-
Notifications
You must be signed in to change notification settings - Fork 1
/
CVPR24_eval_train.py
455 lines (408 loc) · 22.2 KB
/
CVPR24_eval_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import matplotlib.pyplot as plt
import numpy as np
import torch
from torchvision.transforms import ToTensor
from collections import OrderedDict
import os
from os.path import join, isfile, basename
from time import time
from datetime import datetime
from glob import glob
import pandas as pd
from tqdm import tqdm
import argparse
import gc
from src.visual_util import show_mask, show_box
from src.infer_util import efficientsam_infer, get_bbox, medsam_inference, medsam_preprocess, resize_box_to_target
from src.efficient_sam.build_efficient_sam import build_efficient_sam_vitt, build_efficient_sam_vits
from src.segment_anything import sam_model_registry
from src.litemedsam.build_sam import build_sam_vit_t
import torch.nn.functional as F
def infer_npz_2D(zoom, zoom_enlarge, model, model_name, img_npz_file, pred_save_dir, save_overlay, png_save_dir):
npz_name = basename(img_npz_file)
npz_data = np.load(img_npz_file, 'r', allow_pickle=True) # (H, W, 3)
img_3c = npz_data['imgs'] # (H, W, 3)
# print(f'input data shape: {img_3c.shape}')
assert np.max(img_3c)<256, f'input data should be in range [0, 255], but got {np.unique(img_3c)}'
H, W = img_3c.shape[:2]
gts = npz_data['gts']
gts_labels = [l for l in np.unique(gts) if l != 0]
# print(f'gts_labels: {gts_labels}')
boxes = []
segs = np.zeros(img_3c.shape[:2], dtype=np.uint8)
if model_name == 'efficientsam'or "Microscopy" in npz_name or "X-Ray" in npz_name:
img_tensor = ToTensor()(img_3c)
img_tensor = img_tensor[None, ...]
## preprocessing
img_1024 = model.preprocess(img_tensor)
elif model_name == 'medsam':
img_1024, newh, neww = medsam_preprocess(img_3c, 1024)
elif model_name == 'litemedsam':
img_1024, newh, neww = medsam_preprocess(img_3c, 256)
with torch.no_grad():
image_embedding = model.image_encoder(img_1024)
for idx, label in enumerate(gts_labels):
mask_label = np.uint8(gts == label)
box = get_bbox(mask_label, bbox_shift=7)
boxes.append(box)
print(f'{npz_name} box: {box} label: {label}')
bbox_area = (box[2] - box[0]) * (box[3] - box[1])
if zoom and bbox_area <= 1024:
# Crop
original_size = (H, W)
# print('original size:', original_size)
# crop_xmin, crop_ymin, crop_xmax, crop_ymax = box[0], box[1], box[2], box[3]
crop_xmin = max(0, box[0]- zoom_enlarge)
crop_ymin = max(0, box[1]- zoom_enlarge)
crop_xmax = min(box[2] + zoom_enlarge, mask_label.shape[1])
crop_ymax = min(box[3]+ zoom_enlarge, mask_label.shape[0])
print('crop:', crop_xmin, crop_ymin, crop_xmax, crop_ymax, 'image shape:', img_3c.shape)
img_3c_crop = img_3c[ crop_ymin:crop_ymax, crop_xmin:crop_xmax]
print('after crop img_3c shape:', img_3c_crop.shape)
mask_label = mask_label[crop_ymin:crop_ymax, crop_xmin:crop_xmax]
print('mask_label:', np.unique(mask_label), 'mask_label shape:', mask_label.shape)
box = get_bbox(mask_label, bbox_shift=7)
box_area = (box[2] - box[0]) * (box[3] - box[1])
print('new box:', box, 'box area:', box_area)
# zoom_H, zoom_W = box[3] - box[1], box[2] - box[0]
zoom_H, zoom_W = crop_ymax - crop_ymin, crop_xmax - crop_xmin
# H, W = img_3c.shape[:2]
if model_name == 'efficientsam'or "Microscopy" in npz_name or "X-Ray" in npz_name:
img_tensor = ToTensor()(img_3c_crop)
img_tensor = img_tensor[None, ...]
## preprocessing
img_1024 = model.preprocess(img_tensor)
elif model_name == 'medsam':
img_1024, newh, neww = medsam_preprocess(img_3c_crop, 1024)
elif model_name == 'litemedsam':
img_1024, newh, neww = medsam_preprocess(img_3c_crop, 256)
with torch.no_grad():
image_embedding = model.image_encoder(img_1024)
if model_name == 'efficientsam' or "Microscopy" in npz_name or "X-Ray" in npz_name:
if zoom and bbox_area <= 1024:
mask = efficientsam_infer(image_embedding, box, model, zoom_H, zoom_W)
else:
mask = efficientsam_infer(image_embedding, box, model, H, W)
elif model_name == 'medsam':
if zoom and bbox_area <= 1024:
box1024 = resize_box_to_target(box, original_size=(zoom_H, zoom_W), target_size=1024)
box1024 = box1024[None, ...] # (1, 4)
mask, iou = medsam_inference(model, image_embedding, box1024, (newh, neww), (zoom_H, zoom_W))
else:
box1024 = resize_box_to_target(box, original_size=(H, W), target_size=1024)
box1024 = box1024[None, ...]
mask, iou = medsam_inference(model, image_embedding, box, (newh, neww), (H, W))
elif model_name == 'litemedsam':
if zoom and bbox_area <= 1024:
box256 = resize_box_to_target(box, original_size=(zoom_H, zoom_W), target_size=256)
box256 = box256[None, ...]
mask, iou = medsam_inference(model, image_embedding, box256, (newh, neww), (zoom_H, zoom_W))
else:
box256 = resize_box_to_target(box, original_size=(H, W), target_size=256)
box256 = box256[None, ...]
mask, iou = medsam_inference(model, image_embedding, box256, (newh, neww), (H, W))
if zoom and bbox_area <= 1024:
print('mask shape:', mask.shape, np.unique(mask))
mask_temp = np.zeros(original_size, dtype=np.uint8)
mask_temp[crop_ymin:crop_ymax, crop_xmin:crop_xmax] += mask
segs[mask_temp>0] = label
else:
segs[mask>0] = label
if pred_save_dir is not None:
# print(f'save to {join(pred_save_dir, npz_name)}', np.unique(segs))
np.savez_compressed(
join(pred_save_dir, npz_name),
segs=segs,
)
if save_overlay:
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
ax[0].imshow(img_3c)
ax[0].imshow(gts,alpha=0.5)
ax[1].imshow(img_3c)
ax[0].set_title("Image")
ax[1].set_title("EfficientSAM Segmentation")
ax[0].axis('off')
ax[1].axis('off')
for i, box in enumerate(boxes):
color = np.random.rand(3)
box_viz = box
show_box(box_viz, ax[1], edgecolor=color)
show_mask((segs == i+1).astype(np.uint8), ax[1], mask_color=color)
plt.tight_layout()
plt.savefig(join(png_save_dir, npz_name.split(".")[0] + '.png'), dpi=300)
plt.close()
return img_3c, segs, img_3c.shape
def select_middle_slice(box3D, view):
x_min, y_min, z_min, x_max, y_max, z_max = box3D
if view == 'axial':
assert z_min < z_max, f"z_min should be smaller than z_max, but got {z_min=} and {z_max=}"
mid_slice_bbox_2d = np.array([x_min, y_min, x_max, y_max])
z_middle = int((z_max - z_min)/2 + z_min)
return mid_slice_bbox_2d, z_middle, z_min, z_max
if view == 'coronal':
assert y_min < y_max, f"y_min should be smaller than y_max, but got {y_min=} and {y_max=}"
mid_slice_bbox_2d = np.array([x_min, z_min, x_max, z_max])
y_middle = int((y_max - y_min)/2 + y_min)
return mid_slice_bbox_2d, y_middle, y_min, y_max
if view == 'sagittal':
assert x_min < x_max, f"x_min should be smaller than x_max, but got {x_min=} and {x_max=}"
mid_slice_bbox_2d = np.array([y_min, z_min, y_max, z_max])
x_middle = int((x_max - x_min)/2 + x_min)
return mid_slice_bbox_2d, x_middle, x_min, x_max
def get_img_2d(img_3D, i, view):
if view == 'axial':
return img_3D[i, :, :]
elif view == 'coronal':
return img_3D[:, i, :]
elif view == 'sagittal':
return img_3D[:, :, i]
def get_pre_seg(segs_3d_temp, i, view):
if view == 'axial':
return segs_3d_temp[i, :, :]
elif view == 'coronal':
return segs_3d_temp[:, i, :]
elif view == 'sagittal':
return segs_3d_temp[:, :, i]
def update_segs_3d_temp(segs_3d_temp, img_2d_seg, i, label, view):
if view == 'axial':
segs_3d_temp[i,:,:][img_2d_seg>0] = label
elif view == 'coronal':
segs_3d_temp[:,i, :][img_2d_seg>0] = label
elif view == 'sagittal':
segs_3d_temp[:, :, i][img_2d_seg>0] = label
return segs_3d_temp
def majority_voting(npz_name, axial, coronal, sagittal,pred_save_dir):
# Stack the arrays along a new axis to create a 4D array
stacked_arrays = np.stack((axial, coronal, sagittal), axis=-1)
# Use np.apply_along_axis to apply the majority voting function along the last axis
result = np.apply_along_axis(lambda x: np.bincount(x).argmax(), axis=-1, arr=stacked_arrays)
result = result.astype(np.uint8)
np.savez_compressed(
join(pred_save_dir, npz_name),
segs=result,
)
def infer_npz_3D(view, model, model_name, img_npz_file, pred_save_dir, save_overlay, png_save_dir):
npz_name = basename(img_npz_file)
npz_data = np.load(img_npz_file, 'r', allow_pickle=True) # (H, W, 3)
img_3D = npz_data['imgs'] # (D, H, W)
# print(f'input data shape: {img_3D.shape}')
spacing = npz_data['spacing'] # not used in this demo because it treats each slice independently
segs = np.zeros_like(img_3D, dtype=np.uint8)
gts = npz_data['gts'] # [[x_min, y_min, z_min, x_max, y_max, z_max]]
gts_label = [l for l in np.unique(gts) if l != 0]
# print(f'gts_label: {gts_label}')
boxes_3D = []
for idx, label in enumerate(gts_label):
mask_label = np.uint8(gts == label)
box3D = np.where(mask_label>0)
z_indice, y_indice, x_indice = box3D
segs_3d_temp = np.zeros_like(img_3D, dtype=np.uint8)
x_min, y_min, z_min, x_max, y_max, z_max = np.min(x_indice), np.min(y_indice), np.min(z_indice), np.max(x_indice), np.max(y_indice), np.max(z_indice)
# print(f'{npz_name} box3D: {x_min, y_min, z_min, x_max, y_max, z_max}')
boxes_3D.append(np.array([x_min, y_min, z_min, x_max, y_max, z_max]))
assert z_min < z_max, f"z_min should be smaller than z_max, but got {z_min=} and {z_max=}"
mid_slice_bbox_2d, i_middle, i_min, i_max = select_middle_slice(np.array([x_min, y_min, z_min, x_max, y_max, z_max]), view)
# infer from middle slice to the i_max
if view == 'axial':
img_shape = img_3D.shape[0]
elif view == 'coronal':
img_shape = img_3D.shape[1]
else:
img_shape = img_3D.shape[2]
i_max = min(i_max+1, img_shape)
# print(f'Infer from {view} {i_middle} to {i_max}')
# print(img_3D.shape)
for i in range(i_middle, i_max):
img_2d = get_img_2d(img_3D, i, view)
if len(img_2d.shape) == 2:
img_3c = np.repeat(img_2d[:, :, None], 3, axis=-1)
else:
img_3c = img_2d
H, W, _ = img_3c.shape
if model_name == 'efficientsam':
img_tensor = ToTensor()(img_3c)
img_tensor = img_tensor[None, ...]
img_1024 = model.preprocess(img_tensor)
elif model_name == 'medsam':
img_1024, newh, neww = medsam_preprocess(img_3c, 1024)
elif model_name == 'litemedsam':
img_1024, newh, neww = medsam_preprocess(img_3c, 256)
# get the image embedding
with torch.no_grad():
image_embedding = model.image_encoder(img_1024) # (1, 256, 64, 64)
if i != i_middle:
pre_seg = get_pre_seg(segs_3d_temp, i-1, view)
if np.max(pre_seg) > 0:
box = get_bbox(pre_seg, bbox_shift=7)
else:
box = mid_slice_bbox_2d
else:
box = mid_slice_bbox_2d
if model_name == 'efficientsam':
mask = efficientsam_infer(image_embedding, box, model, H,W)
elif model_name == 'medsam':
box1024 = resize_box_to_target(box, original_size=(H, W), target_size=1024)
box1024 = box1024[None, ...]
mask, iou_pred = medsam_inference(model, image_embedding, box1024, [newh, neww], [H, W])
elif model_name == 'litemedsam':
box256 = resize_box_to_target(box, original_size=(H, W), target_size=256)
box256 = box256[None, ...]
mask, iou_pred = medsam_inference(model, image_embedding, box256, [newh, neww], [H, W])
segs_3d_temp = update_segs_3d_temp(segs_3d_temp, mask, i, label, view)
# infer from middle slice to the z_min
for i in range(i_middle-1, i_min-1, -1):
img_2d = get_img_2d(img_3D, i, view)
if len(img_2d.shape) == 2:
img_3c = np.repeat(img_2d[:, :, None], 3, axis=-1)
else:
img_3c = img_2d
H, W, _ = img_3c.shape
if model_name == 'efficientsam':
img_tensor = ToTensor()(img_3c)
img_tensor = img_tensor[None, ...]
img_1024 = model.preprocess(img_tensor)
elif model_name == 'medsam':
img_1024, newh, neww = medsam_preprocess(img_3c, 1024)
elif model_name == 'litemedsam':
img_1024, newh, neww = medsam_preprocess(img_3c, 256)
# get the image embedding
with torch.no_grad():
image_embedding = model.image_encoder(img_1024) # (1, 256, 64, 64)
pre_seg = get_pre_seg(segs_3d_temp, i+1, view)
if np.max(pre_seg) > 0 and ('MR' in npz_name or 'CT' in npz_name):
box = get_bbox(pre_seg, bbox_shift=7)
else:
box = mid_slice_bbox_2d
if model_name == 'efficientsam':
mask = efficientsam_infer(image_embedding, box, model, H,W)
elif model_name == 'medsam':
box1024 = resize_box_to_target(box, original_size=(H, W), target_size=1024)
box1024 = box1024[None, ...]
mask, iou_pred = medsam_inference(model, image_embedding, box1024, [newh, neww], [H, W])
elif model_name == 'litemedsam':
box256 = resize_box_to_target(box, original_size=(H, W), target_size=256)
box256 = box256[None, ...]
mask, iou_pred = medsam_inference(model, image_embedding, box256, [newh, neww], [H, W])
segs_3d_temp = update_segs_3d_temp(segs_3d_temp, mask, i, label, view)
segs[segs_3d_temp>0] = label
if pred_save_dir is not None:
# print(f'save to {join(pred_save_dir, npz_name)}', np.unique(segs))
np.savez_compressed(
join(pred_save_dir, npz_name),
segs=segs,
)
# visualize image, mask and bounding box
if save_overlay:
idx = int(segs.shape[0] / 2)
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
ax[0].imshow(img_3D[idx], cmap='gray')
ax[0].imshow(gts[idx],alpha=0.5)
ax[1].imshow(img_3D[idx], cmap='gray')
ax[0].set_title("Image")
ax[1].set_title("MedSAM Segmentation")
ax[0].axis('off')
ax[1].axis('off')
for i, box3D in enumerate(boxes_3D, start=1):
if np.sum(segs[idx]==i) > 0:
color = np.random.rand(3)
x_min, y_min, z_min, x_max, y_max, z_max = box3D
box_viz = np.array([x_min, y_min, x_max, y_max])
show_box(box_viz, ax[1], edgecolor=color)
show_mask(segs[idx]==i, ax[1], mask_color=color)
plt.tight_layout()
plt.savefig(join(png_save_dir, npz_name.split(".")[0] + '.png'), dpi=300)
plt.close()
return img_3D, segs, img_3D.shape
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='SAM inference')
parser.add_argument('--data_root', type=str, default='data', help='root directory of the data')
parser.add_argument('--pred_save_dir', type=str, default='segs', help='directory to save the prediction')
parser.add_argument('--save_overlay', type=bool, default=False, help='whether to save the overlay image')
parser.add_argument('--png_save_dir', type=str, default='overlay', help='directory to save the overlay image')
parser.add_argument('--device', type=str, default="cpu", help='device to run the inference')
parser.add_argument('--model_name', type=str, choices=['efficientsam', 'medsam','litemedsam'], help='model name to use for inference')
parser.add_argument('--checkpoint_path', type=str, help='checkpoint file to load the model')
parser.add_argument('--efficientsam_path', type=str, help='checkpoint file to load the efficientsam model')
parser.add_argument('--finetuned_pet_path', type=str, help='checkpoint file to load the fine-tuned model for PET')
parser.add_argument('--zoom', type=bool, default=False, help='whether to zoom the image')
parser.add_argument('--zoom_enlarge', type=int, default=0, help='enlarge factor for zooming the image')
args = parser.parse_args()
os.makedirs(args.pred_save_dir, exist_ok=True)
if args.save_overlay:
assert args.png_save_dir is not None, "Please specify the directory to save the overlay image"
os.makedirs(args.png_save_dir, exist_ok=True)
torch.set_float32_matmul_precision('high')
torch.manual_seed(2024)
torch.cuda.manual_seed(2024)
np.random.seed(2024)
img_npz_files = sorted(glob(join(args.data_root, '*.npz'), recursive=True))
# invalid_files = [f'{args.data_root}/XRay/Chest-Xray-Masks-and-Labels/XRay_Chest-Xray-Masks-and-Labels_MCUCXR_0301_1.npz',f'{args.data_root}/XRay/Chest-Xray-Masks-and-Labels/XRay_Chest-Xray-Masks-and-Labels_MCUCXR_0309_1.npz']
# img_npz_files = [npz_path for npz_path in img_npz_files if npz_path not in invalid_files]
# # img_npz_files = [npz_path for npz_path in img_npz_files if 'CVPR24-PostChallenge-PET' not in npz_path]
# img_npz_files = [npz_path for npz_path in img_npz_files if 'PET' not in npz_path]
# img_npz_files = [npz_path for npz_path in img_npz_files if 'XRay' in npz_path or 'OCT' in npz_path or 'US' in npz_path]
# img_npz_files = np.random.choice(img_npz_files, 3000)
efficiency = OrderedDict()
efficiency['case'] = []
efficiency['modality'] = []
efficiency['image size'] = []
efficiency['time'] = []
if args.model_name == 'efficientsam':
model = build_efficient_sam_vitt(args.checkpoint_path)
if 'vits' in args.checkpoint_path:
model = build_efficient_sam_vits(args.checkpoint_path)
elif args.model_name == 'medsam':
model = sam_model_registry["vit_b"](checkpoint=args.checkpoint_path)
elif args.model_name == 'litemedsam':
model = build_sam_vit_t(args.checkpoint_path)
model.to(args.device)
model.eval()
for img_npz_file in tqdm(img_npz_files):
print('Processing:', img_npz_file)
dimension = basename(img_npz_file).split('_')[0]
modality = basename(img_npz_file).split('_')[1]
# modality = basename(os.path.dirname(os.path.dirname(img_npz_file)))
# if modality in ['CT', 'MR', 'PET']:
# dimension = '3D'
# else:
# dimension = '2D'
if not os.path.exists(os.path.join(args.pred_save_dir, basename(img_npz_file))):
gc.collect()
if dimension == '3D' and "PET" in basename(img_npz_file):
finetuned_model = build_sam_vit_t(args.finetuned_pet_path)
start_time = time()
imgs, segs_axial, image_size = infer_npz_3D('axial', finetuned_model, args.model_name, img_npz_file, None,
args.save_overlay, args.png_save_dir)
_, segs_coronal, _ = infer_npz_3D('coronal', finetuned_model, args.model_name, img_npz_file, None,
args.save_overlay, args.png_save_dir)
_, segs_sagittal, _ = infer_npz_3D('sagittal', finetuned_model, args.model_name, img_npz_file, None,
args.save_overlay, args.png_save_dir)
majority_voting(basename(img_npz_file), segs_axial, segs_coronal, segs_sagittal, args.pred_save_dir)
elif dimension == '3D':
start_time = time()
imgs, segs, image_size = infer_npz_3D('axial', model, args.model_name, img_npz_file, args.pred_save_dir,
args.save_overlay, args.png_save_dir)
elif dimension == '2D' and "Microscopy" in basename(img_npz_file):
efficientmodel = build_efficient_sam_vitt(args.efficientsam_path)
start_time = time()
imgs, segs, image_size = infer_npz_2D(args.zoom, args.zoom_enlarge, efficientmodel, 'efficientsam', img_npz_file, args.pred_save_dir,
args.save_overlay, args.png_save_dir)
elif dimension == '2D' and "X-Ray" in basename(img_npz_file):
efficientmodel = build_efficient_sam_vitt(args.efficientsam_path)
start_time = time()
imgs, segs, image_size = infer_npz_2D(args.zoom, args.zoom_enlarge, efficientmodel, 'efficientsam', img_npz_file, args.pred_save_dir,
args.save_overlay, args.png_save_dir)
else:
start_time = time()
imgs, segs, image_size = infer_npz_2D(args.zoom, args.zoom_enlarge, model, args.model_name, img_npz_file, args.pred_save_dir,
args.save_overlay, args.png_save_dir)
# print('segs', np.unique(segs))
end_time = time()
efficiency['case'].append(basename(img_npz_file))
efficiency['image size'].append(image_size)
efficiency['modality'].append(modality)
efficiency['time'].append(end_time - start_time)
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print(current_time, 'file name:', basename(img_npz_file), 'image size', image_size, 'time cost:', np.round(end_time - start_time, 4))
efficiency_df = pd.DataFrame(efficiency)
efficiency_df.to_csv(join(args.pred_save_dir, 'efficiency.csv'), index=False)