is defined in the nwb-schemas. In NWB, time is always stored in the first dimension of the data, whereas in MatNWB data should be specified with time along the last dimension. This is explained in more detail here: MatNWB <-> HDF5 Dimension Mapping.

Set up the NWB file

An NWB file represents a single session of an experiment. Each file must have a session_description, identifier, and session start time. Create a new NWBFile object with those and additional metadata. For all MatNWB functions, we use the Matlab method of entering keyword argument pairs, where arguments are entered as name followed by value.
nwb = NwbFile( ...
'session_description', 'mouse in open exploration',...
'identifier', 'Mouse5_Day3', ...
'session_start_time', datetime(2018, 4, 25, 2, 30, 3, 'TimeZone', 'local'), ...
'timestamps_reference_time', datetime(2018, 4, 25, 3, 0, 45, 'TimeZone', 'local'), ...
'general_experimenter', 'LastName, FirstName', ... % optional
'general_session_id', 'session_1234', ... % optional
'general_institution', 'University of My Institution', ... % optional
'general_related_publications', {'DOI:10.1016/j.neuron.2016.12.011'}); % optional
nwb
nwb =
NwbFile with properties: + + nwb_version: '2.7.0' file_create_date: [] identifier: 'Mouse5_Day3' session_description: 'mouse in open exploration' @@ -137,19 +138,14 @@ stimulus_presentation: [0×1 types.untyped.Set] stimulus_templates: [0×1 types.untyped.Set] units: [] -

Optical Physiology

Optical physiology results are written in four steps:
  1. Create imaging plane
  2. Acquired two-photon images
  3. Image segmentation
  4. Fluorescence and dF/F responses

Imaging Plane

First, you must create an ImagingPlane object, which will hold information about the area and method used to collect the optical imaging data. This requires creation of a Device object for the microscope and an OpticalChannel object. Then you can create an ImagingPlane.
optical_channel = types.core.OpticalChannel( ...
'description', 'description', ...
'emission_lambda', 500.);
 
device = types.core.Device();
nwb.general_devices.set('Device', device);
 
imaging_plane_name = 'imaging_plane';
imaging_plane = types.core.ImagingPlane( ...
'optical_channel', optical_channel, ...
'description', 'a very interesting part of the brain', ...
'device', types.untyped.SoftLink(device), ...
'excitation_lambda', 600., ...
'imaging_rate', 5., ...
'indicator', 'GFP', ...
'location', 'my favorite brain location');
 
nwb.general_optophysiology.set(imaging_plane_name, imaging_plane);

Storing Two-Photon Data

You can create a TwoPhotonSeries class representing two photon imaging data. TwoPhotonSeries, like SpatialSeries, inherits from TimeSeries and is similar in behavior to OnePhotonSeries.
InternalTwoPhoton = types.core.TwoPhotonSeries( ...
'imaging_plane', types.untyped.SoftLink(imaging_plane), ...
'starting_time', 0.0, ...
'starting_time_rate', 3.0, ...
'data', ones(200, 100, 1000), ...
'data_unit', 'lumens');
 
nwb.acquisition.set('2pInternal', InternalTwoPhoton);

Storing One-Photon Data

Now that we have our ImagingPlane, we can create a OnePhotonSeries object to store raw one-photon imaging data.
% using internal data. this data will be stored inside the NWB file
InternalOnePhoton = types.core.OnePhotonSeries( ...
'data', ones(100, 100, 1000), ...
'imaging_plane', types.untyped.SoftLink(imaging_plane), ...
'starting_time', 0., ...
'starting_time_rate', 1.0, ...
'data_unit', 'normalized amplitude' ...
);
nwb.acquisition.set('1pInternal', InternalOnePhoton);

Plane Segmentation

Image segmentation stores the detected regions of interest in the TwoPhotonSeries data. ImageSegmentation allows you to have more than one segmentation by creating more PlaneSegmentation objects.

Regions of interest (ROIs)

ROIs can be added to a PlaneSegmentation either as an image_mask or as a pixel_mask. An image mask is an array that is the same size as a single frame of the TwoPhotonSeries, and indicates where a single region of interest is. This image mask may be boolean or continuous between 0 and 1. A pixel_mask, on the other hand, is a list of indices (i.e coordinates) and weights for the ROI. The pixel_mask is represented as a compound data type using a ragged array and below is an example demonstrating how to create either an image_mask or a pixel_mask. Changing the dropdown selection will update the PlaneSegmentation object accordingly.
selection = "Create Image Mask"; % "Create Image Mask" or "Create Pixel Mask"
 
% generate fake image_mask data
imaging_shape = [100, 100];
x = imaging_shape(1);
y = imaging_shape(2);
 
n_rois = 20;
image_mask = zeros(y, x, n_rois);
center = randi(90,2,n_rois);
for i = 1:n_rois
image_mask(center(1,i):center(1,i)+10, center(2,i):center(2,i)+10, i) = 1;
end
 
if selection == "Create Pixel Mask"
ind = find(image_mask);
[y_ind, x_ind, roi_ind] = ind2sub(size(image_mask), ind);
 
pixel_mask_struct = struct();
pixel_mask_struct.x = uint32(x_ind); % Add x coordinates to struct field x
pixel_mask_struct.y = uint32(y_ind); % Add y coordinates to struct field y
pixel_mask_struct.weight = single(ones(size(x_ind)));
% Create pixel mask vector data
pixel_mask = types.hdmf_common.VectorData(...
'data', struct2table(pixel_mask_struct), ...
'description', 'pixel masks');
 
% When creating a pixel mask, it is also necessary to specify a
% pixel_mask_index vector. See the documentation for ragged arrays linked
% above to learn more.
num_pixels_per_roi = zeros(n_rois, 1); % Column vector
for i_roi = 1:n_rois
num_pixels_per_roi(i_roi) = sum(roi_ind == i_roi);
end
 
pixel_mask_index = uint16(cumsum(num_pixels_per_roi)); % Note: Use an integer
% type that can accommodate the maximum value of the cumulative sum
 
% Create pixel_mask_index vector
pixel_mask_index = types.hdmf_common.VectorIndex(...
'description', 'Index into pixel_mask VectorData', ...
'data', pixel_mask_index, ...
'target', types.untyped.ObjectView(pixel_mask) );
 
plane_segmentation = types.core.PlaneSegmentation( ...
'colnames', {'pixel_mask'}, ...
'description', 'roi pixel position (x,y) and pixel weight', ...
'imaging_plane', types.untyped.SoftLink(imaging_plane), ...
'pixel_mask_index', pixel_mask_index, ...
'pixel_mask', pixel_mask ...
);
 
else % selection == "Create Image Mask"
plane_segmentation = types.core.PlaneSegmentation( ...
'colnames', {'image_mask'}, ...
'description', 'output from segmenting my favorite imaging plane', ...
'imaging_plane', types.untyped.SoftLink(imaging_plane), ...
'image_mask', types.hdmf_common.VectorData(...
'data', image_mask, ...
'description', 'image masks') ...
);
end

Adding ROIs to NWB file

Now create an ImageSegmentation object and put the plane_segmentation object inside of it, naming it PlaneSegmentation.
img_seg = types.core.ImageSegmentation();
img_seg.planesegmentation.set('PlaneSegmentation', plane_segmentation);
Now create a ProcessingModule called "ophys" and put our img_seg object in it, calling it "ImageSegmentation", and add the ProcessingModule to nwb.
ophys_module = types.core.ProcessingModule( ...
'description', 'contains optical physiology data')
ophys_module =
ProcessingModule with properties: - - description: 'contains optical physiology data' - dynamictable: [0×1 types.untyped.Set] - nwbdatainterface: [0×1 types.untyped.Set] -
ophys_module.nwbdatainterface.set('ImageSegmentation', img_seg);
nwb.processing.set('ophys', ophys_module);

Storing fluorescence of ROIs over time

Now that ROIs are stored, you can store fluorescence dF/F data for these regions of interest. This type of data is stored using the RoiResponseSeries class. You will not need to instantiate this class directly to create objects of this type, but it is worth noting that this is the class you will work with after you read data back in.
First, create a data interface to store this data in
roi_table_region = types.hdmf_common.DynamicTableRegion( ...
'table', types.untyped.ObjectView(plane_segmentation), ...
'description', 'all_rois', ...
'data', (0:n_rois-1)');
 
roi_response_series = types.core.RoiResponseSeries( ...
'rois', roi_table_region, ...
'data', NaN(n_rois, 100), ...
'data_unit', 'lumens', ...
'starting_time_rate', 3.0, ...
'starting_time', 0.0);
 
fluorescence = types.core.Fluorescence();
fluorescence.roiresponseseries.set('RoiResponseSeries', roi_response_series);
 
ophys_module.nwbdatainterface.set('Fluorescence', fluorescence);
Finally, the ophys ProcessingModule is added to the NwbFile.
nwb.processing.set('ophys', ophys_module);

Writing the NWB file

nwb_file_name = 'ophys_tutorial.nwb';
if isfile(nwb_file_name); delete(nwb_file_name); end
nwbExport(nwb, nwb_file_name);

Reading the NWB file

read_nwb = nwbRead(nwb_file_name, 'ignorecache');
Data arrays are read passively from the file. Calling TimeSeries.data does not read the data values, but presents an HDF5 object that can be indexed to read data.
read_nwb.processing.get('ophys').nwbdatainterface.get('Fluorescence')...
.roiresponseseries.get('RoiResponseSeries').data
ans =
DataStub with properties: +

Optical Physiology

Optical physiology results are written in four steps:
  1. Create imaging plane
  2. Acquired two-photon images
  3. Image segmentation
  4. Fluorescence and dF/F responses

Imaging Plane

First, you must create an ImagingPlane object, which will hold information about the area and method used to collect the optical imaging data. This requires creation of a Device object for the microscope and an OpticalChannel object. Then you can create an ImagingPlane.
optical_channel = types.core.OpticalChannel( ...
'description', 'description', ...
'emission_lambda', 500.);
 
device = types.core.Device();
nwb.general_devices.set('Device', device);
 
imaging_plane_name = 'imaging_plane';
imaging_plane = types.core.ImagingPlane( ...
'optical_channel', optical_channel, ...
'description', 'a very interesting part of the brain', ...
'device', types.untyped.SoftLink(device), ...
'excitation_lambda', 600., ...
'imaging_rate', 5., ...
'indicator', 'GFP', ...
'location', 'my favorite brain location');
 
nwb.general_optophysiology.set(imaging_plane_name, imaging_plane);

Storing Two-Photon Data

You can create a TwoPhotonSeries class representing two photon imaging data. TwoPhotonSeries, like SpatialSeries, inherits from TimeSeries and is similar in behavior to OnePhotonSeries.
InternalTwoPhoton = types.core.TwoPhotonSeries( ...
'imaging_plane', types.untyped.SoftLink(imaging_plane), ...
'starting_time', 0.0, ...
'starting_time_rate', 3.0, ...
'data', ones(200, 100, 1000), ...
'data_unit', 'lumens');
 
nwb.acquisition.set('2pInternal', InternalTwoPhoton);

Storing One-Photon Data

Now that we have our ImagingPlane, we can create a OnePhotonSeries object to store raw one-photon imaging data.
% using internal data. this data will be stored inside the NWB file
InternalOnePhoton = types.core.OnePhotonSeries( ...
'data', ones(100, 100, 1000), ...
'imaging_plane', types.untyped.SoftLink(imaging_plane), ...
'starting_time', 0., ...
'starting_time_rate', 1.0, ...
'data_unit', 'normalized amplitude' ...
);
nwb.acquisition.set('1pInternal', InternalOnePhoton);

Motion Correction (optional)

You can also store the result of motion correction using a MotionCorrection object, a container type that can hold one or more CorrectedImageStack objects.
% Create the corrected ImageSeries
corrected = types.core.ImageSeries( ...
'description', 'A motion corrected image stack', ...
'data', ones(100, 100, 1000), ... % 3D data array
'data_unit', 'n/a', ...
'format', 'raw', ...
'starting_time', 0.0, ...
'starting_time_rate', 1.0 ...
);
 
% Create the xy_translation TimeSeries
xy_translation = types.core.TimeSeries( ...
'description', 'x,y translation in pixels', ...
'data', ones(2, 1000), ... % 2D data array
'data_unit', 'pixels', ...
'starting_time', 0.0, ...
'starting_time_rate', 1.0 ...
);
 
% Create the CorrectedImageStack
corrected_image_stack = types.core.CorrectedImageStack( ...
'corrected', corrected, ...
'original', types.untyped.SoftLink(InternalOnePhoton), ... % Ensure `InternalOnePhoton` exists
'xy_translation', xy_translation ...
);
 
% Create the MotionCorrection object
motion_correction = types.core.MotionCorrection();
motion_correction.correctedimagestack.set('CorrectedImageStack', corrected_image_stack);
The motion corrected data is considered processed data and will be added to the processing field of the nwb object using a ProcessingModule called "ophys". First, create the ProcessingModule object and then add the motion_correction object to it, naming it "MotionCorrection".
ophys_module = types.core.ProcessingModule( ...
'description', 'Contains optical physiology data');
ophys_module.nwbdatainterface.set('MotionCorrection', motion_correction);
Finally, add the "ophys" ProcessingModule to the nwb (Note that we can continue adding objects to the "ophys" ProcessingModule without needing to explicitly update the nwb):
nwb.processing.set('ophys', ophys_module);

Plane Segmentation

Image segmentation stores the detected regions of interest in the TwoPhotonSeries data. ImageSegmentation allows you to have more than one segmentation by creating more PlaneSegmentation objects.

Regions of interest (ROIs)

ROIs can be added to a PlaneSegmentation either as an image_mask or as a pixel_mask. An image mask is an array that is the same size as a single frame of the TwoPhotonSeries, and indicates where a single region of interest is. This image mask may be boolean or continuous between 0 and 1. A pixel_mask, on the other hand, is a list of indices (i.e coordinates) and weights for the ROI. The pixel_mask is represented as a compound data type using a ragged array and below is an example demonstrating how to create either an image_mask or a pixel_mask. Changing the dropdown selection will update the PlaneSegmentation object accordingly.
selection = "Create Image Mask"; % "Create Image Mask" or "Create Pixel Mask"
 
% generate fake image_mask data
imaging_shape = [100, 100];
x = imaging_shape(1);
y = imaging_shape(2);
 
n_rois = 20;
image_mask = zeros(y, x, n_rois);
center = randi(90,2,n_rois);
for i = 1:n_rois
image_mask(center(1,i):center(1,i)+10, center(2,i):center(2,i)+10, i) = 1;
end
 
if selection == "Create Pixel Mask"
ind = find(image_mask);
[y_ind, x_ind, roi_ind] = ind2sub(size(image_mask), ind);
 
pixel_mask_struct = struct();
pixel_mask_struct.x = uint32(x_ind); % Add x coordinates to struct field x
pixel_mask_struct.y = uint32(y_ind); % Add y coordinates to struct field y
pixel_mask_struct.weight = single(ones(size(x_ind)));
% Create pixel mask vector data
pixel_mask = types.hdmf_common.VectorData(...
'data', struct2table(pixel_mask_struct), ...
'description', 'pixel masks');
 
% When creating a pixel mask, it is also necessary to specify a
% pixel_mask_index vector. See the documentation for ragged arrays linked
% above to learn more.
num_pixels_per_roi = zeros(n_rois, 1); % Column vector
for i_roi = 1:n_rois
num_pixels_per_roi(i_roi) = sum(roi_ind == i_roi);
end
 
pixel_mask_index = uint16(cumsum(num_pixels_per_roi)); % Note: Use an integer
% type that can accommodate the maximum value of the cumulative sum
 
% Create pixel_mask_index vector
pixel_mask_index = types.hdmf_common.VectorIndex(...
'description', 'Index into pixel_mask VectorData', ...
'data', pixel_mask_index, ...
'target', types.untyped.ObjectView(pixel_mask) );
 
plane_segmentation = types.core.PlaneSegmentation( ...
'colnames', {'pixel_mask'}, ...
'description', 'roi pixel position (x,y) and pixel weight', ...
'imaging_plane', types.untyped.SoftLink(imaging_plane), ...
'pixel_mask_index', pixel_mask_index, ...
'pixel_mask', pixel_mask ...
);
 
else % selection == "Create Image Mask"
plane_segmentation = types.core.PlaneSegmentation( ...
'colnames', {'image_mask'}, ...
'description', 'output from segmenting my favorite imaging plane', ...
'imaging_plane', types.untyped.SoftLink(imaging_plane), ...
'image_mask', types.hdmf_common.VectorData(...
'data', image_mask, ...
'description', 'image masks') ...
);
end

Adding ROIs to NWB file

Now create an ImageSegmentation object and put the plane_segmentation object inside of it, naming it "PlaneSegmentation".
img_seg = types.core.ImageSegmentation();
img_seg.planesegmentation.set('PlaneSegmentation', plane_segmentation);
Add the img_seg object to the "ophys" ProcessingModule we created before, naming it "ImageSegmentation".
ophys_module.nwbdatainterface.set('ImageSegmentation', img_seg);

Storing fluorescence of ROIs over time

Now that ROIs are stored, you can store fluorescence data for these regions of interest. This type of data is stored using the RoiResponseSeries class.
To create a RoiResponseSeries object, we will need to reference a set of rows from the PlaneSegmentation table to indicate which ROIs correspond to which rows of your recorded data matrix. This is done using a DynamicTableRegion, which is a type of link that allows you to reference specific rows of a DynamicTable, such as a PlaneSegmentation table by row indices.
First, we create a DynamicTableRegion that references the ROIs of the PlaneSegmentation table.
roi_table_region = types.hdmf_common.DynamicTableRegion( ...
'table', types.untyped.ObjectView(plane_segmentation), ...
'description', 'all_rois', ...
'data', (0:n_rois-1)');
Then we create a RoiResponseSeries object to store fluorescence data for those ROIs.
roi_response_series = types.core.RoiResponseSeries( ...
'rois', roi_table_region, ...
'data', NaN(n_rois, 100), ... % [nRoi, nT]
'data_unit', 'lumens', ...
'starting_time_rate', 3.0, ...
'starting_time', 0.0);
To help data analysis and visualization tools know that this RoiResponseSeries object represents fluorescence data, we will store the RoiResponseSeries object inside of a Fluorescence object. Then we add the Fluorescence object into the same ProcessingModule named "ophys" that we created earlier.
fluorescence = types.core.Fluorescence();
fluorescence.roiresponseseries.set('RoiResponseSeries', roi_response_series);
 
ophys_module.nwbdatainterface.set('Fluorescence', fluorescence);
Tip: If you want to store dF/F data instead of fluorescence data, then store the RoiResponseSeries object in a DfOverF object, which works the same way as the Fluorescence class.

Writing the NWB file

nwb_file_name = 'ophys_tutorial.nwb';
if isfile(nwb_file_name); delete(nwb_file_name); end
nwbExport(nwb, nwb_file_name);
Warning: The property "grid_spacing_unit" of type "types.core.ImagingPlane" was not exported to file location "/general/optophysiology/imaging_plane" because it depends on the property "grid_spacing" which is unset.
Warning: The property "origin_coords_unit" of type "types.core.ImagingPlane" was not exported to file location "/general/optophysiology/imaging_plane" because it depends on the property "origin_coords" which is unset.

Reading the NWB file

read_nwb = nwbRead(nwb_file_name, 'ignorecache');
Data arrays are read passively from the file. Calling TimeSeries.data does not read the data values, but presents an HDF5 object that can be indexed to read data.
read_nwb.processing.get('ophys').nwbdatainterface.get('Fluorescence')...
.roiresponseseries.get('RoiResponseSeries').data
ans =
DataStub with properties: filename: 'ophys_tutorial.nwb' path: '/processing/ophys/Fluorescence/RoiResponseSeries/data' dims: [20 100] ndims: 2 dataType: 'double' -
This allows you to conveniently work with datasets that are too large to fit in RAM all at once. Access the data in the matrix using the load method.
load with no input arguments reads the entire dataset:
read_nwb.processing.get('ophys').nwbdatainterface.get('Fluorescence'). ...
roiresponseseries.get('RoiResponseSeries').data.load
ans = 20×100
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN +
This allows you to conveniently work with datasets that are too large to fit in RAM all at once. Access the data in the matrix using the load method.
load with no input arguments reads the entire dataset:
read_nwb.processing.get('ophys').nwbdatainterface.get('Fluorescence'). ...
roiresponseseries.get('RoiResponseSeries').data.load
ans = 20×100
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN @@ -159,12 +155,12 @@ NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN -
If all you need is a section of the data, you can read only that section by indexing the DataStub object like a normal array in MATLAB. This will just read the selected region from disk into RAM. This technique is particularly useful if you are dealing with a large dataset that is too big to fit entirely into your available RAM.
read_nwb.processing.get('ophys'). ...
nwbdatainterface.get('Fluorescence'). ...
roiresponseseries.get('RoiResponseSeries'). ...
data(1:5, 1:10)
ans = 5×10
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN +
If all you need is a section of the data, you can read only that section by indexing the DataStub object like a normal array in MATLAB. This will just read the selected region from disk into RAM. This technique is particularly useful if you are dealing with a large dataset that is too big to fit entirely into your available RAM.
read_nwb.processing.get('ophys'). ...
nwbdatainterface.get('Fluorescence'). ...
roiresponseseries.get('RoiResponseSeries'). ...
data(1:5, 1:10)
ans = 5×10
NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN -
% read back the image/pixel masks and display the first roi
plane_segmentation = read_nwb.processing.get('ophys'). ...
nwbdatainterface.get('ImageSegmentation'). ...
planesegmentation.get('PlaneSegmentation');
 
if ~isempty(plane_segmentation.image_mask)
roi_mask = plane_segmentation.image_mask.data(:,:,1);
elseif ~isempty(plane_segmentation.pixel_mask)
row = plane_segmentation.getRow(1, 'columns', {'pixel_mask'});
pixel_mask = row.pixel_mask{1};
roi_mask = zeros(imaging_shape);
ind = sub2ind(imaging_shape, pixel_mask.y, pixel_mask.x);
roi_mask(ind) = pixel_mask.weight;
end
imshow(roi_mask)

Learn more!

See the API documentation to learn what data types are available.

Other MatNWB tutorials

Python tutorials

See our tutorials for more details about your data type:
Check out other tutorials that teach advanced NWB topics:

+
% read back the image/pixel masks and display the first roi
plane_segmentation = read_nwb.processing.get('ophys'). ...
nwbdatainterface.get('ImageSegmentation'). ...
planesegmentation.get('PlaneSegmentation');
 
if ~isempty(plane_segmentation.image_mask)
roi_mask = plane_segmentation.image_mask.data(:,:,1);
elseif ~isempty(plane_segmentation.pixel_mask)
row = plane_segmentation.getRow(1, 'columns', {'pixel_mask'});
pixel_mask = row.pixel_mask{1};
roi_mask = zeros(imaging_shape);
ind = sub2ind(imaging_shape, pixel_mask.y, pixel_mask.x);
roi_mask(ind) = pixel_mask.weight;
end
imshow(roi_mask)

Learn more!

See the API documentation to learn what data types are available.

Other MatNWB tutorials

Python tutorials

See our tutorials for more details about your data type:
Check out other tutorials that teach advanced NWB topics:


\ No newline at end of file diff --git a/tutorials/intro.mlx b/tutorials/intro.mlx index 9e74d858b99e212d82e5d8dfc04ae9d9b8ac8389..43b78de6185efd528b3e398650619a3ceb8a4694 100644 GIT binary patch delta 9650 zcmY*-g|DHu3o*Wzgo4v zhpv8DT|HTecr}1na{)xEw(`On#sUCP`~U!SKyvL*AZ9!Y2o)TsSDWeFWX!YGLM^9M zTVL<`^Cxvkz_$o0VHrQwhMzy3!TTRu?{R0g01T=#3mFGn-k1+I7`8D;JT<`RMb}TvnBOQ9du`^|Fm# zj>VBhdZ8(vczNk8N<|dQ_QLhN)Ud;vhUzSrN(vWrqK92M(uQ%%#5ySCWR?Zk?a~|l zH|y*7!^PpkOnzyOB`P#8=yrF8IaT;AEc-weVYVN=>_>ymI0K4&;rlzn{X#ocEU5WD z3s5alCA7mGF;7vaJU&Pz`%&jUX!IUlw8xVW3JKBnq!*st)ui-l820o^Bg7muU+T2V ziR^{V(ac|?d%skyn)QqnFEO+hci%B$+{_rT^vy+TP%dxXM z><9@jiMqR5ymY8ze&j(UG78DiY3;|DWYRPC^`3=?hrfI93G_wI&|a`?Vj{GeB{O5l z zy)1%->8Yt(pcf>@;5im9xg^!|O&04?d;b1-y(Gd`?dMeAo zZ13Re&FYQ4L1YZ-^~_WV@aee%jSE~#h&b^5SHs%Y@5-7GCZ8ByxXj_?SBXgfPRRFn zY#H!7Ynkmi8@+)Y;i2a{WQLh+3zs>5CION5c_ebM*Usobr>AcB3ZI)!%DBXhY&{;` z3o@r(m03Sbx!9w2BU)}+C}JFOa!;e?Mt3@yhrtS*_L>vV5V$;0w;cW3&UtNHIDA;C zAOCP(rTJ7M2Gl$Dau&^gIKkvsP9*y;A-v%CM=R2hZvVdT>M{YAJ8mK3XLjJgR(2C9IEu$76zW@VjHK5u_jfOGG7sUv?JN=$*v3a}iuhs(pkwo+_lVnu(Mw{`@DM)YPRrpm#BnA(* z{Cb{7l>4Lb1pz}`K}-l{ZZ_voXp)W))br7H7!`7|{Xx94>R$iQZzu4{8;Y?kYnqxd zRYFEH8ovsf?F8f=wreuwvXMd-Ao|p(-wQd4>V(+`rEw*EFUbdT`TRXVMc?+RmsEb@ zdyIP3nXgJFPxHM;Uzu32gC@N(T9p7BC>t>QVAauyX_GJ=a?8R-<8t4xa4C^JqJ;L+ zE`519hB=HEHf%8cmN_yz-ZLXJJ`-*xB~2~ErDCr09xfi3^YT@1Fb_U{SnRs3?Q2wv zmE3VauuLE&PR8FHl_%wbIQ}PsK(m*U3v-g)ya?OC9!M(6m9r4c9CNfSUSmFRE|*+z zVGDvNy_MMLu#lCQIwJvH0MyC}UrO^Zy~>0G?L;lrYrWr*> z2b0(W9wRZNl!r-lKklZ*sA7&knTZ`*Ou@KthJ#m;Oy7mqpe0sAE3n5b7r^=5It?S_ zmOwIqzZY%(1c1^55Abtg*5(821sv)ZPwdr9@J_D_iy3?N6|Gg(Tx1Cc`1}yGLVYqV zF|^e+m6gy!*3vc#_dkLny6oNe|F95Xw-@Ns$|3L-7&n(tUHKh&LD-WGzh2%;bb_#W z`UwdgMG!0q-hGs-lHVC8Ju+|{U`Bu?a?7LX`MW2Ihq8hU=+1pLlz{;!BGhDhmR((5 zOk0GID*jo>J+=Ba8l4*~NxdxMqT(h{UaTJA6PU9qua(QnL+eZ4ZL8Mz?kM@{rqhafPHnj=A zBz_GY#@X;6LRcJ0KL0524HhFCJ4iP8JC<8H0hfDHJXLx;1y-#5aY0kQ$pM_Xe<(CD zyqmNV%6!kBn}o9Z+*kgUFidDr6^b<_+IED(Q4SBhFQP`&wA*>pmx=EXohAsO(V5s( zzih+hQx42E8M7N@x~@!ak}%2R+2iGZG__=U%}gp^Wp|=bhbj<*iJ-^pU=|dpJJ=gr zm+XfG+Js%&+73LbiLO#1z9d33&ul7Y`tQRz`@F_Y&cd2djQz+9m`%sBljHrez{{FQn39QRiO)85m`UQn%#3-iGAciq@=C?;69=uDcAD`(W zd=4Spnw-o|J_2mR4EdyjNMz>OZ1)KsrYqM;+Pnrc%f9Gx zVl8@}%<~J#crg}FyL8s>#pF)WFGAILPKgtd}XW$ic3!c@~TwZ^0P%FSv?5o z6^Q?ohR<40mq*xUeoDe&=U(o<{q$t2P*8Uef@LG=*TJp@Cq-cJ#}evb=?)u-b9p}y z5xkpXg*YIjoUsad&dK*XQHyS3oCh7Y|E~5RCU(~gGnZcG>28mNp7RcM?leAZ@^Qw< z8PTh+dw)nwoIjyg@;4tghtF2m$TjoUaGK=s$sl(flce>eOyr~aarYQQRhuMKsXC3v z(xX*#e`kLICe`Deb>XH|7cwP^$xO)a%geow)V2FLJC$AuH--SP19z^j)paK=zkfv+ zWWo3xA73_u89x3>HYh+dO7lUKh(*zm%YaM7P$dX@)?rNcVf}$0i{MzS7~en3<#BF( z*A+3_hAoROYM{@@kBd+s$60{Q{A(HM-lPnHK!hX?TsJq5N46$4B=MU&{yG)#Eqfoo zjos*%iEmYG`by%#4L{+l=D=pgnVAZxLEHq_%$)qMlefphvM}|7aT3LBWheqNh=)3R zXjYUkGiyf*_sc$>v|BY%9y9tN*D$Dpk{^D+`4+Q4}!gx8rL6l#pQ z;3!5am+XS1IyZ7~m_V$NX z_6ysK>s6bz&B*nJ5^p7Qrdz1fu#*UutwPy0@O&2!iLfFLx~$*@SJ7Yo=gGk}H_^#* zx-0kV0o{w;YKBk2Rclmoo~;T|;lMm? zn@lGv2k$EIMLhyQWDr3oR@fZ<3-vMBymMIp4gyXn5(E_+Qigpi)8HM6mMJ=&?Kqtu zxLP2{d<0K>&6jo<`p{RnB=f@)BGTCiEO8vt8>39ZEp97|d_L`YuZ=B}5q!H{6Wkl* z3gM;>xJR7jWJj77!4rSaBx~;jaX+vn=Y}Dgo%x;g1z_*5T(4$|;(RITsobxn@!x{2 zzl~X=x-lXCcspR4iM?f=U54E$Rv{Q*7$`q#TF2XXXx`-!Mukn ztotrm6UJUT@JVls`tAE#H$#Yl^?9N%cI0cgGHDZ$ms}%PEJb6Pc??uI@viKdl7?B1 zJ`GC(%>zy#2fm$mtC4>$QZ|RmG7D`bPJ4C4^1+QU#$kwC>4EY#h5!*8(fE*EvNfT) z8@5zOzw&0lDH)(wxCO=tlGZml^2TvX`|33I<0aPf0qP4L_g1b9ehDma#qbnmHNoaB z8QD;aYD@?79Ijp#z&=8@!Pr=@vEk%B%gjN`2BYJa2GOUhE z{7|nWjV;X_rxc-Rr?fv0Y0Ucwo*Xss;*5Qn0IV-Yz`&|vknfW|A zmPsv8mIaHRXDFG3pN6VnUyg6Jxku^9Q@eK2K9XF_R6d3wV-5mbL1iV)>N#?biZD_4?Vm)!NYGUUdYY3rNs<{0qz0vMlLy>OHonaj=de<*-5_J}NUjhG}T* zEFDtM4fP4w&qrEgs_{W8{oBf-Xzdp%$e*eq>mh^?;iEJO$V^${j{~(-LI%tLN(vF} zBe`Wm(8O)b4?oepM1HOUUYwFvI1q2@p0y_}!6fXZJVfq}Mka#>5vr8ljxhAGEe&o~ z&{T89;!#oIu(nJf`yq^NZngs#(D|*q>5e>G;+H5`OyJl{s5S=>$&hBFphlTa^k>l} zMqN|d-*8;P6R?UV;Z)-0fi&5HkhZBwcdSz<`8PwOI4F>t$j~59D-}^oFvv=aa6cLI z5fE-AzbO>S8SWw#abr5>FaeWjGBx!po0m2IFhnZ5SLAW-st)w%g6)$PxwmoU$8Q7m zg4PdS9pA;mjn>+RO!;C_BGvk5Ul!}qgG---fRVtd*^HNp-`5OqCkVB?o+2Atz-M6X zn-R@|!$l2^&-Rzl9MugDpj+36Q$_)A4Sl(dIh4EqyJsDmRcV}>-w78IXUg1x{L+og zcVSqXs?CoA#3VwWb9d$=rmYY~uF|LE;I0Ywo0M%T_G876BIL^L$R9^kC{h)-SMY4| z_R=plL8aFpD)C7@UBeTqv#1(~$d>L{UA=&bAEzBoa<)s7_rCGMtV zQtm7ca;o|A5Ss6d)b zk&Nc|4{6-Qd`sj7Wd~4=PU+9P(7%9nswzlYNjc<}Hkt94DKV$_C;mWpy3Du4mwgpc z7d@RPsF9bD=xPq!$Y!wVb9s)3TXjln9+`~YR4;00T6;X1gpShl&D;y7%8bi3_Fj|1 zBo{tGRuIl|=S9oA1|Sm9$()Sg{9v}-ci&O)s`pxQ(jU&Ry_ObH4jzppsR#t`l`~%K z1{z%67AnG(eq!L*n}idxy3p?0^IA;Smi6bi)|PcHPZO1|ZT}@<=f%{gyd1nxw-UgW zNH5~#aj=nXHeC;g8GXVk?vgXAJ!eY3y8FoOT#j$*GaY@?zcc;__J~uHcc4($U8$N5 zY>&ad7M?9(8N7Hi-sVoJwMPJ}XQRP85K_7>FE)HZ6khD@gaZtF`O>g0?|n2e@AdAs zN5DGj+9=@108^}pzkD_Ai~nPWjKtF|+wC6|L@>zOJ8(f(?AJA0z%J-s6QZ|}qm5s7 zv^YGJA2Dh@18*gwRm)Nz-{#7=G*(%UDG!-+$t#Tt2nvObNdlJHO5 z%vXY2rC3g?C@XD*qTehqh>u$lKP3Ai{$dk-P@@Uf)7-JpvC)j;RXK%!KvLUw-9S%V z_V@QMOAHUUj@Q-4@!k`G7k%Cqff-`Emh$_V(CiY*Gtwp{v&UOUH=~gClgLf*j}Q%a zms&)$Da>z>d&z%iQ;OtfNhU>{3Ty;MzHI@LTp1ptk)NXJCDf;+;aLr%9C+D}9T>6Q zHgjY(mJUe2ED*zEBF9lJ_%Je-e0^hT|dp0GAGMgg3A@`)q0`p?YxX-G7=A@@VonK0qzIuRqA5R=|A>$ z+T1>t@XN&If~wROmM0Ot9#2TifKeNT?5+MOG>uLpHvD(O=4m~7uqi*GyHT_brG6l2 zXi-2Oj=UFdS74Df5GekA5BJ6KtAyOJovVb*ChA#Wc?v875&b zS%Y=#o@lr3z~~WQRo@NT6n30eQ+qvlrR>nSEbsE_lp-vtd2R2Ci~>ofez*WB-KGPw zmP}!g>+m@30Swcz9LZ6~{wm1??2(OqUwyzFQSbI5G`JotpJjrptjb*F-CCVPmlJsS zs$MH@U!_z)%Suk_=>6cl|0vS$MN&?X*J{zhbP~>tq@uL+lG5eO(3dL}=+KrvJas|Q zZ)&}6k}@2ib1>QRg;k+uoU~8^_q&iCeJaQD*fIY}11YvWrk>8f3i8WbQc=x_^u! zaTg8;0)!>FZi~Iw57ymkNy&~W!Z7}J<|07D-Dw04nFeBz*do>E3uOF^+WN-eH%%(6 z+ZGWnW*aFz#^%|X%D@nhnnN94tboIh#*-HY#^wN?>FuL%#0+uC_> zVwU$}g^2Ve!8?`iDwXkyVl{pTA_tdB6rNyo7OE1k$ZIMtsdbr+Ek>=gmWaqZjc)ef zBk`fP!|-WH@$3cXz^y`a!lMjE_s-KgGhv*9byn1>^NB8#vAge&8EGhHsFwzt#_RUj zH#OC4fVu8D7z{c;d&N+Z0W6mcwWy|V@zcWl%$V|Rnz7RZD6mHFM*KF|r|<%7oP>JBY- zm06)RZDB?6O8BTF7K(~+8k|1A{s~l&0fI09008VikN_y$>?b4;0DvVe000#L1^{df zoU9ED8SI>$emOhQyV+P@XzSUnbE1K-ic#KbI{O>3N$r3d#_&g)-;=bidg9kIk{J+y9}N5fBz2i^XX9*}soA;mKv%)CVe zXUM7q`es4ODc>Pw;6t^5~Y{xn~78LwD=coB5-hLa4{pV9Go@`JJCSrws3cc@4~XgIiNl z{7N-tWGz|@=kHDVnV{H&{8twke@p(2&b3dhKdkSiK9J%h(yKLor`Jlh+Mk?!Gs&p& zRlHsYaqF27#%cJo%%oWV?#6wV1SrJfkoLEPJ}3HOG1tUk?n^{R&?84U6k)kr z^EL&2#PHfy8o-I9(&8}lc37^@avd_}IjowPEM5A;zzh(#w_1wHQ;4_aE?6C&D|`{c0MC3!qz2YIa?!L~|ivSUFBrKLunP zx<};H9D7_0IjTioe`fdl2{7pnx%aYpG{L(O(yPZMNTp1#y!>fO*O9oNz@BnIa?@^j znv&Mbz~VhBOiR!M&#CJpbhFhJ-n=ZiHNJ1m&2U~=pTrh5hQj!YC5ao75wPB;Py>Y2 z`9eVHivr}GL$V=|Ae0Ls5bb@ z5m9M|4>YHkDR=r9vbD>(%Uj>7w(6-_ueD!fo#eFIc3h+eYuzDO5HeiCR5%B6rrIYN zCpSM0{EmC646# z0t=X+sA8ht3AT3`PsvJ>(z_zE-jhIOmp4k^dhtu6b#XYlb;5UMkB0PI+471BlBID4 z`wn}f_|%a`Fk|LhMI%H@;JcQ~23z{l;hS0r)Mi|Q&Hh{5;ih)k(i`_wJCYVZ6ST@m zhkWd~wG%{$NqBh@g#9|T+-^4~TB&ZZd0RfP4AJ7pG6urqA*44U*}`cZ_pk97hN{cr zItQ5^BvpMzektzu*|Am2NEF98rzOTQ)*}ZJ!gq=Z@K2`NW3>r&VZ*e|p7L0coJdEk zMR*pniPYM#L2e&oTm3K$;SUDgUxGt9)DXjl$}r(jMuuZy4t;mbi9OHMI;QiZvg#Q! zSmC~^Z6wsIoH8!S3 z;(47QSWa*;-GME*;99U$_9C>Es(mu;tzqc1qD|XZqj*jG1@Rl7wHtXl5yO0>`-QIZ72pC@WRR1IlH1+EfDJpW~w0E!MZPQ^}nIdU7^hf*79ZVOgRwH*GhvrSwUmxS{x%xUbPMN6c6ra)rnpxi2H7{v5Md2v zn9Gas6}X{%0&;>jX9Fvd-YWedj4j4W9Rp9jI~Rs!RjoE#RNZ<>x68pnAA~G~8aFaY z1uvWqumcGtcC@k99(rAD9d#33;kNt)xN_)25C+uTcDh*JauYJ3@cI35;EdLAv>nk{ zj)5O(-~&GbCT7wT3H#Zu7H+#|NW>JB;Tl6&^rnJai|l_h_!{O*3dPLNw`v($hvxd8 zm3C3Y70caN%WWxBCsT45@9k{))TjtOzReqZTPH5(ERpbdnjALdM#3gzcch*T1_wX! z-P>ve#ybv;KR0_~Ix&<-Z$f0+vJ+JWceS47db$nwJJ0^l4@HO)GY?IC##;o}FwOIMBAwk$d zAxiOVw)ZYs;|Q6}BzV?cr$J@1s}hjhI&j_{OL1@|u8n;cac6Dv&3Y6O8@4C4k5Mty z?*5;;tF%1TTV(aa}T?v z(^K@tq_i}S1eqWkFk?XdA0=XR0sgvTf>nD|0q^?H1iRNT_;W!;GS6?6X0Y=Wlqm>e zy)l?jVVH+KWK_%cI#TXY#gyAOn3$aZ8cvODiX%0qfR<$F1ST3Ze=icO{?PJ%CYUL~ z2lqO9AHtRy)ur~dk%5F5mFRaPy$;cK#KyiaC@<;s`EjXDLDUy!0MC`Da>*Mn@pDor zId0wsTSM{O#$*@nFIz$#TyuJ|6Z(B9D1#NzJNFsKZhYZ4VjT#k?-I{SsJ8718limP z#mNpuYt$0ZeUrECNgHu|{Df#+As5Fo!P?91`*N0A057)$WGwhQpN?UsQkOO3)Ie>F)quKodxqDg{4 zqDc}#k4q9t`H!Xk?bS3%0*otB43ku0_y2i`Cps~lwkI$x05+Zyn%fDndGCT zcdR^={X&=W<9-in=Ai}Y@;M19FNu5wS@SuaCO3X}GJwt*<_OvK@B$hy?c?>#SzIHc zqw>KDN9Dl?N$TAb!=_GxEd){SNcfb5%L*ie+IizE{v6l`7r(@bq(SC@FFVM(!hT<)=;2$D z9@%aybQ`}4R~t)f4P5E1URI<;D(3fMu`PJwh&&8|CWki+k2~;M%HWA2p8E*QCryUtJv-N6mz<6dF74E7D1@P7u$R89!78CMjM14dDUz~ zHta)ZxlF!G*wr}T>zGXoEsf3JBd1=p$;`$7<^)$sK8%X*uxrhW zjO4#4lVY=JvHZzpd(k#DX4CXP-_ppJCm+D{_^B)NVjj(}kyC&(1l8^Ocyb3Not7(j z?P(UxZ;~^>qaVF2;(4zD{0{R+c&?GL!84Xa!Fx|oiY4m{`1f|wjHUe#p>!6K-m6SL zIyveSUpjHmmO)zY7s1M-4Y_L`8>Zr~S`%}}*bCe{ajMIf0~f)gbZDsMttlA)-qk(d z8C%7w3<&^A8etV}@$kM+zfI4w3^>gZqgwg07x00z9P+(o+jA=vmw61_p2=T?4Xg z287{qHn((Do4K7slMg-52qSVfL=41bWGz85j|y9vo1gPiao@zumdS=$kwNX zL!VF>HC5wk`Lb55A(h*lsWJFaUO7e<4 z5C!r7x3ks)CSNN6ag)1LfEdXHsz6+zv-W>V6vStKuXTJ2!VXHKl?` zNWz#Rxg=;sJ2h4JH}>!CFS+gpK#{U!Nwy?s$1^oaL=cZgqtS1GfBoCHfzR$moX9XZ zDb<}?iHX1sJsI>)N?&g;-yD|y_U^C4V=r{mfd~|X`ayC$JSp{+ijJ$*#O;d#Pn<9k z0la_fhVg(ac#M11VHkT+9J(S&pu2%zZPaSb>VV6jgk5$*Z-oCw^w;N@{<%>jU$Eiv zJ@-#aN-AHJs`%m;*B1JstFWw^HR^=n-GIk;H;Ts!ss(%?PDMFnjQz5(N>f?Wpr#OV7feOQ11m4u%sx*~>d))Gshy$*~ zSs17>&IaxxNW&4*=#3i=BCcdd`cjPuaV6^etRG5OurK28sf@#5GQ|Fi5(|>Z`7xBnq^Oko2-(i;-SQ9goeA{ZSPxxVKKE8CfpU&P3j%0r{ zfBp1dW-av_^Q7KAfUmG9RSUvnaMb5R&>ux2_GNGfRe0d`!}z2m16oD@_ObmaR$1vQ8Hmp;>EP95xOP@*~^`#nOnWzF^QjyOh3o))=k5i~Y0a zWwS6w+WAGeid_Yo27&&cHOA?|*=c`muX&jt<5ms?yAiPz2|MSCKWl)4R^xKN);!7& z@Ci^9vs-AGAf@ETd)`==muF{fl-vkqxhriar!QSCTVR|>n z2)J)%#DV*K4ihldNz129+cl%>3)$@O-x_NZk zI&7X67U>Ico;Bg7b#Zxk-YPE87tQFNPu$JMMf2?F>@45;NAXRu8zrI#oG;h2=7ZHD zd#)OZP|d^!Nsvq6S{?4*%@MsY>=Z7oyPe>_)k3e;DH8DUvHFV&ikX5w$D)mB&Xp7e z{RG#ZE8~kD%@;TpaSMn%_3nRbB8b0(!X;Qo_~DQZrRvLoN;@$iRHy_s5~%?T$F-;w&jy z5$5R>@~5B9&Re&wpMLmt>rXwYV9+oS3{{^5bRQ_`ryU0roa#rBg4%xtyXHqI3sZFp z3L~hZpaZF3*m0od7WX`0fBkY#1oUq-^mcaMZvF7v&p%Hi#dVWeCZ{v%$V&2LHbrzV zKxp}{R!nHEfB@+NAS@OUXpX2$G0spkhq459bRY*1pFCjV8*mnh>b}D+xZBt525F)g zNI!wibp5s`5;v9+3Zs7tlOD8?T`A%Ui7DG@LU>frp~KFQ8nK5!3?E~?pnrY{T~bK2 z){LYRSb7<1dg*9-aSTbx&`?elT37#~P$8)P#SLRog~{V0IDIwn$J{libHc-Ah$tBz zyP#DM!XQi{?pg}Z^ik8%Lc%4~x)lNoq!7YhN2~xvlkny~8wh{JaXKu;Wgv1{D@r~N zJ1fG1?r0$_z(yayyd8EK#w^FeEGt5sbkl%rucX3;0iK^nEC)Mb28U(lIL;O-BHL3o)pmt#4?;u;$ON<&ac}xz%=OEx>3Hj5 zi)(DL-#+J~U3h%ZKkdgh?nihFv?K6m8STgl+pDm~KK!Y$-5UIX&QP8HUtr+au@Cg; zZ|~ima{?zhJ*Lxb>vC#nLBFHV#Of&BpRYq~GCv`~LZ58K(NdSiEQPD2!lQl%D6 zUjs>g3^hVhxgN2r!u!X1iiHnY@Y+$@@ul8j2{ie2`~1_@alPi$YxQRJ7l-y*-~ghU zPQBsO>hvuHz|`0XG#!>0;Ei@<+01B>H5 zQDI3WT(A`@3C3kUx_@S&3M1@eDkuq+2a4W+_sU7ITvXZ)itWUsGE zw)gtct{$*ZX(&C_AJ^GGno^MQe}?)i0%s`iWF$Pvb<6>ts#iCk+K0_r{miXr~z;`RPogg;`qFWOg9td_+KDDEXJURoxlQb6E zH+c1q&h|QGk*eGIM_hMCDlY zQlH1Ld{TwU$PWbI98K6Xil7>BgLO>_ckB0p-ZYT2%-`w7U}xm0 zm6cbd80%Q0_ExoTMu`%GcGzuy1@H7&xbywnw2el6u1(vhHDBDOZEW18 zMeUP9i-9XhS43x=_AYJGo%Vm-2@#6Q=x73J&oRaK$!{*!#v^J@Z7CK3nok&jgyLP; zI_m;z94lCsm1Y7~++)6(hL)AmUVT^Hz^Rpc0$YEM)GUN=n^g%7-PaH&$JgP z_(^b+O2BlF1p@;p1D=752w&w|h1F~H*Um((HgZrhLJGD8A{3~}#$SJ6)n~n>IY5=V zQ`>pFF54o{2p)>>G4<=voR!|zRX@dNvj*J*b+?s_G+X1^07Z_c`90F*7`n+`sE@@6 z@CnA)QdD~T1Q%g6LhC&Sn-53`Y9uI#L{P<$U!u%wl;|XS{+xRrFU%$dk~UXhf$z~Q zPmC8XHC|%c3uvrsJ34hzow7hd9_xD7>r4nhHZCJ9&Ak-E3WL2()@on4cMN}no=*yj4Lfg4I@ioa zFl0dsfB?PeOCXQf?T_*n0KQ?_n}sMhM|v6tW={B8e|K3kG^(>#(v zJh1{(69jWzu9)Gq5{CE#>@efDtFy&dNgnD%5tMHIqlA`dp0@ zce3EPC%auh5!ipu6Fc}5Y)&gn<%9KIBeq&W5bB+8jVJbS4<`CP_P+U*+j$|;DqbA7g5_lS0}yH~I8?_TbYwTrAIuU(82;=S_Dj z|Gr>LPWC$6qHLKi!8X7J_k@q>lUjlz{&*k<+@E4${<{4Ev=wIBV^?3$**d%6w^>%^ zPj&Qt?Bai4hfeKh8*JVBfweqsk32w9adEek@z$d)MSTh2*@D%(lp;5iiTOq#aS z)x7-LZb*Bz2hhfY3oK>6#}!*0*Jx5?_5}IDDII^nn6kPgb2q?dbl9!cyGiKjd9ldM zhK`lkv;op8C?06@{5K~63kY99{%5|sh13aLm1wmgX$af8I1s3AQV=$pqLbHm_XyDb?G6F+K8ro)2 z8UwGvjCXX6j>0qxRA53I>Ymz5V9wB}SaLe{HV_;%sFL=8CMB&#no0oX03%kW4)g)D zQe2`ZMjz62O6-H+ali%?FC}B3FvSERNMO|)15OZ057EPwy&eF=) zLL|Ru&P{1Wug!5%S#>IvRvqvqMJ^UeA9@c~3F!cg2~d9* z;{P*Nh?`&?0gHJllmkvs_mM8dSg+0JxVa)MOXP^&ysV}xV#xK)`=ZP`0 zy4O^-JmH;V+eX(!y;pZ)%1JIf9HUodWErv5x#zHWDxO-O^ht4emCm+&C9i!&au?}RfWzerJyA+wB0TDdseT?E#0Mk=>HvFm$-Zd?1zs^=qEMCsBUw$DdLzPE*Z zysvG-X8DsT*?@|7$d{AdxTg9sIxx^>5A41IJH_==I^{!$4QMA-nDC)LKnX<_@JLID z2Y~2kTtZjoV3Kqf&oleto8hy%12Z0tg;z477EHbxVGI*D^wWOPcQb$(_J?WxGBX(?epw3sHmK4Bz^* z0|;Qh#xY=hM!bK^I-cxZU9&D^@WUSNO#nFN3tS1h79YQn5f2UzW<;2C-GkzQ96(=V zS-9{Mp28@5u-N%+_8mGj>^N`>_HBfm3i?KSS_9?4B7O;n<>F8^r#>+rWqf9XR#+F> zik(M0sXO}Y5|Zjky)(&0^Ak@^5lZ)C5=u<0t85@%FDT0T@Jp)We676#(DIIeau z==$v(G}wDP(18~{;!}M0tH@x@?)=ZGsiq`vxzc9<7SeIYjW=L-H=E6a!=s~m?zV4R zl863dI3#~R^$=%KxSLdarGd{86?9VREA+K@d3?OUZ1aPyf`0(*Tzrebgek)>pni#8 zy=kiy9nsuJH`?}tROk(0xpBUC)Z9DFU8R(j6lg@BMR{t{=x{i6`d*jP#K}kIg~PxP zxtCO-7>{69^J!J@&oBQA$`%6Zt{J zxmSod?>J@%J%WB)obY2p>5u5|YNNl|H`{+Q4Js>{)V}Oz+!oNn@_npWqc{swq%1Th z0)7AXb?f#+OMl|4>!Z1;-7)Bl(jHY()*?*Xx)=UPr$AZV&0%Nen`e(~+hv%?lwIUJ za+#?Y!Y&I!HP$EzdVNd2z863DMXD9Sh^u&`(#{N+Y)TGgjp-nS3_S5oyI}}Wo$Y_N z2^K`iTeFsWi*Xc_jE8O~%*LZrT6o$DCg3aW$weub{(BHN_0aZ0_;WdqI>%Wt!<`G4vfqxn8#ea%OsXhK0a{v^}}7t}%U z*1W35$ruK(g5*Qw_Esu$0Tt7!rz3y!ogE@4>M% z^*+S%P`8xkQyRbE2k0^$l2CA-&I$JDVl-rVo=nh61u_NtG;Nh|`+@v>O4t2Fm_qKF zLq=&Lx~b2kMj}$WCpa-meG7vjdb1%k%CJM&4jtLEn*o!RV`RECE`6$q-*bQIQw$Tq z*cio?k1MQxT(3RB;$4ZC!+ySW?5VIN1$XK6FPhHqb>w0IUCn-w%9q=%Q z9b$b7?6ba_jWk0oAjUVm74LU5O$zzU(7Egdx}7;HOF?buV_DKz&zC4xXSHPWucCoc z6|RW-qZ!spI>9V1zF}s%@O^(uoH3a<*j$Ew*n8{-y5Ak%=SFPc-V2iF6Sz?C@EgE|OBok3{ef}$bkKc>5-@lB2ZisgteeKns>s#7 z5&f{^zWaYrO9KQH000080000X0Lsw4TB`s60675w01*HH0BvD(Y+;l78VrAJP(cd9 zFcADo$=#-c2M^m6LA-iUAF!IG6w)Rnn__-%Y6WZYwllLcvn({v-V`JG(Al9D+p-b` z4G*ikp{>R3dfMzoqk#H5X-)bZ*+mWtdSW~xW0poV5jop0j7+M>A)*1f=D}dHk!O$# z2;`Ch`;MMK49XMg1oDT2;7lyXO#WkV-a6~20#%hekP8fQwJX2(&Y1`AF%_H~)dHtk zNClqS?EWjs^#@*qO(%yhE#2F2DO?McLYuB{Z!P{FVOjHstoBumsPS2mO_PRwM;JoTgfmxDb1V(nX zGEIS>t2J3*ia(Frvn%FXY}>q{%QCsQRa9n3Amgfl%MQeIuHSB z6dn9)w{!9`y}hf}xXjXwk#s@WqRKKpn{&3@Zgj(ivfluzAInJe%{` z^g?puPM1ev14jbNPnVEk14#nYP?wNl0~?pDTmuc4 gWMKmkmlI+G8Unykmylrt8<$FA10M#zQUd@00I(Bh8UO$Q diff --git a/tutorials/private/mcode/intro.m b/tutorials/private/mcode/intro.m index 175b0880..417c24f8 100644 --- a/tutorials/private/mcode/intro.m +++ b/tutorials/private/mcode/intro.m @@ -125,9 +125,10 @@ % % Note: These diagrams follow a standard convention called "UML class diagram" % to express the object-oriented relationships between NWB classes. For our purposes, -% all you need to know is that an open triangle means "extends" and an open diamond -% means "is contained within." Learn more about class diagrams on . +% all you need to know is that an open triangle means "extends" (i.e., is a specialized +% subtype of), and an open diamond means "is contained within." Learn more about +% class diagrams on . % % is a subclass of object to the module. % create processing module -behavior_mod = types.core.ProcessingModule('description', 'contains behavioral data'); +behavior_module = types.core.ProcessingModule('description', 'contains behavioral data'); -% add the Position object (that holds the SpatialSeries object) to the -% module and name the Position object "Position" -behavior_mod.nwbdatainterface.set('Position', Position); +% add the Position object (that holds the SpatialSeries object) to the module +% and name the Position object "Position" +behavior_module.nwbdatainterface.set('Position', position); % add the processing module to the NWBFile object, and name the processing module "behavior" -nwb.processing.set('behavior', behavior_mod); +nwb.processing.set('behavior', behavior_module); % Trials % Trials are stored in a object which is a subclass of %% % See the to learn what data types are available. \ No newline at end of file +% documentation> to learn what data types are available. +% +% \ No newline at end of file From 63a7c4eac97b75695b6a49656e46435fb22d7d12 Mon Sep 17 00:00:00 2001 From: ehennestad Date: Mon, 25 Nov 2024 14:51:18 +0100 Subject: [PATCH 4/6] Add DecompositionSeries example to ecephys tutorial (#623) * Fix bug in table2nwb * Add DecompositionSeries to ecephys tutorial * Merge ecepys tutorial * Revert changes committed by mistake * Add band_mean and stdev to bands in DecompositionSeries * Properly incorporated changes from main * Suppress output of feature variable + minor fix of TutorialTest --- +tests/+unit/TutorialTest.m | 3 +- +util/table2nwb.m | 4 +- tutorials/ecephys.mlx | Bin 359611 -> 360288 bytes tutorials/html/ecephys.html | 1743 +++++++++++++++-------------- tutorials/private/mcode/ecephys.m | 60 +- 5 files changed, 947 insertions(+), 863 deletions(-) diff --git a/+tests/+unit/TutorialTest.m b/+tests/+unit/TutorialTest.m index 089a55b7..554c0cb2 100644 --- a/+tests/+unit/TutorialTest.m +++ b/+tests/+unit/TutorialTest.m @@ -120,7 +120,8 @@ function inspectTutorialFileWithNwbInspector(testCase) results = py.list(py.nwbinspector.inspect_nwbfile(nwbfile_path=nwbFilename)); results = testCase.convertNwbInspectorResultsToStruct(results); elseif testCase.NWBInspectorMode == "CLI" - [~, m] = system(sprintf('nwbinspector %s --levels importance', nwbFilename)); + [s, m] = system(sprintf('nwbinspector %s --levels importance', nwbFilename)); + testCase.assertEqual(s,0, 'Failed to run NWB Inspector using system command.') results = testCase.parseNWBInspectorTextOutput(m); end diff --git a/+util/table2nwb.m b/+util/table2nwb.m index b2513b94..98553cb3 100644 --- a/+util/table2nwb.m +++ b/+util/table2nwb.m @@ -28,8 +28,8 @@ for col = T if ~strcmp(col.Properties.VariableNames{1},'id') - - if ~isempty(col.Properties.VariableDescriptions{1}) + if ~isempty(col.Properties.VariableDescriptions) ... + && ~isempty(col.Properties.VariableDescriptions{1}) description = col.Properties.VariableDescriptions{1}; else description = 'no description provided'; diff --git a/tutorials/ecephys.mlx b/tutorials/ecephys.mlx index accdd482e6329ceb7bec72d2280164032d2ce92f..e8f63aab27defbffb32a3e556379b6c65506fe26 100644 GIT binary patch delta 21663 zcmV)7K*ztk`4!;)6|mt03hnJY&k!R30IAoL>jNf#NXo{i8csuafoJjbi{nbKJ5P9e97ifRVaX<2wEiNu{<$tNkE~Fth_5T>+k>gH1x#1 z6Gm>}zuIip8k@rLdx7ox{a2em-(Kzw@a@8p>$L1)@1*U;PUu^)a~Ak< z3g2O`41jTjWVF)@h9fI>yRPTP69V!k^?f!7+@2$Ta{fDULnnH*`BSUWJhBM*ksZr_ z9}Gj--)n&0kKJF5zrMFT&j}|A^0!tO_9nO!a;}kFiTQ2a=o5aCEg#ydER10U{4a-x4^H-n&gH?`!G809;?$gMyNeUN9k|h|M?c+f9bF!s?wg~ZI)LDg z_|G5_r%vDXS2XlNqkVDIIy^LozH#Cha8M*85f2>k_T8ztbUkN9GuS(8>>XS*GK-h{ zZ#&}3XF3P2TzdS)=Wu+`Y+N25>=n)dwjb$fg~RWj9vwG!k21r*hSt%FK;AfiyKJ2U z)XnjJa(YOLc8(Hn+&+9$ej^I)z~Ym*I6gRR9POQF>AByBNwmYznyeH6hsPJ~gTuBt_RoHQ^f(YKHih@cSRrK3OzCF-uW#Z583^;cgsjl1zhsPR} zbpgzD_Zar9bh;Q%Om|O#iJRM~Y5z^OtNL7Lf&yI$cSigjO+{_70G+=Vx?Mo{2%exG z4r&(ca{%NLlj=u*G;tROL*Zn!9A}DmJD&hOT%@fC6f|OF$mEgm?gGyX#>io)yB=&* zA12^LCk4Cv&{AK!QG9K|L_=#d;5GZnkXynpSGH={l#ADIOMnK=k$Y*5gk-G2jK8D_ zz7B9l?p(*S1#A&O8uzdYYVj87p?6AkcT&|oV%7aiS_W%>C^2ei3r=epgsWXan%eXe zlW_Cip%PSU_OoQFy@~~pEh6O*2n?MFAi3_`FoMMe;YT2{Fi83XBDMzv0SG_Dp_n}I z==6UCea49Dy-?6SkK)`vfnZp{tqLo4>j-MSVG^+7!J>L5+RpoYJiLgWgc+DT7| z*Ed#-oFFcLVtzBE*)~XHw>JRhGz2{am`>~+P$?6t=u8dgt95OsgIb}1iwdO4BU-=N?j0NhlXN?-4k8#qZ9zHshbACL;( zAqE8_f)MwhFxM3DVn-bth%4HJZ5k5WTHY88K@u(L7mT%fjxG(wS!a@~l~1)mY}j|3NHymYOnZpRj}&6gz=Kove*o^eo?4qqhMn+Se{9 znp5 zk;gxi_`}NpyB?qPqF0;13WI0_`qyTTCCCAPJFLo$5L=6x!}jCHa&6Q(KmiG74S^hU zX-kR_bvnoaiifL-GvxmWM&B8)j+Ei+`rC0AkuOKD2AeLsIKZAMES_c71uVk=`y<3Q zI$X6`0YvT^0CAA8v;2v$Y@37{$hRRdIA(%ZijTt1g#Cn-bF^)vk<-JCv_(ReKMS;f zN+doy6Ff}U&Be%aL(vO-^l6dIBpxjs#Ae+Hi5r7a`?K@*ZTmfJig+dDmQ+QpR@*=mxKcn1m2FWO1_{6q*gqa@lRyAlhhOSXQ`E*U z-ryJeopWol3x7`apCTr_1xP#iYZZ@wytl>PwrK6cf7@cW0slc~=!^WXz{j=~4^{Ze zmeD84=hzyKqE09eWt@k*hCZR^z5Tge_Z{B}Ew7VuAzs~U6q|2h%eH}`hVpk_r+5KC zVl>M3p_cC2*n|43+1lNk^C2p3E(k-p7eD(h#el>UWRY(sfTHI6hk6Pf58z>ccScFq zbD5YU_~iG>`Hxp8%|@-+Xdcvmtr1!KH2~Q`t=XzIn$5}|TQALC0ewDvC~_=(5z zLVfPlraQFy&SvH{x3=Oq)axBMZhsJOs^0e+$2?%B(b%=)fo`*Zcu>#=7%H6$v^}@) z>$Y7ha)8G>1s_;me2eRUQ%wt+kY0z%+`t`O*}7$TWh?J;W@+Z%OIKlTTwr6YJ)n4g zZju>P6G!ww6#{Fr$fA@Iv?ku6o7MBsC5O$>S1L9=tLu21U@Uscket7$qmjz95?53S zJ24sF3@ra+1lHo-%MJMR4F2>TFS>R@dIK+ZGcVvl`qf`W!6z?&H#So3!vrvVN*h`; z_OoU-sA|g$K!mu@=8F<;XdaPV(7$wiHq0sn*~%Y=ZI?4~fe#w0ZDk84X*>7G&()-Q zpy<}l=~;DFFSuV_utq^O4y}o4`3@~VxwCp0Q$i->br`_bV>Ai+9*!H0Mui%~z<}K~ zWwP-cqFUs{)r#tWlpjJ%JRWq_HZ)H(+-b-NfBhbzfYvEAh(;iv9Nls|@^ z@B_Vk`Y5~Zi_E*!V^9DDJ&f*8&|c7C<_p}h?92>Mvm07yS%5uL+0KuNFo35# z$;8K>cI_s(i!m;>Dq*BQl53=YOaNyLtd4`G6#+Xt$L$<{aAa=;|J06@dyvO>J?Ubs zuL1r46pXVloq|N-fAoW~p92G%_Y&o^kob{YU%$A{xSE^$tS%I>1K@wiL4Y_6Ge|43juug5MG^#JL-dJZq9N!;Lu`*fDI>S2Ljg^05w#Z_4Cy zl}R08u9ZN4{lruzDd@a}25El0d@l{6qSX!V9pMGRh=o2oUDl%SAWN=iS@Ppmoos&# zxYwf^otm!6`Gc_cMG{fy@Z$$f+2o8tLH>}dJ`Bbb?S^|PH8a=-Ak9(Wlm7M$cfKat zYuN%cBzhFekkDz46@&ahWQb@#5c+}d2n|sZg}6(9mXCp0;kK|;{FGJDN*^1j_H-yD zkI2Vl@o#HJqsVnPIvdp*P0RicpC<47*NUZFazZ z$?n7mdwg04C8vrk*GHo?;*0(epmjw`^P z8M7^Stgz^bL3%<<19U=y>Riu01K)^5qpwRjH8XC#tZ{`nU8bQ+2EXfl6L z@yn}vD6j{CXA7$bI3f!GaOzm#d7NZzC!r1lOQWopAW>F*^xm3#^nRpjMm^!tdutg- z@ALU>XpK9m8r+d;aKYJKiaBPyFVY%+V1bI4ZPXengfs#r8mmG~x9ebpUk@lre!660$AUSe z(MKpz`OpBhd<>55I*u>ELf#pnuTrHBlg5fj2lU@{;5D*6V2(1Mj=C6H6AoO)%)wyn zN7iuUfp#lSot{OR7L+Ndvym}>bW*1)L%)C`{Kd9xsq(?mQ3^8~X^LP^DXxMB9#a;e z8v3Eo?XTV^2KxajlH-l!p#$)TN#t@lqI)+=(Cw^BTm&GcF#3Y`o_t8p4O~jEG&1%S zR*_qgvlS2<{m8Y8G~N}02xjtlsN{Lg96(UwGoD0`Jgeud`DErP7L06vVvS3@*2QSw z1a`6vCttqDQj15KwS>6!iqoUWq)M^XmL^*x9}48O3f;QCS|($#l0E z+7UllpO=}jPZl^>0@lf%7UeBZvguE|>~9?AF&w7r46J)M2xqXE8Ap06E7zc=GgY5K zy(k5oSyfM#qT?^mC$)QjJl`kP+-)|W+$puY9;cLdH+m|kRC6((R8za8W;mpDUK{0o zXRSQ})&N^~=4rwbTv!_$0KqK0KwB&H*c5^qdypDOXGp9l+gYAb&CF+*lYU&89;gPq z0M|sN^6ubU_BFxud9pIUA-!vW-z)tHAeQOw+cC=;y)wGEv39M0=qILErhL8Q63!cQ zge5y~uI?~)A!Pq*D7_&W#|j3O-RUaGz#jUzBw8Mr`aYVt|N7_usI&g>t>MrT@X77K zi7j}6kr9~d#l|m6S3r}*i=U}Wh4fZ{q%{H{;IWq*t3cXy>U9bqFDRGi(U8b=x1i+` z1L3YeZu1Ge1Is^uv3McAm$fKTaz$utsJ}Wy&99_T-vP@yVtH2@GVAyYLywDYte37Ra37d4#&sT|ZV)>ji zNhMgMW{(v|EoNc`!40_;ex|mP(T1>UeAf9bx=uVsxA-1^@q(kAW;9E&dqAB7X}-uc$5O zTeu*ZY$Ej{!Fo|Stt-=CW*+$9n{Ks6-Adojpfw-;#MG@8yRxB#er1lbZ2bx}pJ0gT z?hzhrqc((pCtG97C#1bgLeiw9s!vF)Poj`YZMjxfow&{}FVlAKD2gsNw6iWQn0T*| zR!^sAG4O+-Ji!5Cq>{6!mXUit)y=Y}VthEyh2b!uHO4wOst*}yxlXMmv+>K);tD!l zM5wb@TJhCPG_dRUyu^0Wx&{{2=_aO|+cMm0Xa-z=53}}cx=^9Ego-nxU_85w;^TWC z09LQ8cRapzV*p_B2wRzAx-uf$NeM=xu#^lz==NQthV^0V6Q%}9KB4N=0=vPQx}kfo z;{8|RD@<8lY}S9@mf>@B9M9b885ueSC7qrNholgW(a5nvK**u%Sz%5501W9KlT8sP zJ~|VBEyj8d2aH+qa|M?>oy-@>>vmGN33-#IWpQx{Zdv{zt$6*6=+3Aju5xiGF36I3 z(r5>O;zi!A**6-jzxevwAf6%cPQ*J@)?_6lCET8?{ToO6;VRZ4P z2%qx#@A8t?C~2=`Kc+E8a^liagFXljqKmVY{4uQ@uO$FmjqiT&sG@O*EIU$_`m5@u zqq2wx=;T@56EuLUmDPuN3O>up{JN!17jAfZPv% zzipjt;47*dgf5idE98T!ycCtL{MkpJdF79n+;Hevm6^c0-h3ec3YI6~MWh!Y0Iy-B$F&v^ zDsxkt^M7RBA@1W9|5Z)bZj3K~HK)aY^EW(QzgVz+(8F6@!7S~Hs$Qwi^dHon{);=T z{IRv6XOzUQSEFgQfW1}aYT3J_9jWLl1*4Zt8)*c~`-Re*LNNMcgIW|hShumBo8uWv z-%>tT4oS`WTern-9*wenEB|Zya9h0J-EM75?<Tg1shv`&AUd; z!Sy?uY=w8w+&i{paVzMvGVaat=hlt7henc0Jk|r;`LD zP{!xD9GL@bi_D&s%OH57`YHN?QtdO-PfX8TnLA5M_~XpJzqwmimtdf-culhe)RWAn zPF;CgVhhclmh4|JZuZJoS6`!lF8s3(;^pz$FLhH+qv8B^D>V`=<^NvW(dm~{U4X0K za8Wg|^DK-g_}Vug?E)%yi5V6B8+0)gmG;s{26%AD)psMM8h-VV z{}r!{@R0AIZ{K$9A~)vZJ21B_!BPss$I}=-_oOhsi@b?+cKN8 zRTDpetwqT->Q)XuZj)MkM500;rj3FT2i>G4qi0sg`usG~WY|HK2bJt*HF~8#C#PsFw{QeJVWnd5Z)2+U59&C%&(Fd#+i&bK|`M=+B_3po`{-kfG z*IJK$V(L$s3+qd$PG%>6D^{K8@;I_dIe8@HsZtH?9pT26h?yRyV*(fX1g2gRr=>mz zZ2s$mXh7dCU*#x6#kqz%3JskTCp}iOkP?$7RVj6S+xg@u(X#%Cu&0qMq`}a=Vdm;1 zzPK+Q2ZF3l-=Qe2C(-kM0TC61=u(&s91{R(`%+NQx6fh5aDZ2T&S}r3a*saIlCN+} z7FjcW@Q6jrf>lcOx~ERLk*@qkCqY1Z-O#Z<8gU%Tnag+Rxpba(m-u``?xQsb@|@u z1Efc_-FjhvKpAwAD&@wSrBUWd++gaGsg9sN)y>scUmuDPeb7$|@h^GC`k}U=PwE*N73Q6YRzs-o zca3w{J$*onXRh3&CfKji(ReG}FfG1!d9MLN>V>#}mKiYFkvLRh-r4Nd^a$$6H~S(z z_7z5oM_L7%XsPV>yrBb2z0J{KGz^&EI9VScMD6E8+0x9a;s4X&K`uGFvZ>rgHRkQYP z^pk8pjl{Up2lQq)%hJjo$_u(|owX15FO9q)^~78U=Q8WM{b^PUB7_Hv z+@`=!*H5r^P-u;HZAyw#z<@k20Cq`)SHwbpSmTj$Dea!WMz_uSw1h7tn^|fJGpls6 zs8P!Z4&w^<{Hb!vX@!fm|7bd7t@;#y=BT=mc@tL^)ISSe1 z3C+;u&a{_LWMQNddugd1TR+Zb^JYHD=O2dMVyx0NP8;w}pSPQtyYnCV-7PaT{N+y7?)8rCpEdlUQ zdZ4(5H$8V`d2~ZApAl`9*kN;^CA(CAP@5!Yz$gsvU9>ka_iU0%<2$ti%3?uxWqM7> zNUz5{^LmQw%_N*TdT}`dWU9;ZGGqlY3e)kUOUOsr$YzyykY+}320~$R391c{hq5j&!7t=RxYL4vXzIh6 zbtQhUT%R@Ra_X}d|Jdapd(vwT^S)HTOuvj4t0aLp`c7Hh8Jj-6+KKFXj=i52L@!AY zy<|b8y5`d`b-+mR?PMWy`3kueSPDUH)U*Jb1?gfLCaUh82${LtTjeC$^;x?!Jr`pK zzvzJJ^MmvD#l?{k8={|>{2fGpQ$P$3IOh&mi^A==$QKdg@&?tmxJiaE;-n0pHwRoY zpUC{G*&xp=fRU2ac(VJh$cF21}QCrc93WW_)WCFdFgs8U&mFXQkWVUsGg+ED~v~OHP zUR|Qsg_+!WnA;rn60Yho6a$J>M01$K8aSudk~c4|d>`EM(JbxjD*>NS@}pH+S5eVA zI+o%y+#%!c4%-klgbefs%_3Zgo)KsL9W_n-My$wxbO5gE1T;%W6(CVT-4EDEGnz6VMG*?0pb zs*5yNotOgaOsJqq5(|CR7tkst%bK|zGLldw_s|XTmb!6{LL9RdBX#x$-i$d8!jEkH zVEYIo!}!X7c~n?~K!73JceqRsRa5_|{f4g7h9-gE%cnMe4v@USnjryrUOv{i93`I7PP#KFMe+lkJTC8-^d~?* zphbGj5~*@m`}TGFl**cdl`{7EZp<2&eWU3r*(r&Nb1BEx#4u4KM_yemg8*HoNoKFM z8-3(|>cPM)3OUdK6b}z`&%%jhFj?lqvqzSQT!(4go1}d%oy=eG^oTWt(uWt^Lz7;&$#=4*^NEt5gg^VvwymOdU@W^`l0c}UB-@3th;N}P%MDdIJ34Njo|-q_=qH&_l?AH;F6|WKa}O+#3<=*-_cj@W zoEfkE+hvqy10HKK0QL{tt%E(&08mfNJzc>cxXR= z8FEYb<;qqK6_M(<4=sFU3Ae%QYP3mCs{c5mEK@Nmb5!)z0m@}jS`JiK{(~2wJqm71 zQD=9L&-O1HMi{()ViL>s1VH33L@Z`MOIBo&o#GLOp3d|cBd5*NL5JpEi`rRFgqNcU z>M7HQyb)aLvb;AwL^9U}YeGkyrg`HbiD% zOu1~9eQ)_ausx{YbTD#z(bvX*WC{Jc8)LYvd+&6xKDILx4`llt-F}DKmqG|(^@+T* z1Hb#KNlU>NkX7dV&IN1Qv->_-;?np7k|}#>vCI1 zlIDLu1%p4vyRnj3m37z9n&|D0-tCBSyJOt5e{6>WB4G(*5@Z9QWv#-`(GS!wwpn#f zepw^|9Z(Y8ScStR4^G{(^77@S3a9_}%jLz<&-2xKakc#F*giAINAu;`)%jxi`m5vr z{Occ|=Hq{RaXP^B0%1 z<<0Ek^yKdI(~H@=tDDX6$NAOS&EmN7k7pwW~{N3rvt!Jm}>x;!^ zGhdAju2)yrSF1Y63-ipMo^*eop4@r&MCUy8`McF>_U>r&?t1>!@qeuTe$1=6nAdr| zIIWLg{5)GNX0I;h-)>e+kJFR(aBMyFw47beUo79gIz4H>oz_LqUmP9%%f;qjXGd>V z^B=!DzMO3?X0M*VnO|K0#zBV+SZ2yjw5UpRvoM*Yo9kHM{tfF2^n^8_r&y zU0qzv&qik0pMRaTlljk!v-!s@QTkx6o39pCZQNnb{pNGOn)0{$gv1^ZBGu6{uayiX0f>$$@8Df zMbk%{cSl!09)11p=ui6bo(o+pAH2{HH0`#4UpTv3o_{xy+PTmVb;Syk_mQmz_~1it z-+s25pIxo01>Q08hk9DgujiZl)BaGC_55!)RWVNgSPt@Ad>Ghl0>T-5AcKHDMpo7)b=8D@-HkJmf`2_=v^Ox5*uPzp6vyqkG zfBA=R{`B0MXV%zw@?X!E^PAPx@)=vw_{`EXW9^sw8ci8UO#kAX=O%wxa{eJqfX*%k zJF*{z(CX@D#kgQF8Xs=FwaLqd%PREzsJ&rz%YX8F^FXOV>zh~q#kSyKP*5AMUe8w# zW2vtB&x_SVr#<{zRP)Lx{d1ri^ug>&)22oormi%LJ-eBPatm&;j*fSXx^H4Cx za(PyHzFMfyhwqpzXPdJ(pVps47etNR)qg(I)Zd0HAPjtzS1Fx>$u3y;GllJqJweij6vOSPr#m^qR+6(UL&o}Jzuhu*KV{6#M7hn0L zd;dlE{GrbD8}|6;s~493@%Qjy54r(`($lG^+b~`Et=u@K(jkjo4uM}?0EZ&`>(%zx#iuvuYcg* zL*Bjj?*WZJZk#)<#=wiI|9k)C&GM(^)!XHlzt%tPeSPvxvy%U3F@HO}zkV}Y{$z*O z<*%pkssLl`WAskaJ3U74PI`Br&^z7gowiWMKSuAMOn8jmL7Dgoy}MhzyDgMSkI_3Q zlOLmZP^NrB@BUWr{yt^wr^xEg-hYKM_EThaXYZ9ViX=KiGZ@bG?C1G;vzy<2cWjQI z9AkL?{r&gHt>O2_&%ZxzGtsfXKYsH4@nZe;7!4m@`TqFV+Qlf}`fE?h;~$=UcWfVj zBpODd#~;ZJBe~Bx66r{Ek9z*`M;fUY9)F~fdhv6PxI@pu2I4)Uwn^8B8QTt~g@A-m7%AlFgb_OB=1wD#)de74O|-ty*pb3XrhzgI67 zmy6Ba32gOmAMR5=lB2rSJ$?V><_+`ifG!ok>p#M8&7rb1y7BM7e1BEj9ibuFzL|d( z!5ku(OS<;5C!SP%h?u&58)vz>I+g!0>RgadMy%}a)pI5`fGc?8w zpFTNuW_V?o8$Sr4eIzfr`oC=M8k0SA_5Z5sYWTED#PM_cWJ)6`hwrK3J~YPp)lC)h zZ9`Pac-#@1M1AZKw13wSgCyP^qwV{hL7wzOjPKch+Q_t@Jvn%|@<4-E;ugbJ(j!>G z%d_XdtJ(D>ukH6&%MG_Z`sMOsxqg0m#>Q^5xqg0fvOaq=znra~)xseD@W-na8%h3i z_4?#;w)*Mj`svx#(ptae~)d%RkO8E?&*fej4BG-_nmxwvPMxdiwu}p2D01NtIQ1(L&$2 z_3lU0_9Od~%m#Zt=EK0PF6=|Nt$yCs1U4bO1K!rxi=XEA6C8EydkKzvDIv23zYWCR z0^i<$XP#NdFn_>2^JFdmAmh?eP0~~Si$4qeBfC;xDYn$Vk|D=GOvt(ZSxZi&Z0|obYoKM%*5Dw@#%+OWxAf)%%XL* zLGh(F;GSy(mwoNpq&&Wy%@)!g_~znKl8Trl7C||Z4zx*mty^khDDoXW21{{ z?V_*adSkHhG>4r?v7DFs`}6HDvGg+@X#DQo8%iMl4*bWVq3e` zybSwbOj~UjW=*B_$-7ej@+?`6tZf8ua@);h+WKguu4!a-r7p#e3-hVHk{huC6T7X! z8J!@dP=6QZq8a*Z4Qy^CH^tGwD0S9}+D=nxYw#gAlBY&9GtjIIuUI=QI?}))jbDNf z!#)_VBP1FYX4~i`w^`>9>R-<1M%L2Uh9B0Mh2q*=f~Uq{HtJGrX?-%~TqB)ttTBv0 z6dPlPfrVY03-fawFHmC*-o-{9YF(Rw>kPG-*?%zXgKs?OOPgS!*oc*ec6pE$+jcrQ zayql<+g#i*voy+4YTTMq<4+%&jJX(w=54ETX@9xg269A=cSD<*D~%bL;`OuSn`lSh zB-rIFQ*LTOB+i)k!uN*cD`kG(X~<#R_lJh|LRmz#p9l|l6{*Cv=#n=Wro+avz7+s!;EftZIMZJvd9wT z+7v`EBMT4m5ZaV{+p(1Wz&1nIuI;;L9)E7ca@2iBO{$7-bFl-F%^;hsz)It+CP&7# z(aWG5gQ47QRccD0ghnNnoVG_H3}WASo`s||acU&z;pz`Fbj^#Uw*7-ba-qrJAV<8L zjZwU9>vN5)X%LH)+oCB9fQCG*3Bo6v7EihX#K_~0h?Bbt1~T0UZ5rkWgTn0PwGz%K00|91PBzh}61udgn) zJUYI80QJxx)h*n%tWSu~G8THo5+=iZ`J0z8)j{ted~+A#(<7HKHTPqvX}tULCzlEB zD#aNR@Z@V|Y2cY#buN_eeK3@$5P#kK!0&1?6o!z!_rXxpLGj)PLpg@M|G`j6VegMo zcC2HpU%36jzM)flS84X$?99GN3jTJ>yk|>yuO;o-(tq@r;a*F-XUll6W!$r6x@VB~ zZJF=2+;^SjqxZ9=fIp(?ff~?*%Cp|>q*H_ctQ4emk7438#`JQ%TwGtzH-GEfr(bV> z_TQdAdH%%y_oJ@{Rn0iP4BD(Zz}5}FW#_{9aW;8;7_2Gdi?R6eV^h7*_FD@swciT4 zG=3bjm(Fd-(xY+X$0Y_DKMr>MI2KdJkJ&{{@-U7sMxUhfWa2m?`@nIWg~8aSI-cz} zs{V8P%~_JML-gaq5@nJeJ%5cKJ0q*jyfRrB$;Xy`&++5n$FaT1Mp|bfYH}$E{Zf|J z)iEDhCqIr&5j1C~&d7X)EWvxw+zO@HrN`#@D4lyZPKemKANxrb>n<@$=V{zK&-;MR zWwqH@p}C9LlIr-489hV5TnT0 zAsFm8#j&-CLj4@QmHkfACXuz$Pm-~-l{N(n<43Y?Pr~PpsWG-TS=hm(JhmytB$|A4teHg#6tl7@7V?quDMaBEW`BHiDLSoKXvC7Gb@Za$ za*EjNAPU~|G{z=AThKcTL2Z$3lq+n!o0z`nNQ&d%wbz5c}QF%^eo5fVjjD;PsMKn0EbrJeGD2^b! z7HV*QXyP*z2R>$#A(K=imAq&r9z}LucPw~Ww+Uj0P1X$!qO2ncuX!IlL|?S1CE;`D zO9WYph=D6kmIz(W`qT(hiZ!b_1|f^f!eLHyxies7n}3A?jS+q7z0HtNp|l4pvVdkx zO>9`qNyI;RHO^kGuju6n0cKS$%7fMM_^c%Cn2~J^LF{L8;B)ImA2Em$X0k=5#<)N% zwh0ka+oAGYukx@R1?YjnnRINNtkeZnx&HC383@9#xWawEYxSUBV)6{l=*u3IOxJ0$P@<7C8+7<^1Yt$%(NZ4v+ia|FU9D{UMBz9yr1MSz4& zV#9KV2(V!j(RW4Rfpl)Xun>!Yn7AAPeyzv_168pJ0RWWswg^1@5eByq{UY2_iYP6L z0p3i6W=OK%yao`ph`Me0qH(%#c3cn>myLiSa)1@42=F#pP%=xKbgpKxIMK$WsDmK_ zn17$JC1}mE45cOdl-U7d09I6+z$^k!$}3p}@3BCr(vmKH5PixV4jDn4RDj+#!Br`MML_gySbs!S6%Qx{q!nQWav$WiF1t6OF6`cdGSm&^JSQtc~t$&O- z^n`V@@2>Dm1TiL&5OxFvGbEXL@vsCwNsL9EH3mBv8-7~}LIG|KHz~->*$&It3{YWS zg%wS30MQ5sFq(lIFRH#8O(5$4j3|7Ql;$yIaZSA-YsTUtLoG1YX zlQOmgtROFD+IbjAZY(0`5_|$6%zuz%BT5i)s+vkYSGXAf-Ud77NR)?jB1A0nfX+@7 z4kKd3IS|)k>mXZ_;Vi}o-I7JdEPN`qTRTu*=u{rd93}%l(u1HBVH~~aM)teFNKxEz z=RMF)Rs)3~Mv`GD!uO=8&@}?Qr>MK7dn8JLp#an^;$Q?X%0M$@gK(RVx_?`cPRel6 z1e%lxPDzE};ECfG?N`7nK^HsXvBnJB7j%~%1b1=(Uqb=OlHpRi}t8*3z7@H9OK``FKAAj-IYP=jm1n(db zv;#L0?O=rZ9SF=CC5hw?sEE)K)j6zg#Ans_4NE(AgA&EgW z30^asR$y|(JPC}%b_LZ%wqt&IEth9Vp@gOHa;U^Woa4nQtZt-eJ( zjTMmaS%Hahw!l3U3V&n=d|IHD9CR9k&Vrc(fC9eS0v>00j?iQT&IO{^5GU(kS)zj_ zut|2z!fvx037VS--%|uAdSq5u>kC;x{XiPK&7xO4Av$A`-5>+655YP%IFOKH!1%g% z7GNksctdC66a?U+ZN`h>ffM6&JK7S8gW?&pU!;UzFFATg# z<6-&PlnV0~!J0v3TYXRO)N2M=vNJGjNYfeMQ_4a$V+4{pjolUvr$?Z?q7ku-*ew?3 zH5wPditL06%|i#gMWK^OXv}6%S_+`x zF!_KKLMsCu9||k5cdbd)2#Serj0!2d?lmE`t7%b~cLSAsnQjABh)=35vHU+9CL>8SyFXchoq&#g36Cbk*TN+<Uo)2?I*i?bu@yohTbz+|Wy1wC zV+igc@}3UBzy{>PNEm||6<#x9ECnGLt3Dw6qlkEmO<)1l$du6#9Uwx~aDd=b3kNf6 zd?#eY)BwS);SJrY@^Yv0EFlXN)Hy~LEf#T5n15m-hz=ApFmDWyQ5yl37vZ_O*y%J- zETb9&xhSjtfJqX(_i*N!HNj_I)P+I$g2_;r#UhhcG`Ng#TY-_#xSZ8MVT5$D+7Z$g zU?s-i$Qc4@X>ySe6wX15bAS;o1YS)BFF`$afL{c^*uTSGJA{5LoYWldk8P4B?;!#O zM1N)86PlB3 z42wi*X-L~S^&VwmQDH@fFO<9>>#VtvVt*2FrJxrkBo>C`90AZp&C6Jn6%|ygC8NxQ z+MVj8jIAvM*hE=aE&v7v;Q)<=F{i@%!o)E+6Wbldh6POoI4~1a7m}_~F^@Ez69buc zs=U&xJYZ>u`k$aFaIMDRO_zW~)Qm0C(Bx3(mNdtmk_K;(Ux)CPLa;!RlI5|1@_&Me ztjh>48zh@FwPtJ=*ap3W(HMsag8`oz2VEW{1QIQ>8xfG5@fA|wS}Ub_ZUddBZjwd4 zkBa~Y8oOo|z_(9%M2B(3TwS_xuM z7NZ&_Cyg14d^sZko&g8A)C=QBgnz}EGZE#7_ftA-48;*pg_v_uRs?2ns08%LSu4#G zHbSd!n0^358TJ#x%Su4EM5NPZh@UkYPeW)I*n^o8n!#y~AS!Oqd@pjP$k3Foin9w^ zNwmdi$)G{mg9oQ}(KxMm(oh6rM9tWWf;Wgdv&V(-PXH?-QCSa%3Nr;1=YLov>@>8? zs6v!AhN%TR5Pxy63JJgnrD)ln3a~In){2aT*iwXcu!XR0CsG{}Y&Vl&yUMes(|Iw$ zzD1;T3PO-cgXK>6*=lSx!$O$?+^kV6RVNvh13^2F$m3>@RduX_2mrr`LM^q9S@@@m z#Ji-mR0hgFAs`u)4-r8LB7Xy2pgv)<3u@6!f`~9qgK#5V5KwVQT2iP6%ph1!rD$AN zm`3Amf#4M)b?FU4pvfYRABBs_LFai=WiE!0RS2erlHKG{VU#s5ilR0mF`kTEU;;go zXI9*1#(P~kqj;pqU$`z>2S1*Wq9+HfRZvyKE*g?>`F^>uRsuL@G=FM^3?KaBtSN?s zLfv8!tRbXz*wu!Xm0^N{;{cUd49u?s)gr1jJYw1uG|+*tsrpJCrzWTdgSfIyU7ijx z1f+FX3>4NQs+v&A91)Hynj}E_HF+Qd<4`^B5vSE8U_q^)L9iwhw6#Z-e?a&(D!dJd zT;4TbN8YfdwGLfKnG#-~c(k`s3Bqmle^p0lt3!pDDLasoemWV>6q_rThykk1%wuMOlP^0HG)+fC3@FN+l<|Tu_Fd9Mmx@Spi@ua$)CQH`Hnf0v{(; z=BS43ptq**Q4^;Hwv3CA!-M%SC?8}=LktugMyP>dl!8Ehko=p)p`fH8QjbCtMvjOV z07No}3EuHSzkjGnc!O+Mf#)0b1O*Q*8>-c$Y6=pvLKdw_)l$-$e8dzP`U$7T&UA_1 zVMGjEA7r&9VRN*+wcwCVTz60tTC)dIfCM2Cq!X&NE7BzjNa$4vy@T{#LMNbsgx&;E zdhb;_a%s}5(wlS<>4G3t(EGUGd~e=6GkbRTH@o}C&Y3f3&d#piU!k|b45Dj4)1}bTOxqv%5#`JdpHb>2-M4$50Sq?HLrZVA*>?`C z%?#UB;#%dm&q#%gObg~@e5KQ#s@+x-n??514Tq1Uu7ic-RlP1xv9Dk$bqH!by%FsRG$-=Z0a?( zvQ$!P!dw;@>sCW+N-X7&&$?uB$;9m|8-Z!XWmJox3)vlEdartuP!nN2#s(yp3(z<# z6&|Rrd{47})Lx=3dMUFWoxyQA;Vf(?OKz8h(u$sV|AyR;^(sI>YU)5$)-^K}+$gS- z0tUq!RC_Dc_BaDayD@Y4%FRUhp@;-;ewFrEwu3(*$@QMO;rDIn7=Ar+eq8U`{3=SECYFej5;e=n-=Ai(Tf6|8 zie1FVB@YzA8Dl?MDk-ofg0=5X)vE}kl0CKkMZ9g-SBCQTd)Mc~*H%fvg`+uh45YHL zxIASTy8AR|UQAAycF*XP(pTJ>t4PD(uAe3}nb|DdQJciQ(8L{d2xnt{GR`KEn+R%p z$j>}AT~QCNDK=XyR*b#_(0fkF475Ar7S(!J`Qjeg;yu#J(N`whaV8R(Uy!D6tj=V4 z`vc*-s?Z`PG3jXQq{KuN1gAv&U~jakN|j)5LB(y-eP&KmlJ`rL=j>skkJ^x9lA;-U zyr?cSQs)KpBDX?Ltnz(QlE$jFS*J*?P%m3d&pQr3|fAU6EY-Q(g@u?Qx<|u zQ6SD#hkI=#3|{C=qBNmzqeD0J zS?{756);HNK1UUt9r+?7gxw)pJ#kk~OC=C1P|$t*a=rWPgv%~6u3b5VPsl{X6@8j{ zO7sEY*AzvsJhKo0J*FrFmQYZaVO%`KykaV%Lk>z141DO1t6+U+lfNU>oJ$WA?1#|} zD(+mdZkFB;`(WR83TbV?)qCA%()wlT@_PQKJVH$%+Z;L z2h&#a|Hz-`B_Ya}T^}(5zVqA|dOdwfS?ep?!fs`SP*zLB>ETap)1p)qtmlBGodUru z2fm-$VSKie%AV!tJ7nQo!ZsTG*8~F& zw?DSb)$v-kZ@9n6;%`s-d<|}7{L{w^B^)JrycDNozQARXo=d+}k0sWgi4l4aIP6$a zR(cHObg699hGkdj>NcE`54&Hs4+a%~u08nD_ay;QQXO&4_6FpytvEg0^}DuVZWsyl zyi^PbG6(BS2YV`%OBUvnj^@o2eCOB0X{)>418<0FP0=6^^U+6*KC=;I|LmwnhD{3< z!5>o92h4m0m!%b*j{~ee=b?;_u*4!fTpPxME)M_*>lxkW=27<^QtTBFw&F#EUT5eS zFk@x!9Xx&BsQoF4_*%W^8Lhbw*}Iz26OLVNzgK`tVi1{BBN)m#R1j2pe+&K%cUi~g zn$*TyHUSx&YM+#3z*|7T-n4Dr?MNB~S|_7R<7|RZ#e`ZY^DL~La3X#ilc!u)LwH?l z(w7knWS|(^`T3~)ZBJ{Ht*N)~?l_99#HiFlib|FZTep||Gq60a0~vB$l7D+(RS-Oc1wXioAN)#F}F?E zmlXX;3KPRp!OsQr^g`^2vI}Wqsvpb!UZ5&uM|VtVRjLRigx~!E$b1nMHNe>T66u04 z9}U#DOV;uKXfe>t*f_TjB*^XnBg+>o2_{o`@Ju_6;)5`HXC>|g1_J9?noi@hN{kC7|zTR>b2w1s_1eo+UKa4|pSm7>%j0+Kkp$uAYfo z04}Th53IvQnX6{j+Y5e7P#2VE=*%I_x>OyQPW6ytCHHN!8Y+sp7&{#&G`uAYbOVu& zMji!&Gg5g*hLqK-iTfzr!~z%5kg*)QNQ_Uqwl;rE@^ux{k>x!bw86f1WseZmFp_JM z;t*p~YW^xh&JqR8&WUiidOOxun{NW)`YMLZdR=1J_>_!8g+W$_kV$n)?>W`y+O6t! zRJ;|wvT~@G2?Nj>eZxL~(KfdK%F4D#L&SN_d}`BiVxLs3W;z>}s!K}dYYD9CS5rVK zqWVmYJfmJJ@nti+xX2v-+3yr!0kQS@G!F#TH6(E?@QxX2=JYky`dCH zzHJOtX~$g*kE3|=?tx`|nnh>Hd%pY9Gx69G{IzkQx|k|iyG@@xed+r~b_G^XEvL8@ zIE?v8ch6pY;<`9ZP!BQN*)G7{Yl^x$?t7Pjfl=MM-xH-rDaccd%#!-#T|{K; zYvvdtor7Y9Q-OBq?H`JFn6fo55%IcstPo3~4Y3T?SW(Q_SS4aINUR`7YC1SQG`!K% zOT^l6Hi>k09VscEhq=8ia(h);bo=cDN@rpzwCfMhe5O^a8xbN?iKivXDuO|aQ3HiE zHEm+WIQ54Cmxn}RAPn*o31fT|PkQhxX>MEd|TwXBHv$z^Gr54<22uCHC+y4;o!HAs;$k_NyT`( zPXdcA2(ft#9%-~nY#&vT{qV-%IY^YAx(f?F+@hOiZ>=rP5ZJSK2X`vzUP z7_N)?3-VQm*%0-+O@6E;hnf+muGyP~J?4azvYamgrFS_+wXlWht8e-ea_0!_zo59I z_y>>>l?E8H$tmsH;DO74SVq}K4P*GW>qp^uf)z>L?`M=oqebu{iEqZH^&`EQ;h2pEO zaq~At>v+qRS9uqWbxJhc5(_O8ppUpO9_tB4ODvD3GE6RAG!zB8IEU`^)Le!gkRt^7% z6ZL1*x0Nn~8`-i`xZ855IG*FMe+*w%I;cJ;v1%756dC?73b0o4NRM54(TSwT1B}mV z11`QvMV`3vNp}8dx_(qfit8Ba{jhxH)od*A@~TV1;Ti6e{=&IpvsH~?Jxk}d{r-hn z(xy$$BG%nJ*j;a9AH#BffB8p_1fy<$wWaaz_uZ`ZOxpYx?Q zod}ylixTHA)Wmf{*q%)vYnf^*QxB91oJ%AeL`=>8a&4L0ae_*XHV~`)R1*uzWjX1U z$6V?H4{|6Of5u{t#pu;5w#^*rHMKr6nn}V6?ddUGtix|v|l_m@7)8+)1dtICs@o#JS>4#gN z6!Qz-qS_e&PKouVf-6BUytKeqS=?N)hkfb5His}%l7b+lr?gh%ge{nS)n`EZhMf85Eqyw&%0hW>ZWQHaatuCcyb z$KXIM_dhf73~^mWTzc0+e+SL_Xi#@)+Tx#Xj7n-A{> zAn{|E(aT4r)mlI2O26fXb}!8-C#E`cI)6QW|(gODF&}j&V z21kX}wtMVGDfBreC~ACR_sH31>+H(qynKmO5^MKIrY25IrgHUS{ndO8hl9l)YxY>` z_S((m_a7=ZSEl0wbrF0WWow(u|ConY#y6x_XKeq|Q{S~~+4RpBjMHyQs>r5B5030L z?$Kd`w{>;`xUYILPQrd(!nVy1OP;RU2)B}W<9G(aAHHFoupNQd*q>kAaxyJ6K6j=8 zHWg(4rhlJJz49{aGV>v~hG0aq-~j8Y^~S07#(6(8TW0Za|K)erEvm#%C#TlUnFWcI z9>R8B!d7k0l-K23l1SYA_F2{3&lr^&M^^5LX}`D;5wXH3sH0j6u8TXO(?V6pf+2MKvm(tTxQ&k6ziem^oL6<#g@SP!CpHg1!? z&yoHSx^&3@6N&iX1H+#jN>o_c1*+`wgiytV}WrX*up%6P*E-NANm1d zRk!YN{~@hqt(QLVLm`br1h0+qPMfq$qrmB{QKNj{6tR;2&211jDz)ZqDr;37?7{8@ ziXkwPW(&}0{gUcUl0R_ZL_Rba87Hs|h{GVHV;uldVk2yel)+2?nj+r5XPw{~(mAhcdX< z!8hk&flTKKpHZT3S=K)jF&8M9q?~A@gQL=X;zVM|FXCK)+GY|TFJjRk`8P3H(XLk}iIzWQvRIxNH17UM-XgalcMvbdTgFOBCg%X_)J{rA zosY@ii~4~+{{JbTspMFY1oQv(BM=e6Z#xwJUBv&{X?Rl2upns?N`ur)EJ%t({Bi2% ze>tHjl`iO(???wjtqTJQ5fRgWJpVTW-XE0u%Ll}qS{nr72P_1DQqg`O n#J?IW6⪚1bhkn55$-%7YvdBjAQ?+r38am!DB(7+hG3#6spfH delta 20999 zcmV)PK()W%{uR6V6|mt04o;T10M#D=01?Ch022V0zb}PbeD=c+;cRL&m5Gavog8&zYXii5*%t!3Q?(fZ)Y-ZMh0tt$sMM`Sh z6VsLi6za&zyE3!>{*O;%kKOSwas&U>ZmnG1W!$#|$MuJ=c7M9*9X59V@!j927fxU& zWA4Wc+WXPPfArPvD2^u=l}cof_}Gfd!G!zp?luU=Rt$fJ!^$)Wokgu12g4Rz(6?gV4*WQU@7OK^U>qTt9NNKnV#V&j_1t(yK;EUk+oQm>IeW+dJ8?rE zz1n?Of3MaW76CtUV);YB5cc;9p!at0tMS+Omgn(srXYV~4PbAATPEik$(5MjR*XL3 z7uoXuZN7Qi{()PFa;x`R{3G{Wypey!-!059vndrdh5P1FTRnr(Y{Em&^*=%r%eO~C z_-fbnX&1cJiK?Ze?Rnlr|r{|TDN6RwmHBF-i+L6+oQKm z>WyBbbz+X*;(*|s{b!J{79YC)mWJ-0o_EixryX$*#i&&WM!xkse zJMGn*t@A8ItSS3B@M3GoSqFI5wpdTA(X4jQ&di~>D-(8v+)tZF!HdF|Fg{ZnIPC zX0Wn%wZ#!To%43R*2?U{TVO#UyMYfQf0Sszh@d$F=JP?Z-lWb>I>$$~Rz@^jPu!23 z-MC|zl;tn%(jCg&ZSG99b<${b>zOG9VGLj~X13M@K0|VxpPp44$DJ(642Lj@W*Azt ztpeceyxTlIYno&Kqh+NgyH3WS)X%mx$Mg0{z1Hql%{jggT~d1e6*DqTVnR;~lyB?Kay``j%3IouM&ss5!o{1~Eoiko5nO-Y7?t}Zs8Wpv&mwHqTlTrFLj3=f?CC7@K+o(ksNw%xXN_$;_ zu7JlN{*I=iwwQrhZHMjv5I%w@sOo}}1^XNTxx}Ph5l!5N!I<%kmcti#H~$3a;UaBC z%=L+pA(KbKyA3=qm?DRvf9`D9s3A;%M;AG}d*4!DyHR{)!9+uAG7@X{ld)(Czg#-1 zVNEVxzbyb7)cEhD#vhVB1T%h46MP-uj@-K3a~Nz9KpOY31X}q%>7lnuJLai&90~3C zIW0qIC^2eiYfftugsZ(Rn%eXelW^x9Fa@aA>}SJNdl@qzTSUq+e-Iej=^(jo-7td1 z1>r{^vM@-7BOdrOT>6P1U(m@e_4{@xCmgFIE#|OuRsLwo%SFdKr43)G%*2XR6PJl(wgA+h)sdJ z(NC!h;_J{*%&>c6ZbC|z*F@hnwtR_e_Y$=CFt+@7Zje;k}^3V3m-JoD_5HsOGV z#I}|<1w)WTOZtVtT0KXaB2F6Sh8qw3%ZiLiQeWvzvweBivaZTP=EDC$EP0liGHRc& zgcuY%hC^LE8nx(IzOg1h2B>IXxu9q+(2rd9U%dF`;a`UFOZG#jcfvY)jqv#-M=a&h z(Q5RJfI_Z9e*^m-hXre|vu2(8iOGVOIHC)1VzavqbK<7KXhJ>#6Ppwsi=hDp&muIX z1TF$kN_C<#>sr9m=(}+OXgjj*z{HrxKa=>wUVvRsFYM^mF0jHNnt=YbJI4~_fPJCL zO%Pl2nZv=u$8sIiIY0pkmkog&b7M=25Ow;<0rH0{f3r67e*~k?r`scC_`34rbb!b= zN3RB(F1k3to&_vkX4VBlh5`0Rh;4L!=?Dc7xoZH#LBh`RXUuXO5^5md#=zhN6TDP> z6m}*YCPFz!+cuhT8#mHn30eL^pzTHMBcI`UwQkNPmK!oV@X@D5GLv{T=cy>$z0c;)dQh%DFHh%F2zc}f4tl1I#xzK-#nD7=L&GFX~o+=-(;{#Sd zf&UKJQ5F7!&d?Y6UxANp_dHbL_x6oGNj}Hce|Qr0LwWAO@9!G=gr1L2R(3t)J`XLg zpK>9wy4NT+e}pYN0EQaM-^DuF3jmTpqii2)>8^u4sK09UqvI7HqT=R)FqC`olkZZP zMLa_m`DO+vYQDd(r;vL952rs#2A(U3If74q+v~i&yr@;nwQB9O@@tvM+AjmhPRq4= zf4N$#?ft(0((Dz`=fj6Q$HKFaj`~DYi!=Sil#aQFqy=Q7+1aM86klqLp!buaw$f)H zw7wY_Swbx&$!JTa?yC>*5H_Zu2I;R*ep>TAI`9OhpbI`m?N9K)Zr&Um>ElcFNf_?I zf-CJjUtoz=GkPc0lzxMP9b+S&-7B!R6BAY5njhSjDO zTaC5-VHhNnC0gw=!Sp0ya)aGf!mhqbKHPU6@BkrN>=fW0L94@lv~1K*as{o7e*`KZ zW6gd(PsZA$tYxLF4Z<-P|Hs&aMu17E&%N4p$JUVVW?qZdRvd?Vy(8`pNAa%e{kSUQ zJ~NG`t`m=Ro0GHCoHoEv>0F@cxkF#K9as?u9?x?=u)O#N*Qc81G$FkXmAR2SxpZ{P z@X}G<<;>E|zc;SJT)V)=g!X{qfB9>Z%%GZZW`imO)?}VVDJ5u`y+=2z=b=juo1w3i z?RwULd%IvPddZlazo?^;%Ci+$Q~^6N8DEbq|6>H!;_=HJ__Gav`rM1Ict~&H#Zl%3 zJV?L#E6e%h<<3s3eV71-PiaHT#(tK~1|@Bo0f-Ryh54d{8=6NX7xXWEe_t48dj#3N z-woSt&cp>iXsEV(`!Gp|-yuI&ld?h4EqCZyX<0A0Ujwj4K{XDonQ8fsEkC)nY>X)( z6Y?qyVCylO1bq+Z)oOK*8pFVV-DPF6i8(~&h{vTp)v0(0E%A8JRohUz&~T?ABmDJy zgaTTp&>)(Ce2#BRd-Uc7f7+qqW9SJ#(95Tfvg__<-lZOc93bdnbbpNYf(|oZ;ErWy zW*FSmo4K2V&_c@s?3ulT`7sd&@Kj7P@$siqz7B3<4E-!g80nAX8tESsz!?Lp&(X9Z zU}xueFb5pj8^J%dBjp~<a-vD`fMX9r`aHCUGDLexJQy9XFbI z)+}X)J1aJ@Z`i1>mO%aGLme33l*!F1lRAi7D}nlnsZ3H_cL5F3{CM+T8bn2F5ZrO* z1;IoJeR8@iF{U3ye+xoJUCA=)hbutY{?>51M|gr*5FXod6yZMkEQu)0cw19R8SRo0 zK!TC8KMbZ6FNgasbvxKHAnr-vFGR|G)wok;%?&scS8og&C^m&iBy>t-#UPguaU$9! z)XD>&GYwG^vAB1Zj{#oc0kc$GmX*^=A4jP6bl4=1-qj)Kf3rPg)>$r^r|KsrL%u)p zr2wZkd)+XnR_Q0SD~7jP9NBF()@KQEq3M53!6cg^ue8TP1ZI0ygt0mp-$TEvppVCc z1fIEV3I=Ik#aA!RZY|IKCwjC&g}*bJdC0)VM$Q8|Q6z)Wo=jEDe=HTq0A}al zVL6wFj;U9pWD7%oU#NG0@!?Db)|mmsB6e_!K_8(KmKYG8Isu(PcuWT~BOvoB)xl*B zRgv1VS+}a_v!HWTpZf|W3ouBi)2OEiW(YDM1{cUR%*)+VCyOv?m42z(^B5DT|%=6>Nb4YMI&CH!5gUU=Le#-k;DmtCifP4^FL`+NKMxlF$) z$D37-e|13xmZr4HCmH26~`H<;1MQZzxNT8x3FSuW z{A&yr)d||rFQAC{;y|`k8Sv=Bg_%t>e?JbU8v4Fq^)KFA2m1jk689$Z zI0X2^EOJEwraL!E&>^mhdITV)Fy2J$J^7}-HgGAu(#TO%SVgW)k)MIs=tr)Tr}1tP zL@<+wLuH=VtN;Y1dgFQe#ItPv$Y(}Rv0!8qkGRAuUE%gk;3S)H2+sFdXz?hse>M=Q zzsGHg#oEia+S2rL}d8-z<(j50R22H&{?6>2&Q6)Dt0{^opA zN9U`3QnjO6?a7@|M~~x_@@^+jf8~^_t>=@fX_wRzhm_9bqfGa#wa3635Z0Y}ny>*E z*3J$q6CX-AS7gP?_+9o3KP4OxAb60WV&0^W{H7hA3v7#3H$<^KdX4b zzL#}3Qc6W=?5Mx`M98nCe>gt@<)BuliYzBpQQvJ6fb>D(US~2WEn4^(7Bo&`UdlW_ zV87Jivk%mpY++WsLxv$>zq9i~SBvu5Jk3bhq=SCGGBhWUJ0fdVf<@}|#E=C4$_ZUur)S?KF(}Jrr#3glx7;2)80g9LV3|&EvjeBF+i-SDd(HJAej~;H6kW7qGI}1 zroYTQ@IkQ?y(h}F&{rgA9YH@awU8pWCKS*=%)Y;=mfJhXg~T_|$? zXY{mT71F3JJYV1Ge-Xv{PhcKyK%b#*in(1xys4GuhKQrE$5d#ZPh_yjlPQa0xct^i zye0K=zj%~D>xt6v@tnCJ5Y~5PR+5ETEx0kMj4dS$QcZ1DV?@*niKOKGT6gJJEPLl6 z=Ry0@{&Rna$+@U$(ANa6T zJ7Bs&ZZQ_|N)%(EFMkv7f0w2l_JBX#(l51B(El4BusQ}-#SqQ^c#goMKdQE-Z{yNB zmVT0rw>B>5e=4A;nVoD|QKMqn6eJ~%jzck3su^_1+;}e%3=)H}fQx)OV1p!13lm^` zmj#^jmXbMQ#O#46T`v!cM9nG`J31mp1O}-@EJ2!RnqaaH|HPGWdVH_Y(?}uGm#9v% zx%x;HDvzfDv-RC!2T!9_{tSXE2+^am95^Nb()Q~(e*;ClV1OmI)olVQc<8B?e2H7K z&YJ0i2P|5qt10E}jye^MbUrD*K++q8-1-=$Y8}QyisB$xGu)*d#@ocVm)GxnxL%RO zu2&Yh8-0nteSyDAMocrGMR9dq^reR$LpmEst14ry9AGvkONvO+Q>3ZN*v!F?`!;IV zWX7y5e~4{&$#l`P^BDHr{G}Db@DeV@MJ-9b7VM)KqmlhT|E!gxlcSXp0%z5{Hjf)1 zpy~r`IY8hSQt8Ow8}$V{IAG>8qPh>D87?Qql28lLkBTSCWHe^Ixg@a+UwWoYqA}Wi zl@LX@DjP9%SsPzxXRcP0*Ho-vFK4N$+F`mBe^vDDTV=NAr5o$pVpIR4dSdFvc^AkQ z@nsr)ZCFKqKXSdt4pe?RH&qgeDjVWtJ~GV%1UD$5h~)A?x>BYqYI(K7g`Eh{(BHx`%cubKJiNXnNO;s&q*J=DOO#3$RXh!>A@4OmzgctifD0sK-MQq7OQ**<7q~ zw#PLT*R?Au6gke86%yyCCCq{Ja<%kUGJ>5*<=J_`$nV1MgrP)!6dk>We~DC}=tCKr zcIY-WiHr*KE?B+F)b~d${rb4d^@3f=v+?Xm ztb|wNF1eaaD{K3UBdEjp?27~T%h5sop!Q*(8Hc}V#Th~CvcN!S6h<-%o?>u-sJ36< zp)#!1XIGa%Oe?=0L4AKuoD*kumUfC6F$o#QBH56Hve@{nUNn!1rG=sAHzMbHe<3l! z+WEe`W{15HLXKY2tVA6k940@uP|Qp-GP-)IR;?yKr~GVbTxH%~Diuncs^@?TxV64) z&0vW;x!JKPkfQ#z+9DIC4?jfzrkZV5HESMKdyTV`Myi_WC#GuFQ5aV^NWko7Q(DuB`q?dI7@FI|UzVy;8PH|ly~e?k!vt`g+xF+V`3N$mOw<`ad+b;J}YfprhlJKyqH zh|qX4A&zvuKwqOX=kc_JXAze(Ve1`ndx8{#z&b&TDW9;v0ug3JVg%5%d4E1CZTUR_`Sl$ZdvqQ2Qv8C+6fZFn z5B|mK9Uta30c=#R9)V(5uAZLazvt&4<^=IlSUn`Z?M4Ad@NkS^%mRK!gi+;S22+Iif6>x#b7-OW-t0q1 zoy$jtiTeUfSiH)Vn>UbCS>4>Ia|#-s2eOVk7cb;(Ad7Nn;lrf?=fCY;wQF=kPrELD z9El&t(rFI!?kQNNUq4@CkQZbx_FB3DXtC^gx2GKLXnMcBMK;D*_J6E;>{SB*|Nyy)a$jg#50 z*Gj@boH0i~IeFNnY&SA8jMN%p#1xWa8mf`VBgCw`w5XAKe@Lyd3Jts!S$jI`LpGrs z%hkPeOAgh){OypJ9H6qI^%ROFq`(AvD+y6=5$e*1c*gALq+dy!v~QxUl)khNW^(Jz zKyF2L5|Lkf%tjQxh}N)(YM}5A;54F4{MPruEgs_1yt-uY3Ee!ucq{BOpsEla9ZK;T z-jM0wP?!*9e}oM52F)T|2=^-(%^AfNVN=jT{+vn1R#%LrOw$ad$R@*F={ALyCY>9* zh%h}GAM|liG@MqjD>RaTL_P>Iq)$IpT#fLT4TNPZWy(DRUl$J6M5-I|1WsHCIjBy>wxW+EBH#tr*+io6BJcSDjiO1wCAD=_4LxE&>AK3)=u zT-|-+e^5D1T_a`_Ob$KRHSdcL1`&B%U-~L3h=U?PDETL45h5f7@kB^S5zmGJYC;}j zLD2)i3P2i%n|Cy8;x|G?7Nc@iC!kq!ht8M$=C+ z=}2NI0(HUbAIyF>ET%i+mPHKiCldrsJcczhT#&l5HoUA<0Wzu$e7NwXr|a_`y2tNwr2ir#&7$)wqLWMO57#OlcVjj1m%+kB&8@gc!ngqT*pYQlNK=J}>S*9w@ z%g5W#CJ9byNZx{o))$%jw4D3JnhIbcep%1*(w(Jq#6Sdar zX0f%QS!`{;tlj<#PU)el+GaFbsD3icy+*+Jg0>#v`kbBDr`=}nxLIwd>_tB@*-O)w zKos6-aY#`lddTc;!%POOJfs2bkf6KZt^c!O@6RaroJebkM0>Rr>kVABr1_$Ikjeni5hWv zn~jVCbOlWc_UgFNN9YN71~7|U4m1MA!^4EMa3&c{midU;BTGcCBWT>4rG0Lk%wLG< z8wpxKgU^AAOSOxW16I4JRrm2=e{9|kfIi*@QzoKUR9>0Z_mBh3+ap$b6Cv6p7`}WH zU_T;7P|BRd2ORvEO3RSPNr*;&ugt- zqn#E~G@h6ovbcHC+UNQQ)Ose7A@L6I)6{o4iPnF)`_kU^4W84I!pO||hB#KTnC?cE9epavL zwHw7(R%i`FYcdi;`^i|egkLTl)ldZ+>9_YSd~5l(!SXto$(&SwJE0^~HYsvc^u+cGFDEn9Qx*?-Bhq3FY;=M#Xm1AL{yCbAJ{=Cd@K8586paq4(cxsa z5@FkxXS>OmVdDC{kKqqO*y{q28w7n12xYSj5a$oiH%s7u5cs*pf8gil!0!pT<{F%4 zNeoDP#KFoy{vykNYc?dV{GwDg%ek|B8*C4BFvh{ewWBYM|A<;+AP{4WmUZuVe;UH? zOYuOqKh*6HseK`YP@l-F>F~QRnzR&b0a<0r?@F+yO^ZOZt6P5+a8%^jA33)teK%MM zP4&ScesJgpMPS-gF*Hxk?#s&Cm7uMl?&Qqq7iFb=_y15!0|XQR000O8001EXo6x3` zVJ`pxGS~nB5dfC~eFYPL<$ddp8%LJre?LW`evEgqmMZQSO<9B9ZZx)mal0|yvwv(u zpsFZ|c)VtXPo&-Z0jks?bMHy0}yE;2JCGA`%xom=qqUw*#4IQnV6 zTrIAzzCN~3&GFIv>g@V_arOG^w%Gr9HC?BaH|mgaw5&(`zjm$R$e*~RI}{p+U}vv=3G>*34!_1W#^{AzuAGQE0w z-MepJZdcEj^V#{k(~~>bPFFVeJaXmk6m!JPMTP|iVFXn$;FJ(PWPx{5N_0ZGR>~jA6 z>g~(Zlm6+nO?v+P=;)s=*8e;^db6Cr`ug~Cw!WCXeD-F3ar2k!o7{bv2_<@Lq+@jty@|MU1z>*!>E)-D{qU98_6wHeN3hV#|4 zFTOZ>%s(0Bi*ci$9ewGZ=BMV%y?b~iLwRu~Te6 z<@MiO->&BI#UEzx{GNkY%~x&cFV5$yv*qGuJxt@W^>ehiI+9hnI-37{b8)@wM7QtM zwAGf)M z@ou$PeZnq}UeB-Q%h|=pbUAj>$Z+=J?E2zjel`++!~W#VPUb%?&gLIBMeReVZoXVJ zv2l+$_Z!c{ZaRnj>uj|?`m+d?ua5q>SdO1}^vJH(%h}od;^OvVwtO+adGqdZGki}! zFXnB%m)GZg(e|VO?Qe0lS})eOW)M)uSi+o~Dy6 zkO$6xuCLBJOKqL#`??Z=Df=i|19b4dr|(`{&d;uwO#^Rv^ZR;Q&Tr=Hhr@nflhyq1 zw@oz5?M-ifZ_~x)?ZtX_H5W1bQNv!nozHJxtediZlxopFf1JO2D=%L?P6|wWXe#=V zjkW33^?JVlo3+*T&HB21UN6o*PQ*?-Y>T;nxW2f4{q7^Bwsv~+X12VXosC^SVtvrT z@_KzO?RPfT2Fv+{0F3h&H@7b@7H6}Olz;j158wXjnKe(XvFYSLo?gvwm)BQMMU$qd z);%@Wez~vG)EBAhU!2R>^ow;qJcbC+*~Oqo_FEyey1rcsE*O-?`x|d;@}lFi20cH2 zXm3Q^3jf|dl55cV_T_(wE_fUiWaH)Q`SNijHEI6SV)@u%5C0ZTy$VYI6sQJ$i4eO! zd$XrPWUIxM{8^lLSojESdZ!PuOoquk7K{mBo;8|p8tT*GJ0Z*2`s~feb*W@2vSYq# z%J`E2TlBh~U*0qk^GSj2(b4VIVm)ks#OcXk2A-~$w^xG%`_t8{>*uF$XRE&rm*(f+ zEYAORaW#MbO15u)da~)(o#%hIZrA>&m|#C{YBRkphU&c+FR$OOp4-!t{`XX*@$KbR zzn~x0&K|7V3+d|5w_@`zS6l33YsA7=Tlr-2{PW56#~Rab#NwYXpIi4|{~6zZZ$WpU zaC~%jF?scI&x6K->BBWbAt|*k@NO8tluzF8ncyztg+lurm2`^p2G&pQCrIO#O)7!=2uL!^4%aAH%C# zd)Jk*AH%C#dv7a4Br#DmgW_Dxewv?mz4_gD$L9E}W4vBI|MLBDZ}|Q3v+s}lNcisW zkH7ltf_@ew;4l@ef~pcWgiZo80gw_xa!Chd238`6kCVxd*Ek zKL4A>)r+71P2=jNPx&T)&o}u8tCv6jo5s~EpZ`tc>eWyArocCahn)LKg~aApjmu|0 zsg&6KswP0#yKf8TA0Z)6%5e?dU+`FFn@cZ=ru*|8Y- zsR@h!)yg>(@a<+QfLZWi>)%8;BXZgB(eR4Tl{&;)y+E>ri{I1Y=@~ z>)O=R{>1(#MAt6nWK93lJ4?0p_YLh_i2jFPG0x!)vDnsiO2xHyF1E2mo7+X>Z0ZB- zQ?bFj{-n!)!;IP+OwO&BoPF-IjqRH$&h#W*T`nO{HSbQI+AG$Wx_u(cp z%sur!OXYA~>Wek5V2q}Z+Q;^y>U?YNeC>-IqwRghJ_p~Q3?cP#I^UZ6koy}#f33@X zk9;oeky82!+Sr$_78m+OH+;*(D)oEL_Gx-qpT1Rpq2DupvdHrG*q5%aZZ(|>YVA|; zzAu3dw%v27udckIcP(Grs7-R6mU3U~+8adQsYezf_P3k<+E_wg`7$hBCmW%HzDl_- zdCb1_cD@slGkw&)Z?Ua?tGw-GQ-lUNhmdM(5PaVi>pHoW+_%b=PIa=yotCm2cDgT! zuLBi-#QrUs*hf}+FDduMG9~3sQn?dK=_AX*49jB%>KVpqU2kWHX$IfPyQIW%`hhgc zFkE9hO_b0FSaUJGohf~*hBqYB?pfPuP*!l5yYJHseaYRpW~Pr?C?xbH=%cPF=V5@o z&)D}*sIF78ac075rjw};eXY&Fl%;kuO~c54gkSr5#!hEKmwgbiGrBBRpUNOEYV2g{ zTO=Cizt+__kZ|XBYx_3(Qafo3a}YY~3o^(oS-HSD$fo+f znstdzxMLu-KbG_?mI*(;((Y}=~E=D5q13y$haGWl|Ac9O^7a`qY8wU!><5c>8 zIEDB+T@TX~vDTM7RoAJf@1Mx5E_ZEzdrrAd=g?_MMmz9BUo+w2F7jgUGi1}HY3&j- zx-LMyHS%+C^tZHta$?_|nHR%B4Y?%DpZUN}pyNd2^7vWtfT? zXkHenUo4$-g#X-xq+*xQvI4{Yb-5&eLMnA)?_IlLfW~z4cD9SW>h19MzHuV2eP@I| zcoF5D$BG?RH;mGzZ%BOFCa;T>J zZWCSX&aMA#wdXtd+3+i7H*o>N7&3Ye8#A<5wiTvqsr~24@?hp z-}Z2yIjY?4q9M)X{=**~x!o2W9bzKRH)r2KGIv6cEF$kv<2Cla%$&|)t3yb}mi(T>=R2-dO zFIHEJo16K1b+;ht?!Eu^?5k&A+5dj@^&qO7@mtLB$utwWe+t(6@pd(TrH&6qpY)S; z+PWq?wuy1(hAKHfww6$K~<1728rf7n^YG zC)TXP^;tVNdRq*8?c9Z+6H9SyMe^BTzhsomg~c+=$Q|a>MOhs}3zht81lO8^!7y zZ<|ncDYGBvU8~b~m*#96ZZ}(U+_9W+Tc=Y@2s&J&w>{P>`51KP1D3^RZPUCRLqB4P zYHOQ~-nK>OVD)wq8XA|f+06Y@7L!$nmdn^>ZZ4l;vc_m@*?ACulMew>c0+IdY?7d6#75>u;N8(RzE=)0rUWr;;MCkLHa z2)bjk_`3SikG{Kq1aN2_9~2H$I=9&=Ih3GW5}c0QI+aW&DH|9eurI#&VuQ$Y6Om_q z)VEb-rFM-hfK|qNdk3-Om2G6A<(O2}OA<{TP32SGYpL59je zIVi7G5li}RP-%BVj&lGD2(zg6$hrcqLNb`7q>v4`vqB4r%24W}T(Oi4F^{)HQF;{_ ztMjfk=#C{7TA>8pP-FGo!RqRZ{84fUMv2M$sFJ~vc~e#mhb>UZ z8$TJNyls<8<4{0~K9EusOk|_`ohuY%i3ztc2M0PgkpHRbyG5##&cW4A`-us1B?Voz z;+3Sm&@|MH4u~sIEl@{w5zA5_Mm**%cxt?DBQ_L&bZ$zpI&!6WZ@?w8ehS8niArG5 z-J*IPl7kUAwNd2xiOBO*j#ar+=7be<3ZSf4N)bt{w@pyAlLJJEphetP-nLcO+Y7YQ zcUMoLrD|O;ml9GmAOMFs*MO0$w$4^Rwa5^_kanJuid#|j5L!iK?Yx0xs9?Y5V%IIgW(K9r67+V8Af(WuK;v4e;1y&C-6!Md(jKQaavX@NP&%A#5F5(RYg?1x^EhQjqZ~1Wz7trp5P^tWJ%+i90iB6j+i3~yemX~av1>VX*fT<*%t2IMd;XtX*>cv=8 zQHVazTo&EssPH6Ys+nQ|zf_*4LSY@Tp+;>X(IXV~`o@@H#c|%U5o#b6$~4egFxV1* zD0!EF>dgcWD2EDv>(E?OQD3rZApyyGv&aim!!{`kB&U*C78FYY<(LClDMrw^RhTcp zw&bIM`}@|6{vXyH7W5$9i*rh&{>4J5F?fs>=ytEYS5h*_Hyi8 zH5bHf$OQtkI!ZD?6OcpnigtwclkOd?sFETOCIn`Lz!dWaxLl=@m}oGnof?;a4yL`x zIRge#X)Mf(Q9y^4;#B*39fhR}CV>qsAb6sA7-8kd47pM>w!}gMx&YI@Ld8Yp%M4)P zd{A1m#)Ak9z%Q&v!S^aAF)>kVK$x%u1jfM~5HWABTBv%JjRFU8+bE?5r^bV*La5iO zYhJP66a5*iQmUXN09oiTF@cqTLxb{|00^oXWkG9IwscczqsWUBk!K)@V=hE_AktSX5ByeEc1z`KD@ zEtnz0VHTj&EaqSmnAbxSgs3uNqPI=JvN!`zOQ3hgD0e1Rj>%I|B&E`SFfmme^$6Wg z>S-ymfUrH4x=PkTij|3Z8x`<{4;nCU0^Fu6qEPHO*u6r-$}0)hqYFx<4n~WqFl?h! z?cwllfmfIqxGGs?UXi=7Trr^F6oA$^v3s?30VHdKRQ3y2_sPM#HPPMJMrW1cTRI{X zBm{?rJ3tnY28XKT3?nOl!dWLQshYrnQZs$l*#kG|Cr4Q>3LTvX0u0y$ks46_X~JTv zg#;MrfGklm{HG!}z|p9q6K zI`wlHY;99Lq!yj62YeM|r6UIzOW1iM^tV~$rHRNZ5P1d0hS;!wIw=E3ywHczIK93h zs$uI0*#+6?UL*KXtI8Ey0K`P`s(7{m<^ml@CQ@9e!1o}-3NlQkKzEu6`{@=IaAyDz z^YAN~qRb#hGYtCRX;K0PL#Fj4FdaE8e_HIuLRc$FiGBhIj0x@{3;hK}A;ts@6bFY{ z1k#EL07|8sC`=H4v4w{rKmgH0BAQ7(cw}P(GGxf3MxB_eiQaBNUU(gvR0jxDKw=!E zvB7N%7+0XKDjjAS%3REJ9k~!T#g0mo0RMA=1?T8TtQlq|qdKtvD)z2=`Z==Fh|q-^ zYl0?eRI4nqYV3%%g2@2L8z2O%Ne~<$etLdI6M)A8?Fcx3^ee+Qp(-4Rs@iJ=6M2R_ zylzRNnh|lT!5S=(>^w|{1PutW9V4un0`EpH3cOo9571fJzhY~Xr}hQ-H5MAs144=% zR1lS5#U*&1McL_w(gl;yI>X@bDZ>jX+IOSK%XcES>ia9u;9}>1#*0Eu8zF!K{nY^& z2X?OzF``L-Rd>sQUQNKHMENNo@d^h8YGTd-(!?qY2td-k4#ec}gNn|AdlOw&SO%#8 z?RZ#l4vMa2et*Fy#|MMP2x_3Prea1EGCF!8$Fk&rV&sWdL30TY5$4vKjasSdE% zt%KN3Fz9P>@a?FB*<0A2V!5hv2GxlHr)w@owaOyHc|%bM_vv_DL~BM5tExB;UxQ=Z z(;<481I!hJXjZ5WI?Tag7O3KsvqI8Q7z(Xu)qWE2tE~eKJYRwB;I0htBO0J_R|B{N zmQ+Q5XwSk>EF|O<3@8->vqDk0RzEVdDU9#H;GlrdF~e6wgFfgR#pG5?iYXUj;wZw5 zDkowMl!yqgk(CXEhk-35og?Zjnt!9nD-)3?;y_^>eC3vs*k^wg6H%9o?@76P+ogo}XKas+qw3W;%9bYh-%uXhZFLVrbqK#vGRR7&yO>sUP90bpJb zQu0bEqQW4TiPNgK7Bzy%FYO@gx3jwD69_4S3=R~PX^C*A5IQ59rA||t6s7nW0O;I* zgumcSP(E$(a_t~$Pe*(KD2N5|9mc{8oFC5V<_LDf$g=~j!IzgXw88*{fplYD zg8_v_NVk|hHNWmRrLke;(gM|+NSi8A6R2;*WW`ENVe8NggWmxT9BROf5V9*UaVO@A zs<;IIsSFZq0Kbgjd-c^s5;9b~3lQ6X%(fCCtFB3eo~G$k6*S`E=_!bP(r+9+Jl+9` z3&qeYhPbPkWSd1^ort`OAa>2_p9-|MLpAW$(vcA80#R&dk@XWwg{u$jC#0(q(IsjD zos{T*gb*N4V@9;o0J;V&Xoc${A#`FH;3IV}^Dt}Pc~e2~dGCMwc0LEqg9#Xt@~S{C+HfhRD5ZA{1yhZdbeAd47# zps(ClrSTk9Q3Sf%l7~YVzM7POAeF=()uoKOKqb;So0x-vR2j;&1ouTILlg+imffU7 z10%Z1&?MFz!FZbp+o2$HW!MYI+5+kaOGswv>a$=x6@Fn7kAlC~1A@0?7ho1798`Gq zEEhFZ(3(Q2NmieS+oq!P#8|TlDr5^Fg5Vg4TTr(JZg37^x&Ss1#Sg)M%NRQ(itMKf z-sYLwDDteCI`cqi0&H~29PC5ukZfGk+K3D%iG@d}r^@*Zz!H%XA<|nV{v=rniJO8c zkm#0~@T)*RCY_aK=3Qn&omVro(!nCu213jQfUh#(3xx~Mwx~o{IxrtyU`(5!A%aC< ztCYgbR#+Ro`gLesAsRe?5WhD{?n1B3KtuFCsW7h&Zhqlj9XT>vLuTY90H{S~L}%uv zBFJ8qk_zQcLF6SP1=d$YvIX1ebS$MGQb7zn(hhz`(UpW+>KA3Iw=T5Vuo!|usz@T|ZM?Ehfd8j@>{xLS;h@wwaW+gC540B2mRw|O z@5nsl21K2-s2f0k5~tWUW+fF%_!$jic*rD8v_=H{Axfb8At0A15qVw!a9h&i#v8(`{2}?46G5UziGSM?kmZXythB5TM z091G}EgjlGT@S;z@Elg5_gcZYOVf-y3AHy^KO$iD)V3F6CJ*xl^(hXq$6ay?!B&<;VrpV$Bc>S9#wOQufDZsEmo$#g$K|+$3N#p^= zD=eV^B?+A&NbV_ERQG0R!Zts^K$y!R15AOr3nCAH0!frvJYac(%u9$Th=B;v0C5tL z_m>zMHC0ER?4-nt7NW}Agrs=y!M(u%a}*$OKXC>!OH&m|Q+1FWa8y9g*hzsCoX#1F zvPRFCuJRxCOsv2=A<;Vtk2W=Tfgd2k0c&WyR=DbA{a}tTYE)rH807(xMTN_v2o-+b zLT`G1;JgDeH61l1x^(ThlVJs7Cbggd4<=wBkh6wmD=IOoDa?PM6Z{WS1TwG)nYS}_V7#IP!6WB?(8CjAs{;3&CJC&dmdIKKgl`jkI1X6@ z%muT|Sahhc6Y2$~L2*|o@cU4BM6(U&O)D@gnmW|kHlvdIPp1kuZ9Aq&ce5gfg;cl{ z$esvKvY^yBa1cpbWTTEELOqs@FdgcIs-;*$K7T)lYNUliT0ma5Rf|Co9XP1!yIoO# zqA^TQtyYn9HgrV*=NTlJ8iWx97fsU0)WL|H-)7w_C0XQ_8B~!N?54H4*-T0j$x7%A z≠~hNZCH(1=6ZmhI4>Vr(ssW2cD@{L7n!qo`0WPs}@oinac3XCPj2}J5E zA;Wxc*+?+85W;|0L(n>FC=_AYs?^f*>_F#;#bs7l8HUSX#UN@MnYo)QP+~!Up*&OH zW%YGB-oj1gCht~(ic)tYoV7*f-6_Fv9!P_oz$6F=ygK9viQJ)QSYc&k!RZ8408E*z z?#w{Rkzqc0qpDdXCYT#~zp&bZRT9;?iE7a`p|c(tk{*tCnJd#l5M)Qzd|=_FOR9T4 z3K=Wwo(1!wb{E+fm9~y|^a&|{93l*?MU^7UKSXZR8_3L>0-|9lx@Dy`&K6)STu22# zgmnY(3>TDovT#)ZGo>{ESkUxY4N#JR}{;ATmwq>O zSidw?1!`ynENUgjG(@$iW)gvkxGcg93@|y?SR_=7i2=P4Lhf;@8iyG=#_$XcefRAAG8lqxtBo-aQs#&Zd>9!1g?&^u<2jX-X$C6Gf{q-NDP zmiA2aimlW1utAE*Qe%m}F(~*BbmL;P4RfU#!B4eTql5Z(J~E<<`b4z#5%Bbv{>m#O9?zsDzP;xj(|{WMNz0l zLbAtxdpeX6gAGjU^(hfDqoR<`La$OQu)sgTrV!o+B!L%nVgj;43V}5teNZY+t`UOA z**&mM6X0($iVUo!ysf$sf4M3-h(!udBueE=(&hCQ=g0^t0`w{%Y?B4XgjWm@UL+z2 zIVzinA99+(3uvw+4TfZ*SW^hc=!!wRxp`w^;?_gRqpDXb#4zN)wPBk+*0ad{0JWu?}C|C^yqb!NDi3$KV zlkvO_4TeP6${>YDfTW;MSF|T+0c&omn*5VwuZUb~hqNyl1Zz_eR^oX^%&kp`7I}cF zJaIP=)g~3F?MMMge`};!A(cfI_2F3*2I0b3;J9M`b)w7C5Dvi;>6k&00iN?DEp^B^^gVHb|Y1~HUy=B5Oqn{o-*3WJq zuCeaS!6vN<2Q^jd8B_rq_@OMhq-I^|jKtkaX>FOs>}Xxke}8KTT2wgJIyqm5@m3yU z!1M(eOA$LSBLjz8`12;2?8sy*h_oljJVDIhl7bu^6oIy-+9LC&RTz_VDk`?CO!5a% zLuV@7nM4gpoBVl<)B)}u>KKe;d^;q)8Mo0YkX;~_nP(J+t~ z?6n*x=LJqGtaKC^q+$YM_{^J_R8Lx*U=|QsB?R>-7#FKY1D*6`c%;$ryr|4GrYsCz z=Xm@HJX0A~K`Bg;pc$3}=dFC~u%Vt2FGQThxFz)iMc3 zB84zHf(m)Rz}AK!G9$JhpvDuyb7392#{nixo_C1TGwsaN8(5JOX<#!DSSY2ksGK%&dZfAzBkpT&bvAwyYRufCO34 ziRbfWthx6%Pa-Pb$re*@egh6#}dm4E>$RW&gI9r-)Kp|IAmBnLre zhZs#}wQXVvu|es1<(Xg+&~Xxjws7M5XB7BOvTb^|o;kPz$*i`~p z9uDq!lAG||mh+LPbr^|73W>*SLdh_4Se@e7b}BMWKok}u5!6o4Mn_gZf2_SQsdk4j z%Cyp`*uixHCj%9FXvA=aN@c#5WqJ>?y@CU%2;2{x*bKL!VX&;?JP42QaA5IffWurq zD0{MX1WU7qSu853W-Ka`jAY>SOu>PJ_(_>~L0zRMP1iibzRUsX5E(I`0Ew9pe-lcA zwZaoykQ;ANdoH>c=Sacff5ezvWfih3lcN)m4-Hc&6%@81H%Zu!NDb}=1nP3Ynis_O z4R*f$z#Uc%#59rHOb9`mxPc-OqZ|+vCTppaL^PxgGeTErKJegm<_I9DUU_&dfBPWg zY{AGxm<**`;BXO*Lqb-@D{x`uNjeE=t(C!R6VO`WIl>UAvC@x;e=2{6(mumTyYsBG zqVtXB4g$$}a=-|@zYbm)3%TtRbzDaN8f%>j>^P4Sd@Gi?rXC`aC}`@@hU?-!A9(epp1WKKMzI3cDuoC_~7+f>R)PfKGBa z&=U!_Jm)sT1;v0Te+;$RrsAX?RTWh&Z>)v+4j)Ci6Ih zh+s@aDPQpjYoRt?#5C|9kN0w52pnsNQ>_a!FiJvHF2Y(2tnTJw24r#JAOwf#vg3I$ zILRO*Gm}*stS>P*Hqx4YSjU}>pXT*f%fotgq9w6-5l5pVfBs>35?v*JV#yP%Iv%DD zLP`OVHWoVM#K0C}pg6MC)CvWK5KILc#$W=D%CR_+CqwjzV4{}-<>&yH4rkptCa!pW zF>C7`e0w~rnuqYzgs1{+NC7`E71$x;>qzshNZzXaJr_W^2xpi@nQg{_g1IUn<_W-7 zbn5+$pC&gmfBQY63Wy=JRU5tqRHZPLkopj z5eR{cNp!wa90~_onV|N7L;3^089GZf<|L?$bbq6cVk2oTUB zwqU`@`CSDy*DkYiUeN$g)8@g`76`#6#p5i+FF0_+e?m+}gb|W-`2U6S43Afymow3t zKfmW^CwKowWZd-g^l`7BryqVKZqtuMKIvHxZF`?s{K$u!oI+>D!&q#KxQ5|V9**IW z7IygkqbH4nI~P9bQWX*20c1XL&8R?$6Mp$*@cgwVLm2-_cNM9|98Twumza?mT=OnL zVd7Xxe;#C#>mWsJ3mQNg!DK){&<&@~ z-W$i!gJ7q>zcVIp*rp8X*kTaBZGi_)l22*$?z@I6+_;!=@Sr?tg2#;`9NFthH&;Ct zX>4M=E@2J2{%%0=Pr3tr{1gVE)dwvG?%kiCe^lxie}8iPDL%c5pXR$+&Tp=7ZZ8_g zHPYS89b0(jm*IyCkDncn6nFgV240ywHBjS@rv^gZ@z6lSJ02Ryd*?%q@^_ECamB8u z29DYNRO6?B16qNOn?G zf0Hpg-`B*??p+bd^pU$V$h4hg*~Hz>;WSCO^PwgrcRtkQ=kC>RvUS%}gWTOYKew9( zMsdAc7WneftTHHp-7C-(#Ll@j-Lc2EWV^Gcrg3(!Qqx9z2w%Tb7K~bKCqp#_w};FW z<@fRX()8vY`yx7Z4|2+W5Bc15@g9=LfA1p@n-1UoRMYQ!^p(OMPc>Yy4;|aGWp7UI zqk_ky=~y?sU#yRfSMA2D?jM22`%hHg$K%ew&(PS7$GbBHj(qF*yJ_@XIo7q=ieO{1 z$n%JdSe3|f<;b7(YKMe;Mi6*cgUNh$D<`*y6l`m-hjKEzHCS7>-B3qXbmv2Df30`J z1=)q&1DE~TjVb&+CH@H*Fr_`%XYBNMt+CMh{I%HE{mYhKh5pYQAaW8kwe9a*8{ahy>A6USJKq~~_4ll2%kBkuZiV6at@S@#uD##k;xL!~ zliu^Y%W|?&WNetrIMk1tjNLgIe`hvMrd{4+GMs^VxRYap-*Ucg_k7Fd`If`mJimJ~ zb@OBnkP^er$@tBb==Y<<-*hr@_hj7W$%Mn3Oxit}w0SZINM?EGWWr`L3kOJMW%pz@ ztD=|>Z!&e~Wa4Jg9QPB=6S#2@s>tpJ5^=Nmjt9tBb~lnpn`e{V0nTPOe@@7oWnQrd zIGf!-q4>?S@dr4Y-AJKq78LaWm8;zi73yY6YnKmhHoLJx-Lf}_DARU>1#7n0dgc)2 zz;3)?&1PKMuOHlec0&ehHZxDZerWS?d$<-%-ZGy9M09R9Cg@p!o91H=aX!0If!*RR zv3vSUe%tx%#s$`Gk#Ft*f90FojSOsiX5)Mg5F5DN*uZY_@Yq9i@wnaSz;1E!*hBR4 zxIOTJ-@-rs0FkxZ10VP;{IjRyij%k#F#E^(gZF?Celue2*AHzA{T>ivi-XICc!2ZS z144u?kSOd2Avg(t5G3jMKpAlh7sdnBVtx;l5x1c9xF1UAB*I~Af8icLWQ%Wa$Rs$l zE!+c$q_}xL`2ZES-vfx`%^tCS{ov-a2N20ywAdlK`1~F~q-+rxi7Ppp3dL31UCPk&}oAA=1MhK%{Qb%7^IN40~ikZ1DxUL-YlPJ(3}|_?r6lgPYH8 z2;uBzdh6E@Za%vqK!mfKA%wFBXlRAq5W>055W=~~qT2Kuh`=E;?tL@f4Kmyo?~U8j zd&4>8y=HteNdj!wWmxCu^Yd@}^Q-6o7lRH~hYnT&hYnT(hYnT)hYnT*w+>bXf*}O+ zOXjJUly?Owf6Gq8Fc3xe{R+!_$Bzb7tR!84x&jG_AP_stnYIzJW7&qZe~%kzC{T%| zbCij)(Dt^(JYyJv)qT_2O^F}t6?pr8Iw7e^TkU+ zf6f1J9hy|py8Ta@6V8d?HP5BU<;B&B^e9MG(m!2Rvk$k}cm>P@3Qm@|0M#D=01?EO zu6zYI9GlRll3_0Z05aGB01*HH00000009610002lBbNbv1w8_3QV z1v~=Yp_jaU1v~;qg_rt$1tJ9VOXjJUAbtfF1Ko55m!Ee99G9Se1rV3!cm)s)00000 z0RR91001*~mw|o-Ndi1~mw|o-8

Neurodata Without Borders Extracellular Electrophysiology Tutorial

Table of Contents
Neurodata Without Borders Extracellular Electrophysiology Tutorial +.S22 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 28.8px; min-height: 0px; white-space: pre-wrap; color: rgb(192, 76, 11); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 24px; font-weight: 400; text-align: left; }

Neurodata Without Borders Extracellular Electrophysiology Tutorial

About This Tutorial

This tutorial describes storage of hypothetical data from extracellular electrophysiology experiments in NWB for the following data categories:
  • Raw voltage recording
  • Local field potential (LFP) and filtered electrical signals
  • Spike times

Before You Begin

It is recommended to first work through the Introduction to MatNWB tutorial, which demonstrates installing MatNWB and creating an NWB file with subject information, animal position, and trials, as well as writing and reading NWB files in MATLAB.
Important: The dimensions of timeseries data in MatNWB should be defined in the opposite order of how it is defined in the nwb-schemas. In NWB, time is always stored in the first dimension of the data, whereas in MatNWB time should be stored in the last dimension of the data. This is explained in more detail here: MatNWB <-> HDF5 Dimension Mapping.

Setting up the NWB File

An NWB file represents a single session of an experiment. Each file must have a session_description, identifier, and session_start_time. Create a new NWBFile object these required fields along with any additional metadata. In MatNWB, arguments are specified using MATLAB's keyword argument pair convention, where each argument name is followed by its value.
nwb = NwbFile( ...
'session_description', 'mouse in open exploration',...
'identifier', 'Mouse5_Day3', ...
'session_start_time', datetime(2018, 4, 25, 2, 30, 3, 'TimeZone', 'local'), ...
'timestamps_reference_time', datetime(2018, 4, 25, 3, 0, 45, 'TimeZone', 'local'), ...
'general_experimenter', 'Last Name, First Name', ... % optional
'general_session_id', 'session_1234', ... % optional
'general_institution', 'University of My Institution', ... % optional
'general_related_publications', {'DOI:10.1016/j.neuron.2016.12.011'}); % optional
nwb

About This Tutorial

This tutorial describes storage of hypothetical data from extracellular electrophysiology experiments in NWB for the following data categories:
  • Raw voltage recording
  • Local field potential (LFP) and filtered electrical signals
  • Spike times

Before You Begin

It is recommended to first work through the Introduction to MatNWB tutorial, which demonstrates installing MatNWB and creating an NWB file with subject information, animal position, and trials, as well as writing and reading NWB files in MATLAB.
Important: The dimensions of timeseries data in MatNWB should be defined in the opposite order of how it is defined in the nwb-schemas. In NWB, time is always stored in the first dimension of the data, whereas in MatNWB time should be stored in the last dimension of the data. This is explained in more detail here: MatNWB <-> HDF5 Dimension Mapping.

Setting up the NWB File

An NWB file represents a single session of an experiment. Each file must have a session_description, identifier, and session_start_time. Create a new NWBFile object these required fields along with any additional metadata. In MatNWB, arguments are specified using MATLAB's keyword argument pair convention, where each argument name is followed by its value.
nwb = NwbFile( ...
'session_description', 'mouse in open exploration',...
'identifier', 'Mouse5_Day3', ...
'session_start_time', datetime(2018, 4, 25, 2, 30, 3, 'TimeZone', 'local'), ...
'timestamps_reference_time', datetime(2018, 4, 25, 3, 0, 45, 'TimeZone', 'local'), ...
'general_experimenter', 'Last Name, First Name', ... % optional
'general_session_id', 'session_1234', ... % optional
'general_institution', 'University of My Institution', ... % optional
'general_related_publications', {'DOI:10.1016/j.neuron.2016.12.011'}); % optional
nwb
nwb =
NwbFile with properties: nwb_version: '2.7.0' file_create_date: [] @@ -154,922 +155,900 @@ stimulus_presentation: [0×1 types.untyped.Set] stimulus_templates: [0×1 types.untyped.Set] units: [] -

Electrode Information

In order to store extracellular electrophysiology data, you first must create an electrodes table describing the electrodes that generated this data. Extracellular electrodes are stored in an electrodes table, which is also a DynamicTable. electrodes has several required fields: x, y, z, impedance, location, filtering, and electrode_group.

Electrodes Table

Since this is a DynamicTable, we can add additional metadata fields. We will be adding a "label" column to the table.
numShanks = 4;
numChannelsPerShank = 3;
numChannels = numShanks * numChannelsPerShank;
 
electrodesDynamicTable = types.hdmf_common.DynamicTable(...
'colnames', {'location', 'group', 'group_name', 'label'}, ...
'description', 'all electrodes');
 
device = types.core.Device(...
'description', 'the best array', ...
'manufacturer', 'Probe Company 9000' ...
);
nwb.general_devices.set('array', device);
for iShank = 1:numShanks
shankGroupName = sprintf('shank%d', iShank);
electrodeGroup = types.core.ElectrodeGroup( ...
'description', sprintf('electrode group for %s', shankGroupName), ...
'location', 'brain area', ...
'device', types.untyped.SoftLink(device) ...
);
nwb.general_extracellular_ephys.set(shankGroupName, electrodeGroup);
for iElectrode = 1:numChannelsPerShank
electrodesDynamicTable.addRow( ...
'location', 'unknown', ...
'group', types.untyped.ObjectView(electrodeGroup), ...
'group_name', shankGroupName, ...
'label', sprintf('%s-electrode%d', shankGroupName, iElectrode));
end
end
electrodesDynamicTable.toTable() % Display the table
ans = 12×5 table
 idlocationgroupgroup_namelabel
10'unknown'1×1 ObjectView'shank1''shank1-electrode1'
21'unknown'1×1 ObjectView'shank1''shank1-electrode2'
32'unknown'1×1 ObjectView'shank1''shank1-electrode3'
43'unknown'1×1 ObjectView'shank2''shank2-electrode1'
54'unknown'1×1 ObjectView'shank2''shank2-electrode2'
65'unknown'1×1 ObjectView'shank2''shank2-electrode3'
76'unknown'1×1 ObjectView'shank3''shank3-electrode1'
87'unknown'1×1 ObjectView'shank3''shank3-electrode2'
98'unknown'1×1 ObjectView'shank3''shank3-electrode3'
109'unknown'1×1 ObjectView'shank4''shank4-electrode1'
1110'unknown'1×1 ObjectView'shank4''shank4-electrode2'
1211'unknown'1×1 ObjectView'shank4''shank4-electrode3'
nwb.general_extracellular_ephys_electrodes = electrodesDynamicTable;

Links

In the above loop, we create ElectrodeGroup objects. The electrodes table then uses an ObjectView in each row to link to the corresponding ElectrodeGroup object. An ObjectView is a construct that enables linking one neurodata type to another, allowing a neurodata type to reference another within the NWB file.

Recorded Extracellular Signals

Voltage data are stored using the ElectricalSeries class, a subclass of the TimeSeries class specialized for voltage data.

Referencing Electrodes

In order to create our ElectricalSeries object, we first need to reference a set of rows in the electrodes table to indicate which electrode (channel) each entry in the electrical series were recorded from. We will do this by creating a DynamicTableRegion, which is a type of link that allows you to reference specific rows of a DynamicTable, such as the electrodes table, using row indices.
Create a DynamicTableRegion that references all rows of the electrodes table.
electrode_table_region = types.hdmf_common.DynamicTableRegion( ...
'table', types.untyped.ObjectView(electrodesDynamicTable), ...
'description', 'all electrodes', ...
'data', (0:length(electrodesDynamicTable.id.data)-1)');

Raw Voltage Data

Now create an ElectricalSeries object to hold acquisition data collected during the experiment.
raw_electrical_series = types.core.ElectricalSeries( ...
'starting_time', 0.0, ... % seconds
'starting_time_rate', 30000., ... % Hz
'data', randn(numChannels, 3000), ... % nChannels x nTime
'electrodes', electrode_table_region, ...
'data_unit', 'volts');
This is the voltage data recorded directly from our electrodes, so it goes in the acquisition group.
nwb.acquisition.set('ElectricalSeries', raw_electrical_series);

Processed Extracellular Electrical Signals

LFP

LFP refers to data that has been low-pass filtered, typically below 300 Hz. This data may also be downsampled. Because it is filtered and potentially resampled, it is categorized as processed data. LFP data would also be stored in an ElectricalSeries. To help data analysis and visualization tools know that this ElectricalSeries object represents LFP data, we store it inside an LFP object and then place the LFP object in a ProcessingModule named 'ecephys'. This is analogous to how we stored the SpatialSeries object inside of a Position object and stored the Position object in a ProcessingModule named 'behavior' in the behavior tutorial
lfp_electrical_series = types.core.ElectricalSeries( ...
'starting_time', 0.0, ... % seconds
'starting_time_rate', 1000., ... % Hz
'data', randn(numChannels, 100), ... nChannels x nTime
'filtering', 'Low-pass filter at 300 Hz', ...
'electrodes', electrode_table_region, ...
'data_unit', 'volts');
 
lfp = types.core.LFP('ElectricalSeries', lfp_electrical_series);
 
ecephys_module = types.core.ProcessingModule(...
'description', 'extracellular electrophysiology');
 
ecephys_module.nwbdatainterface.set('LFP', lfp);
nwb.processing.set('ecephys', ecephys_module);

Other Types of Filtered Electrical Signals

If your derived data is filtered for frequency ranges other than LFP—such as Gamma or Theta—you should store it in an ElectricalSeries and encapsulate it within a FilteredEphys object instead of the LFP object.
% Generate filtered data
filtered_data = randn(50, 12); % 50 time points, 12 channels
filtered_data = permute(filtered_data, [2, 1]); % permute timeseries for matnwb
 
% Create an ElectricalSeries object
filtered_electrical_series = types.core.ElectricalSeries( ...
'description', 'Data filtered in the Theta range', ...
'data', filtered_data, ...
'electrodes', electrode_table_region, ...
'filtering', 'Band-pass filtered between 4 and 8 Hz', ...
'starting_time', 0.0, ...
'starting_time_rate', 200.0 ...
);
 
% Create a FilteredEphys object and add the filtered electrical series
filtered_ephys = types.core.FilteredEphys();
filtered_ephys.electricalseries.set('FilteredElectricalSeries', filtered_electrical_series);
 
% Add the FilteredEphys object to the ecephys module
ecephys_module.nwbdatainterface.set('FilteredEphys', filtered_ephys);

Spike Times and Extracellular Events

Sorted Spike Times

Spike times are stored in a Units table, a specialization of the DynamicTable class. The default Units table is located at /units in the HDF5 file. You can add columns to the Units table just like you did for electrodes and trials (see convertTrials). Here, we generate some random spike data and populate the table.
num_cells = 10;
spikes = cell(1, num_cells);
for iShank = 1:num_cells
spikes{iShank} = rand(1, randi([16, 28]));
end
spikes
spikes = 1×10 cell
 12345678910
11×23 double1×24 double1×25 double1×27 double1×23 double1×21 double1×27 double1×27 double1×28 double1×28 double

Ragged Arrays

Spike times are an example of a ragged array- it's like a matrix, but each row has a different number of elements. We can represent this type of data as an indexed column of the Units table. These indexed columns have two components, the VectorData object that holds the data and the VectorIndex object that holds the indices in the vector that indicate the row breaks. You can use the convenience function util.create_indexed_column to create these objects. For more information about ragged arrays, we refer you to the "Ragged Array Columns" section of the dynamic table tutorial.
[spike_times_vector, spike_times_index] = util.create_indexed_column(spikes);
 
nwb.units = types.core.Units( ...
'colnames', {'spike_times'}, ...
'description', 'units table', ...
'spike_times', spike_times_vector, ...
'spike_times_index', spike_times_index ...
);
 
nwb.units.toTable
ans = 10×2 table
 idspike_times
1123×1 double
2224×1 double
3325×1 double
4427×1 double
5523×1 double
6621×1 double
7727×1 double
8827×1 double
9928×1 double
101028×1 double

Unsorted Spike Times

While the Units table is used to store spike times and waveform data for spike-sorted, single-unit activity, you may also want to store spike times and waveform snippets of unsorted spiking activity. This is useful for recording multi-unit activity detected via threshold crossings during data acquisition. Such information can be stored using SpikeEventSeries objects.
% In the SpikeEventSeries the dimensions should be ordered as
% [num_events, num_channels, num_samples].
% Define spike snippets: 20 events, 3 channels, 40 samples per event.
spike_snippets = rand(20, 3, 40);
% Permute spike snippets (See dimensionMapNoDataPipes tutorial)
spike_snippets = permute(spike_snippets, [3,2,1])
spike_snippets =
spike_snippets(:,:,1) = - - 0.2780 0.0148 0.4113 - 0.9089 0.2536 0.2512 - 0.2961 0.4550 0.8541 - 0.5709 0.1663 0.1813 - 0.6639 0.8085 0.9136 - 0.1532 0.5275 0.1305 - 0.5169 0.6597 0.9037 - 0.6069 0.9045 0.9244 - 0.9657 0.3104 0.8828 - 0.4293 0.2333 0.9000 - 0.3021 0.8831 0.9400 - 0.1023 0.8102 0.2832 - 0.5171 0.9477 0.6370 - 0.6029 0.9545 0.8187 - 0.5206 0.4737 0.8799 - 0.3451 0.1380 0.5775 - 0.0495 0.1734 0.9920 - 0.8352 0.1176 0.1876 - 0.8302 0.8044 0.6006 - 0.3333 0.6354 0.1640 - 0.1174 0.6743 0.8681 - 0.3170 0.6718 0.1311 - 0.6166 0.2288 0.7316 - 0.8783 0.7603 0.0001 - 0.2442 0.5209 0.2155 - 0.3402 0.2235 0.5329 - 0.5665 0.0798 0.7609 - 0.5323 0.5660 0.5499 - 0.7377 0.0673 0.3152 - 0.2693 0.4380 0.2733 - 0.9295 0.5399 0.4471 - 0.2433 0.3025 0.8800 - 0.5839 0.5657 0.5774 - 0.9038 0.2999 0.9696 - 0.6991 0.2018 0.5173 - 0.2515 0.0586 0.2742 - 0.4466 0.4422 0.5018 - 0.9849 0.9096 0.8287 - 0.1720 0.6847 0.6424 - 0.1289 0.0637 0.0174 +

Electrode Information

In order to store extracellular electrophysiology data, you first must create an electrodes table describing the electrodes that generated this data. Extracellular electrodes are stored in an electrodes table, which is also a DynamicTable. electrodes has several required fields: x, y, z, impedance, location, filtering, and electrode_group.

Electrodes Table

Since this is a DynamicTable, we can add additional metadata fields. We will be adding a "label" column to the table.
numShanks = 4;
numChannelsPerShank = 3;
numChannels = numShanks * numChannelsPerShank;
 
electrodesDynamicTable = types.hdmf_common.DynamicTable(...
'colnames', {'location', 'group', 'group_name', 'label'}, ...
'description', 'all electrodes');
 
device = types.core.Device(...
'description', 'the best array', ...
'manufacturer', 'Probe Company 9000' ...
);
nwb.general_devices.set('array', device);
for iShank = 1:numShanks
shankGroupName = sprintf('shank%d', iShank);
electrodeGroup = types.core.ElectrodeGroup( ...
'description', sprintf('electrode group for %s', shankGroupName), ...
'location', 'brain area', ...
'device', types.untyped.SoftLink(device) ...
);
nwb.general_extracellular_ephys.set(shankGroupName, electrodeGroup);
for iElectrode = 1:numChannelsPerShank
electrodesDynamicTable.addRow( ...
'location', 'unknown', ...
'group', types.untyped.ObjectView(electrodeGroup), ...
'group_name', shankGroupName, ...
'label', sprintf('%s-electrode%d', shankGroupName, iElectrode));
end
end
electrodesDynamicTable.toTable() % Display the table
ans = 12×5 table
 idlocationgroupgroup_namelabel
10'unknown'1×1 ObjectView'shank1''shank1-electrode1'
21'unknown'1×1 ObjectView'shank1''shank1-electrode2'
32'unknown'1×1 ObjectView'shank1''shank1-electrode3'
43'unknown'1×1 ObjectView'shank2''shank2-electrode1'
54'unknown'1×1 ObjectView'shank2''shank2-electrode2'
65'unknown'1×1 ObjectView'shank2''shank2-electrode3'
76'unknown'1×1 ObjectView'shank3''shank3-electrode1'
87'unknown'1×1 ObjectView'shank3''shank3-electrode2'
98'unknown'1×1 ObjectView'shank3''shank3-electrode3'
109'unknown'1×1 ObjectView'shank4''shank4-electrode1'
1110'unknown'1×1 ObjectView'shank4''shank4-electrode2'
1211'unknown'1×1 ObjectView'shank4''shank4-electrode3'
nwb.general_extracellular_ephys_electrodes = electrodesDynamicTable;

Links

In the above loop, we create ElectrodeGroup objects. The electrodes table then uses an ObjectView in each row to link to the corresponding ElectrodeGroup object. An ObjectView is a construct that enables linking one neurodata type to another, allowing a neurodata type to reference another within the NWB file.

Recorded Extracellular Signals

Voltage data are stored using the ElectricalSeries class, a subclass of the TimeSeries class specialized for voltage data.

Referencing Electrodes

In order to create our ElectricalSeries object, we first need to reference a set of rows in the electrodes table to indicate which electrode (channel) each entry in the electrical series were recorded from. We will do this by creating a DynamicTableRegion, which is a type of link that allows you to reference specific rows of a DynamicTable, such as the electrodes table, using row indices.
Create a DynamicTableRegion that references all rows of the electrodes table.
electrode_table_region = types.hdmf_common.DynamicTableRegion( ...
'table', types.untyped.ObjectView(electrodesDynamicTable), ...
'description', 'all electrodes', ...
'data', (0:length(electrodesDynamicTable.id.data)-1)');

Raw Voltage Data

Now create an ElectricalSeries object to hold acquisition data collected during the experiment.
raw_electrical_series = types.core.ElectricalSeries( ...
'starting_time', 0.0, ... % seconds
'starting_time_rate', 30000., ... % Hz
'data', randn(numChannels, 3000), ... % nChannels x nTime
'electrodes', electrode_table_region, ...
'data_unit', 'volts');
This is the voltage data recorded directly from our electrodes, so it goes in the acquisition group.
nwb.acquisition.set('ElectricalSeries', raw_electrical_series);

Processed Extracellular Electrical Signals

LFP

LFP refers to data that has been low-pass filtered, typically below 300 Hz. This data may also be downsampled. Because it is filtered and potentially resampled, it is categorized as processed data. LFP data would also be stored in an ElectricalSeries. To help data analysis and visualization tools know that this ElectricalSeries object represents LFP data, we store it inside an LFP object and then place the LFP object in a ProcessingModule named 'ecephys'. This is analogous to how we stored the SpatialSeries object inside of a Position object and stored the Position object in a ProcessingModule named 'behavior' in the behavior tutorial
lfp_electrical_series = types.core.ElectricalSeries( ...
'starting_time', 0.0, ... % seconds
'starting_time_rate', 1000., ... % Hz
'data', randn(numChannels, 100), ... nChannels x nTime
'filtering', 'Low-pass filter at 300 Hz', ...
'electrodes', electrode_table_region, ...
'data_unit', 'volts');
 
lfp = types.core.LFP('ElectricalSeries', lfp_electrical_series);
 
ecephys_module = types.core.ProcessingModule(...
'description', 'extracellular electrophysiology');
 
ecephys_module.nwbdatainterface.set('LFP', lfp);
nwb.processing.set('ecephys', ecephys_module);

Other Types of Filtered Electrical Signals

If your acquired data is filtered for frequency ranges other than LFP—such as Gamma or Theta—you can store the result in an ElectricalSeries and encapsulate it within a FilteredEphys object instead of the LFP object.
% Generate filtered data
filtered_data = randn(50, 12); % 50 time points, 12 channels
filtered_data = permute(filtered_data, [2, 1]); % permute timeseries for matnwb
 
% Create an ElectricalSeries object
filtered_electrical_series = types.core.ElectricalSeries( ...
'description', 'Data filtered in the theta range', ...
'data', filtered_data, ...
'electrodes', electrode_table_region, ...
'filtering', 'Band-pass filtered between 4 and 8 Hz', ...
'starting_time', 0.0, ...
'starting_time_rate', 200.0 ...
);
 
% Create a FilteredEphys object and add the filtered electrical series
filtered_ephys = types.core.FilteredEphys();
filtered_ephys.electricalseries.set('FilteredElectricalSeries', filtered_electrical_series);
 
% Add the FilteredEphys object to the ecephys module
ecephys_module.nwbdatainterface.set('FilteredEphys', filtered_ephys);

Decomposition of LFP Data into Frequency Bands

In some cases, you may want to further process the LFP data and decompose the signal into different frequency bands for additional downstream analyses. You can then store the processed data from these spectral analyses using a DecompositionSeries object. This object allows you to include metadata about the frequency bands and metric used (e.g., power, phase, amplitude), as well as link the decomposed data to the original TimeSeries signal the data was derived from.
In this tutorial, the examples for FilteredEphys and DecompositionSeries may appear similar. However, the key difference is that DecompositionSeries is specialized for storing the results of spectral analyses of timeseries data in general, whereas FilteredEphys is defined specifically as a container for filtered electrical signals.
Note: When adding data to a DecompositionSeries, the data argument is assumed to be 3D where the first dimension is time, the second dimension is channels, and the third dimension is bands. As mentioned in the beginning of this tutorial, in MatNWB the data needs to be permuted because the dimensions are written to file in reverse order (See the dimensionMapNoDataPipes tutorial)
% Define the frequency bands of interest (in Hz):
band_names = {'theta'; 'beta'; 'gamma'};
band_mean = [8; 21; 55];
band_stdev = [2; 4.5; 12.5];
band_limits = [band_mean - 2*band_stdev, band_mean + 2*band_stdev];
 
% The bands should be added to the DecompositionSeries as a dynamic table
bands = table(band_names, band_mean, band_stdev, band_limits, ...
'VariableNames', {'band_names', 'band_mean', 'band_stdev', 'band_limits'})
bands = 3×4 table
 band_namesband_meanband_stdevband_limits
12
1'theta'82412
2'beta'214.50001230
3'gamma'5512.50003080
 
bands = util.table2nwb( bands );
 
% Generate random phase data for the demonstration.
phase_data = randn(50, 12, numel(band_names)); % 50 samples, 12 channels, 3 frequency bands
phase_data = permute(phase_data, [3,2,1]); % See dimensionMapNoDataPipes tutorial
 
decomp_series = types.core.DecompositionSeries(...
'data', phase_data, ...
'bands', bands, ...
'metric', 'phase', ...
'starting_time', 0.0, ... % seconds
'starting_time_rate', 1000.0, ... % Hz
'source_channels', electrode_table_region, ...
'source_timeseries', lfp_electrical_series);
 
% Add decomposition series to ecephys module
ecephys_module.nwbdatainterface.set('theta', decomp_series);

Spike Times and Extracellular Events

Sorted Spike Times

Spike times are stored in a Units table, a specialization of the DynamicTable class. The default Units table is located at /units in the HDF5 file. You can add columns to the Units table just like you did for electrodes and trials (see convertTrials). Here, we generate some random spike data and populate the table.
num_cells = 10;
spikes = cell(1, num_cells);
for iShank = 1:num_cells
spikes{iShank} = rand(1, randi([16, 28]));
end
spikes
spikes = 1×10 cell
 12345678910
11×24 double1×28 double1×22 double1×28 double1×21 double1×26 double1×16 double1×18 double1×24 double1×24 double

Ragged Arrays

Spike times are an example of a ragged array- it's like a matrix, but each row has a different number of elements. We can represent this type of data as an indexed column of the Units table. These indexed columns have two components, the VectorData object that holds the data and the VectorIndex object that holds the indices in the vector that indicate the row breaks. You can use the convenience function util.create_indexed_column to create these objects. For more information about ragged arrays, we refer you to the "Ragged Array Columns" section of the dynamic table tutorial.
[spike_times_vector, spike_times_index] = util.create_indexed_column(spikes);
 
nwb.units = types.core.Units( ...
'colnames', {'spike_times'}, ...
'description', 'units table', ...
'spike_times', spike_times_vector, ...
'spike_times_index', spike_times_index ...
);
 
nwb.units.toTable
ans = 10×2 table
 idspike_times
1124×1 double
2228×1 double
3322×1 double
4428×1 double
5521×1 double
6626×1 double
7716×1 double
8818×1 double
9924×1 double
101024×1 double

Unsorted Spike Times

While the Units table is used to store spike times and waveform data for spike-sorted, single-unit activity, you may also want to store spike times and waveform snippets of unsorted spiking activity. This is useful for recording multi-unit activity detected via threshold crossings during data acquisition. Such information can be stored using SpikeEventSeries objects.
% In the SpikeEventSeries the dimensions should be ordered as
% [num_events, num_channels, num_samples].
% Define spike snippets: 20 events, 3 channels, 40 samples per event.
spike_snippets = rand(20, 3, 40);
% Permute spike snippets (See dimensionMapNoDataPipes tutorial)
spike_snippets = permute(spike_snippets, [3,2,1])
spike_snippets =
spike_snippets(:,:,1) = + + 0.7910 0.0213 0.8335 + 0.8083 0.5109 0.0694 + 0.0414 0.1315 0.9237 + 0.6840 0.0158 0.8003 + 0.9652 0.0518 0.6909 + 0.4137 0.6962 0.6477 + 0.7065 0.4276 0.1037 + 0.0327 0.2995 0.3123 + 0.5643 0.7282 0.7042 + 0.3009 0.8131 0.9222 + 0.1623 0.8546 0.4080 + 0.3810 0.7375 0.5178 + 0.1005 0.8742 0.2635 + 0.9530 0.3118 0.5444 + 0.0115 0.0973 0.5146 + 0.1436 0.2857 0.3713 + 0.5966 0.3174 0.4652 + 0.0131 0.8012 0.6369 + 0.4585 0.6484 0.6865 + 0.5535 0.1510 0.3442 + 0.0254 0.5062 0.8555 + 0.7063 0.5182 0.6404 + 0.3815 0.1169 0.1685 + 0.8255 0.1120 0.3037 + 0.1461 0.4718 0.1424 + 0.8712 0.8092 0.7453 + 0.3177 0.3974 0.9020 + 0.4894 0.6920 0.5508 + 0.1267 0.0666 0.8641 + 0.9720 0.7211 0.6973 + 0.8166 0.9120 0.1665 + 0.4227 0.3168 0.6086 + 0.0780 0.9907 0.1200 + 0.0661 0.3271 0.7940 + 0.8019 0.9782 0.7975 + 0.4981 0.6964 0.9912 + 0.5068 0.4475 0.9353 + 0.4478 0.6194 0.5117 + 0.8898 0.5428 0.7175 + 0.8606 0.2924 0.9609 spike_snippets(:,:,2) = - 0.1356 0.8906 0.1356 - 0.8359 0.4499 0.4325 - 0.5334 0.7425 0.3893 - 0.7806 0.4774 0.1446 - 0.7090 0.6839 0.8727 - 0.6276 0.3848 0.9937 - 0.6387 0.0727 0.0036 - 0.2166 0.6525 0.1900 - 0.7040 0.5891 0.2017 - 0.3564 0.7157 0.4724 - 0.1167 0.6595 0.5219 - 0.2402 0.7465 0.9879 - 0.7433 0.5308 0.0752 - 0.5490 0.8776 0.2981 - 0.0620 0.7035 0.5912 - 0.1362 0.5743 0.8116 - 0.8572 0.4815 0.6027 - 0.9946 0.4654 0.4843 - 0.0120 0.4187 0.2885 - 0.4056 0.3358 0.7233 - 0.9679 0.1308 0.8167 - 0.2359 0.1989 0.8837 - 0.5314 0.6617 0.3106 - 0.0073 0.3747 0.3369 - 0.4491 0.5629 0.3621 - 0.3106 0.3202 0.3869 - 0.6711 0.7039 0.4220 - 0.5631 0.3319 0.3008 - 0.1683 0.4825 0.1346 - 0.2136 0.7076 0.7932 - 0.8566 0.7091 0.5236 - 0.0288 0.6919 0.5200 - 0.7006 0.1266 0.5687 - 0.6473 0.8367 0.3659 - 0.6176 0.6711 0.9105 - 0.9251 0.7086 0.8938 - 0.1278 0.7159 0.8852 - 0.0841 0.6990 0.3079 - 0.0080 0.0005 0.4075 - 0.7984 0.6617 0.3013 + 0.5338 0.3753 0.6193 + 0.1517 0.6080 0.1663 + 0.1934 0.6342 0.9882 + 0.9244 0.8932 0.3000 + 0.8507 0.4194 0.6482 + 0.5106 0.1159 0.7561 + 0.1162 0.3095 0.9177 + 0.9806 0.6443 0.8760 + 0.0513 0.4850 0.9481 + 0.8886 0.2191 0.6419 + 0.6883 0.4286 0.8974 + 0.8499 0.5069 0.4643 + 0.9019 0.3152 0.4006 + 0.2973 0.4501 0.0411 + 0.2026 0.1939 0.9824 + 0.6041 0.2842 0.5462 + 0.9371 0.5834 0.8635 + 0.4799 0.6260 0.2953 + 0.5238 0.7532 0.8461 + 0.6517 0.7502 0.3512 + 0.4229 0.1752 0.1634 + 0.7366 0.7801 0.9180 + 0.1957 0.2408 0.3131 + 0.9544 0.5748 0.1483 + 0.8544 0.0117 0.7080 + 0.7467 0.9576 0.2643 + 0.5438 0.0537 0.0843 + 0.9563 0.6243 0.4454 + 0.5092 0.1294 0.3496 + 0.4297 0.4393 0.2485 + 0.4890 0.8836 0.6625 + 0.1389 0.4318 0.3081 + 0.1869 0.0011 0.4418 + 0.9201 0.4152 0.0008 + 0.4235 0.6870 0.1545 + 0.9545 0.0976 0.9682 + 0.7207 0.6316 0.7971 + 0.9008 0.5584 0.7311 + 0.1453 0.9232 0.3198 + 0.5304 0.4056 0.1549 spike_snippets(:,:,3) = - 0.3783 0.7965 0.1050 - 0.7297 0.1329 0.8280 - 0.0421 0.7440 0.5148 - 0.0433 0.1966 0.3639 - 0.3937 0.0728 0.1104 - 0.5506 0.7925 0.4094 - 0.3709 0.7109 0.0431 - 0.5237 0.6674 0.2444 - 0.1808 0.7575 0.3823 - 0.8111 0.5852 0.2838 - 0.3822 0.9055 0.2303 - 0.0973 0.3953 0.7989 - 0.0419 0.8453 0.6505 - 0.4524 0.3664 0.2062 - 0.4113 0.1807 0.1150 - 0.0886 0.8685 0.3013 - 0.3449 0.5180 0.2821 - 0.3773 0.6463 0.4354 - 0.7497 0.3262 0.9738 - 0.3253 0.4987 0.7777 - 0.8843 0.4842 0.8025 - 0.6655 0.3403 0.4367 - 0.6173 0.6862 0.7745 - 0.3096 0.4351 0.8634 - 0.9581 0.5508 0.9057 - 0.9796 0.8453 0.2989 - 0.4616 0.3215 0.5217 - 0.6465 0.2757 0.8933 - 0.6273 0.7627 0.3487 - 0.7493 0.0711 0.7441 - 0.6469 0.6425 0.3223 - 0.2125 0.5889 0.7047 - 0.3090 0.2534 0.4767 - 0.2812 0.5091 0.6808 - 0.1553 0.4004 0.3360 - 0.5689 0.5763 0.1933 - 0.4353 0.9890 0.3021 - 0.4081 0.5490 0.2611 - 0.0308 0.0775 0.0438 - 0.2588 0.8739 0.3807 + 0.5092 0.9115 0.6848 + 0.0370 0.3598 0.5459 + 0.8909 0.2320 0.6210 + 0.1415 0.3598 0.3532 + 0.6650 0.7777 0.2036 + 0.0845 0.7893 0.6989 + 0.8263 0.5907 0.7732 + 0.7758 0.9209 0.6862 + 0.6141 0.4780 0.6086 + 0.4845 0.5522 0.5599 + 0.9572 0.1676 0.3414 + 0.1539 0.5025 0.8494 + 0.6809 0.5092 0.8636 + 0.9649 0.6492 0.5732 + 0.3245 0.6510 0.9502 + 0.3759 0.3767 0.4420 + 0.7450 0.5653 0.0341 + 0.8066 0.5285 0.6691 + 0.7006 0.0285 0.2575 + 0.4817 0.5484 0.8613 + 0.2185 0.3218 0.5705 + 0.4282 0.1795 0.8811 + 0.3090 0.8398 0.6193 + 0.0477 0.4053 0.8866 + 0.1156 0.5851 0.2542 + 0.8462 0.0158 0.3698 + 0.4941 0.9994 0.2657 + 0.6635 0.6725 0.1791 + 0.8944 0.2112 0.0403 + 0.3573 0.8075 0.2363 + 0.0931 0.0854 0.2321 + 0.4501 0.9337 0.2882 + 0.5619 0.6824 0.8621 + 0.5455 0.0936 0.0346 + 0.4649 0.7467 0.8067 + 0.0441 0.9981 0.1671 + 0.1436 0.4552 0.5099 + 0.9111 0.4916 0.9271 + 0.1548 0.1222 0.4906 + 0.3945 0.8146 0.5500 spike_snippets(:,:,4) = - 0.2649 0.6259 0.3227 - 0.2491 0.7486 0.8558 - 0.3198 0.5868 0.3054 - 0.9232 0.9241 0.1926 - 0.8567 0.2033 0.2909 - 0.9502 0.7225 0.7050 - 0.3448 0.9984 0.8057 - 0.6264 0.9101 0.6463 - 0.5162 0.6860 0.4762 - 0.3276 0.2264 0.5250 - 0.5039 0.8624 0.7269 - 0.7390 0.1356 0.6052 - 0.9651 0.2247 0.4177 - 0.1197 0.2531 0.0582 - 0.0431 0.1862 0.8068 - 0.5937 0.9858 0.4938 - 0.8370 0.3590 0.5061 - 0.0589 0.0558 0.9941 - 0.4473 0.9498 0.0472 - 0.8378 0.1685 0.4784 - 0.7923 0.4368 0.6926 - 0.5336 0.0716 0.9173 - 0.8650 0.4142 0.8525 - 0.0634 0.7115 0.9690 - 0.1277 0.2495 0.9790 - 0.2543 0.5766 0.0703 - 0.8826 0.7350 0.1136 - 0.6198 0.1620 0.6696 - 0.5354 0.5791 0.6978 - 0.8119 0.8240 0.6792 - 0.4559 0.7728 0.2349 - 0.1032 0.8007 0.3118 - 0.1165 0.3766 0.7736 - 0.2743 0.6713 0.0053 - 0.8355 0.9312 0.8363 - 0.8097 0.4272 0.2623 - 0.3977 0.9368 0.4354 - 0.4137 0.5146 0.7045 - 0.5012 0.6424 0.9537 - 0.6439 0.1141 0.0752 + 0.8651 0.0729 0.5703 + 0.7056 0.7361 0.0422 + 0.7220 0.4867 0.8848 + 0.7563 0.2299 0.4345 + 0.1388 0.6244 0.1856 + 0.4175 0.1199 0.3165 + 0.0970 0.6949 0.4674 + 0.6304 0.8521 0.2420 + 0.5424 0.2486 0.6067 + 0.1731 0.3253 0.6955 + 0.6922 0.3908 0.0253 + 0.3011 0.2044 0.2150 + 0.6281 0.9983 0.8887 + 0.5463 0.3738 0.2357 + 0.1263 0.2581 0.0286 + 0.5020 0.1082 0.0744 + 0.2669 0.0954 0.5680 + 0.3439 0.2201 0.8495 + 0.6176 0.9906 0.6916 + 0.2697 0.4133 0.1197 + 0.5944 0.7802 0.2287 + 0.4447 0.7085 0.0679 + 0.1947 0.6754 0.9432 + 0.4714 0.0661 0.0817 + 0.5271 0.9569 0.9435 + 0.8597 0.6655 0.0351 + 0.8275 0.0531 0.2852 + 0.2070 0.3484 0.4845 + 0.9358 0.0522 0.7680 + 0.6787 0.3460 0.3718 + 0.2934 0.3135 0.0939 + 0.9152 0.4345 0.1295 + 0.3650 0.2472 0.3402 + 0.1528 0.6372 0.5485 + 0.5785 0.9504 0.9111 + 0.5069 0.9808 0.3079 + 0.3256 0.3353 0.1383 + 0.5329 0.4452 0.8509 + 0.1127 0.6844 0.8668 + 0.7811 0.1499 0.4629 spike_snippets(:,:,5) = - 0.0353 0.5785 0.1052 - 0.9667 0.9307 0.7775 - 0.0724 0.7375 0.9376 - 0.2985 0.0157 0.5220 - 0.2656 0.4422 0.7409 - 0.1663 0.4812 0.8922 - 0.2181 0.4709 0.0764 - 0.2997 0.1134 0.7770 - 0.4091 0.1724 0.0672 - 0.3649 0.4570 0.8933 - 0.0467 0.9205 0.5342 - 0.2600 0.4604 0.6358 - 0.3632 0.4091 0.5228 - 0.3142 0.5238 0.8015 - 0.9972 0.8749 0.1874 - 0.2001 0.8972 0.8003 - 0.6966 0.7425 0.8926 - 0.2572 0.2725 0.3606 - 0.2437 0.2278 0.0985 - 0.5260 0.2972 0.9588 - 0.3713 0.6128 0.5907 - 0.5425 0.4280 0.9567 - 0.2313 0.8796 0.2725 - 0.8410 0.8233 0.3227 - 0.2570 0.2153 0.0822 - 0.6232 0.8143 0.8897 - 0.5503 0.2705 0.4599 - 0.4243 0.9212 0.8713 - 0.6731 0.7431 0.2173 - 0.7223 0.2741 0.7489 - 0.0597 0.2518 0.3761 - 0.9505 0.4155 0.3440 - 0.0127 0.5266 0.2639 - 0.9038 0.9368 0.6245 - 0.2475 0.5880 0.0437 - 0.8818 0.2390 0.7275 - 0.8650 0.2695 0.5546 - 0.5279 0.0313 0.2543 - 0.3718 0.3389 0.7586 - 0.9491 0.6410 0.0260 + 0.9833 0.1306 0.1439 + 0.2656 0.5451 0.9737 + 0.5678 0.3446 0.3483 + 0.0967 0.0733 0.2677 + 0.2653 0.9260 0.8876 + 0.3652 0.3403 0.3428 + 0.7242 0.2202 0.3057 + 0.8023 0.8464 0.9116 + 0.2288 0.7517 0.9695 + 0.7929 0.6289 0.9108 + 0.5254 0.5371 0.8497 + 0.9644 0.9208 0.5796 + 0.3907 0.0955 0.7351 + 0.8862 0.8287 0.5880 + 0.3508 0.8420 0.7759 + 0.9350 0.8327 0.3354 + 0.3336 0.4643 0.3187 + 0.3489 0.0708 0.8605 + 0.6006 0.7239 0.3991 + 0.3062 0.9719 0.1192 + 0.6141 0.9838 0.1967 + 0.0040 0.5215 0.8946 + 0.2364 0.0775 0.0065 + 0.7518 0.9408 0.8491 + 0.7013 0.8655 0.8282 + 0.9326 0.1311 0.8476 + 0.1252 0.0149 0.3416 + 0.9947 0.6125 0.6894 + 0.1763 0.6221 0.2775 + 0.7586 0.2494 0.6819 + 0.9048 0.7648 0.0505 + 0.2789 0.3761 0.7825 + 0.1195 0.3080 0.1136 + 0.3286 0.8026 0.9635 + 0.5285 0.2380 0.6579 + 0.4777 0.2527 0.4029 + 0.6137 0.4510 0.4112 + 0.3054 0.5817 0.7277 + 0.5103 0.9052 0.9271 + 0.8229 0.1610 0.4064 spike_snippets(:,:,6) = - 0.8353 0.8842 0.1327 - 0.0023 0.0828 0.0155 - 0.4521 0.2627 0.3135 - 0.6089 0.9924 0.1857 - 0.2771 0.0145 0.5243 - 0.0054 0.6352 0.6397 - 0.9503 0.6881 0.6905 - 0.5268 0.6878 0.0469 - 0.3679 0.0870 0.0940 - 0.7434 0.2069 0.6242 - 0.7756 0.0147 0.1339 - 0.3013 0.4838 0.5379 - 0.7562 0.3814 0.9576 - 0.5539 0.7027 0.2851 - 0.4565 0.4701 0.4139 - 0.9140 0.5460 0.2079 - 0.3755 0.6503 0.2046 - 0.1380 0.9547 0.2964 - 0.9064 0.5506 0.4604 - 0.4459 0.0249 0.1004 - 0.1336 0.8181 0.9869 - 0.7424 0.1500 0.2491 - 0.5502 0.8456 0.8847 - 0.2056 0.3975 0.2799 - 0.3125 0.9756 0.9344 - 0.1778 0.6799 0.5414 - 0.6171 0.7186 0.0913 - 0.5498 0.4818 0.1065 - 0.2924 0.6595 0.9587 - 0.0464 0.5249 0.9911 - 0.6492 0.7509 0.9557 - 0.3380 0.2306 0.6588 - 0.2239 0.2056 0.6502 - 0.0666 0.7243 0.5550 - 0.8463 0.7816 0.2333 - 0.1221 0.9336 0.6374 - 0.2198 0.0172 0.9353 - 0.2697 0.7625 0.7616 - 0.5676 0.3180 0.2653 - 0.7473 0.3677 0.3685 + 0.3054 0.2779 0.6491 + 0.5022 0.0909 0.5466 + 0.2294 0.5000 0.8570 + 0.4042 0.5115 0.9431 + 0.4964 0.2149 0.5783 + 0.4703 0.1227 0.4063 + 0.7156 0.5084 0.0977 + 0.1685 0.6039 0.9440 + 0.5246 0.4176 0.6435 + 0.1973 0.8868 0.0968 + 0.3190 0.5694 0.8356 + 0.9508 0.3955 0.3049 + 0.7104 0.8199 0.1919 + 0.5505 0.9165 0.1106 + 0.5106 0.9105 0.6328 + 0.1722 0.1372 0.2181 + 0.4067 0.5448 0.6478 + 0.9696 0.4703 0.5263 + 0.1818 0.4216 0.7169 + 0.2094 0.2752 0.8469 + 0.4900 0.4156 0.5015 + 0.9689 0.3503 0.3427 + 0.4425 0.7213 0.7925 + 0.1208 0.9218 0.1758 + 0.5253 0.4974 0.9133 + 0.5050 0.1665 0.3859 + 0.3676 0.0337 0.0437 + 0.9110 0.8914 0.5112 + 0.4501 0.4358 0.3669 + 0.8307 0.5862 0.6017 + 0.2800 0.0028 0.3824 + 0.9934 0.6645 0.1911 + 0.1871 0.5665 0.4545 + 0.5104 0.4363 0.3587 + 0.4477 0.1140 0.2533 + 0.0078 0.4282 0.6347 + 0.6320 0.1487 0.7152 + 0.4901 0.3613 0.0225 + 0.0841 0.3465 0.2337 + 0.2430 0.2622 0.4275 spike_snippets(:,:,7) = - 0.2717 0.8437 0.0614 - 0.9846 0.1554 0.6485 - 0.4405 0.5486 0.9861 - 0.2992 0.2502 0.0416 - 0.7311 0.8385 0.7856 - 0.5447 0.1100 0.3637 - 0.4743 0.6841 0.0385 - 0.7385 0.9559 0.6803 - 0.3589 0.2038 0.8423 - 0.6803 0.3435 0.9457 - 0.2223 0.2174 0.5204 - 0.5181 0.9136 0.4587 - 0.5111 0.5251 0.6280 - 0.1176 0.2497 0.5422 - 0.5466 0.6819 0.2333 - 0.5011 0.4795 0.9527 - 0.8456 0.4351 0.4552 - 0.5045 0.9980 0.1937 - 0.3748 0.1342 0.8555 - 0.6774 0.2389 0.2832 - 0.4197 0.1265 0.4677 - 0.9821 0.5483 0.3190 - 0.0633 0.8405 0.1184 - 0.8376 0.0095 0.9551 - 0.1982 0.8255 0.1118 - 0.9934 0.3247 0.2800 - 0.2720 0.7457 0.5024 - 0.4922 0.3824 0.4749 - 0.7537 0.4682 0.0557 - 0.5107 0.6124 0.4445 - 0.5398 0.3796 0.4417 - 0.0725 0.2940 0.3620 - 0.9727 0.1012 0.8457 - 0.6401 0.9106 0.6999 - 0.2930 0.8806 0.3215 - 0.4818 0.7571 0.2296 - 0.5412 0.0074 0.0305 - 0.4098 0.9592 0.5943 - 0.2615 0.6385 0.9016 - 0.0142 0.0078 0.2939 + 0.5203 0.4307 0.6524 + 0.7971 0.7307 0.9649 + 0.5900 0.5683 0.7583 + 0.4517 0.9439 0.4560 + 0.7591 0.4558 0.7293 + 0.5660 0.1464 0.6991 + 0.4934 0.6237 0.6178 + 0.8066 0.6757 0.4065 + 0.1988 0.2131 0.3927 + 0.9253 0.1590 0.2406 + 0.4513 0.2735 0.8884 + 0.3209 0.9513 0.4656 + 0.1497 0.7329 0.8223 + 0.8818 0.5569 0.8199 + 0.1966 0.0080 0.8479 + 0.2544 0.0254 0.1438 + 0.9411 0.2648 0.6022 + 0.9904 0.3270 0.8801 + 0.5011 0.0608 0.7151 + 0.4306 0.5025 0.6970 + 0.7600 0.0648 0.6352 + 0.8428 0.1614 0.4374 + 0.7337 0.1432 0.7528 + 0.7799 0.2674 0.2795 + 0.1125 0.0389 0.7427 + 0.6235 0.6113 0.4224 + 0.8652 0.3020 0.7012 + 0.0585 0.2901 0.6066 + 0.2551 0.6485 0.6733 + 0.3578 0.4431 0.8841 + 0.3194 0.8011 0.5885 + 0.8658 0.1362 0.9775 + 0.7267 0.8782 0.1815 + 0.9021 0.1424 0.9340 + 0.1541 0.2204 0.2235 + 0.3263 0.9738 0.1737 + 0.8442 0.1610 0.1785 + 0.0902 0.4908 0.3965 + 0.9395 0.1451 0.8357 + 0.5820 0.4252 0.1027 spike_snippets(:,:,8) = - 0.5593 0.0664 0.1353 - 0.3706 0.7314 0.5002 - 0.2348 0.4361 0.8898 - 0.3238 0.8773 0.3457 - 0.7999 0.0080 0.0955 - 0.1456 0.2914 0.5586 - 0.8459 0.2323 0.0713 - 0.8664 0.9928 0.3438 - 0.1765 0.6375 0.2839 - 0.0213 0.9495 0.2103 - 0.9784 0.6562 0.7590 - 0.4871 0.4380 0.3342 - 0.3254 0.4880 0.2579 - 0.7349 0.5574 0.3016 - 0.5836 0.4425 0.1105 - 0.6315 0.4373 0.2164 - 0.9936 0.1000 0.7040 - 0.0706 0.2114 0.4139 - 0.3899 0.1189 0.6065 - 0.8679 0.0302 0.9512 - 0.2909 0.3544 0.1529 - 0.2939 0.4527 0.7157 - 0.8946 0.0451 0.3767 - 0.8676 0.5813 0.1104 - 0.0709 0.2271 0.6175 - 0.8726 0.2966 0.0629 - 0.8273 0.7022 0.3356 - 0.0928 0.5537 0.5731 - 0.2954 0.0095 0.0852 - 0.1539 0.0523 0.0867 - 0.9804 0.0772 0.3589 - 0.8008 0.8144 0.7733 - 0.5719 0.3287 0.5242 - 0.7745 0.6716 0.0099 - 0.0604 0.9060 0.4542 - 0.3181 0.2407 0.6370 - 0.1010 0.6173 0.8799 - 0.3902 0.9332 0.4848 - 0.4473 0.5347 0.4481 - 0.8056 0.4465 0.1206 + 0.1236 0.6511 0.1434 + 0.6919 0.8788 0.5315 + 0.0110 0.2866 0.2883 + 0.6653 0.3658 0.7295 + 0.3830 0.3836 0.1894 + 0.0792 0.4844 0.6232 + 0.0429 0.0815 0.0893 + 0.9189 0.4935 0.6753 + 0.9430 0.6922 0.1165 + 0.6600 0.5560 0.4981 + 0.7278 0.3105 0.6180 + 0.2455 0.8558 0.8068 + 0.1648 0.5900 0.8158 + 0.7264 0.2944 0.9467 + 0.5387 0.3136 0.4850 + 0.2455 0.0724 0.9675 + 0.9792 0.7856 0.1285 + 0.0151 0.3191 0.4051 + 0.7201 0.2710 0.8689 + 0.6860 0.1948 0.5062 + 0.8377 0.2674 0.8979 + 0.3805 0.7267 0.2665 + 0.2113 0.5110 0.2891 + 0.2075 0.1331 0.1577 + 0.5781 0.8387 0.8078 + 0.0374 0.8755 0.9759 + 0.0858 0.7683 0.4930 + 0.9413 0.4375 0.2516 + 0.4598 0.0071 0.5345 + 0.3385 0.2310 0.6649 + 0.8964 0.7416 0.8791 + 0.9074 0.5103 0.8058 + 0.0780 0.2104 0.6698 + 0.1535 0.9910 0.7050 + 0.2712 0.3049 0.6195 + 0.0698 0.8990 0.2976 + 0.5451 0.3134 0.1452 + 0.6226 0.0632 0.5848 + 0.3860 0.4139 0.0877 + 0.2459 0.3314 0.7027 spike_snippets(:,:,9) = - 0.9006 0.9767 0.4546 - 0.4900 0.1118 0.3742 - 0.6286 0.1657 0.4895 - 0.0315 0.7151 0.8266 - 0.5473 0.4190 0.4702 - 0.5753 0.7077 0.3470 - 0.9155 0.6868 0.1367 - 0.0095 0.6625 0.5484 - 0.7689 0.2045 0.2163 - 0.4798 0.6163 0.2810 - 0.1679 0.4193 0.0015 - 0.3575 0.4011 0.3735 - 0.0642 0.3644 0.1549 - 0.9379 0.0651 0.6980 - 0.4819 0.6627 0.9033 - 0.8420 0.3811 0.3017 - 0.0722 0.2149 0.7973 - 0.4157 0.9105 0.2724 - 0.0533 0.0427 0.8246 - 0.6276 0.0139 0.2806 - 0.6060 0.0471 0.3017 - 0.5282 0.1674 0.4363 - 0.3956 0.7580 0.4897 - 0.6309 0.0353 0.6656 - 0.1861 0.6520 0.8533 - 0.0611 0.9159 0.1356 - 0.6147 0.7900 0.1875 - 0.2017 0.7556 0.4291 - 0.4022 0.2524 0.1622 - 0.5871 0.7990 0.1337 - 0.1497 0.4101 0.9119 - 0.0517 0.4808 0.4061 - 0.0749 0.3774 0.7091 - 0.2355 0.2938 0.9197 - 0.6699 0.6678 0.5774 - 0.3838 0.9774 0.6441 - 0.0487 0.8784 0.1452 - 0.7651 0.1562 0.2282 - 0.4379 0.5744 0.9057 - 0.9151 0.5201 0.2940 + 0.1862 0.3166 0.5625 + 0.6883 0.8583 0.6659 + 0.8207 0.2343 0.7708 + 0.4771 0.9836 0.6667 + 0.9927 0.8793 0.5623 + 0.5524 0.3897 0.6021 + 0.0158 0.0147 0.6756 + 0.5509 0.3765 0.1045 + 0.0319 0.8561 0.6120 + 0.6078 0.8196 0.1573 + 0.8092 0.9058 0.8133 + 0.1753 0.4625 0.3167 + 0.7093 0.0153 0.8247 + 0.0031 0.9350 0.7074 + 0.7463 0.7795 0.7193 + 0.6112 0.7431 0.8335 + 0.1113 0.7544 0.5980 + 0.1001 0.0113 0.5878 + 0.7874 0.3017 0.8858 + 0.3490 0.6528 0.4592 + 0.2282 0.9735 0.8830 + 0.5118 0.8896 0.5627 + 0.8384 0.6445 0.6133 + 0.7058 0.5834 0.9355 + 0.8892 0.4049 0.2107 + 0.7051 0.1832 0.5109 + 0.9029 0.6395 0.3890 + 0.2350 0.2461 0.1438 + 0.4924 0.8447 0.9080 + 0.3103 0.9046 0.0424 + 0.0415 0.4561 0.1136 + 0.9019 0.4703 0.8842 + 0.5687 0.0371 0.4397 + 0.1593 0.0056 0.3861 + 0.6538 0.0122 0.3605 + 0.1895 0.2687 0.9563 + 0.4757 0.9230 0.5992 + 0.5058 0.0182 0.8989 + 0.7973 0.6793 0.1926 + 0.9365 0.5756 0.1470 spike_snippets(:,:,10) = - 0.8282 0.2138 0.4285 - 0.1261 0.4883 0.5792 - 0.2228 0.6247 0.6779 - 0.5449 0.8480 0.6369 - 0.4660 0.2117 0.6570 - 0.3096 0.5601 0.1036 - 0.7891 0.2303 0.9913 - 0.4926 0.8584 0.9990 - 0.3495 0.0570 0.5718 - 0.9466 0.2449 0.6204 - 0.0511 0.9682 0.8855 - 0.3725 0.5535 0.6946 - 0.3412 0.3071 0.8087 - 0.5381 0.5668 0.9207 - 0.1865 0.0673 0.4772 - 0.3406 0.2523 0.8170 - 0.5898 0.5944 0.8017 - 0.8600 0.7295 0.3962 - 0.1895 0.6133 0.0434 - 0.0279 0.2701 0.1114 - 0.0769 0.4293 0.3671 - 0.7910 0.9349 0.3867 - 0.8657 0.1144 0.5284 - 0.8548 0.8806 0.7524 - 0.4823 0.9414 0.3000 - 0.9317 0.7896 0.5841 - 0.0128 0.5571 0.6863 - 0.8671 0.7001 0.9361 - 0.5764 0.2295 0.1059 - 0.8178 0.5535 0.1238 - 0.8806 0.7218 0.9090 - 0.0153 0.7562 0.7664 - 0.2824 0.6593 0.8112 - 0.3260 0.6340 0.0707 - 0.7501 0.4089 0.5904 - 0.5228 0.3117 0.3652 - 0.4952 0.8159 0.5059 - 0.0382 0.4136 0.9324 - 0.8208 0.4944 0.5800 - 0.2682 0.8801 0.1464 + 0.6774 0.8672 0.3929 + 0.7508 0.8390 0.1819 + 0.8385 0.0982 0.1049 + 0.8561 0.8053 0.5929 + 0.6299 0.8493 0.1438 + 0.4487 0.6291 0.9145 + 0.3847 0.4643 0.3373 + 0.5404 0.7072 0.0958 + 0.4907 0.5549 0.8605 + 0.7538 0.9238 0.0707 + 0.6480 0.6550 0.8500 + 0.2106 0.1632 0.5082 + 0.2997 0.4515 0.2181 + 0.5225 0.6085 0.4031 + 0.7164 0.0671 0.2393 + 0.4219 0.8559 0.8960 + 0.2255 0.7409 0.2879 + 0.1748 0.2214 0.3755 + 0.6444 0.8154 0.7101 + 0.8884 0.4719 0.3015 + 0.9329 0.2244 0.2333 + 0.9767 0.3629 0.4684 + 0.8712 0.7563 0.3301 + 0.1827 0.6614 0.8416 + 0.7168 0.9171 0.7254 + 0.0646 0.5612 0.5675 + 0.5051 0.9097 0.6379 + 0.6441 0.4000 0.2584 + 0.3448 0.8788 0.3373 + 0.7757 0.0176 0.1728 + 0.7208 0.7215 0.9140 + 0.2416 0.7711 0.6687 + 0.9054 0.5785 0.7456 + 0.0335 0.1418 0.4057 + 0.9318 0.0209 0.8280 + 0.4995 0.5503 0.6516 + 0.5591 0.8762 0.9773 + 0.4354 0.9011 0.0860 + 0.2329 0.4244 0.1117 + 0.0895 0.3846 0.8654 spike_snippets(:,:,11) = - 0.8236 0.0540 0.7995 - 0.0204 0.5714 0.1848 - 0.5037 0.2359 0.6157 - 0.1659 0.0862 0.1732 - 0.6297 0.3077 0.5853 - 0.5058 0.9417 0.8461 - 0.9337 0.4265 0.6859 - 0.8281 0.2999 0.5419 - 0.8863 0.3362 0.6720 - 0.7906 0.5052 0.6274 - 0.9557 0.0771 0.3880 - 0.5038 0.6242 0.7661 - 0.8903 0.7702 0.3272 - 0.4220 0.8902 0.2522 - 0.0672 0.8752 0.0396 - 0.9442 0.2209 0.3697 - 0.5215 0.2116 0.3633 - 0.3515 0.4938 0.7357 - 0.2163 0.7856 0.7170 - 0.9434 0.9972 0.2783 - 0.9765 0.7021 0.0121 - 0.4874 0.4950 0.5714 - 0.1665 0.2588 0.9994 - 0.9151 0.8206 0.1286 - 0.9721 0.8228 0.6599 - 0.1537 0.0543 0.0633 - 0.9924 0.5272 0.3047 - 0.6047 0.3395 0.0708 - 0.6732 0.5972 0.7567 - 0.9690 0.4308 0.0410 - 0.8854 0.6984 0.5455 - 0.4442 0.3944 0.5872 - 0.4572 0.4874 0.3204 - 0.2759 0.2410 0.6748 - 0.6670 0.9343 0.9368 - 0.1688 0.9325 0.1636 - 0.9597 0.4930 0.4160 - 0.7391 0.2095 0.5453 - 0.6546 0.9712 0.6962 - 0.6566 0.4447 0.1735 + 0.8347 0.4022 0.6120 + 0.3468 0.5189 0.4033 + 0.2546 0.6819 0.0986 + 0.7404 0.1464 0.7471 + 0.6433 0.2989 0.8645 + 0.9926 0.0527 0.3949 + 0.9637 0.2744 0.2190 + 0.7971 0.7036 0.4778 + 0.4520 0.5440 0.6679 + 0.3244 0.4465 0.5489 + 0.9640 0.3327 0.7965 + 0.5527 0.1972 0.7607 + 0.2490 0.6106 0.3055 + 0.8834 0.5081 0.0499 + 0.2723 0.1501 0.9294 + 0.2521 0.5971 0.5519 + 0.7322 0.9338 0.7382 + 0.0855 0.8082 0.5566 + 0.7416 0.1892 0.5572 + 0.2958 0.9147 0.6783 + 0.0851 0.4890 0.4612 + 0.3550 0.0450 0.2096 + 0.1819 0.2133 0.5934 + 0.9579 0.1414 0.7223 + 0.4275 0.6274 0.9427 + 0.0523 0.0421 0.6497 + 0.0685 0.9755 0.6641 + 0.5790 0.6845 0.7101 + 0.7696 0.1755 0.2687 + 0.7507 0.4235 0.1038 + 0.6559 0.8909 0.1183 + 0.6514 0.9716 0.1036 + 0.9478 0.7154 0.0593 + 0.7043 0.2236 0.8412 + 0.3663 0.5732 0.0736 + 0.1300 0.3943 0.1802 + 0.6451 0.1573 0.4161 + 0.8897 0.7446 0.7855 + 0.3715 0.4903 0.6490 + 0.5015 0.5459 0.3932 spike_snippets(:,:,12) = - 0.1184 0.1251 0.0214 - 0.5802 0.0419 0.5646 - 0.7721 0.2065 0.3439 - 0.8848 0.7671 0.2095 - 0.5418 0.3479 0.6222 - 0.8559 0.5945 0.7391 - 0.6337 0.6223 0.5492 - 0.0702 0.5033 0.6576 - 0.0921 0.6129 0.9543 - 0.8458 0.6076 0.3383 - 0.4057 0.1879 0.5339 - 0.0289 0.5740 0.8159 - 0.2173 0.5540 0.1329 - 0.5727 0.7952 0.9536 - 0.5524 0.2359 0.5984 - 0.4675 0.2840 0.3707 - 0.8868 0.5361 0.0724 - 0.9720 0.0704 0.1437 - 0.4901 0.2043 0.1668 - 0.4051 0.5348 0.8620 - 0.4173 0.5441 0.1257 - 0.1043 0.2794 0.7575 - 0.5445 0.8990 0.4524 - 0.1090 0.8750 0.9088 - 0.8141 0.4295 0.4942 - 0.0896 0.5689 0.9763 - 0.4692 0.4561 0.9672 - 0.5486 0.5594 0.7761 - 0.5805 0.8100 0.1513 - 0.8436 0.7339 0.5115 - 0.0133 0.0170 0.3654 - 0.2173 0.4141 0.6722 - 0.1264 0.5418 0.5239 - 0.2281 0.1424 0.2084 - 0.3829 0.8320 0.6373 - 0.1969 0.7664 0.5257 - 0.4521 0.7498 0.0649 - 0.2503 0.4570 0.1978 - 0.2399 0.7075 0.6893 - 0.4851 0.6479 0.6504 + 0.8950 0.7784 0.3370 + 0.3776 0.8958 0.1258 + 0.2153 0.5221 0.4411 + 0.9188 0.6917 0.9823 + 0.0532 0.3541 0.2336 + 0.6066 0.7796 0.6442 + 0.7270 0.2461 0.5945 + 0.2519 0.4929 0.5494 + 0.0581 0.7809 0.5255 + 0.2975 0.1215 0.7106 + 0.8214 0.1294 0.1760 + 0.4632 0.9377 0.6688 + 0.2908 0.8853 0.7457 + 0.1076 0.5625 0.0337 + 0.0972 0.5536 0.1822 + 0.1280 0.7994 0.4142 + 0.1412 0.1745 0.7949 + 0.3290 0.2348 0.6860 + 0.7861 0.2603 0.6156 + 0.4999 0.3998 0.9619 + 0.2821 0.8703 0.1428 + 0.9904 0.9902 0.9319 + 0.7028 0.0983 0.1120 + 0.8319 0.1780 0.2330 + 0.2656 0.7303 0.3022 + 0.9044 0.4930 0.4198 + 0.6919 0.8411 0.3521 + 0.1977 0.5059 0.4959 + 0.8080 0.3110 0.4749 + 0.7690 0.1746 0.0756 + 0.5096 0.2501 0.1510 + 0.9853 0.4394 0.0432 + 0.2593 0.5565 0.1624 + 0.9890 0.5731 0.9597 + 0.9599 0.0753 0.2030 + 0.5933 0.8058 0.7752 + 0.6314 0.7114 0.8213 + 0.8363 0.0528 0.3939 + 0.4076 0.7217 0.5043 + 0.1097 0.2343 0.2508 spike_snippets(:,:,13) = - 0.1851 0.2148 0.3096 - 0.1530 0.6928 0.4706 - 0.5957 0.5997 0.6436 - 0.5111 0.9477 0.0237 - 0.2794 0.8481 0.2508 - 0.8733 0.8629 0.9143 - 0.8843 0.5084 0.3684 - 0.2139 0.3135 0.3625 - 0.5994 0.2873 0.0790 - 0.9182 0.7084 0.1474 - 0.0354 0.0425 0.9387 - 0.2318 0.1590 0.8480 - 0.3196 0.2009 0.7093 - 0.1199 0.3389 0.8795 - 0.0257 0.4380 0.0876 - 0.3023 0.9498 0.4555 - 0.6875 0.8848 0.0010 - 0.5839 0.9727 0.6120 - 0.5932 0.3215 0.9277 - 0.7070 0.6221 0.4235 - 0.4214 0.4862 0.8240 - 0.3256 0.7700 0.4219 - 0.8684 0.9093 0.2151 - 0.1271 0.2716 0.2960 - 0.8478 0.4911 0.6642 - 0.1270 0.8443 0.8821 - 0.8903 0.9322 0.1781 - 0.0355 0.4999 0.5528 - 0.8283 0.6655 0.4869 - 0.9501 0.6728 0.0283 - 0.0597 0.0752 0.5528 - 0.0772 0.8877 0.5799 - 0.0882 0.7317 0.1380 - 0.6245 0.6600 0.9433 - 0.4312 0.1948 0.2695 - 0.2354 0.4766 0.3604 - 0.9902 0.3074 0.5376 - 0.7988 0.9897 0.9941 - 0.8217 0.5316 0.8525 - 0.2351 0.7831 0.0319 + 0.2949 0.5202 0.1211 + 0.5566 0.5845 0.5552 + 0.0722 0.6373 0.8406 + 0.9252 0.0517 0.5231 + 0.4902 0.5120 0.9631 + 0.2890 0.4406 0.8756 + 0.8333 0.0660 0.7129 + 0.7859 0.1514 0.2913 + 0.0624 0.2431 0.4692 + 0.9129 0.6801 0.7586 + 0.9633 0.8651 0.4898 + 0.9800 0.8840 0.2424 + 0.1020 0.8982 0.5261 + 0.6766 0.0988 0.9697 + 0.2313 0.1582 0.4006 + 0.0004 0.3593 0.5432 + 0.7084 0.5084 0.4525 + 0.7881 0.0612 0.4665 + 0.9016 0.5683 0.2416 + 0.9231 0.7142 0.3431 + 0.3189 0.6186 0.6160 + 0.5037 0.2760 0.5419 + 0.0237 0.7551 0.1368 + 0.6520 0.7281 0.4271 + 0.2760 0.1216 0.5721 + 0.8475 0.6912 0.3738 + 0.7810 0.0934 0.3155 + 0.6271 0.8286 0.1854 + 0.1149 0.9365 0.5787 + 0.7695 0.1150 0.0557 + 0.5477 0.5701 0.2503 + 0.4269 0.0165 0.1992 + 0.4939 0.9138 0.8500 + 0.9287 0.8734 0.5062 + 0.7151 0.2187 0.0008 + 0.2543 0.6974 0.4274 + 0.9483 0.7896 0.6908 + 0.7255 0.8452 0.2864 + 0.0348 0.5217 0.1593 + 0.5899 0.3122 0.1772 spike_snippets(:,:,14) = - 0.2230 0.1351 0.7886 - 0.4238 0.2492 0.9146 - 0.1847 0.5595 0.5707 - 0.8921 0.0787 0.4474 - 0.7938 0.3050 0.6435 - 0.0043 0.8448 0.9762 - 0.9224 0.5257 0.8517 - 0.0390 0.3533 0.2300 - 0.1118 0.7620 0.4621 - 0.2636 0.3288 0.9287 - 0.4195 0.1997 0.1947 - 0.6326 0.5843 0.1339 - 0.9864 0.6860 0.5085 - 0.3759 0.6882 0.3052 - 0.2147 0.6437 0.8457 - 0.8211 0.9626 0.7382 - 0.8825 0.5314 0.3377 - 0.2341 0.1485 0.8010 - 0.3810 0.8068 0.4227 - 0.4321 0.4115 0.7880 - 0.9936 0.1828 0.3977 - 0.7010 0.2326 0.6093 - 0.1119 0.4843 0.9668 - 0.0840 0.3081 0.2195 - 0.8017 0.3575 0.2703 - 0.6757 0.3959 0.3937 - 0.0061 0.4527 0.3682 - 0.1994 0.8625 0.6531 - 0.0574 0.4723 0.1477 - 0.0919 0.6493 0.7246 - 0.6749 0.4246 0.8361 - 0.1309 0.4423 0.8770 - 0.2955 0.5541 0.6218 - 0.3190 0.6917 0.7228 - 0.6028 0.3446 0.4859 - 0.6943 0.8714 0.3217 - 0.6263 0.6614 0.6188 - 0.5735 0.2745 0.5193 - 0.4774 0.9703 0.1984 - 0.5386 0.6275 0.1304 + 0.9771 0.4050 0.7480 + 0.0164 0.7490 0.3865 + 0.3992 0.3380 0.2018 + 0.4467 0.0394 0.6368 + 0.7589 0.7476 0.6173 + 0.3515 0.3967 0.4286 + 0.2178 0.9765 0.7002 + 0.8223 0.9313 0.6389 + 0.5271 0.3603 0.2278 + 0.6464 0.5478 0.1317 + 0.4060 0.4718 0.9555 + 0.0270 0.4830 0.8491 + 0.0169 0.4543 0.9645 + 0.3327 0.7379 0.5937 + 0.9158 0.2060 0.9178 + 0.7765 0.1282 0.4284 + 0.3668 0.5960 0.5725 + 0.8509 0.0220 0.6117 + 0.3111 0.9309 0.9131 + 0.6934 0.8826 0.2040 + 0.2483 0.4454 0.1425 + 0.5874 0.7093 0.7173 + 0.8735 0.5988 0.0476 + 0.0763 0.7666 0.8454 + 0.1493 0.6608 0.4174 + 0.5494 0.2831 0.4819 + 0.4071 0.2351 0.8550 + 0.7085 0.9237 0.4157 + 0.7682 0.6375 0.0323 + 0.0196 0.1156 0.2325 + 1.0000 0.7195 0.4628 + 0.1514 0.4361 0.4644 + 0.9657 0.9117 0.4204 + 0.6568 0.0403 0.5068 + 0.8954 0.0092 0.2470 + 0.0665 1.0000 0.5583 + 0.8023 0.3161 0.5107 + 0.4888 0.3307 0.9941 + 0.6054 0.8640 0.4672 + 0.3619 0.9700 0.5930 spike_snippets(:,:,15) = - 0.2262 0.2766 0.5907 - 0.2056 0.1937 0.8867 - 0.1219 0.6344 0.5519 - 0.5776 0.6414 0.7407 - 0.4338 0.4308 0.8669 - 0.4408 0.5366 0.0469 - 0.4334 0.6519 0.2752 - 0.0031 0.3424 0.6518 - 0.0089 0.9570 0.5937 - 0.3908 0.1357 0.6025 - 0.7333 0.2195 0.2525 - 0.1027 0.9820 0.3862 - 0.8368 0.5239 0.1034 - 0.5086 0.8720 0.9551 - 0.6295 0.4330 0.9450 - 0.8806 0.3041 0.5778 - 0.8743 0.3345 0.8624 - 0.9921 0.4705 0.1314 - 0.4447 0.1070 0.5149 - 0.7418 0.5089 0.6865 - 0.5510 0.5950 0.6378 - 0.5892 0.7082 0.6455 - 0.9912 0.5156 0.8352 - 0.3359 0.6611 0.4911 - 0.3669 0.8796 0.2214 - 0.1394 0.4076 0.7643 - 0.9438 0.9816 0.3084 - 0.3012 0.6891 0.7769 - 0.4734 0.3384 0.8854 - 0.6214 0.6087 0.1137 - 0.0905 0.7920 0.2819 - 0.1783 0.8610 0.3101 - 0.1026 0.2972 0.1394 - 0.9566 0.4932 0.2185 - 0.1568 0.0195 0.2752 - 0.1294 0.8462 0.1243 - 0.5607 0.1783 0.9560 - 0.6664 0.4109 0.7201 - 0.9564 0.1284 0.8795 - 0.3678 0.5102 0.1463 + 0.8285 0.2332 0.5170 + 0.8534 0.5185 0.1475 + 0.1406 0.4439 0.6468 + 0.6271 0.7734 0.2874 + 0.7247 0.1307 0.7292 + 0.8879 0.9477 0.5567 + 0.2379 0.0284 0.5833 + 0.1076 0.1909 0.3181 + 0.9581 0.8145 0.8141 + 0.0705 0.4884 0.9800 + 0.1540 0.4450 0.7869 + 0.8214 0.2924 0.8107 + 0.3680 0.9230 0.7764 + 0.6458 0.1220 0.8034 + 0.0179 0.1152 0.1233 + 0.6552 0.0921 0.4741 + 0.4289 0.4675 0.4627 + 0.5957 0.6017 0.0530 + 0.7899 0.0406 0.7737 + 0.2715 0.5865 0.3788 + 0.3688 0.0015 0.2919 + 0.8261 0.6455 0.1661 + 0.9652 0.1234 0.2829 + 0.9641 0.1551 0.6033 + 0.0687 0.3860 0.3001 + 0.0792 0.8179 0.7818 + 0.7146 0.3863 0.2066 + 0.1720 0.3922 0.6165 + 0.0660 0.6977 0.0619 + 0.3606 0.8087 0.4434 + 0.0506 0.2943 0.3097 + 0.8358 0.0611 0.0026 + 0.1669 0.6148 0.0415 + 0.5499 0.1266 0.6509 + 0.0248 0.1344 0.8819 + 0.4887 0.2018 0.2192 + 0.6738 0.0505 0.3670 + 0.9817 0.2910 0.5394 + 0.0308 0.4956 0.9864 + 0.4028 0.5162 0.1998 spike_snippets(:,:,16) = - 0.1927 0.6688 0.6547 - 0.1281 0.6194 0.0771 - 0.2197 0.5600 0.5198 - 0.4552 0.9523 0.6863 - 0.3747 0.6933 0.0655 - 0.0005 0.2037 0.3981 - 0.6358 0.3771 0.3128 - 0.9756 0.2283 0.1688 - 0.2239 0.9016 0.6976 - 0.6167 0.2771 0.7410 - 0.8370 0.4043 0.8922 - 0.1644 0.5570 0.8032 - 0.1674 0.9934 0.9522 - 0.3557 0.8356 0.3211 - 0.9197 0.0929 0.0852 - 0.5803 0.2539 0.5705 - 0.5259 0.0673 0.3024 - 0.6417 0.3843 0.7508 - 0.8997 0.1641 0.3253 - 0.5032 0.4427 0.6970 - 0.0421 0.0260 0.5815 - 0.2497 0.6524 0.2077 - 0.0868 0.2699 0.6739 - 0.7045 0.2186 0.7132 - 0.2521 0.5041 0.4006 - 0.4592 0.3762 0.8459 - 0.3910 0.6362 0.8886 - 0.9811 0.0518 0.6936 - 0.9311 0.1824 0.4904 - 0.3803 0.1296 0.3489 - 0.2317 0.9686 0.2949 - 0.7826 0.0530 0.1981 - 0.9760 0.7078 0.9084 - 0.1940 0.3259 0.6837 - 0.4076 0.6466 0.9943 - 0.0136 0.9390 0.2555 - 0.3636 0.5421 0.9818 - 0.9103 0.4774 0.2366 - 0.8823 0.6284 0.0572 - 0.3817 0.4467 0.2317 + 0.0632 0.4119 0.1498 + 0.7862 0.8745 0.7497 + 0.3152 0.5970 0.2680 + 0.9582 0.5279 0.0675 + 0.8466 0.0177 0.1343 + 0.0575 0.4940 0.0601 + 0.9653 0.0421 0.6708 + 0.3656 0.9654 0.3555 + 0.6427 0.6600 0.8240 + 0.5254 0.5350 0.7614 + 0.8651 0.4518 0.1316 + 0.3772 0.3970 0.1697 + 0.9844 0.6259 0.4263 + 0.7779 0.2904 0.9443 + 0.4432 0.5715 0.7672 + 0.4826 0.1578 0.9774 + 0.8992 0.2390 0.9241 + 0.5520 0.7640 0.5236 + 0.6074 0.4966 0.5190 + 0.8831 0.8285 0.8182 + 0.0123 0.3464 0.0066 + 0.8589 0.9798 0.5752 + 0.6037 0.3889 0.2671 + 0.4787 0.5672 0.1828 + 0.9966 0.1551 0.4506 + 0.4607 0.6693 0.8682 + 0.1410 0.9311 0.4041 + 0.8505 0.8780 0.9635 + 0.8570 0.6529 0.0714 + 0.3587 0.9783 0.4064 + 0.4781 0.3078 0.8497 + 0.4610 0.3308 0.1232 + 0.8942 0.0222 0.8837 + 0.2707 0.6125 0.0489 + 0.8865 0.2327 0.1457 + 0.5464 0.8523 0.6175 + 0.4665 0.8757 0.5159 + 0.1181 0.2201 0.9281 + 0.8407 0.2243 0.4280 + 0.7371 0.5195 0.5242 spike_snippets(:,:,17) = - 0.6173 0.6918 0.6871 - 0.7990 0.7099 0.8378 - 0.8449 0.0978 0.9949 - 0.5732 0.7979 0.6361 - 0.7057 0.3483 0.5367 - 0.2349 0.2924 0.7952 - 0.1477 0.4052 0.9149 - 0.9360 0.5117 0.0062 - 0.4026 0.8478 0.4686 - 0.9453 0.4626 0.3981 - 0.8858 0.2622 0.2753 - 0.5764 0.1099 0.3039 - 0.3797 0.8276 0.6748 - 0.1666 0.9840 0.7505 - 0.5156 0.3978 0.2766 - 0.0482 0.8001 0.9245 - 0.2122 0.5472 0.2862 - 0.3097 0.3191 0.8146 - 0.3381 0.4056 0.7843 - 0.1068 0.2273 0.6883 - 0.7219 0.8860 0.6370 - 0.2746 0.9846 0.0249 - 0.3418 0.3116 0.4372 - 0.1499 0.1693 0.3565 - 0.7936 0.9327 0.5851 - 0.0315 0.7144 0.9622 - 0.0995 0.4372 0.1286 - 0.8053 0.0565 0.4768 - 0.7469 0.6741 0.1784 - 0.3801 0.1842 0.0446 - 0.9876 0.0459 0.6812 - 0.3980 0.6965 0.4432 - 0.8502 0.9950 0.0137 - 0.7209 0.4370 0.6352 - 0.8724 0.0388 0.8579 - 0.2434 0.4660 0.3433 - 0.9861 0.0908 0.2780 - 0.4661 0.4741 0.7048 - 0.5965 0.5980 0.7120 - 0.9756 0.2825 0.6311 + 0.2248 0.9454 0.3343 + 0.2661 0.2714 0.5529 + 0.6409 0.5257 0.2509 + 0.9720 0.6149 0.1317 + 0.4660 0.5646 0.0069 + 0.6395 0.8293 0.7489 + 0.0363 0.0109 0.0759 + 0.1006 0.2261 0.0331 + 0.4483 0.7455 0.8873 + 0.4724 0.9053 0.7795 + 0.6163 0.1059 0.4694 + 0.5038 0.8689 0.7092 + 0.4000 0.2480 0.9829 + 0.2566 0.8716 0.0221 + 0.1963 0.2623 0.1946 + 0.8754 0.8960 0.0683 + 0.3214 0.5532 0.3871 + 0.3090 0.4612 0.3692 + 0.0949 0.9036 0.7243 + 0.5785 0.0853 0.4553 + 0.4080 0.4273 0.1826 + 0.2397 0.1025 0.2676 + 0.0112 0.4233 0.8566 + 0.6912 0.5644 0.1537 + 0.5037 0.1292 0.5835 + 0.8740 0.9701 0.2860 + 0.1776 0.8694 0.4239 + 0.0146 0.2931 0.1575 + 0.1438 0.2192 0.0534 + 0.1210 0.6226 0.3310 + 0.6808 0.5873 0.8866 + 0.0166 0.4711 0.0265 + 0.2377 0.0932 0.4810 + 0.4095 0.5646 0.3677 + 0.7206 0.4269 0.0106 + 0.4908 0.5084 0.7710 + 0.9168 0.9261 0.2838 + 0.0650 0.3080 0.7490 + 0.9420 0.4491 0.0547 + 0.6323 0.8976 0.8351 spike_snippets(:,:,18) = - 0.3776 0.7823 0.0801 - 0.8622 0.9565 0.5796 - 0.1562 0.4375 0.9515 - 0.6307 0.1624 0.2088 - 0.4483 0.3889 0.3454 - 0.2331 0.8179 0.4931 - 0.7838 0.0012 0.3175 - 0.1697 0.1593 0.4797 - 0.2247 0.6018 0.8109 - 0.0227 0.7476 0.2138 - 0.6950 0.5190 0.2881 - 0.4064 0.3057 0.6401 - 0.2390 0.8704 0.0040 - 0.6227 0.1564 0.0455 - 0.0884 0.0660 0.4039 - 0.2207 0.2480 0.9150 - 0.4498 0.5628 0.7846 - 0.0646 0.8577 0.3313 - 0.7398 0.3892 0.9641 - 0.4970 0.0113 0.2510 - 0.5149 0.6946 0.4709 - 0.3363 0.4596 0.7754 - 0.1217 0.6060 0.3198 - 0.2941 0.8403 0.3636 - 0.8140 0.8582 0.7648 - 0.9589 0.5882 0.1668 - 0.2749 0.3104 0.1562 - 0.9278 0.1316 0.6444 - 0.8572 0.8799 0.8106 - 0.0872 0.1756 0.3494 - 0.8922 0.9633 0.0120 - 0.2752 0.6267 0.2324 - 0.0307 0.7052 0.7999 - 0.0839 0.3741 0.6110 - 0.4028 0.6985 0.5585 - 0.6630 0.8418 0.7399 - 0.1706 0.5353 0.9734 - 0.6713 0.3043 0.4227 - 0.6851 0.4996 0.0506 - 0.3057 0.4802 0.9650 + 0.8528 0.8267 0.3742 + 0.7533 0.1331 0.9552 + 0.4917 0.0555 0.7208 + 0.8872 0.2577 0.6193 + 0.5457 0.5930 0.0307 + 0.1417 0.9495 0.2944 + 0.3786 0.4841 0.4944 + 0.8947 0.1513 0.0882 + 0.5805 0.2407 0.3165 + 0.4782 0.4752 0.6826 + 0.3881 0.8809 0.0212 + 0.1409 0.6620 0.2262 + 0.7749 0.3939 0.4166 + 0.7476 0.2595 0.6855 + 0.8465 0.2595 0.1188 + 0.5590 0.4504 0.5791 + 0.8377 0.9104 0.6629 + 0.6318 0.3158 0.3771 + 0.8022 0.9276 0.2942 + 0.2505 0.8024 0.0318 + 0.9150 0.5174 0.6685 + 0.0144 0.9595 0.8606 + 0.4961 0.8575 0.2233 + 0.5635 0.4358 0.9664 + 0.3172 0.9393 0.1256 + 0.1253 0.8188 0.1029 + 0.3440 0.3788 0.0650 + 0.7378 0.9603 0.1648 + 0.4810 0.1027 0.5597 + 0.0185 0.2453 0.5999 + 0.8983 0.2843 0.7902 + 0.9571 0.6531 0.9934 + 0.3729 0.3625 0.7644 + 0.8940 0.6779 0.7209 + 0.0921 0.6594 0.9088 + 0.1161 0.6699 0.5187 + 0.6088 0.3770 0.6351 + 0.6902 0.4612 0.4053 + 0.1904 0.8284 0.8358 + 0.0138 0.0373 0.1868 spike_snippets(:,:,19) = - 0.5319 0.4611 0.0238 - 0.0107 0.4021 0.9675 - 0.2670 0.4292 0.2256 - 0.0075 0.2988 0.7416 - 0.6676 0.3036 0.8923 - 0.2578 0.9139 0.3128 - 0.4729 0.1512 0.3253 - 0.0726 0.7248 0.6174 - 0.1111 0.1281 0.6482 - 0.1313 0.5600 0.3097 - 0.6213 0.9661 0.2627 - 0.2338 0.6094 0.3207 - 0.1518 0.5683 0.1826 - 0.4942 0.6299 0.3986 - 0.7793 0.3064 0.4732 - 0.6928 0.7628 0.8839 - 0.6003 0.6119 0.9674 - 0.2245 0.4440 0.3893 - 0.3195 0.2501 0.3615 - 0.9588 0.0686 0.9949 - 0.1095 0.7686 0.3792 - 0.6823 0.8999 0.1835 - 0.4789 0.4263 0.1516 - 0.7116 0.3164 0.5941 - 0.1937 0.2194 0.6845 - 0.6531 0.7972 0.8251 - 0.8248 0.3564 0.6396 - 0.9730 0.2390 0.7955 - 0.7474 0.6799 0.7575 - 0.9625 0.1981 0.9859 - 0.2182 0.2432 0.8913 - 0.6330 0.5699 0.0269 - 0.6607 0.3176 0.4056 - 0.1300 0.8386 0.4653 - 0.5340 0.0663 0.1382 - 0.6349 0.7329 0.6797 - 0.0701 0.4965 0.6668 - 0.5020 0.1398 0.9634 - 0.5295 0.0102 0.9432 - 0.4737 0.2624 0.7338 + 0.7833 0.3800 0.2596 + 0.4774 0.3225 0.9132 + 0.3767 0.5766 0.7866 + 0.5167 0.7333 0.2876 + 0.3313 0.6348 0.4921 + 0.9909 0.7142 0.0040 + 0.7992 0.8899 0.7669 + 0.1438 0.3450 0.1557 + 0.8615 0.5972 0.6849 + 0.2221 0.2920 0.8230 + 0.9428 0.8654 0.7775 + 0.5121 0.7407 0.5810 + 0.6163 0.4000 0.3330 + 0.3748 0.9231 0.6470 + 0.4877 0.7523 0.8188 + 0.4864 0.9930 0.0859 + 0.0486 0.4711 0.6532 + 0.3978 0.0564 0.0195 + 0.9749 0.1345 0.4348 + 0.4293 0.0039 0.9382 + 0.5667 0.6412 0.2270 + 0.5779 0.7878 0.6903 + 0.4924 0.9922 0.8492 + 0.6379 0.1296 0.5580 + 0.4197 0.5457 0.1361 + 0.4808 0.5291 0.6389 + 0.6873 0.0123 0.3525 + 0.9886 0.1202 0.7538 + 0.7048 0.8567 0.9505 + 0.3475 0.1045 0.1739 + 0.8209 0.6846 0.5388 + 0.0525 0.3191 0.7253 + 0.1306 0.5241 0.2333 + 0.6714 0.2183 0.1283 + 0.8935 0.1168 0.5805 + 0.8253 0.1419 0.3755 + 0.6320 0.2447 0.7466 + 0.0071 0.0700 0.8273 + 0.3107 0.5529 0.8195 + 0.2268 0.3851 0.4185 spike_snippets(:,:,20) = - 0.6584 0.9637 0.6694 - 0.6882 0.9234 0.5334 - 0.9451 0.2206 0.1100 - 0.1020 0.7264 0.1427 - 0.8448 0.6778 0.2754 - 0.1440 0.4233 0.8132 - 0.5736 0.6490 0.4518 - 0.2343 0.2426 0.4747 - 0.0774 0.1005 0.0246 - 0.9198 0.3224 0.4104 - 0.4359 0.3599 0.1246 - 0.5686 0.0664 0.3270 - 0.2882 0.4851 0.5189 - 0.7017 0.9357 0.8863 - 0.3291 0.3256 0.1743 - 0.7455 0.4708 0.5486 - 0.6446 0.0108 0.8551 - 0.4382 0.1401 0.4226 - 0.2296 0.6263 0.9103 - 0.2811 0.5259 0.3679 - 0.6857 0.9481 0.0568 - 0.2926 0.8703 0.7404 - 0.8050 0.0736 0.1273 - 0.7048 0.6245 0.4469 - 0.9038 0.0299 0.8430 - 0.5372 0.8920 0.6377 - 0.9344 0.5897 0.1500 - 0.5390 0.3147 0.9303 - 0.6639 0.7378 0.5821 - 0.7281 0.8026 0.4448 - 0.2334 0.8817 0.7433 - 0.4686 0.5002 0.2370 - 0.8984 0.6981 0.5906 - 0.4098 0.2956 0.0880 - 0.2328 0.6203 0.4738 - 0.6246 0.7486 0.9808 - 0.2156 0.1182 0.3692 - 0.6777 0.0449 0.6831 - 0.3080 0.6611 0.3553 - 0.0171 0.1520 0.3349 -
 
% Create electrode table region referencing electrodes 0, 1, and 2
shank0_table_region = types.hdmf_common.DynamicTableRegion( ...
'table', types.untyped.ObjectView(electrodesDynamicTable), ...
'description', 'shank0', ...
'data', (0:2)');
 
% Define spike event series for unsorted spike times
spike_events = types.core.SpikeEventSeries( ...
'data', spike_snippets, ...
'timestamps', (0:19)', ... % Timestamps for each event
'description', 'events detected with 100uV threshold', ...
'electrodes', shank0_table_region ...
);
 
% Add spike event series to NWB file acquisition
nwb.acquisition.set('SpikeEvents_Shank0', spike_events);

Detected Events

If you need to store the complete, continuous raw voltage traces, along with unsorted spike times, you should store the traces in ElectricalSeries objects in the acquisition group, and use the EventDetection class to identify the spike events in your raw traces.
% Create the EventDetection object
event_detection = types.core.EventDetection( ...
'detection_method', 'thresholding, 1.5 * std', ...
'source_electricalseries', types.untyped.SoftLink(raw_electrical_series), ...
'source_idx', [1000; 2000; 3000], ...
'times', [.033, .066, .099] ...
);
 
% Add the EventDetection object to the ecephys module
ecephys_module.nwbdatainterface.set('ThresholdEvents', event_detection);

Storing Spike Features (e.g Principal Components)

NWB also provides a way to store features of spikes, such as principal components, using the FeatureExtraction class.
% Generate random feature data (time x channel x feature)
features = rand(3, 12, 4); % 3 time points, 12 channels, 4 features
features = permute(features, [3,2,1]) % reverse dimension order for matnwb
features =
features(:,:,1) = - - 0.9316 0.4439 0.1664 0.8142 0.2697 0.6258 0.4445 0.5889 0.5936 0.5510 0.3843 0.0928 - 0.6321 0.6096 0.2896 0.5378 0.2169 0.2326 0.6727 0.3081 0.5352 0.3272 0.3730 0.7105 - 0.5674 0.5495 0.8397 0.5804 0.3298 0.0668 0.6826 0.1170 0.2237 0.8309 0.8602 0.1544 - 0.4657 0.4697 0.6416 0.8899 0.2070 0.2748 0.1939 0.7873 0.9721 0.7856 0.0667 0.1039 - - -features(:,:,2) = - - 0.9188 0.8798 0.8666 0.2478 0.7362 0.0880 0.0963 0.1304 0.5751 0.4159 0.8664 0.6476 - 0.9597 0.7697 0.0909 0.7685 0.0993 0.9162 0.8964 0.5880 0.4342 0.1795 0.7080 0.4490 - 0.5198 0.6699 0.2718 0.2714 0.3393 0.5473 0.2908 0.5508 0.2389 0.9618 0.6670 0.1449 - 0.1393 0.5076 0.7794 0.9437 0.9352 0.1637 0.5838 0.1138 0.7266 0.7907 0.8624 0.1127 - - -features(:,:,3) = - - 0.8750 0.5151 0.1783 0.6123 0.1882 0.2455 0.3716 0.9768 0.1423 0.1525 0.3370 0.2588 - 0.4765 0.7175 0.5126 0.4949 0.2113 0.9030 0.0051 0.3652 0.7116 0.9779 0.8704 0.7190 - 0.6226 0.7981 0.6252 0.9443 0.8116 0.8497 0.9575 0.3736 0.2381 0.6094 0.1856 0.6485 - 0.8744 0.2761 0.6534 0.0308 0.2033 0.1817 0.1606 0.0353 0.8287 0.1804 0.5846 0.6030 -
 
% Create the FeatureExtraction object
feature_extraction = types.core.FeatureExtraction( ...
'description', {'PC1', 'PC2', 'PC3', 'PC4'}, ... % Feature descriptions
'electrodes', electrode_table_region, ... % DynamicTableRegion referencing the electrodes table
'times', [.033; .066; .099], ... % Column vector for times
'features', features ...
);
 
% Add the FeatureExtraction object to the ecephys module (if required)
ecephys_module.nwbdatainterface.set('PCA_features', feature_extraction);

Choosing NWB-Types for Electrophysiology Data (A Summary)

As mentioned above, ElectricalSeries objects are meant for storing electrical timeseries data like raw voltage signals or processed signals like LFP or other filtered signals. In addition to the ElectricalSeries class, NWB provides some more classes for storing event-based electropysiological data. We will briefly discuss them here, and refer the reader to the API documentation and the section on Extracellular Physiology in the "NWB Format Specification" for more details on using these objects.
For storing unsorted spiking data, there are two options. Which one you choose depends on what data you have available. If you need to store complete and/or continuous raw voltage traces, you should store the traces with ElectricalSeries objects as acquisition data, and use the EventDetection class for identifying the spike events in your raw traces. If you do not want to store the entire raw voltage traces, only the waveform ‘snippets’ surrounding spike events, you should use SpikeEventSeries objects.
The results of spike sorting (or clustering) should be stored in the top-level Units table. The Units table can hold just the spike times of sorted units or, optionally, include additional waveform information. You can use the optional predefined columns waveform_mean, waveform_sd, and waveforms in the Units table to store individual and mean waveform data.

Writing the NWB File

nwbExport(nwb, 'ecephys_tutorial.nwb')

Reading NWB Data

Data arrays are read passively from the file. Calling TimeSeries.data does not read the data values, but presents an HDF5 object that can be indexed to read data. This allows you to conveniently work with datasets that are too large to fit in RAM all at once. load with no input arguments reads the entire dataset:
nwb2 = nwbRead('ecephys_tutorial.nwb', 'ignorecache');
nwb2.processing.get('ecephys'). ...
nwbdatainterface.get('LFP'). ...
electricalseries.get('ElectricalSeries'). ...
data.load;

Accessing Data Regions

If all you need is a data region, you can index a DataStub object like you would any normal array in MATLAB, as shown below. When indexing the dataset this way, only the selected region is read from disk into RAM. This allows you to handle very large datasets that would not fit entirely into RAM.
% read section of LFP
nwb2.processing.get('ecephys'). ...
nwbdatainterface.get('LFP'). ...
electricalseries.get('ElectricalSeries'). ...
data(1:5, 1:10)
ans = 5×10
-0.0003 -1.3106 2.3180 0.0008 1.9394 1.7373 -1.1235 -0.1723 -0.7690 0.3233 - -2.7453 0.6558 0.7985 -0.7032 -0.1310 0.7679 -1.0497 2.1285 0.8362 0.3742 - 0.7983 1.4374 0.1157 0.9797 0.2739 -1.4714 -2.2506 1.2310 -0.5585 0.0383 - -0.3854 -1.5432 1.3848 0.9771 1.1799 -0.3393 -1.3353 -1.6190 2.2322 -1.1545 - -0.9029 -1.5846 -0.5733 -0.1312 -1.0385 -0.9423 -0.2002 -0.9642 -0.4652 -1.5418 -
 
% You can use the getRow method of the table to load spike times of a specific unit.
% To get the values, unpack from the returned table.
nwb.units.getRow(1).spike_times{1}
ans = 23×1
0.7889 - 0.1248 - 0.0928 - 0.2707 - 0.1974 - 0.6140 - 0.5269 - 0.8578 - 0.2521 - 0.3357 -

Learn more!

See the API documentation to learn what data types are available.

MATLAB tutorials

Python tutorials

See our tutorials for more details about your data type:
Check out other tutorials that teach advanced NWB topics:
+ 0.0803 0.5497 0.8134 + 0.2016 0.7139 0.9475 + 0.2989 0.6889 0.9147 + 0.4506 0.2072 0.5099 + 0.6934 0.8924 0.4041 + 0.9842 0.2183 0.5916 + 0.9099 0.1014 0.2588 + 0.3646 0.2869 0.1107 + 0.7892 0.5949 0.2686 + 0.8226 0.5505 0.3111 + 0.0764 0.4849 0.1924 + 0.2240 0.8471 0.8423 + 0.1020 0.2254 0.4194 + 0.8691 0.5801 0.1725 + 0.8217 0.0235 0.0745 + 0.6285 0.1380 0.2667 + 0.6437 0.4091 0.5609 + 0.6716 0.2623 0.3741 + 0.7291 0.8411 0.0698 + 0.4717 0.0125 0.4050 + 0.1205 0.4536 0.2174 + 0.1712 0.4339 0.4282 + 0.2948 0.1448 0.0394 + 0.8869 0.1695 0.8341 + 0.0986 0.4590 0.6105 + 0.2961 0.1109 0.6225 + 0.2111 0.6054 0.6792 + 0.9609 0.6630 0.4239 + 0.8231 0.0917 0.1793 + 0.9510 0.1655 0.7910 + 0.8841 0.3304 0.3527 + 0.7403 0.3570 0.1069 + 0.6682 0.3612 0.9556 + 0.7742 0.0715 0.6476 + 0.8029 0.4781 0.8936 + 0.8517 0.2079 0.6216 + 0.8403 0.8003 0.7215 + 0.5677 0.7792 0.8469 + 0.1805 0.0260 0.8686 + 0.4809 0.8847 0.0151 +
 
% Create electrode table region referencing electrodes 0, 1, and 2
shank0_table_region = types.hdmf_common.DynamicTableRegion( ...
'table', types.untyped.ObjectView(electrodesDynamicTable), ...
'description', 'shank0', ...
'data', (0:2)');
 
% Define spike event series for unsorted spike times
spike_events = types.core.SpikeEventSeries( ...
'data', spike_snippets, ...
'timestamps', (0:19)', ... % Timestamps for each event
'description', 'events detected with 100uV threshold', ...
'electrodes', shank0_table_region ...
);
 
% Add spike event series to NWB file acquisition
nwb.acquisition.set('SpikeEvents_Shank0', spike_events);

Detected Events

If you need to store the complete, continuous raw voltage traces, along with unsorted spike times, you should store the traces in ElectricalSeries objects in the acquisition group, and use the EventDetection class to identify the spike events in your raw traces.
% Create the EventDetection object
event_detection = types.core.EventDetection( ...
'detection_method', 'thresholding, 1.5 * std', ...
'source_electricalseries', types.untyped.SoftLink(raw_electrical_series), ...
'source_idx', [1000; 2000; 3000], ...
'times', [.033, .066, .099] ...
);
 
% Add the EventDetection object to the ecephys module
ecephys_module.nwbdatainterface.set('ThresholdEvents', event_detection);

Storing Spike Features (e.g Principal Components)

NWB also provides a way to store features of spikes, such as principal components, using the FeatureExtraction class.
% Generate random feature data (time x channel x feature)
features = rand(3, 12, 4); % 3 time points, 12 channels, 4 features
features = permute(features, [3,2,1]); % reverse dimension order for matnwb
 
% Create the FeatureExtraction object
feature_extraction = types.core.FeatureExtraction( ...
'description', {'PC1', 'PC2', 'PC3', 'PC4'}, ... % Feature descriptions
'electrodes', electrode_table_region, ... % DynamicTableRegion referencing the electrodes table
'times', [.033; .066; .099], ... % Column vector for times
'features', features ...
);
 
% Add the FeatureExtraction object to the ecephys module (if required)
ecephys_module.nwbdatainterface.set('PCA_features', feature_extraction);

Choosing NWB-Types for Electrophysiology Data (A Summary)

As mentioned above, ElectricalSeries objects are meant for storing electrical timeseries data like raw voltage signals or processed signals like LFP or other filtered signals. In addition to the ElectricalSeries class, NWB provides some more classes for storing event-based electropysiological data. We will briefly discuss them here, and refer the reader to the API documentation and the section on Extracellular Physiology in the "NWB Format Specification" for more details on using these objects.
For storing unsorted spiking data, there are two options. Which one you choose depends on what data you have available. If you need to store complete and/or continuous raw voltage traces, you should store the traces with ElectricalSeries objects as acquisition data, and use the EventDetection class for identifying the spike events in your raw traces. If you do not want to store the entire raw voltage traces, only the waveform ‘snippets’ surrounding spike events, you should use SpikeEventSeries objects.
The results of spike sorting (or clustering) should be stored in the top-level Units table. The Units table can hold just the spike times of sorted units or, optionally, include additional waveform information. You can use the optional predefined columns waveform_mean, waveform_sd, and waveforms in the Units table to store individual and mean waveform data.

Writing the NWB File

nwbExport(nwb, 'ecephys_tutorial.nwb')

Reading NWB Data

Data arrays are read passively from the file. Calling TimeSeries.data does not read the data values, but presents an HDF5 object that can be indexed to read data. This allows you to conveniently work with datasets that are too large to fit in RAM all at once. load with no input arguments reads the entire dataset:
nwb2 = nwbRead('ecephys_tutorial.nwb', 'ignorecache');
nwb2.processing.get('ecephys'). ...
nwbdatainterface.get('LFP'). ...
electricalseries.get('ElectricalSeries'). ...
data.load;

Accessing Data Regions

If all you need is a data region, you can index a DataStub object like you would any normal array in MATLAB, as shown below. When indexing the dataset this way, only the selected region is read from disk into RAM. This allows you to handle very large datasets that would not fit entirely into RAM.
% read section of LFP
nwb2.processing.get('ecephys'). ...
nwbdatainterface.get('LFP'). ...
electricalseries.get('ElectricalSeries'). ...
data(1:5, 1:10)
ans = 5×10
2.0421 -1.9417 0.3559 0.4354 0.6993 -1.4009 0.5222 0.0893 0.1243 1.2460 + 0.2329 0.4688 2.1159 1.2094 0.1735 -0.3315 0.1403 -2.0881 0.2840 -0.4077 + -0.0943 1.3933 -0.0871 -0.5193 -0.0920 -1.1307 0.8399 0.0975 -0.6912 -0.4536 + -1.4224 2.7602 1.1832 0.0075 0.6687 0.2074 0.5432 0.4366 0.0113 0.2925 + 0.9660 0.9444 -0.8471 1.0362 0.0652 -0.2155 0.6006 0.1602 0.7417 -1.3644 +
 
% You can use the getRow method of the table to load spike times of a specific unit.
% To get the values, unpack from the returned table.
nwb.units.getRow(1).spike_times{1}
ans = 24×1
0.1312 + 0.4211 + 0.2037 + 0.1021 + 0.1315 + 0.8392 + 0.9195 + 0.7023 + 0.0588 + 0.7331 +

Learn more!

See the API documentation to learn what data types are available.

MATLAB tutorials

Python tutorials

See our tutorials for more details about your data type:
Check out other tutorials that teach advanced NWB topics:

SJza#O~Qe> z2`oEgq&rbT-WdVQS8?M`PhyF_e)R?6Ao8*c2=L*MHk2W zzUmrR#<{@kUq#)$bRm=$z3oNHxeN0lC-asHu4q&gr2#hR5c_QM3us)|`3g5p&dVWC zKc|wRL5oa9$P9=L?n?&{Wobpvv!I6Sc>)?Yp1>@WWc!+of9OC7jFyxQbi>dY;LZyI zkE2j6a8@tssu-a{VFDo%B#NO;mE5(i>^PX5jr!xv>#j9G{>ngaNLoF!JP+H;A>60|aeN^FMDMk5w%w0gT)h=eIDgz*) zT=c=JhNVOVL%1%}kJ~WWZ4N9RykrW7u3C*+KTDZPUJ2qVu z9^~sNw|(ddMxA+LqQ%hVLlposI6#dsu=aMUNzulxE3h^8V))2rcAWu8I@=f~+lo%F zny~~B@V}XyCz(h}Hptg<+sMS$dee`M?^?RS_YePqu9YM)y_MNoU{wiQrdCZmh8|RAt zA?HHVbjg|ZRHlauCrIXOW0N)%T$+T#wju@teNmppNiMSA79K9MPXwqvk?NjyXm17K zlhBxj)z#%Gr8+p-&Vv=}1xDs!+ofTM5lu;Q4I?*sufT+)hRsFmV=4|kd_s;im6`EOz%RT*5=ANU@A<3SWkp|L@!o4~RPirvi2RZ1qL)aSnwUARd1 z35)Vy+dx_08%g73~G+Z^!1nG}VitQE;xc&4Ew-wFB(MXl&whEM#cC{*e)- z?;{<9AE@;-Pm?S_!ZP01LPIM=3V)i?t4$}7t)+TJjn=FU3;B()17DU{uWN;#?iGll zme{o-OSD>4?#z3G$%_&RF(`ud3}vT&nx+^j zN|sf0;H~&5Thwa1LG_K7^<=_JrPI`LQ0=V%h8;X2k(-Q*bCL2K#Tf``fkh%VzXU2d zcN;CA^j9+0!KfO)jbe4fQ8nQ$L)I`MhO;#xk+697{06A|R+>v1fEaeM2NtQ{YPcJT z*`-Hr`}A;O1%PTk)w#bM@r2&nP;>X(Hh*xGK?1tR279;O99uN$ec$>x&1C`8s%y`p zErzv>4fs7LW*09y@rTAa8=khh-nJ_H7Y_K(?*kcH)U>$a6sOIV)C zMqr5tDK@WM{QE&+hgW5=%Nzuphe(GzHZ19i6CDdIIr%9Z9d4vTGb{%(!f~P-w)Bt- z$H$n8fHo)WnH^qLW3xXxnjyF>lk(ctd@+dU%m5LAK0|Yl_ZrXi)?PvBHsep2>buRL zL+T#gQ&0BZo{paOG8A=9w@&BFxb&AnH%5GZegdrP*H!w00>Lch zz+?_}QMVo@{oG1{F;Q1_nw7V*BAL%YSuB`Ca->(OJ9yLCoC!HzvbkXo*?-qY%sH{cUE_=ZW>WS~vsCt3>N7A5Ah}@C zD#((T-mD9D5r#yDq{8sTHgdld*1*9lY)8k>Fv*R`6eN^r|CC;Z4?`S<<84q z>}oBEx!yTp_Dt%@?&s^(t;FY>_UuS~2z7Va?%~#tZg6FEV|sPQ$|Khtn>Y z>H9~cmdt`U1UqI^M`puLD};~oV+32gAnJxi0TOHV-M>Ib6LO^CZ9eSb00evXMJ{5S zRgZOoJ*yIbA=gdyga0rIVmo!TBcSNY><}1J?$YH^$kq(YDh1ceY2x!H%Q}N;1pQgO z0)n&=*cI#1;;Xm*YI7VGjYeJfjR#?E#4BViCd*Mz1f=UlYYy+N|K>H-|B3xEbIS@UFL8Mw_#z7ZSHQ$uuKZgBMr||y#7_j|2S_R- zTSTb8ZeeNs0?1BY0#Jl4wUl`K-}x0&dAqHGS>uD#^R@)y!=h{kN=dKgohS@#Z*5DkVtG0 zrCLr9jU)j`bZ0LD*dC#1$DmC{zKBWjZeSz#!v5Y|QS@7&VM+KQop?kFk6u9W_~8h@ zhco~kxez2KEu$G54}sdVY)Hh7g&AW6`<^BKQ0rGTfe6gcm!*mjS7FNw#3NRNY!gHq z2;Q6jsS+e7HEkdMFG`S{z-{F399G{~CtiOTV^se9xwpa^jc6ghSIo=b_9Sxvde439 z&o978bLo#bfZ$zc?vle$z~6JP5l87#mi03i@gji4EyUVnZXvcB_pEg%=_ZlKcVd~H zJ3HHJc~h(Z$sahc8al5E{EtEYG3Y-AYn@jG4cRd)mD05qLK*|_CjN(t5# zxMMCf)~po~hr52fn7LFcL+XXR{6eHWp;zPHE=08N!IcTulwt-c3@Kr?3C}%uX&4%V zw8U9QgplfjjGeF0LYshL=W@3X1jqb+OO+9YIg#Ry8-O0<-V9Ffg9D8^IK9^dcXy^` zRP32Zk0f`7K96KV`tK_rq@j^HDIX0kJMC5H1*Kpi)MH*hn7qcs7-wZ?U8}vrK3dK^ zaMm;CU+VPn>>D#Hyiw;V3Wn?1vB|IPgU96})=+KgzGaa7eGAM9f4I54QzZS)?1Yoc z;}*Sx2xU3c3Dlg`q=>9=>o=`9{RjT6-)c=~--*Z2#?a>MrAPt#kv!aqIbiit_ob6o zchIew?%-4ZUm|&`y*D@)^#4mgNUiqLearn more! See the API documentation to learn what data types are available. MATLAB tutorials - Python tutorials

About This Tutorial

This tutorial describes storage of hypothetical data from extracellular electrophysiology experiments in NWB for the following data categories:
  • Raw voltage recording
  • Local field potential (LFP) and filtered electrical signals
  • Spike times

Before You Begin

It is recommended to first work through the Introduction to MatNWB tutorial, which demonstrates installing MatNWB and creating an NWB file with subject information, animal position, and trials, as well as writing and reading NWB files in MATLAB.
Important: The dimensions of timeseries data in MatNWB should be defined in the opposite order of how it is defined in the nwb-schemas. In NWB, time is always stored in the first dimension of the data, whereas in MatNWB time should be stored in the last dimension of the data. This is explained in more detail here: MatNWB <-> HDF5 Dimension Mapping.

Setting up the NWB File

An NWB file represents a single session of an experiment. Each file must have a session_description, identifier, and session_start_time. Create a new NWBFile object these required fields along with any additional metadata. In MatNWB, arguments are specified using MATLAB's keyword argument pair convention, where each argument name is followed by its value.
nwb = NwbFile( ...
'session_description', 'mouse in open exploration',...
'identifier', 'Mouse5_Day3', ...
'session_start_time', datetime(2018, 4, 25, 2, 30, 3, 'TimeZone', 'local'), ...
'timestamps_reference_time', datetime(2018, 4, 25, 3, 0, 45, 'TimeZone', 'local'), ...
'general_experimenter', 'Last Name, First Name', ... % optional
'general_session_id', 'session_1234', ... % optional
'general_institution', 'University of My Institution', ... % optional
'general_related_publications', {'DOI:10.1016/j.neuron.2016.12.011'}); % optional
nwb
nwb =
NwbFile with properties: + Python tutorials

About This Tutorial

This tutorial describes storage of hypothetical data from extracellular electrophysiology experiments in NWB for the following data categories:
  • Raw voltage recording
  • Local field potential (LFP) and filtered electrical signals
  • Spike times

Before You Begin

It is recommended to first work through the Introduction to MatNWB tutorial, which demonstrates installing MatNWB and creating an NWB file with subject information, animal position, and trials, as well as writing and reading NWB files in MATLAB.
Important: The dimensions of timeseries data in MatNWB should be defined in the opposite order of how it is defined in the nwb-schemas. In NWB, time is always stored in the first dimension of the data, whereas in MatNWB time should be stored in the last dimension of the data. This is explained in more detail here: MatNWB <-> HDF5 Dimension Mapping.

Setting up the NWB File

An NWB file represents a single session of an experiment. Each file must have a session_description, identifier, and session_start_time. Create a new NWBFile object these required fields along with any additional metadata. In MatNWB, arguments are specified using MATLAB's keyword argument pair convention, where each argument name is followed by its value.
nwb = NwbFile( ...
'session_description', 'mouse in open exploration',...
'identifier', 'Mouse5_Day3', ...
'session_start_time', datetime(2018, 4, 25, 2, 30, 3, 'TimeZone', 'local'), ...
'timestamps_reference_time', datetime(2018, 4, 25, 3, 0, 45, 'TimeZone', 'local'), ...
'general_experimenter', 'Last Name, First Name', ... % optional
'general_session_id', 'session_1234', ... % optional
'general_institution', 'University of My Institution', ... % optional
'general_related_publications', {'DOI:10.1016/j.neuron.2016.12.011'}); % optional
nwb
nwb =
NwbFile with properties: nwb_version: '2.7.0' file_create_date: [] @@ -155,899 +155,899 @@ stimulus_presentation: [0×1 types.untyped.Set] stimulus_templates: [0×1 types.untyped.Set] units: [] -

Electrode Information

In order to store extracellular electrophysiology data, you first must create an electrodes table describing the electrodes that generated this data. Extracellular electrodes are stored in an electrodes table, which is also a DynamicTable. electrodes has several required fields: x, y, z, impedance, location, filtering, and electrode_group.

Electrodes Table

Since this is a DynamicTable, we can add additional metadata fields. We will be adding a "label" column to the table.
numShanks = 4;
numChannelsPerShank = 3;
numChannels = numShanks * numChannelsPerShank;
 
electrodesDynamicTable = types.hdmf_common.DynamicTable(...
'colnames', {'location', 'group', 'group_name', 'label'}, ...
'description', 'all electrodes');
 
device = types.core.Device(...
'description', 'the best array', ...
'manufacturer', 'Probe Company 9000' ...
);
nwb.general_devices.set('array', device);
for iShank = 1:numShanks
shankGroupName = sprintf('shank%d', iShank);
electrodeGroup = types.core.ElectrodeGroup( ...
'description', sprintf('electrode group for %s', shankGroupName), ...
'location', 'brain area', ...
'device', types.untyped.SoftLink(device) ...
);
nwb.general_extracellular_ephys.set(shankGroupName, electrodeGroup);
for iElectrode = 1:numChannelsPerShank
electrodesDynamicTable.addRow( ...
'location', 'unknown', ...
'group', types.untyped.ObjectView(electrodeGroup), ...
'group_name', shankGroupName, ...
'label', sprintf('%s-electrode%d', shankGroupName, iElectrode));
end
end
electrodesDynamicTable.toTable() % Display the table
ans = 12×5 table
 idlocationgroupgroup_namelabel
10'unknown'1×1 ObjectView'shank1''shank1-electrode1'
21'unknown'1×1 ObjectView'shank1''shank1-electrode2'
32'unknown'1×1 ObjectView'shank1''shank1-electrode3'
43'unknown'1×1 ObjectView'shank2''shank2-electrode1'
54'unknown'1×1 ObjectView'shank2''shank2-electrode2'
65'unknown'1×1 ObjectView'shank2''shank2-electrode3'
76'unknown'1×1 ObjectView'shank3''shank3-electrode1'
87'unknown'1×1 ObjectView'shank3''shank3-electrode2'
98'unknown'1×1 ObjectView'shank3''shank3-electrode3'
109'unknown'1×1 ObjectView'shank4''shank4-electrode1'
1110'unknown'1×1 ObjectView'shank4''shank4-electrode2'
1211'unknown'1×1 ObjectView'shank4''shank4-electrode3'
nwb.general_extracellular_ephys_electrodes = electrodesDynamicTable;

Links

In the above loop, we create ElectrodeGroup objects. The electrodes table then uses an ObjectView in each row to link to the corresponding ElectrodeGroup object. An ObjectView is a construct that enables linking one neurodata type to another, allowing a neurodata type to reference another within the NWB file.

Recorded Extracellular Signals

Voltage data are stored using the ElectricalSeries class, a subclass of the TimeSeries class specialized for voltage data.

Referencing Electrodes

In order to create our ElectricalSeries object, we first need to reference a set of rows in the electrodes table to indicate which electrode (channel) each entry in the electrical series were recorded from. We will do this by creating a DynamicTableRegion, which is a type of link that allows you to reference specific rows of a DynamicTable, such as the electrodes table, using row indices.
Create a DynamicTableRegion that references all rows of the electrodes table.
electrode_table_region = types.hdmf_common.DynamicTableRegion( ...
'table', types.untyped.ObjectView(electrodesDynamicTable), ...
'description', 'all electrodes', ...
'data', (0:length(electrodesDynamicTable.id.data)-1)');

Raw Voltage Data

Now create an ElectricalSeries object to hold acquisition data collected during the experiment.
raw_electrical_series = types.core.ElectricalSeries( ...
'starting_time', 0.0, ... % seconds
'starting_time_rate', 30000., ... % Hz
'data', randn(numChannels, 3000), ... % nChannels x nTime
'electrodes', electrode_table_region, ...
'data_unit', 'volts');
This is the voltage data recorded directly from our electrodes, so it goes in the acquisition group.
nwb.acquisition.set('ElectricalSeries', raw_electrical_series);

Processed Extracellular Electrical Signals

LFP

LFP refers to data that has been low-pass filtered, typically below 300 Hz. This data may also be downsampled. Because it is filtered and potentially resampled, it is categorized as processed data. LFP data would also be stored in an ElectricalSeries. To help data analysis and visualization tools know that this ElectricalSeries object represents LFP data, we store it inside an LFP object and then place the LFP object in a ProcessingModule named 'ecephys'. This is analogous to how we stored the SpatialSeries object inside of a Position object and stored the Position object in a ProcessingModule named 'behavior' in the behavior tutorial
lfp_electrical_series = types.core.ElectricalSeries( ...
'starting_time', 0.0, ... % seconds
'starting_time_rate', 1000., ... % Hz
'data', randn(numChannels, 100), ... nChannels x nTime
'filtering', 'Low-pass filter at 300 Hz', ...
'electrodes', electrode_table_region, ...
'data_unit', 'volts');
 
lfp = types.core.LFP('ElectricalSeries', lfp_electrical_series);
 
ecephys_module = types.core.ProcessingModule(...
'description', 'extracellular electrophysiology');
 
ecephys_module.nwbdatainterface.set('LFP', lfp);
nwb.processing.set('ecephys', ecephys_module);

Other Types of Filtered Electrical Signals

If your acquired data is filtered for frequency ranges other than LFP—such as Gamma or Theta—you can store the result in an ElectricalSeries and encapsulate it within a FilteredEphys object instead of the LFP object.
% Generate filtered data
filtered_data = randn(50, 12); % 50 time points, 12 channels
filtered_data = permute(filtered_data, [2, 1]); % permute timeseries for matnwb
 
% Create an ElectricalSeries object
filtered_electrical_series = types.core.ElectricalSeries( ...
'description', 'Data filtered in the theta range', ...
'data', filtered_data, ...
'electrodes', electrode_table_region, ...
'filtering', 'Band-pass filtered between 4 and 8 Hz', ...
'starting_time', 0.0, ...
'starting_time_rate', 200.0 ...
);
 
% Create a FilteredEphys object and add the filtered electrical series
filtered_ephys = types.core.FilteredEphys();
filtered_ephys.electricalseries.set('FilteredElectricalSeries', filtered_electrical_series);
 
% Add the FilteredEphys object to the ecephys module
ecephys_module.nwbdatainterface.set('FilteredEphys', filtered_ephys);

Decomposition of LFP Data into Frequency Bands

In some cases, you may want to further process the LFP data and decompose the signal into different frequency bands for additional downstream analyses. You can then store the processed data from these spectral analyses using a DecompositionSeries object. This object allows you to include metadata about the frequency bands and metric used (e.g., power, phase, amplitude), as well as link the decomposed data to the original TimeSeries signal the data was derived from.
In this tutorial, the examples for FilteredEphys and DecompositionSeries may appear similar. However, the key difference is that DecompositionSeries is specialized for storing the results of spectral analyses of timeseries data in general, whereas FilteredEphys is defined specifically as a container for filtered electrical signals.
Note: When adding data to a DecompositionSeries, the data argument is assumed to be 3D where the first dimension is time, the second dimension is channels, and the third dimension is bands. As mentioned in the beginning of this tutorial, in MatNWB the data needs to be permuted because the dimensions are written to file in reverse order (See the dimensionMapNoDataPipes tutorial)
% Define the frequency bands of interest (in Hz):
band_names = {'theta'; 'beta'; 'gamma'};
band_mean = [8; 21; 55];
band_stdev = [2; 4.5; 12.5];
band_limits = [band_mean - 2*band_stdev, band_mean + 2*band_stdev];
 
% The bands should be added to the DecompositionSeries as a dynamic table
bands = table(band_names, band_mean, band_stdev, band_limits, ...
'VariableNames', {'band_names', 'band_mean', 'band_stdev', 'band_limits'})
bands = 3×4 table
 band_namesband_meanband_stdevband_limits
12
1'theta'82412
2'beta'214.50001230
3'gamma'5512.50003080
 
bands = util.table2nwb( bands );
 
% Generate random phase data for the demonstration.
phase_data = randn(50, 12, numel(band_names)); % 50 samples, 12 channels, 3 frequency bands
phase_data = permute(phase_data, [3,2,1]); % See dimensionMapNoDataPipes tutorial
 
decomp_series = types.core.DecompositionSeries(...
'data', phase_data, ...
'bands', bands, ...
'metric', 'phase', ...
'starting_time', 0.0, ... % seconds
'starting_time_rate', 1000.0, ... % Hz
'source_channels', electrode_table_region, ...
'source_timeseries', lfp_electrical_series);
 
% Add decomposition series to ecephys module
ecephys_module.nwbdatainterface.set('theta', decomp_series);

Spike Times and Extracellular Events

Sorted Spike Times

Spike times are stored in a Units table, a specialization of the DynamicTable class. The default Units table is located at /units in the HDF5 file. You can add columns to the Units table just like you did for electrodes and trials (see convertTrials). Here, we generate some random spike data and populate the table.
num_cells = 10;
spikes = cell(1, num_cells);
for iShank = 1:num_cells
spikes{iShank} = rand(1, randi([16, 28]));
end
spikes
spikes = 1×10 cell
 12345678910
11×24 double1×28 double1×22 double1×28 double1×21 double1×26 double1×16 double1×18 double1×24 double1×24 double

Ragged Arrays

Spike times are an example of a ragged array- it's like a matrix, but each row has a different number of elements. We can represent this type of data as an indexed column of the Units table. These indexed columns have two components, the VectorData object that holds the data and the VectorIndex object that holds the indices in the vector that indicate the row breaks. You can use the convenience function util.create_indexed_column to create these objects. For more information about ragged arrays, we refer you to the "Ragged Array Columns" section of the dynamic table tutorial.
[spike_times_vector, spike_times_index] = util.create_indexed_column(spikes);
 
nwb.units = types.core.Units( ...
'colnames', {'spike_times'}, ...
'description', 'units table', ...
'spike_times', spike_times_vector, ...
'spike_times_index', spike_times_index ...
);
 
nwb.units.toTable
ans = 10×2 table
 idspike_times
1124×1 double
2228×1 double
3322×1 double
4428×1 double
5521×1 double
6626×1 double
7716×1 double
8818×1 double
9924×1 double
101024×1 double

Unsorted Spike Times

While the Units table is used to store spike times and waveform data for spike-sorted, single-unit activity, you may also want to store spike times and waveform snippets of unsorted spiking activity. This is useful for recording multi-unit activity detected via threshold crossings during data acquisition. Such information can be stored using SpikeEventSeries objects.
% In the SpikeEventSeries the dimensions should be ordered as
% [num_events, num_channels, num_samples].
% Define spike snippets: 20 events, 3 channels, 40 samples per event.
spike_snippets = rand(20, 3, 40);
% Permute spike snippets (See dimensionMapNoDataPipes tutorial)
spike_snippets = permute(spike_snippets, [3,2,1])
spike_snippets =
spike_snippets(:,:,1) = - - 0.7910 0.0213 0.8335 - 0.8083 0.5109 0.0694 - 0.0414 0.1315 0.9237 - 0.6840 0.0158 0.8003 - 0.9652 0.0518 0.6909 - 0.4137 0.6962 0.6477 - 0.7065 0.4276 0.1037 - 0.0327 0.2995 0.3123 - 0.5643 0.7282 0.7042 - 0.3009 0.8131 0.9222 - 0.1623 0.8546 0.4080 - 0.3810 0.7375 0.5178 - 0.1005 0.8742 0.2635 - 0.9530 0.3118 0.5444 - 0.0115 0.0973 0.5146 - 0.1436 0.2857 0.3713 - 0.5966 0.3174 0.4652 - 0.0131 0.8012 0.6369 - 0.4585 0.6484 0.6865 - 0.5535 0.1510 0.3442 - 0.0254 0.5062 0.8555 - 0.7063 0.5182 0.6404 - 0.3815 0.1169 0.1685 - 0.8255 0.1120 0.3037 - 0.1461 0.4718 0.1424 - 0.8712 0.8092 0.7453 - 0.3177 0.3974 0.9020 - 0.4894 0.6920 0.5508 - 0.1267 0.0666 0.8641 - 0.9720 0.7211 0.6973 - 0.8166 0.9120 0.1665 - 0.4227 0.3168 0.6086 - 0.0780 0.9907 0.1200 - 0.0661 0.3271 0.7940 - 0.8019 0.9782 0.7975 - 0.4981 0.6964 0.9912 - 0.5068 0.4475 0.9353 - 0.4478 0.6194 0.5117 - 0.8898 0.5428 0.7175 - 0.8606 0.2924 0.9609 +

Electrode Information

In order to store extracellular electrophysiology data, you first must create an electrodes table describing the electrodes that generated this data. Extracellular electrodes are stored in an electrodes table, which is also a DynamicTable. electrodes has several required fields: x, y, z, impedance, location, filtering, and electrode_group.

Electrodes Table

Since this is a DynamicTable, we can add additional metadata fields. We will be adding a "label" column to the table.
numShanks = 4;
numChannelsPerShank = 3;
numChannels = numShanks * numChannelsPerShank;
 
electrodesDynamicTable = types.hdmf_common.DynamicTable(...
'colnames', {'location', 'group', 'group_name', 'label'}, ...
'description', 'all electrodes');
 
device = types.core.Device(...
'description', 'the best array', ...
'manufacturer', 'Probe Company 9000' ...
);
nwb.general_devices.set('array', device);
for iShank = 1:numShanks
shankGroupName = sprintf('shank%d', iShank);
electrodeGroup = types.core.ElectrodeGroup( ...
'description', sprintf('electrode group for %s', shankGroupName), ...
'location', 'brain area', ...
'device', types.untyped.SoftLink(device) ...
);
nwb.general_extracellular_ephys.set(shankGroupName, electrodeGroup);
for iElectrode = 1:numChannelsPerShank
electrodesDynamicTable.addRow( ...
'location', 'unknown', ...
'group', types.untyped.ObjectView(electrodeGroup), ...
'group_name', shankGroupName, ...
'label', sprintf('%s-electrode%d', shankGroupName, iElectrode));
end
end
electrodesDynamicTable.toTable() % Display the table
ans = 12×5 table
 idlocationgroupgroup_namelabel
10'unknown'1×1 ObjectView'shank1''shank1-electrode1'
21'unknown'1×1 ObjectView'shank1''shank1-electrode2'
32'unknown'1×1 ObjectView'shank1''shank1-electrode3'
43'unknown'1×1 ObjectView'shank2''shank2-electrode1'
54'unknown'1×1 ObjectView'shank2''shank2-electrode2'
65'unknown'1×1 ObjectView'shank2''shank2-electrode3'
76'unknown'1×1 ObjectView'shank3''shank3-electrode1'
87'unknown'1×1 ObjectView'shank3''shank3-electrode2'
98'unknown'1×1 ObjectView'shank3''shank3-electrode3'
109'unknown'1×1 ObjectView'shank4''shank4-electrode1'
1110'unknown'1×1 ObjectView'shank4''shank4-electrode2'
1211'unknown'1×1 ObjectView'shank4''shank4-electrode3'
nwb.general_extracellular_ephys_electrodes = electrodesDynamicTable;

Links

In the above loop, we create ElectrodeGroup objects. The electrodes table then uses an ObjectView in each row to link to the corresponding ElectrodeGroup object. An ObjectView is a construct that enables linking one neurodata type to another, allowing a neurodata type to reference another within the NWB file.

Recorded Extracellular Signals

Voltage data are stored using the ElectricalSeries class, a subclass of the TimeSeries class specialized for voltage data.

Referencing Electrodes

In order to create our ElectricalSeries object, we first need to reference a set of rows in the electrodes table to indicate which electrode (channel) each entry in the electrical series were recorded from. We will do this by creating a DynamicTableRegion, which is a type of link that allows you to reference specific rows of a DynamicTable, such as the electrodes table, using row indices.
Create a DynamicTableRegion that references all rows of the electrodes table.
electrode_table_region = types.hdmf_common.DynamicTableRegion( ...
'table', types.untyped.ObjectView(electrodesDynamicTable), ...
'description', 'all electrodes', ...
'data', (0:length(electrodesDynamicTable.id.data)-1)');

Raw Voltage Data

Now create an ElectricalSeries object to hold acquisition data collected during the experiment.
raw_electrical_series = types.core.ElectricalSeries( ...
'starting_time', 0.0, ... % seconds
'starting_time_rate', 30000., ... % Hz
'data', randn(numChannels, 3000), ... % nChannels x nTime
'electrodes', electrode_table_region, ...
'data_unit', 'volts');
This is the voltage data recorded directly from our electrodes, so it goes in the acquisition group.
nwb.acquisition.set('ElectricalSeries', raw_electrical_series);

Processed Extracellular Electrical Signals

LFP

LFP refers to data that has been low-pass filtered, typically below 300 Hz. This data may also be downsampled. Because it is filtered and potentially resampled, it is categorized as processed data. LFP data would also be stored in an ElectricalSeries. To help data analysis and visualization tools know that this ElectricalSeries object represents LFP data, we store it inside an LFP object and then place the LFP object in a ProcessingModule named 'ecephys'. This is analogous to how we stored the SpatialSeries object inside of a Position object and stored the Position object in a ProcessingModule named 'behavior' in the behavior tutorial
lfp_electrical_series = types.core.ElectricalSeries( ...
'starting_time', 0.0, ... % seconds
'starting_time_rate', 1000., ... % Hz
'data', randn(numChannels, 100), ... nChannels x nTime
'filtering', 'Low-pass filter at 300 Hz', ...
'electrodes', electrode_table_region, ...
'data_unit', 'volts');
 
lfp = types.core.LFP('ElectricalSeries', lfp_electrical_series);
 
ecephys_module = types.core.ProcessingModule(...
'description', 'extracellular electrophysiology');
 
ecephys_module.nwbdatainterface.set('LFP', lfp);
nwb.processing.set('ecephys', ecephys_module);

Other Types of Filtered Electrical Signals

If your acquired data is filtered for frequency ranges other than LFP—such as Gamma or Theta—you can store the result in an ElectricalSeries and encapsulate it within a FilteredEphys object instead of the LFP object.
% Generate filtered data
filtered_data = randn(50, 12); % 50 time points, 12 channels
filtered_data = permute(filtered_data, [2, 1]); % permute timeseries for matnwb
 
% Create an ElectricalSeries object
filtered_electrical_series = types.core.ElectricalSeries( ...
'description', 'Data filtered in the theta range', ...
'data', filtered_data, ...
'electrodes', electrode_table_region, ...
'filtering', 'Band-pass filtered between 4 and 8 Hz', ...
'starting_time', 0.0, ...
'starting_time_rate', 200.0 ...
);
 
% Create a FilteredEphys object and add the filtered electrical series
filtered_ephys = types.core.FilteredEphys();
filtered_ephys.electricalseries.set('FilteredElectricalSeries', filtered_electrical_series);
 
% Add the FilteredEphys object to the ecephys module
ecephys_module.nwbdatainterface.set('FilteredEphys', filtered_ephys);

Decomposition of LFP Data into Frequency Bands

In some cases, you may want to further process the LFP data and decompose the signal into different frequency bands for additional downstream analyses. You can then store the processed data from these spectral analyses using a DecompositionSeries object. This object allows you to include metadata about the frequency bands and metric used (e.g., power, phase, amplitude), as well as link the decomposed data to the original TimeSeries signal the data was derived from.
In this tutorial, the examples for FilteredEphys and DecompositionSeries may appear similar. However, the key difference is that DecompositionSeries is specialized for storing the results of spectral analyses of timeseries data in general, whereas FilteredEphys is defined specifically as a container for filtered electrical signals.
Note: When adding data to a DecompositionSeries, the data argument is assumed to be 3D where the first dimension is time, the second dimension is channels, and the third dimension is bands. As mentioned in the beginning of this tutorial, in MatNWB the data needs to be permuted because the dimensions are written to file in reverse order (See the dimensionMapNoDataPipes tutorial)
% Define the frequency bands of interest (in Hz):
band_names = {'theta'; 'beta'; 'gamma'};
band_mean = [8; 21; 55];
band_stdev = [2; 4.5; 12.5];
band_limits = [band_mean - 2*band_stdev, band_mean + 2*band_stdev];
 
% The bands should be added to the DecompositionSeries as a dynamic table
bands = table(band_names, band_mean, band_stdev, band_limits, ...
'VariableNames', {'band_name', 'band_mean', 'band_stdev', 'band_limits'})
bands = 3×4 table
 band_nameband_meanband_stdevband_limits
12
1'theta'82412
2'beta'214.50001230
3'gamma'5512.50003080
 
bands = util.table2nwb( bands );
 
% Generate random phase data for the demonstration.
phase_data = randn(50, 12, numel(band_names)); % 50 samples, 12 channels, 3 frequency bands
phase_data = permute(phase_data, [3,2,1]); % See dimensionMapNoDataPipes tutorial
 
decomp_series = types.core.DecompositionSeries(...
'data', phase_data, ...
'bands', bands, ...
'metric', 'phase', ...
'starting_time', 0.0, ... % seconds
'starting_time_rate', 1000.0, ... % Hz
'source_channels', electrode_table_region, ...
'source_timeseries', lfp_electrical_series);
 
% Add decomposition series to ecephys module
ecephys_module.nwbdatainterface.set('theta', decomp_series);

Spike Times and Extracellular Events

Sorted Spike Times

Spike times are stored in a Units table, a specialization of the DynamicTable class. The default Units table is located at /units in the HDF5 file. You can add columns to the Units table just like you did for electrodes and trials (see convertTrials). Here, we generate some random spike data and populate the table.
num_cells = 10;
spikes = cell(1, num_cells);
for iShank = 1:num_cells
spikes{iShank} = rand(1, randi([16, 28]));
end
spikes
spikes = 1×10 cell
 12345678910
11×24 double1×19 double1×20 double1×25 double1×22 double1×20 double1×22 double1×17 double1×21 double1×25 double

Ragged Arrays

Spike times are an example of a ragged array- it's like a matrix, but each row has a different number of elements. We can represent this type of data as an indexed column of the Units table. These indexed columns have two components, the VectorData object that holds the data and the VectorIndex object that holds the indices in the vector that indicate the row breaks. You can use the convenience function util.create_indexed_column to create these objects. For more information about ragged arrays, we refer you to the "Ragged Array Columns" section of the dynamic table tutorial.
[spike_times_vector, spike_times_index] = util.create_indexed_column(spikes);
 
nwb.units = types.core.Units( ...
'colnames', {'spike_times'}, ...
'description', 'units table', ...
'spike_times', spike_times_vector, ...
'spike_times_index', spike_times_index ...
);
 
nwb.units.toTable
ans = 10×2 table
 idspike_times
1124×1 double
2219×1 double
3320×1 double
4425×1 double
5522×1 double
6620×1 double
7722×1 double
8817×1 double
9921×1 double
101025×1 double

Unsorted Spike Times

While the Units table is used to store spike times and waveform data for spike-sorted, single-unit activity, you may also want to store spike times and waveform snippets of unsorted spiking activity. This is useful for recording multi-unit activity detected via threshold crossings during data acquisition. Such information can be stored using SpikeEventSeries objects.
% In the SpikeEventSeries the dimensions should be ordered as
% [num_events, num_channels, num_samples].
% Define spike snippets: 20 events, 3 channels, 40 samples per event.
spike_snippets = rand(20, 3, 40);
% Permute spike snippets (See dimensionMapNoDataPipes tutorial)
spike_snippets = permute(spike_snippets, [3,2,1])
spike_snippets =
spike_snippets(:,:,1) = + + 0.3732 0.7791 0.5937 + 0.7586 0.8887 0.6501 + 0.3051 0.4772 0.4288 + 0.4012 0.5913 0.3957 + 0.3939 0.3286 0.1415 + 0.5662 0.5443 0.2179 + 0.9869 0.4951 0.4386 + 0.7861 0.9518 0.4311 + 0.6751 0.4070 0.1629 + 0.4426 0.5435 0.8580 + 0.0396 0.6455 0.9119 + 0.9309 0.4391 0.6281 + 0.2086 0.5926 0.6285 + 0.9404 0.2170 0.2241 + 0.5310 0.3074 0.9547 + 0.3391 0.8501 0.5889 + 0.0462 0.7716 0.8651 + 0.0262 0.6235 0.9419 + 0.8849 0.0555 0.4975 + 0.4348 0.8429 0.5563 + 0.3528 0.4937 0.8508 + 0.5342 0.9424 0.9996 + 0.5746 0.0628 0.8755 + 0.4744 0.8553 0.9244 + 0.7230 0.6936 0.2125 + 0.4087 0.2393 0.7200 + 0.2982 0.4357 0.2804 + 0.1524 0.7107 0.3372 + 0.9375 0.9103 0.1958 + 0.7425 0.0687 0.4879 + 0.2087 0.0370 0.0393 + 0.1920 0.2053 0.4417 + 0.1422 0.4232 0.1870 + 0.8810 0.7692 0.7563 + 0.1456 0.9029 0.5702 + 0.2523 0.1514 0.7324 + 0.4195 0.4896 0.2667 + 0.3307 0.6090 0.6230 + 0.1701 0.9241 0.5880 + 0.5319 0.0420 0.6809 spike_snippets(:,:,2) = - 0.5338 0.3753 0.6193 - 0.1517 0.6080 0.1663 - 0.1934 0.6342 0.9882 - 0.9244 0.8932 0.3000 - 0.8507 0.4194 0.6482 - 0.5106 0.1159 0.7561 - 0.1162 0.3095 0.9177 - 0.9806 0.6443 0.8760 - 0.0513 0.4850 0.9481 - 0.8886 0.2191 0.6419 - 0.6883 0.4286 0.8974 - 0.8499 0.5069 0.4643 - 0.9019 0.3152 0.4006 - 0.2973 0.4501 0.0411 - 0.2026 0.1939 0.9824 - 0.6041 0.2842 0.5462 - 0.9371 0.5834 0.8635 - 0.4799 0.6260 0.2953 - 0.5238 0.7532 0.8461 - 0.6517 0.7502 0.3512 - 0.4229 0.1752 0.1634 - 0.7366 0.7801 0.9180 - 0.1957 0.2408 0.3131 - 0.9544 0.5748 0.1483 - 0.8544 0.0117 0.7080 - 0.7467 0.9576 0.2643 - 0.5438 0.0537 0.0843 - 0.9563 0.6243 0.4454 - 0.5092 0.1294 0.3496 - 0.4297 0.4393 0.2485 - 0.4890 0.8836 0.6625 - 0.1389 0.4318 0.3081 - 0.1869 0.0011 0.4418 - 0.9201 0.4152 0.0008 - 0.4235 0.6870 0.1545 - 0.9545 0.0976 0.9682 - 0.7207 0.6316 0.7971 - 0.9008 0.5584 0.7311 - 0.1453 0.9232 0.3198 - 0.5304 0.4056 0.1549 + 0.6946 0.9867 0.1621 + 0.2072 0.7996 0.6578 + 0.7396 0.9594 0.2076 + 0.5369 0.8403 0.3706 + 0.3963 0.8120 0.9353 + 0.0532 0.0624 0.7060 + 0.1420 0.1284 0.4933 + 0.9286 0.5055 0.6835 + 0.3156 0.7733 0.3820 + 0.4400 0.2803 0.6084 + 0.2611 0.6750 0.0324 + 0.0603 0.6302 0.9327 + 0.3091 0.1783 0.3724 + 0.5451 0.6656 0.4110 + 0.1974 0.1752 0.6761 + 0.9598 0.3204 0.7998 + 0.7463 0.9291 0.1296 + 0.1828 0.4812 0.6270 + 0.7885 0.1908 0.7519 + 0.1154 0.7749 0.6845 + 0.5216 0.3994 0.9655 + 0.2219 0.3672 0.2583 + 0.4704 0.8092 0.4067 + 0.9942 0.0751 0.1858 + 0.2373 0.5807 0.9973 + 0.6321 0.7136 0.1707 + 0.4648 0.7071 0.1290 + 0.6359 0.6416 0.3091 + 0.1669 0.8553 0.1380 + 0.7639 0.3221 0.2149 + 0.0145 0.3226 0.4020 + 0.5560 0.0633 0.2573 + 0.6934 0.7846 0.9890 + 0.5472 0.7723 0.0297 + 0.7413 0.4124 0.4747 + 0.9513 0.8615 0.3798 + 0.8774 0.0074 0.0822 + 0.2707 0.2008 0.6769 + 0.9066 0.2487 0.3473 + 0.9031 0.5947 0.2998 spike_snippets(:,:,3) = - 0.5092 0.9115 0.6848 - 0.0370 0.3598 0.5459 - 0.8909 0.2320 0.6210 - 0.1415 0.3598 0.3532 - 0.6650 0.7777 0.2036 - 0.0845 0.7893 0.6989 - 0.8263 0.5907 0.7732 - 0.7758 0.9209 0.6862 - 0.6141 0.4780 0.6086 - 0.4845 0.5522 0.5599 - 0.9572 0.1676 0.3414 - 0.1539 0.5025 0.8494 - 0.6809 0.5092 0.8636 - 0.9649 0.6492 0.5732 - 0.3245 0.6510 0.9502 - 0.3759 0.3767 0.4420 - 0.7450 0.5653 0.0341 - 0.8066 0.5285 0.6691 - 0.7006 0.0285 0.2575 - 0.4817 0.5484 0.8613 - 0.2185 0.3218 0.5705 - 0.4282 0.1795 0.8811 - 0.3090 0.8398 0.6193 - 0.0477 0.4053 0.8866 - 0.1156 0.5851 0.2542 - 0.8462 0.0158 0.3698 - 0.4941 0.9994 0.2657 - 0.6635 0.6725 0.1791 - 0.8944 0.2112 0.0403 - 0.3573 0.8075 0.2363 - 0.0931 0.0854 0.2321 - 0.4501 0.9337 0.2882 - 0.5619 0.6824 0.8621 - 0.5455 0.0936 0.0346 - 0.4649 0.7467 0.8067 - 0.0441 0.9981 0.1671 - 0.1436 0.4552 0.5099 - 0.9111 0.4916 0.9271 - 0.1548 0.1222 0.4906 - 0.3945 0.8146 0.5500 + 0.5451 0.8070 0.3206 + 0.6928 0.4280 0.8321 + 0.6805 0.9535 0.2361 + 0.2666 0.1868 0.4845 + 0.9815 0.7233 0.8900 + 0.7260 0.8210 0.3314 + 0.3164 0.7107 0.6713 + 0.4181 0.4670 0.0010 + 0.9741 0.2856 0.7074 + 0.4238 0.8375 0.8412 + 0.9819 0.8191 0.0949 + 0.4364 0.9326 0.4354 + 0.7310 0.9098 0.4869 + 0.4943 0.9199 0.3313 + 0.6452 0.6932 0.7494 + 0.0505 0.9546 0.9591 + 0.1264 0.4607 0.1279 + 0.9333 0.0234 0.7867 + 0.3341 0.3857 0.6957 + 0.7642 0.1095 0.0429 + 0.9580 0.4884 0.6948 + 0.6084 0.5523 0.8079 + 0.5066 0.6660 0.3920 + 0.0327 0.7744 0.8886 + 0.9240 0.5647 0.0658 + 0.5356 0.0641 0.7811 + 0.4054 0.5640 0.4154 + 0.9789 0.5963 0.8608 + 0.5668 0.1509 0.3670 + 0.7025 0.9988 0.9933 + 0.8613 0.4405 0.1464 + 0.1041 0.7715 0.3392 + 0.3661 0.3882 0.5087 + 0.7465 0.0436 0.0087 + 0.3572 0.4768 0.0233 + 0.9081 0.2854 0.6945 + 0.2392 0.3414 0.6361 + 0.6355 0.0123 0.6029 + 0.8906 0.9561 0.0998 + 0.8724 0.4231 0.8791 spike_snippets(:,:,4) = - 0.8651 0.0729 0.5703 - 0.7056 0.7361 0.0422 - 0.7220 0.4867 0.8848 - 0.7563 0.2299 0.4345 - 0.1388 0.6244 0.1856 - 0.4175 0.1199 0.3165 - 0.0970 0.6949 0.4674 - 0.6304 0.8521 0.2420 - 0.5424 0.2486 0.6067 - 0.1731 0.3253 0.6955 - 0.6922 0.3908 0.0253 - 0.3011 0.2044 0.2150 - 0.6281 0.9983 0.8887 - 0.5463 0.3738 0.2357 - 0.1263 0.2581 0.0286 - 0.5020 0.1082 0.0744 - 0.2669 0.0954 0.5680 - 0.3439 0.2201 0.8495 - 0.6176 0.9906 0.6916 - 0.2697 0.4133 0.1197 - 0.5944 0.7802 0.2287 - 0.4447 0.7085 0.0679 - 0.1947 0.6754 0.9432 - 0.4714 0.0661 0.0817 - 0.5271 0.9569 0.9435 - 0.8597 0.6655 0.0351 - 0.8275 0.0531 0.2852 - 0.2070 0.3484 0.4845 - 0.9358 0.0522 0.7680 - 0.6787 0.3460 0.3718 - 0.2934 0.3135 0.0939 - 0.9152 0.4345 0.1295 - 0.3650 0.2472 0.3402 - 0.1528 0.6372 0.5485 - 0.5785 0.9504 0.9111 - 0.5069 0.9808 0.3079 - 0.3256 0.3353 0.1383 - 0.5329 0.4452 0.8509 - 0.1127 0.6844 0.8668 - 0.7811 0.1499 0.4629 + 0.4854 0.2021 0.4178 + 0.1042 0.0572 0.5235 + 0.7787 0.8715 0.3109 + 0.0947 0.2513 0.3742 + 0.4724 0.0945 0.4348 + 0.7312 0.1811 0.7789 + 0.1908 0.4436 0.7879 + 0.3579 0.8552 0.1141 + 0.4405 0.4878 0.4577 + 0.7250 0.3002 0.0478 + 0.4961 0.2143 0.2460 + 0.3935 0.5856 0.3734 + 0.4304 0.8539 0.6590 + 0.4677 0.2888 0.9005 + 0.6995 0.0156 0.3576 + 0.8153 0.7794 0.9313 + 0.6333 0.6757 0.7350 + 0.5318 0.6517 0.2361 + 0.8009 0.7342 0.3832 + 0.2961 0.9837 0.3576 + 0.2021 0.9876 0.7297 + 0.9424 0.2764 0.0504 + 0.1479 0.1211 0.1844 + 0.4527 0.4286 0.2950 + 0.4787 0.1957 0.8230 + 0.4661 0.1299 0.0478 + 0.4762 0.0754 0.6567 + 0.4106 0.8626 0.7855 + 0.2155 0.7685 0.4191 + 0.8953 0.0073 0.6560 + 0.2029 0.2695 0.3976 + 0.1809 0.4246 0.5822 + 0.9363 0.5071 0.9302 + 0.3073 0.1328 0.5443 + 0.6552 0.0491 0.8480 + 0.3227 0.3559 0.1201 + 0.0361 0.0332 0.5380 + 0.0322 0.5357 0.4574 + 0.8864 0.4393 0.4757 + 0.3848 0.2086 0.7510 spike_snippets(:,:,5) = - 0.9833 0.1306 0.1439 - 0.2656 0.5451 0.9737 - 0.5678 0.3446 0.3483 - 0.0967 0.0733 0.2677 - 0.2653 0.9260 0.8876 - 0.3652 0.3403 0.3428 - 0.7242 0.2202 0.3057 - 0.8023 0.8464 0.9116 - 0.2288 0.7517 0.9695 - 0.7929 0.6289 0.9108 - 0.5254 0.5371 0.8497 - 0.9644 0.9208 0.5796 - 0.3907 0.0955 0.7351 - 0.8862 0.8287 0.5880 - 0.3508 0.8420 0.7759 - 0.9350 0.8327 0.3354 - 0.3336 0.4643 0.3187 - 0.3489 0.0708 0.8605 - 0.6006 0.7239 0.3991 - 0.3062 0.9719 0.1192 - 0.6141 0.9838 0.1967 - 0.0040 0.5215 0.8946 - 0.2364 0.0775 0.0065 - 0.7518 0.9408 0.8491 - 0.7013 0.8655 0.8282 - 0.9326 0.1311 0.8476 - 0.1252 0.0149 0.3416 - 0.9947 0.6125 0.6894 - 0.1763 0.6221 0.2775 - 0.7586 0.2494 0.6819 - 0.9048 0.7648 0.0505 - 0.2789 0.3761 0.7825 - 0.1195 0.3080 0.1136 - 0.3286 0.8026 0.9635 - 0.5285 0.2380 0.6579 - 0.4777 0.2527 0.4029 - 0.6137 0.4510 0.4112 - 0.3054 0.5817 0.7277 - 0.5103 0.9052 0.9271 - 0.8229 0.1610 0.4064 + 0.1860 0.0536 0.5940 + 0.2376 0.8684 0.8130 + 0.1716 0.3393 0.4770 + 0.0312 0.1379 0.6187 + 0.3256 0.6297 0.1215 + 0.8935 0.3748 0.4845 + 0.6420 0.1018 0.4572 + 0.1572 0.6465 0.1285 + 0.7944 0.8081 0.1087 + 0.3353 0.1870 0.9674 + 0.3222 0.3932 0.3531 + 0.8497 0.5727 0.3463 + 0.6986 0.6426 0.5585 + 0.7362 0.5711 0.3389 + 0.1066 0.8356 0.3358 + 0.9519 0.5272 0.1312 + 0.0989 0.9641 0.3374 + 0.5441 0.7474 0.6270 + 0.9346 0.6895 0.6218 + 0.7645 0.7542 0.8233 + 0.0604 0.9699 0.0417 + 0.1195 0.0637 0.8807 + 0.4555 0.7875 0.7380 + 0.3830 0.6953 0.0521 + 0.0568 0.6954 0.6580 + 0.3506 0.4798 0.0857 + 0.2994 0.7058 0.4222 + 0.3651 0.4766 0.6714 + 0.6819 0.1449 0.8841 + 0.7518 0.6569 0.8799 + 0.4554 0.0071 0.1870 + 0.1671 0.5957 0.8323 + 0.7819 0.1208 0.0767 + 0.5283 0.8852 0.1754 + 0.4018 0.9644 0.2548 + 0.3075 0.7336 0.8771 + 0.8817 0.0490 0.6314 + 0.9053 0.7864 0.7232 + 0.3306 0.1048 0.3259 + 0.4217 0.0060 0.3249 spike_snippets(:,:,6) = - 0.3054 0.2779 0.6491 - 0.5022 0.0909 0.5466 - 0.2294 0.5000 0.8570 - 0.4042 0.5115 0.9431 - 0.4964 0.2149 0.5783 - 0.4703 0.1227 0.4063 - 0.7156 0.5084 0.0977 - 0.1685 0.6039 0.9440 - 0.5246 0.4176 0.6435 - 0.1973 0.8868 0.0968 - 0.3190 0.5694 0.8356 - 0.9508 0.3955 0.3049 - 0.7104 0.8199 0.1919 - 0.5505 0.9165 0.1106 - 0.5106 0.9105 0.6328 - 0.1722 0.1372 0.2181 - 0.4067 0.5448 0.6478 - 0.9696 0.4703 0.5263 - 0.1818 0.4216 0.7169 - 0.2094 0.2752 0.8469 - 0.4900 0.4156 0.5015 - 0.9689 0.3503 0.3427 - 0.4425 0.7213 0.7925 - 0.1208 0.9218 0.1758 - 0.5253 0.4974 0.9133 - 0.5050 0.1665 0.3859 - 0.3676 0.0337 0.0437 - 0.9110 0.8914 0.5112 - 0.4501 0.4358 0.3669 - 0.8307 0.5862 0.6017 - 0.2800 0.0028 0.3824 - 0.9934 0.6645 0.1911 - 0.1871 0.5665 0.4545 - 0.5104 0.4363 0.3587 - 0.4477 0.1140 0.2533 - 0.0078 0.4282 0.6347 - 0.6320 0.1487 0.7152 - 0.4901 0.3613 0.0225 - 0.0841 0.3465 0.2337 - 0.2430 0.2622 0.4275 + 0.3607 0.6747 0.2823 + 0.8019 0.7234 0.6816 + 0.9769 0.9206 0.9695 + 0.8595 0.1186 0.5267 + 0.8213 0.5041 0.7992 + 0.6864 0.4441 0.3328 + 0.4342 0.7906 0.7966 + 0.2791 0.6789 0.6589 + 0.0677 0.1800 0.8605 + 0.9977 0.6627 0.8032 + 0.6905 0.0662 0.9176 + 0.6056 0.3628 0.2537 + 0.3349 0.6504 0.4738 + 0.3405 0.3380 0.9896 + 0.9532 0.6461 0.2478 + 0.6151 0.3351 0.3112 + 0.9391 0.4259 0.4215 + 0.1135 0.2030 0.1276 + 0.6935 0.5926 0.5615 + 0.9860 0.1078 0.4081 + 0.8066 0.0918 0.1500 + 0.3176 0.4185 0.3038 + 0.5564 0.0260 0.1120 + 0.2822 0.2521 0.1910 + 0.5111 0.1336 0.9303 + 0.9938 0.0073 0.2631 + 0.9386 0.2338 0.9264 + 0.8758 0.3476 0.6830 + 0.0299 0.3936 0.0800 + 0.5553 0.8059 0.5107 + 0.5919 0.3904 0.7407 + 0.3952 0.6322 0.8418 + 0.0015 0.1364 0.9954 + 0.6989 0.2713 0.1460 + 0.1746 0.6716 0.0101 + 0.3299 0.8212 0.8991 + 0.2970 0.9432 0.8047 + 0.9798 0.9383 0.8505 + 0.4682 0.5601 0.8434 + 0.4084 0.6759 0.9916 spike_snippets(:,:,7) = - 0.5203 0.4307 0.6524 - 0.7971 0.7307 0.9649 - 0.5900 0.5683 0.7583 - 0.4517 0.9439 0.4560 - 0.7591 0.4558 0.7293 - 0.5660 0.1464 0.6991 - 0.4934 0.6237 0.6178 - 0.8066 0.6757 0.4065 - 0.1988 0.2131 0.3927 - 0.9253 0.1590 0.2406 - 0.4513 0.2735 0.8884 - 0.3209 0.9513 0.4656 - 0.1497 0.7329 0.8223 - 0.8818 0.5569 0.8199 - 0.1966 0.0080 0.8479 - 0.2544 0.0254 0.1438 - 0.9411 0.2648 0.6022 - 0.9904 0.3270 0.8801 - 0.5011 0.0608 0.7151 - 0.4306 0.5025 0.6970 - 0.7600 0.0648 0.6352 - 0.8428 0.1614 0.4374 - 0.7337 0.1432 0.7528 - 0.7799 0.2674 0.2795 - 0.1125 0.0389 0.7427 - 0.6235 0.6113 0.4224 - 0.8652 0.3020 0.7012 - 0.0585 0.2901 0.6066 - 0.2551 0.6485 0.6733 - 0.3578 0.4431 0.8841 - 0.3194 0.8011 0.5885 - 0.8658 0.1362 0.9775 - 0.7267 0.8782 0.1815 - 0.9021 0.1424 0.9340 - 0.1541 0.2204 0.2235 - 0.3263 0.9738 0.1737 - 0.8442 0.1610 0.1785 - 0.0902 0.4908 0.3965 - 0.9395 0.1451 0.8357 - 0.5820 0.4252 0.1027 + 0.0571 0.8938 0.2892 + 0.3651 0.2947 0.0883 + 0.0048 0.5505 0.2311 + 0.0752 0.5008 0.0071 + 0.1115 0.1171 0.3412 + 0.2859 0.2660 0.7362 + 0.8617 0.7911 0.6713 + 0.7250 0.9561 0.2437 + 0.3928 0.7430 0.5275 + 0.4087 0.4779 0.9706 + 0.1443 0.3129 0.7893 + 0.5913 0.3437 0.1562 + 0.4039 0.9153 0.6639 + 0.1441 0.5124 0.6560 + 0.8561 0.5080 0.9686 + 0.4229 0.9691 0.2507 + 0.2713 0.5633 0.6792 + 0.0239 0.2525 0.9951 + 0.4989 0.3135 0.1867 + 0.6718 0.8556 0.8071 + 0.8666 0.1969 0.1976 + 0.1018 0.3002 0.1270 + 0.3555 0.5716 0.8467 + 0.7235 0.7092 0.0841 + 0.1264 0.0393 0.0440 + 0.7326 0.2412 0.5221 + 0.0684 0.3701 0.9379 + 0.3814 0.2398 0.9121 + 0.8694 0.0473 0.1581 + 0.5230 0.8057 0.0546 + 0.5274 0.3905 0.7978 + 0.2959 0.0482 0.5761 + 0.3504 0.3914 0.5200 + 0.8993 0.2229 0.4167 + 0.0838 0.4613 0.7469 + 0.8273 0.6824 0.5753 + 0.8421 0.8724 0.1875 + 0.3069 0.7149 0.9203 + 0.8881 0.0453 0.7021 + 0.8480 0.5593 0.0597 spike_snippets(:,:,8) = - 0.1236 0.6511 0.1434 - 0.6919 0.8788 0.5315 - 0.0110 0.2866 0.2883 - 0.6653 0.3658 0.7295 - 0.3830 0.3836 0.1894 - 0.0792 0.4844 0.6232 - 0.0429 0.0815 0.0893 - 0.9189 0.4935 0.6753 - 0.9430 0.6922 0.1165 - 0.6600 0.5560 0.4981 - 0.7278 0.3105 0.6180 - 0.2455 0.8558 0.8068 - 0.1648 0.5900 0.8158 - 0.7264 0.2944 0.9467 - 0.5387 0.3136 0.4850 - 0.2455 0.0724 0.9675 - 0.9792 0.7856 0.1285 - 0.0151 0.3191 0.4051 - 0.7201 0.2710 0.8689 - 0.6860 0.1948 0.5062 - 0.8377 0.2674 0.8979 - 0.3805 0.7267 0.2665 - 0.2113 0.5110 0.2891 - 0.2075 0.1331 0.1577 - 0.5781 0.8387 0.8078 - 0.0374 0.8755 0.9759 - 0.0858 0.7683 0.4930 - 0.9413 0.4375 0.2516 - 0.4598 0.0071 0.5345 - 0.3385 0.2310 0.6649 - 0.8964 0.7416 0.8791 - 0.9074 0.5103 0.8058 - 0.0780 0.2104 0.6698 - 0.1535 0.9910 0.7050 - 0.2712 0.3049 0.6195 - 0.0698 0.8990 0.2976 - 0.5451 0.3134 0.1452 - 0.6226 0.0632 0.5848 - 0.3860 0.4139 0.0877 - 0.2459 0.3314 0.7027 + 0.5469 0.2381 0.3206 + 0.1442 0.0464 0.9169 + 0.8726 0.4046 0.1317 + 0.3666 0.0378 0.7042 + 0.1399 0.5182 0.1363 + 0.9368 0.7287 0.7152 + 0.7624 0.0543 0.3947 + 0.7231 0.4113 0.6290 + 0.4949 0.3340 0.8478 + 0.6423 0.7035 0.9309 + 0.6111 0.9467 0.7805 + 0.0830 0.3386 0.1138 + 0.6171 0.0343 0.6772 + 0.5062 0.2758 0.3346 + 0.3766 0.5560 0.6250 + 0.1964 0.1594 0.8136 + 0.2617 0.4583 0.1110 + 0.0918 0.6463 0.7804 + 0.9457 0.4661 0.8166 + 0.1252 0.4231 0.8606 + 0.7374 0.7485 0.3757 + 0.1418 0.2033 0.9158 + 0.4184 0.0849 0.9580 + 0.4020 0.1756 0.7954 + 0.3852 0.2716 0.4669 + 0.4989 0.4680 0.5607 + 0.2454 0.1776 0.6862 + 0.0040 0.4639 0.3231 + 0.0427 0.0131 0.4277 + 0.3237 0.7697 0.2445 + 0.2296 0.8780 0.5891 + 0.4673 0.3589 0.6978 + 0.9605 0.5383 0.8642 + 0.6235 0.9730 0.8974 + 0.8655 0.3656 0.7443 + 0.2165 0.9781 0.7558 + 0.8414 0.3375 0.1513 + 0.6390 0.4023 0.5663 + 0.2621 0.5162 0.0405 + 0.8289 0.3021 0.8460 spike_snippets(:,:,9) = - 0.1862 0.3166 0.5625 - 0.6883 0.8583 0.6659 - 0.8207 0.2343 0.7708 - 0.4771 0.9836 0.6667 - 0.9927 0.8793 0.5623 - 0.5524 0.3897 0.6021 - 0.0158 0.0147 0.6756 - 0.5509 0.3765 0.1045 - 0.0319 0.8561 0.6120 - 0.6078 0.8196 0.1573 - 0.8092 0.9058 0.8133 - 0.1753 0.4625 0.3167 - 0.7093 0.0153 0.8247 - 0.0031 0.9350 0.7074 - 0.7463 0.7795 0.7193 - 0.6112 0.7431 0.8335 - 0.1113 0.7544 0.5980 - 0.1001 0.0113 0.5878 - 0.7874 0.3017 0.8858 - 0.3490 0.6528 0.4592 - 0.2282 0.9735 0.8830 - 0.5118 0.8896 0.5627 - 0.8384 0.6445 0.6133 - 0.7058 0.5834 0.9355 - 0.8892 0.4049 0.2107 - 0.7051 0.1832 0.5109 - 0.9029 0.6395 0.3890 - 0.2350 0.2461 0.1438 - 0.4924 0.8447 0.9080 - 0.3103 0.9046 0.0424 - 0.0415 0.4561 0.1136 - 0.9019 0.4703 0.8842 - 0.5687 0.0371 0.4397 - 0.1593 0.0056 0.3861 - 0.6538 0.0122 0.3605 - 0.1895 0.2687 0.9563 - 0.4757 0.9230 0.5992 - 0.5058 0.0182 0.8989 - 0.7973 0.6793 0.1926 - 0.9365 0.5756 0.1470 + 0.4691 0.7988 0.0529 + 0.9929 0.6395 0.6071 + 0.7489 0.2541 0.8289 + 0.0846 0.9819 0.9793 + 0.9771 0.4078 0.9797 + 0.8538 0.5584 0.8525 + 0.4623 0.2815 0.8258 + 0.6717 0.7234 0.3825 + 0.3005 0.7018 0.5217 + 0.0373 0.3626 0.3260 + 0.2694 0.0014 0.9328 + 0.0935 0.4851 0.9782 + 0.9277 0.7393 0.8915 + 0.4584 0.3471 0.7444 + 0.6188 0.9747 0.5640 + 0.9186 0.2859 0.3740 + 0.5948 0.5343 0.3207 + 0.9418 0.8765 0.9253 + 0.8842 0.1309 0.4301 + 0.3234 0.3499 0.1663 + 0.2283 0.5276 0.5893 + 0.3362 0.4110 0.4571 + 0.1672 0.0150 0.1694 + 0.5063 0.6239 0.0191 + 0.9739 0.8482 0.7000 + 0.9642 0.0519 0.1061 + 0.3678 0.6110 0.6649 + 0.2460 0.7439 0.6566 + 0.0136 0.4706 0.7010 + 0.8887 0.1154 0.8915 + 0.4598 0.1088 0.0265 + 0.4780 0.0377 0.1051 + 0.6038 0.4467 0.5940 + 0.5292 0.5928 0.9708 + 0.4460 0.6881 0.8970 + 0.3750 0.5452 0.6821 + 0.7657 0.2439 0.3457 + 0.9692 0.2747 0.4023 + 0.5081 0.2458 0.8449 + 0.2699 0.1724 0.6493 spike_snippets(:,:,10) = - 0.6774 0.8672 0.3929 - 0.7508 0.8390 0.1819 - 0.8385 0.0982 0.1049 - 0.8561 0.8053 0.5929 - 0.6299 0.8493 0.1438 - 0.4487 0.6291 0.9145 - 0.3847 0.4643 0.3373 - 0.5404 0.7072 0.0958 - 0.4907 0.5549 0.8605 - 0.7538 0.9238 0.0707 - 0.6480 0.6550 0.8500 - 0.2106 0.1632 0.5082 - 0.2997 0.4515 0.2181 - 0.5225 0.6085 0.4031 - 0.7164 0.0671 0.2393 - 0.4219 0.8559 0.8960 - 0.2255 0.7409 0.2879 - 0.1748 0.2214 0.3755 - 0.6444 0.8154 0.7101 - 0.8884 0.4719 0.3015 - 0.9329 0.2244 0.2333 - 0.9767 0.3629 0.4684 - 0.8712 0.7563 0.3301 - 0.1827 0.6614 0.8416 - 0.7168 0.9171 0.7254 - 0.0646 0.5612 0.5675 - 0.5051 0.9097 0.6379 - 0.6441 0.4000 0.2584 - 0.3448 0.8788 0.3373 - 0.7757 0.0176 0.1728 - 0.7208 0.7215 0.9140 - 0.2416 0.7711 0.6687 - 0.9054 0.5785 0.7456 - 0.0335 0.1418 0.4057 - 0.9318 0.0209 0.8280 - 0.4995 0.5503 0.6516 - 0.5591 0.8762 0.9773 - 0.4354 0.9011 0.0860 - 0.2329 0.4244 0.1117 - 0.0895 0.3846 0.8654 + 0.2646 0.4643 0.9420 + 0.2981 0.8982 0.9420 + 0.9444 0.8127 0.2281 + 0.0019 0.9399 0.6619 + 0.8383 0.3594 0.0589 + 0.3812 0.7412 0.3856 + 0.0461 0.3143 0.6805 + 0.2631 0.5349 0.8362 + 0.6679 0.2794 0.0747 + 0.6365 0.1144 0.1717 + 0.9935 0.8025 0.8176 + 0.2022 0.7851 0.6757 + 0.4380 0.6696 0.4313 + 0.6085 0.2422 0.5570 + 0.1107 0.3251 0.0433 + 0.9562 0.5477 0.2331 + 0.7087 0.1371 0.4938 + 0.7187 0.5549 0.4971 + 0.5788 0.5722 0.0299 + 0.6707 0.4923 0.2003 + 0.6433 0.4343 0.4186 + 0.4536 0.4802 0.5284 + 0.8884 0.5167 0.3753 + 0.7600 0.1937 0.3257 + 0.2230 0.4037 0.1190 + 0.6195 0.8798 0.7132 + 0.6905 0.4647 0.3077 + 0.2035 0.4971 0.3984 + 0.2586 0.8970 0.0824 + 0.3915 0.7657 0.8055 + 0.1682 0.0791 0.8345 + 0.0808 0.8050 0.3915 + 0.2290 0.9915 0.2723 + 0.1630 0.0845 0.3458 + 0.2780 0.0904 0.4128 + 0.2752 0.0924 0.5610 + 0.1138 0.8468 0.0026 + 0.1058 0.0355 0.9058 + 0.7652 0.2477 0.4562 + 0.9184 0.5650 0.4295 spike_snippets(:,:,11) = - 0.8347 0.4022 0.6120 - 0.3468 0.5189 0.4033 - 0.2546 0.6819 0.0986 - 0.7404 0.1464 0.7471 - 0.6433 0.2989 0.8645 - 0.9926 0.0527 0.3949 - 0.9637 0.2744 0.2190 - 0.7971 0.7036 0.4778 - 0.4520 0.5440 0.6679 - 0.3244 0.4465 0.5489 - 0.9640 0.3327 0.7965 - 0.5527 0.1972 0.7607 - 0.2490 0.6106 0.3055 - 0.8834 0.5081 0.0499 - 0.2723 0.1501 0.9294 - 0.2521 0.5971 0.5519 - 0.7322 0.9338 0.7382 - 0.0855 0.8082 0.5566 - 0.7416 0.1892 0.5572 - 0.2958 0.9147 0.6783 - 0.0851 0.4890 0.4612 - 0.3550 0.0450 0.2096 - 0.1819 0.2133 0.5934 - 0.9579 0.1414 0.7223 - 0.4275 0.6274 0.9427 - 0.0523 0.0421 0.6497 - 0.0685 0.9755 0.6641 - 0.5790 0.6845 0.7101 - 0.7696 0.1755 0.2687 - 0.7507 0.4235 0.1038 - 0.6559 0.8909 0.1183 - 0.6514 0.9716 0.1036 - 0.9478 0.7154 0.0593 - 0.7043 0.2236 0.8412 - 0.3663 0.5732 0.0736 - 0.1300 0.3943 0.1802 - 0.6451 0.1573 0.4161 - 0.8897 0.7446 0.7855 - 0.3715 0.4903 0.6490 - 0.5015 0.5459 0.3932 + 0.3360 0.2768 0.2706 + 0.5883 0.5018 0.6218 + 0.5947 0.7284 0.9354 + 0.5599 0.6084 0.1978 + 0.9211 0.8140 0.0545 + 0.7966 0.8976 0.2581 + 0.3007 0.5282 0.5474 + 0.8500 0.4486 0.2071 + 0.0512 0.4022 0.9222 + 0.6838 0.6349 0.0706 + 0.9257 0.6698 0.5748 + 0.2152 0.5339 0.8961 + 0.6102 0.5816 0.3377 + 0.3648 0.6726 0.8777 + 0.2972 0.3565 0.8838 + 0.2829 0.7476 0.3734 + 0.9157 0.7164 0.6893 + 0.8746 0.0111 0.0486 + 0.1815 0.0744 0.1274 + 0.8996 0.0554 0.3310 + 0.9089 0.8892 0.4710 + 0.2577 0.9764 0.5696 + 0.9031 0.9686 0.5731 + 0.7543 0.8753 0.5673 + 0.0123 0.9955 0.3922 + 0.5084 0.7922 0.4345 + 0.4505 0.1746 0.2203 + 0.7865 0.5427 0.2527 + 0.5117 0.9445 0.8626 + 0.4887 0.1589 0.7124 + 0.2850 0.8352 0.5718 + 0.0180 0.3309 0.5588 + 0.5399 0.5011 0.8363 + 0.4116 0.7307 0.3184 + 0.5524 0.4636 0.5660 + 0.7529 0.1027 0.1108 + 0.6302 0.5957 0.6093 + 0.0836 0.9445 0.1758 + 0.0951 0.9562 0.2351 + 0.0849 0.0117 0.7479 spike_snippets(:,:,12) = - 0.8950 0.7784 0.3370 - 0.3776 0.8958 0.1258 - 0.2153 0.5221 0.4411 - 0.9188 0.6917 0.9823 - 0.0532 0.3541 0.2336 - 0.6066 0.7796 0.6442 - 0.7270 0.2461 0.5945 - 0.2519 0.4929 0.5494 - 0.0581 0.7809 0.5255 - 0.2975 0.1215 0.7106 - 0.8214 0.1294 0.1760 - 0.4632 0.9377 0.6688 - 0.2908 0.8853 0.7457 - 0.1076 0.5625 0.0337 - 0.0972 0.5536 0.1822 - 0.1280 0.7994 0.4142 - 0.1412 0.1745 0.7949 - 0.3290 0.2348 0.6860 - 0.7861 0.2603 0.6156 - 0.4999 0.3998 0.9619 - 0.2821 0.8703 0.1428 - 0.9904 0.9902 0.9319 - 0.7028 0.0983 0.1120 - 0.8319 0.1780 0.2330 - 0.2656 0.7303 0.3022 - 0.9044 0.4930 0.4198 - 0.6919 0.8411 0.3521 - 0.1977 0.5059 0.4959 - 0.8080 0.3110 0.4749 - 0.7690 0.1746 0.0756 - 0.5096 0.2501 0.1510 - 0.9853 0.4394 0.0432 - 0.2593 0.5565 0.1624 - 0.9890 0.5731 0.9597 - 0.9599 0.0753 0.2030 - 0.5933 0.8058 0.7752 - 0.6314 0.7114 0.8213 - 0.8363 0.0528 0.3939 - 0.4076 0.7217 0.5043 - 0.1097 0.2343 0.2508 + 0.8269 0.0684 0.4439 + 0.7323 0.1734 0.0751 + 0.6568 0.2218 0.2693 + 0.5686 0.5931 0.7554 + 0.8733 0.5064 0.8141 + 0.6172 0.8727 0.9094 + 0.0136 0.5690 0.1943 + 0.8223 0.9764 0.9327 + 0.0876 0.5534 0.0578 + 0.3906 0.9969 0.1656 + 0.2662 0.9741 0.8474 + 0.2071 0.9988 0.7772 + 0.6265 0.1958 0.3806 + 0.2814 0.7539 0.9439 + 0.6970 0.4425 0.1954 + 0.5497 0.7827 0.0818 + 0.9411 0.2419 0.0642 + 0.3968 0.5786 0.3247 + 0.5858 0.5023 0.4566 + 0.4175 0.2451 0.5167 + 0.3272 0.8763 0.9273 + 0.9850 0.8327 0.0031 + 0.8648 0.6048 0.2515 + 0.7225 0.9099 0.5846 + 0.5928 0.7970 0.9333 + 0.9333 0.4034 0.3905 + 0.7934 0.0362 0.6215 + 0.6854 0.4067 0.6295 + 0.3693 0.6808 0.0589 + 0.2698 0.8693 0.6090 + 0.0236 0.6264 0.6358 + 0.7969 0.6779 0.1526 + 0.1936 1.0000 0.0233 + 0.4508 0.3273 0.7223 + 0.9213 0.7523 0.2685 + 0.3340 0.4351 0.9825 + 0.8270 0.3205 0.1033 + 0.4581 0.7766 0.6554 + 0.1236 0.8837 0.3875 + 0.3160 0.4216 0.8846 spike_snippets(:,:,13) = - 0.2949 0.5202 0.1211 - 0.5566 0.5845 0.5552 - 0.0722 0.6373 0.8406 - 0.9252 0.0517 0.5231 - 0.4902 0.5120 0.9631 - 0.2890 0.4406 0.8756 - 0.8333 0.0660 0.7129 - 0.7859 0.1514 0.2913 - 0.0624 0.2431 0.4692 - 0.9129 0.6801 0.7586 - 0.9633 0.8651 0.4898 - 0.9800 0.8840 0.2424 - 0.1020 0.8982 0.5261 - 0.6766 0.0988 0.9697 - 0.2313 0.1582 0.4006 - 0.0004 0.3593 0.5432 - 0.7084 0.5084 0.4525 - 0.7881 0.0612 0.4665 - 0.9016 0.5683 0.2416 - 0.9231 0.7142 0.3431 - 0.3189 0.6186 0.6160 - 0.5037 0.2760 0.5419 - 0.0237 0.7551 0.1368 - 0.6520 0.7281 0.4271 - 0.2760 0.1216 0.5721 - 0.8475 0.6912 0.3738 - 0.7810 0.0934 0.3155 - 0.6271 0.8286 0.1854 - 0.1149 0.9365 0.5787 - 0.7695 0.1150 0.0557 - 0.5477 0.5701 0.2503 - 0.4269 0.0165 0.1992 - 0.4939 0.9138 0.8500 - 0.9287 0.8734 0.5062 - 0.7151 0.2187 0.0008 - 0.2543 0.6974 0.4274 - 0.9483 0.7896 0.6908 - 0.7255 0.8452 0.2864 - 0.0348 0.5217 0.1593 - 0.5899 0.3122 0.1772 + 0.3545 0.3870 0.0442 + 0.0984 0.6191 0.7319 + 0.4817 0.1129 0.7033 + 0.2747 0.7700 0.5511 + 0.9428 0.1419 0.6388 + 0.4259 0.8899 0.2468 + 0.5116 0.7886 0.0778 + 0.4094 0.0737 0.5975 + 0.5140 0.1224 0.4620 + 0.5372 0.0651 0.4016 + 0.6660 0.9459 0.3132 + 0.4055 0.3468 0.6925 + 0.3096 0.0933 0.2572 + 0.4144 0.0373 0.5043 + 0.9139 0.3029 0.4919 + 0.3319 0.8805 0.7918 + 0.7234 0.9948 0.1098 + 0.0170 0.1829 0.1256 + 0.2830 0.1492 0.3176 + 0.2600 0.7454 0.1790 + 0.9421 0.7018 0.4925 + 0.4013 0.3687 0.5861 + 0.5564 0.1115 0.6931 + 0.5644 0.5759 0.5131 + 0.7829 0.3622 0.5733 + 0.4672 0.1752 0.3412 + 0.6831 0.0186 0.9405 + 0.6730 0.2138 0.3973 + 0.6319 0.7183 0.0820 + 0.5931 0.5956 0.3570 + 0.5988 0.1654 0.1494 + 0.5480 0.1904 0.6582 + 0.9045 0.6122 0.3443 + 0.4664 0.2166 0.3314 + 0.0590 0.6913 0.4432 + 0.6690 0.9421 0.0179 + 0.5997 0.5471 0.8197 + 0.9114 0.1852 0.7625 + 0.7377 0.3112 0.3322 + 0.1051 0.0307 0.9699 spike_snippets(:,:,14) = - 0.9771 0.4050 0.7480 - 0.0164 0.7490 0.3865 - 0.3992 0.3380 0.2018 - 0.4467 0.0394 0.6368 - 0.7589 0.7476 0.6173 - 0.3515 0.3967 0.4286 - 0.2178 0.9765 0.7002 - 0.8223 0.9313 0.6389 - 0.5271 0.3603 0.2278 - 0.6464 0.5478 0.1317 - 0.4060 0.4718 0.9555 - 0.0270 0.4830 0.8491 - 0.0169 0.4543 0.9645 - 0.3327 0.7379 0.5937 - 0.9158 0.2060 0.9178 - 0.7765 0.1282 0.4284 - 0.3668 0.5960 0.5725 - 0.8509 0.0220 0.6117 - 0.3111 0.9309 0.9131 - 0.6934 0.8826 0.2040 - 0.2483 0.4454 0.1425 - 0.5874 0.7093 0.7173 - 0.8735 0.5988 0.0476 - 0.0763 0.7666 0.8454 - 0.1493 0.6608 0.4174 - 0.5494 0.2831 0.4819 - 0.4071 0.2351 0.8550 - 0.7085 0.9237 0.4157 - 0.7682 0.6375 0.0323 - 0.0196 0.1156 0.2325 - 1.0000 0.7195 0.4628 - 0.1514 0.4361 0.4644 - 0.9657 0.9117 0.4204 - 0.6568 0.0403 0.5068 - 0.8954 0.0092 0.2470 - 0.0665 1.0000 0.5583 - 0.8023 0.3161 0.5107 - 0.4888 0.3307 0.9941 - 0.6054 0.8640 0.4672 - 0.3619 0.9700 0.5930 + 0.8738 0.2539 0.5170 + 0.2402 0.9058 0.8826 + 0.5606 0.2673 0.7385 + 0.4901 0.1698 0.0661 + 0.9379 0.7687 0.2550 + 0.3886 0.8274 0.8461 + 0.6457 0.2094 0.0937 + 0.1621 0.3068 0.3773 + 0.5236 0.8581 0.4598 + 0.0713 0.0281 0.4309 + 0.0261 0.3696 0.1999 + 0.2469 0.5367 0.7956 + 0.8040 0.6403 0.4242 + 0.0573 0.7759 0.3112 + 0.6276 0.5760 0.6602 + 0.6207 0.0823 0.4012 + 0.8178 0.4223 0.2240 + 0.4988 0.1640 0.9503 + 0.9282 0.9511 0.7333 + 0.9976 0.8312 0.1382 + 0.3378 0.5846 0.9600 + 0.0158 0.1242 0.9066 + 0.9885 0.3426 0.5408 + 0.0505 0.8228 0.2916 + 0.9758 0.7815 0.6794 + 0.3000 0.9950 0.0827 + 0.9738 0.6339 0.1007 + 0.1853 0.2731 0.0706 + 0.4156 0.1586 0.1189 + 0.6042 0.0076 0.5364 + 0.8413 0.5236 0.2999 + 0.9670 0.2042 0.8950 + 0.0941 0.8300 0.0252 + 0.3518 0.4673 0.2669 + 0.8261 0.7968 0.3462 + 0.2083 0.6459 0.9281 + 0.4527 0.4038 0.3700 + 0.9544 0.9912 0.0818 + 0.8993 0.6790 0.6198 + 0.3285 0.1273 0.1766 spike_snippets(:,:,15) = - 0.8285 0.2332 0.5170 - 0.8534 0.5185 0.1475 - 0.1406 0.4439 0.6468 - 0.6271 0.7734 0.2874 - 0.7247 0.1307 0.7292 - 0.8879 0.9477 0.5567 - 0.2379 0.0284 0.5833 - 0.1076 0.1909 0.3181 - 0.9581 0.8145 0.8141 - 0.0705 0.4884 0.9800 - 0.1540 0.4450 0.7869 - 0.8214 0.2924 0.8107 - 0.3680 0.9230 0.7764 - 0.6458 0.1220 0.8034 - 0.0179 0.1152 0.1233 - 0.6552 0.0921 0.4741 - 0.4289 0.4675 0.4627 - 0.5957 0.6017 0.0530 - 0.7899 0.0406 0.7737 - 0.2715 0.5865 0.3788 - 0.3688 0.0015 0.2919 - 0.8261 0.6455 0.1661 - 0.9652 0.1234 0.2829 - 0.9641 0.1551 0.6033 - 0.0687 0.3860 0.3001 - 0.0792 0.8179 0.7818 - 0.7146 0.3863 0.2066 - 0.1720 0.3922 0.6165 - 0.0660 0.6977 0.0619 - 0.3606 0.8087 0.4434 - 0.0506 0.2943 0.3097 - 0.8358 0.0611 0.0026 - 0.1669 0.6148 0.0415 - 0.5499 0.1266 0.6509 - 0.0248 0.1344 0.8819 - 0.4887 0.2018 0.2192 - 0.6738 0.0505 0.3670 - 0.9817 0.2910 0.5394 - 0.0308 0.4956 0.9864 - 0.4028 0.5162 0.1998 + 0.2518 0.2132 0.6517 + 0.4294 0.2029 0.5901 + 0.1920 0.6816 0.0450 + 0.7183 0.2932 0.3240 + 0.3578 0.0861 0.9851 + 0.3588 0.7868 0.3229 + 0.6010 0.2346 0.3567 + 0.3353 0.8160 0.9498 + 0.6412 0.4145 0.4684 + 0.7884 0.5874 0.5773 + 0.8174 0.3730 0.7253 + 0.6890 0.8826 0.1494 + 0.6320 0.2392 0.3984 + 0.2187 0.1697 0.5931 + 0.4682 0.2170 0.4543 + 0.3698 0.5491 0.1559 + 0.4286 0.7919 0.6831 + 0.6181 0.8617 0.6636 + 0.5057 0.3220 0.4828 + 0.0323 0.0533 0.3387 + 0.8523 0.6696 0.8105 + 0.0593 0.3572 0.5220 + 0.7963 0.7267 0.4698 + 0.1692 0.8722 0.9332 + 0.8412 0.7119 0.8153 + 0.2336 0.3204 0.5797 + 0.5893 0.7290 0.6995 + 0.0408 0.6390 0.3742 + 0.5699 0.7568 0.5696 + 0.1617 0.6294 0.5978 + 0.8506 0.3235 0.0180 + 0.5276 0.7121 0.4807 + 0.0257 0.5351 0.0431 + 0.8287 0.6561 0.6653 + 0.7459 0.8562 0.6875 + 0.3030 0.9366 0.7649 + 0.3332 0.1334 0.1270 + 0.9961 0.1659 0.6390 + 0.3319 0.7664 0.4069 + 0.5801 0.2167 0.8845 spike_snippets(:,:,16) = - 0.0632 0.4119 0.1498 - 0.7862 0.8745 0.7497 - 0.3152 0.5970 0.2680 - 0.9582 0.5279 0.0675 - 0.8466 0.0177 0.1343 - 0.0575 0.4940 0.0601 - 0.9653 0.0421 0.6708 - 0.3656 0.9654 0.3555 - 0.6427 0.6600 0.8240 - 0.5254 0.5350 0.7614 - 0.8651 0.4518 0.1316 - 0.3772 0.3970 0.1697 - 0.9844 0.6259 0.4263 - 0.7779 0.2904 0.9443 - 0.4432 0.5715 0.7672 - 0.4826 0.1578 0.9774 - 0.8992 0.2390 0.9241 - 0.5520 0.7640 0.5236 - 0.6074 0.4966 0.5190 - 0.8831 0.8285 0.8182 - 0.0123 0.3464 0.0066 - 0.8589 0.9798 0.5752 - 0.6037 0.3889 0.2671 - 0.4787 0.5672 0.1828 - 0.9966 0.1551 0.4506 - 0.4607 0.6693 0.8682 - 0.1410 0.9311 0.4041 - 0.8505 0.8780 0.9635 - 0.8570 0.6529 0.0714 - 0.3587 0.9783 0.4064 - 0.4781 0.3078 0.8497 - 0.4610 0.3308 0.1232 - 0.8942 0.0222 0.8837 - 0.2707 0.6125 0.0489 - 0.8865 0.2327 0.1457 - 0.5464 0.8523 0.6175 - 0.4665 0.8757 0.5159 - 0.1181 0.2201 0.9281 - 0.8407 0.2243 0.4280 - 0.7371 0.5195 0.5242 + 0.3617 0.4796 0.3849 + 0.2697 0.9468 0.2100 + 0.6193 0.7343 0.1739 + 0.9393 0.8904 0.9818 + 0.5152 0.3033 0.4682 + 0.7790 0.8632 0.9662 + 0.4675 0.4774 0.5807 + 0.5060 0.4397 0.1240 + 0.9510 0.8019 0.9094 + 0.0934 0.1602 0.6181 + 0.0969 0.6271 0.8978 + 0.2026 0.4344 0.6037 + 0.6735 0.9694 0.1817 + 0.3916 0.3344 0.9062 + 0.9732 0.7063 0.0107 + 0.2138 0.3680 0.3148 + 0.4871 0.1667 0.1139 + 0.6683 0.2919 0.4264 + 0.3876 0.0255 0.8798 + 0.5643 0.8564 0.2776 + 0.5715 0.9426 0.0235 + 0.6990 0.6762 0.3343 + 0.8093 0.2319 0.1015 + 0.3863 0.8508 0.8312 + 0.1336 0.2826 0.6013 + 0.9609 0.7174 0.9380 + 0.9554 0.7533 0.1771 + 0.4546 0.6906 0.3352 + 0.6678 0.1365 0.7942 + 0.4918 0.9342 0.2363 + 0.5866 0.6735 0.0328 + 0.7620 0.9728 0.0622 + 0.6156 0.4195 0.1368 + 0.8612 0.5185 0.0101 + 0.2808 0.2869 0.7742 + 0.4417 0.8612 0.8285 + 0.7203 0.2428 0.9894 + 0.8703 0.6190 0.7001 + 0.4393 0.1567 0.1823 + 0.7885 0.1806 0.0020 spike_snippets(:,:,17) = - 0.2248 0.9454 0.3343 - 0.2661 0.2714 0.5529 - 0.6409 0.5257 0.2509 - 0.9720 0.6149 0.1317 - 0.4660 0.5646 0.0069 - 0.6395 0.8293 0.7489 - 0.0363 0.0109 0.0759 - 0.1006 0.2261 0.0331 - 0.4483 0.7455 0.8873 - 0.4724 0.9053 0.7795 - 0.6163 0.1059 0.4694 - 0.5038 0.8689 0.7092 - 0.4000 0.2480 0.9829 - 0.2566 0.8716 0.0221 - 0.1963 0.2623 0.1946 - 0.8754 0.8960 0.0683 - 0.3214 0.5532 0.3871 - 0.3090 0.4612 0.3692 - 0.0949 0.9036 0.7243 - 0.5785 0.0853 0.4553 - 0.4080 0.4273 0.1826 - 0.2397 0.1025 0.2676 - 0.0112 0.4233 0.8566 - 0.6912 0.5644 0.1537 - 0.5037 0.1292 0.5835 - 0.8740 0.9701 0.2860 - 0.1776 0.8694 0.4239 - 0.0146 0.2931 0.1575 - 0.1438 0.2192 0.0534 - 0.1210 0.6226 0.3310 - 0.6808 0.5873 0.8866 - 0.0166 0.4711 0.0265 - 0.2377 0.0932 0.4810 - 0.4095 0.5646 0.3677 - 0.7206 0.4269 0.0106 - 0.4908 0.5084 0.7710 - 0.9168 0.9261 0.2838 - 0.0650 0.3080 0.7490 - 0.9420 0.4491 0.0547 - 0.6323 0.8976 0.8351 + 0.1959 0.5420 0.9105 + 0.9073 0.6598 0.9800 + 0.3511 0.7097 0.4335 + 0.6976 0.0432 0.8542 + 0.4499 0.8647 0.0570 + 0.6184 0.1866 0.5088 + 0.1193 0.2679 0.1645 + 0.6003 0.3598 0.0318 + 0.7014 0.7784 0.4366 + 0.2962 0.9476 0.4504 + 0.3308 0.3297 0.9279 + 0.2546 0.0680 0.8303 + 0.9917 0.5504 0.9679 + 0.8936 0.4322 0.1293 + 0.5590 0.5348 0.5241 + 0.4043 0.1695 0.9367 + 0.2596 0.0089 0.7440 + 0.3231 0.3334 0.0031 + 0.2933 0.8405 0.0099 + 0.3029 0.3807 0.3762 + 0.3166 0.8088 0.7310 + 0.4989 0.6476 0.8311 + 0.1168 0.6515 0.7213 + 0.2899 0.3840 0.6481 + 0.1497 0.6184 0.0411 + 0.0861 0.9320 0.1645 + 0.3731 0.4888 0.1075 + 0.3739 0.0245 0.9520 + 0.2799 0.4943 0.5538 + 0.2278 0.6777 0.3999 + 0.2515 0.1443 0.8072 + 0.5196 0.6802 0.8547 + 0.9614 0.4804 0.2351 + 0.3108 0.2935 0.7144 + 0.6170 0.7830 0.1604 + 0.3423 0.2268 0.9950 + 0.0840 0.1316 0.4855 + 0.9375 0.8720 0.7160 + 0.8194 0.4043 0.6775 + 0.2686 0.9371 0.0693 spike_snippets(:,:,18) = - 0.8528 0.8267 0.3742 - 0.7533 0.1331 0.9552 - 0.4917 0.0555 0.7208 - 0.8872 0.2577 0.6193 - 0.5457 0.5930 0.0307 - 0.1417 0.9495 0.2944 - 0.3786 0.4841 0.4944 - 0.8947 0.1513 0.0882 - 0.5805 0.2407 0.3165 - 0.4782 0.4752 0.6826 - 0.3881 0.8809 0.0212 - 0.1409 0.6620 0.2262 - 0.7749 0.3939 0.4166 - 0.7476 0.2595 0.6855 - 0.8465 0.2595 0.1188 - 0.5590 0.4504 0.5791 - 0.8377 0.9104 0.6629 - 0.6318 0.3158 0.3771 - 0.8022 0.9276 0.2942 - 0.2505 0.8024 0.0318 - 0.9150 0.5174 0.6685 - 0.0144 0.9595 0.8606 - 0.4961 0.8575 0.2233 - 0.5635 0.4358 0.9664 - 0.3172 0.9393 0.1256 - 0.1253 0.8188 0.1029 - 0.3440 0.3788 0.0650 - 0.7378 0.9603 0.1648 - 0.4810 0.1027 0.5597 - 0.0185 0.2453 0.5999 - 0.8983 0.2843 0.7902 - 0.9571 0.6531 0.9934 - 0.3729 0.3625 0.7644 - 0.8940 0.6779 0.7209 - 0.0921 0.6594 0.9088 - 0.1161 0.6699 0.5187 - 0.6088 0.3770 0.6351 - 0.6902 0.4612 0.4053 - 0.1904 0.8284 0.8358 - 0.0138 0.0373 0.1868 + 0.2044 0.8060 0.4559 + 0.3989 0.3477 0.0178 + 0.3788 0.1528 0.2253 + 0.4920 0.6866 0.6046 + 0.0173 0.5004 0.6817 + 0.4821 0.8199 0.8309 + 0.2736 0.1016 0.2971 + 0.9217 0.5541 0.4229 + 0.1621 0.0677 0.9017 + 0.5945 0.1912 0.6291 + 0.2916 0.5514 0.5131 + 0.2112 0.8000 0.3688 + 0.8284 0.4171 0.1074 + 0.8941 0.1970 0.8132 + 0.5454 0.1708 0.5964 + 0.0349 0.1684 0.5245 + 0.5870 0.6541 0.5613 + 0.7540 0.6592 0.1215 + 0.1668 0.6609 0.2367 + 0.6786 0.1693 0.0634 + 0.9586 0.3644 0.4699 + 0.3425 0.2172 0.2802 + 0.1701 0.9606 0.7301 + 0.9152 0.3249 0.7825 + 0.8650 0.4647 0.2678 + 0.7262 0.6912 0.9897 + 0.4532 0.6555 0.2157 + 0.7250 0.0509 0.3455 + 0.3804 0.2556 0.8391 + 0.6323 0.8273 0.0621 + 0.7440 0.9607 0.9505 + 0.5396 0.6674 0.5746 + 0.5364 0.2100 0.9133 + 0.5956 0.7204 0.8166 + 0.4304 0.9428 0.1365 + 0.2596 0.5669 0.2789 + 0.1343 0.4623 0.9535 + 0.2614 0.6911 0.2445 + 0.4018 0.0246 0.3004 + 0.0077 0.1523 0.3515 spike_snippets(:,:,19) = - 0.7833 0.3800 0.2596 - 0.4774 0.3225 0.9132 - 0.3767 0.5766 0.7866 - 0.5167 0.7333 0.2876 - 0.3313 0.6348 0.4921 - 0.9909 0.7142 0.0040 - 0.7992 0.8899 0.7669 - 0.1438 0.3450 0.1557 - 0.8615 0.5972 0.6849 - 0.2221 0.2920 0.8230 - 0.9428 0.8654 0.7775 - 0.5121 0.7407 0.5810 - 0.6163 0.4000 0.3330 - 0.3748 0.9231 0.6470 - 0.4877 0.7523 0.8188 - 0.4864 0.9930 0.0859 - 0.0486 0.4711 0.6532 - 0.3978 0.0564 0.0195 - 0.9749 0.1345 0.4348 - 0.4293 0.0039 0.9382 - 0.5667 0.6412 0.2270 - 0.5779 0.7878 0.6903 - 0.4924 0.9922 0.8492 - 0.6379 0.1296 0.5580 - 0.4197 0.5457 0.1361 - 0.4808 0.5291 0.6389 - 0.6873 0.0123 0.3525 - 0.9886 0.1202 0.7538 - 0.7048 0.8567 0.9505 - 0.3475 0.1045 0.1739 - 0.8209 0.6846 0.5388 - 0.0525 0.3191 0.7253 - 0.1306 0.5241 0.2333 - 0.6714 0.2183 0.1283 - 0.8935 0.1168 0.5805 - 0.8253 0.1419 0.3755 - 0.6320 0.2447 0.7466 - 0.0071 0.0700 0.8273 - 0.3107 0.5529 0.8195 - 0.2268 0.3851 0.4185 + 0.4796 0.1469 0.7166 + 0.7013 0.1920 0.6477 + 0.3507 0.7289 0.3165 + 0.8040 0.2512 0.8675 + 0.8645 0.4048 0.6909 + 0.6119 0.1603 0.0853 + 0.3848 0.3168 0.8677 + 0.7272 0.9591 0.4262 + 0.4190 0.5329 0.7629 + 0.8615 0.3420 0.3994 + 0.6660 0.7825 0.5770 + 0.0337 0.5107 0.3806 + 0.2774 0.0544 0.5483 + 0.3664 0.7206 0.4609 + 0.3950 0.5821 0.2499 + 0.8709 0.9255 0.2459 + 0.4484 0.3779 0.7865 + 0.5256 0.7493 0.3957 + 0.3331 0.4078 0.6649 + 0.0315 0.3368 0.5578 + 0.8973 0.6093 0.0103 + 0.8446 0.0363 0.2517 + 0.8092 0.1453 0.8943 + 0.7750 0.4485 0.2392 + 0.8051 0.5641 0.9237 + 0.5442 0.3667 0.5998 + 0.7352 0.7777 0.9312 + 0.4753 0.1060 0.7647 + 0.6985 0.3146 0.1770 + 0.9186 0.0215 0.0437 + 0.8929 0.5599 0.3737 + 0.6774 0.9312 0.5492 + 0.2597 0.3554 0.3777 + 0.3778 0.6063 0.0516 + 0.3313 0.3930 0.4723 + 0.3727 0.7249 0.9840 + 0.7936 0.9136 0.4857 + 0.4638 0.5821 0.0701 + 0.8432 0.2344 0.4754 + 0.5643 0.0735 0.2353 spike_snippets(:,:,20) = - 0.0803 0.5497 0.8134 - 0.2016 0.7139 0.9475 - 0.2989 0.6889 0.9147 - 0.4506 0.2072 0.5099 - 0.6934 0.8924 0.4041 - 0.9842 0.2183 0.5916 - 0.9099 0.1014 0.2588 - 0.3646 0.2869 0.1107 - 0.7892 0.5949 0.2686 - 0.8226 0.5505 0.3111 - 0.0764 0.4849 0.1924 - 0.2240 0.8471 0.8423 - 0.1020 0.2254 0.4194 - 0.8691 0.5801 0.1725 - 0.8217 0.0235 0.0745 - 0.6285 0.1380 0.2667 - 0.6437 0.4091 0.5609 - 0.6716 0.2623 0.3741 - 0.7291 0.8411 0.0698 - 0.4717 0.0125 0.4050 - 0.1205 0.4536 0.2174 - 0.1712 0.4339 0.4282 - 0.2948 0.1448 0.0394 - 0.8869 0.1695 0.8341 - 0.0986 0.4590 0.6105 - 0.2961 0.1109 0.6225 - 0.2111 0.6054 0.6792 - 0.9609 0.6630 0.4239 - 0.8231 0.0917 0.1793 - 0.9510 0.1655 0.7910 - 0.8841 0.3304 0.3527 - 0.7403 0.3570 0.1069 - 0.6682 0.3612 0.9556 - 0.7742 0.0715 0.6476 - 0.8029 0.4781 0.8936 - 0.8517 0.2079 0.6216 - 0.8403 0.8003 0.7215 - 0.5677 0.7792 0.8469 - 0.1805 0.0260 0.8686 - 0.4809 0.8847 0.0151 -
 
% Create electrode table region referencing electrodes 0, 1, and 2
shank0_table_region = types.hdmf_common.DynamicTableRegion( ...
'table', types.untyped.ObjectView(electrodesDynamicTable), ...
'description', 'shank0', ...
'data', (0:2)');
 
% Define spike event series for unsorted spike times
spike_events = types.core.SpikeEventSeries( ...
'data', spike_snippets, ...
'timestamps', (0:19)', ... % Timestamps for each event
'description', 'events detected with 100uV threshold', ...
'electrodes', shank0_table_region ...
);
 
% Add spike event series to NWB file acquisition
nwb.acquisition.set('SpikeEvents_Shank0', spike_events);

Detected Events

If you need to store the complete, continuous raw voltage traces, along with unsorted spike times, you should store the traces in ElectricalSeries objects in the acquisition group, and use the EventDetection class to identify the spike events in your raw traces.
% Create the EventDetection object
event_detection = types.core.EventDetection( ...
'detection_method', 'thresholding, 1.5 * std', ...
'source_electricalseries', types.untyped.SoftLink(raw_electrical_series), ...
'source_idx', [1000; 2000; 3000], ...
'times', [.033, .066, .099] ...
);
 
% Add the EventDetection object to the ecephys module
ecephys_module.nwbdatainterface.set('ThresholdEvents', event_detection);

Storing Spike Features (e.g Principal Components)

NWB also provides a way to store features of spikes, such as principal components, using the FeatureExtraction class.
% Generate random feature data (time x channel x feature)
features = rand(3, 12, 4); % 3 time points, 12 channels, 4 features
features = permute(features, [3,2,1]); % reverse dimension order for matnwb
 
% Create the FeatureExtraction object
feature_extraction = types.core.FeatureExtraction( ...
'description', {'PC1', 'PC2', 'PC3', 'PC4'}, ... % Feature descriptions
'electrodes', electrode_table_region, ... % DynamicTableRegion referencing the electrodes table
'times', [.033; .066; .099], ... % Column vector for times
'features', features ...
);
 
% Add the FeatureExtraction object to the ecephys module (if required)
ecephys_module.nwbdatainterface.set('PCA_features', feature_extraction);

Choosing NWB-Types for Electrophysiology Data (A Summary)

As mentioned above, ElectricalSeries objects are meant for storing electrical timeseries data like raw voltage signals or processed signals like LFP or other filtered signals. In addition to the ElectricalSeries class, NWB provides some more classes for storing event-based electropysiological data. We will briefly discuss them here, and refer the reader to the API documentation and the section on Extracellular Physiology in the "NWB Format Specification" for more details on using these objects.
For storing unsorted spiking data, there are two options. Which one you choose depends on what data you have available. If you need to store complete and/or continuous raw voltage traces, you should store the traces with ElectricalSeries objects as acquisition data, and use the EventDetection class for identifying the spike events in your raw traces. If you do not want to store the entire raw voltage traces, only the waveform ‘snippets’ surrounding spike events, you should use SpikeEventSeries objects.
The results of spike sorting (or clustering) should be stored in the top-level Units table. The Units table can hold just the spike times of sorted units or, optionally, include additional waveform information. You can use the optional predefined columns waveform_mean, waveform_sd, and waveforms in the Units table to store individual and mean waveform data.

Writing the NWB File

nwbExport(nwb, 'ecephys_tutorial.nwb')

Reading NWB Data

Data arrays are read passively from the file. Calling TimeSeries.data does not read the data values, but presents an HDF5 object that can be indexed to read data. This allows you to conveniently work with datasets that are too large to fit in RAM all at once. load with no input arguments reads the entire dataset:
nwb2 = nwbRead('ecephys_tutorial.nwb', 'ignorecache');
nwb2.processing.get('ecephys'). ...
nwbdatainterface.get('LFP'). ...
electricalseries.get('ElectricalSeries'). ...
data.load;

Accessing Data Regions

If all you need is a data region, you can index a DataStub object like you would any normal array in MATLAB, as shown below. When indexing the dataset this way, only the selected region is read from disk into RAM. This allows you to handle very large datasets that would not fit entirely into RAM.
% read section of LFP
nwb2.processing.get('ecephys'). ...
nwbdatainterface.get('LFP'). ...
electricalseries.get('ElectricalSeries'). ...
data(1:5, 1:10)
ans = 5×10
2.0421 -1.9417 0.3559 0.4354 0.6993 -1.4009 0.5222 0.0893 0.1243 1.2460 - 0.2329 0.4688 2.1159 1.2094 0.1735 -0.3315 0.1403 -2.0881 0.2840 -0.4077 - -0.0943 1.3933 -0.0871 -0.5193 -0.0920 -1.1307 0.8399 0.0975 -0.6912 -0.4536 - -1.4224 2.7602 1.1832 0.0075 0.6687 0.2074 0.5432 0.4366 0.0113 0.2925 - 0.9660 0.9444 -0.8471 1.0362 0.0652 -0.2155 0.6006 0.1602 0.7417 -1.3644 -
 
% You can use the getRow method of the table to load spike times of a specific unit.
% To get the values, unpack from the returned table.
nwb.units.getRow(1).spike_times{1}
ans = 24×1
0.1312 - 0.4211 - 0.2037 - 0.1021 - 0.1315 - 0.8392 - 0.9195 - 0.7023 - 0.0588 - 0.7331 + 0.6873 0.0605 0.9140 + 0.9657 0.0721 0.8518 + 0.8899 0.1328 0.6940 + 0.0387 0.6798 0.9621 + 0.4656 0.5908 0.2731 + 0.7438 0.5670 0.2736 + 0.3971 0.0360 0.3144 + 0.8050 0.7448 0.6957 + 0.0030 0.4603 0.2473 + 0.2465 0.6805 0.3513 + 0.8086 0.2980 0.2490 + 0.2352 0.3977 0.5605 + 0.2713 0.7731 0.5679 + 0.8310 0.7215 0.5309 + 0.7490 0.9698 0.8578 + 0.5483 0.1271 0.5879 + 0.3070 0.0921 0.7794 + 0.1199 0.8039 0.5579 + 0.9437 0.8100 0.8285 + 0.7219 0.4346 0.4720 + 0.7465 0.6658 0.1583 + 0.5633 0.8219 0.5985 + 0.3870 0.4728 0.3190 + 0.4641 0.8891 0.5325 + 0.8391 0.2668 0.5287 + 0.2010 0.5825 0.9167 + 0.9513 0.0738 0.1681 + 0.2306 0.2030 0.1066 + 0.9499 0.1480 0.6067 + 0.9601 0.6199 0.4368 + 0.9094 0.2456 0.3924 + 0.9030 0.7869 0.9830 + 0.1268 0.3279 0.8036 + 0.4003 0.7065 0.6491 + 0.6768 0.2883 0.4791 + 0.1409 0.1552 0.0926 + 0.7783 0.5634 0.3639 + 0.7050 0.2093 0.0664 + 0.2874 0.9361 0.8809 + 0.5040 0.0051 0.3799 +
 
% Create electrode table region referencing electrodes 0, 1, and 2
shank0_table_region = types.hdmf_common.DynamicTableRegion( ...
'table', types.untyped.ObjectView(electrodesDynamicTable), ...
'description', 'shank0', ...
'data', (0:2)');
 
% Define spike event series for unsorted spike times
spike_events = types.core.SpikeEventSeries( ...
'data', spike_snippets, ...
'timestamps', (0:19)', ... % Timestamps for each event
'description', 'events detected with 100uV threshold', ...
'electrodes', shank0_table_region ...
);
 
% Add spike event series to NWB file acquisition
nwb.acquisition.set('SpikeEvents_Shank0', spike_events);

Detected Events

If you need to store the complete, continuous raw voltage traces, along with unsorted spike times, you should store the traces in ElectricalSeries objects in the acquisition group, and use the EventDetection class to identify the spike events in your raw traces.
% Create the EventDetection object
event_detection = types.core.EventDetection( ...
'detection_method', 'thresholding, 1.5 * std', ...
'source_electricalseries', types.untyped.SoftLink(raw_electrical_series), ...
'source_idx', [1000; 2000; 3000], ...
'times', [.033, .066, .099] ...
);
 
% Add the EventDetection object to the ecephys module
ecephys_module.nwbdatainterface.set('ThresholdEvents', event_detection);

Storing Spike Features (e.g Principal Components)

NWB also provides a way to store features of spikes, such as principal components, using the FeatureExtraction class.
% Generate random feature data (time x channel x feature)
features = rand(3, 12, 4); % 3 time points, 12 channels, 4 features
features = permute(features, [3,2,1]); % reverse dimension order for matnwb
 
% Create the FeatureExtraction object
feature_extraction = types.core.FeatureExtraction( ...
'description', {'PC1', 'PC2', 'PC3', 'PC4'}, ... % Feature descriptions
'electrodes', electrode_table_region, ... % DynamicTableRegion referencing the electrodes table
'times', [.033; .066; .099], ... % Column vector for times
'features', features ...
);
 
% Add the FeatureExtraction object to the ecephys module (if required)
ecephys_module.nwbdatainterface.set('PCA_features', feature_extraction);

Choosing NWB-Types for Electrophysiology Data (A Summary)

As mentioned above, ElectricalSeries objects are meant for storing electrical timeseries data like raw voltage signals or processed signals like LFP or other filtered signals. In addition to the ElectricalSeries class, NWB provides some more classes for storing event-based electropysiological data. We will briefly discuss them here, and refer the reader to the API documentation and the section on Extracellular Physiology in the "NWB Format Specification" for more details on using these objects.
For storing unsorted spiking data, there are two options. Which one you choose depends on what data you have available. If you need to store complete and/or continuous raw voltage traces, you should store the traces with ElectricalSeries objects as acquisition data, and use the EventDetection class for identifying the spike events in your raw traces. If you do not want to store the entire raw voltage traces, only the waveform ‘snippets’ surrounding spike events, you should use SpikeEventSeries objects.
The results of spike sorting (or clustering) should be stored in the top-level Units table. The Units table can hold just the spike times of sorted units or, optionally, include additional waveform information. You can use the optional predefined columns waveform_mean, waveform_sd, and waveforms in the Units table to store individual and mean waveform data.

Writing the NWB File

nwbExport(nwb, 'ecephys_tutorial.nwb')

Reading NWB Data

Data arrays are read passively from the file. Calling TimeSeries.data does not read the data values, but presents an HDF5 object that can be indexed to read data. This allows you to conveniently work with datasets that are too large to fit in RAM all at once. load with no input arguments reads the entire dataset:
nwb2 = nwbRead('ecephys_tutorial.nwb', 'ignorecache');
nwb2.processing.get('ecephys'). ...
nwbdatainterface.get('LFP'). ...
electricalseries.get('ElectricalSeries'). ...
data.load;

Accessing Data Regions

If all you need is a data region, you can index a DataStub object like you would any normal array in MATLAB, as shown below. When indexing the dataset this way, only the selected region is read from disk into RAM. This allows you to handle very large datasets that would not fit entirely into RAM.
% read section of LFP
nwb2.processing.get('ecephys'). ...
nwbdatainterface.get('LFP'). ...
electricalseries.get('ElectricalSeries'). ...
data(1:5, 1:10)
ans = 5×10
0.9651 -0.8883 -0.0094 0.8173 -1.0690 0.1127 -1.4322 -1.0934 -1.5671 1.0822 + -0.6077 0.1766 0.1769 0.3961 -0.4618 -0.6057 0.4036 -0.8789 -1.2575 0.5712 + -0.1929 0.5733 -1.4192 -0.2441 1.7385 -0.8977 -0.4516 -0.9052 -0.1145 0.3583 + 0.2470 -0.4401 1.6814 -0.3924 -0.1789 0.1862 -0.4147 -0.1626 -0.4556 -0.1766 + 0.2099 -0.4356 -0.8001 -0.3095 -1.3299 0.1646 0.5666 1.0098 -0.4388 0.7080 +
 
% You can use the getRow method of the table to load spike times of a specific unit.
% To get the values, unpack from the returned table.
nwb.units.getRow(1).spike_times{1}
ans = 24×1
0.3390 + 0.8821 + 0.0155 + 0.9190 + 0.3082 + 0.1643 + 0.0970 + 0.8547 + 0.1262 + 0.3271

Learn more!

See the API documentation to learn what data types are available.

MATLAB tutorials

Python tutorials

See our tutorials for more details about your data type:
Check out other tutorials that teach advanced NWB topics: