-
Notifications
You must be signed in to change notification settings - Fork 1
/
onnx_encoder_exporter.py
executable file
·155 lines (139 loc) · 4.92 KB
/
onnx_encoder_exporter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import argparse
import warnings
import subprocess
import torch
from src.litemedsam.build_sam import sam_model_registry
from src.litemedsam.utils.sam_onnx import EncoderModel
from src.efficient_sam.build_efficient_sam import build_efficient_sam_vitt, build_efficient_sam_vits
import src.efficient_sam.efficientsam_onnx as efficientsam_onnx
parser = argparse.ArgumentParser(
description="Export the sam encoder to an onnx model."
)
parser.add_argument(
"--checkpoint", type=str, required=True,
help="The path to the sam model checkpoint.",
)
parser.add_argument(
"--output", type=str, required=True,
help="The filename to save the onnx model to.",
)
parser.add_argument(
"--model-type", type=str, required=True,
help="In ['default', 'vit_h', 'vit_l', 'vit_b', 'vit_t', 'vitt', 'vits']. Which type of SAM model to export.",
)
parser.add_argument(
"--opset", type=int, default=17,
help="The ONNX opset version to use. Must be >=11",
)
parser.add_argument(
"--use-preprocess", action="store_true",
help=("Embed pre-processing into the model",),
)
parser.add_argument(
"--quantize-out", type=str, default=None,
help=(
"If set, will quantize the model and save it with this name. "
"Quantization is performed with quantize_dynamic from "
"onnxruntime.quantization.quantize."
),
)
parser.add_argument(
"--gelu-approximate",
action="store_true",
help=(
"Replace GELU operations with approximations using tanh. Useful "
"for some runtimes that have slow or unimplemented erf ops, used in GELU."
),
)
def optimize(onnx_model_path, optimized_model_path):
command = "python -m onnxoptimizer " + onnx_model_path + " " + optimized_model_path
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE)
process.wait()
def run_export(
model_type: str,
checkpoint: str,
output: str,
use_preprocess: bool,
opset: int,
gelu_approximate: bool = False,
) -> None:
print("Loading model...")
# build model
if model_type == 'vits':
sam = build_efficient_sam_vits(checkpoint)
onnx_model = efficientsam_onnx.OnnxEfficientSamEncoder(model=sam)
if model_type == 'vitt':
sam = build_efficient_sam_vitt(checkpoint)
onnx_model = efficientsam_onnx.OnnxEfficientSamEncoder(model=sam)
else:
sam = sam_model_registry[model_type](checkpoint=checkpoint)
onnx_model = EncoderModel(
model=sam,
use_preprocess=use_preprocess,
)
if gelu_approximate:
for _, m in onnx_model.named_modules():
if isinstance(m, torch.nn.GELU):
m.approximate = "tanh"
image_size = [256, 256]
if use_preprocess:
dummy_input = {
"input_image": torch.randint(
0, 255, (image_size[0], image_size[1], 3), dtype=torch.uint8
)
}
dynamic_axes = {
"input_image": {0: "image_height", 1: "image_width"},
}
else:
dummy_input = {
"input_image": torch.randn(
(1, 3, image_size[0], image_size[1]), dtype=torch.float
)
}
dynamic_axes = None
_ = onnx_model(**dummy_input)
output_names = ["image_embeddings"]
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=torch.jit.TracerWarning)
warnings.filterwarnings("ignore", category=UserWarning)
print(f"Exporting onnx model to {output}...")
with open(output, "wb") as f:
torch.onnx.export(
onnx_model,
tuple(dummy_input.values()),
f,
export_params=True,
verbose=False,
opset_version=opset,
do_constant_folding=True,
input_names=list(dummy_input.keys()),
output_names=output_names,
dynamic_axes=dynamic_axes,
)
if __name__ == "__main__":
args = parser.parse_args()
run_export(
model_type=args.model_type,
checkpoint=args.checkpoint,
output=args.output,
use_preprocess=args.use_preprocess,
opset=args.opset,
gelu_approximate=args.gelu_approximate,
)
optimize(args.output, args.output.replace(".onnx", ".opt.onnx"))
if args.quantize_out is not None:
from onnxruntime.quantization import QuantType # type: ignore
from onnxruntime.quantization.quantize import quantize_dynamic # type: ignore
print(f"Quantizing model and writing to {args.quantize_out}...")
quantize_dynamic(
model_input=args.output.replace(".onnx", ".opt.onnx"),
model_output=args.quantize_out,
# optimize_model=True,
per_channel=True,
reduce_range=True,
weight_type=QuantType.QUInt8,
nodes_to_quantize=["MatMul", "Add"],
# nodes_to_exclude=["Slice"]
)
print("Done!")