You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Based on literature, MatMul, Conv, LayerNormalization, GEMM are the most computationally intensive operations. It might be worth profiling them during inference process.
To keep the accuracy, I set reduce_range=True to avoid large accuracy drop.
LiteMedSAM encoder op:
{'Slice', 'Softmax', 'Pad', 'Erf', 'Cast', 'MatMul', 'Constant', 'Sub', 'Mul', 'Pow', 'Concat', 'Reshape', 'Div', 'Transpose', 'Split', 'Conv', 'LayerNormalization', 'ConstantOfShape', 'Add', 'Shape', 'Sqrt', 'ReduceMean'}
LiteMedSAM decoder ops:
{'Cos', 'Slice', 'Softmax', 'Gather', 'Gemm', 'Cast', 'Erf', 'MatMul', 'Not', 'Expand', 'Relu', 'Where', 'Constant', 'Sub', 'Resize', 'Mul', 'Reciprocal', 'Pow', 'Concat', 'Reshape', 'Unsqueeze', 'OneHot', 'ArgMax', 'Floor', 'Div', 'Transpose', 'Range', 'Flatten', 'Tile', 'ConvTranspose', 'Conv', 'LayerNormalization', 'ReduceMax', 'ConstantOfShape', 'Add', 'Shape', 'Equal', 'Sqrt', 'ReduceMean', 'Sin'}
Based on literature, MatMul, Conv, LayerNormalization, GEMM are the most computationally intensive operations. It might be worth profiling them during inference process.
To keep the accuracy, I set reduce_range=True to avoid large accuracy drop.
@nanthan987
The text was updated successfully, but these errors were encountered: