diff --git a/+tests/+util/getPythonPath.m b/+tests/+util/getPythonPath.m
index b7b3c494..304cdd10 100644
--- a/+tests/+util/getPythonPath.m
+++ b/+tests/+util/getPythonPath.m
@@ -1,7 +1,7 @@
 function pythonPath = getPythonPath()
     envPath = fullfile('+tests', 'env.mat');
     
-    if isfile(envPath)
+    if isfile(fullfile(misc.getMatnwbDir, envPath))
         Env = load(envPath, '-mat');
         if isfield(Env, 'pythonPath')
             pythonPath = Env.pythonPath;
diff --git a/tutorials/html/icephys.html b/tutorials/html/icephys.html
index 5b095148..440dfc36 100644
--- a/tutorials/html/icephys.html
+++ b/tutorials/html/icephys.html
@@ -12,8 +12,8 @@
 .S9 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 18px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 17px; font-weight: 700; text-align: left;  }
 .S10 { margin: 10px 0px 20px; padding-left: 0px; font-family: Helvetica, Arial, sans-serif; font-size: 14px;  }
 .S11 { margin-left: 56px; line-height: 21px; min-height: 0px; text-align: left; white-space: pre-wrap;  }
-.S12 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 18px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 17px; font-weight: 700; text-align: left;  }
-.S13 { margin: 10px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: 400; text-align: left;  }
+.S12 { margin: 10px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: 400; text-align: left;  }
+.S13 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 18px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 17px; font-weight: 700; text-align: left;  }
 .S14 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 20px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 20px; font-weight: 700; text-align: left;  }
 .S15 { border-left: 1px solid rgb(217, 217, 217); border-right: 1px solid rgb(217, 217, 217); border-top: 1px solid rgb(217, 217, 217); border-bottom: 1px solid rgb(217, 217, 217); border-radius: 4px; padding: 6px 45px 4px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px;  }
 .S16 { border-left: 1px solid rgb(217, 217, 217); border-right: 1px solid rgb(217, 217, 217); border-top: 1px solid rgb(217, 217, 217); border-bottom: 1px solid rgb(217, 217, 217); border-radius: 4px 4px 0px 0px; padding: 6px 45px 4px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px;  }
@@ -41,18 +41,18 @@
 .embeddedOutputsTextElement.inlineElement,.embeddedOutputsVariableStringElement.inlineElement {}
 .inlineElement .textElement {}
 .embeddedOutputsTextElement.rightPaneElement,.embeddedOutputsVariableStringElement.rightPaneElement {    min-height: 16px;}
-.rightPaneElement .textElement {    padding-top: 2px;    padding-left: 9px;}</style></head><body><div class = rtcContent><h1  class = 'S0' id = 'T_4C9FD106' ><span>Intracellular electrophysiology</span></h1><div  class = 'S1'><div  class = 'S2'><span style=' font-weight: bold;'>Table of Contents</span></div><div  class = 'S3'><a href = "#H_EA708B7E"><span>Creating an NWBFile
-</span></a><span>    </span><a href = "#H_CFEDE7BA"><span>Device metadata
-</span></a><span>    </span><a href = "#H_DFE5A5E4"><span>Electrode metadata
-</span></a><a href = "#H_591A3168"><span>Stimulus and response data
-</span></a><span>    </span><a href = "#H_62049782"><span>Adding an intracellular recording
-</span></a><a href = "#H_D70B8215"><span>Hierarchical organization of recordings
-</span></a><span>    </span><a href = "#H_EBE5D9D7"><span>Add a simultaneous recording
-</span></a><span>    </span><a href = "#H_5433AF7B"><span>Add a sequential recording
-</span></a><span>    </span><a href = "#H_6376C0E0"><span>Add repetitions table
-</span></a><span>    </span><a href = "#H_D5D167B8"><span>Add experimental condition table
-</span></a><a href = "#H_1D829308"><span>Write the NWB file
-</span></a><a href = "#H_AD2632D3"><span>Read the NWB file</span></a></div></div><div  class = 'S4'><span>The following tutorial describes storage of intracellular electrophysiology data in NWB. NWB supports storage of the time series describing the stimulus and response, information about the electrode and device used, as well as metadata about the organization of the experiment.</span></div><div  class = 'S4'><img class = "imageNode" src = "" width = "1035" height = "464" alt = "" style = "vertical-align: baseline; width: 1035px; height: 464px;"></img></div><div  class = 'S4'><span style=' font-style: italic;'>Illustration of the hierarchy of metadata tables used to describe the organization of intracellular electrophysiology experiments.</span></div><h2  class = 'S5' id = 'H_EA708B7E' ><span>Creating an NWBFile</span></h2><div  class = 'S4'><span>When creating an NWB file, the first step is to create the</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/NWBFile.html"><span style=' font-weight: bold; font-family: monospace;'>NWBFile</span></a><span>, which you can create using the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/NwbFile.html"><span style=' font-weight: bold; font-family: monospace;'>NwbFile</span></a><span> command.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span >session_start_time = datetime(2018, 3, 1, 12, 0, 0, </span><span style="color: #a709f5;">'TimeZone'</span><span >, </span><span style="color: #a709f5;">'local'</span><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >nwbfile = NwbFile( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'session_description'</span><span >, </span><span style="color: #a709f5;">'my first synthetic recording'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'identifier'</span><span >, </span><span style="color: #a709f5;">'EXAMPLE_ID'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'session_start_time'</span><span >, session_start_time, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'general_experimenter'</span><span >, </span><span style="color: #a709f5;">'Dr. Bilbo Baggins'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'general_lab'</span><span >, </span><span style="color: #a709f5;">'Bag End Laboratory'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'general_institution'</span><span >, </span><span style="color: #a709f5;">'University of Middle Earth at the Shire'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'general_experiment_description'</span><span >, </span><span style="color: #a709f5;">'I went on an adventure with thirteen dwarves to reclaim vast treasures.'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'general_session_id'</span><span >, </span><span style="color: #a709f5;">'LONELYMTN' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S8'>&nbsp;</div></div></div><h3  class = 'S9' id = 'H_CFEDE7BA' ><span>Device metadata</span></h3><div  class = 'S4'><span>Device metadata is represented by</span><span> </span><a href = "https://pynwb.readthedocs.io/en/stable/pynwb.device.html#pynwb.device.Device"><span style=' font-weight: bold; font-family: monospace;'>Device</span></a><span> </span><span>objects.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >device = types.core.Device();</span></span></div></div><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >nwbfile.general_devices.set(</span><span style="color: #a709f5;">'Heka ITC-1600'</span><span >, device);</span></span></div></div></div><h3  class = 'S9' id = 'H_DFE5A5E4' ><span style=' font-weight: bold;'>Electrode metadata</span></h3><div  class = 'S4'><span>Intracellular electrode metadata is represented by</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IntracellularElectrode.html"><span style=' font-weight: bold; font-family: monospace;'>IntracellularElectrode</span></a><span> </span><span>objects. Create an electrode object, which requires a link to the device of the previous step. Then add it to the NWB file.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span >electrode = types.core.IntracellularElectrode( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'a mock intracellular electrode'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'device'</span><span >, types.untyped.SoftLink(device), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'cell_id'</span><span >, </span><span style="color: #a709f5;">'a very interesting cell' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >nwbfile.general_intracellular_ephys.set(</span><span style="color: #a709f5;">'elec0'</span><span >, electrode);</span></span></div></div></div><h2  class = 'S5' id = 'H_591A3168' ><span style=' font-weight: bold;'>Stimulus and response data</span></h2><div  class = 'S4'><span>Intracellular stimulus and response data are represented with subclasses of</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/PatchClampSeries.html"><span style=' font-weight: bold; font-family: monospace;'>PatchClampSeries</span></a><span>. A stimulus is described by a time series representing voltage or current stimulation with a particular set of parameters. There are two classes for representing stimulus data:</span></div><ul  class = 'S10'><li  class = 'S11'><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/VoltageClampStimulusSeries.html"><span style=' font-weight: bold; font-family: monospace;'>VoltageClampStimulusSeries</span></a></li><li  class = 'S11'><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/CurrentClampStimulusSeries.html"><span style=' font-weight: bold; font-family: monospace;'>CurrentClampStimulusSeries</span></a></li></ul><div  class = 'S4'><span>The response is then described by a time series representing voltage or current recorded from a single cell using a single intracellular electrode via one of the following classes:</span></div><ul  class = 'S10'><li  class = 'S11'><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/VoltageClampSeries.html"><span style=' font-weight: bold; font-family: monospace;'>VoltageClampSeries</span></a></li><li  class = 'S11'><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/CurrentClampSeries.html"><span style=' font-weight: bold; font-family: monospace;'>CurrentClampSeries</span></a></li><li  class = 'S11'><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IZeroClampSeries.html"><span style=' font-weight: bold; font-family: monospace;'>IZeroClampSeries</span></a></li></ul><div  class = 'S4'><span>Below we create a simple example stimulus/response recording data pair.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span >ccss = types.core.VoltageClampStimulusSeries( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data'</span><span >, [1, 2, 3, 4, 5], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time'</span><span >, 123.6, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time_rate'</span><span >, 10e3, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'electrode'</span><span >, types.untyped.SoftLink(electrode), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'gain'</span><span >, 0.02, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'sweep_number'</span><span >, uint64(15), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'stimulus_description'</span><span >, </span><span style="color: #a709f5;">'N/A' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >nwbfile.stimulus_presentation.set(</span><span style="color: #a709f5;">'ccss'</span><span >,  ccss);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >vcs = types.core.VoltageClampSeries( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data'</span><span >, [0.1, 0.2, 0.3, 0.4, 0.5], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data_conversion'</span><span >, 1e-12, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data_resolution'</span><span >, NaN, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time'</span><span >, 123.6, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time_rate'</span><span >, 20e3, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'electrode'</span><span >, types.untyped.SoftLink(electrode), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'gain'</span><span >, 0.02, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'capacitance_slow'</span><span >, 100e-12, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'resistance_comp_correction'</span><span >, 70.0, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'stimulus_description'</span><span >, </span><span style="color: #a709f5;">'N/A'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'sweep_number'</span><span >, uint64(15) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >nwbfile.acquisition.set(</span><span style="color: #a709f5;">'vcs'</span><span >,  vcs);</span></span></div></div></div><h3  class = 'S12' id = 'H_62049782' ><span>Adding an intracellular recording</span></h3><div  class = 'S4'><span>The </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IntracellularRecordingsTable.html"><span style=' font-weight: bold; font-family: monospace;'>IntracellularRecordingsTable</span></a><span> relates electrode, stimulus and response pairs and describes metadata specific to individual recordings.</span></div><div  class = 'S4'><img class = "imageNode" src = "" width = "888" height = "416" alt = "" style = "vertical-align: baseline; width: 888px; height: 416px;"></img></div><div  class = 'S4'><span style=' font-style: italic;'>Illustration of the structure of the IntracellularRecordingsTable</span></div><div  class = 'S4'><span>We can add an </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IntracellularRecordingsTable.html"><span style=' font-weight: bold; font-family: monospace;'>IntracellularRecordingsTable</span></a><span> </span><span>and add the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IntracellularElectrodesTable.html"><span style=' font-weight: bold; font-family: monospace;'>IntracellularElectrodesTable</span></a><span>, </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IntracellularStimuliTable.html"><span style=' font-weight: bold; font-family: monospace;'>IntracellularStimuliTable</span></a><span>, and </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IntracellularResponsesTable.html"><span style=' font-weight: bold; font-family: monospace;'>IntracellularResponsesTable</span></a><span> to it, then add them all to the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/NWBFile.html"><span style=' font-weight: bold; font-family: monospace;'>NWBFile</span></a><span> object.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span >ic_rec_table = types.core.IntracellularRecordingsTable( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'categories'</span><span >, {</span><span style="color: #a709f5;">'electrodes'</span><span >, </span><span style="color: #a709f5;">'stimuli'</span><span >, </span><span style="color: #a709f5;">'responses'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'colnames'</span><span >, {</span><span style="color: #a709f5;">'recordings_tag'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, [ </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'A table to group together a stimulus and response from a single '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'electrode and a single simultaneous recording and for storing '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'metadata about the intracellular recording.'</span><span >], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'id'</span><span >, types.hdmf_common.ElementIdentifiers(</span><span style="color: #a709f5;">'data'</span><span >, int64([0, 1, 2])), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'recordings_tag'</span><span >, types.hdmf_common.VectorData( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, repmat({</span><span style="color: #a709f5;">'Tag'</span><span >}, 3, 1), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Column for storing a custom recordings tag' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        ) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >ic_rec_table.electrodes = types.core.IntracellularElectrodesTable( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Table for storing intracellular electrode related metadata.'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'colnames'</span><span >, {</span><span style="color: #a709f5;">'electrode'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'id'</span><span >, types.hdmf_common.ElementIdentifiers( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, int64([0, 1, 2]) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'electrode'</span><span >, types.hdmf_common.VectorData( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, repmat(types.untyped.ObjectView(electrode), 3, 1), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Column for storing the reference to the intracellular electrode' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >ic_rec_table.stimuli = types.core.IntracellularStimuliTable( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Table for storing intracellular stimulus related metadata.'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'colnames'</span><span >, {</span><span style="color: #a709f5;">'stimulus'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'id'</span><span >, types.hdmf_common.ElementIdentifiers( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, int64([0, 1, 2]) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'stimulus'</span><span >, types.core.TimeSeriesReferenceVectorData( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Column storing the reference to the recorded stimulus for the recording (rows)'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, struct( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'idx_start'</span><span >, [0, 1, -1], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'count'</span><span >, [5, 3, -1], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'timeseries'</span><span >, [ </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >                types.untyped.ObjectView(ccss), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >                types.untyped.ObjectView(ccss), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >                types.untyped.ObjectView(vcs) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >            ] </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        )</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    )</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >ic_rec_table.responses = types.core.IntracellularResponsesTable( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Table for storing intracellular response related metadata.'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'colnames'</span><span >, {</span><span style="color: #a709f5;">'response'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'id'</span><span >, types.hdmf_common.ElementIdentifiers( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, int64([0, 1, 2]) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'response'</span><span >, types.core.TimeSeriesReferenceVectorData( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Column storing the reference to the recorded response for the recording (rows)'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, struct( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'idx_start'</span><span >, [0, 2, 0], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'count'</span><span >, [5, 3, 5], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'timeseries'</span><span >, [ </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >                types.untyped.ObjectView(vcs), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >                types.untyped.ObjectView(vcs), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >                types.untyped.ObjectView(vcs) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >            ] </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        )</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    )</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S8'>&nbsp;</div></div></div><div  class = 'S13'><span>The</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IntracellularRecordingsTable.html"><span style=' font-weight: bold; font-family: monospace;'>IntracellularRecordingsTable</span></a><span> </span><span>table is not just a</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+hdmf_common/DynamicTable.html"><span style=' font-weight: bold; font-family: monospace;'>DynamicTable</span></a><span> </span><span>but an</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+hdmf_common/AlignedDynamicTable.html"><span style=' font-weight: bold; font-family: monospace;'>AlignedDynamicTable</span></a><span style=' font-family: monospace;'>.</span><span style=' font-family: monospace;'> </span><span>The </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+hdmf_common/AlignedDynamicTable.html"><span style=' font-weight: bold; font-family: monospace;'>AlignedDynamicTable</span></a><span> type is itself a </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+hdmf_common/DynamicTable.html"><span style=' font-weight: bold; font-family: monospace;'>DynamicTable</span></a><span> </span><span>that may contain an arbitrary number of additional</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+hdmf_common/DynamicTable.html"><span style=' font-weight: bold; font-family: monospace;'>DynamicTable</span></a><span>, each of which defines a "category." This is similar to a table with “sub-headings”. In the case of the</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IntracellularRecordingsTable.html"><span style=' font-weight: bold; font-family: monospace;'>IntracellularRecordingsTable</span></a><span>, we have three predefined categories, i.e., electrodes, stimuli, and responses. We can also dynamically add new categories to the table. As each category corresponds to a </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+hdmf_common/DynamicTable.html"><span style=' font-weight: bold; font-family: monospace;'>DynamicTable</span></a><span>, this means we have to create a new </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+hdmf_common/DynamicTable.html"><span style=' font-weight: bold; font-family: monospace;'>DynamicTable</span></a><span> and add it to our table.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span style="color: #008013;">% add category</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >ic_rec_table.categories = [ic_rec_table.categories, {</span><span style="color: #a709f5;">'recording_lab_data'</span><span >}];</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >ic_rec_table.dynamictable.set( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'recording_lab_data'</span><span >, types.hdmf_common.DynamicTable( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'category table for lab-specific recording metadata'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'colnames'</span><span >, {</span><span style="color: #a709f5;">'location'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'id'</span><span >, types.hdmf_common.ElementIdentifiers( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'data'</span><span >, int64([0, 1, 2]) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        ), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'location'</span><span >, types.hdmf_common.VectorData( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'data'</span><span >, {</span><span style="color: #a709f5;">'Mordor'</span><span >, </span><span style="color: #a709f5;">'Gondor'</span><span >, </span><span style="color: #a709f5;">'Rohan'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Recording location in Middle Earth' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        ) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >);</span></span></div></div></div><div  class = 'S13'><span>In an </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+hdmf_common/AlignedDynamicTable.html"><span style=' font-weight: bold; font-family: monospace;'>AlignedDynamicTable</span></a><span> all category tables must align with the main table, i.e., all tables must have the same number of rows and rows are expected to correspond to each other by index.</span></div><div  class = 'S4'><span>We can also add custom columns to any of the subcategory tables, i.e., the electrodes, stimuli, and responses tables, and any custom subcategory tables. All we need to do is indicate the name of the category we want to add the column to.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span style="color: #008013;">% Add voltage threshold as column of electrodes table</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >ic_rec_table.electrodes.colnames = [ic_rec_table.electrodes.colnames {</span><span style="color: #a709f5;">'voltage_threshold'</span><span >}];</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >ic_rec_table.electrodes.vectordata.set(</span><span style="color: #a709f5;">'voltage_threshold'</span><span >, types.hdmf_common.VectorData( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data'</span><span >, [0.1, 0.12, 0.13], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Just an example column on the electrodes category table' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >nwbfile.general_intracellular_ephys_intracellular_recordings = ic_rec_table;</span></span></div></div></div><h2  class = 'S14' id = 'H_D70B8215' ><span>Hierarchical organization of recordings</span></h2><div  class = 'S4' id = 'H_F58007A2' ><span>To describe the organization of intracellular experiments, the metadata is organized hierarchically in a sequence of tables. All of the tables are so-called DynamicTables enabling users to add columns for custom metadata. Storing data in hierarchical tables has the advantage that it allows us to avoid duplication of metadata. E.g., for a single experiment we only need to describe the metadata that is constant across an experimental condition as a single row in the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/SimultaneousRecordingsTable.html"><span style=' font-weight: bold; font-family: monospace;'>SimultaneousRecordingsTable</span></a><span> without having to replicate the same information across all repetitions and sequential-, simultaneous-, and individual intracellular recordings. For analysis, this means that we can easily focus on individual aspects of an experiment while still being able to easily access information about information from related tables. All of these tables are optional, but to use one you must use all of the lower level tables, even if you only need a single row.</span></div><h3  class = 'S9' id = 'H_EBE5D9D7' ><span>Add a simultaneous recording</span></h3><div  class = 'S4'><span>The </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/SimultaneousRecordingsTable.html"><span style=' font-weight: bold; font-family: monospace;'>SimultaneousRecordingsTable</span></a><span> groups intracellular recordings from the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IntracellularRecordingsTable.html"><span style=' font-weight: bold; font-family: monospace;'>IntracellularRecordingsTable</span></a><span> together that were recorded simultaneously from different electrodes and/or cells and describes metadata that is constant across the simultaneous recordings. In practice a simultaneous recording is often also referred to as a sweep. This example adds a custom column, "simultaneous_recording_tag."</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span style="color: #008013;">% create simultaneous recordings table with custom column</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span style="color: #008013;">% 'simultaneous_recording_tag'</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >[recordings_vector_data, recordings_vector_index] = util.create_indexed_column( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    {[0, 1, 2],}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'Column with references to one or more rows in the IntracellularRecordingsTable table'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ic_rec_table);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >ic_sim_recs_table = types.core.SimultaneousRecordingsTable( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, [ </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'A table for grouping different intracellular recordings from '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'the IntracellularRecordingsTable table together that were recorded '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'simultaneously from different electrodes.'</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'colnames'</span><span >, {</span><span style="color: #a709f5;">'recordings'</span><span >, </span><span style="color: #a709f5;">'simultaneous_recording_tag'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'id'</span><span >, types.hdmf_common.ElementIdentifiers( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, int64(12) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'recordings'</span><span >, recordings_vector_data, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'recordings_index'</span><span >, recordings_vector_index, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'simultaneous_recording_tag'</span><span >, types.hdmf_common.VectorData( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'A custom tag for simultaneous_recordings'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, {</span><span style="color: #a709f5;">'LabTag1'</span><span >} </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S8'>&nbsp;</div></div></div><div  class = 'S13'><span>Depending on the lab workflow, it may be useful to add complete columns to a table after we have already populated the table with rows. That would be done like so:</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span >ic_sim_recs_table.colnames = [ic_sim_recs_table.colnames, {</span><span style="color: #a709f5;">'simultaneous_recording_type'</span><span >}];</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >ic_sim_recs_table.vectordata.set( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'simultaneous_recording_type'</span><span >, types.hdmf_common.VectorData(</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Description of the type of simultaneous_recording'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, {</span><span style="color: #a709f5;">'SimultaneousRecordingType1'</span><span >} </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >nwbfile.general_intracellular_ephys_simultaneous_recordings = ic_sim_recs_table;</span></span></div></div></div><h3  class = 'S12' id = 'H_5433AF7B' ><span>Add a sequential recording</span></h3><div  class = 'S4'><span>The </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/SequentialRecordingsTable.html"><span style=' font-weight: bold; font-family: monospace;'>SequentialRecordingsTable</span></a><span> groups simultaneously recorded intracellular recordings from the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/SimultaneousRecordingsTable.html"><span style=' font-weight: bold; font-family: monospace;'>SimultaneousRecordingsTable</span></a><span> together and describes metadata that is constant across the simultaneous recordings. In practice a sequential recording is often also referred to as a sweep sequence. A common use of sequential recordings is to group together simultaneous recordings where a sequence of stimuli of the same type with varying parameters have been presented in a sequence (e.g., a sequence of square waveforms with varying amplitude).</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span >[simultaneous_recordings_vector_data, simultaneous_recordings_vector_index] = util.create_indexed_column( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    {0,}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'Column with references to one or more rows in the SimultaneousRecordingsTable table'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ic_sim_recs_table);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >sequential_recordings = types.core.SequentialRecordingsTable( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, [ </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'A table for grouping different intracellular recording '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'simultaneous_recordings from the SimultaneousRecordingsTable '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'table together. This is typically used to group together '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'simultaneous_recordings where the a sequence of stimuli of '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'the same type with varying parameters have been presented in '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'a sequence.' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'colnames'</span><span >, {</span><span style="color: #a709f5;">'simultaneous_recordings'</span><span >, </span><span style="color: #a709f5;">'stimulus_type'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'id'</span><span >, types.hdmf_common.ElementIdentifiers( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, int64(15) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'simultaneous_recordings'</span><span >, simultaneous_recordings_vector_data, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'simultaneous_recordings_index'</span><span >, simultaneous_recordings_vector_index, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'stimulus_type'</span><span >, types.hdmf_common.VectorData( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Column storing the type of stimulus used for the sequential recording'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, {</span><span style="color: #a709f5;">'square'</span><span >} </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >nwbfile.general_intracellular_ephys_sequential_recordings = sequential_recordings;</span></span></div></div></div><h3  class = 'S12' id = 'H_6376C0E0' ><span>Add repetitions table</span></h3><div  class = 'S4'><span>The </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RepetitionsTable.html"><span style=' font-weight: bold; font-family: monospace;'>RepetitionsTable</span></a><span> groups sequential recordings from the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/SequentialRecordingsTable.html"><span style=' font-weight: bold; font-family: monospace;'>SequentialRecordingsTable</span></a><span>. In practice, a repetition is often also referred to a run. A typical use of the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RepetitionsTable.html"><span style=' font-weight: bold; font-family: monospace;'>RepetitionsTable</span></a><span> is to group sets of different stimuli that are applied in sequence that may be repeated.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span >[sequential_recordings_vector_data, sequential_recordings_vector_index] = util.create_indexed_column( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    {0,}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'Column with references to one or more rows in the SequentialRecordingsTable table'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    sequential_recordings);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >nwbfile.general_intracellular_ephys_repetitions = types.core.RepetitionsTable( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, [ </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'A table for grouping different intracellular recording sequential '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'recordings together. With each SimultaneousRecording typically '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'representing a particular type of stimulus, the RepetitionsTable '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'table is typically used to group sets of stimuli applied in sequence.' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'colnames'</span><span >, {</span><span style="color: #a709f5;">'sequential_recordings'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'id'</span><span >, types.hdmf_common.ElementIdentifiers( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, int64(17) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'sequential_recordings'</span><span >, sequential_recordings_vector_data, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'sequential_recordings_index'</span><span >, sequential_recordings_vector_index </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >);</span></span></div></div></div><h3  class = 'S12' id = 'H_D5D167B8' ><span>Add experimental condition table</span></h3><div  class = 'S4'><span>The </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ExperimentalConditionsTable.html"><span style=' font-weight: bold; font-family: monospace;'>ExperimentalConditionsTable</span></a><span> groups repetitions of intracellular recording from the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RepetitionsTable.html"><span style=' font-weight: bold; font-family: monospace;'>RepetitionsTable</span></a><span> together that belong to the same experimental conditions.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span >[repetitions_vector_data, repetitions_vector_index] = util.create_indexed_column( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    {0, 0}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'Column with references to one or more rows in the RepetitionsTable table'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    nwbfile.general_intracellular_ephys_repetitions);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >nwbfile.general_intracellular_ephys_experimental_conditions = types.core.ExperimentalConditionsTable( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, [ </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'A table for grouping different intracellular recording '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'repetitions together that belong to the same experimental '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'conditions.' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'colnames'</span><span >, {</span><span style="color: #a709f5;">'repetitions'</span><span >, </span><span style="color: #a709f5;">'tag'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'id'</span><span >, types.hdmf_common.ElementIdentifiers( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, int64([19, 21]) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'repetitions'</span><span >, repetitions_vector_data, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'repetitions_index'</span><span >, repetitions_vector_index, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'tag'</span><span >, types.hdmf_common.VectorData( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'integer tag for a experimental condition'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, [1,3] </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >);</span></span></div></div></div><h2  class = 'S5' id = 'H_1D829308' ><span>Write the NWB file</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S15'><span style="white-space: pre"><span >nwbExport(nwbfile, </span><span style="color: #a709f5;">'test_new_icephys.nwb'</span><span >);</span></span></div></div></div><h2  class = 'S5' id = 'H_AD2632D3' ><span>Read the NWB file</span></h2><div class="CodeBlock"><div class="inlineWrapper outputs"><div  class = 'S16'><span style="white-space: pre"><span >nwbfile2 = nwbRead(</span><span style="color: #a709f5;">'test_new_icephys.nwb'</span><span >, </span><span style="color: #a709f5;">'ignorecache'</span><span >)</span></span></div><div  class = 'S17'><div class="inlineElement eoOutputWrapper disableDefaultGestureHandling embeddedOutputsVariableStringElement scrollableOutput" uid="5D365CB7" prevent-scroll="true" data-testid="output_0" tabindex="-1" style="width: 1137px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="textElement eoOutputContent scrollArea" tabindex="-1" data-previous-available-width="1100" data-previous-scroll-height="773" data-hashorizontaloverflow="false" style="max-height: 261px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div style="white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><span class="variableNameElement" style="white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">nwbfile2 = </span></div><div style="white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">  NwbFile with properties:
+.rightPaneElement .textElement {    padding-top: 2px;    padding-left: 9px;}</style></head><body><div class = rtcContent><h1  class = 'S0' id = 'T_55A51B1C' ><span>Intracellular electrophysiology</span></h1><div  class = 'S1'><div  class = 'S2'><span style=' font-weight: bold;'>Table of Contents</span></div><div  class = 'S3'><a href = "#H_C0591F66"><span>Creating an NWBFile
+</span></a><span>    </span><a href = "#H_9FA2F3EF"><span>Device metadata
+</span></a><span>    </span><a href = "#H_DE3CB2DF"><span>Electrode metadata
+</span></a><a href = "#H_0E0C5A49"><span>Stimulus and response data
+</span></a><span>    </span><a href = "#H_08B988BC"><span>Adding an intracellular recording
+</span></a><a href = "#H_EBFB5043"><span>Hierarchical organization of recordings
+</span></a><span>    </span><a href = "#H_2626D2D0"><span>Add a simultaneous recording
+</span></a><span>    </span><a href = "#H_255B8FAD"><span>Add a sequential recording
+</span></a><span>    </span><a href = "#H_D6711F71"><span>Add repetitions table
+</span></a><span>    </span><a href = "#H_B36D59D0"><span>Add experimental condition table
+</span></a><a href = "#H_B77BA01C"><span>Write the NWB file
+</span></a><a href = "#H_9294D41F"><span>Read the NWB file</span></a></div></div><div  class = 'S4'><span>The following tutorial describes storage of intracellular electrophysiology data in NWB. NWB supports storage of the time series describing the stimulus and response, information about the electrode and device used, as well as metadata about the organization of the experiment.</span></div><div  class = 'S4'><img class = "imageNode" src = "" width = "1035" height = "464" alt = "" style = "vertical-align: baseline; width: 1035px; height: 464px;"></img></div><div  class = 'S4'><span style=' font-style: italic;'>Illustration of the hierarchy of metadata tables used to describe the organization of intracellular electrophysiology experiments.</span></div><h2  class = 'S5' id = 'H_C0591F66' ><span>Creating an NWBFile</span></h2><div  class = 'S4'><span>When creating an NWB file, the first step is to create the</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/NWBFile.html"><span style=' font-weight: bold; font-family: monospace;'>NWBFile</span></a><span>, which you can create using the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/NwbFile.html"><span style=' font-weight: bold; font-family: monospace;'>NwbFile</span></a><span> command.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span >session_start_time = datetime(2018, 3, 1, 12, 0, 0, </span><span style="color: #a709f5;">'TimeZone'</span><span >, </span><span style="color: #a709f5;">'local'</span><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >nwbfile = NwbFile( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'session_description'</span><span >, </span><span style="color: #a709f5;">'my first synthetic recording'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'identifier'</span><span >, </span><span style="color: #a709f5;">'EXAMPLE_ID'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'session_start_time'</span><span >, session_start_time, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'general_experimenter'</span><span >, </span><span style="color: #a709f5;">'Dr. Bilbo Baggins'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'general_lab'</span><span >, </span><span style="color: #a709f5;">'Bag End Laboratory'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'general_institution'</span><span >, </span><span style="color: #a709f5;">'University of Middle Earth at the Shire'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'general_experiment_description'</span><span >, </span><span style="color: #a709f5;">'I went on an adventure with thirteen dwarves to reclaim vast treasures.'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'general_session_id'</span><span >, </span><span style="color: #a709f5;">'LONELYMTN' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S8'>&nbsp;</div></div></div><h3  class = 'S9' id = 'H_9FA2F3EF' ><span>Device metadata</span></h3><div  class = 'S4'><span>Device metadata is represented by</span><span> </span><a href = "https://pynwb.readthedocs.io/en/stable/pynwb.device.html#pynwb.device.Device"><span style=' font-weight: bold; font-family: monospace;'>Device</span></a><span> </span><span>objects.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >device = types.core.Device();</span></span></div></div><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >nwbfile.general_devices.set(</span><span style="color: #a709f5;">'Heka ITC-1600'</span><span >, device);</span></span></div></div></div><h3  class = 'S9' id = 'H_DE3CB2DF' ><span style=' font-weight: bold;'>Electrode metadata</span></h3><div  class = 'S4'><span>Intracellular electrode metadata is represented by</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IntracellularElectrode.html"><span style=' font-weight: bold; font-family: monospace;'>IntracellularElectrode</span></a><span> </span><span>objects. Create an electrode object, which requires a link to the device of the previous step. Then add it to the NWB file.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span >electrode = types.core.IntracellularElectrode( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'a mock intracellular electrode'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'device'</span><span >, types.untyped.SoftLink(device), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'cell_id'</span><span >, </span><span style="color: #a709f5;">'a very interesting cell' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >nwbfile.general_intracellular_ephys.set(</span><span style="color: #a709f5;">'elec0'</span><span >, electrode);</span></span></div></div></div><h2  class = 'S5' id = 'H_0E0C5A49' ><span style=' font-weight: bold;'>Stimulus and response data</span></h2><div  class = 'S4'><span>Intracellular stimulus and response data are represented with subclasses of</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/PatchClampSeries.html"><span style=' font-weight: bold; font-family: monospace;'>PatchClampSeries</span></a><span>. A stimulus is described by a time series representing voltage or current stimulation with a particular set of parameters. There are two classes for representing stimulus data:</span></div><ul  class = 'S10'><li  class = 'S11'><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/VoltageClampStimulusSeries.html"><span style=' font-weight: bold; font-family: monospace;'>VoltageClampStimulusSeries</span></a></li><li  class = 'S11'><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/CurrentClampStimulusSeries.html"><span style=' font-weight: bold; font-family: monospace;'>CurrentClampStimulusSeries</span></a></li></ul><div  class = 'S4'><span>The response is then described by a time series representing voltage or current recorded from a single cell using a single intracellular electrode via one of the following classes:</span></div><ul  class = 'S10'><li  class = 'S11'><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/VoltageClampSeries.html"><span style=' font-weight: bold; font-family: monospace;'>VoltageClampSeries</span></a></li><li  class = 'S11'><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/CurrentClampSeries.html"><span style=' font-weight: bold; font-family: monospace;'>CurrentClampSeries</span></a></li><li  class = 'S11'><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IZeroClampSeries.html"><span style=' font-weight: bold; font-family: monospace;'>IZeroClampSeries</span></a></li></ul><div  class = 'S4'><span>Below we create a simple example stimulus/response recording data pair for a voltage clamp recording.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span >ccss = types.core.VoltageClampStimulusSeries( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data'</span><span >, [1, 2, 3, 4, 5], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time'</span><span >, 123.6, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time_rate'</span><span >, 10e3, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'electrode'</span><span >, types.untyped.SoftLink(electrode), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'gain'</span><span >, 0.02, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'sweep_number'</span><span >, uint64(15), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'stimulus_description'</span><span >, </span><span style="color: #a709f5;">'N/A' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >nwbfile.stimulus_presentation.set(</span><span style="color: #a709f5;">'ccss'</span><span >,  ccss);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >vcs = types.core.VoltageClampSeries( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data'</span><span >, [0.1, 0.2, 0.3, 0.4, 0.5], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data_conversion'</span><span >, 1e-12, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data_resolution'</span><span >, NaN, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time'</span><span >, 123.6, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time_rate'</span><span >, 20e3, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'electrode'</span><span >, types.untyped.SoftLink(electrode), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'gain'</span><span >, 0.02, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'capacitance_slow'</span><span >, 100e-12, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'resistance_comp_correction'</span><span >, 70.0, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'stimulus_description'</span><span >, </span><span style="color: #a709f5;">'N/A'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'sweep_number'</span><span >, uint64(15) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >nwbfile.acquisition.set(</span><span style="color: #a709f5;">'vcs'</span><span >,  vcs);</span></span></div></div></div><div  class = 'S12'><span>You can add stimulus/response recording data pair from a current clamp recording in the same way:</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span style="color: #008013;">% Create a CurrentClampStimulusSeries object</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >ccss = types.core.CurrentClampStimulusSeries(</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data'</span><span >, [1, 2, 3, 4, 5], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time'</span><span >, 123.6, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time_rate'</span><span >, 10e3, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'electrode'</span><span >, types.untyped.SoftLink(electrode), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'gain'</span><span >, 0.02, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'sweep_number'</span><span >, uint16(16), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'stimulus_description'</span><span >, </span><span style="color: #a709f5;">'N/A' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >nwbfile.stimulus_presentation.set(</span><span style="color: #a709f5;">'ccss'</span><span >,  ccss);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span style="color: #008013;">% Create a CurrentClampSeries object</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >ccs = types.core.CurrentClampSeries(</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data'</span><span >, [0.1, 0.2, 0.3, 0.4, 0.5], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data_conversion'</span><span >, 1e-12, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data_resolution'</span><span >, NaN, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time'</span><span >, 123.6, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time_rate'</span><span >, 20e3, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'electrode'</span><span >, types.untyped.SoftLink(electrode), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'gain'</span><span >, 0.02, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'bias_current'</span><span >, 1e-12, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'bridge_balance'</span><span >, 70e6, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'capacitance_compensation'</span><span >, 1e-12, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'stimulus_description'</span><span >, </span><span style="color: #a709f5;">'N/A'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'sweep_number'</span><span >, uint16(16) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >nwbfile.acquisition.set(</span><span style="color: #a709f5;">'ccs'</span><span >,  ccs);</span></span></div></div><div class="inlineWrapper"><div  class = 'S8'>&nbsp;</div></div></div><div  class = 'S12'><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IZeroClampSeries.html"><span style=' font-weight: bold; font-family: monospace;'>IZeroClampSeries</span></a><span> is used when the current is clamped to 0.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span style="color: #008013;">% Create an IZeroClampSeries object</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >izcs = types.core.IZeroClampSeries(</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data'</span><span >, [0.1, 0.2, 0.3, 0.4, 0.5], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'electrode'</span><span >, types.untyped.SoftLink(electrode), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'gain'</span><span >, 0.02, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data_conversion'</span><span >, 1e-12, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data_resolution'</span><span >, NaN, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time'</span><span >, 345.6, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time_rate'</span><span >, 20e3, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'sweep_number'</span><span >, uint16(17) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >nwbfile.acquisition.set(</span><span style="color: #a709f5;">'izcs'</span><span >,  izcs);</span></span></div></div></div><h3  class = 'S13' id = 'H_08B988BC' ><span>Adding an intracellular recording</span></h3><div  class = 'S4'><span>The </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IntracellularRecordingsTable.html"><span style=' font-weight: bold; font-family: monospace;'>IntracellularRecordingsTable</span></a><span> relates electrode, stimulus and response pairs and describes metadata specific to individual recordings.</span></div><div  class = 'S4'><img class = "imageNode" src = "" width = "888" height = "416" alt = "" style = "vertical-align: baseline; width: 888px; height: 416px;"></img></div><div  class = 'S4'><span style=' font-style: italic;'>Illustration of the structure of the IntracellularRecordingsTable</span></div><div  class = 'S4'><span>We can add an </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IntracellularRecordingsTable.html"><span style=' font-weight: bold; font-family: monospace;'>IntracellularRecordingsTable</span></a><span> </span><span>and add the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IntracellularElectrodesTable.html"><span style=' font-weight: bold; font-family: monospace;'>IntracellularElectrodesTable</span></a><span>, </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IntracellularStimuliTable.html"><span style=' font-weight: bold; font-family: monospace;'>IntracellularStimuliTable</span></a><span>, and </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IntracellularResponsesTable.html"><span style=' font-weight: bold; font-family: monospace;'>IntracellularResponsesTable</span></a><span> to it, then add them all to the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/NWBFile.html"><span style=' font-weight: bold; font-family: monospace;'>NWBFile</span></a><span> object.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span >ic_rec_table = types.core.IntracellularRecordingsTable( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'categories'</span><span >, {</span><span style="color: #a709f5;">'electrodes'</span><span >, </span><span style="color: #a709f5;">'stimuli'</span><span >, </span><span style="color: #a709f5;">'responses'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'colnames'</span><span >, {</span><span style="color: #a709f5;">'recordings_tag'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, [ </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'A table to group together a stimulus and response from a single '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'electrode and a single simultaneous recording and for storing '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'metadata about the intracellular recording.'</span><span >], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'id'</span><span >, types.hdmf_common.ElementIdentifiers(</span><span style="color: #a709f5;">'data'</span><span >, int64([0, 1, 2])), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'recordings_tag'</span><span >, types.hdmf_common.VectorData( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, repmat({</span><span style="color: #a709f5;">'Tag'</span><span >}, 3, 1), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Column for storing a custom recordings tag' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        ) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >ic_rec_table.electrodes = types.core.IntracellularElectrodesTable( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Table for storing intracellular electrode related metadata.'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'colnames'</span><span >, {</span><span style="color: #a709f5;">'electrode'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'id'</span><span >, types.hdmf_common.ElementIdentifiers( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, int64([0, 1, 2]) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'electrode'</span><span >, types.hdmf_common.VectorData( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, repmat(types.untyped.ObjectView(electrode), 3, 1), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Column for storing the reference to the intracellular electrode' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >ic_rec_table.stimuli = types.core.IntracellularStimuliTable( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Table for storing intracellular stimulus related metadata.'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'colnames'</span><span >, {</span><span style="color: #a709f5;">'stimulus'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'id'</span><span >, types.hdmf_common.ElementIdentifiers( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, int64([0, 1, 2]) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'stimulus'</span><span >, types.core.TimeSeriesReferenceVectorData( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Column storing the reference to the recorded stimulus for the recording (rows)'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, struct( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'idx_start'</span><span >, [0, 1, -1], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'count'</span><span >, [5, 3, -1], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'timeseries'</span><span >, [ </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >                types.untyped.ObjectView(ccss), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >                types.untyped.ObjectView(ccss), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >                types.untyped.ObjectView(vcs) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >            ] </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        )</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    )</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >ic_rec_table.responses = types.core.IntracellularResponsesTable( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Table for storing intracellular response related metadata.'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'colnames'</span><span >, {</span><span style="color: #a709f5;">'response'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'id'</span><span >, types.hdmf_common.ElementIdentifiers( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, int64([0, 1, 2]) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'response'</span><span >, types.core.TimeSeriesReferenceVectorData( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Column storing the reference to the recorded response for the recording (rows)'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, struct( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'idx_start'</span><span >, [0, 2, 0], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'count'</span><span >, [5, 3, 5], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'timeseries'</span><span >, [ </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >                types.untyped.ObjectView(vcs), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >                types.untyped.ObjectView(vcs), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >                types.untyped.ObjectView(vcs) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >            ] </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        )</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    )</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S8'>&nbsp;</div></div></div><div  class = 'S12'><span>The</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IntracellularRecordingsTable.html"><span style=' font-weight: bold; font-family: monospace;'>IntracellularRecordingsTable</span></a><span> </span><span>table is not just a</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+hdmf_common/DynamicTable.html"><span style=' font-weight: bold; font-family: monospace;'>DynamicTable</span></a><span> </span><span>but an</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+hdmf_common/AlignedDynamicTable.html"><span style=' font-weight: bold; font-family: monospace;'>AlignedDynamicTable</span></a><span style=' font-family: monospace;'>.</span><span style=' font-family: monospace;'> </span><span>The </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+hdmf_common/AlignedDynamicTable.html"><span style=' font-weight: bold; font-family: monospace;'>AlignedDynamicTable</span></a><span> type is itself a </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+hdmf_common/DynamicTable.html"><span style=' font-weight: bold; font-family: monospace;'>DynamicTable</span></a><span> </span><span>that may contain an arbitrary number of additional</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+hdmf_common/DynamicTable.html"><span style=' font-weight: bold; font-family: monospace;'>DynamicTable</span></a><span>, each of which defines a "category." This is similar to a table with “sub-headings”. In the case of the</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IntracellularRecordingsTable.html"><span style=' font-weight: bold; font-family: monospace;'>IntracellularRecordingsTable</span></a><span>, we have three predefined categories, i.e., electrodes, stimuli, and responses. We can also dynamically add new categories to the table. As each category corresponds to a </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+hdmf_common/DynamicTable.html"><span style=' font-weight: bold; font-family: monospace;'>DynamicTable</span></a><span>, this means we have to create a new </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+hdmf_common/DynamicTable.html"><span style=' font-weight: bold; font-family: monospace;'>DynamicTable</span></a><span> and add it to our table.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span style="color: #008013;">% add category</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >ic_rec_table.categories = [ic_rec_table.categories, {</span><span style="color: #a709f5;">'recording_lab_data'</span><span >}];</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >ic_rec_table.dynamictable.set( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'recording_lab_data'</span><span >, types.hdmf_common.DynamicTable( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'category table for lab-specific recording metadata'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'colnames'</span><span >, {</span><span style="color: #a709f5;">'location'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'id'</span><span >, types.hdmf_common.ElementIdentifiers( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'data'</span><span >, int64([0, 1, 2]) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        ), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'location'</span><span >, types.hdmf_common.VectorData( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'data'</span><span >, {</span><span style="color: #a709f5;">'Mordor'</span><span >, </span><span style="color: #a709f5;">'Gondor'</span><span >, </span><span style="color: #a709f5;">'Rohan'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Recording location in Middle Earth' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        ) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >);</span></span></div></div></div><div  class = 'S12'><span>In an </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+hdmf_common/AlignedDynamicTable.html"><span style=' font-weight: bold; font-family: monospace;'>AlignedDynamicTable</span></a><span> all category tables must align with the main table, i.e., all tables must have the same number of rows and rows are expected to correspond to each other by index.</span></div><div  class = 'S4'><span>We can also add custom columns to any of the subcategory tables, i.e., the electrodes, stimuli, and responses tables, and any custom subcategory tables. All we need to do is indicate the name of the category we want to add the column to.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span style="color: #008013;">% Add voltage threshold as column of electrodes table</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >ic_rec_table.electrodes.colnames = [ic_rec_table.electrodes.colnames {</span><span style="color: #a709f5;">'voltage_threshold'</span><span >}];</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >ic_rec_table.electrodes.vectordata.set(</span><span style="color: #a709f5;">'voltage_threshold'</span><span >, types.hdmf_common.VectorData( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data'</span><span >, [0.1, 0.12, 0.13], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Just an example column on the electrodes category table' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >nwbfile.general_intracellular_ephys_intracellular_recordings = ic_rec_table;</span></span></div></div></div><h2  class = 'S14' id = 'H_EBFB5043' ><span>Hierarchical organization of recordings</span></h2><div  class = 'S4' id = 'H_F58007A2' ><span>To describe the organization of intracellular experiments, the metadata is organized hierarchically in a sequence of tables. All of the tables are so-called DynamicTables enabling users to add columns for custom metadata. Storing data in hierarchical tables has the advantage that it allows us to avoid duplication of metadata. E.g., for a single experiment we only need to describe the metadata that is constant across an experimental condition as a single row in the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/SimultaneousRecordingsTable.html"><span style=' font-weight: bold; font-family: monospace;'>SimultaneousRecordingsTable</span></a><span> without having to replicate the same information across all repetitions and sequential-, simultaneous-, and individual intracellular recordings. For analysis, this means that we can easily focus on individual aspects of an experiment while still being able to easily access information about information from related tables. All of these tables are optional, but to use one you must use all of the lower level tables, even if you only need a single row.</span></div><h3  class = 'S9' id = 'H_2626D2D0' ><span>Add a simultaneous recording</span></h3><div  class = 'S4'><span>The </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/SimultaneousRecordingsTable.html"><span style=' font-weight: bold; font-family: monospace;'>SimultaneousRecordingsTable</span></a><span> groups intracellular recordings from the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IntracellularRecordingsTable.html"><span style=' font-weight: bold; font-family: monospace;'>IntracellularRecordingsTable</span></a><span> together that were recorded simultaneously from different electrodes and/or cells and describes metadata that is constant across the simultaneous recordings. In practice a simultaneous recording is often also referred to as a sweep. This example adds a custom column, "simultaneous_recording_tag."</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span style="color: #008013;">% create simultaneous recordings table with custom column</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span style="color: #008013;">% 'simultaneous_recording_tag'</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >[recordings_vector_data, recordings_vector_index] = util.create_indexed_column( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    {[0, 1, 2],}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'Column with references to one or more rows in the IntracellularRecordingsTable table'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ic_rec_table);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >ic_sim_recs_table = types.core.SimultaneousRecordingsTable( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, [ </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'A table for grouping different intracellular recordings from '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'the IntracellularRecordingsTable table together that were recorded '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'simultaneously from different electrodes.'</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'colnames'</span><span >, {</span><span style="color: #a709f5;">'recordings'</span><span >, </span><span style="color: #a709f5;">'simultaneous_recording_tag'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'id'</span><span >, types.hdmf_common.ElementIdentifiers( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, int64(12) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'recordings'</span><span >, recordings_vector_data, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'recordings_index'</span><span >, recordings_vector_index, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'simultaneous_recording_tag'</span><span >, types.hdmf_common.VectorData( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'A custom tag for simultaneous_recordings'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, {</span><span style="color: #a709f5;">'LabTag1'</span><span >} </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S8'>&nbsp;</div></div></div><div  class = 'S12'><span>Depending on the lab workflow, it may be useful to add complete columns to a table after we have already populated the table with rows. That would be done like so:</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span >ic_sim_recs_table.colnames = [ic_sim_recs_table.colnames, {</span><span style="color: #a709f5;">'simultaneous_recording_type'</span><span >}];</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >ic_sim_recs_table.vectordata.set( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'simultaneous_recording_type'</span><span >, types.hdmf_common.VectorData(</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Description of the type of simultaneous_recording'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, {</span><span style="color: #a709f5;">'SimultaneousRecordingType1'</span><span >} </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >nwbfile.general_intracellular_ephys_simultaneous_recordings = ic_sim_recs_table;</span></span></div></div></div><h3  class = 'S13' id = 'H_255B8FAD' ><span>Add a sequential recording</span></h3><div  class = 'S4'><span>The </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/SequentialRecordingsTable.html"><span style=' font-weight: bold; font-family: monospace;'>SequentialRecordingsTable</span></a><span> groups simultaneously recorded intracellular recordings from the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/SimultaneousRecordingsTable.html"><span style=' font-weight: bold; font-family: monospace;'>SimultaneousRecordingsTable</span></a><span> together and describes metadata that is constant across the simultaneous recordings. In practice a sequential recording is often also referred to as a sweep sequence. A common use of sequential recordings is to group together simultaneous recordings where a sequence of stimuli of the same type with varying parameters have been presented in a sequence (e.g., a sequence of square waveforms with varying amplitude).</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span >[simultaneous_recordings_vector_data, simultaneous_recordings_vector_index] = util.create_indexed_column( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    {0,}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'Column with references to one or more rows in the SimultaneousRecordingsTable table'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ic_sim_recs_table);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >sequential_recordings = types.core.SequentialRecordingsTable( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, [ </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'A table for grouping different intracellular recording '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'simultaneous_recordings from the SimultaneousRecordingsTable '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'table together. This is typically used to group together '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'simultaneous_recordings where the a sequence of stimuli of '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'the same type with varying parameters have been presented in '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'a sequence.' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'colnames'</span><span >, {</span><span style="color: #a709f5;">'simultaneous_recordings'</span><span >, </span><span style="color: #a709f5;">'stimulus_type'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'id'</span><span >, types.hdmf_common.ElementIdentifiers( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, int64(15) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'simultaneous_recordings'</span><span >, simultaneous_recordings_vector_data, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'simultaneous_recordings_index'</span><span >, simultaneous_recordings_vector_index, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'stimulus_type'</span><span >, types.hdmf_common.VectorData( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Column storing the type of stimulus used for the sequential recording'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, {</span><span style="color: #a709f5;">'square'</span><span >} </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >nwbfile.general_intracellular_ephys_sequential_recordings = sequential_recordings;</span></span></div></div></div><h3  class = 'S13' id = 'H_D6711F71' ><span>Add repetitions table</span></h3><div  class = 'S4'><span>The </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RepetitionsTable.html"><span style=' font-weight: bold; font-family: monospace;'>RepetitionsTable</span></a><span> groups sequential recordings from the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/SequentialRecordingsTable.html"><span style=' font-weight: bold; font-family: monospace;'>SequentialRecordingsTable</span></a><span>. In practice, a repetition is often also referred to a run. A typical use of the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RepetitionsTable.html"><span style=' font-weight: bold; font-family: monospace;'>RepetitionsTable</span></a><span> is to group sets of different stimuli that are applied in sequence that may be repeated.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span >[sequential_recordings_vector_data, sequential_recordings_vector_index] = util.create_indexed_column( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    {0,}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'Column with references to one or more rows in the SequentialRecordingsTable table'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    sequential_recordings);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >nwbfile.general_intracellular_ephys_repetitions = types.core.RepetitionsTable( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, [ </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'A table for grouping different intracellular recording sequential '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'recordings together. With each SimultaneousRecording typically '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'representing a particular type of stimulus, the RepetitionsTable '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'table is typically used to group sets of stimuli applied in sequence.' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'colnames'</span><span >, {</span><span style="color: #a709f5;">'sequential_recordings'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'id'</span><span >, types.hdmf_common.ElementIdentifiers( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, int64(17) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'sequential_recordings'</span><span >, sequential_recordings_vector_data, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'sequential_recordings_index'</span><span >, sequential_recordings_vector_index </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >);</span></span></div></div></div><h3  class = 'S13' id = 'H_B36D59D0' ><span>Add experimental condition table</span></h3><div  class = 'S4'><span>The </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ExperimentalConditionsTable.html"><span style=' font-weight: bold; font-family: monospace;'>ExperimentalConditionsTable</span></a><span> groups repetitions of intracellular recording from the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RepetitionsTable.html"><span style=' font-weight: bold; font-family: monospace;'>RepetitionsTable</span></a><span> together that belong to the same experimental conditions.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S6'><span style="white-space: pre"><span >[repetitions_vector_data, repetitions_vector_index] = util.create_indexed_column( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    {0, 0}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'Column with references to one or more rows in the RepetitionsTable table'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    nwbfile.general_intracellular_ephys_repetitions);</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >nwbfile.general_intracellular_ephys_experimental_conditions = types.core.ExperimentalConditionsTable( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, [ </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'A table for grouping different intracellular recording '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'repetitions together that belong to the same experimental '</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'conditions.' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ], </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'colnames'</span><span >, {</span><span style="color: #a709f5;">'repetitions'</span><span >, </span><span style="color: #a709f5;">'tag'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'id'</span><span >, types.hdmf_common.ElementIdentifiers( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, int64([19, 21]) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'repetitions'</span><span >, repetitions_vector_data, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'repetitions_index'</span><span >, repetitions_vector_index, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'tag'</span><span >, types.hdmf_common.VectorData( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'integer tag for a experimental condition'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'data'</span><span >, [1,3] </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S7'><span style="white-space: pre"><span >    ) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >);</span></span></div></div></div><h2  class = 'S5' id = 'H_B77BA01C' ><span>Write the NWB file</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S15'><span style="white-space: pre"><span >nwbExport(nwbfile, </span><span style="color: #a709f5;">'test_new_icephys.nwb'</span><span >);</span></span></div></div></div><h2  class = 'S5' id = 'H_9294D41F' ><span>Read the NWB file</span></h2><div class="CodeBlock"><div class="inlineWrapper outputs"><div  class = 'S16'><span style="white-space: pre"><span >nwbfile2 = nwbRead(</span><span style="color: #a709f5;">'test_new_icephys.nwb'</span><span >, </span><span style="color: #a709f5;">'ignorecache'</span><span >)</span></span></div><div  class = 'S17'><div class="inlineElement eoOutputWrapper disableDefaultGestureHandling embeddedOutputsVariableStringElement scrollableOutput" uid="FB3E76B6" prevent-scroll="true" data-testid="output_0" tabindex="-1" style="width: 1137px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="textElement eoOutputContent scrollArea" tabindex="-1" data-previous-available-width="1100" data-previous-scroll-height="773" data-hashorizontaloverflow="false" style="max-height: 261px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div style="white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><span class="variableNameElement" style="white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">nwbfile2 = </span></div><div style="white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">  NwbFile with properties:
 
                                              nwb_version: '2.7.0'
                                         file_create_date: [1×1 types.untyped.DataStub]
@@ -60,7 +60,7 @@
                                      session_description: 'my first synthetic recording'
                                       session_start_time: [1×1 types.untyped.DataStub]
                                timestamps_reference_time: [1×1 types.untyped.DataStub]
-                                             acquisition: [1×1 types.untyped.Set]
+                                             acquisition: [3×1 types.untyped.Set]
                                                 analysis: [0×1 types.untyped.Set]
                                                  general: [0×1 types.untyped.Set]
                                  general_data_collection: ''
@@ -103,7 +103,7 @@
                                    stimulus_presentation: [1×1 types.untyped.Set]
                                       stimulus_templates: [0×1 types.untyped.Set]
                                                    units: []
-</div></div></div></div></div></div><div  class = 'S13'><span></span></div><div  class = 'S4'></div>
+</div></div></div></div></div></div><div  class = 'S12'><span></span></div><div  class = 'S4'></div>
 <br>
 <!-- 
 ##### SOURCE BEGIN #####
@@ -178,7 +178,8 @@
 % * <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IZeroClampSeries.html 
 % |*IZeroClampSeries*|>
 %% 
-% Below we create a simple example stimulus/response recording data pair.
+% Below we create a simple example stimulus/response recording data pair for 
+% a voltage clamp recording.
 
 ccss = types.core.VoltageClampStimulusSeries( ...
     'data', [1, 2, 3, 4, 5], ...
@@ -189,7 +190,6 @@
     'sweep_number', uint64(15), ...
     'stimulus_description', 'N/A' ...
 );
-
 nwbfile.stimulus_presentation.set('ccss',  ccss);
 
 vcs = types.core.VoltageClampSeries( ...
@@ -206,6 +206,55 @@
     'sweep_number', uint64(15) ...
 );
 nwbfile.acquisition.set('vcs',  vcs);
+%% 
+% You can add stimulus/response recording data pair from a current clamp recording 
+% in the same way:
+
+% Create a CurrentClampStimulusSeries object
+ccss = types.core.CurrentClampStimulusSeries(...
+    'data', [1, 2, 3, 4, 5], ...
+    'starting_time', 123.6, ...
+    'starting_time_rate', 10e3, ...
+    'electrode', types.untyped.SoftLink(electrode), ...
+    'gain', 0.02, ...
+    'sweep_number', uint16(16), ...
+    'stimulus_description', 'N/A' ...
+);
+nwbfile.stimulus_presentation.set('ccss',  ccss);
+
+% Create a CurrentClampSeries object
+ccs = types.core.CurrentClampSeries(...
+    'data', [0.1, 0.2, 0.3, 0.4, 0.5], ...
+    'data_conversion', 1e-12, ...
+    'data_resolution', NaN, ...
+    'starting_time', 123.6, ...
+    'starting_time_rate', 20e3, ...
+    'electrode', types.untyped.SoftLink(electrode), ...
+    'gain', 0.02, ...
+    'bias_current', 1e-12, ...
+    'bridge_balance', 70e6, ...
+    'capacitance_compensation', 1e-12, ...
+    'stimulus_description', 'N/A', ...
+    'sweep_number', uint16(16) ...
+);
+nwbfile.acquisition.set('ccs',  ccs);
+
+%% 
+% <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IZeroClampSeries.html 
+% |*IZeroClampSeries*|> is used when the current is clamped to 0.
+
+% Create an IZeroClampSeries object
+izcs = types.core.IZeroClampSeries(...
+    'data', [0.1, 0.2, 0.3, 0.4, 0.5], ...
+    'electrode', types.untyped.SoftLink(electrode), ...
+    'gain', 0.02, ...
+    'data_conversion', 1e-12, ...
+    'data_resolution', NaN, ...
+    'starting_time', 345.6, ...
+    'starting_time_rate', 20e3, ...
+    'sweep_number', uint16(17) ...
+);
+nwbfile.acquisition.set('izcs',  izcs);
 % Adding an intracellular recording
 % The <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IntracellularRecordingsTable.html 
 % |*IntracellularRecordingsTable*|> relates electrode, stimulus and response pairs 
diff --git a/tutorials/html/ophys.html b/tutorials/html/ophys.html
index c9cab142..8290f7c9 100644
--- a/tutorials/html/ophys.html
+++ b/tutorials/html/ophys.html
@@ -39,11 +39,10 @@
 .S12 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 18px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 17px; font-weight: 700; text-align: left;  }
 .S13 { margin: 2px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: 400; text-align: center;  }
 .S14 { border-left: 1px solid rgb(217, 217, 217); border-right: 1px solid rgb(217, 217, 217); border-top: 0px none rgb(33, 33, 33); border-bottom: 1px solid rgb(217, 217, 217); border-radius: 0px 0px 4px 4px; padding: 0px 45px 4px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px;  }
-.S15 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 18px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 17px; font-weight: 700; text-align: left;  }
-.S16 { margin: 10px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: 400; text-align: left;  }
-.S17 { border-left: 1px solid rgb(217, 217, 217); border-right: 1px solid rgb(217, 217, 217); border-top: 1px solid rgb(217, 217, 217); border-bottom: 0px none rgb(33, 33, 33); border-radius: 0px; padding: 6px 45px 0px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px;  }
-.S18 { border-left: 1px solid rgb(217, 217, 217); border-right: 1px solid rgb(217, 217, 217); border-top: 1px solid rgb(217, 217, 217); border-bottom: 1px solid rgb(217, 217, 217); border-radius: 4px; padding: 6px 45px 4px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px;  }
-.S19 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 20px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 20px; font-weight: 700; text-align: left;  }
+.S15 { margin: 10px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: 400; text-align: left;  }
+.S16 { border-left: 1px solid rgb(217, 217, 217); border-right: 1px solid rgb(217, 217, 217); border-top: 1px solid rgb(217, 217, 217); border-bottom: 1px solid rgb(217, 217, 217); border-radius: 4px; padding: 6px 45px 4px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px;  }
+.S17 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 18px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 17px; font-weight: 700; text-align: left;  }
+.S18 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 20px; min-height: 0px; white-space: pre-wrap; color: rgb(33, 33, 33); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 20px; font-weight: 700; text-align: left;  }
 .variableValue { width: 100% !important; }
 .embeddedOutputsMatrixElement,.eoOutputWrapper .matrixElement {    min-height: 18px;    box-sizing: border-box;}
 .embeddedOutputsMatrixElement .matrixElement,.eoOutputWrapper  .matrixElement,.rtcDataTipElement .matrixElement {    position: relative;}
@@ -70,25 +69,27 @@
 .variableNameElement {    margin-bottom: 3px;    display: inline-block;}
 /* * Ellipses as base64 for HTML export. */.matrixElement .horizontalEllipsis,.rtcDataTipElement .matrixElement .horizontalEllipsis {    display: inline-block;    margin-top: 3px;    /* base64 encoded version of images-liveeditor/HEllipsis.png */    width: 30px;    height: 12px;    background-repeat: no-repeat;    background-image: url("");}
 .matrixElement .verticalEllipsis,.textElement .verticalEllipsis,.rtcDataTipElement .matrixElement .verticalEllipsis,.rtcDataTipElement .textElement .verticalEllipsis {    margin-left: 35px;    /* base64 encoded version of images-liveeditor/VEllipsis.png */    width: 12px;    height: 30px;    background-repeat: no-repeat;    background-image: url("");}
-.S20 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 28.8px; min-height: 0px; white-space: pre-wrap; color: rgb(192, 76, 11); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 24px; font-weight: 400; text-align: left;  }</style></head><body><div class = rtcContent><h1  class = 'S0' id = 'T_B6A85109' ><span>MatNWB Optical Physiology Tutorial</span></h1><div  class = 'S1'><div  class = 'S2'><span style=' font-weight: bold;'>Table of Contents</span></div><div  class = 'S3'><a href = "#T_B6A85109"><span>MatNWB Optical Physiology Tutorial
-</span></a><span>    </span><a href = "#H_D02C61EE"><span>Introduction
-</span></a><span>    </span><a href = "#H_B18AA550"><span>Set up the NWB file
-</span></a><span>    </span><a href = "#H_3C6AF47D"><span>Optical Physiology
-</span></a><span>        </span><a href = "#H_D24CCB50"><span>Imaging Plane
-</span></a><span>        </span><a href = "#H_D30DF06B"><span>Storing Two-Photon Data
-</span></a><span>        </span><a href = "#H_9444B4A0"><span>Storing One-Photon Data
-</span></a><span>        </span><a href = "#H_D5024F0B"><span>Plane Segmentation
-</span></a><span>        </span><a href = "#H_CAC68044"><span>Regions of interest (ROIs)
-</span></a><span>        </span><a href = "#H_75ACF9AF"><span>Adding ROIs to NWB file 
-</span></a><span>        </span><a href = "#H_1ED48860"><span>Storing fluorescence of ROIs over time
-</span></a><span>    </span><a href = "#H_AB7497FC"><span>Writing the NWB file
-</span></a><span>    </span><a href = "#H_1B554271"><span>Reading the NWB file
-</span></a><a href = "#T_E48E59C8"><span>Learn more!
-</span></a><span>        </span><a href = "#H_CC242DA7"><span>See the API documentation to learn what data types are available.
-</span></a><span>    </span><a href = "#H_B9170A39"><span>Other MatNWB tutorials
-</span></a><span>    </span><a href = "#H_42F1264D"><span>Python tutorials</span></a></div></div><h2  class = 'S4' id = 'H_D02C61EE' ><span>Introduction</span></h2><div  class = 'S5'><span>In this tutorial, we will create fake data for a hypothetical optical physiology experiment with a freely moving animal. The types of data we will convert are:</span></div><ul  class = 'S6'><li  class = 'S7'><span>Acquired two-photon images</span></li><li  class = 'S7'><span>Image segmentation (ROIs)</span></li><li  class = 'S7'><span>Fluorescence and dF/F response</span></li></ul><div  class = 'S5'><span>It is recommended to first work through the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/tutorials/html/intro.html"><span>Introduction to MatNWB tutorial</span></a><span>, which demonstrates installing MatNWB and creating an NWB file with subject information, animal position, and trials, as well as writing and reading NWB files in MATLAB.</span></div><h2  class = 'S4' id = 'H_B18AA550' ><span>Set up the NWB file</span></h2><div  class = 'S5'><span>An NWB file represents a single session of an experiment. Each file must have a session_description, identifier, and session start time. Create a new </span><span style=' font-family: monospace;'>NWBFile</span><span> object with those and additional metadata. For all MatNWB functions, we use the Matlab method of entering keyword argument pairs, where arguments are entered as name followed by value.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >nwb = NwbFile( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'session_description'</span><span >, </span><span style="color: #a709f5;">'mouse in open exploration'</span><span >,</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'identifier'</span><span >, </span><span style="color: #a709f5;">'Mouse5_Day3'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'session_start_time'</span><span >, datetime(2018, 4, 25, 2, 30, 3, </span><span style="color: #a709f5;">'TimeZone'</span><span >, </span><span style="color: #a709f5;">'local'</span><span >), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'timestamps_reference_time'</span><span >, datetime(2018, 4, 25, 3, 0, 45, </span><span style="color: #a709f5;">'TimeZone'</span><span >, </span><span style="color: #a709f5;">'local'</span><span >), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'general_experimenter'</span><span >, </span><span style="color: #a709f5;">'LastName, FirstName'</span><span >, </span><span style="color: #0e00ff;">...</span><span style="color: #008013;"> % optional</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'general_session_id'</span><span >, </span><span style="color: #a709f5;">'session_1234'</span><span >, </span><span style="color: #0e00ff;">...</span><span style="color: #008013;"> % optional</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'general_institution'</span><span >, </span><span style="color: #a709f5;">'University of My Institution'</span><span >, </span><span style="color: #0e00ff;">...</span><span style="color: #008013;"> % optional</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'general_related_publications'</span><span >, {</span><span style="color: #a709f5;">'DOI:10.1016/j.neuron.2016.12.011'</span><span >}); </span><span style="color: #008013;">% optional</span></span></div></div><div class="inlineWrapper outputs"><div  class = 'S10'><span style="white-space: pre"><span >nwb</span></span></div><div  class = 'S11'><div class="inlineElement eoOutputWrapper disableDefaultGestureHandling embeddedOutputsVariableStringElement scrollableOutput" uid="EFB2D521" prevent-scroll="true" data-testid="output_0" tabindex="-1" style="width: 586px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="textElement eoOutputContent scrollArea" tabindex="-1" data-previous-available-width="549" data-previous-scroll-height="773" data-hashorizontaloverflow="true" style="max-height: 261px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div style="white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><span class="variableNameElement" style="white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">nwb = </span></div><div style="white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">  NwbFile with properties:
-
-                                             nwb_version: '2.6.0'
+.S19 { border-left: 1px solid rgb(217, 217, 217); border-right: 1px solid rgb(217, 217, 217); border-top: 1px solid rgb(217, 217, 217); border-bottom: 0px none rgb(33, 33, 33); border-radius: 0px; padding: 6px 45px 0px 13px; line-height: 18.004px; min-height: 0px; white-space: nowrap; color: rgb(33, 33, 33); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px;  }
+.S20 { margin: 15px 10px 5px 4px; padding: 0px; line-height: 28.8px; min-height: 0px; white-space: pre-wrap; color: rgb(192, 76, 11); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 24px; font-weight: 400; text-align: left;  }</style></head><body><div class = rtcContent><h1  class = 'S0' id = 'T_B7893FC2' ><span>MatNWB Optical Physiology Tutorial</span></h1><div  class = 'S1'><div  class = 'S2'><span style=' font-weight: bold;'>Table of Contents</span></div><div  class = 'S3'><a href = "#T_B7893FC2"><span>MatNWB Optical Physiology Tutorial
+</span></a><span>    </span><a href = "#H_C9814973"><span>Introduction
+</span></a><span>    </span><a href = "#H_11954BED"><span>Set up the NWB file
+</span></a><span>    </span><a href = "#H_3CE571F5"><span>Optical Physiology
+</span></a><span>        </span><a href = "#H_A752E725"><span>Imaging Plane
+</span></a><span>        </span><a href = "#H_35FE25AF"><span>Storing Two-Photon Data
+</span></a><span>        </span><a href = "#H_26A56A9B"><span>Storing One-Photon Data
+</span></a><span>        </span><a href = "#H_71940743"><span>Motion Correction (optional)
+</span></a><span>        </span><a href = "#H_CF66BA0A"><span>Plane Segmentation
+</span></a><span>        </span><a href = "#H_531DA023"><span>Regions of interest (ROIs)
+</span></a><span>        </span><a href = "#H_58FDA251"><span>Adding ROIs to NWB file 
+</span></a><span>        </span><a href = "#H_A4473BF5"><span>Storing fluorescence of ROIs over time
+</span></a><span>    </span><a href = "#H_16ABF2B0"><span>Writing the NWB file
+</span></a><span>    </span><a href = "#H_F9A25D9C"><span>Reading the NWB file
+</span></a><a href = "#T_C8BDC905"><span>Learn more!
+</span></a><span>        </span><a href = "#H_872126D0"><span>See the API documentation to learn what data types are available.
+</span></a><span>    </span><a href = "#H_6F0B7108"><span>Other MatNWB tutorials
+</span></a><span>    </span><a href = "#H_1310FB5A"><span>Python tutorials</span></a></div></div><h2  class = 'S4' id = 'H_C9814973' ><span>Introduction</span></h2><div  class = 'S5'><span>In this tutorial, we will create fake data for a hypothetical optical physiology experiment with a freely moving animal. The types of data we will convert are:</span></div><ul  class = 'S6'><li  class = 'S7'><span>Acquired two-photon images</span></li><li  class = 'S7'><span>Image segmentation (ROIs)</span></li><li  class = 'S7'><span>Fluorescence and dF/F response</span></li></ul><div  class = 'S5'><span>It is recommended to first work through the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/tutorials/html/intro.html"><span>Introduction to MatNWB tutorial</span></a><span>, which demonstrates installing MatNWB and creating an NWB file with subject information, animal position, and trials, as well as writing and reading NWB files in MATLAB.</span></div><div  class = 'S5'><span style=' font-weight: bold;'>Please note</span><span>: The dimensions of timeseries data in MatNWB should be defined in the opposite order of how it is defined in the nwb-schemas. In NWB, time is always stored in the first dimension of the data, whereas in MatNWB data should be specified with time along the last dimension. This is explained in more detail here: </span><a href = "https://neurodatawithoutborders.github.io/matnwb/tutorials/html/dimensionMapNoDataPipes.html"><span>MatNWB &lt;-&gt; HDF5 Dimension Mapping</span></a><span>.</span></div><h2  class = 'S4' id = 'H_11954BED' ><span>Set up the NWB file</span></h2><div  class = 'S5'><span>An NWB file represents a single session of an experiment. Each file must have a session_description, identifier, and session start time. Create a new </span><span style=' font-family: monospace;'>NWBFile</span><span> object with those and additional metadata. For all MatNWB functions, we use the Matlab method of entering keyword argument pairs, where arguments are entered as name followed by value.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >nwb = NwbFile( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'session_description'</span><span >, </span><span style="color: #a709f5;">'mouse in open exploration'</span><span >,</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'identifier'</span><span >, </span><span style="color: #a709f5;">'Mouse5_Day3'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'session_start_time'</span><span >, datetime(2018, 4, 25, 2, 30, 3, </span><span style="color: #a709f5;">'TimeZone'</span><span >, </span><span style="color: #a709f5;">'local'</span><span >), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'timestamps_reference_time'</span><span >, datetime(2018, 4, 25, 3, 0, 45, </span><span style="color: #a709f5;">'TimeZone'</span><span >, </span><span style="color: #a709f5;">'local'</span><span >), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'general_experimenter'</span><span >, </span><span style="color: #a709f5;">'LastName, FirstName'</span><span >, </span><span style="color: #0e00ff;">...</span><span style="color: #008013;"> % optional</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'general_session_id'</span><span >, </span><span style="color: #a709f5;">'session_1234'</span><span >, </span><span style="color: #0e00ff;">...</span><span style="color: #008013;"> % optional</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'general_institution'</span><span >, </span><span style="color: #a709f5;">'University of My Institution'</span><span >, </span><span style="color: #0e00ff;">...</span><span style="color: #008013;"> % optional</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'general_related_publications'</span><span >, {</span><span style="color: #a709f5;">'DOI:10.1016/j.neuron.2016.12.011'</span><span >}); </span><span style="color: #008013;">% optional</span></span></div></div><div class="inlineWrapper outputs"><div  class = 'S10'><span style="white-space: pre"><span >nwb</span></span></div><div  class = 'S11'><div class="inlineElement eoOutputWrapper disableDefaultGestureHandling embeddedOutputsVariableStringElement scrollableOutput" uid="A13151C9" prevent-scroll="true" data-testid="output_0" tabindex="-1" style="width: 1137px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="textElement eoOutputContent scrollArea" tabindex="-1" data-previous-available-width="1100" data-previous-scroll-height="773" data-hashorizontaloverflow="false" style="max-height: 261px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div style="white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><span class="variableNameElement" style="white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">nwb = </span></div><div style="white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">  NwbFile with properties:
+
+                                             nwb_version: '2.7.0'
                                         file_create_date: []
                                               identifier: 'Mouse5_Day3'
                                      session_description: 'mouse in open exploration'
@@ -137,19 +138,14 @@
                                    stimulus_presentation: [0×1 types.untyped.Set]
                                       stimulus_templates: [0×1 types.untyped.Set]
                                                    units: []
-</div></div></div></div></div></div><h2  class = 'S4' id = 'H_3C6AF47D' ><span>Optical Physiology</span></h2><div  class = 'S5' id = 'H_25054651' ><span>Optical physiology results are written in four steps:</span></div><ol  class = 'S6'><li  class = 'S7'><span>Create imaging plane</span></li><li  class = 'S7'><span>Acquired two-photon images</span></li><li  class = 'S7'><span>Image segmentation</span></li><li  class = 'S7'><span>Fluorescence and dF/F responses</span></li></ol><h3  class = 'S12' id = 'H_D24CCB50' ><span>Imaging Plane</span></h3><div  class = 'S5'><span>First, you must create an </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ImagingPlane.html"><span style=' font-weight: bold; font-family: monospace;'>ImagingPlane</span></a><span> object, which will hold information about the area and method used to collect the optical imaging data. This requires creation of a </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/Device.html"><span style=' font-weight: bold; font-family: monospace;'>Device</span></a><span> object for the microscope and an </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/OpticalChannel.html"><span style=' font-weight: bold; font-family: monospace;'>OpticalChannel</span></a><span> object. Then you can create an </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ImagingPlane.html"><span style=' font-weight: bold; font-family: monospace;'>ImagingPlane</span></a><span>.</span></div><div  class = 'S13'><img class = "imageNode" src = "" width = "527" height = "278" alt = "" style = "vertical-align: baseline; width: 527px; height: 278px;"></img></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >optical_channel = types.core.OpticalChannel( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'emission_lambda'</span><span >, 500.);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >device = types.core.Device();</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >nwb.general_devices.set(</span><span style="color: #a709f5;">'Device'</span><span >, device);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >imaging_plane_name = </span><span style="color: #a709f5;">'imaging_plane'</span><span >;</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >imaging_plane = types.core.ImagingPlane( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'optical_channel'</span><span >, optical_channel, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'a very interesting part of the brain'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'device'</span><span >, types.untyped.SoftLink(device), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'excitation_lambda'</span><span >, 600., </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'imaging_rate'</span><span >, 5., </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'indicator'</span><span >, </span><span style="color: #a709f5;">'GFP'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'location'</span><span >, </span><span style="color: #a709f5;">'my favorite brain location'</span><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S14'><span style="white-space: pre"><span >nwb.general_optophysiology.set(imaging_plane_name, imaging_plane);</span></span></div></div></div><h3  class = 'S12' id = 'H_D30DF06B' ><span>Storing Two-Photon Data</span></h3><div  class = 'S5' id = 'H_BEB8D2A0' ><span>You can create a </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/TwoPhotonSeries.html"><span style=' font-weight: bold; font-family: monospace;'>TwoPhotonSeries</span></a><span> class representing two photon imaging data. </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/TwoPhotonSeries.html"><span style=' font-weight: bold; font-family: monospace;'>TwoPhotonSeries</span></a><span>, like </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/SpatialSeries.html"><span style=' font-weight: bold; font-family: monospace;'>SpatialSeries</span></a><span>, inherits from </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/TimeSeries.html"><span style=' font-weight: bold; font-family: monospace;'>TimeSeries</span></a><span style=' font-weight: bold; font-family: monospace;'> </span><span>and is similar in behavior to </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/OnePhotonSeries.html"><span style=' font-weight: bold; font-family: monospace;'>OnePhotonSeries</span></a><span style=' font-family: monospace;'>.</span></div><div  class = 'S13' id = 'H_BEB8D2A0' ><img class = "imageNode" src = "" width = "669" height = "387" alt = "" style = "vertical-align: baseline; width: 669px; height: 387px;"></img></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8' id = 'H_19E7751C' ><span style="white-space: pre"><span >InternalTwoPhoton = types.core.TwoPhotonSeries( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'imaging_plane'</span><span >, types.untyped.SoftLink(imaging_plane), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time'</span><span >, 0.0, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time_rate'</span><span >, 3.0, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data'</span><span >, ones(200, 100, 1000), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data_unit'</span><span >, </span><span style="color: #a709f5;">'lumens'</span><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S14'><span style="white-space: pre"><span >nwb.acquisition.set(</span><span style="color: #a709f5;">'2pInternal'</span><span >, InternalTwoPhoton);</span></span></div></div></div><h3  class = 'S12' id = 'H_9444B4A0' ><span>Storing One-Photon Data</span></h3><div  class = 'S5'><span>Now that we have our </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ImagingPlane.html"><span style=' font-weight: bold; font-family: monospace;'>ImagingPlane</span></a><span>, we can create a </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/OnePhotonSeries.html"><span style=' font-weight: bold; font-family: monospace;'>OnePhotonSeries</span></a><span> object to store raw one-photon imaging data.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span style="color: #008013;">% using internal data. this data will be stored inside the NWB file</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >InternalOnePhoton = types.core.OnePhotonSeries( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data'</span><span >, ones(100, 100, 1000), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'imaging_plane'</span><span >, types.untyped.SoftLink(imaging_plane), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time'</span><span >, 0., </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time_rate'</span><span >, 1.0, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data_unit'</span><span >, </span><span style="color: #a709f5;">'normalized amplitude' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S14'><span style="white-space: pre"><span >nwb.acquisition.set(</span><span style="color: #a709f5;">'1pInternal'</span><span >, InternalOnePhoton);</span></span></div></div></div><h3  class = 'S15' id = 'H_D5024F0B' ><span>Plane Segmentation</span></h3><div  class = 'S5'><span>Image segmentation stores the detected regions of interest in the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/TwoPhotonSeries.html"><span style=' font-weight: bold; font-family: monospace;'>TwoPhotonSeries</span></a><span> data. </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ImageSegmentation.html"><span style=' font-weight: bold; font-family: monospace;'>ImageSegmentation</span></a><span> allows you to have more than one segmentation by creating more </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/PlaneSegmentation.html"><span style=' font-weight: bold; font-family: monospace;'>PlaneSegmentation</span></a><span> objects.</span></div><div  class = 'S13'><img class = "imageNode" src = "" width = "958" height = "509" alt = "" style = "vertical-align: baseline; width: 958px; height: 509px;"></img></div><h3  class = 'S12' id = 'H_CAC68044' ><span>Regions of interest (ROIs)</span></h3><div  class = 'S5' id = 'H_32ABACFC' ><span>ROIs can be added to a </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/PlaneSegmentation.html"><span style=' font-weight: bold; font-family: monospace;'>PlaneSegmentation</span></a><span> either as an image_mask </span><span style=' font-weight: bold;'>or</span><span> as a pixel_mask. An image mask is an array that is the same size as a single frame of the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/TwoPhotonSeries.html"><span style=' font-weight: bold; font-family: monospace;'>TwoPhotonSeries</span></a><span>, and indicates where a single region of interest is. This image mask may be boolean or continuous between 0 and 1. A pixel_mask, on the other hand, is a list of indices (i.e coordinates) and weights for the ROI. The pixel_mask is represented as a compound data type using a </span><a href = "https://nwb-schema.readthedocs.io/en/latest/format_description.html#tables-and-ragged-arrays"><span>ragged array</span></a><span> and below is an example demonstrating how to create either an image_mask or a pixel_mask. Changing the dropdown selection will update the PlaneSegmentation object accordingly.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >selection = </span></span><span style="color: rgb(167, 9, 245);">"Create Image Mask"</span><span style="white-space: pre"><span >; </span><span style="color: #008013;">% "Create Image Mask" or "Create Pixel Mask"</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span style="color: #008013;">% generate fake image_mask data</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >imaging_shape = [100, 100];</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >x = imaging_shape(1);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >y = imaging_shape(2);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >n_rois = 20;</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >image_mask = zeros(y, x, n_rois);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >center = randi(90,2,n_rois);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span style="color: #0e00ff;">for </span><span >i = 1:n_rois</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    image_mask(center(1,i):center(1,i)+10, center(2,i):center(2,i)+10, i) = 1;</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span style="color: #0e00ff;">end</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span style="color: #0e00ff;">if </span><span >selection == </span><span style="color: #a709f5;">"Create Pixel Mask"</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    ind = find(image_mask);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    [y_ind, x_ind, roi_ind] = ind2sub(size(image_mask), ind);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    pixel_mask_struct = struct();</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    pixel_mask_struct.x = uint32(x_ind); </span><span style="color: #008013;">% Add x coordinates to struct field x</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    pixel_mask_struct.y = uint32(y_ind); </span><span style="color: #008013;">% Add y coordinates to struct field y</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    pixel_mask_struct.weight = single(ones(size(x_ind))); </span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #008013;">% Create pixel mask vector data</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    pixel_mask = types.hdmf_common.VectorData(</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'data'</span><span >, struct2table(pixel_mask_struct), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'pixel masks'</span><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #008013;">% When creating a pixel mask, it is also necessary to specify a</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #008013;">% pixel_mask_index vector. See the documentation for ragged arrays linked</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #008013;">% above to learn more.</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    num_pixels_per_roi = zeros(n_rois, 1); </span><span style="color: #008013;">% Column vector</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #0e00ff;">for </span><span >i_roi = 1:n_rois</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >        num_pixels_per_roi(i_roi) = sum(roi_ind == i_roi);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #0e00ff;">end</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    pixel_mask_index = uint16(cumsum(num_pixels_per_roi)); </span><span style="color: #008013;">% Note: Use an integer </span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #008013;">% type that can accommodate the maximum value of the cumulative sum</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #008013;">% Create pixel_mask_index vector</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    pixel_mask_index = types.hdmf_common.VectorIndex(</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Index into pixel_mask VectorData'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'data'</span><span >, pixel_mask_index, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'target'</span><span >, types.untyped.ObjectView(pixel_mask) );</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    plane_segmentation = types.core.PlaneSegmentation( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'colnames'</span><span >, {</span><span style="color: #a709f5;">'pixel_mask'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'roi pixel position (x,y) and pixel weight'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'imaging_plane'</span><span >, types.untyped.SoftLink(imaging_plane), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'pixel_mask_index'</span><span >, pixel_mask_index, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'pixel_mask'</span><span >, pixel_mask </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    );</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span style="color: #0e00ff;">else </span><span style="color: #008013;">% selection == "Create Image Mask"</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    plane_segmentation = types.core.PlaneSegmentation( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'colnames'</span><span >, {</span><span style="color: #a709f5;">'image_mask'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'output from segmenting my favorite imaging plane'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'imaging_plane'</span><span >, types.untyped.SoftLink(imaging_plane), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'image_mask'</span><span >, types.hdmf_common.VectorData(</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'data'</span><span >, image_mask, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'image masks'</span><span >) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    );</span></span></div></div><div class="inlineWrapper"><div  class = 'S14'><span style="white-space: pre"><span style="color: #0e00ff;">end</span></span></div></div></div><h3  class = 'S15' id = 'H_75ACF9AF' ><span>Adding ROIs to NWB file </span></h3><div  class = 'S5'><span>Now create an </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ImageSegmentation.html"><span style=' font-weight: bold; font-family: monospace;'>ImageSegmentation</span></a><span> object and put the </span><span style=' font-family: monospace;'>plane_segmentation</span><span> object inside of it, naming it </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/PlaneSegmentation.html"><span style=' font-weight: bold; font-family: monospace;'>PlaneSegmentation</span></a><span>.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >img_seg = types.core.ImageSegmentation();</span></span></div></div><div class="inlineWrapper"><div  class = 'S14'><span style="white-space: pre"><span >img_seg.planesegmentation.set(</span><span style="color: #a709f5;">'PlaneSegmentation'</span><span >, plane_segmentation);</span></span></div></div></div><div  class = 'S16'><span>Now create a </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html"><span style=' font-weight: bold; font-family: monospace;'>ProcessingModule</span></a><span> called "ophys" and put our </span><span style=' font-family: monospace;'>img_seg</span><span> object in it, calling it "</span><span style=' font-family: monospace;'>ImageSegmentation"</span><span>, and add the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html"><span style=' font-weight: bold; font-family: monospace;'>ProcessingModule</span></a><span> to </span><span style=' font-family: monospace;'>nwb.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >ophys_module = types.core.ProcessingModule( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper outputs"><div  class = 'S10'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >,  </span><span style="color: #a709f5;">'contains optical physiology data'</span><span >)</span></span></div><div  class = 'S11'><div class="inlineElement eoOutputWrapper disableDefaultGestureHandling embeddedOutputsVariableStringElement" uid="438B7598" prevent-scroll="true" data-testid="output_1" tabindex="-1" style="width: 586px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="textElement eoOutputContent" tabindex="-1" data-previous-available-width="549" data-previous-scroll-height="94" data-hashorizontaloverflow="false" style="max-height: 261px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div style="white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><span class="variableNameElement" style="white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">ophys_module = </span></div><div style="white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">  ProcessingModule with properties:
-
-         description: 'contains optical physiology data'
-        dynamictable: [0×1 types.untyped.Set]
-    nwbdatainterface: [0×1 types.untyped.Set]
-</div></div></div></div></div><div class="inlineWrapper"><div  class = 'S17'><span style="white-space: pre"><span >ophys_module.nwbdatainterface.set(</span><span style="color: #a709f5;">'ImageSegmentation'</span><span >, img_seg);</span></span></div></div><div class="inlineWrapper"><div  class = 'S14'><span style="white-space: pre"><span >nwb.processing.set(</span><span style="color: #a709f5;">'ophys'</span><span >, ophys_module);</span></span></div></div></div><h3  class = 'S15' id = 'H_1ED48860' ><span>Storing fluorescence of ROIs over time</span></h3><div  class = 'S5' id = 'H_09424E2F' ><span>Now that ROIs are stored, you can store fluorescence dF/F data for these regions of interest. This type of data is stored using the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RoiResponseSeries.html"><span style=' font-weight: bold; font-family: monospace;'>RoiResponseSeries</span></a><span> class. You will not need to instantiate this class directly to create objects of this type, but it is worth noting that this is the class you will work with after you read data back in.</span></div><div  class = 'S13' id = 'H_09424E2F' ><img class = "imageNode" src = "" width = "958" height = "509" alt = "" style = "vertical-align: baseline; width: 958px; height: 509px;"></img></div><div  class = 'S5' id = 'H_09424E2F' ><span>First, create a data interface to store this data in</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >roi_table_region = types.hdmf_common.DynamicTableRegion( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'table'</span><span >, types.untyped.ObjectView(plane_segmentation), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'all_rois'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data'</span><span >, (0:n_rois-1)');</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >roi_response_series = types.core.RoiResponseSeries( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'rois'</span><span >, roi_table_region, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data'</span><span >, NaN(n_rois, 100), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data_unit'</span><span >, </span><span style="color: #a709f5;">'lumens'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time_rate'</span><span >, 3.0, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time'</span><span >, 0.0);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >fluorescence = types.core.Fluorescence();</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >fluorescence.roiresponseseries.set(</span><span style="color: #a709f5;">'RoiResponseSeries'</span><span >, roi_response_series);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S14'><span style="white-space: pre"><span >ophys_module.nwbdatainterface.set(</span><span style="color: #a709f5;">'Fluorescence'</span><span >, fluorescence);</span></span></div></div></div><div  class = 'S16'><span>Finally, the ophys </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html"><span style=' font-weight: bold; font-family: monospace;'>ProcessingModule</span></a><span> is added to the </span><span style=' font-family: monospace;'>NwbFile</span><span>.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S18'><span style="white-space: pre"><span >nwb.processing.set(</span><span style="color: #a709f5;">'ophys'</span><span >, ophys_module);</span></span></div></div></div><h2  class = 'S19' id = 'H_AB7497FC' ><span>Writing the NWB file</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >nwb_file_name = </span><span style="color: #a709f5;">'ophys_tutorial.nwb'</span><span >;</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span style="color: #0e00ff;">if </span><span >isfile(nwb_file_name); delete(nwb_file_name); </span><span style="color: #0e00ff;">end</span></span></div></div><div class="inlineWrapper"><div  class = 'S14'><span style="white-space: pre"><span >nwbExport(nwb, nwb_file_name);</span></span></div></div></div><h2  class = 'S19' id = 'H_1B554271' ><span>Reading the NWB file</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S18'><span style="white-space: pre"><span >read_nwb = nwbRead(nwb_file_name, </span><span style="color: #a709f5;">'ignorecache'</span><span >);</span></span></div></div></div><div  class = 'S16'><span>Data arrays are read passively from the file. Calling</span><span> </span><span style=' font-family: monospace;'>TimeSeries.data</span><span> does not read the data values, but presents an HDF5 object that can be indexed to read data. </span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >read_nwb.processing.get(</span><span style="color: #a709f5;">'ophys'</span><span >).nwbdatainterface.get(</span><span style="color: #a709f5;">'Fluorescence'</span><span >)</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper outputs"><div  class = 'S10'><span style="white-space: pre"><span >    .roiresponseseries.get(</span><span style="color: #a709f5;">'RoiResponseSeries'</span><span >).data</span></span></div><div  class = 'S11'><div class="inlineElement eoOutputWrapper disableDefaultGestureHandling embeddedOutputsVariableStringElement" uid="3B37A247" prevent-scroll="true" data-testid="output_2" tabindex="-1" style="width: 586px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="textElement eoOutputContent" tabindex="-1" data-previous-available-width="549" data-previous-scroll-height="123" data-hashorizontaloverflow="false" style="max-height: 261px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div style="white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><span class="variableNameElement" style="white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">ans = </span></div><div style="white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">  DataStub with properties:
+</div></div></div></div></div></div><h2  class = 'S4' id = 'H_3CE571F5' ><span>Optical Physiology</span></h2><div  class = 'S5' id = 'H_25054651' ><span>Optical physiology results are written in four steps:</span></div><ol  class = 'S6'><li  class = 'S7'><span>Create imaging plane</span></li><li  class = 'S7'><span>Acquired two-photon images</span></li><li  class = 'S7'><span>Image segmentation</span></li><li  class = 'S7'><span>Fluorescence and dF/F responses</span></li></ol><h3  class = 'S12' id = 'H_A752E725' ><span>Imaging Plane</span></h3><div  class = 'S5'><span>First, you must create an </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ImagingPlane.html"><span style=' font-weight: bold; font-family: monospace;'>ImagingPlane</span></a><span> object, which will hold information about the area and method used to collect the optical imaging data. This requires creation of a </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/Device.html"><span style=' font-weight: bold; font-family: monospace;'>Device</span></a><span> object for the microscope and an </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/OpticalChannel.html"><span style=' font-weight: bold; font-family: monospace;'>OpticalChannel</span></a><span> object. Then you can create an </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ImagingPlane.html"><span style=' font-weight: bold; font-family: monospace;'>ImagingPlane</span></a><span>.</span></div><div  class = 'S13'><img class = "imageNode" src = "" width = "527" height = "278" alt = "" style = "vertical-align: baseline; width: 527px; height: 278px;"></img></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >optical_channel = types.core.OpticalChannel( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'emission_lambda'</span><span >, 500.);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >device = types.core.Device();</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >nwb.general_devices.set(</span><span style="color: #a709f5;">'Device'</span><span >, device);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >imaging_plane_name = </span><span style="color: #a709f5;">'imaging_plane'</span><span >;</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >imaging_plane = types.core.ImagingPlane( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'optical_channel'</span><span >, optical_channel, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'a very interesting part of the brain'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'device'</span><span >, types.untyped.SoftLink(device), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'excitation_lambda'</span><span >, 600., </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'imaging_rate'</span><span >, 5., </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'indicator'</span><span >, </span><span style="color: #a709f5;">'GFP'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'location'</span><span >, </span><span style="color: #a709f5;">'my favorite brain location'</span><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S14'><span style="white-space: pre"><span >nwb.general_optophysiology.set(imaging_plane_name, imaging_plane);</span></span></div></div></div><h3  class = 'S12' id = 'H_35FE25AF' ><span>Storing Two-Photon Data</span></h3><div  class = 'S5' id = 'H_BEB8D2A0' ><span>You can create a </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/TwoPhotonSeries.html"><span style=' font-weight: bold; font-family: monospace;'>TwoPhotonSeries</span></a><span> class representing two photon imaging data. </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/TwoPhotonSeries.html"><span style=' font-weight: bold; font-family: monospace;'>TwoPhotonSeries</span></a><span>, like </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/SpatialSeries.html"><span style=' font-weight: bold; font-family: monospace;'>SpatialSeries</span></a><span>, inherits from </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/TimeSeries.html"><span style=' font-weight: bold; font-family: monospace;'>TimeSeries</span></a><span style=' font-weight: bold; font-family: monospace;'> </span><span>and is similar in behavior to </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/OnePhotonSeries.html"><span style=' font-weight: bold; font-family: monospace;'>OnePhotonSeries</span></a><span style=' font-family: monospace;'>.</span></div><div  class = 'S13' id = 'H_BEB8D2A0' ><img class = "imageNode" src = "" width = "669" height = "387" alt = "" style = "vertical-align: baseline; width: 669px; height: 387px;"></img></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8' id = 'H_19E7751C' ><span style="white-space: pre"><span >InternalTwoPhoton = types.core.TwoPhotonSeries( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'imaging_plane'</span><span >, types.untyped.SoftLink(imaging_plane), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time'</span><span >, 0.0, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time_rate'</span><span >, 3.0, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data'</span><span >, ones(200, 100, 1000), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data_unit'</span><span >, </span><span style="color: #a709f5;">'lumens'</span><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S14'><span style="white-space: pre"><span >nwb.acquisition.set(</span><span style="color: #a709f5;">'2pInternal'</span><span >, InternalTwoPhoton);</span></span></div></div></div><h3  class = 'S12' id = 'H_26A56A9B' ><span>Storing One-Photon Data</span></h3><div  class = 'S5'><span>Now that we have our </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ImagingPlane.html"><span style=' font-weight: bold; font-family: monospace;'>ImagingPlane</span></a><span>, we can create a </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/OnePhotonSeries.html"><span style=' font-weight: bold; font-family: monospace;'>OnePhotonSeries</span></a><span> object to store raw one-photon imaging data.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span style="color: #008013;">% using internal data. this data will be stored inside the NWB file</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >InternalOnePhoton = types.core.OnePhotonSeries( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data'</span><span >, ones(100, 100, 1000), </span><span style="color: #0e00ff;">...</span><span style="color: #008013;"> </span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'imaging_plane'</span><span >, types.untyped.SoftLink(imaging_plane), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time'</span><span >, 0., </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time_rate'</span><span >, 1.0, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data_unit'</span><span >, </span><span style="color: #a709f5;">'normalized amplitude' </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S14'><span style="white-space: pre"><span >nwb.acquisition.set(</span><span style="color: #a709f5;">'1pInternal'</span><span >, InternalOnePhoton);</span></span></div></div></div><h3  class = 'S12' id = 'H_71940743' ><span>Motion Correction (optional)</span></h3><div  class = 'S5' id = 'H_BE3DB7E3' ><span>You can also store the result of motion correction using a </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/MotionCorrection.html"><span style=' font-weight: bold;'>MotionCorrection</span></a><span> object, a container type that can hold one or more </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/CorrectedImageStack.html"><span style=' font-weight: bold;'>CorrectedImageStack</span></a><span> objects.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8' id = 'H_BE3DB7E3' ><span style="white-space: pre"><span style="color: #008013;">% Create the corrected ImageSeries</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >corrected = types.core.ImageSeries( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'A motion corrected image stack'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data'</span><span >, ones(100, 100, 1000), </span><span style="color: #0e00ff;">...</span><span style="color: #008013;">  % 3D data array</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data_unit'</span><span >, </span><span style="color: #a709f5;">'n/a'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'format'</span><span >, </span><span style="color: #a709f5;">'raw'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time'</span><span >, 0.0, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time_rate'</span><span >, 1.0 </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span style="color: #008013;">% Create the xy_translation TimeSeries</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >xy_translation = types.core.TimeSeries( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'x,y translation in pixels'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data'</span><span >, ones(2, 1000), </span><span style="color: #0e00ff;">...</span><span style="color: #008013;">  % 2D data array</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data_unit'</span><span >, </span><span style="color: #a709f5;">'pixels'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time'</span><span >, 0.0, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time_rate'</span><span >, 1.0 </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span style="color: #008013;">% Create the CorrectedImageStack</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >corrected_image_stack = types.core.CorrectedImageStack( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'corrected'</span><span >, corrected, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'original'</span><span >, types.untyped.SoftLink(InternalOnePhoton), </span><span style="color: #0e00ff;">...</span><span style="color: #008013;">  % Ensure `InternalOnePhoton` exists</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'xy_translation'</span><span >, xy_translation </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span style="color: #008013;">% Create the MotionCorrection object</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >motion_correction = types.core.MotionCorrection();</span></span></div></div><div class="inlineWrapper"><div  class = 'S14'><span style="white-space: pre"><span >motion_correction.correctedimagestack.set(</span><span style="color: #a709f5;">'CorrectedImageStack'</span><span >, corrected_image_stack);</span></span></div></div></div><div  class = 'S15'><span>The motion corrected data is considered processed data and will be added to the </span><span style=' font-family: monospace;'>processing</span><span> field of the </span><span style=' font-family: monospace;'>nwb</span><span> object using a </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html"><span style=' font-weight: bold; font-family: monospace;'>ProcessingModule</span></a><span> called "</span><span style=' font-family: monospace;'>ophys</span><span>". First, create the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html"><span style=' font-weight: bold; font-family: monospace;'>ProcessingModule</span></a><span> object and then add the </span><span style=' font-family: monospace;'>motion_correction</span><span> object to it, naming it "</span><span style=' font-family: monospace;'>MotionCorrection</span><span>". </span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >ophys_module = types.core.ProcessingModule( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Contains optical physiology data'</span><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S14'><span style="white-space: pre"><span >ophys_module.nwbdatainterface.set(</span><span style="color: #a709f5;">'MotionCorrection'</span><span >, motion_correction);</span></span></div></div></div><div  class = 'S15'><span>Finally, add the "ophys" </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html"><span style=' font-weight: bold; font-family: monospace;'>ProcessingModule</span></a><span> to the </span><span style=' font-family: monospace;'>nwb</span><span> (Note that we can continue adding objects to the "ophys" </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html"><span style=' font-weight: bold; font-family: monospace;'>ProcessingModule</span></a><span> without needing to explicitly update the nwb):</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S16'><span style="white-space: pre"><span >nwb.processing.set(</span><span style="color: #a709f5;">'ophys'</span><span >, ophys_module);</span></span></div></div></div><h3  class = 'S17' id = 'H_CF66BA0A' ><span>Plane Segmentation</span></h3><div  class = 'S5'><span>Image segmentation stores the detected regions of interest in the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/TwoPhotonSeries.html"><span style=' font-weight: bold; font-family: monospace;'>TwoPhotonSeries</span></a><span> data. </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ImageSegmentation.html"><span style=' font-weight: bold; font-family: monospace;'>ImageSegmentation</span></a><span> allows you to have more than one segmentation by creating more </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/PlaneSegmentation.html"><span style=' font-weight: bold; font-family: monospace;'>PlaneSegmentation</span></a><span> objects.</span></div><div  class = 'S13'><img class = "imageNode" src = "" width = "958" height = "509" alt = "" style = "vertical-align: baseline; width: 958px; height: 509px;"></img></div><h3  class = 'S12' id = 'H_531DA023' ><span>Regions of interest (ROIs)</span></h3><div  class = 'S5' id = 'H_32ABACFC' ><span>ROIs can be added to a </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/PlaneSegmentation.html"><span style=' font-weight: bold; font-family: monospace;'>PlaneSegmentation</span></a><span> either as an image_mask </span><span style=' font-weight: bold;'>or</span><span> as a pixel_mask. An image mask is an array that is the same size as a single frame of the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/TwoPhotonSeries.html"><span style=' font-weight: bold; font-family: monospace;'>TwoPhotonSeries</span></a><span>, and indicates where a single region of interest is. This image mask may be boolean or continuous between 0 and 1. A pixel_mask, on the other hand, is a list of indices (i.e coordinates) and weights for the ROI. The pixel_mask is represented as a compound data type using a </span><a href = "https://nwb-schema.readthedocs.io/en/latest/format_description.html#tables-and-ragged-arrays"><span>ragged array</span></a><span> and below is an example demonstrating how to create either an image_mask or a pixel_mask. Changing the dropdown selection will update the PlaneSegmentation object accordingly.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >selection = </span></span><span style="color: rgb(167, 9, 245);">"Create Image Mask"</span><span style="white-space: pre"><span >; </span><span style="color: #008013;">% "Create Image Mask" or "Create Pixel Mask"</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span style="color: #008013;">% generate fake image_mask data</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >imaging_shape = [100, 100];</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >x = imaging_shape(1);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >y = imaging_shape(2);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >n_rois = 20;</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >image_mask = zeros(y, x, n_rois);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >center = randi(90,2,n_rois);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span style="color: #0e00ff;">for </span><span >i = 1:n_rois</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    image_mask(center(1,i):center(1,i)+10, center(2,i):center(2,i)+10, i) = 1;</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span style="color: #0e00ff;">end</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span style="color: #0e00ff;">if </span><span >selection == </span><span style="color: #a709f5;">"Create Pixel Mask"</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    ind = find(image_mask);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    [y_ind, x_ind, roi_ind] = ind2sub(size(image_mask), ind);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    pixel_mask_struct = struct();</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    pixel_mask_struct.x = uint32(x_ind); </span><span style="color: #008013;">% Add x coordinates to struct field x</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    pixel_mask_struct.y = uint32(y_ind); </span><span style="color: #008013;">% Add y coordinates to struct field y</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    pixel_mask_struct.weight = single(ones(size(x_ind))); </span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #008013;">% Create pixel mask vector data</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    pixel_mask = types.hdmf_common.VectorData(</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'data'</span><span >, struct2table(pixel_mask_struct), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'pixel masks'</span><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #008013;">% When creating a pixel mask, it is also necessary to specify a</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #008013;">% pixel_mask_index vector. See the documentation for ragged arrays linked</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #008013;">% above to learn more.</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    num_pixels_per_roi = zeros(n_rois, 1); </span><span style="color: #008013;">% Column vector</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #0e00ff;">for </span><span >i_roi = 1:n_rois</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >        num_pixels_per_roi(i_roi) = sum(roi_ind == i_roi);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #0e00ff;">end</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    pixel_mask_index = uint16(cumsum(num_pixels_per_roi)); </span><span style="color: #008013;">% Note: Use an integer </span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #008013;">% type that can accommodate the maximum value of the cumulative sum</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #008013;">% Create pixel_mask_index vector</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    pixel_mask_index = types.hdmf_common.VectorIndex(</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'Index into pixel_mask VectorData'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'data'</span><span >, pixel_mask_index, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'target'</span><span >, types.untyped.ObjectView(pixel_mask) );</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    plane_segmentation = types.core.PlaneSegmentation( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'colnames'</span><span >, {</span><span style="color: #a709f5;">'pixel_mask'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'roi pixel position (x,y) and pixel weight'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'imaging_plane'</span><span >, types.untyped.SoftLink(imaging_plane), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'pixel_mask_index'</span><span >, pixel_mask_index, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'pixel_mask'</span><span >, pixel_mask </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    );</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span style="color: #0e00ff;">else </span><span style="color: #008013;">% selection == "Create Image Mask"</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    plane_segmentation = types.core.PlaneSegmentation( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'colnames'</span><span >, {</span><span style="color: #a709f5;">'image_mask'</span><span >}, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'output from segmenting my favorite imaging plane'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'imaging_plane'</span><span >, types.untyped.SoftLink(imaging_plane), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >        </span><span style="color: #a709f5;">'image_mask'</span><span >, types.hdmf_common.VectorData(</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'data'</span><span >, image_mask, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >            </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'image masks'</span><span >) </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    );</span></span></div></div><div class="inlineWrapper"><div  class = 'S14'><span style="white-space: pre"><span style="color: #0e00ff;">end</span></span></div></div></div><h3  class = 'S17' id = 'H_58FDA251' ><span>Adding ROIs to NWB file </span></h3><div  class = 'S5'><span>Now create an </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ImageSegmentation.html"><span style=' font-weight: bold; font-family: monospace;'>ImageSegmentation</span></a><span> object and put the </span><span style=' font-family: monospace;'>plane_segmentation</span><span> object inside of it, naming it "</span><span style=' font-family: monospace;'>PlaneSegmentation"</span><span>.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >img_seg = types.core.ImageSegmentation();</span></span></div></div><div class="inlineWrapper"><div  class = 'S14'><span style="white-space: pre"><span >img_seg.planesegmentation.set(</span><span style="color: #a709f5;">'PlaneSegmentation'</span><span >, plane_segmentation);</span></span></div></div></div><div  class = 'S15'><span>Add the </span><span style=' font-family: monospace;'>img_seg</span><span> object to the "ophys" </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html"><span style=' font-weight: bold; font-family: monospace;'>ProcessingModule</span></a><span> we created before, naming it "</span><span style=' font-family: monospace;'>ImageSegmentation</span><span>"</span><span style=' font-family: monospace;'>.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S16'><span style="white-space: pre"><span >ophys_module.nwbdatainterface.set(</span><span style="color: #a709f5;">'ImageSegmentation'</span><span >, img_seg);</span></span></div></div></div><h3  class = 'S17' id = 'H_A4473BF5' ><span>Storing fluorescence of ROIs over time</span></h3><div  class = 'S5' id = 'H_09424E2F' ><span>Now that ROIs are stored, you can store fluorescence data for these regions of interest. This type of data is stored using the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RoiResponseSeries.html"><span style=' font-weight: bold; font-family: monospace;'>RoiResponseSeries</span></a><span> class. </span></div><div  class = 'S13' id = 'H_09424E2F' ><img class = "imageNode" src = "" width = "958" height = "509" alt = "" style = "vertical-align: baseline; width: 958px; height: 509px;"></img></div><div  class = 'S5'><span>To create a</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RoiResponseSeries.html"><span style=' font-weight: bold; font-family: monospace;'>RoiResponseSeries</span></a><span> </span><span>object, we will need to reference a set of rows from the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/PlaneSegmentation.html"><span style=' font-weight: bold; font-family: monospace;'>PlaneSegmentation</span></a><span> </span><span>table to indicate which ROIs correspond to which rows of your recorded data matrix. This is done using a</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/DynamicTableRegion.html"><span style=' font-weight: bold; font-family: monospace;'>DynamicTableRegion</span></a><span>, which is a type of link that allows you to reference specific rows of a</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/DynamicTable.html"><span style=' font-weight: bold; font-family: monospace;'>DynamicTable</span></a><span>, such as a</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/PlaneSegmentation.html"><span style=' font-weight: bold; font-family: monospace;'>PlaneSegmentation</span></a><span> </span><span>table by row indices.</span></div><div  class = 'S5'><span>First, we create a</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/DynamicTableRegion.html"><span style=' font-weight: bold; font-family: monospace;'>DynamicTableRegion</span></a><span> </span><span>that references the ROIs of the</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/PlaneSegmentation.html"><span style=' font-weight: bold; font-family: monospace;'>PlaneSegmentation</span></a><span> table.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >roi_table_region = types.hdmf_common.DynamicTableRegion( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'table'</span><span >, types.untyped.ObjectView(plane_segmentation), </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'description'</span><span >, </span><span style="color: #a709f5;">'all_rois'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S14'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data'</span><span >, (0:n_rois-1)');</span></span></div></div></div><div  class = 'S15'><span>Then we create a </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RoiResponseSeries.html"><span style=' font-weight: bold; font-family: monospace;'>RoiResponseSeries</span></a><span> object to store fluorescence data for those ROIs.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >roi_response_series = types.core.RoiResponseSeries( </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'rois'</span><span >, roi_table_region, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data'</span><span >, NaN(n_rois, 100), </span><span style="color: #0e00ff;">...</span><span style="color: #008013;"> % [nRoi, nT]</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'data_unit'</span><span >, </span><span style="color: #a709f5;">'lumens'</span><span >, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time_rate'</span><span >, 3.0, </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S14'><span style="white-space: pre"><span >    </span><span style="color: #a709f5;">'starting_time'</span><span >, 0.0);</span></span></div></div></div><div  class = 'S15'><span>To help data analysis and visualization tools know that this</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RoiResponseSeries.html"><span style=' font-weight: bold; font-family: monospace;'>RoiResponseSeries</span></a><span> </span><span>object represents fluorescence data, we will store the</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RoiResponseSeries.html"><span style=' font-weight: bold; font-family: monospace;'>RoiResponseSeries</span></a><span> </span><span>object inside of a</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/Fluorescence.html"><span style=' font-weight: bold; font-family: monospace;'>Fluorescence</span></a><span> </span><span>object. Then we add the</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/Fluorescence.html"><span style=' font-weight: bold; font-family: monospace;'>Fluorescence</span></a><span> </span><span>object into the same</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html"><span style=' font-weight: bold; font-family: monospace;'>ProcessingModule</span></a><span> </span><span>named</span><span> </span><span style=' font-family: monospace;'>"ophys"</span><span> </span><span>that we created earlier.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >fluorescence = types.core.Fluorescence();</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >fluorescence.roiresponseseries.set(</span><span style="color: #a709f5;">'RoiResponseSeries'</span><span >, roi_response_series);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S14'><span style="white-space: pre"><span >ophys_module.nwbdatainterface.set(</span><span style="color: #a709f5;">'Fluorescence'</span><span >, fluorescence);</span></span></div></div></div><div  class = 'S15'><span style=' font-weight: bold;'>Tip</span><span>: If you want to store dF/F data instead of fluorescence data, then store the</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RoiResponseSeries.html"><span style=' font-weight: bold; font-family: monospace;'>RoiResponseSeries</span></a><span> object in a</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/DfOverF.html"><span style=' font-weight: bold; font-family: monospace;'>DfOverF</span></a><span> </span><span>object, which works the same way as the</span><span> </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/Fluorescence.html"><span style=' font-weight: bold; font-family: monospace;'>Fluorescence</span></a><span> </span><span>class.</span></div><h2  class = 'S18' id = 'H_16ABF2B0' ><span>Writing the NWB file</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >nwb_file_name = </span><span style="color: #a709f5;">'ophys_tutorial.nwb'</span><span >;</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span style="color: #0e00ff;">if </span><span >isfile(nwb_file_name); delete(nwb_file_name); </span><span style="color: #0e00ff;">end</span></span></div></div><div class="inlineWrapper outputs"><div  class = 'S10'><span style="white-space: pre"><span >nwbExport(nwb, nwb_file_name);</span></span></div><div  class = 'S11'><div class="inlineElement eoOutputWrapper disableDefaultGestureHandling embeddedOutputsWarningElement" uid="5E211EA8" prevent-scroll="true" data-testid="output_1" tabindex="-1" style="width: 1137px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="diagnosticMessage-wrapper diagnosticMessage-warningType eoOutputContent" tabindex="-1" data-previous-available-width="1100" data-previous-scroll-height="34" data-hashorizontaloverflow="false" style="max-height: 261px; white-space: normal; font-style: normal; color: rgb(179, 98, 5); font-size: 12px;"><div class="diagnosticMessage-messagePart" style="white-space: pre-wrap; font-style: normal; color: rgb(179, 98, 5); font-size: 12px;">Warning: The property "grid_spacing_unit" of type "types.core.ImagingPlane" was not exported to file location "/general/optophysiology/imaging_plane" because it depends on the property "grid_spacing" which is unset.</div><div class="diagnosticMessage-stackPart" style="white-space: pre; font-style: normal; color: rgb(179, 98, 5); font-size: 12px;"></div></div></div><div class="inlineElement eoOutputWrapper disableDefaultGestureHandling embeddedOutputsWarningElement" uid="CDF5DAAD" prevent-scroll="true" data-testid="output_2" tabindex="-1" style="width: 1137px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="diagnosticMessage-wrapper diagnosticMessage-warningType eoOutputContent" tabindex="-1" data-previous-available-width="1100" data-previous-scroll-height="34" data-hashorizontaloverflow="false" style="max-height: 261px; white-space: normal; font-style: normal; color: rgb(179, 98, 5); font-size: 12px;"><div class="diagnosticMessage-messagePart" style="white-space: pre-wrap; font-style: normal; color: rgb(179, 98, 5); font-size: 12px;">Warning: The property "origin_coords_unit" of type "types.core.ImagingPlane" was not exported to file location "/general/optophysiology/imaging_plane" because it depends on the property "origin_coords" which is unset.</div><div class="diagnosticMessage-stackPart" style="white-space: pre; font-style: normal; color: rgb(179, 98, 5); font-size: 12px;"></div></div></div></div></div></div><h2  class = 'S18' id = 'H_F9A25D9C' ><span>Reading the NWB file</span></h2><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S16'><span style="white-space: pre"><span >read_nwb = nwbRead(nwb_file_name, </span><span style="color: #a709f5;">'ignorecache'</span><span >);</span></span></div></div></div><div  class = 'S15'><span>Data arrays are read passively from the file. Calling</span><span> </span><span style=' font-family: monospace;'>TimeSeries.data</span><span> does not read the data values, but presents an HDF5 object that can be indexed to read data. </span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >read_nwb.processing.get(</span><span style="color: #a709f5;">'ophys'</span><span >).nwbdatainterface.get(</span><span style="color: #a709f5;">'Fluorescence'</span><span >)</span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper outputs"><div  class = 'S10'><span style="white-space: pre"><span >    .roiresponseseries.get(</span><span style="color: #a709f5;">'RoiResponseSeries'</span><span >).data</span></span></div><div  class = 'S11'><div class="inlineElement eoOutputWrapper disableDefaultGestureHandling embeddedOutputsVariableStringElement" uid="BF089564" prevent-scroll="true" data-testid="output_3" tabindex="-1" style="width: 1137px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="textElement eoOutputContent" tabindex="-1" data-previous-available-width="1100" data-previous-scroll-height="123" data-hashorizontaloverflow="false" style="max-height: 261px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div style="white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><span class="variableNameElement" style="white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">ans = </span></div><div style="white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">  DataStub with properties:
 
     filename: 'ophys_tutorial.nwb'
         path: '/processing/ophys/Fluorescence/RoiResponseSeries/data'
         dims: [20 100]
        ndims: 2
     dataType: 'double'
-</div></div></div></div></div></div><div  class = 'S16'><span>This allows you to conveniently work with datasets that are too large to fit in RAM all at once. Access the data in the matrix using the </span><span style=' font-family: monospace;'>load</span><span> method. </span></div><div  class = 'S5'><span style=' font-family: monospace;'>load</span><span> with no input arguments reads the entire dataset:</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >read_nwb.processing.get(</span><span style="color: #a709f5;">'ophys'</span><span >).nwbdatainterface.get(</span><span style="color: #a709f5;">'Fluorescence'</span><span >). </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper outputs"><div  class = 'S10'><span style="white-space: pre"><span >    roiresponseseries.get(</span><span style="color: #a709f5;">'RoiResponseSeries'</span><span >).data.load</span></span></div><div  class = 'S11'><div class="inlineElement eoOutputWrapper disableDefaultGestureHandling embeddedOutputsVariableMatrixElement" uid="F0445EC4" prevent-scroll="true" data-testid="output_3" data-width="556" tabindex="-1" style="width: 586px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="matrixElement veSpecifier eoOutputContent" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 556px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">ans = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: italic; color: rgb(97, 97, 97); font-size: 12px;">20×100</span></div></div><div class="valueContainer" data-layout="{&quot;columnWidth&quot;:44,&quot;totalColumns&quot;:100,&quot;totalRows&quot;:20,&quot;charsPerColumn&quot;:6}" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="variableValue" style="width: 486px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
+</div></div></div></div></div></div><div  class = 'S15'><span>This allows you to conveniently work with datasets that are too large to fit in RAM all at once. Access the data in the matrix using the </span><span style=' font-family: monospace;'>load</span><span> method. </span></div><div  class = 'S5'><span style=' font-family: monospace;'>load</span><span> with no input arguments reads the entire dataset:</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >read_nwb.processing.get(</span><span style="color: #a709f5;">'ophys'</span><span >).nwbdatainterface.get(</span><span style="color: #a709f5;">'Fluorescence'</span><span >). </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper outputs"><div  class = 'S10'><span style="white-space: pre"><span >    roiresponseseries.get(</span><span style="color: #a709f5;">'RoiResponseSeries'</span><span >).data.load</span></span></div><div  class = 'S11'><div class="inlineElement eoOutputWrapper disableDefaultGestureHandling embeddedOutputsVariableMatrixElement" uid="D58B32D4" prevent-scroll="true" data-testid="output_4" data-width="1107" tabindex="-1" style="width: 1137px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="matrixElement veSpecifier saveLoad eoOutputContent" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 1107px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">ans = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: italic; color: rgb(97, 97, 97); font-size: 12px;">20×100</span></div></div><div class="valueContainer" data-layout="{&quot;columnWidth&quot;:44,&quot;totalColumns&quot;:&quot;100&quot;,&quot;totalRows&quot;:&quot;20&quot;,&quot;charsPerColumn&quot;:6}" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="variableValue" style="width: 1058px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
@@ -159,12 +155,12 @@
    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
-</div><div class="horizontalEllipsis" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="verticalEllipsis" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div></div></div><div class="outputLayer selectedOutputDecorationLayer doNotExport" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer activeOutputDecorationLayer doNotExport" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer scrollableOutputDecorationLayer doNotExport" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer navigationFocusLayer doNotExport" tabindex="-1" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div></div></div></div></div><div  class = 'S16'><span>If all you need is a section of the data, you can read only that section by indexing the </span><span style=' font-family: monospace;'>DataStub</span><span> object like a normal array in MATLAB. This will just read the selected region from disk into RAM. This technique is particularly useful if you are dealing with a large dataset that is too big to fit entirely into your available RAM.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >read_nwb.processing.get(</span><span style="color: #a709f5;">'ophys'</span><span >). </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    nwbdatainterface.get(</span><span style="color: #a709f5;">'Fluorescence'</span><span >). </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    roiresponseseries.get(</span><span style="color: #a709f5;">'RoiResponseSeries'</span><span >). </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper outputs"><div  class = 'S10'><span style="white-space: pre"><span >    data(1:5, 1:10)</span></span></div><div  class = 'S11'><div class="inlineElement eoOutputWrapper disableDefaultGestureHandling embeddedOutputsVariableMatrixElement" uid="D1169672" prevent-scroll="true" data-testid="output_4" data-width="556" tabindex="-1" style="width: 586px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="matrixElement veSpecifier eoOutputContent" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 556px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">ans = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: italic; color: rgb(97, 97, 97); font-size: 12px;">5×10</span></div></div><div class="valueContainer" data-layout="{&quot;columnWidth&quot;:44,&quot;totalColumns&quot;:10,&quot;totalRows&quot;:5,&quot;charsPerColumn&quot;:6}" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="variableValue" style="width: 442px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
+</div><div class="horizontalEllipsis" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="verticalEllipsis" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div></div></div><div class="outputLayer selectedOutputDecorationLayer doNotExport" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer activeOutputDecorationLayer doNotExport" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer scrollableOutputDecorationLayer doNotExport" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer navigationFocusLayer doNotExport" tabindex="-1" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div></div></div></div></div><div  class = 'S15'><span>If all you need is a section of the data, you can read only that section by indexing the </span><span style=' font-family: monospace;'>DataStub</span><span> object like a normal array in MATLAB. This will just read the selected region from disk into RAM. This technique is particularly useful if you are dealing with a large dataset that is too big to fit entirely into your available RAM.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div  class = 'S8'><span style="white-space: pre"><span >read_nwb.processing.get(</span><span style="color: #a709f5;">'ophys'</span><span >). </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    nwbdatainterface.get(</span><span style="color: #a709f5;">'Fluorescence'</span><span >). </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    roiresponseseries.get(</span><span style="color: #a709f5;">'RoiResponseSeries'</span><span >). </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper outputs"><div  class = 'S10'><span style="white-space: pre"><span >    data(1:5, 1:10)</span></span></div><div  class = 'S11'><div class="inlineElement eoOutputWrapper disableDefaultGestureHandling embeddedOutputsVariableMatrixElement" uid="06272140" prevent-scroll="true" data-testid="output_5" data-width="1107" tabindex="-1" style="width: 1137px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="matrixElement veSpecifier saveLoad eoOutputContent" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="veVariableName variableNameElement double" style="width: 1107px; white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="headerElementClickToInteract" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><span style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">ans = </span><span class="veVariableValueSummary veMetaSummary" style="white-space: normal; font-style: italic; color: rgb(97, 97, 97); font-size: 12px;">5×10</span></div></div><div class="valueContainer" data-layout="{&quot;columnWidth&quot;:44,&quot;totalColumns&quot;:&quot;10&quot;,&quot;totalRows&quot;:&quot;5&quot;,&quot;charsPerColumn&quot;:6}" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"><div class="variableValue" style="width: 442px; white-space: pre; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;">   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
-</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div></div></div><div class="outputLayer selectedOutputDecorationLayer doNotExport" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer activeOutputDecorationLayer doNotExport" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer scrollableOutputDecorationLayer doNotExport" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer navigationFocusLayer doNotExport" tabindex="-1" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div></div></div></div><div class="inlineWrapper"><div  class = 'S17'><span style="white-space: pre"><span style="color: #008013;">% read back the image/pixel masks and display the first roi</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >plane_segmentation = read_nwb.processing.get(</span><span style="color: #a709f5;">'ophys'</span><span >). </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    nwbdatainterface.get(</span><span style="color: #a709f5;">'ImageSegmentation'</span><span >). </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    planesegmentation.get(</span><span style="color: #a709f5;">'PlaneSegmentation'</span><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span style="color: #0e00ff;">if </span><span >~isempty(plane_segmentation.image_mask)</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    roi_mask = plane_segmentation.image_mask.data(:,:,1);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span style="color: #0e00ff;">elseif </span><span >~isempty(plane_segmentation.pixel_mask)</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    row = plane_segmentation.getRow(1, </span><span style="color: #a709f5;">'columns'</span><span >, {</span><span style="color: #a709f5;">'pixel_mask'</span><span >});</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    pixel_mask = row.pixel_mask{1};</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    roi_mask = zeros(imaging_shape);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    ind = sub2ind(imaging_shape, pixel_mask.y, pixel_mask.x);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    roi_mask(ind) = pixel_mask.weight;</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span style="color: #0e00ff;">end</span><span >    </span></span></div></div><div class="inlineWrapper outputs"><div  class = 'S10'><span style="white-space: pre"><span >imshow(roi_mask)</span></span></div><div  class = 'S11'><img src=""></div></div></div><h1  class = 'S20' id = 'T_E48E59C8' ><span>Learn more!</span></h1><h3  class = 'S12' id = 'H_CC242DA7' ><span>See the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/index.html"><span>API documentation</span></a><span> to learn what data types are available.</span></h3><h2  class = 'S4' id = 'H_B9170A39' ><span>Other MatNWB tutorials</span></h2><ul  class = 'S6'><li  class = 'S7'><a href = "https://neurodatawithoutborders.github.io/matnwb/tutorials/html/ecephys.html"><span style=' text-decoration: underline;'>Extracellular electrophysiology</span></a></li><li  class = 'S7'><a href = "https://neurodatawithoutborders.github.io/matnwb/tutorials/html/icephys.html"><span style=' text-decoration: underline;'>Intracellular electrophysiology</span></a></li></ul><h2  class = 'S4' id = 'H_42F1264D' ><span>Python tutorials</span></h2><div  class = 'S5'><span>See our tutorials for more details about your data type:</span></div><ul  class = 'S6'><li  class = 'S7'><a href = "https://pynwb.readthedocs.io/en/stable/tutorials/domain/ecephys.html#sphx-glr-tutorials-domain-ecephys-py"><span style=' text-decoration: underline;'>Extracellular electrophysiology</span></a></li><li  class = 'S7'><a href = "https://pynwb.readthedocs.io/en/stable/tutorials/domain/ophys.html#sphx-glr-tutorials-domain-ophys-py"><span style=' text-decoration: underline;'>Calcium imaging</span></a></li><li  class = 'S7'><a href = "https://pynwb.readthedocs.io/en/stable/tutorials/domain/icephys.html#sphx-glr-tutorials-domain-icephys-py"><span style=' text-decoration: underline;'>Intracellular electrophysiology</span></a></li></ul><div  class = 'S5'><span style=' font-weight: bold;'>Check out other tutorials that teach advanced NWB topics:</span></div><ul  class = 'S6'><li  class = 'S7'><a href = "https://pynwb.readthedocs.io/en/stable/tutorials/general/iterative_write.html#sphx-glr-tutorials-general-iterative-write-py"><span style=' text-decoration: underline;'>Iterative data write</span></a></li><li  class = 'S7'><a href = "https://pynwb.readthedocs.io/en/stable/tutorials/general/extensions.html#sphx-glr-tutorials-general-extensions-py"><span style=' text-decoration: underline;'>Extensions</span></a></li><li  class = 'S7'><a href = "https://pynwb.readthedocs.io/en/stable/tutorials/general/advanced_hdf5_io.html#sphx-glr-tutorials-general-advanced-hdf5-io-py"><span style=' text-decoration: underline;'>Advanced HDF5 I/O</span></a></li></ul><h2  class = 'S4' id = 'H_F634E746' ></h2>
+</div><div class="horizontalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="verticalEllipsis hide" style="white-space: nowrap; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div></div></div><div class="outputLayer selectedOutputDecorationLayer doNotExport" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer activeOutputDecorationLayer doNotExport" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer scrollableOutputDecorationLayer doNotExport" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div><div class="outputLayer navigationFocusLayer doNotExport" tabindex="-1" style="white-space: normal; font-style: normal; color: rgb(33, 33, 33); font-size: 12px;"></div></div></div></div><div class="inlineWrapper"><div  class = 'S19'><span style="white-space: pre"><span style="color: #008013;">% read back the image/pixel masks and display the first roi</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >plane_segmentation = read_nwb.processing.get(</span><span style="color: #a709f5;">'ophys'</span><span >). </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    nwbdatainterface.get(</span><span style="color: #a709f5;">'ImageSegmentation'</span><span >). </span><span style="color: #0e00ff;">...</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    planesegmentation.get(</span><span style="color: #a709f5;">'PlaneSegmentation'</span><span >);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'>&nbsp;</div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span style="color: #0e00ff;">if </span><span >~isempty(plane_segmentation.image_mask)</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    roi_mask = plane_segmentation.image_mask.data(:,:,1);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span style="color: #0e00ff;">elseif </span><span >~isempty(plane_segmentation.pixel_mask)</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    row = plane_segmentation.getRow(1, </span><span style="color: #a709f5;">'columns'</span><span >, {</span><span style="color: #a709f5;">'pixel_mask'</span><span >});</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    pixel_mask = row.pixel_mask{1};</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    roi_mask = zeros(imaging_shape);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    ind = sub2ind(imaging_shape, pixel_mask.y, pixel_mask.x);</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span >    roi_mask(ind) = pixel_mask.weight;</span></span></div></div><div class="inlineWrapper"><div  class = 'S9'><span style="white-space: pre"><span style="color: #0e00ff;">end</span><span >    </span></span></div></div><div class="inlineWrapper outputs"><div  class = 'S10'><span style="white-space: pre"><span >imshow(roi_mask)</span></span></div><div  class = 'S11'><div class="inlineElement eoOutputWrapper disableDefaultGestureHandling embeddedOutputsFigure" uid="542DCC90" prevent-scroll="true" data-testid="output_6" tabindex="-1" style="width: 1137px;"><div class="figureElement eoOutputContent"><img class="figureImage figureContainingNode" src="" style="width: 157px; padding-bottom: 0px;"></div><div class="outputLayer selectedOutputDecorationLayer doNotExport"></div><div class="outputLayer activeOutputDecorationLayer doNotExport"></div><div class="outputLayer scrollableOutputDecorationLayer doNotExport"></div><div class="outputLayer navigationFocusLayer doNotExport" tabindex="-1"></div></div></div></div></div><h1  class = 'S20' id = 'T_C8BDC905' ><span>Learn more!</span></h1><h3  class = 'S12' id = 'H_872126D0' ><span>See the </span><a href = "https://neurodatawithoutborders.github.io/matnwb/doc/index.html"><span>API documentation</span></a><span> to learn what data types are available.</span></h3><h2  class = 'S4' id = 'H_6F0B7108' ><span>Other MatNWB tutorials</span></h2><ul  class = 'S6'><li  class = 'S7'><a href = "https://neurodatawithoutborders.github.io/matnwb/tutorials/html/ecephys.html"><span style=' text-decoration: underline;'>Extracellular electrophysiology</span></a></li><li  class = 'S7'><a href = "https://neurodatawithoutborders.github.io/matnwb/tutorials/html/icephys.html"><span style=' text-decoration: underline;'>Intracellular electrophysiology</span></a></li></ul><h2  class = 'S4' id = 'H_1310FB5A' ><span>Python tutorials</span></h2><div  class = 'S5'><span>See our tutorials for more details about your data type:</span></div><ul  class = 'S6'><li  class = 'S7'><a href = "https://pynwb.readthedocs.io/en/stable/tutorials/domain/ecephys.html#sphx-glr-tutorials-domain-ecephys-py"><span style=' text-decoration: underline;'>Extracellular electrophysiology</span></a></li><li  class = 'S7'><a href = "https://pynwb.readthedocs.io/en/stable/tutorials/domain/ophys.html#sphx-glr-tutorials-domain-ophys-py"><span style=' text-decoration: underline;'>Calcium imaging</span></a></li><li  class = 'S7'><a href = "https://pynwb.readthedocs.io/en/stable/tutorials/domain/icephys.html#sphx-glr-tutorials-domain-icephys-py"><span style=' text-decoration: underline;'>Intracellular electrophysiology</span></a></li></ul><div  class = 'S5'><span style=' font-weight: bold;'>Check out other tutorials that teach advanced NWB topics:</span></div><ul  class = 'S6'><li  class = 'S7'><a href = "https://pynwb.readthedocs.io/en/stable/tutorials/general/iterative_write.html#sphx-glr-tutorials-general-iterative-write-py"><span style=' text-decoration: underline;'>Iterative data write</span></a></li><li  class = 'S7'><a href = "https://pynwb.readthedocs.io/en/stable/tutorials/general/extensions.html#sphx-glr-tutorials-general-extensions-py"><span style=' text-decoration: underline;'>Extensions</span></a></li><li  class = 'S7'><a href = "https://pynwb.readthedocs.io/en/stable/tutorials/general/advanced_hdf5_io.html#sphx-glr-tutorials-general-advanced-hdf5-io-py"><span style=' text-decoration: underline;'>Advanced HDF5 I/O</span></a></li></ul><h2  class = 'S4' id = 'H_8B4EF750' ></h2>
 <br>
 <!-- 
 ##### SOURCE BEGIN #####
@@ -181,6 +177,13 @@
 % Introduction to MatNWB tutorial>, which demonstrates installing MatNWB and creating 
 % an NWB file with subject information, animal position, and trials, as well as 
 % writing and reading NWB files in MATLAB.
+% 
+% *Please note*: The dimensions of timeseries data in MatNWB should be defined 
+% in the opposite order of how it is defined in the nwb-schemas. In NWB, time 
+% is always stored in the first dimension of the data, whereas in MatNWB data 
+% should be specified with time along the last dimension. This is explained in 
+% more detail here: <https://neurodatawithoutborders.github.io/matnwb/tutorials/html/dimensionMapNoDataPipes.html 
+% MatNWB <-> HDF5 Dimension Mapping>.
 %% Set up the NWB file
 % An NWB file represents a single session of an experiment. Each file must have 
 % a session_description, identifier, and session start time. Create a new |NWBFile| 
@@ -258,13 +261,64 @@
 
 % using internal data. this data will be stored inside the NWB file
 InternalOnePhoton = types.core.OnePhotonSeries( ...
-    'data', ones(100, 100, 1000), ...
+    'data', ones(100, 100, 1000), ... 
     'imaging_plane', types.untyped.SoftLink(imaging_plane), ...
     'starting_time', 0., ...
     'starting_time_rate', 1.0, ...
     'data_unit', 'normalized amplitude' ...
 );
 nwb.acquisition.set('1pInternal', InternalOnePhoton);
+% Motion Correction (optional)
+% You can also store the result of motion correction using a <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/MotionCorrection.html 
+% *MotionCorrection*> object, a container type that can hold one or more <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/CorrectedImageStack.html 
+% *CorrectedImageStack*> objects.
+
+% Create the corrected ImageSeries
+corrected = types.core.ImageSeries( ...
+    'description', 'A motion corrected image stack', ...
+    'data', ones(100, 100, 1000), ...  % 3D data array
+    'data_unit', 'n/a', ...
+    'format', 'raw', ...
+    'starting_time', 0.0, ...
+    'starting_time_rate', 1.0 ...
+);
+
+% Create the xy_translation TimeSeries
+xy_translation = types.core.TimeSeries( ...
+    'description', 'x,y translation in pixels', ...
+    'data', ones(2, 1000), ...  % 2D data array
+    'data_unit', 'pixels', ...
+    'starting_time', 0.0, ...
+    'starting_time_rate', 1.0 ...
+);
+
+% Create the CorrectedImageStack
+corrected_image_stack = types.core.CorrectedImageStack( ...
+    'corrected', corrected, ...
+    'original', types.untyped.SoftLink(InternalOnePhoton), ...  % Ensure `InternalOnePhoton` exists
+    'xy_translation', xy_translation ...
+);
+
+% Create the MotionCorrection object
+motion_correction = types.core.MotionCorrection();
+motion_correction.correctedimagestack.set('CorrectedImageStack', corrected_image_stack);
+%% 
+% The motion corrected data is considered processed data and will be added to 
+% the |processing| field of the |nwb| object using a <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html 
+% |*ProcessingModule*|> called "|ophys|". First, create the <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html 
+% |*ProcessingModule*|> object and then add the |motion_correction| object to 
+% it, naming it "|MotionCorrection|". 
+
+ophys_module = types.core.ProcessingModule( ...
+    'description', 'Contains optical physiology data');
+ophys_module.nwbdatainterface.set('MotionCorrection', motion_correction);
+%% 
+% Finally, add the "ophys" <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html 
+% |*ProcessingModule*|> to the |nwb| (Note that we can continue adding objects 
+% to the "ophys" <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html 
+% |*ProcessingModule*|> without needing to explicitly update the nwb):
+
+nwb.processing.set('ophys', ophys_module);
 % Plane Segmentation
 % Image segmentation stores the detected regions of interest in the <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/TwoPhotonSeries.html 
 % |*TwoPhotonSeries*|> data. <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ImageSegmentation.html 
@@ -351,53 +405,69 @@
 % Adding ROIs to NWB file 
 % Now create an <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ImageSegmentation.html 
 % |*ImageSegmentation*|> object and put the |plane_segmentation| object inside 
-% of it, naming it <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/PlaneSegmentation.html 
-% |*PlaneSegmentation*|>.
+% of it, naming it "|PlaneSegmentation"|.
 
 img_seg = types.core.ImageSegmentation();
 img_seg.planesegmentation.set('PlaneSegmentation', plane_segmentation);
 %% 
-% Now create a <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html 
-% |*ProcessingModule*|> called "ophys" and put our |img_seg| object in it, calling 
-% it "|ImageSegmentation"|, and add the <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html 
-% |*ProcessingModule*|> to |nwb.|
+% Add the |img_seg| object to the "ophys" <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html 
+% |*ProcessingModule*|> we created before, naming it "|ImageSegmentation|"|.|
 
-ophys_module = types.core.ProcessingModule( ...
-    'description',  'contains optical physiology data')
 ophys_module.nwbdatainterface.set('ImageSegmentation', img_seg);
-nwb.processing.set('ophys', ophys_module);
 % Storing fluorescence of ROIs over time
-% Now that ROIs are stored, you can store fluorescence dF/F data for these regions 
+% Now that ROIs are stored, you can store fluorescence data for these regions 
 % of interest. This type of data is stored using the <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RoiResponseSeries.html 
-% |*RoiResponseSeries*|> class. You will not need to instantiate this class directly 
-% to create objects of this type, but it is worth noting that this is the class 
-% you will work with after you read data back in.
+% |*RoiResponseSeries*|> class. 
 % 
 % 
 % 
-% First, create a data interface to store this data in
+% To create a <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RoiResponseSeries.html 
+% |*RoiResponseSeries*|> object, we will need to reference a set of rows from 
+% the <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/PlaneSegmentation.html 
+% |*PlaneSegmentation*|> table to indicate which ROIs correspond to which rows 
+% of your recorded data matrix. This is done using a <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/DynamicTableRegion.html 
+% |*DynamicTableRegion*|>, which is a type of link that allows you to reference 
+% specific rows of a <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/DynamicTable.html 
+% |*DynamicTable*|>, such as a <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/PlaneSegmentation.html 
+% |*PlaneSegmentation*|> table by row indices.
+% 
+% First, we create a <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/DynamicTableRegion.html 
+% |*DynamicTableRegion*|> that references the ROIs of the <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/PlaneSegmentation.html 
+% |*PlaneSegmentation*|> table.
 
 roi_table_region = types.hdmf_common.DynamicTableRegion( ...
     'table', types.untyped.ObjectView(plane_segmentation), ...
     'description', 'all_rois', ...
     'data', (0:n_rois-1)');
+%% 
+% Then we create a <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RoiResponseSeries.html 
+% |*RoiResponseSeries*|> object to store fluorescence data for those ROIs.
 
 roi_response_series = types.core.RoiResponseSeries( ...
     'rois', roi_table_region, ...
-    'data', NaN(n_rois, 100), ...
+    'data', NaN(n_rois, 100), ... % [nRoi, nT]
     'data_unit', 'lumens', ...
     'starting_time_rate', 3.0, ...
     'starting_time', 0.0);
+%% 
+% To help data analysis and visualization tools know that this <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RoiResponseSeries.html 
+% |*RoiResponseSeries*|> object represents fluorescence data, we will store the 
+% <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RoiResponseSeries.html 
+% |*RoiResponseSeries*|> object inside of a <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/Fluorescence.html 
+% |*Fluorescence*|> object. Then we add the <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/Fluorescence.html 
+% |*Fluorescence*|> object into the same <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html 
+% |*ProcessingModule*|> named |"ophys"| that we created earlier.
 
 fluorescence = types.core.Fluorescence();
 fluorescence.roiresponseseries.set('RoiResponseSeries', roi_response_series);
 
 ophys_module.nwbdatainterface.set('Fluorescence', fluorescence);
 %% 
-% Finally, the ophys <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html 
-% |*ProcessingModule*|> is added to the |NwbFile|.
-
-nwb.processing.set('ophys', ophys_module);
+% *Tip*: If you want to store dF/F data instead of fluorescence data, then store 
+% the <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RoiResponseSeries.html 
+% |*RoiResponseSeries*|> object in a <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/DfOverF.html 
+% |*DfOverF*|> object, which works the same way as the <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/Fluorescence.html 
+% |*Fluorescence*|> class.
 %% Writing the NWB file
 
 nwb_file_name = 'ophys_tutorial.nwb';
diff --git a/tutorials/icephys.mlx b/tutorials/icephys.mlx
index 5a47da93..bf98cfe4 100644
Binary files a/tutorials/icephys.mlx and b/tutorials/icephys.mlx differ
diff --git a/tutorials/ophys.mlx b/tutorials/ophys.mlx
index b18b40d5..07d4a56f 100644
Binary files a/tutorials/ophys.mlx and b/tutorials/ophys.mlx differ
diff --git a/tutorials/private/mcode/icephys.m b/tutorials/private/mcode/icephys.m
index 0bc20152..8608f77e 100644
--- a/tutorials/private/mcode/icephys.m
+++ b/tutorials/private/mcode/icephys.m
@@ -69,7 +69,8 @@
 % * <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IZeroClampSeries.html 
 % |*IZeroClampSeries*|>
 %% 
-% Below we create a simple example stimulus/response recording data pair.
+% Below we create a simple example stimulus/response recording data pair for 
+% a voltage clamp recording.
 
 ccss = types.core.VoltageClampStimulusSeries( ...
     'data', [1, 2, 3, 4, 5], ...
@@ -80,7 +81,6 @@
     'sweep_number', uint64(15), ...
     'stimulus_description', 'N/A' ...
 );
-
 nwbfile.stimulus_presentation.set('ccss',  ccss);
 
 vcs = types.core.VoltageClampSeries( ...
@@ -97,6 +97,55 @@
     'sweep_number', uint64(15) ...
 );
 nwbfile.acquisition.set('vcs',  vcs);
+%% 
+% You can add stimulus/response recording data pair from a current clamp recording 
+% in the same way:
+
+% Create a CurrentClampStimulusSeries object
+ccss = types.core.CurrentClampStimulusSeries(...
+    'data', [1, 2, 3, 4, 5], ...
+    'starting_time', 123.6, ...
+    'starting_time_rate', 10e3, ...
+    'electrode', types.untyped.SoftLink(electrode), ...
+    'gain', 0.02, ...
+    'sweep_number', uint16(16), ...
+    'stimulus_description', 'N/A' ...
+);
+nwbfile.stimulus_presentation.set('ccss',  ccss);
+
+% Create a CurrentClampSeries object
+ccs = types.core.CurrentClampSeries(...
+    'data', [0.1, 0.2, 0.3, 0.4, 0.5], ...
+    'data_conversion', 1e-12, ...
+    'data_resolution', NaN, ...
+    'starting_time', 123.6, ...
+    'starting_time_rate', 20e3, ...
+    'electrode', types.untyped.SoftLink(electrode), ...
+    'gain', 0.02, ...
+    'bias_current', 1e-12, ...
+    'bridge_balance', 70e6, ...
+    'capacitance_compensation', 1e-12, ...
+    'stimulus_description', 'N/A', ...
+    'sweep_number', uint16(16) ...
+);
+nwbfile.acquisition.set('ccs',  ccs);
+
+%% 
+% <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IZeroClampSeries.html 
+% |*IZeroClampSeries*|> is used when the current is clamped to 0.
+
+% Create an IZeroClampSeries object
+izcs = types.core.IZeroClampSeries(...
+    'data', [0.1, 0.2, 0.3, 0.4, 0.5], ...
+    'electrode', types.untyped.SoftLink(electrode), ...
+    'gain', 0.02, ...
+    'data_conversion', 1e-12, ...
+    'data_resolution', NaN, ...
+    'starting_time', 345.6, ...
+    'starting_time_rate', 20e3, ...
+    'sweep_number', uint16(17) ...
+);
+nwbfile.acquisition.set('izcs',  izcs);
 % Adding an intracellular recording
 % The <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/IntracellularRecordingsTable.html 
 % |*IntracellularRecordingsTable*|> relates electrode, stimulus and response pairs 
diff --git a/tutorials/private/mcode/ophys.m b/tutorials/private/mcode/ophys.m
index 84d6eb01..8a9e2e3f 100644
--- a/tutorials/private/mcode/ophys.m
+++ b/tutorials/private/mcode/ophys.m
@@ -11,6 +11,13 @@
 % Introduction to MatNWB tutorial>, which demonstrates installing MatNWB and creating 
 % an NWB file with subject information, animal position, and trials, as well as 
 % writing and reading NWB files in MATLAB.
+% 
+% *Please note*: The dimensions of timeseries data in MatNWB should be defined 
+% in the opposite order of how it is defined in the nwb-schemas. In NWB, time 
+% is always stored in the first dimension of the data, whereas in MatNWB data 
+% should be specified with time along the last dimension. This is explained in 
+% more detail here: <https://neurodatawithoutborders.github.io/matnwb/tutorials/html/dimensionMapNoDataPipes.html 
+% MatNWB <-> HDF5 Dimension Mapping>.
 %% Set up the NWB file
 % An NWB file represents a single session of an experiment. Each file must have 
 % a session_description, identifier, and session start time. Create a new |NWBFile| 
@@ -88,13 +95,64 @@
 
 % using internal data. this data will be stored inside the NWB file
 InternalOnePhoton = types.core.OnePhotonSeries( ...
-    'data', ones(100, 100, 1000), ...
+    'data', ones(100, 100, 1000), ... 
     'imaging_plane', types.untyped.SoftLink(imaging_plane), ...
     'starting_time', 0., ...
     'starting_time_rate', 1.0, ...
     'data_unit', 'normalized amplitude' ...
 );
 nwb.acquisition.set('1pInternal', InternalOnePhoton);
+% Motion Correction (optional)
+% You can also store the result of motion correction using a <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/MotionCorrection.html 
+% *MotionCorrection*> object, a container type that can hold one or more <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/CorrectedImageStack.html 
+% *CorrectedImageStack*> objects.
+
+% Create the corrected ImageSeries
+corrected = types.core.ImageSeries( ...
+    'description', 'A motion corrected image stack', ...
+    'data', ones(100, 100, 1000), ...  % 3D data array
+    'data_unit', 'n/a', ...
+    'format', 'raw', ...
+    'starting_time', 0.0, ...
+    'starting_time_rate', 1.0 ...
+);
+
+% Create the xy_translation TimeSeries
+xy_translation = types.core.TimeSeries( ...
+    'description', 'x,y translation in pixels', ...
+    'data', ones(2, 1000), ...  % 2D data array
+    'data_unit', 'pixels', ...
+    'starting_time', 0.0, ...
+    'starting_time_rate', 1.0 ...
+);
+
+% Create the CorrectedImageStack
+corrected_image_stack = types.core.CorrectedImageStack( ...
+    'corrected', corrected, ...
+    'original', types.untyped.SoftLink(InternalOnePhoton), ...  % Ensure `InternalOnePhoton` exists
+    'xy_translation', xy_translation ...
+);
+
+% Create the MotionCorrection object
+motion_correction = types.core.MotionCorrection();
+motion_correction.correctedimagestack.set('CorrectedImageStack', corrected_image_stack);
+%% 
+% The motion corrected data is considered processed data and will be added to 
+% the |processing| field of the |nwb| object using a <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html 
+% |*ProcessingModule*|> called "|ophys|". First, create the <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html 
+% |*ProcessingModule*|> object and then add the |motion_correction| object to 
+% it, naming it "|MotionCorrection|". 
+
+ophys_module = types.core.ProcessingModule( ...
+    'description', 'Contains optical physiology data');
+ophys_module.nwbdatainterface.set('MotionCorrection', motion_correction);
+%% 
+% Finally, add the "ophys" <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html 
+% |*ProcessingModule*|> to the |nwb| (Note that we can continue adding objects 
+% to the "ophys" <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html 
+% |*ProcessingModule*|> without needing to explicitly update the nwb):
+
+nwb.processing.set('ophys', ophys_module);
 % Plane Segmentation
 % Image segmentation stores the detected regions of interest in the <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/TwoPhotonSeries.html 
 % |*TwoPhotonSeries*|> data. <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ImageSegmentation.html 
@@ -181,53 +239,69 @@
 % Adding ROIs to NWB file 
 % Now create an <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ImageSegmentation.html 
 % |*ImageSegmentation*|> object and put the |plane_segmentation| object inside 
-% of it, naming it <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/PlaneSegmentation.html 
-% |*PlaneSegmentation*|>.
+% of it, naming it "|PlaneSegmentation"|.
 
 img_seg = types.core.ImageSegmentation();
 img_seg.planesegmentation.set('PlaneSegmentation', plane_segmentation);
 %% 
-% Now create a <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html 
-% |*ProcessingModule*|> called "ophys" and put our |img_seg| object in it, calling 
-% it "|ImageSegmentation"|, and add the <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html 
-% |*ProcessingModule*|> to |nwb.|
+% Add the |img_seg| object to the "ophys" <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html 
+% |*ProcessingModule*|> we created before, naming it "|ImageSegmentation|"|.|
 
-ophys_module = types.core.ProcessingModule( ...
-    'description',  'contains optical physiology data')
 ophys_module.nwbdatainterface.set('ImageSegmentation', img_seg);
-nwb.processing.set('ophys', ophys_module);
 % Storing fluorescence of ROIs over time
-% Now that ROIs are stored, you can store fluorescence dF/F data for these regions 
+% Now that ROIs are stored, you can store fluorescence data for these regions 
 % of interest. This type of data is stored using the <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RoiResponseSeries.html 
-% |*RoiResponseSeries*|> class. You will not need to instantiate this class directly 
-% to create objects of this type, but it is worth noting that this is the class 
-% you will work with after you read data back in.
+% |*RoiResponseSeries*|> class. 
 % 
 % 
 % 
-% First, create a data interface to store this data in
+% To create a <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RoiResponseSeries.html 
+% |*RoiResponseSeries*|> object, we will need to reference a set of rows from 
+% the <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/PlaneSegmentation.html 
+% |*PlaneSegmentation*|> table to indicate which ROIs correspond to which rows 
+% of your recorded data matrix. This is done using a <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/DynamicTableRegion.html 
+% |*DynamicTableRegion*|>, which is a type of link that allows you to reference 
+% specific rows of a <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/DynamicTable.html 
+% |*DynamicTable*|>, such as a <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/PlaneSegmentation.html 
+% |*PlaneSegmentation*|> table by row indices.
+% 
+% First, we create a <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/DynamicTableRegion.html 
+% |*DynamicTableRegion*|> that references the ROIs of the <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/PlaneSegmentation.html 
+% |*PlaneSegmentation*|> table.
 
 roi_table_region = types.hdmf_common.DynamicTableRegion( ...
     'table', types.untyped.ObjectView(plane_segmentation), ...
     'description', 'all_rois', ...
     'data', (0:n_rois-1)');
+%% 
+% Then we create a <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RoiResponseSeries.html 
+% |*RoiResponseSeries*|> object to store fluorescence data for those ROIs.
 
 roi_response_series = types.core.RoiResponseSeries( ...
     'rois', roi_table_region, ...
-    'data', NaN(n_rois, 100), ...
+    'data', NaN(n_rois, 100), ... % [nRoi, nT]
     'data_unit', 'lumens', ...
     'starting_time_rate', 3.0, ...
     'starting_time', 0.0);
+%% 
+% To help data analysis and visualization tools know that this <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RoiResponseSeries.html 
+% |*RoiResponseSeries*|> object represents fluorescence data, we will store the 
+% <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RoiResponseSeries.html 
+% |*RoiResponseSeries*|> object inside of a <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/Fluorescence.html 
+% |*Fluorescence*|> object. Then we add the <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/Fluorescence.html 
+% |*Fluorescence*|> object into the same <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html 
+% |*ProcessingModule*|> named |"ophys"| that we created earlier.
 
 fluorescence = types.core.Fluorescence();
 fluorescence.roiresponseseries.set('RoiResponseSeries', roi_response_series);
 
 ophys_module.nwbdatainterface.set('Fluorescence', fluorescence);
 %% 
-% Finally, the ophys <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/ProcessingModule.html 
-% |*ProcessingModule*|> is added to the |NwbFile|.
-
-nwb.processing.set('ophys', ophys_module);
+% *Tip*: If you want to store dF/F data instead of fluorescence data, then store 
+% the <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/RoiResponseSeries.html 
+% |*RoiResponseSeries*|> object in a <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/DfOverF.html 
+% |*DfOverF*|> object, which works the same way as the <https://neurodatawithoutborders.github.io/matnwb/doc/+types/+core/Fluorescence.html 
+% |*Fluorescence*|> class.
 %% Writing the NWB file
 
 nwb_file_name = 'ophys_tutorial.nwb';