-
Notifications
You must be signed in to change notification settings - Fork 1
/
neurovault_datagrabber.py
317 lines (253 loc) · 11.5 KB
/
neurovault_datagrabber.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
""" Code to grab the data from NeuroVault, and compute a map of
frequency of activation in the brain.
"""
# Authors: Chris Filo Gorgolewski, Gael Varoquaux
# License: BSD
import json
import urllib, os, errno
from urllib2 import Request, urlopen, HTTPError
import pandas as pd
from pandas.io.json import json_normalize
import numpy as np
import pylab as plt
from nipype.utils.filemanip import split_filename
import nibabel as nb
from joblib import Memory
from nilearn.image import resample_img
from nilearn.masking import compute_background_mask, _extrapolate_out_mask
from nilearn.plotting.img_plotting import plot_anat
# Use a joblib memory, to avoid depending on an Internet connection
mem = Memory(cachedir='/tmp/neurovault_analysis/cache')
def mkdir_p(path):
try:
os.makedirs(path)
except OSError as exc: # Python >2.5
if exc.errno == errno.EEXIST and os.path.isdir(path):
pass
else: raise
def get_collections_df():
"""Downloads metadata about collections/papers stored in NeuroVault and
return it as a pandas DataFrame"""
request = Request('http://neurovault.org/api/collections/?format=json')
response = urlopen(request)
elevations = response.read()
data = json.loads(elevations)
collections_df = json_normalize(data)
collections_df.rename(columns={'id':'collection_id'}, inplace=True)
collections_df.set_index("collection_id")
return collections_df
def get_images_df():
"""Downloads metadata about images/statistical maps stored in NeuroVault and
return it as a pandas DataFrame"""
request=Request('http://neurovault.org/api/images/?format=json')
response = urlopen(request)
elevations = response.read()
data = json.loads(elevations)
images_df = json_normalize(data)
images_df['collection'] = images_df['collection'].apply(lambda x: int(x.split("/")[-2]))
images_df['image_id'] = images_df['url'].apply(lambda x: int(x.split("/")[-2]))
images_df.rename(columns={'collection':'collection_id'}, inplace=True)
return images_df
def get_images_with_collections_df():
"""Downloads metadata about images/statistical maps stored in NeuroVault and
and enriches it with metadata of the corresponding collections. The result
is returned as a pandas DataFrame"""
collections_df = get_collections_df()
images_df = get_images_df()
combined_df = pd.merge(images_df, collections_df, how='left', on='collection_id',
suffixes=('_image', '_collection'))
return combined_df
def download_and_resample(images_df, dest_dir, target):
"""Downloads all stat maps and resamples them to a common space.
"""
target_nii = nb.load(target)
orig_path = os.path.join(dest_dir, "original")
mkdir_p(orig_path)
resampled_path = os.path.join(dest_dir, "resampled")
mkdir_p(resampled_path)
out_df = combined_df.copy()
for row in combined_df.iterrows():
# Downloading the file to the "original" subfolder
_, _, ext = split_filename(row[1]['file'])
orig_file = os.path.join(orig_path, "%04d%s" % (row[1]['image_id'], ext))
if not os.path.exists(orig_file):
print "Downloading %s" % orig_file
urllib.urlretrieve(row[1]['file'], orig_file)
try:
# Compute the background and extrapolate outside of the mask
print "Extrapolating %s" % orig_file
niimg = nb.load(orig_file)
data = niimg.get_data().squeeze()
niimg = nb.Nifti1Image(data, niimg.affine,
header=niimg.get_header())
bg_mask = compute_background_mask(niimg).get_data()
# Test if the image has been masked:
out_of_mask = data[np.logical_not(bg_mask)]
if np.all(np.isnan(out_of_mask)) or len(np.unique(out_of_mask)) == 1:
# Need to extrapolate
data = _extrapolate_out_mask(data.astype(np.float), bg_mask,
iterations=3)[0]
niimg = nb.Nifti1Image(data, niimg.affine,
header=niimg.get_header())
del out_of_mask, bg_mask
# Resampling the file to target and saving the output in the "resampled"
# folder
resampled_file = os.path.join(resampled_path,
"%06d%s" % (row[1]['image_id'], ext))
print "Resampling %s" % orig_file
resampled_nii = resample_img(niimg, target_nii.get_affine(),
target_nii.shape)
resampled_nii = nb.Nifti1Image(resampled_nii.get_data().squeeze(),
resampled_nii.get_affine(),
header=niimg.get_header())
if len(resampled_nii.shape) == 3:
resampled_nii.to_filename(resampled_file)
else:
# We have a 4D file
assert len(resampled_nii.shape) == 4
resampled_data = resampled_nii.get_data()
affine = resampled_nii.affine
for index in range(resampled_nii.shape[-1]):
# First save the files separately
this_nii = nb.Nifti1Image(resampled_data[..., index],
affine)
this_id = int("%i%i" % (-row[1]['image_id'], index))
this_file = os.path.join(resampled_path,
"%06d%s" % (this_id, ext))
this_nii.to_filename(this_file)
# Second, fix the dataframe
out_df = out_df[out_df.image_id != row[1]['image_id']]
this_row = row[1].copy()
this_row.image_id = this_id
out_df = out_df.append(this_row)
except IOError as e:
# Fix the dataframe
out_df = out_df[out_df.image_id != row[1]['image_id']]
print "Could not load %s " % orig_file
print e
return out_df
def get_frequency_map(images_df, dest_dir, target):
"""
"""
mask_img = 'gm_mask.nii.gz'
mask = nb.load(mask_img).get_data().astype(np.bool)
target_nii = nb.load(target)
resampled_path = os.path.join(dest_dir, "resampled")
freq_map_data = np.zeros(target_nii.shape)
n_images = 0
for row in combined_df.iterrows():
_, _, ext = split_filename(row[1]['file'])
orig_file = os.path.join(resampled_path,
"%06d%s" % (row[1]['image_id'], ext))
nb.load(orig_file)
if not os.path.exists(orig_file):
urllib.urlretrieve(row[1]['file'], orig_file)
resampled_nii = resample_img(orig_file, target_nii.get_affine(),
target_nii.shape,
interpolation="nearest")
data = resampled_nii.get_data().squeeze()
data[np.isnan(data)] = 0
data[np.logical_not(mask)] = 0
data = np.abs(data)
# Keep only things that are very significant
data = data > 3
if len(data.shape) == 4:
for d in np.rollaxis(data, -1):
freq_map_data += (d != 0)
n_images +=1
else:
freq_map_data += data
n_images += 1
freq_map_data *= 100. / n_images
return nb.Nifti1Image(freq_map_data, target_nii.get_affine())
def url_get(url):
request = Request(url)
response = urlopen(request)
return response.read()
def get_neurosynth_terms(combined_df):
""" Grab terms for each image, decoded with neurosynth"""
terms = list()
from sklearn.feature_extraction import DictVectorizer
vectorizer = DictVectorizer()
image_ids = list()
for row in combined_df.iterrows():
image_id = row[1]['image_id']
image_ids.append(int(image_id))
print "Fetching terms for image %i" % image_id
image_url = row[1]['url_image'].split('/')[-2]
try:
elevations = mem.cache(url_get)(
'http://neurosynth.org/decode/data/?neurovault=%s'
% image_url)
data = json.loads(elevations)['data']
data = dict([(i['analysis'], i['r']) for i in data])
except HTTPError:
data = {}
terms.append(data)
X = vectorizer.fit_transform(terms).toarray()
term_dframe = dict([('neurosynth decoding %s' % name, X[:, idx])
for name, idx in vectorizer.vocabulary_.items()])
term_dframe['image_id'] = image_ids
return pd.DataFrame(term_dframe)
if __name__ == '__main__':
#mem.clear()
combined_df = mem.cache(get_images_with_collections_df)()
# The following maps are not brain maps
faulty_ids = [96, 97, 98]
# And the following are crap
faulty_ids.extend([338, 339])
# 335 is a duplicate of 336
faulty_ids.extend([335, ])
combined_df = combined_df[~combined_df.image_id.isin(faulty_ids)]
print combined_df[['DOI', 'url_collection', 'name_image', 'file']]
#restrict to Z-, F-, or T-maps
combined_df = combined_df[combined_df['map_type'].isin(["Z","F","T"])]
terms_df = get_neurosynth_terms(combined_df)
print combined_df["name_collection"].value_counts()
combined_df = combined_df.merge(terms_df, on=['image_id', ])
dest_dir = "/tmp/neurovault_analysis"
target = "/usr/share/fsl/data/standard/MNI152_T1_2mm.nii.gz"
combined_df = mem.cache(download_and_resample)(combined_df,
dest_dir, target)
# Now remove -3360, -3362, and -3364, that are mean images, and not Z
# scores
not_Zscr = [-3360, -3362, -3364]
combined_df = combined_df[~combined_df.image_id.isin(not_Zscr)]
# Now remove images that are ugly, or obviously not z maps:
broken = [1202, 1163, 1931, 1101, 1099]
combined_df = combined_df[~combined_df.image_id.isin(broken)]
combined_df.to_csv('%s/metadata.csv' % dest_dir, encoding='utf8')
#--------------------------------------------------
# Plot a map of frequency of activation
freq_nii = get_frequency_map(combined_df, dest_dir, target)
freq_nii.to_filename("freq_map.nii.gz")
display = plot_anat("/usr/share/fsl/data/standard/MNI152_T1_2mm.nii.gz",
display_mode='z',
cut_coords=np.linspace(-30, 60, 7))
display.add_overlay(freq_nii, vmin=0, cmap=plt.cm.hot,
colorbar=True)
display._colorbar_ax.set_yticklabels(["% 3i" % float(t.get_text())
for t in display._colorbar_ax.yaxis.get_ticklabels()])
display.title('Percentage of activations (Z or T > 3)')
display.savefig('activation_frequency.png')
display.savefig('activation_frequency.pdf')
#--------------------------------------------------
# Plot the frequency of occurence of neurosynth terms
# Use the terms from neurosynth to label the ICAs
terms = combined_df[[c for c in combined_df.columns
if c.startswith('neurosynth decoding')]]
terms = terms.fillna(0)
term_matrix = terms.as_matrix()
# Labels that have a negative correlation are not present in the map
term_matrix[term_matrix < 0] = 0
term_names = [c[20:] for c in combined_df.columns
if c.startswith('neurosynth decoding')]
plt.figure(figsize=(5, 20))
plt.barh(np.arange(len(term_names)), term_matrix.sum(axis=0))
plt.axis('off')
plt.axis('tight')
plt.tight_layout()
for idx, name in enumerate(term_names):
plt.text(.1, idx + .1, name)
plt.savefig('term_distribution.pdf')
plt.show()