From de4b3dcff8c68b3414ca86abf5ef22b889cba84b Mon Sep 17 00:00:00 2001 From: Moritz Kern <92092328+Moritz-Alexander-Kern@users.noreply.github.com> Date: Wed, 10 Apr 2024 13:33:32 +0200 Subject: [PATCH 1/9] [Main] Release 1.1.0 (#621) * Change copyright year to 2024 * add version cap for numpy<2 * update .zenodo.json * update codemeta.json * change affiliation in .zenodo.json * update affiliation in authors.rst * update affiliation in .zenodo.json * update affiliation in codemeta.json * undo previous change to authors.rst affiliation * add new IAS-6 affiliation * update affiliation * add new contributor to codemeta.json * add release notes to docs * fix environment.yml * fixed warnings for docs sphinx build * Fix link to neo docs in asset.ipynb * fix link to elephant docs * Fix link to intel docs * Fix formatting for readthedocs build warnings * update CI * fix CI fail on coveralls report * Update doc/release_notes.rst Co-authored-by: Michael Denker --------- Co-authored-by: Moritz-Alexander-Kern Co-authored-by: Michael Denker --- .github/workflows/CI.yml | 11 +++- .zenodo.json | 6 +- LICENSE.txt | 2 +- README.md | 2 +- codemeta.json | 22 ++++++-- doc/authors.rst | 5 +- doc/install.rst | 6 +- doc/release_notes.rst | 30 +++++++++- doc/tutorials/asset.ipynb | 18 +++--- doc/tutorials/unitary_event_analysis.ipynb | 32 ++--------- elephant/__init__.py | 2 +- elephant/asset/asset.py | 17 +++--- elephant/causality/granger.py | 2 +- elephant/conversion.py | 2 +- elephant/cubic.py | 2 +- elephant/functional_connectivity.py | 8 +-- .../total_spiking_probability_edges.py | 56 +++++++++---------- elephant/gpfa/gpfa.py | 2 +- elephant/gpfa/gpfa_core.py | 2 +- elephant/gpfa/gpfa_util.py | 2 +- elephant/kernels.py | 2 +- elephant/neo_tools.py | 2 +- elephant/parallel/__init__.py | 2 +- elephant/phase_analysis.py | 2 +- elephant/signal_processing.py | 2 +- elephant/spade.py | 2 +- elephant/spectral.py | 2 +- elephant/spike_train_correlation.py | 2 +- elephant/spike_train_dissimilarity.py | 2 +- elephant/spike_train_generation.py | 2 +- elephant/spike_train_surrogates.py | 2 +- elephant/spike_train_synchrony.py | 2 +- elephant/sta.py | 2 +- elephant/statistics.py | 2 +- elephant/test/test_asset.py | 2 +- elephant/test/test_causality.py | 2 +- elephant/test/test_conversion.py | 2 +- elephant/test/test_cubic.py | 2 +- elephant/test/test_gpfa.py | 2 +- elephant/test/test_kernels.py | 2 +- elephant/test/test_neo_tools.py | 2 +- elephant/test/test_phase_analysis.py | 2 +- elephant/test/test_signal_processing.py | 2 +- elephant/test/test_spade.py | 2 +- elephant/test/test_spectral.py | 2 +- elephant/test/test_spike_train_correlation.py | 2 +- .../test/test_spike_train_dissimilarity.py | 2 +- elephant/test/test_spike_train_generation.py | 2 +- elephant/test/test_spike_train_surrogates.py | 2 +- elephant/test/test_sta.py | 2 +- elephant/test/test_statistics.py | 2 +- elephant/test/test_trials.py | 2 +- elephant/test/test_unitary_event_analysis.py | 2 +- elephant/test/test_waveform_features.py | 2 +- elephant/trials.py | 2 +- elephant/unitary_event_analysis.py | 2 +- elephant/waveform_features.py | 2 +- requirements/environment.yml | 2 +- requirements/requirements.txt | 2 +- 59 files changed, 162 insertions(+), 145 deletions(-) diff --git a/.github/workflows/CI.yml b/.github/workflows/CI.yml index ae3c37032..8c3632b26 100644 --- a/.github/workflows/CI.yml +++ b/.github/workflows/CI.yml @@ -42,6 +42,11 @@ on: branches: - master +# Cancel previous workflows on the same pull request +concurrency: + group: ${{ github.workflow }}-${{ github.ref }} + cancel-in-progress: true + # jobs define the steps that will be executed on the runner jobs: @@ -105,7 +110,8 @@ jobs: - name: Test with pytest run: | - coverage run --source=elephant -m pytest && coveralls --service=github || echo "Coveralls submission failed" + coverage run --source=elephant -m pytest + coveralls --service=github || echo "Coveralls submission failed" env: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} @@ -291,7 +297,8 @@ jobs: - name: Test with pytest run: | - mpiexec -n 1 python -m mpi4py -m coverage run --source=elephant -m pytest && coveralls --service=github || echo "Coveralls submission failed" + mpiexec -n 1 python -m mpi4py -m coverage run --source=elephant -m pytest + coveralls --service=github || echo "Coveralls submission failed" env: GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }} diff --git a/.zenodo.json b/.zenodo.json index fe61aecff..ff8f35779 100644 --- a/.zenodo.json +++ b/.zenodo.json @@ -2,12 +2,12 @@ "creators": [ { "orcid": "0000-0003-1255-7300", - "affiliation": "Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany", + "affiliation": "Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany", "name": "Denker, Michael" }, { "orcid": "0000-0001-7292-1982", - "affiliation": "Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany", + "affiliation": "Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany", "name": "Kern, Moritz" }, { @@ -17,7 +17,7 @@ } ], - "title": "Elephant 1.0.0", + "title": "Elephant 1.1.0", "keywords": [ "neuroscience", diff --git a/LICENSE.txt b/LICENSE.txt index 5fe4458c6..6d6184b25 100644 --- a/LICENSE.txt +++ b/LICENSE.txt @@ -1,4 +1,4 @@ -Copyright (c) 2014-2023, Elephant authors and contributors +Copyright (c) 2014-2024, Elephant authors and contributors All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: diff --git a/README.md b/README.md index cd4c43dfd..d7f4314d3 100644 --- a/README.md +++ b/README.md @@ -38,7 +38,7 @@ Modified BSD License, see [LICENSE.txt](LICENSE.txt) for details. #### Copyright -:copyright: 2014-2023 by the [Elephant team](doc/authors.rst). +:copyright: 2014-2024 by the [Elephant team](doc/authors.rst). #### Acknowledgments diff --git a/codemeta.json b/codemeta.json index 96bee406d..9ef0752a1 100644 --- a/codemeta.json +++ b/codemeta.json @@ -6,15 +6,15 @@ "contIntegration": "https://github.com/NeuralEnsemble/elephant/actions", "dateCreated": "2013-17-15", "datePublished": "2015-04-08", - "dateModified": "2023-11-10", + "dateModified": "2024-19-03", "downloadUrl": "https://files.pythonhosted.org/packages/cb/b5/893fadd5505e638a4c8788bf0a2f5a211f59f45203f3dfa3919469e83ed4/elephant-1.0.0.tar.gz", "issueTracker": "https://github.com/NeuralEnsemble/elephant/issues", "name": "Elephant", - "version": "1.0.0", + "version": "1.1.0", "identifier": "https://doi.org/10.5281/zenodo.1186602", "description": "Elephant (Electrophysiology Analysis Toolkit) is an open-source, community centered library for the analysis of electrophysiological data in the Python programming language. The focus of Elephant is on generic analysis functions for spike train data and time series recordings from electrodes, such as the local field potentials (LFP) or intracellular voltages.In addition to providing a common platform for analysis code from different laboratories, the Elephant project aims to provide a consistent and homogeneous analysis framework that is built on a modular foundation. \nElephant is the direct successor to Neurotools and maintains ties to complementary projects such as OpenElectrophy and spykeviewer.", "applicationCategory": "library", - "releaseNotes": "https://github.com/NeuralEnsemble/elephant/releases/tag/v1.0.0", + "releaseNotes": "https://github.com/NeuralEnsemble/elephant/releases/tag/v1.1.0", "funding": "EU Grant 604102 (HBP), EU Grant 720270(HBP), EU Grant 785907(HBP), EU Grant 945539(HBP)", "developmentStatus": "active", "keywords": [ @@ -34,7 +34,7 @@ "MacOS" ], "softwareRequirements": [ - "https://github.com/NeuralEnsemble/elephant/tree/v1.0.0/requirements" + "https://github.com/NeuralEnsemble/elephant/tree/v1.1.0/requirements" ], "relatedLink": [ "http://python-elephant.org", @@ -48,7 +48,7 @@ "familyName": "Denker", "affiliation": { "@type": "Organization", - "name": "Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany" + "name": "Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany" } }, { @@ -58,7 +58,17 @@ "familyName": "Kern", "affiliation": { "@type": "Organization", - "name": "Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany" + "name": "Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany" + } + }, + { + "@type": "Person", + "@id": "https://orcid.org/0009-0003-9352-9826", + "givenName": "Felician", + "familyName": "Richter", + "affiliation": { + "@type": "Organization", + "name": "BioMEMS Lab, University of Applied Sciences Aschaffenburg, Germany" } } ] diff --git a/doc/authors.rst b/doc/authors.rst index 4018a71bc..af85e9e79 100644 --- a/doc/authors.rst +++ b/doc/authors.rst @@ -17,8 +17,8 @@ contribution, and may not be the current affiliation of a contributor. * Jan Gosmann [6, 8] * Julia Sprenger [1] * Junji Ito [1] -* Michael Denker [1] -* Moritz Kern [1] +* Michael Denker [1, 14] +* Moritz Kern [1, 14] * Paul Chorley [1] * Pierre Yger [2] * Pietro Quaglio [1] @@ -66,5 +66,6 @@ contribution, and may not be the current affiliation of a contributor. 11. Case Western Reserve University (CWRU), Cleveland, OH, USA 12. BioMEMS Lab, TH Aschaffenburg University of applied sciences, Germany 13. Cognitronics and Sensor Systems, CITEC, Bielefeld University, Bielefeld, Germany +14. Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany If we've somehow missed you off the list we're very sorry - please let us know. diff --git a/doc/install.rst b/doc/install.rst index e663b0932..38dfd52cb 100644 --- a/doc/install.rst +++ b/doc/install.rst @@ -202,9 +202,9 @@ You can have one, both, or none installed in your system. .. note:: Make sure you've disabled GPU Hangcheck as described in the - `Intel GPU developers documentation `_. Do it with caution - + `Intel GPU developers documentation `_. Do it with caution - using your graphics card to perform computations may make the system unresponsive until the compute program terminates. diff --git a/doc/release_notes.rst b/doc/release_notes.rst index e4ccfcd50..060864466 100644 --- a/doc/release_notes.rst +++ b/doc/release_notes.rst @@ -3,6 +3,32 @@ Release Notes ============= +Release 1.1.0 +============= +New functionality and features +------------------------------ +* New method "Total spiking probability edges" (TPSE) for inferring functional connectivity (https://github.com/NeuralEnsemble/elephant/pull/560). + +Bug fixes +--------- +* Fixed expired SciPy deprecations and breaking changes related to `sp.sqrt`, ensuring continued compatibility with the latest version of SciPy (https://github.com/NeuralEnsemble/elephant/pull/616). +* Addressed failing unit tests for `neo_tools` with Neo 0.13.0, ensuring compatibility with the latest Neo release (https://github.com/NeuralEnsemble/elephant/pull/617). + +Documentation +------------- +* Fixed a bug in the CI docs runner to resolve formatting issues, ensuring documentation build is tested (https://github.com/NeuralEnsemble/elephant/pull/615). + +Other changes +------------- +* added Python 3.12 CI runner to ensure compatibility with the latest Python language features (https://github.com/NeuralEnsemble/elephant/pull/611). +* Integrated `Trials` object with GPFA, allowing for a more formal way of specifying trials (https://github.com/NeuralEnsemble/elephant/pull/610). + +Selected dependency changes +--------------------------- +* scipy>=1.10.0 +* Support for Python 3.12 + + Release 1.0.0 ============= Elephant's first major release is focused on providing a stable and consistent API consistency that will be maintained over the 1.x series of releases. In order to provide future support, this release will remove all features and API specifications that have been deprecated over the course of the last releases of the 0.x line. While work on the next generation of Elephant will commence, all new analysis capabilities will be consistently back-ported to become available in the 1.x release line. @@ -339,7 +365,7 @@ Breaking changes - now the users can directly access `.sparse_matrix` attribute of BinnedSpikeTrain to do efficient (yet unsafe in general) operations. For this reason, `to_sparse_array()` function, which does not make a copy, as one could think of, is deprecated. * `instantaneous_rate` function (https://github.com/NeuralEnsemble/elephant/pull/362): - in case of multiple input spike trains, the output of the instantaneous rate function is (always) a 2D matrix of shape `(time, len(spiketrains))` instead of a pseudo 1D array (previous behavior) of shape `(time, 1)` that contained the instantaneous rate summed across input spike trains; - - in case of multiple input spike trains, the user needs to manually provide the input kernel instead of `auto`, which is set by default, for the reason that it's currently not clear how to estimate the common kernel for a set of spike trains. If you have an idea how to do this, we`d appreciate if you let us know by [getting in touch with us](https://elephant.readthedocs.io/en/latest/get_in_touch.html). + - in case of multiple input spike trains, the user needs to manually provide the input kernel instead of `auto`, which is set by default, for the reason that it's currently not clear how to estimate the common kernel for a set of spike trains. If you have an idea how to do this, we`d appreciate if you let us know by [getting in touch with us](https://elephant.readthedocs.io/en/v0.7.0/get_in_touch.html). Other changes ------------- @@ -618,7 +644,7 @@ API changes * Interoperability between Neo 0.5.0 and Elephant * Elephant has adapted its functions to the changes in Neo 0.5.0, most of the functionality behaves as before - * See Neo documentation for recent changes: http://neo.readthedocs.io/en/latest/whatisnew.html + * See Neo documentation for recent changes: http://neo.readthedocs.io/en/0.5.2/whatisnew.html Other changes ------------- diff --git a/doc/tutorials/asset.ipynb b/doc/tutorials/asset.ipynb index 2a06ee600..275adf97f 100644 --- a/doc/tutorials/asset.ipynb +++ b/doc/tutorials/asset.ipynb @@ -107,7 +107,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The data is represented as a `neo.Block` with one `neo.Segment` inside, which contains raw `neo.SpikeTrain`s. For more information on `neo.Block`, `neo.Segment`, and `neo.SpikeTrain` refer to https://neo.readthedocs.io/en/stable/core.html" + "The data is represented as a `neo.Block` with one `neo.Segment` inside, which contains raw `neo.SpikeTrain`s. For more information on `neo.Block`, `neo.Segment`, and `neo.SpikeTrain` refer to https://neo.readthedocs.io/en/stable/api_reference.html" ] }, { @@ -139,7 +139,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKEAAALaCAYAAADp8kAfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACm5ElEQVR4nO3de/wd0734/3fiQ1C3VOQTx6XVukdvlErQfFKXQ/s9Ub2cX6vHCT1EXdI6BymOdn/So/iiDkKRVKnW0fYobbQEJbskcUlblyIRlw8SuSINQSJifn/ku3f23p+5z1qzLvN6Ph7zIPuz9+w1M2vWeu/3rFkzQEQCAQAAAAAAADQaaLoAAAAAAAAA8B9JKAAAAAAAAGhHEgoAAAAAAADakYQCAAAAAACAdiShAAAAAAAAoB1JKAAAAAAAAGhHEgoAAKAiarWaBEEgo0aNans9CAKZPn26oVIBAICqIAkFAAC8EgRB2/Lee+/Ja6+9JtOnT5exY8eaLh4AAEBlDRCRwHQhAAAAVAmCdaFNb2+viIhsuOGGsvPOO8tRRx0lG220kVx55ZUyfvx4gyU0Z+utt5YhQ4bIyy+/LO+8807z9SAIpF6vy+jRow2WDgAA+I4kFAAA8EojCTVgwIC210eOHCn333+/DBgwQD760Y/Kiy++aKB0diIJBQAAysDteAAAoBJmzZolc+fOlYEDB8o+++zT9re9995bLrvsMnnsscfktddek3feeUfmzZsnl1xyiWy11VZt7z3ssMMkCAI577zz2l7v6elp3gK4/fbbt/3tl7/8pQRBIDvttFNiOYcOHSoXX3yxzJ07V1auXCnLly+XuXPnyvXXX9/2+VGjRkkQBFKr1WT//feXe+65R/7+97/LG2+8IdOmTeu3jSLRc0JFOeOMM2Tt2rUyY8YMGTx4cPP1/fbbT/73f/9XFi1aJKtXr5aXX35ZrrnmGtl22237rWOnnXaSa6+9Vp599ll5++235bXXXpMnnnhCrr76avngBz+YqhwAAMAPJKEAAEDlrFmzpu3fJ5xwgnzta1+TZ555Rq6//nq5+uqrZdGiRXL66afLzJkzZbPNNmu+94EHHpDVq1fLwQcf3LaO1n93/m306NHS19cnfX19seXaZJNNZObMmXLGGWfISy+9JFdffbVcd9118re//U2OPPJI2XPPPft95jOf+YzU63VZvXq1XHXVVXLnnXfKwQcfLA888IAceOCBqfdJqwEDBsjll18uF198sdx2221y8MEHy/Lly0VE5LjjjpOZM2fKEUccIdOnT5fLLrtM/vznP8vxxx8vf/7zn2WHHXZormfYsGEye/ZsOe644+Spp56SK664Qn7+859LX1+fHHPMMaFJKwAA4LeAhYWFhYWFhcWXpaHz9YMOOih47733glWrVgXDhg1r+9uOO+4YDBw4sN9nvvnNbwZBEAQTJkxoe/1Pf/pTsGbNmmCLLbZovjZr1qzgL3/5S7Bs2bLgxhtvbL7+8Y9/PAiCIPjJT36SWPb/83/+TxAEQXDppZf2+9uGG24YbLbZZs1/jxo1qrmtp5xyStt7x4wZEwRBEMybNy8YMGBA8/VarRYEQRCMGjWq3z6bPn16ICLBoEGDgltuuSUIgiC44oor2j6/yy67BKtXrw6effbZ4B/+4R/a1vG5z30ueO+994Jbb721+dqpp54aBEEQfPvb3+63PZtuummw8cYbG68vLCwsLCwsLOUtjIQCAABeqtVqUqvV5LzzzpNf/vKX8sc//lEGDBggZ5xxhixevLjtvS+//LK8//77/dbx05/+VFasWCH/+I//2Pb6vffeK11dXc3b2jbbbDP59Kc/Lffcc49Mnz5dPve5zzXf2xgVde+996Yue+uk4Q1r1qyRlStX9nv92WeflR//+Mdtr02dOlXq9brssssuctBBB6X+3sGDB8sf//hHOeqoo2TChAny7W9/uznHlojISSedJBtttJF85zvfkYULF7Z99r777pOpU6fKP/3TP7WNHIvanrfffltWrVqVumwAAMB9XaYLAAAAoEPj6XgN77//vvzbv/2b3HDDDf3e29XVJSeeeKJ87Wtfkz333FO23HJL2WCDDZp/32677dref99998nEiRPl4IMPlttvv11GjRolG264odx7773y4osvyle/+lXZfffdZe7cuc2E1H333ZdY5j/96U+yYMECOeuss2TvvfeWO+64Q2bOnCmPPfZYaJJMZN3tga2JooZ6vS49PT3yqU99Su6///7E7+7u7paZM2fKRz7yEfmXf/kXufnmm/u9Z8SIESKybj6qfffdt9/fhw4dKl1dXbLrrrvKX//6V5k6daqcf/75ctVVV8k//uM/yl133SUzZ86Up59+OrE8AADAPyShAACAlxpPx9t0001lxIgRct1118k111wjL730kkyfPr3tvb/61a/kS1/6kjz//PPyu9/9ThYvXiyrV68WEZHTTjtNBg0a1Pb+hx56SFauXNkc5XTwwQfL6tWrZcaMGc2n7h188MHy7LPPymc/+1l56qmnZMmSJYllfvPNN2X//feXiRMnypgxY+Twww8XEZFly5bJj3/8YznvvPPkvffea/tM1Hobo7223HLLxO8VWTd/0xZbbCELFiyQGTNmhL5n6623FhGRCRMmxK6rMRLq5Zdflv322096e3vl8MMPly9/+cvN1y+55BKZNGlSqrIBAAB/GL8nkIWFhYWFhYVF1RI1J9THPvaxYM2aNcHLL78cbLLJJs3X99lnnyAIguDuu+8ONthgg7bPDBgwIHjrrbeCvr6+fuu78847gyAIgu7u7uDxxx9vzqkkIsHLL78c3HbbbcGIESOacyvl2ZY999wzOPXUU4M5c+YEQRAEP/jBD5p/a8wJdd1114V+tjH/03e+851+r0XNCfWNb3wjWLNmTdDX1xfstNNO/dY5e/bsIAiCYPPNN8+8LRtssEGw9957BxMmTAjmz58fBEEQfPOb3zReX1hYWFhYWFjKW5gTCgAAVMLf/vY3mTJliuywww7y7//+783Xd955ZxFZN4/S2rVr2z6z3377yaabbhq6vsYcT1//+tdlr732apvz6b777pOenh459NBD296b1dNPPy1XXnllcz1f/OIX+73nwAMPbI76atXT0yMiIo8++mjq77vpppvka1/7mvzDP/yD3H///bLLLru0/f2hhx4SEck0z1TD2rVr5a9//atcdNFF8vWvf11EwrcHAAD4iyQUAACojPPOO09WrVolZ5xxhmy11VYiIs3b5xpJm4ZtttlGrrrqqsh1NeZ4Ouuss2TgwIH9klBbbbWVnHzyybJ27Vqp1+upyrfnnnvK0KFD+73e3d0tIusm8+606667ysknn9z22pgxY6Snp0eeffZZeeCBB1J9d8NvfvMb+cpXviJDhgyRP/3pT7Lnnns2/3bllVfKu+++K//93//dL0ElIrLhhhvKgQce2Pz33nvvLVtssUWm7QEAAP5iTigAAFAZCxculGuuuUZOO+00mTBhgpxzzjkye/ZsmTFjhnz5y1+WmTNnyowZM6S7u1uOOOIIeeaZZ+SVV14JXdejjz4qr7/+unR3d8sbb7whjzzySPNvjYRUd3e3zJ49W1asWJGqfIceeqhcfPHF8uCDD8q8efNk6dKlsv3228uRRx4pa9eulYsvvrjfZ+6880750Y9+JEcccYQ8/vjjsvPOO8uXvvQleeedd+Sb3/xm6KTlSW6//XY58sgj5bbbbpN6vS6HHHKIPPHEE/LMM8/IN7/5TfnpT38qTz31lEybNk3mzZsnG264oey4445y0EEHybJly2SPPfYQEZFjjjlGTjzxRJkxY4Y8//zzsnz5cvnoRz8q//RP/ySrVq2Syy67LHPZAACA24zfE8jCwsLCwsLComqJmhOqsQwdOjRYuXJlsHLlymDo0KGBiASDBw8OrrrqqqCvry945513gueeey744Q9/GGyyySZBX19f6JxQIhLccsstQRAEwe9///t+f5s7d24QBEFw4YUXpi777rvvHvzoRz8KZs+eHSxdujRYtWpV0NfXF/zv//5vMGLEiLb3NuaEqtVqwf777x/cc889wYoVK4I33ngjuOuuu4JPf/rT/dafNCdU5/tHjRoVvPHGG8Frr73Wtr699toruP7664MXX3wxWLVqVfDaa68Ff/vb34JrrrkmGD16dPN9++23X/DjH/84eOyxx4LXXnstePvtt4Nnn302+OlPfxoMHz7ceF1hYWFhYWFhKXcZ8P/+BwAAAA4ZNWqU1Ot16e3tlYkTJ5ouDgAAQCLmhAIAAAAAAIB2JKEAAAAAAACgHUkoAAAAAAAAaMecUAAAAAAAANCuy3QBTFq6dKm89NJLposBAAAAAADgjQ996EMydOjQfq9XOgn10ksvyb777mu6GAAAAAAAAN6YPXt26OvMCQUAAAAAAADtSEIBAAAAAABAO5JQAAAAAAAA0I4kFAAAAAAAALQjCQUAAAAAAADtSEIBAAAAAABAO5JQAAAAAAAA0I4kFAAAAAAAALQjCQUAAAAAAADtSEIBAAAAAABAO5JQAAAAAAAA0I4kFAAAAAAAALQjCQUAAAAAAADtSEIBAAAAAABAO5JQAAAAAAAA0I4kFAAAAAAAALQjCQUAAAAAAADtSEIBAAAAAABAO5JQAAAAAAAA0I4kFAAAAAAAALQjCQUAAAAAAADtSEIBAAAAAABAO5JQAAAAAAAA0I4kFAAAAAAAALQjCQUAAAAAAADtSEIBAAAAAABAO5JQAAAAAAAA0I4kFAAAAAAAALQjCQUAAAAAAADtjCWharWaBEHQtixatKjfe1555RV5++23Zfr06bLnnnu2/X2rrbaSG2+8Uf7+97/L3//+d7nxxhtlyy23LHMzAAAAAAAAkILRkVBz586VYcOGNZePfexjzb9NmDBBTj/9dBk/frzsu+++snTpUrnnnntks802a77nf/7nf2TvvfeWww8/XA4//HDZe++95ec//7mJTQEAAAAAAECMLpNf/t5778mSJUtC/3baaafJhRdeKLfeequIiIwdO1aWLl0qRx99tEyePFl23313OeKII+SAAw6Qhx56SERETjzxRJkxY4bsuuuuMm/evNK2A3BZrVbr99rEiRMNlAQAAAAwh7gY0M9oEuojH/mIvPLKK7J69Wp5+OGH5ZxzzpG+vj7ZaaedZNttt5W77767+d5Vq1bJ/fffLyNHjpTJkyfLiBEj5M0335RZs2Y13zNz5kxZuXKljBw5kiQUkFJvb2+/1yZOnEgnDAAAgEoJi4s7EQ8DxRhLQj388MNy7LHHyty5c2Xo0KFy7rnnyqxZs2T48OEybNgwEZF+o6SWLFki2223nYiIDBs2TJYtW9ZvvUuXLm1+PswJJ5wg48aNExGRIUOGqNocGEbCRK1arRaZnAIAAACqojMmJh4GijGWhJo2bVrbvx966CF54YUXZOzYsc3b63SYMmWKTJkyRUREZs+ere17UC4SJmqluQoEAAAAAEAWRm/Ha/XWW2/JU089Jbvssov89re/FRGR7u5umT9/fvM93d3dsnjxYhERWbx4sWyzzTb91jN06NDmewCTGJ0F31HHAQAwx+Z+2OayATBrgIgEpgshIjJo0CDp6+uTq6++Wv7rv/5LFi5cKJMmTZILLrig+felS5fKmWee2ZyYfM6cOTJy5Eh58MEHRURkxIgRMmvWLNltt91SzQk1e/Zs2XfffbVuF8oRBP2r8YABAwyUZL0yy1Skow8rZxTT+xR2sfG8AwCgKmzuh02UTUXiK01cbMs+BmwXlW8xloS6+OKL5fbbb5eXX35Zhg4dKt/73vfks5/9rHzsYx+Tl19+WSZMmCDnnHOOHHfccTJv3jw599xz5bOf/azstttusnLlShERueOOO2T77bdvzvE0efJkefHFF2XMmDGpykASyh82dsJllqnId4V12FG34zXWydUtiNh53gEAUBU298MmyqbiO1tj3Lh4mFgYSBaXbwlMLDfffHPwyiuvBKtXrw4WLFgQ3HLLLcEee+zR9p5arRYsXLgweOedd4J6vR4MHz687e9bbbVV8POf/zxYsWJFsGLFiuDnP/95sOWWW6Yuw+zZs41sO4v6JUyVyqT6u8LUarXUf2epxmLjecfCwsLCwlKVxeZ+2ETZyoyHiYVZWJKXqHyLNbfjmcBIKH/YeDUicGQkVJik/Rn2fSJMEF81ZdZxAADQzuZ+2ETZyoyHo2JhRkkB61l3O54NSEJBpyIdUNbPlt3RR3W8YWwJhqAeQRYAAObY3A/nLZvqeU7LvADc+D6bk4NAmUhChSAJBVtl7bxIQgEAAMB1RWJaklCAXaLyLV0GygJAsaiJE1vZfLUMAAAAKCIpHiYWBuzASChGQsFCOq6gxK0za6dcq9VSJb5avwMAAACIo3MUUdS68ySnomJhRkIB6zESCrBEGVdhwr4jTtYJxaP+ljYxBQDIpmpX8Ku2vUBRrp4zWWNWHfI8WMeFfVsGV+sdzGIkFCOhEENHw5rm6kjRKyhp52xqdLpRV3KyoiMCAD2qdmW9atsLFOXqOZMmZtU9Eirs9d7e3twxbJXiYVfrHcrBxOQhSEIhSdm3xTUU7byyTBwehQ4EAOxRtUC/atsLFOXqOROVAGqlKoET9V1RI/ld2H+muVrvUA6SUCFIQiGJqSRUXo3kVdJtcXEdruoyAQCKq1qgX7XtBYpy9ZwpIy5u6OnpkXq9zrymCrla71AOklAhSEIhiWtJqLQjoKKGHne+BwBgh6oF+lXbXqAoV88ZExORZ4mXEc/VeodyMDE5gKaoSSCZWBwAAAC+smEidKDqSEIBJUtK9JQxmWFUGXydNBEAXFe1iwRV216gKFfPmc5y9/T09IuFVcanru4nW7E/kQe343E7nhVsfYqEiXLlHdZaq9UydQR5Hkebpgyq1wnAT7QXAIBORW/vau1bTMfFQNUxJ1QIklD24H7i9fLui6j726MmIW+sU+UPQY4jgLRoLwAAnYr2DVmeEN2IjxsTlrciAQUURxIqBEkoe/j8YyRrkkdlEqq3t1cmTpwYu06V+97n44hojGhBHrQXAJDMhT42bxnDPhd34TSNqHg4br30R4AeJKFCkISyh8+Nf9ZtU5mESjPayaUklAuBWBX5fP5CnzIfyy1CWwHATS70sapH8edZV9w6e3t7Y0c7ubCPAReRhApBEsoePjf+NiShdHxO97pMrB/5cFyQh4nHcgOAa1xoz2xPQiWtx4V9DLgoKt/C0/EAA+Ke+sFTJgBgPUY1AUA039pI4mDAf4yEYiSUFXzrQFulucrTmLupiLz7UOXVH93HkStVduK4II+07UWe+kWdBOCLpPbMhvbOhtH4DY2+JcvcUjbsQ8BH3I4XgiQUyqBjqLFKaX8Iqn5fHgQJduK4IIqK9oAkFIAqIwmlv0wqY1efL6wDWZGECkESCrrVajXp6elpe63z3w22/0BK25nbElCgPGH1vF6vE3RByTlLEgpAVaXpX21o76ISL0kJGR9jRhuOB2ALklAhSEJBt7SjoETaOygbr6LYkISycb9gHYIuhDGVhKKtAOCDNO2fzf1vnlFcnbfRuTYiyebjAZSNJFQIklDQLapzTbpP3cYOLE2ZarVapnvw4Q8b6yzMU1EvSCgBqKoqJqHi3u8Cm48HUDaSUCFIQkG3qI7Ihfv7O+UNhMLeB//YWGdhHvUCAPIjCWXPtqRl8/EAyhaVb+kyUBag8nj8LAAAAIpyOabsLHvabWGELOA2RkIxEgoa2fC0EFUddZr1RN1+SGDgP678IQw/FAAgP9f71qzl1z3/aBl9kuvHDFCJkVCAATZcnQorQ54ON+4zYZ16ke+Ce2yo67AP5z8A5Od632pb+VXFxK3iYmAA4RgJxUgoWChth5am4yzjikzcPf1c/QEAAECSpJFKjb/nfQiOjpjYx3mtAFUYCQVYJKmTDUsuhXVyNo8ysO3qF4BycAseAJTL1XY3a7ldiS1dKSdgCiOhGAkFjaI61zxXYmyYX8rkd8Berga/0IP2AAD0UBlXlklVuaPmHm2sL0lZI6Fs2veASVH5FpJQJKGgUVTHVGYSavr06f1eGz16dOLnsqADrjaOP1pRHwBAD5VxZZlUlbvohOQ9PT3N1+r1uogUv2hm+74HTCIJFYIkFHSzIQnFSCjoxvFHK+oDAOhBEsq+WNj2fQ+YxJxQALRpDIVuvcLUuOrEbVkAAADwUdj8T0xTAMRjJBQjoaCRyitWeTu0Mq/QcDWomqKOO0FYNdEOAIAePo2E6u3tzfyUOxdiYRPfB9iK2/FCkISCbjYEC6a/q7e3l8SD52yo57AHyUcA0MPViz5h5e6UZYJxFd9PEgrQj9vxAAPKfESrrQEISSj/8ShitOJ8BwA9ovpb29vdznKHbYeqbQiLhwHYhZFQjISCAWU+IrZIcirrZ6OudHH1p5q4EggAgD9UXfAse6JwFUmvLNtO/AOsw+14IUhCwZSyklBFRyFlLWetVst8fz/8RRAGAIA/VPXrLj6tLst6iX+AdUhChSAJBVPKSkIVXW+ectLxooG6AACAP0hCpVsv8Q+wDnNCARZxfQ4dW+efUsHnbSub6/XcZtRTAICrfIkPOvti+mEgHUZCMRIKnsg7Eirux2yep565/uOYq1dwAfUUAFA2F/qevGVMil/TPOHPl1gYUIXb8UKQhIJP8s7HFNdZZ0lC+fIUPBcCLIB6CgAomwt9T94yJn0uTRKqEYf7EA8DKpCECkESCi5Jc1VF9RxOUd/p81PwigZYXP1CGVz4IQAA8IvpGEdXLJz0uVqtJj09PW1/6/x31u8DqoAkVAiSULBB2g49TaeaJzhQlbgSUfMIXNOK/rgnOQDdeAolUF2mkwCASbpi4aR1pxkF1aq1j+b89BftcTKSUCFIQsEGaZMWNjztoyHqR3AY127TK9qhkISCbj7fDgsgHn0MqszUU/Wi+t3W/0ahf/YX7XEyklAhSELBBi4moaI+F6VKDTIdEnSjjgHVxfmPKrMpCZVllBTnqJ9oj5NF5Vu6DJQFJcg7moNhhW4qctx8eUwuAAAAkAfxMFAeRkJ5OhJK15MhoJ6KkVAmjltY4iuqA69SHeIcgk7MBwVUG33MOlw0raa09V91/Uj7EB/i4GqhPU7G7XghSEKp+xzyU9Gh2nLcfH5qXloExtCJcwyoNlv6e9PYD9UU9pS6er2u7Al5cd/bKe1DhIp+N+yQ9uI7x7odSagQJKHUfQ7pdTZiPT09Uq/X217LmrSw5bgxSgPQi0nJgWrjQsc6tsQ9NnC1Tuh4il2W9+hAHOyvuMnpW7lw7pWJJFQIklDqPof0dOzjso9bXODgajAEuIA2GgBoC1u5ui90/lYpY59ExbvEwX5y9TwzjSRUCJ+TUExMbi9XklAu3P4HVA3nHgDQFrZydV+4koSKiodd3e/IJ+p489s5HkmoED4noWAvV5JQtk2EDoBzDwBEaAtbubovXElCRa3L1f2OfKgH+UTlW7oMlAWAYjY8Vrb1SgBXAAA9bDjXAcA02kLEMVU/OkfFEA8D4RgJxUgolMyVjHncsNOkzt3G7QEAwBbcwgFVXIkrO+Utd9nnTtSE1GkSXS4cB6yXZ85bV8+/snA7XgiSUDAh7eNlTcsy7DTsfQAAIBw/XPojMZePi/vNlVhYJPxcTavq57Rr8rTLtOXxSEKFqGISysWOykcuNFgkofxGWwAA6qVtW12IA8rGPqkOl451mrg3amSUrduEcGnrZWs7z3GPRxIqRBWTUC41+j5z4ThkGXbaybZtQX8u1EFUg40JURvLBDekbVtpg/tjn1SHrcc6rO1vFXULHhNU+6FI+91aN4gX1iMJFYIk1Do0kOVz+TgkNbwiNL4ucLkOwi821kUbywQ3VDUJpSJx69s+QbQix1rnRYKkckVdiG3MmaqrXChHVdtvnUhChSAJtQ4nTflcPg4ulx3rcRxhCxvroo1lghuq+iNGxfb4tk8Qrcix1llPiiSh4L6qtt86ReVbugyUBQAAAKgsU4+QB3xUq9WMjTriXPYHx7I8jIRiJBSZWwNcHrJLHfIDxxG6uTxBs41lghuqWndUbLfLsRGyKXKss4xGyvo9eUZCVeH8RjvqQXrcjheiikkoOngU5dJjdRGNtgC6uTys3cYywQ1VbVs5Z1CWLEmorPUy6f2d53dPT4/U6/W216pwvlddVdv5PEhChahiEgrl8rWRItiEiL/12zW2Hoc8jzpuMF1+G8sE2Iy4QB1f2h9d26EzCaV65BRQdSShQpCEgm5RT5JzMZhoRacLEeqBLWw9DraWC4B6viRObBDXdrq0n9M8TVkke/lrtVroekyMtKWfA+KRhApBEgq6ZX2KhivBBZ0uRPyuB66ciyL2Hgdby6WKS3UEgDvi2s6i7WqZ7VZUDNwp7nY3kfDy2TLnoO/9HFAUSagQJKGgW9YklCudmSvlhF4+1wOXts3WstpaLlV83z4AZuhMQpXZbuVJQqkuH0kowKyofEuXgbIAkPCrOADgCx51DABIUqvVtI3Goh8C7MRIKEZCQaO4kVB5rhAVoXIINrehQMTvK4AubZtLZfUJ+x2ADlUbCdVaBt3lUx2/Eg8D8bgdLwRJKOgWN3li2UkofjBBNZ/rlEvbRhBshkt1BIA74tp0l5JQYdsRNTIpSxKqSJ9Huw2Ui9vxoB0/hPrTsf3sZ9gizzB36q967D8A8Edcm+7S7WVR21FkG6Iu7tIPAm5hJBQjoZTh6kI2eR9dm3c/c3xgA1fqIckyJKGOAHCNDe1WXByQVL6sD/zJ8t0A1ON2vBAkodSiYc8mbyCgKwllQ2AC/9FOAIBfiB+Qherb6USKJ6Gow4AeJKFCkIRSix+X5dCVhOL4oQzUMwDwC+06yqIrCUUdBvRgTigA8BRX8AAAAAC4gCQU4JCwZAPAJJ0AAKCKXJqsHcA6JKGgDJ2Afib2MaNsoBLtBAAAUKWMmJRYGFCLOaGYEwoWiursitwLn+eJI9wn7waOEQDAFPogd7iQTIkrY9G6liW+Zt5UoDjmhAIMy9Lxq769Ks13M0IFsIsLPxYAgPjBHS7cvm+ijNRhoFyMhGIkFEqS5SpKllFJvb29iZ1z0nfrvOoE/UhW+IlzD6gm2nTo4kK/ElfGoudG3njYhf0GN1StfY/Kt5CEIgmFkuhKQqXpBIsMM6bjBczg3AOqiXMfurhQt3SWMW887MJ+gxuqVpe4HQ/wAMOFAQAAADUaI1N8Ho0C2IYkFOAQEx1kkcRX1YacAgAAwB2NODcuPuUiMKAWSShAo7AkTBo2dXZFkkYuTIAJM0hQAgCQTdG+03R86eqDcohPALWYE4o5oaBR1ETiDWV1ajoePZsmkKjafc9Ij7qRjEQdUE20j4jiet0wXf6w728tR9by0U8jK9PnQNmYmDwESSjoZktDE5cMy/vUjzSfsWX7YR/qBgCE44ctorjed5ouf1ISKuu5Z3p74J6qte8koUKQhIJutnROqjvdqHV2DqEOG1JN5wwRe84NAABc4Xrfabr8SRdlVa6vlc9JBiAOSagQJKGgm+nONq4cDXnLE7fOOC4FS9DHlnMDAABXuN53mi6/6u9PGwu7dIwAlaLyLUxMDlhI9VDNxlUZE5M92jjBJAAAAOxTtduVgCpiJBQjoaBR3o5U15Uilevl6g+KIMgEACAb1/tO0w+1YSQUUC5uxwtBEgq2siUJFRcshP2NOaAAAACQl41JqKh4uPP1qNH/xMKoKpJQIUhCoUxZrl7p6oA7y9DT0yP1ej2yTFnLYfpefwAAALhLZyyZNpnUeD1rmaJGRhELo6pIQoUgCYUyZelUy0rmJH0PSSgAAACUxUQsGfedtVot9Uj/qKfluXTLJKASE5MDDjE5mXetVqOzBAAAQOlse6BN0fIQUwP9MRKKkVAoiY2jhJKGDTMSCgAAAD6Li1+z3GJHHAy0YyQU4BBXn35i29WrqnG13gAAykE/AZu5Xj+Jg5GG6/VcBUZCMRIKGrU2MlmeHGdyTqjW7+KKjls4XgCAOPQT7vPpB2yap8uVUT+zjoRinicUUaV2mInJQ5CEgm5RHVdD1qfjqQ48kiZbrFIj6QOOF6CPTz/8UF30E+7z6RhGXQxt1bptutrhrEkoV/c37FClOkUSKgRJKOiWt5GJ+pyORisu4dXT09P2er1e50eXxarUqQFl4/yCD6jH7vPpGGZNQuna9qSn43UiFkYRPp3DSZgTCqiIrJ1l1P3rYa+PHj06b7G8Q1ACAPAFfRpcVrT+xs3lxHmAslSpHWYkFCOhoFHeTHdUI5RmfUm3ALauL06VsvR52Lh/qtR5AWWz8ZwHsogb4Uz9dodPxypNzNoax6i6U4B4CSZ11r+enh6p1+vG5kTTidvxQpCEgm6qA4W8SagwSeXwKcjRgf0DVAvnPFzHvDd+8OlYZd0WVUkon/Yh3Bf32831esnteIAB9XrddBEA7biiCABAOeJuHbNF2rjAhW0BoB5JKECjzmHvIus65rw/0OmsYaM8t3sCrqH9BWCCixd64uKCIttDOwz4gdvxuB0PGkUNr9Q5tFLV7XhpgwQXgyMVGMq9HvsCAPIrqx/ldjw3uXhsyq5rtt2OV9XYGPlwOx6cQyOHTmFXifJcOVJ9Vcq3esnVOACACjaMJqVPg8tsq79R5fEtFoY+ttVp1RgJ5fhIKBevjlSJiZFQYXQmK1WNvIK7aIcAIL+y2lAuXLrJxT7W9lF3Os+FWq0WmUCw/bjBDJ/bZuufjnfWWWfJBRdcIFdeeaWMHz+++XqtVpNx48bJ4MGD5eGHH5ZTTjlFnn766ebft9pqK7niiitkzJgxIiIydepUGT9+vKxYsSLxO0lCQbeojsiGq55h8jSCJKHgc+cJALoRyyFOmvphWz8cV56w7WmNi12PH3y+tQrIKi7fEphePvOZzwQvvPBC8NhjjwWTJk1qvj5hwoTgjTfeCL70pS8Fw4cPD371q18Fr7zySrDZZps133PHHXcETz75ZLD//vsH+++/f/Dkk08GU6dOTfW9s2fPNr7tRZcwpsvEknyMbD1uecrl0vaxsLCwsLDYttBnssQtaeqHS3XI93jR521jYcm6ROVbjM8JtcUWW8hNN90k3/zmN/tlzU877TS58MIL5dZbbxURkbFjx8rSpUvl6KOPlsmTJ8vuu+8uRxxxhBxwwAHy0EMPiYjIiSeeKDNmzJBdd91V5s2bV/r2AJ1UzdEkYt+VLgAAAOjj29wwrduTZ9uIhQH3GU9CTZ48WW655Rap1+ttjcpOO+0k2267rdx9993N11atWiX333+/jBw5UiZPniwjRoyQN998U2bNmtV8z8yZM2XlypUycuTI0CTUCSecIOPGjRMRkSFDhmjcMkA9G2/jU5lkg38IFgEgHn0m4nT2mbVaLbRvtVlULJCn7tsYCwPIxmgS6vjjj5edd95Z/uVf/qXf34YNGyYiIkuWLGl7fcmSJbLddts137Ns2bJ+n126dGnz852mTJkiU6ZMEZF19yi6jsDFfrYeo7QBTOv7wjp5On7EIViEaSRCYTvqI7KwNa6M43IsoKIPcfGYAToZS0Ltuuuucv7558uBBx4o7733nqliOM+VBhz2Sdsh5gkcGn9v7bgb/1/VOssPYcAMl3/8AADMytqH0OcAyYwloUaMGCHbbLONPPXUU+sL09Uln/3sZ+Vb3/qWDB8+XEREuru7Zf78+c33dHd3y+LFi0VEZPHixbLNNtv0W/fQoUOb7wFsZOsVkaT79Buvpe1M6YjXY18AAAAdbI0rk6gqd61WsyamsqUcgM0GyLoZyku35ZZbyvbbb9/22vXXXy/PPvusnH/++fLUU0/JwoULZdKkSXLBBReIiMigQYNk6dKlcuaZZzYnJp8zZ46MHDlSHnzwQRFZl9yaNWuW7LbbbokTk8c9MhBQJVD46GWVo2nCytWaZAr7e0Pa8qvcdtdVdV9UdburxOQovzTfTR0E4BMX2zTVsXBY8qroPojqT1zc34AtovItxpJQYaZPny5PPvmkjB8/XkREJkyYIOecc44cd9xxMm/ePDn33HPls5/9rOy2226ycuVKERG54447ZPvtt29ONj558mR58cUXZcyYMYnfRxIKZbC180pKMpGEUquq+6Kq210lJo9xmu+mDgLwiYttmuoy69gHUet0cX8DtojKtxh/Ol6ciy66SDbZZBO56qqrZPDgwfLwww/LYYcd1kxAiYgcffTRMmnSJLnrrrtERGTq1Kly6qmnmipypTHnTThXh0jn4drTWqBfleo/AAC6udivuljmPPgtBKRj1UiosjESSi2uFJRDVQfXWE/UkOakv4eJGz2V9FnfcX7AV7aPhOJHAQD4JWpKiSJtu4qRUMR6QDsnR0IB6E/VBNeNz0Rdncq6zqhRUFW5+pWE/QCYQcIJsAuJYehQNAkVt940uBsASI+RUIyEUobsfzlsvK8+apLIPOsC4BbbR0Khmkh02IvzFkXpmJw86YE9YWUIe6/KMlUF7bW/nJiYvGwkodQiqOhPR6Oqej+rKKOKScwBuMn2p+OhmohJ7MWxyc71ts6leDhtcivNFBRFy1QVtAn+IgkVgiSUWjo7SFc7Xx0dpI7H0hYV1RHrGhoNAEAcftTYi2OTnev7TGX588xZmkXasqZJQhEHp+N6/UY0klAhSEK5w9XGqYxb54quUwVbywUAqCZX44Yq4Nhk5/o+U1l+3aPvVSahXDpGJrlevxGNickBTzHhNQAAAKqqXq+bLgKADEhCAY6zdZhvvV6XWq1mbfkAAED5fLx45uq0Eb7o6ekxXQQRWV+3G+VprRfUB2A9bsfjdjwnuDpMM+5JG63Sdky27gfd9+fDfVUL0Ku2vYBtOAdRJt3xWdz6XajrKuNh3bfjpd2fce+zNV63lQt1GPkwJ1QIklDucLUxD2tU0yZqinzWFFePE/SrWt2o2vYCQJXpbvNdT3ikjWk7XwtLRLjwRGYXjglQBpJQIUhCucOnDHmRCQ+LjKKKonLf0ukiStXqRtW2FwCqzGSb72p/k3dib12j74mHAfVIQoUgCQUTopJLnR1dWR2Yqu+p1WrWj9SCOUlJVVeTylEIQJP5dHEBQLWZavNdjr2KPl1OdR+i+wl+LhwTQDWSUCFIQsGEqE63s3NyLQmVdrtQTUnBpm/1hAA0GfsIgC9MtWcux15Fk1CqkYQC1IvKt/B0PKDCwq4iqeTjE3AAWzGyCFVEvYcNiHfQivoAxGMkFCOhoEFcUJx26HQZV1FUXkHjqk91pfkR2PoeV28dyMLED2PXzkHXygs7UY/gs6S+JO0UD6q/V8U6e3p6pKenJ/Yzro6EArAOt+OFIAkFXZI6sjQdXRk/YklCQYWsx566oodr+1VFeRkFA9fqPZCFinhSx/eqWmcYU/NF+t4n2Vw2+IskVAiSUNDFVNCQlcoraLZsE8pHEsoOru1XFeV1bZuhHnUAPqtiEkr3+RuVjPG9T7K5bPAXc0IBOem4cqDrXnEVZeWqCHRjrgSIUA8AoCjX21Gd5Y+KicO+k9gXKBcjoRgJhQR5rhzY9JSUsO9tdMyt9+LX63URyd8Rc4Wlujj2dqjiUHvqHqpY71EdtseTpteZ9ft6e3sj56VU0ZbY3CfZXDb4i9vxQpCEQho+JqF8CC5gD449TKHuAfCZ7fGk6XVm/b4oqsphc59kc9ngL27HA0rUGFUEe3C1XI9ardavvlP/9aEeA0B1NEbttI5cb/QDOtt+VbfJtfZZjdggLEagbwOqhZFQjIRCAl0joXR0uDpHQiWV1/YAImpYdiebyuwCrqyVy7X9rbtdsL3dUa1q2wtgnai23/Y2IW25o26RU/3dUVT1ozYfDx1TcQBJuB0vBEkopKErCZV1vWk6Np1JKNd+/Hay5aksvnG9XrjGtf3tWnnzKPNHRxX2J4D+os5929uELOUOe1+YtG1u2rgv71OhXWV7nYFfSEKFIAmFNPL8wNCRhFI5uippVFDaz7jUafmQhLLxCpvr9cI1ru1v18qbR5nbWIX9CaA/klDJ6+wUFjPFjbiyMcbSwfY6A7+QhApBEgq6mEpCpdXa0aZ9SoiOodJl8iEJZWPgYGOZfOba/natvHmQhAKgG0mo5HWmEZdoqsq0DbbXGfiFJFQIklDQpVartd1zLbLuvuvWjstkEirNeosECDbKekXMRjYGDlW5cmgL1/a3jXVWNZJQAHRrbfsb8WW9Xrc+jslS7s7Xovq2MuPhMDbt3zzoR1AmklAhSEJBp6RGniSUea51xK6VF6hCnSUJBaBMSfGZrW2CqnKThCqGfgRlisq3dBkoCwCJfvytzSMdVD2y1xa+bY8uNtdJ2I1zTC32J3xFP1OMq21DZ7nz1oPG56gzyVytK/ALI6EYCQVN8l5pKPsxvCrnGSCI1MvU1StbrppRv2Aj6iVQnC39jAtc3Vcq5kttne6ic9qLsPUVLV+Yok+yBqqE2/FCkISCTqqTUHmk6Qyj3pOnHK4GRq4wFdzYclxtKQcAQC3a9/Rc3VcqklBZbunLGjOpmDvU1WMD6EISKgRJKOikMgnV6ASzJhx0PUFEx/fBXrYcV1vKAQBpMCoiPdr39FzdV3mTUL29vbFPsItan4r9lPUcdvXYVBHtczlIQoUgCQWd8jZucR1s1o6s7M6Qzrc8ZXaethxXW8oBAGnQZqXHvkrP1R/PSeWu1WqR8xU16kLZSaisqMfu4FiVgyRUCJJQsFGaTjitLA2siqCGBr08Ze5rWwJe6hcAl9BmpWdLPwNz0lyEjbtbQKS9zpQdA2f9TpjFsSoHSagQJKFgq6iOOGvnmaWBNTFsGflVsfOkfgFwSRXbaSCvNEmoLHFA0q19Se/Nc64Sp7iD9rkcJKFCkISCrbImoVQ84Y7G2C0cLwCwG+00kJ7K6Sji1he2Ls7V6uGYlyMq39JloCwAShJ1W19aXNEBAACAa3p7ewvHwSLEwoAOjIRiJBQslGUIcdT7VcwfFWbAgAF0yBbgCg4A2I2+EkhP5dOh49aZdSRU1N84v93G8SsHt+OFIAkFW5l4JGzaJFTUlSUSIOWi8wQAAL7QEdfoSkIRCwPpkIQKQRIKvtA1qXiWYcxxI7UAAOmRZAaA4tLGx3FtbtqLtCLEwkAnklAhSELBF7p+sGTpeEXCk1ZR5eBHFgCEy3phgfYUAPpT0TaqjIVpq1E1JKFCkIRCVeTt9Gq1WuFJHXkaH1BtBN3ZZW0faU8BIFme/qjxmSLxcNL8UoCvSEKFIAmFqijS6WW9ApT2e+iIgWrgXM+OJBQAqGcqHiYJhaqKyrd0GSgLAGF0AAAAAIpxOZ50uewA8mMkFCOhULK4Yb26roYUufJS9JY8RkJBhECzyjjXs2MklFto32CSi+e/iVhYpHg83CltfMxIqPLRLtuB2/FCkISCCXHDeW1MQkV9PqzjzRJM0BFXC8e7ujj22WUNntnHZrH/YVJSjGbjD28TsXDU9xb5vrSJKZJQ5WNf24Hb8dAPGWKolLXuFJ3wHAB8RXsKoAjbk1Cuy/sbirYaWIeRUBUeCUWG2AwTV3+KPB1PRKSnp6f5Wr1eL334NNxHe1NdXPCA72jfYFLShNk21kVTI6GKxsMNxMH2o122A7fjhSAJxclpQlTHW6/XpV6vt71m+odaVB2h7iAr6gxgPxKG+dC+waSiSSgT531UmaNGCpluh9I8GY9z3i60y3YgCRWCJBQnpwlZHvFq+niQhIIq1BnAfpyn+bDfYFLRJJSJ+htVZltjTJJQ7rGxHlURc0JVXNhVDpjR29vLPeGoHOo8AF/RvsGk1vrnSl2MioX5vQJVXDkXqoqRUBUZCZV29A0Z4nJkfZqGKYyEAszi9iiUibYdcFuePsPUeZ82FhYx3w4xEgrIh5FQ6IcMsTmtAYGLV32oO0A5ks41ElIAgAZX+oSoZJlL8aVLZQVsw0ioCo+EImNvhzKeEJJ3NAX1BjDLxacewV20+UD12DInVNRIe1XlKTKymLYRyIeRUIBD8lxdietcw9bnytUyAEA5uLIPVI/t532W8hELA25gJFRFRkIxr4i9VF1diVtP3u/gyg9gVtJIqN7eXtpyhegrAUC/qPiyaBusOhZulMfGeVsBF0TlW0hCVSQJBXuRhAIQhclQy0WbBwD66WprVcfCZUyZAfiM2/EAAHCMi4/eBgDAV/V63XQRAOeRhAI0SjOsmB+WaOXK7UCulNN1tBcAgCgu9sW1Wq1fIselxE5PT4/pIgDO43Y8bseDRmXe2hH3XdOnT+/3t9GjRxdaJ/RwZZ+7Uk7fsN/1Yv8CcImLbZbOMsetu1ar9Usg1ev12KQdt+MBxTAnVAiSUGq5eDVGNx0dbdR+jtv/zAnlDlf2uSvl9A37XS/2LwCXuNhmqShznlg4z3eThAKKIQkVgiSUWi52hLoVeRJHqyIdaN7PFPkc8nNln6ctJ8lptdiferF/AbjElZihVVKZ07TDKuPauKfM8nQ8oBiSUCFIQqnlYkeom46EUZlJKH6Qlc+V8yhtOV3ZHgAAXONiH6sizo16T54LuWHr70Q8DORDEioESSi1XOwIdXM9CYXyuXKsSEIBAGCWi32sziRUnnWHrR+AGlH5Fp6OB2jkypOsuMJjD1fqjCvlBKqCdhyoHhf7YhvL3Nl+0nYCejESipFQyrh4NcaUIpOI2zLPFJAGdQsoB+caANeS0WHlTTP/Ut6RULVaLVUSjLYTUIORUNDOxisbtgrbV2mDhKz72bWABAAAuIM4wx5F4ksT8v52yPO5sHoKwAxGQjESCpplvcqjOpgrcm89UBQ/ToBy0I7bpUptH3WvHDqfGle2uKfOFUmkxW1/1JPxePIdoA8Tk4cgCYUyRE2C2ElXh1d2EqpKgTcA2MKVH59VUaXjUaVtNcmni4pxsXGR8uaZ7kLHPiMWBtYhCRWCJBTKUFYSKqrDS9O5quwsXQmAAMAn/OixS5X6wiptq0kkobJrbRejRjzpaDtdOQ6AbiShQpCEQhnKSkKVeYUnTzkAAKiKKvWFVdpWk0hCqf0e1d+V9L02HgdANyYmByxiyyTuXDkHkBbtBQDYzZb4Mg+Xy96KCdCBZIyEYiQUNCvrakjU92S9P763t1f7ROgA3MO5HY0EHTpV6Xyh/pfDpzplMjZuTXa11lNV9Thq9JWrxwoogtvxQpCEQhnKCs7ydOhRHWWRRJRPQRKA9Ti3o7Fv0InEDFTzqU7ZGBurasdJQgHrkYQKQRIKPlGZhErzWZHwIIJH3QJ+ItESjX0DAPbRmYTK8kCgoncZAK4iCRWCJBR8kueqUtEkVFmTrgMwj0RLNPYNANgnS2yctR235YFAgM2YmBzwXJ4rLL29vdongvRlosk0fBoqD3Sq0rkMAHBf2TEYk5ID6TASipFQqLgi966nGQlVpas/XP0CqolzHwDcpmIkVBT6A1QVI6EAhEoaDcXoHgCIxygxAOjPlhiySDls2QbAJ4yEYiQUKiKuE437W9yVIUZCtWM0hB8IOAEAKM6WuChqsnCR5Fg4y9xPUYgFUVVMTB6CJBSqJG8gEPe51g47aiRAZyfvM1uCLRTDcQQAoDhb+tMiD+KJ2obOpFXciFiejoeqIgkVgiQUbKRrFIaOJFTS+7J+l+tsCbZQDMcRAFBlqmJRW/pTHUmoLN+R5nsAH5GECkESCjZK6uzyBga6k1BJo6Kq0PlyG5cfbAmaAQAwQVU/qKs/zRpvlZGEIg4G+iMJFYIkFGyU1NnlTVLlDQTyJFb4EY8iTCfzqL8AgCpT1Q+aHN3f+t09PT1t/437XCfiYCA/klAhSELBRkWTUFkmUNTVIdL5ogjT9cf09wMAYJLt/WCa8qWdOFzHdtm+/4CyROVbugyUBYABKh8hbnqkCqCTynMFAADYQXX/TjwM5MNIKEZCwTK6RkKpFPWo26TH3AJpcAURAABzbO+H846EKiseDkMcjCpiJBTgiLxXacISP2VqTULR0bqNJCIAANWlYsSQiVjCdCwssm7f2ZSwA2zESChGQsEx06dP7/fa6NGjCz35I6uo76LT9YPpK6Cmvx8AABSj88l4nROM1+v1yIfwqP7+VsTDQDxGQgEa6LrKE7fesCd7RGFuG7iIegsAQDUlxdZhMcLo0aMj10dMAdiHkVCMhEIBuq7yxK3Xhqff1Wq10E497DVu43IPI5EAAEAReWOJInOflh2/pI2HiYVRVVH5FpJQJKFQQFWTUFHlCEPywj0koQAAQBFVSEJFfWfZZQBsxe14AJRKOxIKAABE42EQQHlUn2+dsS+xMJCMkVCMhEIBOq64RA3tTbrKY0MQywgaP9hQlwCgKug7Uaay+vi474n7W9j50IiLoyYfb5wvabZN9/nG+Qysx+14IUhCoSgdHU3SkzZ0BA+q1knHCwBANvSdKJMN9S3rLXWt7ykas+q+mGvD/gVsQRIqBEkoFKUjIRR1BajIepPKqarDpOO1AyOZAMAd9J0okw31Lc1opri7AvKKu9uAWBhQjyRUCJJQsFGezqtokklVh0nyww4EQADgDtpslMmG+pamDEXKGRWPxt1tQCwMqEcSKgRJKNgoTydYNMlU9P562MWGABMAkA79LMpkQ4ygOwmV5UnSjbsNkr6P8xTIjiRUCJJQsJFtSSgbghVkwzEDAABhbIgRbEpCpY13bdhvgGui8i1dBsoCIETjCku9Xm++1vr/APLjCiYAIE4V+olardYvtjQRa4bNy9RAPAz4j5FQjIRCybLcp170ik/av2d9VC5Xfuxm2zGzIbC3bZ/ADBvqIgA7udhPZG3TbNvGsPKrmJA8z0iosh7iA1QJt+OFIAkFE/J0jHnW2fpEvSI/vOh03WPbD20b6pANZYB51AMAUVxsH7KW2bZtjJoovFPWCcmjElk64mHbYi7AJiShQpCEggk6klBxj5xN+/lOjISCKjbUIRvKAPOoB0C1ZEkQuNg+kIRKXl8jPk5KDOUdCWXbPgVsQhIqBEkomKBjiHDceouUKe13A3FsCNBsKAPMox4A1ZLlnHexfahKEirsQmtYLKpzagsd02kAviMJFYIkFEzIM5zX1FNEwpCUQlY2BGjUW4ior4vUK8Buvsc3Wds027YxbuRS0mth21lWLCySfOsfAJJQoUhCwYQ8HaRNSSgbEgpwC3UGtlBdF6nbgN18P0dd37605Vf9viJliXt/1u8EfBeVb+kyUBag0uIeS5tF4wqM7VfpAFV1HiiKugjAJy63abVaTer1ettrnf8G4CdjI6FOPvlkOfHEE+XDH/6wiIg89dRTct5558kdd9zRfE+tVpNx48bJ4MGD5eGHH5ZTTjlFnn766ebft9pqK7niiitkzJgxIiIydepUGT9+vKxYsSJVGRgJhbIUHf6c5mpLWU/Ac/2qG9SybWg/UCbaQ5hGGxzPl3PU1eOs6sE3ad9b5tOgi0yCDn+4em6Wxbrb8caMGSPvvvuuPPvsszJw4EAZO3asTJgwQfbZZx/529/+JhMmTJBzzz1Xjj32WHnmmWfk+9//vhx44IGy2267ycqVK0VE5I477pAdd9xRjj/+eBER+clPfiIvvPBCMymVhCQUylI0CIpLQvX29hZu7Hx/eozrbO7gqA+oMuo/TKMOxrO5/8zC1eMcV+6iSajWUWAqjmnWuuLqMYFa1IN41iWhwrz22mty9tlny+TJk2XhwoVy5ZVXyvnnny8iIhtvvLEsXbpUzjjjDJk8ebLsvvvuMmfOHDnggANk1qxZIiJywAEHyIwZM2S33XaTefPmJX4fSSiUpWgDFTf5YdZ1Zf3OVjwFxAyb97nNZQN0o/7DNOpgNbh6nFUloVpj0jInAlc1kgv+oh7EszoJNXDgQPnqV78qN954o+yzzz7y1ltvyQsvvCD77ruv/PnPf26+7/e//728+uqrcuyxx8pxxx0nl19+uWyxxRZt63rzzTdl/PjxcsMNNyR+L0kolCXN0z/SXMWJGhGlo7HL8xQ/6GFzB2dz2QDddLWHtLP+U3WMaYOrwdWYTFUSKu06VYv7Ltv3PbLLc0xpg+PF5VsCU8tee+0VvPnmm8GaNWuC5cuXB5///OcDEQlGjBgRBEEQ7LDDDm3vv+6664Jp06YFIhKcffbZwfPPP99vnc8//3xw1llnRX7nCSecEMyePTuYPXt20NfXZ2zbWaq1pJFmPbVaLfdnsyxlfQ9L/vpjukwulI2FxdWF88r/RdUxpq5UY4k6zrYf/7jy5S17mdscplarGd+vLOUdbx2fqdIye/bs0NcHikHPPPOMfPKTn5TPfOYzcvXVV8vPfvYzGT58uNbvnDJliuy7776y7777yquvvqr1uwDVyrrC4vLTVgAAAAAdiJGB4rpMfvmaNWvk+eefFxGRv/71r7LvvvvKv//7v8sPf/hDERHp7u6W+fPnN9/f3d0tixcvFhGRxYsXyzbbbNNvnUOHDm2+B7BB2CNoe3p6jJQFUK23t7dffa7VagxJB4AS8IO4GjqPc09PT+itQ7bpjH8B39AG52PFnFAN9957ryxcuFCOOeYYWbhwoUyaNEkuuOACEREZNGiQLF26VM4888y2iclHjhwpDz74oIiIjBgxQmbNmsXE5LBKEPNku1Zp7zEv4x70qDJzj7MZts87EFZfqCtAfpxT/uMYo4i42DKsHpmKI+LqedTfbIiDG4iHq4V2WT3rJia/4IIL5A9/+IPMnz9fNt98czn66KPlu9/9rnzhC1+QadOmyYQJE+Scc86R4447TubNmyfnnnuufPazn5XddttNVq5cKSIid9xxh2y//fYybtw4ERGZPHmyvPjiizJmzJhUZSAJhTJkTULpaABVPHa2t7fXqsQH7EGnDajFOeU/jjGKyJqEMlXf8iShdJY1azxcq9VKfRofzKJdVi8q32Lsdrxhw4bJL37xCxk2bJisWLFCnnjiCTniiCPk7rvvFhGRiy66SDbZZBO56qqrZPDgwfLwww/LYYcd1kxAiYgcffTRMmnSJLnrrrtERGTq1Kly6qmnGtkeIAvdQzc7O9mw78uaUCIBBQDlYHi//zjGUM21OqWzvFHJpqzxcNRn4CeOdXmsuh2vbIyEQhmyZtVVZOHTjL6KW2feoc623zYGPbhyBLiFthpwm4nYMo8836srDs47yirP6Kks7wd8Zt3teDYgCYUyqLgVrrWDTLO+okmovEhGVBMBF+AW2mrAbapjS13yxAdpypq0XhO3+iV9N1BFJKFCkISCjZI6rzSdG0koAEAU2mqgWlw65/PGuWliZZJQQLmsmxMKQDjf7keu1WqMigEAADDEpdjSpbJ2ChuhBaA/RkIxEgoa6bhNKe8Vos5OXUdiiEfZVg+34gHu4Uo94A7X+1kTsXDU33XvS+JgoB2344UgCQXddAT6ee+VD6M6iCnS+boeZFUVP2ZhCm1Gsqh9xHkLuMP189VELBzV9pGEAspFEioESSjoZioJpbsscZ172DDqssuH8nDcYAp1L5mp0QCAalWus663db7GwiL962VYDNzb21uZugp0IgkVgiQUdNPR8eYNxFT+GInbLlsCA5SD4wZTqHvJ2EfwRZXrsuvb7kIsnHe9ph4EBLiCJFQIklDmVOWKlk2Bg6onhSSNdtIVGMBOHDeYQt1Lxj6CL6pcl13fdpvKr+IJ1CLrY92okU+tfPx9A6RFEioESShzbOqQdLJpO1UloXTd727TvkJ6HDeYQt1Lxj6CL6pcl13fdpvKryoJFTcCyqVjA+gWlW/pMlAWoDKKPGa2KqPF4DaXH6UMf9F+AvBFUj9re3sXV37byw5AD0ZCMRLKCJuuitioyATfcevslOcpSbpGQhGIAMgirs2gj1mHdhW+4JyO5uq+0RHrpvnOTq1tIiOhALW4HS8ESShzXO0wy1LmI16zTlge9n6e/OEOfpSiCuhjAL/Qd0Vztb0rM9ZNKyrGzfIa9RJYL3MSau3atalm/G8VBIFsuOGGuQpoAkkoc1ztMMtSZsecdYQUx85tHD9UAfUcQFW42t7ZmIQKi4nTTjvgwj4HypZ5Tqgbb7yxX+Owzz77yF577SXPPPOMzJkzR0RE9txzT9l1113lySeflL/85S+Ki42ylXWliXlk3MWx8x9XnAG4gvYKgApRbUnakVBIRnuNhtS34x1yyCFy6623yje+8Q25/fbb2/525JFHys9//nM56qij5N5779VRTi0YCdWfq1dTfJP36lCexp0RT9WS5rhy7OE6At3qoL1C1bna3umY3qHIviAe1o99WT2F54R68MEHZcaMGXLmmWeG/v2SSy6RAw44QEaMGFGooGUiCdUfjYMd8iah8hw/Ot1qIQkFwCe0V4CbdJy7RdZJPKwf+7J6Mt+O1+njH/+4/OxnP4v8+3PPPSff+ta38pUOQJve3l6jQ33DriQBAAAAKrhwSxvxMKBH6iTU8uXL5bDDDpNrrrkm9O+HH364rFixQlnBAJcVHRoddQ96WUwnwaCPjuPq6q0AqB7qKgBX+NBexW2DC9viUzzsQ32CP1LfjnfRRRfJ6aefLtdff71ccsklMm/ePBER2XXXXeXMM8+UsWPHyqWXXioTJkzQWV6luB2vP4ZJqqFiP6qc3ynrZ9J8LgqdnBvijlPWekS7AVdQV/3DMYWvfKjbZW+D6tvxsnxexO4Y2Ib6ZEMZUK7Cc0JttNFG8stf/lKOPPJICYJA3n//fRERGThwoAwYMEBuv/12+ed//md59913lRZcJ5JQ/dnceLrEVCMb9b1xx7VWq4Ve5clbXjoYN8Qdp6ztAMccrqCu+oe4Bb7yob2yKQmV1FaoiIdtPmY2lI32unoKJ6EaDj30UDnyyCPlIx/5iIiIvPDCC/K73/1O7rnnHiUFLRNJKOii44kfYTob856eHqnX622vTZw4MbHjUdkx2dDJIZnK0Xoqk5iATrRP+fDDATpRv/pTfYHQlKh4WETPMS46yrtoH2FzH2Nz2eAvZUkon5CEgi5FhvRmCcbSdihJ71MZANLJuUHFcYqq53nWBZSB9ikf9ht0on71p3qqhFZlJv3yxAm6ypemnhX9bpvrss1lg79IQoUgCQVdigQPWToJVUkolejk3EASClVE+5QP+w06Ub/605mEMh0TJn2nrvKVsd0212WbywZ/ReVbIp+O973vfU+CIJAf/vCHEgSBfO9730v8kiAI5LzzzitWUsADrj1Ng6HwUMWleo/qoX4CcJWL7VejzC6U3fdY2IVjgOqIHAm1du1aCYJANtlkE1mzZo2sXbs2cWVBEEhXV2ReyzqMhIJOea84ZJlUMe18AWXOCeV7J+4LFceJq2pANfhwrtM32cuH+qWazn1iYn+rGuVf5DzOEwtnnc+VdsYOHAd7ZL4db8cddxQRkZdffrnt30ka73cBSSjopCMJFTesOe47ohpjJpZGEfxwANaxLeBVXR4fznUftsFXHJv+SEKFv7dI2VvbxZ6eHhGRtof5RI0UqnpddBFtij0y347XmUxyKbkE2KCsYa9pvqc14dQQ9eQV5GPbj9AyUH+AdcLOBZPnv+rycK5DJ+pXf77tE9u2p5GEavwXQLmYmJyRULBM0cfLRkkziirPerEOV12A6rLt/LetPDZgnwDr2H7RzJY4OOv6YQ/ae3vwdLwQJKHgmjI633q9LvV63aqAxAV0eEB12Xb+21YeG7BPAPfpjIPr9XroyCjaCffQ3tsj8+14AKqpp6dHRo8ebboYAAAAQCm4NQ8oD0kowENhQ5kBAKgq2+akAZBd0nms8lZD2gx3cezsx+143I4Hh6QdXpr21rve3l4tT8azfb4BHRj6C1SXbW2ebeUBgDJkfbJeIwZWHQvTBgPrMCdUCJJQcE2RJFTU05Li1pm3E61iQoaAAwAAwJy8MW3U54iDgWJIQoUgCQWX1Gq1fverR00gnqXzy3rVKE0nSucLAAAAVdIkhFTHrcTBQDFKJibff//95dRTT5VddtlFtt56634nUxAEsvPOOxcrKYBQYSOZVEwgzn3T+jA6CgAAoLioEf261h2lVqsRywEFpU5CHXPMMXL99dfLmjVrZN68efLyyy/rLBeAAkgs2UFnwAQAZSKpDsB2eePfiRMn9mvjoh7y09vbS9sHFJT6dry5c+fK2rVr5ZBDDpFFixZpLlY5fLsdjwDRb0WG9ua5D77Id1IX11E9HJv9CsAUbi8BYFLRNigphkr7UJ8030u8BqxTeE6od955R84880y58sorVZfNGN+SUASIfityfPMmmqhTxajefxwPAKbQ/gAwqWgblPR5lUkoAOsUnhNqwYIFMmjQIKWFAqAOV10AwC202wCglsp2tbe3lykuAA1Sj4Q6/fTT5Rvf+IZ8+tOflvfff19zscrBSCjYKuo+9E5Jw4iLjnaiThXDSCgAcVw6p10qKwA3xSWQ0iaX8j7pTvUT8gAoGAn1l7/8Rb785S/LI488IldddZX09fXJ2rVr+73vgQceKFZSoMIaHWzYVRcTHR5Xf4ph/wEAACSr1WqxD3QxNUqUWA5QL/VIqM6EU2dWuJEp7upKndcyjpFQsE3c/ehJxzLviCbVt4Nwe4k+nOOAX1w6p2nbAegUFQNnbRPzjmhS1cbRVgLrFZ6Y/F//9V9TfdGNN96YqWAm+ZaEotGzT9ZjoisJVWbdcOlHlWtsPsdtLhtgK9pLAHm42OfmfTqdqiRUWfuMdh1Yr3ASyke+JaFgn6wdUZEkVJHOVWXHTOdbTRx3IDsXf0gCMCvqtjXb+9y8T6fLul1521VV7THxELAeSagQJKGgW5lJqCJUdph0vtXEcQcAQD9VyZqylZWEyktVHEM8BKxXeGJyEZFNN91UJkyYIEcddZR85CMfERGRF154QW699Va5+OKL5e2331ZTWgBNLk2ImPapfgAAAEAcl2JgAOmlTkINHjxYHnjgAdljjz1k2bJl8uijj4qIyK677irf//735atf/aocdNBBsnz5cm2FBXwX91QQF1QpWOA2mnVIPAIAoIcPfWzabXA9Bq4SYmAUlfp2vEmTJslJJ50k48ePl2uvvVbef/99EREZOHCgjBs3TiZNmiQ//vGP5Tvf+Y7O8irF7XjQzZUhuTqHIPf29nrZMblybMPongOswZX9AQCAjeL62E629rmuxAncjpdeFbYRahSeE+qll16SO++8U771rW+F/v3aa6+Vww8/XD70oQ8VKmiZSEJBt6yNtKkrC3S82bm8rbrnAGtczfQx+QgAQFl8TkKFXaQ0OcKGWDi9Kmwj1CichFq1apV85zvfkWuvvTb07yeeeKJcfvnlsvHGGxcqaJlIQkE3FROTF23U03ToPBEkO5e3lYnoAQCwn89JqLDy6owpkmJdYuH0qrCNUKPwxORLliyRT33qU5F//9SnPiVLlizJVzqgBL7fvxy1fWnusVe1H4rMCeX78QFU4nwB3MY5jLx6e3srNQdnHmHnV1I8bEMsDFRJkGa58sorgzVr1gTjxo0LBgwY0Hx9wIABwQknnBC8++67waRJk1Kty5Zl9uzZxsvAUt4SxrbvLFLGqM+a2G5Xjk+Vyqur7C7vB5cX9jsLi9sL5zBLmiWqnrhUf6Jk2V5V3+nKPrN9YV+ypF2i8i2pR0J9//vfl0MPPVR+/OMfy8SJE+WZZ54REZHddttNttlmG3nuuee8eIIDAKTBlS4AAKCTD7GG6yO3GLXYn8vHE3ZInYR6/fXX5dOf/rR897vflS9+8YvNe/teeOEF+clPfiIXXXSRvPnmm9oKCrjIhUbaxc7VhjLbvo/iqKyXLtRxAABcFBVruNT3uhQv5bmNr8yy2LIvbSkH3JVqYvKNNtpIPvOZz8iiRYvkueeeK6FY5fB5YnKbGy5TAgcm0QsrY9onjUVtX9J227JfspTDljJXGW2MWZwDgNs4h4F2tVpNenp62l6r1+vKJgcP03nO5f2cDrQR8EGhp+NtsMEG8s4778jpp58ukyZN0lE+I3xOQtFw9efCPonr/JLKGrV9SckCW/YLSSi3cAzMYv8DbuMcBtpFXYhVlYRKM6KJJBSgVqGn461du1YWL15MxYfTXBi63NvbKz09Pf2uBKX9bBhXRqe4cHx8w2gmd3G+AG7jHAaS5U1CmbqFDkA6qUZCiYj86Ec/ks985jNy0EEHpc4S246RULBR1PlV9PhFJRxcrCsultlGRfYjxwAAAKiiK/7tFHcBLu8IKh2Is+CDQrfjiYjssccectNNN8nrr78ul112mTz77LPy9ttv93vf/PnzCxe2LCShYCNdnXDeOaNs5GKZbUQSCgAA2KCsJFRc/GJTbGNTWYC8Ct2OJyLy5JNPShAEMmDAgNhbhbq6Uq8SgAWSbgmw8ZYtbmMAAACASmHxpak4mFgXPks9EqpWq6W6De8HP/hB0TKVxueRUDYmDpBO3JWgIsc17xUVrsT4q8ixpY0B7MY5CsAltVotNPFS5kgoFe8HsF7h2/F85HMSCu6KezqIidunbLo/HmoRWMF2JFLy4/wG4Joy2i1VSSj6JyAZSagQJKGgS5GOKeuEiSaSUGH4ceOesgIoAjXkVaVEiurzpEr7DmbRxuvl2/6N254ytlVVEoo2FkhWOAl10EEHpfqiBx54IFPBTCIJBV2Kdkw6nmSXt2MnCYWiCNSQV5XqjuptrdK+g1nUNb1M7F+dySDT9SXrtpGEAvIrnIRau3Ztqh+jLk1MThIKuhTtmGzq8MI66zz37Pt2Jc8nuo8NgRryKGt+EFuQhIKrqGt6mdi/Or/TtfoSFiOJ5IuFgaopnIT613/9136vdXV1yUc/+lE59thj5cUXX5Rrr71WbrzxxsKFLQtJKOjiUxIqTJ5y2FJ29Kf72HDskUdZj+u2BUkouIq6phdJKPtUrX8C8orKt6QethSXXLr44ovlr3/9a76SAUjN9se1MtoJAOxge38BAD4iFgaSKZuY/JxzzpGjjz5a9tprLxWrKwUjoaCLrpFQRajsFPOM1PLhypevGAkFG8U9KdRHnCdwFXVXL0ZCqaMqFtb1JGvAN4VHQiVZvny5fOQjH1G1OsBpNl6BDitTmo436l54IC0bzwe4ydcElAjnCdxF3dXLt/1rcnvyxMJp42Cf+ydANSUjoQYNGiTTp0+XYcOGOZWIYiQUbJX3Sk3c5/JemcnydDxGQrmJYwMbUS/9wi0qgDtcPl9Vx8JZnxJN3wWsV3hi8uuuuy709Q9+8IMyYsQI2WabbeTMM8+USy+9tFBBy0QSCibp6OB1JIGihhx3ShqC7HJA4zuODWxEvfQLP8wAfVxtL12IhbPEwXm/A/BV4STU2rVrQ19//fXXZd68eXLllVfKzTffXKiQZSMJBZNUd1JJjzNXmYSK+pyrQRAAQC9+mAH6uHp+6Sh3XNIoLk7Osr64zxALA+sVTkL5iCQUTCrjcdyt6ywjCQUAQBj6EkAfV8+vspJQcVQnoQCsp31icgB2yzMRJJOSAwAAwAdZY2HiYECPzCOhPvShD8khhxwi3d3dctNNN8lLL70kG264oQwbNkwWL14sa9as0VRU9RgJBZPKHgmlap2NR9Ay3BgAkBajCQB9XD2/yh4JlXXdcXGwCLfeAUmUjIS68MIL5T/+4z9kgw02kCAI5MEHH5SXXnpJNt54Y3n66afl3HPPlcsvv1xZoQHTdHUuZV1Z0fEY3Mb253nMLQBAHZd+APn2mHnABi6P1NFV9rj5n1RobWPLjoVdavOBOKlHQo0bN06uvvpqueKKK+T3v/+93H333XLIIYfI9OnTRUTkpptuku7ubjnkkEN0llcpRkIhia4rS0lXVlql7XCiylqkw9LxtD0AehGkVgftMFBtcZNw297uZ4mFVa0/6xObk9rYsttg2ny4pvDE5I899pg899xz8pWvfEU++MEPyrJly9qSUN/97nfl1FNPlR122EFpwXUiCYUkRRr7uA4uy3rTvjfq+4psA0kowD2cm9XBsQaqIyzOy/O0N5Nat0F32VXE4SShgGIK34636667ytVXXx3592XLlsmQIUPylQ7wUNQwYF1XpnSsl9snkIRRNwCQD+0nsvAhJitzG1ScSz7sc8BGqUdCvf7663LeeefJpZdeGjoSauLEiTJu3DjZdtttdZZXKUZCIYnqUUSNz+sYCZWlHLpuKeRqTPVQD+zDMakOjrXbOH7IIm7C7VY216GkbSir7KrOPUZCAfEKj4R65JFH5KijjpJLL720398GDRokxxxzjMycObNYKQHkVvYVVa4OAQAAwCZlxsPEwkA+qZNQF198sdx1111y4403yk9/+lMRERk2bJgcdthhMnHiRNl+++3l6KOP1lZQwARdnYuO9Zb9hA5uGUCUWq1G/QBKwA8goBriniTnQjtQZvnLjIfLjnVcONZAGqlvxxMROeGEE+Tyyy+XjTbaqO2WonfffVdOOukk+dnPfqarnFpwOx50irsdLwuTT8cDkqiq51CHcx5wA7fWIK2429hcqDNZyl+0D0tzXtFPAuUo/HS8hu7ubvnqV78qu+++uwwYMECeffZZ+fWvfy0LFy5UVdbSkISCTrp+nOt4Ch6QF0koAMiHfhtpVSkJVfSiKucVYI/Cc0I1LFmyRK688kolhQKqJmkYbZoOtuzb7oA4vb29DA9HJlyBBtah7UQRquqPqTY5S/lrtRrxL+CRzCOhfMJIKOgUdiWmt7c3tsNMc/WG2+5gi0adCwsMueqIKLZfpaYtBWCbqJiyoUgbVUabXPSp0FHC1kEbDthDye14+++/v5x66qmyyy67yNZbbx3643jnnXcuXNiykISCTnluUyqShALK5vrtATDD9jbM9vIBqJ6kxEyRNsq3JBQAexS+He+YY46R66+/XtasWSPz5s2Tl19+WWkBAd+4fpsSV5KQh8t1HgAAG7X2rfSz63XGqjriVOJhQL3UI6Hmzp0ra9eulUMOOUQWLVqkuVjlYCQUdMt665xNI6EYDYAk1BHkYXu9sb18AKot6dY8EfVPkysqTZlF1pU7av6nNIiHAbsUvh3vnXfekTPPPNOrSclJQkG3qI4r6+utyroiQ6eLJNQR5GF7vbG9fACqLc3talnaLFNJqDCN702TtCprPkr6BCC/wrfjLViwQAYNGqS0UIDPwpJFSdJc+WEIMGzWqPfUU0ThVhIAsIeNbXKaJ+HZWG4A6aQeCXX66afLN77xDfn0pz8t77//vuZilYORUNAp7ul4LlxVSVtG7pWvLp6OBx/RpgGwmeqRUGVIe4udbSO40n4P/QYQrvDteD09PXL++efLRhttJFdddZX09fXJ2rVr+73vgQceKFzYspCEgk5xnZYLSahGh9rT09N8rV6vi0h7x+rCtkCvsusAwR4AoKpcTEKJqC93WbHA9OnT+702evTotn8TCwPhCiehOhNOnSdbYz6brq7Ud/gZRxIKOrmehGpIKqtL2wI9yq4D1DkAQFWRhCqXTQ8NAlxTeE6o4447TmmBALgrz3xXAAAAUM+H+ZFc2wZiYSC/1COhfMRIKOgUd1XEptuJksqS9okmrbj6Uy2MhAIAoBxJfaBNMWarpCfemS5j1H7L8kTrzvcAVVf4djwfkYSCTiqCgDICiTy32yWh462WsgNeklAAgKrKc/HQhj4yqdymk2dZkk0koYB0SEKFIAkF26kKJOI6dlVJKJuuZsFvtgbYANBg+gc13Je3DrnaR+oud97kXZbXiYWrgzY+HZJQIUhCoWxZGyxVHXKRSdLDyhx2374LAQ78QMcPwHauJgJgj7R1qLNPdCVGK7vceR+0k/U2PVQDxz8dklAhSEJBt6IdrA1JqDAkAQAAiMYPFBSVtg7Z+tQ5FXOO2pCEikIsXG208emQhApBEgq6Fe1gbU1CAQCAaPStKMr1JJSK6R5sTkKh2qgv6UTlW7oMlAVAi1qtZvTKiWuPxIXbqnblsGrbCwAwj9guO/YZUB5GQjESChqlndQ7KnPe+AHb09PTfK1er4tIth+yZOthi6rVxaptL4B1OPdRVJGRUDbUtbwjocIm91ZxQcfW/QQ3UZ/SYSQUULKwDjOrRgfb2iE3ElJZOl+u7kAnRvsAQDv6XRQVV4dUxJimJJU9LH4I2xdZ4wzOSahEfSqGkVCMhIImaUdBiSRnzk1l20kuII0s9bNqV46qtr0A1KEPRpSkGNOGfiaq/8tTdtN9KeciRKgHeTAxeQiSUNAprMOs1+ttt9Y12JqEMt3pww0koaJVbXsBqEP7gTC1Wi1xFIYN9SRqxFOesps+F0x/P+xAPcjOutvxzjrrLPnSl74ku+22m6xevVoeeughOfvss+Wpp55qe1+tVpNx48bJ4MGD5eGHH5ZTTjlFnn766ebft9pqK7niiitkzJgxIiIydepUGT9+vKxYsaLU7QHSaE1A+TqMk6sE+VVh3/la76NUbXsBwDWu9b1R/Ypt/U3YPkwzD5TrXKtPgCmBiWXatGnBscceGwwfPjzYa6+9gltvvTVYtGhRMHjw4OZ7JkyYELzxxhvBl770pWD48OHBr371q+CVV14JNttss+Z77rjjjuDJJ58M9t9//2D//fcPnnzyyWDq1KmpyjB79mwj285SjSVJ0XWZ2gZby+rD4uq+c7XcLCwsLDYvtK3s57Tltb3MRctuenuzfL/psrLYUQ9Y1i1R+RZjI6EOP/zwtn8fc8wxsmLFCjnggAPk97//vYiInHbaaXLhhRfKrbfeKiIiY8eOlaVLl8rRRx8tkydPlt13312OOOIIOeCAA+Shhx4SEZETTzxRZsyYIbvuuqvMmzev3I0CMmi9UpJ0hcSnK0QAAABQK0tcaZukshMHA36x5ul4m2++uWywwQayfPlyERHZaaedZNttt5W77767+Z5Vq1bJ/fffLyNHjpTJkyfLiBEj5M0335RZs2Y13zNz5kxZuXKljBw5MjQJdcIJJ8i4ceNERGTIkCGatwpV1tphhnWena/FBQyuBROoFoJDAADMau2LXYsbk2Ji17YHQDxrklCXX365PProo/Lggw+KiMiwYcNERGTJkiVt71uyZIlst912zfcsW7as37qWLl3a/HynKVOmyJQpU0Rk3URZgC6tHWbSj/Sov5vudKPKxf3uaMWxB/Sj3a0eEvyoot7eXuvatrBzkTa5emiT1bHi6Xg/+tGP5Gtf+5oceOCB0tfXJyIiI0aMkFmzZsmOO+4o8+fPb773uuuuk+22204OP/xwOfvss+X444+Xj370o23re/7552XKlCly4YUXxn4vT8dDWVo7qiwNWOcTF2zp8IKYp0PE/Q3x2HcAotA+AHq4dm51xoJhcaWt5U9TdpF05TcdE0fVG9fqE6CTdU/Ha7j00kvla1/7mowePbqZgBIRWbx4sYiIdHd3tyWhuru7m39bvHixbLPNNv3WOXTo0OZ7ABtkGRUVJ+yzujrcvJ07VwnyY98BgP1M//iFWq71vZ11zaXyqyx7GTFxnnPdpeOBeLT1+hgdCXXZZZfJ//f//X8yevRomTt3br+/L1y4UCZNmiQXXHCBiIgMGjRIli5dKmeeeWZzYvI5c+bIyJEjm7fxNUZQ7bbbbokTkzMSCibUarXUHVTnlZMyr64w2qkYOi4AKtHu2oNjAZu4HG9ExcRpzqcyzsOw72iU16URaMiHtr64uHyLkcf1XXnllcGKFSuC0aNHB93d3c3lAx/4QPM9EyZMCP7+978HRx11VDB8+PDg5ptvDl555ZVgs802a77njjvuCJ544olg//33D/bff//giSeeCKZOnVrokYEsLLqXtNJ8rswymiiHqwv7iIWFReVCm2LPwrFgYVG35D2fyjgPszK9L1n0H3/TZXJticq3GLsd75RTThERkfvuu6/t9dbJ6C666CLZZJNN5KqrrpLBgwfLww8/LIcddpisXLmy+f6jjz5aJk2aJHfddZeIiEydOlVOPfXUkrYCtnHlalCap+W5plarWbmvAQAAYCfX499WxMJAOlZMTG4Kt+P5J3B42GSaBFqZ2xf2Xa2BAsOQ47lcFwHYx5WLLFVA+w6YV8Z5GPYdDb29vcTCnqOtLy4q30ISiiSUV2xrLFT/aCjzR0hcx8vTP5JVbf/wAxlAVVStfYcdfOhnVW5DGfuDWLjaOL7FkYQKQRLKP7Y1FirLU3bwUeWOV8W+9nn/hKna9gKorrL6Y5NJBx8SHr7xoZ8tug1l18vG90WNePLhmEShDdCzD6q2X0lChSAJ5R/bOgOV5dG9bZ2NYk9Pj9Tr9Up2vCq2rWqdjM/1AfpV7XwB0jDZrtKm28eHY1J0G3Ttg6Q+KOp7fTgmUXzeNpOqtl9JQoUgCeUf237I5GloorZBd6OVtYO1bV+rVLUOQgX2GYqg/gD9kYRCKx+OSdI25E0G6S4XsfA6rtU3G1Vtv5KECkESCrrlaWhMXW2p4lWeKFXc5qLYZyiC+gP0RxIKrXw4JnmTPWn/bqpcPqriNpehavs1Kt/SZaAsQCWEXR1xkU+PzgUAAPBFrVZzfuSNC9tALAyoxUgoRkJBk7BMd29vb2JHG/U53Y+BrVpmPg77Ijufh6RDP845oD9GQqFVrVbTHgvqlrQNto6EqiL2iR5V26+MhAIskPdHeaPDtv1KjC+JCNv3s41cPM4AYDOTfRH9oH0mTpyo5biUGbsV3QYX6iWxMOKwX9dhJBQjoaBJ3kx32OeyfD4vFZ1m3tFfAKrNl6AdAHTSMYqi7JEZcd9napSIyj6IWBhYj4nJQ5CEgk55O9JGR5hlyLUtP+CiEmg+DzMFAAB+sznOIgnVzvSxIhYG1iMJFYIkVHlMdwgmFN3mLB1x1FWXrN9ZFB0vAADwjS3zuOiIp8vetrhtKFoWG+bNIhYG1iMJFYIkVHls6bxdUjQJlfQZHeh4AQCAb3yOY23atqJlsSEOtaEMgC2YmBxwTNiVnCqOKAMAAID/0k7aTDwMuI2RUIyEKoVNV1l009kxRu1HW0ZC2TAMGuUgAFyPfQEAfreFJuNY3ftV5/p1rTtrPEwsjDA+t1m24Ha8ECShylOlJJTObS0zCZW3YaZBr4YqndNJ2BcA4HdbaHLbXN6vuspeZhIqT1xLLOwGl88tV5CECkESqjxVOslNJKGSnqiXpzOs0jFDdtSP9dgX6xF4A37Jck773BaabNtc3q82JKF6e3ubx4p4GK04tvqRhApBEqo8VfphYiIJ1RC1n/OUKakjR7XRca/HvliPfQH4pehDUjj/i3N5v5adhEr6vUE8jFYun1uuIAkVgiQUdMibKEoj72dVdbppPodqUPEY5U6uBnQEMeuxLwC/kIQyT9d+VdUPx61HV0xMPAwVaLP0IwkVgiQUdEhq0Ew0eHS6UE3HY5RdrVs+bUtR7AvALyShzCt7NJHK9dgWExMPoxVtln5R+ZYuA2UBvJb28bJRfBohAn8Vrec+YV8AAG2hLi7v1zxl74yDiYGhi8vnlusYCcVIKGhQZGiyjqx8nnXyiFmkUeaQeNjP9ttGAGRDW20HHW1gGSOhWoVtQ5okgMr6RjwMlIvb8UKQhIIuqocmNzq/vAEHiQLokreOULf8pCtZRH0BzCABbAdbLlAWWU/UbW1JVLb1xMNAuUhChSAJBV1UJ6HC3tdKV5BI8IkkJKFQBuoLsqL/gk9IQqVDPOwu9rGfSEKFIAnlH1sasLgOOc/jYzvXkeX7AJ3y1j1bzlW4gTYOWVFn4BMd9bmMp+O1ihvp3/n/Ye9hxJLfOHZ+IgkVgiSUf2xpwIqUQ3USih/70MmWcw5+o54hK+oMfOJDfS5yJ0Dne/N+hwhxsa18qONpVK3+kYQKQRLKP7Y0YDYloWzZJ/AT9QtloJ4hK+oMfOJDfbYlCeXDvvRRVY5LVbazISrf0mWgLID3bH/kZ61W8zrrjvLYXtdht7RXBKlnAKrMhzbQ5DaE9TUAzGEkFCOhvGJLdrnIUMs8T8fLOhKq9e9AUVUbWgx1bGmz4R/qFnziUz8btS2tr4clrIqMhFIxygp6VaXNrsp2NnA7XgiSUP6x5cRWfTte0mfjgpOyk1A+BUq2s2Vf23LewT02T7YLt1EP4BOf+lmdt8xFnfdlJaFod/Kryr7z6VxOgyRUCJJQ/rGlASsyUbjqbSg7CVW1xtUkW/a1LeWAe2x+7DgA2CLpyXINJmLerHFrmhH/ZcXCDar6CPofJKlaHSEJFYIkFBrK6OzSThSuuiy1Wi33sOY8qta4mmTLvralHFCjzGQ+SSgASJaURGkwMZI0a5ub5wE8RSUl8VT1cfQ/SGLLgImykIQKQRIKDao7jSJJqDxzQiVx/Uelq3Tvd1v2tS3lgBplHk8d5wj1EYBvykpC5Wk/VSahOi+aqoqZyoqD6X+AdiShQpCEQoPtSSgVZSoLHfB6uveFLfvalnJADdePp+vlB4BOVUlCZf1u29D/AO2i8i1dBsoCeE/XY2irNoQTbvDh0dGAb+gvAH+E9bOu9r2NcucpP+0a4AdGQjESqvJsmzMpyxWizs+WJS4IIEBYT/cVMfZ1uaqyv12/kluV45TE9eMIIJ4tc+rlLUeaeFfVU/N0COtrwlSx/wEauB0vBEkoiJT/9LikH0guJKFsCgJsxn7yS1WOZ1W203ccR8Bvtsypl7ccnZ9Lc0G4yNOnVaONBZKRhApBEso8G65YR00EburKRWOfpB2mbEsSyuQ+sxUBil+qcjxtaJdt4Pp+qEp9BaCOyXYvTZtVZM5V1Whjq8P1eMAkklAhSEKZZ0MDbkMZwoQ1eHFXiUw/Aa+1LFiHTssvtrYV0CPpkd4idp/P1FcALkkTM2VNQulss2ljq4NjnR9JqBAkocyz4aTWWQbVSQhbrgCRhEIV2dBeoTx55iuxCUlwwC+un9Mqyh+3jrLbbGKC6uBY50cSKgRJKPNsOKl1duqqt8+GJFStVpOenh7p6ekp5fsAW7j+AwDZuJ6Egh1oN9xh+7GyIWYuQnf5SUJBF451fiShQpCEMs/3k9rHJFRcJ+/TsQNQbSShoILvcY5PbD9WtpcvCUkouIpjnV9UvqXLQFmASkj76NYs0k5WDpTF9ivHAIB4tOPuahw7V49XrVZTVvbOGJmYGbAXI6EYCWWUz4FPmnmTVG6/yZFQjY7el2OH9Lg6BF/leXw40MmFNtKFMpbB9v0QN9InrH2yLSaLKr+uycNNjLyyqb5AHZ9/r+rG7XghSEJBpzRJqKgOLE9jV1YDSaeLVtQHVAVBKPJwoY10oYxlsG0/pEmEx7HtGKa5XU4kfxzcSXebbVt9AWxEEioESSjoFDViqLUDjOrAbOnYwjpwRgOglS11FQBspKuNdHEkte1s2w9RcWTaZJRtx7BWq6Uqu+1xcNzT+Gzb59CPC1TxSEKFIAkFndJ0TrYnocLKUa/XpV6vt71GY1tdttRVALCRrh8oKtte2vF14o6ViR+aWWLEMDYew7STh9tSJ+MuKJN8gAjtZxKSUCFIQkGnNJ2Ti0koERpXrEcQBgDlUxkn0I4nUx2XFYkRXR6lnnauPeJguMKWumorklAhSELBNJJQAAAgK1vihKpQvb+LjJbPuz4bEQfDdbbUVVtF5Vu6DJQFwP9jy+NjuQoKAADgJlviyaxsKTdxMFAuRkIxEgoa5e3Uyu4Ms847QIYfnQjg8mG/AciDq+/lMjESKqx/CGN7n2HzE58biIORF21xPG7HC0ESCrq5MmcDnS+KohPOh/0GIA8S2OUykYQqoxxl0FFm1fU/bv4tV+bbghm0xfFIQoUgCQXdXHh6TVwHG/dUEKCVi4GxDdhvZhA0wgTqnbvKSnro+pxJOspcZlLQxX0OM2jj+yMJFYIkFHSL67iyNlS6OsG40U40pkiLIC0f9psZ7Pd06APUot6hIe+5FXVxMOt6ypSmzCLZyl1mEop2EGnRxvdHEioESSjopvLKSt6GLanzZLQTVKDjzYf9Zgb7PR32k1rsTxQVdeGwlW11Kk2ZRbKVW3VMzLkJFahH/ZGECkESCrrZkIRK+hwNJlSgHuXDfjOD/Z4O+0kt9ieKIgkVvc4iMTHnJlSgHvUXlW/pMlAWoDJsefSsar4NTfZte0zwta7rpmu/UacBwD+dfYYLfW9YGcNea+23XOmv6GuBfBgJxUgoGJI1W57U0eUdYpwna+9bpt+37QGo0/HYP+mwn9Rif0I1V+tU0uiopG1Im/zpfF+WB/H4OlE89KE+9MdIKMBxSVdWskzy2OiUJ06c6MRVNABQiXYPJpRR7xiZgc464OPxT7tNac85+gSoQD1Kj5FQFRwJRYBih7Ie9xt3tSlvdt63TL9v2wNQp6GCyXiBWCUfzv1qSTvSxzat5dZZZp1zaNVqNWf2tw600UiDiclDVDUJRYDip6jj2ugkVHaUvj1Rj3MCvqFOw3XU4XzYb9Xm4vHXWWadSaioddu+v1Vxsa6hfNyOB1gg7z3sUe9Lo/E53UNEXU5CMXwWvqFOAwBc0Npf9fT0iIibk5SL0PcCaTESipFQIkLmuixp972OycJVHveqX/0BAOhFrJIP+63aXD/+qstf9kgol/Z1UVXffqTDSCjAc6qvvnCvNwBAFfoUAGXrjI3zxMq0XYB6jIRiJJSIkLnWKc/kizqOUdZONK4MjISCCIFZHPYN0C5rv0asko9rbY9r5TXFxHQOusSVUfd5n2f/ZHnwT5XaqKpvP9JhYvIQVU1CudBB+SRpKHBrg61jEvG84jqXqj8RJElVzjECkGjsG6Bd1nOiKu1o1dFWpmPTfip6bkY93Kb1v61M1weSUOFoo5EGSagQVU1CoVxZklBx77UhCdU6+TidT7SqBCZV2c482DdAO84JhKFepGPTfipSlqiLmHFM1oe4i67EwUAyklAhSEKhDHFXfETaO6yw99brdRERGT16tPKyxeGWu/xsChZ1qsp25sG+AdpxTiAM9SIdm/ZTkbKkmSi8wVT824pYGCiGickBi2S5UtJ4XG0S1Vdkent7edQsAEAJ+hMAWaSNf+PoGK1EWwYUx0goRkJBsyxXjIrcjqfjKplNV95cUpX9VpXtzIN9AwDJaCvTsWk/lTUSKuu6035flvXZtN8BFzESCtpxb3Q4W66YcHygmi1120bsGwBIRluZjs/7qeyR953xMLEwUD5GQjESShmuFhSX5el4nZ1o0meS5qZqSJqjimOazHTCz/T3AwAAPxWJMaLiSl1Ph04z8qr1yc+dbHxaH+ASJiYPQRJKLRIW6qTZl1k61rTv7/xMlkCDxIc9OBcBAIBtkmJF1fFLllg568Va4l4gGUmoECSh1OKHrzppOrY0HWtr55l2qHPeY8bxtwfHAsiHHxUAYI7qNrhoEioudiLWApKRhApBEkotGuNypblik+cee5VJqMb38yOuXJyLQLyoHzqcOwDgj9a2PiomVp2E4mIGsB5JqBAkodSi0S1X3lv2kkZHpfnBlfa++SzrhDqmf0jTFsB2UeeI6XMHAKBHVEzciE9UJaHoR4D1SEKFIAkFl+VNQiXNE5Wmo8z6iF0633KZDoBMfz+QhB8PAFAtqmNi+hEgWVS+pctAWQAooOJxtj4/8rfKOK4AAMBGto6WJnYCysNIKEZCwSOdHbuuR8vG3ebH42zBVUCzbA3wbcIVbL9xDgD2KrudbbQHquNT+hEgGbfjhSAJBdfkebRtZ6erIhCP62DpfEEdMIv9n4wJZf3GOQDYS8X5maWt1vXgHJJQQDKSUCFIQsE1ee5nD7vyU/RHFUkoxKEOmMX+T0ayyW82nAPUMSCcivMzyzqSYuO85yVJKCAZSagQJKFQJhUBaZ4kVJiinWHcttD5gh9fZnEOoupsOAdsKAP852J/qyIpVDQJleZzSaL2Pec+sB5JqBAkoVCmLJ1S3o6trCRUHBcDIsAnBMCoOhvOARvKgPKYin1crGet+ypstH6aaSRsSEJFIQ4G1iMJFYIkFMpUtMNMM8TXhiQUALNc/FECqGTDOWBDGVAeU8fb9XqWJm4N2x6bk1AA1ovKt3QZKAsATdJcUVKBqzyAvXjMNKquiucA/TIQrrU9UNk2cM4B+TESipFQKEmWe+BVPrlJx1Uy16+8IT+CLgBIVnY/Sb9sVtlPfIv73t7eXmf65bwjofLGIirPE845IBm344UgCYUyJXW0rUGDyo5NR9KAjre6OPYAkKzshD1ts1llP/Et7jN5vtuEWq2WamSSym1ReV5yzgHJSEKFIAmFMiVNxCiyvvNSORJKBzre6uLYA4B9aJvNIgmVnevzmHLOAcmYEwowrDVZlHTlJ+rvYa+nSULZkrwCAADwTRXnIdNF574kHgbswEgoRkIZU+WOIO+Vq7irLnH7U/XVmiofu6rjyh8A2Id+2X2MhFpH5/QTtk934XI5gDDcjheCJJRZVf4xqyMJlfdvQBbUJQAA1CMJtY7OicJ9jGF83Cb4g9vxAIv09vYydBtOot4CAKCeqv417XpsHEFDjAFUAyOhGAlljOuPlS1K1RUv0yOhbAxiAAAAfFckBjM9gkb195saCWU6DjZ9HIE43I4XgiSUWS4PIVYhT6eRd94nnXNChV218v0Ymg44gDK5Wt9dLTcAlMF08qKMJFRnjKoyZm30MabjYNPHEYhDEioESSizSEKVdwVI9Y+xpMfq+n4M6fBRJa7Wd1fLDQBlMN1GlhEHd8r7lOms3+fyfgRUYk4oWId5kbIpkkji6j8AAIC9GL2ZTtR+av1NEfX7wsf9yW8puIiRUIyEMqrK2fuoTjTq9aR9Vea+ZCRUdestqsfV+u5quQFUU9ltlumkV9j3h+ksU965n8LeV4QtI6EAm3E7XgiSUObxI6G/qH1CEsoe1FtUiav13dVyA6gm2ix1k4uThALswO14sBJDSPVqXGUq48oWxxIuMn0lGAAAlKNWq9HHAxZgJBQjoWAZlSOhwt4XJ+0P8qr/cK/69vuEK8/JXK3vrpYbQDXRH+kfCRX23iRJ02eYfjoeYDNuxwtBEgo2ypuEiusMe3t7U/340h0A8aMQtiHoBwDYgP6oeBKqEWf29PS0/TdufUXLlCa2dTH+dbHMsA9JqBAkoWCjqM4ubWdQ5D543QEQARZsQ50EANiAH/3p+uRardYvuVSv1yMf4pO0PhVlKmMdZXOxzLAPSagQJKFgo6JBCEkoID3qJAAAdihywTXqroGw92VBEmo928sM+zAxOeCIsq96pX1ELuAjJtQHAMAOumLgtH09MTFQDkZCMRIKnsk6EirpqhEjoQAAAGCLrCOh0saaaUZSZVlf3Hptj39dLDPsw0gowDM65w5gdAgAAPoxDxBgN2JiQD2jSaiDDjpIzjjjDNlnn31ku+22k2OPPVZ+9rOftb2nVqvJuHHjZPDgwfLwww/LKaecIk8//XTz71tttZVcccUVMmbMGBERmTp1qowfP15WrFhR6rYAZQvrFKMC1zwdqI4guEodOT8s1mE/APpwfrkvS18OwKy856aL8a+LZYY7jN6Od8QRR8iBBx4of/3rX+XGG2+Uk08+uS0JNWHCBDn33HPl2GOPlWeeeUa+//3vy4EHHii77babrFy5UkRE7rjjDtlxxx3l+OOPFxGRn/zkJ/LCCy80k1JxuB0PLssyFDlq+GytVovsZBhyWwzDmNfxZT/wYx828uX8qjKOIZBdVJ9c5Ha8uJg4y3oArGf90/HefPNNOfXUU9uSUAsXLpQrr7xSzj//fBER2XjjjWXp0qVyxhlnyOTJk2X33XeXOXPmyAEHHCCzZs0SEZEDDjhAZsyYIbvttpvMmzcv9jtJQsFlYR1tb29v87G19Xq9+XrUj+W4e9/L7Gh9/IFflR8WScfOl/3gy3b4wsc2Iw/qpfs4hoA6YedTvV6X0aNH5/psJ85NIBvnklA77bSTvPDCC7LvvvvKn//85+b7fv/738urr74qxx57rBx33HFy+eWXyxZbbNFvXePHj5cbbrgh9jtJQkGlsn8UqZhQPE8SSsd2+hiE+7hNYZK205f94Mt2+ILjsQ77wX0cQ0CdIiOhsiShuBACpOPcxOTDhg0TEZElS5a0vb5kyRLZbrvtmu9ZtmxZv88uXbq0+flOJ5xwgowbN05ERIYMGaKyyKi4pHkdVHdYrd9X5n3bzF8BAG7jB5Q9mHcFafh2zurant7e3lLOKWJhoLjAhuXNN98Mxo4d2/z3iBEjgiAIgh122KHtfdddd10wbdq0QESCs88+O3j++ef7rev5558PzjrrrMTvnD17tvHtZvFnCZPl7zq/O8vnkj6vYzt07htb64MvS9J2+rIffNkOXxaOR7H9wP5jYXFr8e2c1bk9KtvFqPX4djxYWHQtUfkWa0dCLV68WEREuru7Zf78+c3Xu7u7m39bvHixbLPNNv0+O3To0OZ7AGTTOpcU8uPq9jrsB0Afzi8A0Ic2FtDD2iRUX1+fLFq0SA499NDmnFCDBg2Sgw46SM4880wREXnwwQdl8803lxEjRsiDDz4oIiIjRoyQzTbbrDlROWCzzuHIZQ/lbXSurZ1sY2JzFMOw7HV82Q8EorCRL+cXALTGxLa0bbaUA/CN0STUBz7wAdl5551FRGTgwIGy4447yic+8Ql5/fXXZf78+XLZZZfJOeecI3PnzpV58+bJueeeKytXrpT/+Z//ERGRuXPnyp133inXXnttc56na6+9Vm6//fbEJ+Mhnm/3ntuq84dt3n2c9wfyxIkTQ4912fiBb4c8531Vjh3tn12qUu8AoCpa23VVc6YCsJPRp+ONGjUq9NafG264QY477jgRWfej6MQTT5TBgwfLww8/LKeccoo89dRTzfdutdVWMmnSJBkzZoyIiEydOlVOPfVUWbFiReL383S8aAFPa8ksz6PqO5l46kZUucp8Oh7swHkPVAPnOuCWouesbbFbUkxsYuLvLPvYtv0J2Coq32I0CWUaSahovgWoNnQWnWUI62Ab+7jM/Z81CZXEhn2NfHw77wGEo50G3FL0nLUtidW6vrQjl3THIypiINpWoB1JqBAkoaL59mM07/bo7EyiylSr1WITVKqFlaO3tzf3dvpWd6qEY1cMwScAwEZF+3ed8UGaOwVUfl+WcmT9TuIooB1JqBAkoaL51ojm3Z6yO90BAwYoH5mUtxy2rA/l4dgVw/4DANiIJFS+cpCEAoqJyrdY+3Q8wHc2T5zIiA53cKwAAICrwp7UbAtiLEAPRkIxEiqUb42ujSOhsnxn43t1HJewdRa5HZCrQOVSub99O+/LRt0HANjI5pFQcd/RSvdk5SriYeIAoB2344UgCZWPiz9UXU9CNeZoKqs8Rb6HDrhc7G97cCwAADYyPbF53u9oTQKVOV9qQ9btVj3PKuA6klAhSELl4+IPrbydry1JqLKfmlfkMbU9PT1Sr9fbXqPz1cfF89FXHAsAgI/KuACd1IfaFpM3tO6bnp4e6enpSfwMUBXMCYVKy9tRmrg/XdV3ljViLay8o0ePVv49cIeLoyVVsHE+CwAAiiqjDy+jD9URn9D3A9kxEoqRUJlxtd+cLPu+yHHK0kknDZ+uQvLBJBsTPrQRAABAJRNPr0sTY6V5uh8xEKqK2/FCkITKhx+Y5pSVhCpaJt3fCbvRRgAAAJVMJKHyrlP1dwCu4nY8aGfjiAyf1Gq1fnMtdf4bAABUG/EYfJR02xv1HragLiZjJBQjoTKLOrEY/aCXqid0NKhqDBkJhU60BfAJwSRcQxu8HudvdaSp94yEQhlog9fjdrwQJKHU4oTTS0USKu1ns2gN8MKuUlX10bRVDnxpC/Sqct0ygfoM11Bn12NfVIepJFRnnxwWC1PnqoV2Zz2SUCFIQqnFCadXkckUy+oQoxJfLtQDVT/sG+upchBCkkQvG9tan4+5jfsbiEOdXY994Ze4vsZUEqoTdQ7UgfVIQoUgCaUWJ1w71T/Kiuzfso5NrVZzNvmiah/FjUBzYT/k5XMSwjY2trU2lkkVn7cNfqLOrufLvvCpjy2yLXHHkyQUbEEdWI8kVAiSUGr51EEWpSMZoysJZVOyzCSSUPGS6omrx90mac9FG/e1jWVSxedtg5+Ix9bz5fz1ZTtEzMazab9bV6IM1UAbvB5JqBAkoaCLjtvSdHXaqjtLVztfklDxkvaPq8fdJmn3oY372sYyqeLztgG+8+X89WU7RMyO7C+jn/XpWAFFReVbugyUBUDJkh5rmwdZfgBVoKP9hL/oG+3C+YtWKusD53q1cfyLYSQUI6GggW0joXSsN+pzrjbKOkdCNYIeF/ZDFEZC6VfGbQK6cPyBdTgXoINP9cqFUUZ555eKSnKZ7qOhnk/npE6MhAIc58rVPFc7WlX7N2w9ru4T2MnG+uRK+wQAcJfOvibsAk9Wvb29JCKAFBgJxUgoaBB1daToj0cdIyBUj4SCn5KOd1mjc2wcBaQK5xTgPs5j6OBT35dnW8rY/rg5PUXSjYQKe5/LfKp3qtHWp8PE5CFIQkEXXY22jgaPJBTSsCUQ8bne2bKPdfB524BWPrdRgCllnFdJt9eledJeo1y+9Hm0Z9HYN+mQhApBEgqu0TEahSSU23wJdNIqq95Vbb/qRnuBqqDtANRL04cUPfey9lO1Wi309sABAwZ40+f5sh060NanQxIqBEkouEbH5NAkodxWteNg06SkSI/9CQDIK+9E4Vn6GZUxtC99ni/bAXOYmByAMiomb4Q+jePDFRkAAAD1arWa1Ov1ttc6/w0gHCOhGAkFh+gYCdWaUOrp6RGR9k40LJFRhckYXRE3kaaPx4ORUG5ifwIA8ipjJNT06dP7vTZ69OhcZfKlz/NlO2AOI6EAD+h4NG1rkqmx/kYyqvPvgGk6H8+MamE+BwAwK207XEbf3xr7Yh1iLujCSChGQlWaqR8htj49L+3no54gwg+48lVtJFRZkp6S00CdT8fGhA9XeAGEsbG9iuNaeRviJvbOo+w5oeLe7+oxAVRjYvIQJKFg6keIru/V8WSQsMfT8uPNHo1jrjKQQ/i5xD72C+0YWvGjEQ2utQ2ulbdB9dQOumPgznW6ut+BMpGECkESCq4loXQHyXGjakS4wmMzjol+BJx+4XiiFfUBDa7VBdfK21A0CaU67kmKgRuIhYH0SEKFIAkF15JQusubNgkFVJGrgT7CcTzRivqABtfqgmvlbSiahFK93VmTUACSMTE5gEStw47zTkbIlSEAAAC4JCzuzRoLEwMD6TASipFQlebTSKgyhiXbMFoLMIW67Rd+LKCVyfObumgX19p618rbUPQhN2m3u8j5pXKyctiPtlg9bscLQRIKrj0dL65zK2NYcuv6orbBtw6YDgkNPtQFH7YB0MFk3+Vbv+k619pJ18rbkLbcRePNIudX1GerEgNXDcdPPZJQIUhCoSyqAoQyk1BJZY76Pt8acN+2B9VGfQbCmfwhz3mJOK4mmRp0PLUuS7xZ5PzKmmziXHYbx089klAhSEKhLFkatbjOOu5vZTecVemAfdseVBv1GbAP5yXiuF4/spa/M9YNm5cpbjRS0e9PoyoxcNVw/NQjCRWCJBTKkqVRc2G+qLjvc/2KXSc6JPiE+gzYh/MScVyvHyrmVcry+TTr60xsZY1TqxIDV43r55qNSEKFIAmFsphOQpV5Fcg3VdlOVAP1GbAP5yXiuF4/bExCFVlf1DpdOiYIx3FVLyrf0mWgLAA0yPsYWa7QAABgTtb+G0B6necX5xuiUDfKw0goRkKhBCpHQuUZ6ht3FShvhr8qQ46rsp2oBuozbEOdBOK5PjpDxUioNMmBtO2Giv1JuwWkw+14IUhCoSxZOqukzjFP56kjCQUAQFE6nlwF+MT1ej59+vR+r40ePTry/WnahCLthutJPazj+nlRFSShQpCEgo2SGlUbklA0/AAAFfgxCfit6NPxRPrHmDa0G8TCZtH+u4EkVAiSUHBRnka30VFGPea2jDIAnQjgANjwYxKAPrY9HCfqdj9VT8hDOdj/biAJFYIkFEwo+sPbhoCdhr/aVCWPqEcAbOjTgLy4mJIs7RxPZcXCtVpNyUVZ2h+z2P9uIAkVgiQUTCjaaBYJeFQNiabhrzaSmQBUKbNPA1SjDiaLmxKiVVmxcFSZor6fWNhO7H83kIQKQRIKJphsNFU8oWTAgAE0/BVHEgqADWhDYBp1MJmOJFRRKp5azbE3i/3vhqh8S5eBsgBwQNiVHwAAbJHmse2+4fYvuCbsPHXl3CUWtpcNdYj2OD9GQjESCiWzbSRUZyPeaDyjrlwNGDCARrfiGAkFAGbQbtqF45GP6f2WNh4mFkYc0/XYBdyOF4IkFEww2WB1dphxEzPGdbyoNh5vDABm6JjkGfnZ8CPUxb40qR7rLn/aeLjKsbCL9apsNpz/tiMJFYIkFEzQ2WBl7TDiylLljhfxCEwAwAwb59epMhv6Qxd/CLfuNxVPqgtbb0Oa45Fl3qfG33znYr0qG/soGUmoECShYILOBkvVxONRf+vt7Y3tzG0IxgAA8JVvSSjihuJc/yGssvx515UlCVWVWNj1elUG9lEyklAhSELBBFeSULVaTXp6etr+Vq/Xc4+sAgAAxYT9wFU5kqRsxA3Fub4PbU5CVTkW9mU7dPIl4agTSagQJKFggitJKB3rAwAAarnc97pcdlu4vg9tTkLlWafrx6PBl+2AWVH5li4DZQFgCRsebwoAAAD3+DIShHgYKBdJKKBkNnV0ZQQKjQDFxaAEAADb2RRXoHwmj7+KJzPaUH+JUfuz4bjAX9yOx+148EjeobNRV7JUDEHOUg4AsFXSFX9fRgQAZeKWH7fZdvzytMNJn6nq7XiACswJFYIkFHxTxlNB4tbX6MhdniQV6/CDGmineg49APQ1rrOt3ctTn5gfFdCHJFQIklDwTdSjZFuFdcZxTwXplCY4dLkDJiBex+VjCOhgaxKq6m2Wzu2v+r6Fv1TVbdtihaSnPndKM+o/676ybZ/kUaW2r0rbagJJqBAkoWCKrgYv7na4hrCOUHWH6VIH3HksGMW1jqpjSOdeDvazfrYmoVxqb3Ww6YmzQJmKtPs29PE6+q08T7mrcgwcxYdtSKtK22oCSagQJKFgiq4GjyRUdnn3me9UHUOX6oLL2M/6kYSyE0koVFWR+mlD3dZRBpJQaviwDWlVaVtNiMq38HQ8AMrxRA0AAABUDTEwkIwkFADlHSa3AbktbIi8zvVTX+CCpHaSHx4ATGvtX23uW3XHGVkQAwPl43Y8bseDAbbdjpeVT/PPcDtef1ET3KuatLRT1favDgwnr66qH3tux0NVJfWvNj/BLarsRcsQF5/q2Gaf4uFWputHmaq0rSZwOx7giawdno6r82Hr9KHTbWBEQ38+HV/AJ1Vvr3Ruf9X3LfzlU91OGxcTD6fnU/1IUqVttQkjoRgJBQN0TSaZ59G0efh01SBqv/h6dSsNlceXpw+WI219rXK9BgCftLbnrvWtukdct+4PnX2cT/EwoANPxwtBEgqmpOm0on4s5k00qewoq9DpVmEbo3B7i7/Y/wDgH9fa9qjy5rlQUuS2xKJc2+9A2UhChSAJBVPSdFqqHyVLEiqbKmxjFJJQ/mL/A4B/XGvbVca4JKEAezEnFIzg1o9wrtx/zPGrJuZYcRPnKwBUk2t9q0vlpW8F1GMkFCOhtOIKQX42jITKOlzap46augvXFBlhCQBp+NTPwz42joTKMg1GT0+P1Ov1ttc4P1Bl3I4XgiSUflX9waMiSFN5v3zc+lR+xqfj7dO26MAPEfuQhAKyoy3LhjbEPJfrbFLZ89Qv3RO0ZykT54fdXD53XEUSKgRJqOyynrxVbYyTtjvNflS971RN9liVJBQdVTwfjrVvx7jIAw+AqvKhLSsT+8s8k0+DKyqp7EWTSDr6OJJQ/uD4lI8kVAiSUNlVOSmRRdJ2u/JjkeONKD4cax+2oZVv2wOUgfMmG/aXeSYn4i4qqexhSSjTSTWSUP7g+JSPiclhhEsTD9rGdKcbx4YEGYB2tLcAAJe5GEuGxcQA4jESipFQmZBBTkfFSCgbZJ0c3ZXtQnE+HGsftgFAMbQD2bC/zPN5JJSNZc8T00e9F2bRfpWPkVCwQpVH0NRqNe+3lZEYAAD4i36+fD6MtPFhG7LgPAHiMRKKkVCZFM0gVyUDXavVYidXdGU/5BnxVOVEY5X4cJxdOQ8B6ONDWwa/xU3mreNpcDokjRZqcKXsSSOhbJzbCrT3JjAxeQiSUNkVPXmr9KNPZaLGVKOZJwlVpWNcVb504r5sRxVx7ABUhQ8X/ookakzHzEVvxwv7DFAVJKFCkIQqX5USFCq3Ved+i+uso/5GEqraOMYwjToIoCp8aO+KbENZT2qOinmTklokoYBoJKFCkIQqnw8daVoqr1zp3G951h1X/iod46riGMM06iCAqtDd3pUxmipqG9J8d1lJKJXJK1dukwR0IwkVgiRU+VwZNlxEYxt7enqar9XrdRHJn6hJ8/68+1Z1cJNlfVWoDz4iAQDTqIMAXJc2BtIdK5XRnuYZWd+QNa7MmwBy5Q4GwCUkoUKQhIIOqjtUXess+jkV66OTdhPHDaZRBwG4zpZ2zGQ5VMe3UbfGkYQCzIjKt3QZKAvgHEbs9Be1T3gsLQAAAHxHLAzkw0goRkIhBdWje7JeIZk+fXq/10aPHl1onaY+p3odKB9JWZhGHQTgOltiINtHQqWZ5iJufb29vdqmp7DlGAK24na8ECShkJbpJJTO2/HSJLjylqmMdQAAALjGlhjI9iRUlvcW2ZZardaW6BJZl+wy9eAgwAfcjgdYxKZhup0dblGMUNCHfQsAsBH9k7tMxqQ2xcNht9H19PRkrsecC0AyRkIxEgopmH7im01Px2t8T9TTR0zvK59xxS0e9QkAisvTltI/ZUeflY3OWDjLd7R+V9okGucCqorb8UKQhFLL585UxbYVWYfO4E7FrYGNTjjt43aRD/s2HvsHAIpjbhy3uBp/Zy13GXWs6O2Bvb29kRdpgSoiCRWCJJRaBCDxiuwf25NQre+nHujDvo3H/gGA4khCucXVfa9jftQyyxT1XlePB6ADc0IBDrPpnnkAAACgTEViYVdHiwG+IgkFiL7OKWy9eejsKElwoQgCOwAA9PGhn1URDxfZ5rBYN2x9xMRAObgdj9vxlHF5+KmusoetN+k7bA82kvaV7eV3mY371qbz3qayAICr8rSlNvZPvvBhGoSkeLghbbJIxfcX3UdR6+RcANZjTqgQJKHUcqETjGJTEipu4u9Wpjo0Ole0sum8T6qb1F0ASEZbaZcqJaHCqHgCno59xHkCJCMJFYIklFouN8ZlJqFaE0ph+ydtR52lfC4fG9jNheC3waWyAgAg4scI9LQXWNM8WU7VxPmtT3YGoAdJqBAkodBQZhIqT0cZJkv5yvrx7UIgBLVcSuy4VFYAAET86LvSbkOa9xW5XTRNkqsI4mCgHUmoECSh0EASSg0fAiVk49Ixd6msAACI+NF3mU5CqfisDesHXBOVb+HpeIDoexoGT9lYd1WIq0D+oo4D+XDFHEAavb290tPT0/aaa7EVsQKAVoyEYiQULFOr1foFG53/FnFnJJSu7wKy4golbEJ9BJBWVdqL6dOn93tt9OjRbf9mJBTgDkZCAY6YOHFi6ska0wi72g5UEVdiAQCwV9hF107Ew4D7GAnFSChYSOWVlKgngkycOFH57SCMhAKAdLhiDiCtqrQXOrezjHi4KscJSIuJyUNUKQnF3BNuKSsJpbqzrNVq2p88AsAs+hM1+LHiD86JcOwXdarSXujazqT4VNX3VuU4uYI2yDySUCGqlITyoVH0pSFJsx0qjlfc42gb69NRL3w5TgDC+dCf2IC20h+cE+HiLoIhm7j2wtW2JKzcui5kJo3UV3UOu3osfEXbbB5JqBAkodw6CX3YBhH9j5+NW0fn+nzZpwDKQ7sBtOOcCMct+uVwtf4lxakNLiWhYBeOq3lMTO4hsu3+smECZeoXAAAAymJD/BuGmBhQi5FQDo+EypLd9SET7MM2iOTbjjydX9GRUL7sb1UIQIB1aBuAdpwT4fKMhKKvzc7V+pel3EXrRdKtoUllcXUfVx3HzTxuxwtBEsqtk9DFbVB1v3uebU+ThIrr1F3c3zqxP9rxQ6G6XDwXqK/QycVzogx5klDsy/6S2i9X9lnndmSJh4tuY9LnfdnHaMdxM48kVIgqJaF8CMBdbEhU3e+uKglVr9eb/80zksr2/a0T+6Md+6N8trTjtpQjC9fqq4v7uMp8O16qtifPE3NdO1fL4MsonTQxsa4kVGud7unpEZH1MbFIvrsLbNzHaOdb2+wiklAhqpSE8oGLDUnU8N9OOjq/uKfjdX62zCeUuKpq51sS9kf52Of5ubbvXCsv/KKy/mWN3aj7/RUdxWOLNDFxVLlV1os8sTn1EsjH+yTUSSedJGeeeaZsu+228tRTT8lpp50mM2bMiP2M60koVzqdKlPVaRVZT5rgJazzzZMs8xkBSDv2R/nY5/m5tu9cKy/8YrL+Uff782Wf6Ixli5YjTCMOnjhxIr+5gJy8TkL98z//s/ziF7+Qk08+WWbMmCEnn3yyHHfccbLnnnvK/PnzIz/nehIK9nMhCcUjlNPxJQhUhf1RPvZ5fq7tO9fKC7+QhLKLL/vEtSRU0e8BEJ1v6TJQFuX+4z/+Q2644Qb5yU9+IiIi3/72t+Xwww+Xk046Sc455xzDpQOKs/WRtVXCMQAAQC/6WoShXgB+cT4JteGGG8o+++wjl1xySdvrd999t4wcObLf+0844QQZN26ciIgMGTKklDKiulR1mgz5NY9j0I6AEC6hvgJuoK/tz5f2q8h2UC8AvzifhBoyZIh0dXXJkiVL2l5fsmSJHHLIIf3eP2XKFJkyZYqIrBseBuhkQ6fpS/ACu9hQt6uGczk/1+orxxomUf/s4lr7FcWW7Ug7DyoAfZxPQgGIl6fTpzMG7GNLAA/9ONYwifoHn8XVb+JfoBzOJ6FeffVVee+996S7u7vt9e7ublm8eLGhUgHu4Cl4AAAAqCriXqBczieh1qxZI3/5y1/k0EMPlVtuuaX5+qGHHiq/+c1vDJYMcAMdLwAAAKqOmBgoh/NJKBGRSy+9VH7+85/LI488IjNnzpRvfetb8g//8A9yzTXXmC4aAAAAAAAAxJMk1K9//WvZeuut5dxzz5Vtt91WnnzySfn85z8vL7/8sumiAQAAAAAAQDxJQomIXH311XL11VebLgYAAAAAAABCDDRdAAAAAAAAAPiPJBQAAAAAAAC0IwkFAAAAAAAA7UhCAQAAAAAAQDuSUAAAAAAAANCOJBQAAAAAAAC0IwkFAAAAAAAA7UhCAQAAAAAAQDuSUAAAAAAAANCOJBQAAAAAAAC0IwkFAAAAAAAA7UhCAQAAAAAAQDuSUAAAAAAAANCOJBQAAAAAAAC0IwkFAAAAAAAA7UhCAQAAAAAAQDuSUAAAAAAAANCOJBQAAAAAAAC0IwkFAAAAAAAA7UhCAQAAAAAAQDuSUAAAAAAAANCOJBQAAAAAAAC0IwkFAAAAAAAA7UhCAQAAAAAAQDuSUAAAAAAAANCOJBQAAAAAAAC0IwkFAAAAAAAA7UhCAQAAAAAAQLsBIhKYLoQpS5culZdeesl0MeCQIUOGyKuvvmq6GIBW1HP4jjqOKqCeowqo5/Cdy3X8Qx/6kAwdOrTf65VOQgFZzZ49W/bdd1/TxQC0op7Dd9RxVAH1HFVAPYfvfKzj3I4HAAAAAAAA7UhCAQAAAAAAQDuSUEAGkydPNl0EQDvqOXxHHUcVUM9RBdRz+M7HOs6cUAAAAAAAANCOkVAAAAAAAADQjiQUAAAAAAAAtCMJBQAAAAAAAO1IQqGyzjrrLAmCQCZNmtR87aijjpJp06bJ0qVLJQgCGTVqVL/PbbTRRnLFFVfIsmXLZOXKlfK73/1Otttuu7b37LDDDjJ16lRZuXKlLFu2TC6//HLZcMMNtW8T0Kmznnd1dcmFF14ojz/+uKxcuVIWLlwoN910k+ywww5tn6OewxVhbfkPfvADmTNnjqxcuVJef/11+eMf/ygjRoxo+xx1HC4Jq+etrrnmGgmCQE4//fS216nncElYPb/++uslCIK25cEHH2z7HPUcrohqy3fZZRf5zW9+I8uXL5e33npL/vKXv8juu+/e/LtvdZwkFCrpM5/5jIwbN04ef/zxttc/8IEPyKxZs+Q//uM/Ij972WWXyZe//GX5+te/LgcddJBsscUW8vvf/14GDlx3Og0cOFD+8Ic/yOabby4HHXSQfP3rX5evfOUr8qMf/UjrNgGdwur5pptuKnvvvbf88Ic/lL333luOPPJI2WGHHWTatGmywQYbNN9HPYcLotryZ555Rk455RT52Mc+JgceeKD09fXJtGnTZOjQoc33UMfhiqh63vDlL39Z9ttvP3nllVf6/Y16DlfE1fN77rlHhg0b1lw+//nPt/2deg4XRNXxD3/4wzJz5kzp6+uTz33uc7LXXnvJueeeKytXrmy+x8c6HrCwVGnZYostgueeey7o6ekJpk+fHkyaNKnfe7beeusgCIJg1KhR/T67evXq4Oijj26+tv322wdr164NDjvssEBEgsMPPzxYu3ZtsP322zff841vfCN45513gs0339z49rNUY0lTzxvLHnvsEQRBEOy1117Nz1LPWWxfstTxzTffPAiCoFl/qeMsrixJ9XzHHXcMFixYEOy+++5BX19fcPrpp7d9lnrO4sISV8+vv/764Pbbb4/9LPWcxfYlro7fdNNNwS9+8YvYz/pWxxkJhcqZPHmy3HLLLVKv1zN/dp999pGNNtpI7r777uZrCxYskDlz5sjIkSNFRGTEiBEyZ84cWbBgQfM9d911l2y88cayzz77FC4/kEaWer7FFluIiMjy5ctFhHoON6St4xtuuKGMGzdOVqxYIY899piIUMfhjrh6vsEGG8jNN98s5513nsydO7ff36nncEVSe37ggQfKkiVL5JlnnpHJkyfLNtts0/wb9RwuiKrjAwYMkH/6p3+Sp59+Wu68805ZunSpPPLII/LP//zPzff4WMe7TBcAKNPxxx8vO++8s/zLv/xLrs8PGzZM3nvvPXn11VfbXl+yZIkMGzas+Z4lS5a0/f3VV1+V9957r/keQKcs9XzDDTeUH/3oRzJ16tTmrRzUc9guTR3/whe+IL/85S9l0003lUWLFsmhhx4qS5cuFRHqONyQVM8nTpwor776qlxzzTWhf6eewwVJ9XzatGly6623Sl9fn3z4wx+W8847T+677z7ZZ5995N1336Wew3pxdXzo0KGy+eabyznnnCPf+9735KyzzpLPfe5zctNNN8nKlSvljjvu8LKOk4RCZey6665y/vnny4EHHijvvfee6eIAWmSp5xtssIH84he/kK222krGjBlTUgmBYtLW8enTp8snP/lJGTJkiJxwwgny61//WkaMGCGLFy8usbRAPkn1fNSoUXLsscfKJz/5yfILByiSpj3/1a9+1fz/J598Uv7yl7/ISy+9JF/4whfktttuK6uoQC5Jdbwxp9Pvfvc7+e///m8REXn88cfl05/+tJx66qlyxx13lFresnA7HipjxIgRss0228hTTz0la9askTVr1khPT4+cfPLJsmbNGtloo40S17F48WLp6uqSIUOGtL3e3d3d/GGzePFi6e7ubvv7kCFDpKurix8/0C5tPW/cxvHxj39cDj74YHn99deb66Cew2Zp6/jbb78tzz//vDz88MNy/PHHy5o1a+T4448XEeo47JdUz//xH/9Rtt12W1m0aFHz7x/+8Ifl//7f/yvz588XEeo57JcnNl+0aJEsWLBAdtllFxGhnsNuSXX8tddekzVr1sjTTz/d9rk5c+bIjjvuKCL+1nHjE1OxsJSxbLnllsHw4cPblkceeSS46aabguHDh7e9N2li8q9//evN17bbbrvQieG222675nu+/vWvWzsxHItfS5p63tXVFdxyyy3B3Llzg2HDhvVbB/WcxeYlS1veujz33HPBf/3XfwUi1HEW+5ekej506NB+f1+wYEFw8cUXB7vuumsgQj1nsX/J055vvfXWwerVq4NjjjkmEKGes9i9pKnjM2fODG688ca2z914443BH/7wh0DE2zpuvAAsLMaWzqcTDB48OPjEJz4RjBo1KgiCIPi3f/u34BOf+ETQ3d3dfM+Pf/zjYP78+cHBBx8cfPKTnwzuu+++4NFHHw0GDhwYiEgwcODA4Iknngjuvffe4JOf/GRw8MEHBwsWLAiuuOIK49vLUs2ltZ5vsMEGwW233RYsWLAg+NSnPhV0d3c3l4033rj5Geo5i0tLax3ffPPNg//6r/8K9ttvv2CHHXYI9t577+C6664LVq1aFXzsYx9rfoY6zuLakvQUyM6n44lQz1ncW1rr+Qc+8IHg4osvDvbff//gQx/6UDBq1Khg1qxZwfz584PNNtus+RnqOYtLS2dbfuSRRwarV68OTjjhhOCjH/1ocPzxxwfvvvtu8PnPf775Hg/ruPECsLAYWzobgbFjxwZharVa8z0bbbRRcMUVVwSvvvpq8NZbbwVTp05texymiAQ77LBDcPvttwdvvfVW8OqrrwaXX355sNFGGxnfXpZqLq31/EMf+lBoHQ+CIBg7dmzzM9RzFpeW1jq+ySabBLfeemvwyiuvBKtWrQpeeeWV4Le//W2w3377tX2GOs7i2pInCUU9Z3Ftaa3nG2+8cTBt2rRgyZIlwerVq4MXX3wxuP766/vVYeo5i0tLWFs+duzY4Jlnngnefvvt4PHHHw++9rWvtf3dtzo+4P/9DwAAAAAAAKANE5MDAAAAAABAO5JQAAAAAAAA0I4kFAAAAAAAALQjCQUAAAAAAADtSEIBAAAAAABAO5JQAAAAAAAA0I4kFAAAQIhRo0ZJEAQyduxY00UJFQRBc7nnnnuMlWPOnDnNcvT19RkrBwAAsF+X6QIAAACY8olPfEK++MUvyg033CAvvfSS6eJkdv/998vkyZNl0aJFxspw5plnypZbbin/+Z//KZtssomxcgAAAPsNEJHAdCEAAABMGDt2rNxwww3S09Mjf/rTn9r+NmDAANloo41kzZo18v777xsqYbQgCOSGG26Q4447znRRRERk+vTp8uEPf1h22mkn00UBAACWYiQUAABAiCAIZPXq1aaLAQAA4A3mhAIAAJVUq9XkhhtuEBGRer3enNfo+uuvF5HwOaFaXzvppJNk7ty58s4778gTTzwhX/jCF0REZK+99pI777xTVqxYIa+++qpcfvnl0tXV/7rfzjvvLDfeeKMsXLhQVq9eLX19fXLRRRfJpptuWnjb+vr6ZPr06fLxj39c7rnnHnnzzTdlyZIlcskll8gGG2wggwYNkosvvlgWLFgg77zzjvzpT3+S3XffvW0dgwYNklqtJnPnzpW33npLli9fLk888YRcdNFFhcsHAACqiZFQAACgkm699VbZdttt5cQTT5Qf/vCHMmfOHBERef755xM/e8opp8jgwYPlJz/5iaxatUq+/e1vy2233SZf/epXZcqUKXLzzTfLb3/7WznssMPk29/+tixdulR++MMfNj+/9957y3333Sd///vf5dprr5VXXnlFPvGJT8i3v/1tOeCAA2TUqFHy3nvvFdq+7bffXu655x751a9+Jbfccoscdthhcvrpp8t7770nw4cPl0022UQuvPBCGTJkiJxxxhny29/+VvbYYw8JgnUzNVx11VXyb//2b/Kzn/1MLr30Uunq6pJddtlFPve5zxUqFwAAqLaAhYWFhYWFhaWKy9ixY4MgCIJRo0b1+9uoUaOCIAiCsWPH9nttwYIFwRZbbNF8/WMf+1gQBEGwdu3a4Kijjmpbz5///Odg4cKFba899thjwZw5c4LNNtus7fUvfvGL/b4zagmCILj++utD/9bX1xcEQRB85Stf6VeWtWvXBr/97W/bXh8/fnwQBEFw2GGHNV977bXXgj/84Q+p9+X06dODvr4+48eUhYWFhYWFxd6F2/EAAAAyuuGGG+SNN95o/vtvf/ubrFixQhYuXCi33XZb23tnzJgh2267rXzgAx8QkXW3633iE5+Q//mf/5FBgwbJ1ltv3VxmzJghK1eulMMOO6xwGRcsWCC33HJLv7IMHDhQJk2a1Pb6Aw88ICIiu+yyS/O1FStWyPDhw2X48OGFywIAACDCnFAAAACZvfDCC/1eW758ufT19YW+LiKy9dZbi4jIHnvsISIiP/jBD+TVV19tW5YtWyabbbaZdHd3Fy5jXFk6/9ZZRhGR0047TQYPHixPPvmkPPfcczJlyhQZM2aMDBgwoHDZAABANTEnFAAAQEZr167N9LqINJM3jf9ecsklMm3atND3NpJCRcSVJepvrQmmqVOnyoc//GH5/Oc/L6NGjZJDDjlEjj/+eLn//vvlkEMOkTVr1hQuIwAAqBaSUAAAoLIak3CX6dlnnxWRdYmge++9t/Tvz2L58uVy0003yU033SQiIhdeeKF897vflSOPPLLfrX4AAABJuB0PAABU1sqVK0VE5IMf/GBp3/noo4/K3/72N/nWt74lO+20U7+/b7DBBjJ48ODSyhNm4MCBsuWWW/Z7/dFHHxWRcvcXAADwByOhAABAZc2ePVvWrl0r//mf/ymDBw+Wt956S/r6+uSRRx7R+r3HHHOM3HffffLEE0/IT3/6U3nqqadk0003lZ133lm+9KUvydlnny0/+9nPtJYhzuabby6LFi2SqVOnyqOPPipLly6VnXbaSU466SR5/fXX5fbbbzdWNgAA4C6SUAAAoLLmz58v3/zmN+W73/2uXH311bLRRhvJDTfcoD0J9fjjj8unPvUpOfvss2XMmDHyrW99S95880158cUX5YYbbjB+m97bb78tl112mRx88MFyyCGHyGabbdZMSl1wwQWyaNEio+UDAABuGiAi5U+GAAAAgEKCIJCbb75Zxo8fL++++668+eabRsqx5ZZbSldXl/zud7+T7bbbLvQWQwAAABGSUAAAAE5qnVT9j3/8oxx66KFGyjFnzhzZfffdRUTkxRdfJAkFAAAicTseAACAgw455JDm/7/22mvGynHcccfJBz7wAREReeedd4yVAwAA2I+RUAAAAAAAANBuoOkCAAAAAAAAwH8koQAAAAAAAKAdSSgAAAAAAABoRxIKAAAAAAAA2pGEAgAAAAAAgHYkoQAAAAAAAKDd/w9ImZlxJ2fTOwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKEAAALaCAYAAADp8kAfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACm5ElEQVR4nO3de/wd0734/3fiQ1C3VOQTx6XVukdvlErQfFKXQ/s9Ub2cX6vHCT1EXdI6BymOdn/So/iiDkKRVKnW0fYobbQEJbskcUlblyIRlw8SuSINQSJifn/ku3f23p+5z1qzLvN6Ph7zIPuz9+w1M2vWeu/3rFkzQEQCAQAAAAAAADQaaLoAAAAAAAAA8B9JKAAAAAAAAGhHEgoAAAAAAADakYQCAAAAAACAdiShAAAAAAAAoB1JKAAAAAAAAGhHEgoAAKAiarWaBEEgo0aNans9CAKZPn26oVIBAICqIAkFAAC8EgRB2/Lee+/Ja6+9JtOnT5exY8eaLh4AAEBlDRCRwHQhAAAAVAmCdaFNb2+viIhsuOGGsvPOO8tRRx0lG220kVx55ZUyfvx4gyU0Z+utt5YhQ4bIyy+/LO+8807z9SAIpF6vy+jRow2WDgAA+I4kFAAA8EojCTVgwIC210eOHCn333+/DBgwQD760Y/Kiy++aKB0diIJBQAAysDteAAAoBJmzZolc+fOlYEDB8o+++zT9re9995bLrvsMnnsscfktddek3feeUfmzZsnl1xyiWy11VZt7z3ssMMkCAI577zz2l7v6elp3gK4/fbbt/3tl7/8pQRBIDvttFNiOYcOHSoXX3yxzJ07V1auXCnLly+XuXPnyvXXX9/2+VGjRkkQBFKr1WT//feXe+65R/7+97/LG2+8IdOmTeu3jSLRc0JFOeOMM2Tt2rUyY8YMGTx4cPP1/fbbT/73f/9XFi1aJKtXr5aXX35ZrrnmGtl22237rWOnnXaSa6+9Vp599ll5++235bXXXpMnnnhCrr76avngBz+YqhwAAMAPJKEAAEDlrFmzpu3fJ5xwgnzta1+TZ555Rq6//nq5+uqrZdGiRXL66afLzJkzZbPNNmu+94EHHpDVq1fLwQcf3LaO1n93/m306NHS19cnfX19seXaZJNNZObMmXLGGWfISy+9JFdffbVcd9118re//U2OPPJI2XPPPft95jOf+YzU63VZvXq1XHXVVXLnnXfKwQcfLA888IAceOCBqfdJqwEDBsjll18uF198sdx2221y8MEHy/Lly0VE5LjjjpOZM2fKEUccIdOnT5fLLrtM/vznP8vxxx8vf/7zn2WHHXZormfYsGEye/ZsOe644+Spp56SK664Qn7+859LX1+fHHPMMaFJKwAA4LeAhYWFhYWFhcWXpaHz9YMOOih47733glWrVgXDhg1r+9uOO+4YDBw4sN9nvvnNbwZBEAQTJkxoe/1Pf/pTsGbNmmCLLbZovjZr1qzgL3/5S7Bs2bLgxhtvbL7+8Y9/PAiCIPjJT36SWPb/83/+TxAEQXDppZf2+9uGG24YbLbZZs1/jxo1qrmtp5xyStt7x4wZEwRBEMybNy8YMGBA8/VarRYEQRCMGjWq3z6bPn16ICLBoEGDgltuuSUIgiC44oor2j6/yy67BKtXrw6effbZ4B/+4R/a1vG5z30ueO+994Jbb721+dqpp54aBEEQfPvb3+63PZtuummw8cYbG68vLCwsLCwsLOUtjIQCAABeqtVqUqvV5LzzzpNf/vKX8sc//lEGDBggZ5xxhixevLjtvS+//LK8//77/dbx05/+VFasWCH/+I//2Pb6vffeK11dXc3b2jbbbDP59Kc/Lffcc49Mnz5dPve5zzXf2xgVde+996Yue+uk4Q1r1qyRlStX9nv92WeflR//+Mdtr02dOlXq9brssssuctBBB6X+3sGDB8sf//hHOeqoo2TChAny7W9/uznHlojISSedJBtttJF85zvfkYULF7Z99r777pOpU6fKP/3TP7WNHIvanrfffltWrVqVumwAAMB9XaYLAAAAoEPj6XgN77//vvzbv/2b3HDDDf3e29XVJSeeeKJ87Wtfkz333FO23HJL2WCDDZp/32677dref99998nEiRPl4IMPlttvv11GjRolG264odx7773y4osvyle/+lXZfffdZe7cuc2E1H333ZdY5j/96U+yYMECOeuss2TvvfeWO+64Q2bOnCmPPfZYaJJMZN3tga2JooZ6vS49PT3yqU99Su6///7E7+7u7paZM2fKRz7yEfmXf/kXufnmm/u9Z8SIESKybj6qfffdt9/fhw4dKl1dXbLrrrvKX//6V5k6daqcf/75ctVVV8k//uM/yl133SUzZ86Up59+OrE8AADAPyShAACAlxpPx9t0001lxIgRct1118k111wjL730kkyfPr3tvb/61a/kS1/6kjz//PPyu9/9ThYvXiyrV68WEZHTTjtNBg0a1Pb+hx56SFauXNkc5XTwwQfL6tWrZcaMGc2n7h188MHy7LPPymc/+1l56qmnZMmSJYllfvPNN2X//feXiRMnypgxY+Twww8XEZFly5bJj3/8YznvvPPkvffea/tM1Hobo7223HLLxO8VWTd/0xZbbCELFiyQGTNmhL5n6623FhGRCRMmxK6rMRLq5Zdflv322096e3vl8MMPly9/+cvN1y+55BKZNGlSqrIBAAB/GL8nkIWFhYWFhYVF1RI1J9THPvaxYM2aNcHLL78cbLLJJs3X99lnnyAIguDuu+8ONthgg7bPDBgwIHjrrbeCvr6+fuu78847gyAIgu7u7uDxxx9vzqkkIsHLL78c3HbbbcGIESOacyvl2ZY999wzOPXUU4M5c+YEQRAEP/jBD5p/a8wJdd1114V+tjH/03e+851+r0XNCfWNb3wjWLNmTdDX1xfstNNO/dY5e/bsIAiCYPPNN8+8LRtssEGw9957BxMmTAjmz58fBEEQfPOb3zReX1hYWFhYWFjKW5gTCgAAVMLf/vY3mTJliuywww7y7//+783Xd955ZxFZN4/S2rVr2z6z3377yaabbhq6vsYcT1//+tdlr732apvz6b777pOenh459NBD296b1dNPPy1XXnllcz1f/OIX+73nwAMPbI76atXT0yMiIo8++mjq77vpppvka1/7mvzDP/yD3H///bLLLru0/f2hhx4SEck0z1TD2rVr5a9//atcdNFF8vWvf11EwrcHAAD4iyQUAACojPPOO09WrVolZ5xxhmy11VYiIs3b5xpJm4ZtttlGrrrqqsh1NeZ4Ouuss2TgwIH9klBbbbWVnHzyybJ27Vqp1+upyrfnnnvK0KFD+73e3d0tIusm8+606667ysknn9z22pgxY6Snp0eeffZZeeCBB1J9d8NvfvMb+cpXviJDhgyRP/3pT7Lnnns2/3bllVfKu+++K//93//dL0ElIrLhhhvKgQce2Pz33nvvLVtssUWm7QEAAP5iTigAAFAZCxculGuuuUZOO+00mTBhgpxzzjkye/ZsmTFjhnz5y1+WmTNnyowZM6S7u1uOOOIIeeaZZ+SVV14JXdejjz4qr7/+unR3d8sbb7whjzzySPNvjYRUd3e3zJ49W1asWJGqfIceeqhcfPHF8uCDD8q8efNk6dKlsv3228uRRx4pa9eulYsvvrjfZ+6880750Y9+JEcccYQ8/vjjsvPOO8uXvvQleeedd+Sb3/xm6KTlSW6//XY58sgj5bbbbpN6vS6HHHKIPPHEE/LMM8/IN7/5TfnpT38qTz31lEybNk3mzZsnG264oey4445y0EEHybJly2SPPfYQEZFjjjlGTjzxRJkxY4Y8//zzsnz5cvnoRz8q//RP/ySrVq2Syy67LHPZAACA24zfE8jCwsLCwsLComqJmhOqsQwdOjRYuXJlsHLlymDo0KGBiASDBw8OrrrqqqCvry945513gueeey744Q9/GGyyySZBX19f6JxQIhLccsstQRAEwe9///t+f5s7d24QBEFw4YUXpi777rvvHvzoRz8KZs+eHSxdujRYtWpV0NfXF/zv//5vMGLEiLb3NuaEqtVqwf777x/cc889wYoVK4I33ngjuOuuu4JPf/rT/dafNCdU5/tHjRoVvPHGG8Frr73Wtr699toruP7664MXX3wxWLVqVfDaa68Ff/vb34JrrrkmGD16dPN9++23X/DjH/84eOyxx4LXXnstePvtt4Nnn302+OlPfxoMHz7ceF1hYWFhYWFhKXcZ8P/+BwAAAA4ZNWqU1Ot16e3tlYkTJ5ouDgAAQCLmhAIAAAAAAIB2JKEAAAAAAACgHUkoAAAAAAAAaMecUAAAAAAAANCuy3QBTFq6dKm89NJLposBAAAAAADgjQ996EMydOjQfq9XOgn10ksvyb777mu6GAAAAAAAAN6YPXt26OvMCQUAAAAAAADtSEIBAAAAAABAO5JQAAAAAAAA0I4kFAAAAAAAALQjCQUAAAAAAADtSEIBAAAAAABAO5JQAAAAAAAA0I4kFAAAAAAAALQjCQUAAAAAAADtSEIBAAAAAABAO5JQAAAAAAAA0I4kFAAAAAAAALQjCQUAAAAAAADtSEIBAAAAAABAO5JQAAAAAAAA0I4kFAAAAAAAALQjCQUAAAAAAADtSEIBAAAAAABAO5JQAAAAAAAA0I4kFAAAAAAAALQjCQUAAAAAAADtSEIBAAAAAABAO5JQAAAAAAAA0I4kFAAAAAAAALQjCQUAAAAAAADtSEIBAAAAAABAO5JQAAAAAAAA0I4kFAAAAAAAALQjCQUAAAAAAADtjCWharWaBEHQtixatKjfe1555RV5++23Zfr06bLnnnu2/X2rrbaSG2+8Uf7+97/L3//+d7nxxhtlyy23LHMzAAAAAAAAkILRkVBz586VYcOGNZePfexjzb9NmDBBTj/9dBk/frzsu+++snTpUrnnnntks802a77nf/7nf2TvvfeWww8/XA4//HDZe++95ec//7mJTQEAAAAAAECMLpNf/t5778mSJUtC/3baaafJhRdeKLfeequIiIwdO1aWLl0qRx99tEyePFl23313OeKII+SAAw6Qhx56SERETjzxRJkxY4bsuuuuMm/evNK2A3BZrVbr99rEiRMNlAQAAAAwh7gY0M9oEuojH/mIvPLKK7J69Wp5+OGH5ZxzzpG+vj7ZaaedZNttt5W77767+d5Vq1bJ/fffLyNHjpTJkyfLiBEj5M0335RZs2Y13zNz5kxZuXKljBw5kiQUkFJvb2+/1yZOnEgnDAAAgEoJi4s7EQ8DxRhLQj388MNy7LHHyty5c2Xo0KFy7rnnyqxZs2T48OEybNgwEZF+o6SWLFki2223nYiIDBs2TJYtW9ZvvUuXLm1+PswJJ5wg48aNExGRIUOGqNocGEbCRK1arRaZnAIAAACqojMmJh4GijGWhJo2bVrbvx966CF54YUXZOzYsc3b63SYMmWKTJkyRUREZs+ere17UC4SJmqluQoEAAAAAEAWRm/Ha/XWW2/JU089Jbvssov89re/FRGR7u5umT9/fvM93d3dsnjxYhERWbx4sWyzzTb91jN06NDmewCTGJ0F31HHAQAwx+Z+2OayATBrgIgEpgshIjJo0CDp6+uTq6++Wv7rv/5LFi5cKJMmTZILLrig+felS5fKmWee2ZyYfM6cOTJy5Eh58MEHRURkxIgRMmvWLNltt91SzQk1e/Zs2XfffbVuF8oRBP2r8YABAwyUZL0yy1Skow8rZxTT+xR2sfG8AwCgKmzuh02UTUXiK01cbMs+BmwXlW8xloS6+OKL5fbbb5eXX35Zhg4dKt/73vfks5/9rHzsYx+Tl19+WSZMmCDnnHOOHHfccTJv3jw599xz5bOf/azstttusnLlShERueOOO2T77bdvzvE0efJkefHFF2XMmDGpykASyh82dsJllqnId4V12FG34zXWydUtiNh53gEAUBU298MmyqbiO1tj3Lh4mFgYSBaXbwlMLDfffHPwyiuvBKtXrw4WLFgQ3HLLLcEee+zR9p5arRYsXLgweOedd4J6vR4MHz687e9bbbVV8POf/zxYsWJFsGLFiuDnP/95sOWWW6Yuw+zZs41sO4v6JUyVyqT6u8LUarXUf2epxmLjecfCwsLCwlKVxeZ+2ETZyoyHiYVZWJKXqHyLNbfjmcBIKH/YeDUicGQkVJik/Rn2fSJMEF81ZdZxAADQzuZ+2ETZyoyHo2JhRkkB61l3O54NSEJBpyIdUNbPlt3RR3W8YWwJhqAeQRYAAObY3A/nLZvqeU7LvADc+D6bk4NAmUhChSAJBVtl7bxIQgEAAMB1RWJaklCAXaLyLV0GygJAsaiJE1vZfLUMAAAAKCIpHiYWBuzASChGQsFCOq6gxK0za6dcq9VSJb5avwMAAACIo3MUUdS68ySnomJhRkIB6zESCrBEGVdhwr4jTtYJxaP+ljYxBQDIpmpX8Ku2vUBRrp4zWWNWHfI8WMeFfVsGV+sdzGIkFCOhEENHw5rm6kjRKyhp52xqdLpRV3KyoiMCAD2qdmW9atsLFOXqOZMmZtU9Eirs9d7e3twxbJXiYVfrHcrBxOQhSEIhSdm3xTUU7byyTBwehQ4EAOxRtUC/atsLFOXqOROVAGqlKoET9V1RI/ld2H+muVrvUA6SUCFIQiGJqSRUXo3kVdJtcXEdruoyAQCKq1qgX7XtBYpy9ZwpIy5u6OnpkXq9zrymCrla71AOklAhSEIhiWtJqLQjoKKGHne+BwBgh6oF+lXbXqAoV88ZExORZ4mXEc/VeodyMDE5gKaoSSCZWBwAAAC+smEidKDqSEIBJUtK9JQxmWFUGXydNBEAXFe1iwRV216gKFfPmc5y9/T09IuFVcanru4nW7E/kQe343E7nhVsfYqEiXLlHdZaq9UydQR5Hkebpgyq1wnAT7QXAIBORW/vau1bTMfFQNUxJ1QIklD24H7i9fLui6j726MmIW+sU+UPQY4jgLRoLwAAnYr2DVmeEN2IjxsTlrciAQUURxIqBEkoe/j8YyRrkkdlEqq3t1cmTpwYu06V+97n44hojGhBHrQXAJDMhT42bxnDPhd34TSNqHg4br30R4AeJKFCkISyh8+Nf9ZtU5mESjPayaUklAuBWBX5fP5CnzIfyy1CWwHATS70sapH8edZV9w6e3t7Y0c7ubCPAReRhApBEsoePjf+NiShdHxO97pMrB/5cFyQh4nHcgOAa1xoz2xPQiWtx4V9DLgoKt/C0/EAA+Ke+sFTJgBgPUY1AUA039pI4mDAf4yEYiSUFXzrQFulucrTmLupiLz7UOXVH93HkStVduK4II+07UWe+kWdBOCLpPbMhvbOhtH4DY2+JcvcUjbsQ8BH3I4XgiQUyqBjqLFKaX8Iqn5fHgQJduK4IIqK9oAkFIAqIwmlv0wqY1efL6wDWZGECkESCrrVajXp6elpe63z3w22/0BK25nbElCgPGH1vF6vE3RByTlLEgpAVaXpX21o76ISL0kJGR9jRhuOB2ALklAhSEJBt7SjoETaOygbr6LYkISycb9gHYIuhDGVhKKtAOCDNO2fzf1vnlFcnbfRuTYiyebjAZSNJFQIklDQLapzTbpP3cYOLE2ZarVapnvw4Q8b6yzMU1EvSCgBqKoqJqHi3u8Cm48HUDaSUCFIQkG3qI7Ihfv7O+UNhMLeB//YWGdhHvUCAPIjCWXPtqRl8/EAyhaVb+kyUBag8nj8LAAAAIpyOabsLHvabWGELOA2RkIxEgoa2fC0EFUddZr1RN1+SGDgP678IQw/FAAgP9f71qzl1z3/aBl9kuvHDFCJkVCAATZcnQorQ54ON+4zYZ16ke+Ce2yo67AP5z8A5Od632pb+VXFxK3iYmAA4RgJxUgoWChth5am4yzjikzcPf1c/QEAAECSpJFKjb/nfQiOjpjYx3mtAFUYCQVYJKmTDUsuhXVyNo8ysO3qF4BycAseAJTL1XY3a7ldiS1dKSdgCiOhGAkFjaI61zxXYmyYX8rkd8Berga/0IP2AAD0UBlXlklVuaPmHm2sL0lZI6Fs2veASVH5FpJQJKGgUVTHVGYSavr06f1eGz16dOLnsqADrjaOP1pRHwBAD5VxZZlUlbvohOQ9PT3N1+r1uogUv2hm+74HTCIJFYIkFHSzIQnFSCjoxvFHK+oDAOhBEsq+WNj2fQ+YxJxQALRpDIVuvcLUuOrEbVkAAADwUdj8T0xTAMRjJBQjoaCRyitWeTu0Mq/QcDWomqKOO0FYNdEOAIAePo2E6u3tzfyUOxdiYRPfB9iK2/FCkISCbjYEC6a/q7e3l8SD52yo57AHyUcA0MPViz5h5e6UZYJxFd9PEgrQj9vxAAPKfESrrQEISSj/8ShitOJ8BwA9ovpb29vdznKHbYeqbQiLhwHYhZFQjISCAWU+IrZIcirrZ6OudHH1p5q4EggAgD9UXfAse6JwFUmvLNtO/AOsw+14IUhCwZSyklBFRyFlLWetVst8fz/8RRAGAIA/VPXrLj6tLst6iX+AdUhChSAJBVPKSkIVXW+ectLxooG6AACAP0hCpVsv8Q+wDnNCARZxfQ4dW+efUsHnbSub6/XcZtRTAICrfIkPOvti+mEgHUZCMRIKnsg7Eirux2yep565/uOYq1dwAfUUAFA2F/qevGVMil/TPOHPl1gYUIXb8UKQhIJP8s7HFNdZZ0lC+fIUPBcCLIB6CgAomwt9T94yJn0uTRKqEYf7EA8DKpCECkESCi5Jc1VF9RxOUd/p81PwigZYXP1CGVz4IQAA8IvpGEdXLJz0uVqtJj09PW1/6/x31u8DqoAkVAiSULBB2g49TaeaJzhQlbgSUfMIXNOK/rgnOQDdeAolUF2mkwCASbpi4aR1pxkF1aq1j+b89BftcTKSUCFIQsEGaZMWNjztoyHqR3AY127TK9qhkISCbj7fDgsgHn0MqszUU/Wi+t3W/0ahf/YX7XEyklAhSELBBi4moaI+F6VKDTIdEnSjjgHVxfmPKrMpCZVllBTnqJ9oj5NF5Vu6DJQFJcg7moNhhW4qctx8eUwuAAAAkAfxMFAeRkJ5OhJK15MhoJ6KkVAmjltY4iuqA69SHeIcgk7MBwVUG33MOlw0raa09V91/Uj7EB/i4GqhPU7G7XghSEKp+xzyU9Gh2nLcfH5qXloExtCJcwyoNlv6e9PYD9UU9pS6er2u7Al5cd/bKe1DhIp+N+yQ9uI7x7odSagQJKHUfQ7pdTZiPT09Uq/X217LmrSw5bgxSgPQi0nJgWrjQsc6tsQ9NnC1Tuh4il2W9+hAHOyvuMnpW7lw7pWJJFQIklDqPof0dOzjso9bXODgajAEuIA2GgBoC1u5ui90/lYpY59ExbvEwX5y9TwzjSRUCJ+TUExMbi9XklAu3P4HVA3nHgDQFrZydV+4koSKiodd3e/IJ+p489s5HkmoED4noWAvV5JQtk2EDoBzDwBEaAtbubovXElCRa3L1f2OfKgH+UTlW7oMlAWAYjY8Vrb1SgBXAAA9bDjXAcA02kLEMVU/OkfFEA8D4RgJxUgolMyVjHncsNOkzt3G7QEAwBbcwgFVXIkrO+Utd9nnTtSE1GkSXS4cB6yXZ85bV8+/snA7XgiSUDAh7eNlTcsy7DTsfQAAIBw/XPojMZePi/vNlVhYJPxcTavq57Rr8rTLtOXxSEKFqGISysWOykcuNFgkofxGWwAA6qVtW12IA8rGPqkOl451mrg3amSUrduEcGnrZWs7z3GPRxIqRBWTUC41+j5z4ThkGXbaybZtQX8u1EFUg40JURvLBDekbVtpg/tjn1SHrcc6rO1vFXULHhNU+6FI+91aN4gX1iMJFYIk1Do0kOVz+TgkNbwiNL4ucLkOwi821kUbywQ3VDUJpSJx69s+QbQix1rnRYKkckVdiG3MmaqrXChHVdtvnUhChSAJtQ4nTflcPg4ulx3rcRxhCxvroo1lghuq+iNGxfb4tk8Qrcix1llPiiSh4L6qtt86ReVbugyUBQAAAKgsU4+QB3xUq9WMjTriXPYHx7I8jIRiJBSZWwNcHrJLHfIDxxG6uTxBs41lghuqWndUbLfLsRGyKXKss4xGyvo9eUZCVeH8RjvqQXrcjheiikkoOngU5dJjdRGNtgC6uTys3cYywQ1VbVs5Z1CWLEmorPUy6f2d53dPT4/U6/W216pwvlddVdv5PEhChahiEgrl8rWRItiEiL/12zW2Hoc8jzpuMF1+G8sE2Iy4QB1f2h9d26EzCaV65BRQdSShQpCEgm5RT5JzMZhoRacLEeqBLWw9DraWC4B6viRObBDXdrq0n9M8TVkke/lrtVroekyMtKWfA+KRhApBEgq6ZX2KhivBBZ0uRPyuB66ciyL2Hgdby6WKS3UEgDvi2s6i7WqZ7VZUDNwp7nY3kfDy2TLnoO/9HFAUSagQJKGgW9YklCudmSvlhF4+1wOXts3WstpaLlV83z4AZuhMQpXZbuVJQqkuH0kowKyofEuXgbIAkPCrOADgCx51DABIUqvVtI3Goh8C7MRIKEZCQaO4kVB5rhAVoXIINrehQMTvK4AubZtLZfUJ+x2ADlUbCdVaBt3lUx2/Eg8D8bgdLwRJKOgWN3li2UkofjBBNZ/rlEvbRhBshkt1BIA74tp0l5JQYdsRNTIpSxKqSJ9Huw2Ui9vxoB0/hPrTsf3sZ9gizzB36q967D8A8Edcm+7S7WVR21FkG6Iu7tIPAm5hJBQjoZTh6kI2eR9dm3c/c3xgA1fqIckyJKGOAHCNDe1WXByQVL6sD/zJ8t0A1ON2vBAkodSiYc8mbyCgKwllQ2AC/9FOAIBfiB+Qherb6USKJ6Gow4AeJKFCkIRSix+X5dCVhOL4oQzUMwDwC+06yqIrCUUdBvRgTigA8BRX8AAAAAC4gCQU4JCwZAPAJJ0AAKCKXJqsHcA6JKGgDJ2Afib2MaNsoBLtBAAAUKWMmJRYGFCLOaGYEwoWiursitwLn+eJI9wn7waOEQDAFPogd7iQTIkrY9G6liW+Zt5UoDjmhAIMy9Lxq769Ks13M0IFsIsLPxYAgPjBHS7cvm+ijNRhoFyMhGIkFEqS5SpKllFJvb29iZ1z0nfrvOoE/UhW+IlzD6gm2nTo4kK/ElfGoudG3njYhf0GN1StfY/Kt5CEIgmFkuhKQqXpBIsMM6bjBczg3AOqiXMfurhQt3SWMW887MJ+gxuqVpe4HQ/wAMOFAQAAADUaI1N8Ho0C2IYkFOAQEx1kkcRX1YacAgAAwB2NODcuPuUiMKAWSShAo7AkTBo2dXZFkkYuTIAJM0hQAgCQTdG+03R86eqDcohPALWYE4o5oaBR1ETiDWV1ajoePZsmkKjafc9Ij7qRjEQdUE20j4jiet0wXf6w728tR9by0U8jK9PnQNmYmDwESSjoZktDE5cMy/vUjzSfsWX7YR/qBgCE44ctorjed5ouf1ISKuu5Z3p74J6qte8koUKQhIJutnROqjvdqHV2DqEOG1JN5wwRe84NAABc4Xrfabr8SRdlVa6vlc9JBiAOSagQJKGgm+nONq4cDXnLE7fOOC4FS9DHlnMDAABXuN53mi6/6u9PGwu7dIwAlaLyLUxMDlhI9VDNxlUZE5M92jjBJAAAAOxTtduVgCpiJBQjoaBR3o5U15Uilevl6g+KIMgEACAb1/tO0w+1YSQUUC5uxwtBEgq2siUJFRcshP2NOaAAAACQl41JqKh4uPP1qNH/xMKoKpJQIUhCoUxZrl7p6oA7y9DT0yP1ej2yTFnLYfpefwAAALhLZyyZNpnUeD1rmaJGRhELo6pIQoUgCYUyZelUy0rmJH0PSSgAAACUxUQsGfedtVot9Uj/qKfluXTLJKASE5MDDjE5mXetVqOzBAAAQOlse6BN0fIQUwP9MRKKkVAoiY2jhJKGDTMSCgAAAD6Li1+z3GJHHAy0YyQU4BBXn35i29WrqnG13gAAykE/AZu5Xj+Jg5GG6/VcBUZCMRIKGrU2MlmeHGdyTqjW7+KKjls4XgCAOPQT7vPpB2yap8uVUT+zjoRinicUUaV2mInJQ5CEgm5RHVdD1qfjqQ48kiZbrFIj6QOOF6CPTz/8UF30E+7z6RhGXQxt1bptutrhrEkoV/c37FClOkUSKgRJKOiWt5GJ+pyORisu4dXT09P2er1e50eXxarUqQFl4/yCD6jH7vPpGGZNQuna9qSn43UiFkYRPp3DSZgTCqiIrJ1l1P3rYa+PHj06b7G8Q1ACAPAFfRpcVrT+xs3lxHmAslSpHWYkFCOhoFHeTHdUI5RmfUm3ALauL06VsvR52Lh/qtR5AWWz8ZwHsogb4Uz9dodPxypNzNoax6i6U4B4CSZ11r+enh6p1+vG5kTTidvxQpCEgm6qA4W8SagwSeXwKcjRgf0DVAvnPFzHvDd+8OlYZd0WVUkon/Yh3Bf32831esnteIAB9XrddBEA7biiCABAOeJuHbNF2rjAhW0BoB5JKECjzmHvIus65rw/0OmsYaM8t3sCrqH9BWCCixd64uKCIttDOwz4gdvxuB0PGkUNr9Q5tFLV7XhpgwQXgyMVGMq9HvsCAPIrqx/ldjw3uXhsyq5rtt2OV9XYGPlwOx6cQyOHTmFXifJcOVJ9Vcq3esnVOACACjaMJqVPg8tsq79R5fEtFoY+ttVp1RgJ5fhIKBevjlSJiZFQYXQmK1WNvIK7aIcAIL+y2lAuXLrJxT7W9lF3Os+FWq0WmUCw/bjBDJ/bZuufjnfWWWfJBRdcIFdeeaWMHz+++XqtVpNx48bJ4MGD5eGHH5ZTTjlFnn766ebft9pqK7niiitkzJgxIiIydepUGT9+vKxYsSLxO0lCQbeojsiGq55h8jSCJKHgc+cJALoRyyFOmvphWz8cV56w7WmNi12PH3y+tQrIKi7fEphePvOZzwQvvPBC8NhjjwWTJk1qvj5hwoTgjTfeCL70pS8Fw4cPD371q18Fr7zySrDZZps133PHHXcETz75ZLD//vsH+++/f/Dkk08GU6dOTfW9s2fPNr7tRZcwpsvEknyMbD1uecrl0vaxsLCwsLDYttBnssQtaeqHS3XI93jR521jYcm6ROVbjM8JtcUWW8hNN90k3/zmN/tlzU877TS58MIL5dZbbxURkbFjx8rSpUvl6KOPlsmTJ8vuu+8uRxxxhBxwwAHy0EMPiYjIiSeeKDNmzJBdd91V5s2bV/r2AJ1UzdEkYt+VLgAAAOjj29wwrduTZ9uIhQH3GU9CTZ48WW655Rap1+ttjcpOO+0k2267rdx9993N11atWiX333+/jBw5UiZPniwjRoyQN998U2bNmtV8z8yZM2XlypUycuTI0CTUCSecIOPGjRMRkSFDhmjcMkA9G2/jU5lkg38IFgEgHn0m4nT2mbVaLbRvtVlULJCn7tsYCwPIxmgS6vjjj5edd95Z/uVf/qXf34YNGyYiIkuWLGl7fcmSJbLddts137Ns2bJ+n126dGnz852mTJkiU6ZMEZF19yi6jsDFfrYeo7QBTOv7wjp5On7EIViEaSRCYTvqI7KwNa6M43IsoKIPcfGYAToZS0Ltuuuucv7558uBBx4o7733nqliOM+VBhz2Sdsh5gkcGn9v7bgb/1/VOssPYcAMl3/8AADMytqH0OcAyYwloUaMGCHbbLONPPXUU+sL09Uln/3sZ+Vb3/qWDB8+XEREuru7Zf78+c33dHd3y+LFi0VEZPHixbLNNtv0W/fQoUOb7wFsZOsVkaT79Buvpe1M6YjXY18AAAAdbI0rk6gqd61WsyamsqUcgM0GyLoZyku35ZZbyvbbb9/22vXXXy/PPvusnH/++fLUU0/JwoULZdKkSXLBBReIiMigQYNk6dKlcuaZZzYnJp8zZ46MHDlSHnzwQRFZl9yaNWuW7LbbbokTk8c9MhBQJVD46GWVo2nCytWaZAr7e0Pa8qvcdtdVdV9UdburxOQovzTfTR0E4BMX2zTVsXBY8qroPojqT1zc34AtovItxpJQYaZPny5PPvmkjB8/XkREJkyYIOecc44cd9xxMm/ePDn33HPls5/9rOy2226ycuVKERG54447ZPvtt29ONj558mR58cUXZcyYMYnfRxIKZbC180pKMpGEUquq+6Kq210lJo9xmu+mDgLwiYttmuoy69gHUet0cX8DtojKtxh/Ol6ciy66SDbZZBO56qqrZPDgwfLwww/LYYcd1kxAiYgcffTRMmnSJLnrrrtERGTq1Kly6qmnmipypTHnTThXh0jn4drTWqBfleo/AAC6udivuljmPPgtBKRj1UiosjESSi2uFJRDVQfXWE/UkOakv4eJGz2V9FnfcX7AV7aPhOJHAQD4JWpKiSJtu4qRUMR6QDsnR0IB6E/VBNeNz0Rdncq6zqhRUFW5+pWE/QCYQcIJsAuJYehQNAkVt940uBsASI+RUIyEUobsfzlsvK8+apLIPOsC4BbbR0Khmkh02IvzFkXpmJw86YE9YWUIe6/KMlUF7bW/nJiYvGwkodQiqOhPR6Oqej+rKKOKScwBuMn2p+OhmohJ7MWxyc71ts6leDhtcivNFBRFy1QVtAn+IgkVgiSUWjo7SFc7Xx0dpI7H0hYV1RHrGhoNAEAcftTYi2OTnev7TGX588xZmkXasqZJQhEHp+N6/UY0klAhSEK5w9XGqYxb54quUwVbywUAqCZX44Yq4Nhk5/o+U1l+3aPvVSahXDpGJrlevxGNickBTzHhNQAAAKqqXq+bLgKADEhCAY6zdZhvvV6XWq1mbfkAAED5fLx45uq0Eb7o6ekxXQQRWV+3G+VprRfUB2A9bsfjdjwnuDpMM+5JG63Sdky27gfd9+fDfVUL0Ku2vYBtOAdRJt3xWdz6XajrKuNh3bfjpd2fce+zNV63lQt1GPkwJ1QIklDucLUxD2tU0yZqinzWFFePE/SrWt2o2vYCQJXpbvNdT3ikjWk7XwtLRLjwRGYXjglQBpJQIUhCucOnDHmRCQ+LjKKKonLf0ukiStXqRtW2FwCqzGSb72p/k3dib12j74mHAfVIQoUgCQUTopJLnR1dWR2Yqu+p1WrWj9SCOUlJVVeTylEIQJP5dHEBQLWZavNdjr2KPl1OdR+i+wl+LhwTQDWSUCFIQsGEqE63s3NyLQmVdrtQTUnBpm/1hAA0GfsIgC9MtWcux15Fk1CqkYQC1IvKt/B0PKDCwq4iqeTjE3AAWzGyCFVEvYcNiHfQivoAxGMkFCOhoEFcUJx26HQZV1FUXkHjqk91pfkR2PoeV28dyMLED2PXzkHXygs7UY/gs6S+JO0UD6q/V8U6e3p6pKenJ/Yzro6EArAOt+OFIAkFXZI6sjQdXRk/YklCQYWsx566oodr+1VFeRkFA9fqPZCFinhSx/eqWmcYU/NF+t4n2Vw2+IskVAiSUNDFVNCQlcoraLZsE8pHEsoOru1XFeV1bZuhHnUAPqtiEkr3+RuVjPG9T7K5bPAXc0IBOem4cqDrXnEVZeWqCHRjrgSIUA8AoCjX21Gd5Y+KicO+k9gXKBcjoRgJhQR5rhzY9JSUsO9tdMyt9+LX63URyd8Rc4Wlujj2dqjiUHvqHqpY71EdtseTpteZ9ft6e3sj56VU0ZbY3CfZXDb4i9vxQpCEQho+JqF8CC5gD449TKHuAfCZ7fGk6XVm/b4oqsphc59kc9ngL27HA0rUGFUEe3C1XI9ardavvlP/9aEeA0B1NEbttI5cb/QDOtt+VbfJtfZZjdggLEagbwOqhZFQjIRCAl0joXR0uDpHQiWV1/YAImpYdiebyuwCrqyVy7X9rbtdsL3dUa1q2wtgnai23/Y2IW25o26RU/3dUVT1ozYfDx1TcQBJuB0vBEkopKErCZV1vWk6Np1JKNd+/Hay5aksvnG9XrjGtf3tWnnzKPNHRxX2J4D+os5929uELOUOe1+YtG1u2rgv71OhXWV7nYFfSEKFIAmFNPL8wNCRhFI5uippVFDaz7jUafmQhLLxCpvr9cI1ru1v18qbR5nbWIX9CaA/klDJ6+wUFjPFjbiyMcbSwfY6A7+QhApBEgq6mEpCpdXa0aZ9SoiOodJl8iEJZWPgYGOZfOba/natvHmQhAKgG0mo5HWmEZdoqsq0DbbXGfiFJFQIklDQpVartd1zLbLuvuvWjstkEirNeosECDbKekXMRjYGDlW5cmgL1/a3jXVWNZJQAHRrbfsb8WW9Xrc+jslS7s7Xovq2MuPhMDbt3zzoR1AmklAhSEJBp6RGniSUea51xK6VF6hCnSUJBaBMSfGZrW2CqnKThCqGfgRlisq3dBkoCwCJfvytzSMdVD2y1xa+bY8uNtdJ2I1zTC32J3xFP1OMq21DZ7nz1oPG56gzyVytK/ALI6EYCQVN8l5pKPsxvCrnGSCI1MvU1StbrppRv2Aj6iVQnC39jAtc3Vcq5kttne6ic9qLsPUVLV+Yok+yBqqE2/FCkISCTqqTUHmk6Qyj3pOnHK4GRq4wFdzYclxtKQcAQC3a9/Rc3VcqklBZbunLGjOpmDvU1WMD6EISKgRJKOikMgnV6ASzJhx0PUFEx/fBXrYcV1vKAQBpMCoiPdr39FzdV3mTUL29vbFPsItan4r9lPUcdvXYVBHtczlIQoUgCQWd8jZucR1s1o6s7M6Qzrc8ZXaethxXW8oBAGnQZqXHvkrP1R/PSeWu1WqR8xU16kLZSaisqMfu4FiVgyRUCJJQsFGaTjitLA2siqCGBr08Ze5rWwJe6hcAl9BmpWdLPwNz0lyEjbtbQKS9zpQdA2f9TpjFsSoHSagQJKFgq6iOOGvnmaWBNTFsGflVsfOkfgFwSRXbaSCvNEmoLHFA0q19Se/Nc64Sp7iD9rkcJKFCkISCrbImoVQ84Y7G2C0cLwCwG+00kJ7K6Sji1he2Ls7V6uGYlyMq39JloCwAShJ1W19aXNEBAACAa3p7ewvHwSLEwoAOjIRiJBQslGUIcdT7VcwfFWbAgAF0yBbgCg4A2I2+EkhP5dOh49aZdSRU1N84v93G8SsHt+OFIAkFW5l4JGzaJFTUlSUSIOWi8wQAAL7QEdfoSkIRCwPpkIQKQRIKvtA1qXiWYcxxI7UAAOmRZAaA4tLGx3FtbtqLtCLEwkAnklAhSELBF7p+sGTpeEXCk1ZR5eBHFgCEy3phgfYUAPpT0TaqjIVpq1E1JKFCkIRCVeTt9Gq1WuFJHXkaH1BtBN3ZZW0faU8BIFme/qjxmSLxcNL8UoCvSEKFIAmFqijS6WW9ApT2e+iIgWrgXM+OJBQAqGcqHiYJhaqKyrd0GSgLAGF0AAAAAIpxOZ50uewA8mMkFCOhULK4Yb26roYUufJS9JY8RkJBhECzyjjXs2MklFto32CSi+e/iVhYpHg83CltfMxIqPLRLtuB2/FCkISCCXHDeW1MQkV9PqzjzRJM0BFXC8e7ujj22WUNntnHZrH/YVJSjGbjD28TsXDU9xb5vrSJKZJQ5WNf24Hb8dAPGWKolLXuFJ3wHAB8RXsKoAjbk1Cuy/sbirYaWIeRUBUeCUWG2AwTV3+KPB1PRKSnp6f5Wr1eL334NNxHe1NdXPCA72jfYFLShNk21kVTI6GKxsMNxMH2o122A7fjhSAJxclpQlTHW6/XpV6vt71m+odaVB2h7iAr6gxgPxKG+dC+waSiSSgT531UmaNGCpluh9I8GY9z3i60y3YgCRWCJBQnpwlZHvFq+niQhIIq1BnAfpyn+bDfYFLRJJSJ+htVZltjTJJQ7rGxHlURc0JVXNhVDpjR29vLPeGoHOo8AF/RvsGk1vrnSl2MioX5vQJVXDkXqoqRUBUZCZV29A0Z4nJkfZqGKYyEAszi9iiUibYdcFuePsPUeZ82FhYx3w4xEgrIh5FQ6IcMsTmtAYGLV32oO0A5ks41ElIAgAZX+oSoZJlL8aVLZQVsw0ioCo+EImNvhzKeEJJ3NAX1BjDLxacewV20+UD12DInVNRIe1XlKTKymLYRyIeRUIBD8lxdietcw9bnytUyAEA5uLIPVI/t532W8hELA25gJFRFRkIxr4i9VF1diVtP3u/gyg9gVtJIqN7eXtpyhegrAUC/qPiyaBusOhZulMfGeVsBF0TlW0hCVSQJBXuRhAIQhclQy0WbBwD66WprVcfCZUyZAfiM2/EAAHCMi4/eBgDAV/V63XQRAOeRhAI0SjOsmB+WaOXK7UCulNN1tBcAgCgu9sW1Wq1fIselxE5PT4/pIgDO43Y8bseDRmXe2hH3XdOnT+/3t9GjRxdaJ/RwZZ+7Uk7fsN/1Yv8CcImLbZbOMsetu1ar9Usg1ev12KQdt+MBxTAnVAiSUGq5eDVGNx0dbdR+jtv/zAnlDlf2uSvl9A37XS/2LwCXuNhmqShznlg4z3eThAKKIQkVgiSUWi52hLoVeRJHqyIdaN7PFPkc8nNln6ctJ8lptdiferF/AbjElZihVVKZ07TDKuPauKfM8nQ8oBiSUCFIQqnlYkeom46EUZlJKH6Qlc+V8yhtOV3ZHgAAXONiH6sizo16T54LuWHr70Q8DORDEioESSi1XOwIdXM9CYXyuXKsSEIBAGCWi32sziRUnnWHrR+AGlH5Fp6OB2jkypOsuMJjD1fqjCvlBKqCdhyoHhf7YhvL3Nl+0nYCejESipFQyrh4NcaUIpOI2zLPFJAGdQsoB+caANeS0WHlTTP/Ut6RULVaLVUSjLYTUIORUNDOxisbtgrbV2mDhKz72bWABAAAuIM4wx5F4ksT8v52yPO5sHoKwAxGQjESCpplvcqjOpgrcm89UBQ/ToBy0I7bpUptH3WvHDqfGle2uKfOFUmkxW1/1JPxePIdoA8Tk4cgCYUyRE2C2ElXh1d2EqpKgTcA2MKVH59VUaXjUaVtNcmni4pxsXGR8uaZ7kLHPiMWBtYhCRWCJBTKUFYSKqrDS9O5quwsXQmAAMAn/OixS5X6wiptq0kkobJrbRejRjzpaDtdOQ6AbiShQpCEQhnKSkKVeYUnTzkAAKiKKvWFVdpWk0hCqf0e1d+V9L02HgdANyYmByxiyyTuXDkHkBbtBQDYzZb4Mg+Xy96KCdCBZIyEYiQUNCvrakjU92S9P763t1f7ROgA3MO5HY0EHTpV6Xyh/pfDpzplMjZuTXa11lNV9Thq9JWrxwoogtvxQpCEQhnKCs7ydOhRHWWRRJRPQRKA9Ti3o7Fv0InEDFTzqU7ZGBurasdJQgHrkYQKQRIKPlGZhErzWZHwIIJH3QJ+ItESjX0DAPbRmYTK8kCgoncZAK4iCRWCJBR8kueqUtEkVFmTrgMwj0RLNPYNANgnS2yctR235YFAgM2YmBzwXJ4rLL29vdongvRlosk0fBoqD3Sq0rkMAHBf2TEYk5ID6TASipFQqLgi966nGQlVpas/XP0CqolzHwDcpmIkVBT6A1QVI6EAhEoaDcXoHgCIxygxAOjPlhiySDls2QbAJ4yEYiQUKiKuE437W9yVIUZCtWM0hB8IOAEAKM6WuChqsnCR5Fg4y9xPUYgFUVVMTB6CJBSqJG8gEPe51g47aiRAZyfvM1uCLRTDcQQAoDhb+tMiD+KJ2obOpFXciFiejoeqIgkVgiQUbKRrFIaOJFTS+7J+l+tsCbZQDMcRAFBlqmJRW/pTHUmoLN+R5nsAH5GECkESCjZK6uzyBga6k1BJo6Kq0PlyG5cfbAmaAQAwQVU/qKs/zRpvlZGEIg4G+iMJFYIkFGyU1NnlTVLlDQTyJFb4EY8iTCfzqL8AgCpT1Q+aHN3f+t09PT1t/437XCfiYCA/klAhSELBRkWTUFkmUNTVIdL5ogjT9cf09wMAYJLt/WCa8qWdOFzHdtm+/4CyROVbugyUBYABKh8hbnqkCqCTynMFAADYQXX/TjwM5MNIKEZCwTK6RkKpFPWo26TH3AJpcAURAABzbO+H846EKiseDkMcjCpiJBTgiLxXacISP2VqTULR0bqNJCIAANWlYsSQiVjCdCwssm7f2ZSwA2zESChGQsEx06dP7/fa6NGjCz35I6uo76LT9YPpK6Cmvx8AABSj88l4nROM1+v1yIfwqP7+VsTDQDxGQgEa6LrKE7fesCd7RGFuG7iIegsAQDUlxdZhMcLo0aMj10dMAdiHkVCMhEIBuq7yxK3Xhqff1Wq10E497DVu43IPI5EAAEAReWOJInOflh2/pI2HiYVRVVH5FpJQJKFQQFWTUFHlCEPywj0koQAAQBFVSEJFfWfZZQBsxe14AJRKOxIKAABE42EQQHlUn2+dsS+xMJCMkVCMhEIBOq64RA3tTbrKY0MQywgaP9hQlwCgKug7Uaay+vi474n7W9j50IiLoyYfb5wvabZN9/nG+Qysx+14IUhCoSgdHU3SkzZ0BA+q1knHCwBANvSdKJMN9S3rLXWt7ykas+q+mGvD/gVsQRIqBEkoFKUjIRR1BajIepPKqarDpOO1AyOZAMAd9J0okw31Lc1opri7AvKKu9uAWBhQjyRUCJJQsFGezqtokklVh0nyww4EQADgDtpslMmG+pamDEXKGRWPxt1tQCwMqEcSKgRJKNgoTydYNMlU9P562MWGABMAkA79LMpkQ4ygOwmV5UnSjbsNkr6P8xTIjiRUCJJQsJFtSSgbghVkwzEDAABhbIgRbEpCpY13bdhvgGui8i1dBsoCIETjCku9Xm++1vr/APLjCiYAIE4V+olardYvtjQRa4bNy9RAPAz4j5FQjIRCybLcp170ik/av2d9VC5Xfuxm2zGzIbC3bZ/ADBvqIgA7udhPZG3TbNvGsPKrmJA8z0iosh7iA1QJt+OFIAkFE/J0jHnW2fpEvSI/vOh03WPbD20b6pANZYB51AMAUVxsH7KW2bZtjJoovFPWCcmjElk64mHbYi7AJiShQpCEggk6klBxj5xN+/lOjISCKjbUIRvKAPOoB0C1ZEkQuNg+kIRKXl8jPk5KDOUdCWXbPgVsQhIqBEkomKBjiHDceouUKe13A3FsCNBsKAPMox4A1ZLlnHexfahKEirsQmtYLKpzagsd02kAviMJFYIkFEzIM5zX1FNEwpCUQlY2BGjUW4ior4vUK8Buvsc3Wds027YxbuRS0mth21lWLCySfOsfAJJQoUhCwYQ8HaRNSSgbEgpwC3UGtlBdF6nbgN18P0dd37605Vf9viJliXt/1u8EfBeVb+kyUBag0uIeS5tF4wqM7VfpAFV1HiiKugjAJy63abVaTer1ettrnf8G4CdjI6FOPvlkOfHEE+XDH/6wiIg89dRTct5558kdd9zRfE+tVpNx48bJ4MGD5eGHH5ZTTjlFnn766ebft9pqK7niiitkzJgxIiIydepUGT9+vKxYsSJVGRgJhbIUHf6c5mpLWU/Ac/2qG9SybWg/UCbaQ5hGGxzPl3PU1eOs6sE3ad9b5tOgi0yCDn+4em6Wxbrb8caMGSPvvvuuPPvsszJw4EAZO3asTJgwQfbZZx/529/+JhMmTJBzzz1Xjj32WHnmmWfk+9//vhx44IGy2267ycqVK0VE5I477pAdd9xRjj/+eBER+clPfiIvvPBCMymVhCQUylI0CIpLQvX29hZu7Hx/eozrbO7gqA+oMuo/TKMOxrO5/8zC1eMcV+6iSajWUWAqjmnWuuLqMYFa1IN41iWhwrz22mty9tlny+TJk2XhwoVy5ZVXyvnnny8iIhtvvLEsXbpUzjjjDJk8ebLsvvvuMmfOHDnggANk1qxZIiJywAEHyIwZM2S33XaTefPmJX4fSSiUpWgDFTf5YdZ1Zf3OVjwFxAyb97nNZQN0o/7DNOpgNbh6nFUloVpj0jInAlc1kgv+oh7EszoJNXDgQPnqV78qN954o+yzzz7y1ltvyQsvvCD77ruv/PnPf26+7/e//728+uqrcuyxx8pxxx0nl19+uWyxxRZt63rzzTdl/PjxcsMNNyR+L0kolCXN0z/SXMWJGhGlo7HL8xQ/6GFzB2dz2QDddLWHtLP+U3WMaYOrwdWYTFUSKu06VYv7Ltv3PbLLc0xpg+PF5VsCU8tee+0VvPnmm8GaNWuC5cuXB5///OcDEQlGjBgRBEEQ7LDDDm3vv+6664Jp06YFIhKcffbZwfPPP99vnc8//3xw1llnRX7nCSecEMyePTuYPXt20NfXZ2zbWaq1pJFmPbVaLfdnsyxlfQ9L/vpjukwulI2FxdWF88r/RdUxpq5UY4k6zrYf/7jy5S17mdscplarGd+vLOUdbx2fqdIye/bs0NcHikHPPPOMfPKTn5TPfOYzcvXVV8vPfvYzGT58uNbvnDJliuy7776y7777yquvvqr1uwDVyrrC4vLTVgAAAAAdiJGB4rpMfvmaNWvk+eefFxGRv/71r7LvvvvKv//7v8sPf/hDERHp7u6W+fPnN9/f3d0tixcvFhGRxYsXyzbbbNNvnUOHDm2+B7BB2CNoe3p6jJQFUK23t7dffa7VagxJB4AS8IO4GjqPc09PT+itQ7bpjH8B39AG52PFnFAN9957ryxcuFCOOeYYWbhwoUyaNEkuuOACEREZNGiQLF26VM4888y2iclHjhwpDz74oIiIjBgxQmbNmsXE5LBKEPNku1Zp7zEv4x70qDJzj7MZts87EFZfqCtAfpxT/uMYo4i42DKsHpmKI+LqedTfbIiDG4iHq4V2WT3rJia/4IIL5A9/+IPMnz9fNt98czn66KPlu9/9rnzhC1+QadOmyYQJE+Scc86R4447TubNmyfnnnuufPazn5XddttNVq5cKSIid9xxh2y//fYybtw4ERGZPHmyvPjiizJmzJhUZSAJhTJkTULpaABVPHa2t7fXqsQH7EGnDajFOeU/jjGKyJqEMlXf8iShdJY1azxcq9VKfRofzKJdVi8q32Lsdrxhw4bJL37xCxk2bJisWLFCnnjiCTniiCPk7rvvFhGRiy66SDbZZBO56qqrZPDgwfLwww/LYYcd1kxAiYgcffTRMmnSJLnrrrtERGTq1Kly6qmnGtkeIAvdQzc7O9mw78uaUCIBBQDlYHi//zjGUM21OqWzvFHJpqzxcNRn4CeOdXmsuh2vbIyEQhmyZtVVZOHTjL6KW2feoc623zYGPbhyBLiFthpwm4nYMo8836srDs47yirP6Kks7wd8Zt3teDYgCYUyqLgVrrWDTLO+okmovEhGVBMBF+AW2mrAbapjS13yxAdpypq0XhO3+iV9N1BFJKFCkISCjZI6rzSdG0koAEAU2mqgWlw65/PGuWliZZJQQLmsmxMKQDjf7keu1WqMigEAADDEpdjSpbJ2ChuhBaA/RkIxEgoa6bhNKe8Vos5OXUdiiEfZVg+34gHu4Uo94A7X+1kTsXDU33XvS+JgoB2344UgCQXddAT6ee+VD6M6iCnS+boeZFUVP2ZhCm1Gsqh9xHkLuMP189VELBzV9pGEAspFEioESSjoZioJpbsscZ172DDqssuH8nDcYAp1L5mp0QCAalWus663db7GwiL962VYDNzb21uZugp0IgkVgiQUdNPR8eYNxFT+GInbLlsCA5SD4wZTqHvJ2EfwRZXrsuvb7kIsnHe9ph4EBLiCJFQIklDmVOWKlk2Bg6onhSSNdtIVGMBOHDeYQt1Lxj6CL6pcl13fdpvKr+IJ1CLrY92okU+tfPx9A6RFEioESShzbOqQdLJpO1UloXTd727TvkJ6HDeYQt1Lxj6CL6pcl13fdpvKryoJFTcCyqVjA+gWlW/pMlAWoDKKPGa2KqPF4DaXH6UMf9F+AvBFUj9re3sXV37byw5AD0ZCMRLKCJuuitioyATfcevslOcpSbpGQhGIAMgirs2gj1mHdhW+4JyO5uq+0RHrpvnOTq1tIiOhALW4HS8ESShzXO0wy1LmI16zTlge9n6e/OEOfpSiCuhjAL/Qd0Vztb0rM9ZNKyrGzfIa9RJYL3MSau3atalm/G8VBIFsuOGGuQpoAkkoc1ztMMtSZsecdYQUx85tHD9UAfUcQFW42t7ZmIQKi4nTTjvgwj4HypZ5Tqgbb7yxX+Owzz77yF577SXPPPOMzJkzR0RE9txzT9l1113lySeflL/85S+Ki42ylXWliXlk3MWx8x9XnAG4gvYKgApRbUnakVBIRnuNhtS34x1yyCFy6623yje+8Q25/fbb2/525JFHys9//nM56qij5N5779VRTi0YCdWfq1dTfJP36lCexp0RT9WS5rhy7OE6At3qoL1C1bna3umY3qHIviAe1o99WT2F54R68MEHZcaMGXLmmWeG/v2SSy6RAw44QEaMGFGooGUiCdUfjYMd8iah8hw/Ot1qIQkFwCe0V4CbdJy7RdZJPKwf+7J6Mt+O1+njH/+4/OxnP4v8+3PPPSff+ta38pUOQJve3l6jQ33DriQBAAAAKrhwSxvxMKBH6iTU8uXL5bDDDpNrrrkm9O+HH364rFixQlnBAJcVHRoddQ96WUwnwaCPjuPq6q0AqB7qKgBX+NBexW2DC9viUzzsQ32CP1LfjnfRRRfJ6aefLtdff71ccsklMm/ePBER2XXXXeXMM8+UsWPHyqWXXioTJkzQWV6luB2vP4ZJqqFiP6qc3ynrZ9J8LgqdnBvijlPWekS7AVdQV/3DMYWvfKjbZW+D6tvxsnxexO4Y2Ib6ZEMZUK7Cc0JttNFG8stf/lKOPPJICYJA3n//fRERGThwoAwYMEBuv/12+ed//md59913lRZcJ5JQ/dnceLrEVCMb9b1xx7VWq4Ve5clbXjoYN8Qdp6ztAMccrqCu+oe4Bb7yob2yKQmV1FaoiIdtPmY2lI32unoKJ6EaDj30UDnyyCPlIx/5iIiIvPDCC/K73/1O7rnnHiUFLRNJKOii44kfYTob856eHqnX622vTZw4MbHjUdkx2dDJIZnK0Xoqk5iATrRP+fDDATpRv/pTfYHQlKh4WETPMS46yrtoH2FzH2Nz2eAvZUkon5CEgi5FhvRmCcbSdihJ71MZANLJuUHFcYqq53nWBZSB9ikf9ht0on71p3qqhFZlJv3yxAm6ypemnhX9bpvrss1lg79IQoUgCQVdigQPWToJVUkolejk3EASClVE+5QP+w06Ub/605mEMh0TJn2nrvKVsd0212WbywZ/ReVbIp+O973vfU+CIJAf/vCHEgSBfO9730v8kiAI5LzzzitWUsADrj1Ng6HwUMWleo/qoX4CcJWL7VejzC6U3fdY2IVjgOqIHAm1du1aCYJANtlkE1mzZo2sXbs2cWVBEEhXV2ReyzqMhIJOea84ZJlUMe18AWXOCeV7J+4LFceJq2pANfhwrtM32cuH+qWazn1iYn+rGuVf5DzOEwtnnc+VdsYOHAd7ZL4db8cddxQRkZdffrnt30ka73cBSSjopCMJFTesOe47ohpjJpZGEfxwANaxLeBVXR4fznUftsFXHJv+SEKFv7dI2VvbxZ6eHhGRtof5RI0UqnpddBFtij0y347XmUxyKbkE2KCsYa9pvqc14dQQ9eQV5GPbj9AyUH+AdcLOBZPnv+rycK5DJ+pXf77tE9u2p5GEavwXQLmYmJyRULBM0cfLRkkziirPerEOV12A6rLt/LetPDZgnwDr2H7RzJY4OOv6YQ/ae3vwdLwQJKHgmjI633q9LvV63aqAxAV0eEB12Xb+21YeG7BPAPfpjIPr9XroyCjaCffQ3tsj8+14AKqpp6dHRo8ebboYAAAAQCm4NQ8oD0kowENhQ5kBAKgq2+akAZBd0nms8lZD2gx3cezsx+143I4Hh6QdXpr21rve3l4tT8azfb4BHRj6C1SXbW2ebeUBgDJkfbJeIwZWHQvTBgPrMCdUCJJQcE2RJFTU05Li1pm3E61iQoaAAwAAwJy8MW3U54iDgWJIQoUgCQWX1Gq1fverR00gnqXzy3rVKE0nSucLAAAAVdIkhFTHrcTBQDFKJibff//95dRTT5VddtlFtt56634nUxAEsvPOOxcrKYBQYSOZVEwgzn3T+jA6CgAAoLioEf261h2lVqsRywEFpU5CHXPMMXL99dfLmjVrZN68efLyyy/rLBeAAkgs2UFnwAQAZSKpDsB2eePfiRMn9mvjoh7y09vbS9sHFJT6dry5c+fK2rVr5ZBDDpFFixZpLlY5fLsdjwDRb0WG9ua5D77Id1IX11E9HJv9CsAUbi8BYFLRNigphkr7UJ8030u8BqxTeE6od955R84880y58sorVZfNGN+SUASIfityfPMmmqhTxajefxwPAKbQ/gAwqWgblPR5lUkoAOsUnhNqwYIFMmjQIKWFAqAOV10AwC202wCglsp2tbe3lykuAA1Sj4Q6/fTT5Rvf+IZ8+tOflvfff19zscrBSCjYKuo+9E5Jw4iLjnaiThXDSCgAcVw6p10qKwA3xSWQ0iaX8j7pTvUT8gAoGAn1l7/8Rb785S/LI488IldddZX09fXJ2rVr+73vgQceKFZSoMIaHWzYVRcTHR5Xf4ph/wEAACSr1WqxD3QxNUqUWA5QL/VIqM6EU2dWuJEp7upKndcyjpFQsE3c/ehJxzLviCbVt4Nwe4k+nOOAX1w6p2nbAegUFQNnbRPzjmhS1cbRVgLrFZ6Y/F//9V9TfdGNN96YqWAm+ZaEotGzT9ZjoisJVWbdcOlHlWtsPsdtLhtgK9pLAHm42OfmfTqdqiRUWfuMdh1Yr3ASyke+JaFgn6wdUZEkVJHOVWXHTOdbTRx3IDsXf0gCMCvqtjXb+9y8T6fLul1521VV7THxELAeSagQJKGgW5lJqCJUdph0vtXEcQcAQD9VyZqylZWEyktVHEM8BKxXeGJyEZFNN91UJkyYIEcddZR85CMfERGRF154QW699Va5+OKL5e2331ZTWgBNLk2ImPapfgAAAEAcl2JgAOmlTkINHjxYHnjgAdljjz1k2bJl8uijj4qIyK677irf//735atf/aocdNBBsnz5cm2FBXwX91QQF1QpWOA2mnVIPAIAoIcPfWzabXA9Bq4SYmAUlfp2vEmTJslJJ50k48ePl2uvvVbef/99EREZOHCgjBs3TiZNmiQ//vGP5Tvf+Y7O8irF7XjQzZUhuTqHIPf29nrZMblybMPongOswZX9AQCAjeL62E629rmuxAncjpdeFbYRahSeE+qll16SO++8U771rW+F/v3aa6+Vww8/XD70oQ8VKmiZSEJBt6yNtKkrC3S82bm8rbrnAGtczfQx+QgAQFl8TkKFXaQ0OcKGWDi9Kmwj1CichFq1apV85zvfkWuvvTb07yeeeKJcfvnlsvHGGxcqaJlIQkE3FROTF23U03ToPBEkO5e3lYnoAQCwn89JqLDy6owpkmJdYuH0qrCNUKPwxORLliyRT33qU5F//9SnPiVLlizJVzqgBL7fvxy1fWnusVe1H4rMCeX78QFU4nwB3MY5jLx6e3srNQdnHmHnV1I8bEMsDFRJkGa58sorgzVr1gTjxo0LBgwY0Hx9wIABwQknnBC8++67waRJk1Kty5Zl9uzZxsvAUt4SxrbvLFLGqM+a2G5Xjk+Vyqur7C7vB5cX9jsLi9sL5zBLmiWqnrhUf6Jk2V5V3+nKPrN9YV+ypF2i8i2pR0J9//vfl0MPPVR+/OMfy8SJE+WZZ54REZHddttNttlmG3nuuee8eIIDAKTBlS4AAKCTD7GG6yO3GLXYn8vHE3ZInYR6/fXX5dOf/rR897vflS9+8YvNe/teeOEF+clPfiIXXXSRvPnmm9oKCrjIhUbaxc7VhjLbvo/iqKyXLtRxAABcFBVruNT3uhQv5bmNr8yy2LIvbSkH3JVqYvKNNtpIPvOZz8iiRYvkueeeK6FY5fB5YnKbGy5TAgcm0QsrY9onjUVtX9J227JfspTDljJXGW2MWZwDgNs4h4F2tVpNenp62l6r1+vKJgcP03nO5f2cDrQR8EGhp+NtsMEG8s4778jpp58ukyZN0lE+I3xOQtFw9efCPonr/JLKGrV9SckCW/YLSSi3cAzMYv8DbuMcBtpFXYhVlYRKM6KJJBSgVqGn461du1YWL15MxYfTXBi63NvbKz09Pf2uBKX9bBhXRqe4cHx8w2gmd3G+AG7jHAaS5U1CmbqFDkA6qUZCiYj86Ec/ks985jNy0EEHpc4S246RULBR1PlV9PhFJRxcrCsultlGRfYjxwAAAKiiK/7tFHcBLu8IKh2Is+CDQrfjiYjssccectNNN8nrr78ul112mTz77LPy9ttv93vf/PnzCxe2LCShYCNdnXDeOaNs5GKZbUQSCgAA2KCsJFRc/GJTbGNTWYC8Ct2OJyLy5JNPShAEMmDAgNhbhbq6Uq8SgAWSbgmw8ZYtbmMAAACASmHxpak4mFgXPks9EqpWq6W6De8HP/hB0TKVxueRUDYmDpBO3JWgIsc17xUVrsT4q8ixpY0B7MY5CsAltVotNPFS5kgoFe8HsF7h2/F85HMSCu6KezqIidunbLo/HmoRWMF2JFLy4/wG4Joy2i1VSSj6JyAZSagQJKGgS5GOKeuEiSaSUGH4ceOesgIoAjXkVaVEiurzpEr7DmbRxuvl2/6N254ytlVVEoo2FkhWOAl10EEHpfqiBx54IFPBTCIJBV2Kdkw6nmSXt2MnCYWiCNSQV5XqjuptrdK+g1nUNb1M7F+dySDT9SXrtpGEAvIrnIRau3Ztqh+jLk1MThIKuhTtmGzq8MI66zz37Pt2Jc8nuo8NgRryKGt+EFuQhIKrqGt6mdi/Or/TtfoSFiOJ5IuFgaopnIT613/9136vdXV1yUc/+lE59thj5cUXX5Rrr71WbrzxxsKFLQtJKOjiUxIqTJ5y2FJ29Kf72HDskUdZj+u2BUkouIq6phdJKPtUrX8C8orKt6QethSXXLr44ovlr3/9a76SAUjN9se1MtoJAOxge38BAD4iFgaSKZuY/JxzzpGjjz5a9tprLxWrKwUjoaCLrpFQRajsFPOM1PLhypevGAkFG8U9KdRHnCdwFXVXL0ZCqaMqFtb1JGvAN4VHQiVZvny5fOQjH1G1OsBpNl6BDitTmo436l54IC0bzwe4ydcElAjnCdxF3dXLt/1rcnvyxMJp42Cf+ydANSUjoQYNGiTTp0+XYcOGOZWIYiQUbJX3Sk3c5/JemcnydDxGQrmJYwMbUS/9wi0qgDtcPl9Vx8JZnxJN3wWsV3hi8uuuuy709Q9+8IMyYsQI2WabbeTMM8+USy+9tFBBy0QSCibp6OB1JIGihhx3ShqC7HJA4zuODWxEvfQLP8wAfVxtL12IhbPEwXm/A/BV4STU2rVrQ19//fXXZd68eXLllVfKzTffXKiQZSMJBZNUd1JJjzNXmYSK+pyrQRAAQC9+mAH6uHp+6Sh3XNIoLk7Osr64zxALA+sVTkL5iCQUTCrjcdyt6ywjCQUAQBj6EkAfV8+vspJQcVQnoQCsp31icgB2yzMRJJOSAwAAwAdZY2HiYECPzCOhPvShD8khhxwi3d3dctNNN8lLL70kG264oQwbNkwWL14sa9as0VRU9RgJBZPKHgmlap2NR9Ay3BgAkBajCQB9XD2/yh4JlXXdcXGwCLfeAUmUjIS68MIL5T/+4z9kgw02kCAI5MEHH5SXXnpJNt54Y3n66afl3HPPlcsvv1xZoQHTdHUuZV1Z0fEY3Mb253nMLQBAHZd+APn2mHnABi6P1NFV9rj5n1RobWPLjoVdavOBOKlHQo0bN06uvvpqueKKK+T3v/+93H333XLIIYfI9OnTRUTkpptuku7ubjnkkEN0llcpRkIhia4rS0lXVlql7XCiylqkw9LxtD0AehGkVgftMFBtcZNw297uZ4mFVa0/6xObk9rYsttg2ny4pvDE5I899pg899xz8pWvfEU++MEPyrJly9qSUN/97nfl1FNPlR122EFpwXUiCYUkRRr7uA4uy3rTvjfq+4psA0kowD2cm9XBsQaqIyzOy/O0N5Nat0F32VXE4SShgGIK34636667ytVXXx3592XLlsmQIUPylQ7wUNQwYF1XpnSsl9snkIRRNwCQD+0nsvAhJitzG1ScSz7sc8BGqUdCvf7663LeeefJpZdeGjoSauLEiTJu3DjZdtttdZZXKUZCIYnqUUSNz+sYCZWlHLpuKeRqTPVQD+zDMakOjrXbOH7IIm7C7VY216GkbSir7KrOPUZCAfEKj4R65JFH5KijjpJLL720398GDRokxxxzjMycObNYKQHkVvYVVa4OAQAAwCZlxsPEwkA+qZNQF198sdx1111y4403yk9/+lMRERk2bJgcdthhMnHiRNl+++3l6KOP1lZQwARdnYuO9Zb9hA5uGUCUWq1G/QBKwA8goBriniTnQjtQZvnLjIfLjnVcONZAGqlvxxMROeGEE+Tyyy+XjTbaqO2WonfffVdOOukk+dnPfqarnFpwOx50irsdLwuTT8cDkqiq51CHcx5wA7fWIK2429hcqDNZyl+0D0tzXtFPAuUo/HS8hu7ubvnqV78qu+++uwwYMECeffZZ+fWvfy0LFy5UVdbSkISCTrp+nOt4Ch6QF0koAMiHfhtpVSkJVfSiKucVYI/Cc0I1LFmyRK688kolhQKqJmkYbZoOtuzb7oA4vb29DA9HJlyBBtah7UQRquqPqTY5S/lrtRrxL+CRzCOhfMJIKOgUdiWmt7c3tsNMc/WG2+5gi0adCwsMueqIKLZfpaYtBWCbqJiyoUgbVUabXPSp0FHC1kEbDthDye14+++/v5x66qmyyy67yNZbbx3643jnnXcuXNiykISCTnluUyqShALK5vrtATDD9jbM9vIBqJ6kxEyRNsq3JBQAexS+He+YY46R66+/XtasWSPz5s2Tl19+WWkBAd+4fpsSV5KQh8t1HgAAG7X2rfSz63XGqjriVOJhQL3UI6Hmzp0ra9eulUMOOUQWLVqkuVjlYCQUdMt665xNI6EYDYAk1BHkYXu9sb18AKot6dY8EfVPkysqTZlF1pU7av6nNIiHAbsUvh3vnXfekTPPPNOrSclJQkG3qI4r6+utyroiQ6eLJNQR5GF7vbG9fACqLc3talnaLFNJqDCN702TtCprPkr6BCC/wrfjLViwQAYNGqS0UIDPwpJFSdJc+WEIMGzWqPfUU0ThVhIAsIeNbXKaJ+HZWG4A6aQeCXX66afLN77xDfn0pz8t77//vuZilYORUNAp7ul4LlxVSVtG7pWvLp6OBx/RpgGwmeqRUGVIe4udbSO40n4P/QYQrvDteD09PXL++efLRhttJFdddZX09fXJ2rVr+73vgQceKFzYspCEgk5xnZYLSahGh9rT09N8rV6vi0h7x+rCtkCvsusAwR4AoKpcTEKJqC93WbHA9OnT+702evTotn8TCwPhCiehOhNOnSdbYz6brq7Ud/gZRxIKOrmehGpIKqtL2wI9yq4D1DkAQFWRhCqXTQ8NAlxTeE6o4447TmmBALgrz3xXAAAAUM+H+ZFc2wZiYSC/1COhfMRIKOgUd1XEptuJksqS9okmrbj6Uy2MhAIAoBxJfaBNMWarpCfemS5j1H7L8kTrzvcAVVf4djwfkYSCTiqCgDICiTy32yWh462WsgNeklAAgKrKc/HQhj4yqdymk2dZkk0koYB0SEKFIAkF26kKJOI6dlVJKJuuZsFvtgbYANBg+gc13Je3DrnaR+oud97kXZbXiYWrgzY+HZJQIUhCoWxZGyxVHXKRSdLDyhx2374LAQ78QMcPwHauJgJgj7R1qLNPdCVGK7vceR+0k/U2PVQDxz8dklAhSEJBt6IdrA1JqDAkAQAAiMYPFBSVtg7Z+tQ5FXOO2pCEikIsXG208emQhApBEgq6Fe1gbU1CAQCAaPStKMr1JJSK6R5sTkKh2qgv6UTlW7oMlAVAi1qtZvTKiWuPxIXbqnblsGrbCwAwj9guO/YZUB5GQjESChqlndQ7KnPe+AHb09PTfK1er4tIth+yZOthi6rVxaptL4B1OPdRVJGRUDbUtbwjocIm91ZxQcfW/QQ3UZ/SYSQUULKwDjOrRgfb2iE3ElJZOl+u7kAnRvsAQDv6XRQVV4dUxJimJJU9LH4I2xdZ4wzOSahEfSqGkVCMhIImaUdBiSRnzk1l20kuII0s9bNqV46qtr0A1KEPRpSkGNOGfiaq/8tTdtN9KeciRKgHeTAxeQiSUNAprMOs1+ttt9Y12JqEMt3pww0koaJVbXsBqEP7gTC1Wi1xFIYN9SRqxFOesps+F0x/P+xAPcjOutvxzjrrLPnSl74ku+22m6xevVoeeughOfvss+Wpp55qe1+tVpNx48bJ4MGD5eGHH5ZTTjlFnn766ebft9pqK7niiitkzJgxIiIydepUGT9+vKxYsaLU7QHSaE1A+TqMk6sE+VVh3/la76NUbXsBwDWu9b1R/Ypt/U3YPkwzD5TrXKtPgCmBiWXatGnBscceGwwfPjzYa6+9gltvvTVYtGhRMHjw4OZ7JkyYELzxxhvBl770pWD48OHBr371q+CVV14JNttss+Z77rjjjuDJJ58M9t9//2D//fcPnnzyyWDq1KmpyjB79mwj285SjSVJ0XWZ2gZby+rD4uq+c7XcLCwsLDYvtK3s57Tltb3MRctuenuzfL/psrLYUQ9Y1i1R+RZjI6EOP/zwtn8fc8wxsmLFCjnggAPk97//vYiInHbaaXLhhRfKrbfeKiIiY8eOlaVLl8rRRx8tkydPlt13312OOOIIOeCAA+Shhx4SEZETTzxRZsyYIbvuuqvMmzev3I0CMmi9UpJ0hcSnK0QAAABQK0tcaZukshMHA36x5ul4m2++uWywwQayfPlyERHZaaedZNttt5W77767+Z5Vq1bJ/fffLyNHjpTJkyfLiBEj5M0335RZs2Y13zNz5kxZuXKljBw5MjQJdcIJJ8i4ceNERGTIkCGatwpV1tphhnWena/FBQyuBROoFoJDAADMau2LXYsbk2Ji17YHQDxrklCXX365PProo/Lggw+KiMiwYcNERGTJkiVt71uyZIlst912zfcsW7as37qWLl3a/HynKVOmyJQpU0Rk3URZgC6tHWbSj/Sov5vudKPKxf3uaMWxB/Sj3a0eEvyoot7eXuvatrBzkTa5emiT1bHi6Xg/+tGP5Gtf+5oceOCB0tfXJyIiI0aMkFmzZsmOO+4o8+fPb773uuuuk+22204OP/xwOfvss+X444+Xj370o23re/7552XKlCly4YUXxn4vT8dDWVo7qiwNWOcTF2zp8IKYp0PE/Q3x2HcAotA+AHq4dm51xoJhcaWt5U9TdpF05TcdE0fVG9fqE6CTdU/Ha7j00kvla1/7mowePbqZgBIRWbx4sYiIdHd3tyWhuru7m39bvHixbLPNNv3WOXTo0OZ7ABtkGRUVJ+yzujrcvJ07VwnyY98BgP1M//iFWq71vZ11zaXyqyx7GTFxnnPdpeOBeLT1+hgdCXXZZZfJ//f//X8yevRomTt3br+/L1y4UCZNmiQXXHCBiIgMGjRIli5dKmeeeWZzYvI5c+bIyJEjm7fxNUZQ7bbbbokTkzMSCibUarXUHVTnlZMyr64w2qkYOi4AKtHu2oNjAZu4HG9ExcRpzqcyzsOw72iU16URaMiHtr64uHyLkcf1XXnllcGKFSuC0aNHB93d3c3lAx/4QPM9EyZMCP7+978HRx11VDB8+PDg5ptvDl555ZVgs802a77njjvuCJ544olg//33D/bff//giSeeCKZOnVrokYEsLLqXtNJ8rswymiiHqwv7iIWFReVCm2LPwrFgYVG35D2fyjgPszK9L1n0H3/TZXJticq3GLsd75RTThERkfvuu6/t9dbJ6C666CLZZJNN5KqrrpLBgwfLww8/LIcddpisXLmy+f6jjz5aJk2aJHfddZeIiEydOlVOPfXUkrYCtnHlalCap+W5plarWbmvAQAAYCfX499WxMJAOlZMTG4Kt+P5J3B42GSaBFqZ2xf2Xa2BAsOQ47lcFwHYx5WLLFVA+w6YV8Z5GPYdDb29vcTCnqOtLy4q30ISiiSUV2xrLFT/aCjzR0hcx8vTP5JVbf/wAxlAVVStfYcdfOhnVW5DGfuDWLjaOL7FkYQKQRLKP7Y1FirLU3bwUeWOV8W+9nn/hKna9gKorrL6Y5NJBx8SHr7xoZ8tug1l18vG90WNePLhmEShDdCzD6q2X0lChSAJ5R/bOgOV5dG9bZ2NYk9Pj9Tr9Up2vCq2rWqdjM/1AfpV7XwB0jDZrtKm28eHY1J0G3Ttg6Q+KOp7fTgmUXzeNpOqtl9JQoUgCeUf237I5GloorZBd6OVtYO1bV+rVLUOQgX2GYqg/gD9kYRCKx+OSdI25E0G6S4XsfA6rtU3G1Vtv5KECkESCrrlaWhMXW2p4lWeKFXc5qLYZyiC+gP0RxIKrXw4JnmTPWn/bqpcPqriNpehavs1Kt/SZaAsQCWEXR1xkU+PzgUAAPBFrVZzfuSNC9tALAyoxUgoRkJBk7BMd29vb2JHG/U53Y+BrVpmPg77Ijufh6RDP845oD9GQqFVrVbTHgvqlrQNto6EqiL2iR5V26+MhAIskPdHeaPDtv1KjC+JCNv3s41cPM4AYDOTfRH9oH0mTpyo5biUGbsV3QYX6iWxMOKwX9dhJBQjoaBJ3kx32OeyfD4vFZ1m3tFfAKrNl6AdAHTSMYqi7JEZcd9napSIyj6IWBhYj4nJQ5CEgk55O9JGR5hlyLUtP+CiEmg+DzMFAAB+sznOIgnVzvSxIhYG1iMJFYIkVHlMdwgmFN3mLB1x1FWXrN9ZFB0vAADwjS3zuOiIp8vetrhtKFoWG+bNIhYG1iMJFYIkVHls6bxdUjQJlfQZHeh4AQCAb3yOY23atqJlsSEOtaEMgC2YmBxwTNiVnCqOKAMAAID/0k7aTDwMuI2RUIyEKoVNV1l009kxRu1HW0ZC2TAMGuUgAFyPfQEAfreFJuNY3ftV5/p1rTtrPEwsjDA+t1m24Ha8ECShylOlJJTObS0zCZW3YaZBr4YqndNJ2BcA4HdbaHLbXN6vuspeZhIqT1xLLOwGl88tV5CECkESqjxVOslNJKGSnqiXpzOs0jFDdtSP9dgX6xF4A37Jck773BaabNtc3q82JKF6e3ubx4p4GK04tvqRhApBEqo8VfphYiIJ1RC1n/OUKakjR7XRca/HvliPfQH4pehDUjj/i3N5v5adhEr6vUE8jFYun1uuIAkVgiQUdMibKEoj72dVdbppPodqUPEY5U6uBnQEMeuxLwC/kIQyT9d+VdUPx61HV0xMPAwVaLP0IwkVgiQUdEhq0Ew0eHS6UE3HY5RdrVs+bUtR7AvALyShzCt7NJHK9dgWExMPoxVtln5R+ZYuA2UBvJb28bJRfBohAn8Vrec+YV8AAG2hLi7v1zxl74yDiYGhi8vnlusYCcVIKGhQZGiyjqx8nnXyiFmkUeaQeNjP9ttGAGRDW20HHW1gGSOhWoVtQ5okgMr6RjwMlIvb8UKQhIIuqocmNzq/vAEHiQLokreOULf8pCtZRH0BzCABbAdbLlAWWU/UbW1JVLb1xMNAuUhChSAJBV1UJ6HC3tdKV5BI8IkkJKFQBuoLsqL/gk9IQqVDPOwu9rGfSEKFIAnlH1sasLgOOc/jYzvXkeX7AJ3y1j1bzlW4gTYOWVFn4BMd9bmMp+O1ihvp3/n/Ye9hxJLfOHZ+IgkVgiSUf2xpwIqUQ3USih/70MmWcw5+o54hK+oMfOJDfS5yJ0Dne/N+hwhxsa18qONpVK3+kYQKQRLKP7Y0YDYloWzZJ/AT9QtloJ4hK+oMfOJDfbYlCeXDvvRRVY5LVbazISrf0mWgLID3bH/kZ61W8zrrjvLYXtdht7RXBKlnAKrMhzbQ5DaE9TUAzGEkFCOhvGJLdrnIUMs8T8fLOhKq9e9AUVUbWgx1bGmz4R/qFnziUz8btS2tr4clrIqMhFIxygp6VaXNrsp2NnA7XgiSUP6x5cRWfTte0mfjgpOyk1A+BUq2s2Vf23LewT02T7YLt1EP4BOf+lmdt8xFnfdlJaFod/Kryr7z6VxOgyRUCJJQ/rGlASsyUbjqbSg7CVW1xtUkW/a1LeWAe2x+7DgA2CLpyXINJmLerHFrmhH/ZcXCDar6CPofJKlaHSEJFYIkFBrK6OzSThSuuiy1Wi33sOY8qta4mmTLvralHFCjzGQ+SSgASJaURGkwMZI0a5ub5wE8RSUl8VT1cfQ/SGLLgImykIQKQRIKDao7jSJJqDxzQiVx/Uelq3Tvd1v2tS3lgBplHk8d5wj1EYBvykpC5Wk/VSahOi+aqoqZyoqD6X+AdiShQpCEQoPtSSgVZSoLHfB6uveFLfvalnJADdePp+vlB4BOVUlCZf1u29D/AO2i8i1dBsoCeE/XY2irNoQTbvDh0dGAb+gvAH+E9bOu9r2NcucpP+0a4AdGQjESqvJsmzMpyxWizs+WJS4IIEBYT/cVMfZ1uaqyv12/kluV45TE9eMIIJ4tc+rlLUeaeFfVU/N0COtrwlSx/wEauB0vBEkoiJT/9LikH0guJKFsCgJsxn7yS1WOZ1W203ccR8Bvtsypl7ccnZ9Lc0G4yNOnVaONBZKRhApBEso8G65YR00EburKRWOfpB2mbEsSyuQ+sxUBil+qcjxtaJdt4Pp+qEp9BaCOyXYvTZtVZM5V1Whjq8P1eMAkklAhSEKZZ0MDbkMZwoQ1eHFXiUw/Aa+1LFiHTssvtrYV0CPpkd4idp/P1FcALkkTM2VNQulss2ljq4NjnR9JqBAkocyz4aTWWQbVSQhbrgCRhEIV2dBeoTx55iuxCUlwwC+un9Mqyh+3jrLbbGKC6uBY50cSKgRJKPNsOKl1duqqt8+GJFStVpOenh7p6ekp5fsAW7j+AwDZuJ6Egh1oN9xh+7GyIWYuQnf5SUJBF451fiShQpCEMs/3k9rHJFRcJ+/TsQNQbSShoILvcY5PbD9WtpcvCUkouIpjnV9UvqXLQFmASkj76NYs0k5WDpTF9ivHAIB4tOPuahw7V49XrVZTVvbOGJmYGbAXI6EYCWWUz4FPmnmTVG6/yZFQjY7el2OH9Lg6BF/leXw40MmFNtKFMpbB9v0QN9InrH2yLSaLKr+uycNNjLyyqb5AHZ9/r+rG7XghSEJBpzRJqKgOLE9jV1YDSaeLVtQHVAVBKPJwoY10oYxlsG0/pEmEx7HtGKa5XU4kfxzcSXebbVt9AWxEEioESSjoFDViqLUDjOrAbOnYwjpwRgOglS11FQBspKuNdHEkte1s2w9RcWTaZJRtx7BWq6Uqu+1xcNzT+Gzb59CPC1TxSEKFIAkFndJ0TrYnocLKUa/XpV6vt71GY1tdttRVALCRrh8oKtte2vF14o6ViR+aWWLEMDYew7STh9tSJ+MuKJN8gAjtZxKSUCFIQkGnNJ2Ti0koERpXrEcQBgDlUxkn0I4nUx2XFYkRXR6lnnauPeJguMKWumorklAhSELBNJJQAAAgK1vihKpQvb+LjJbPuz4bEQfDdbbUVVtF5Vu6DJQFwP9jy+NjuQoKAADgJlviyaxsKTdxMFAuRkIxEgoa5e3Uyu4Ms847QIYfnQjg8mG/AciDq+/lMjESKqx/CGN7n2HzE58biIORF21xPG7HC0ESCrq5MmcDnS+KohPOh/0GIA8S2OUykYQqoxxl0FFm1fU/bv4tV+bbghm0xfFIQoUgCQXdXHh6TVwHG/dUEKCVi4GxDdhvZhA0wgTqnbvKSnro+pxJOspcZlLQxX0OM2jj+yMJFYIkFHSL67iyNlS6OsG40U40pkiLIC0f9psZ7Pd06APUot6hIe+5FXVxMOt6ypSmzCLZyl1mEop2EGnRxvdHEioESSjopvLKSt6GLanzZLQTVKDjzYf9Zgb7PR32k1rsTxQVdeGwlW11Kk2ZRbKVW3VMzLkJFahH/ZGECkESCrrZkIRK+hwNJlSgHuXDfjOD/Z4O+0kt9ieKIgkVvc4iMTHnJlSgHvUXlW/pMlAWoDJsefSsar4NTfZte0zwta7rpmu/UacBwD+dfYYLfW9YGcNea+23XOmv6GuBfBgJxUgoGJI1W57U0eUdYpwna+9bpt+37QGo0/HYP+mwn9Rif0I1V+tU0uiopG1Im/zpfF+WB/H4OlE89KE+9MdIKMBxSVdWskzy2OiUJ06c6MRVNABQiXYPJpRR7xiZgc464OPxT7tNac85+gSoQD1Kj5FQFRwJRYBih7Ie9xt3tSlvdt63TL9v2wNQp6GCyXiBWCUfzv1qSTvSxzat5dZZZp1zaNVqNWf2tw600UiDiclDVDUJRYDip6jj2ugkVHaUvj1Rj3MCvqFOw3XU4XzYb9Xm4vHXWWadSaioddu+v1Vxsa6hfNyOB1gg7z3sUe9Lo/E53UNEXU5CMXwWvqFOAwBc0Npf9fT0iIibk5SL0PcCaTESipFQIkLmuixp972OycJVHveqX/0BAOhFrJIP+63aXD/+qstf9kgol/Z1UVXffqTDSCjAc6qvvnCvNwBAFfoUAGXrjI3zxMq0XYB6jIRiJJSIkLnWKc/kizqOUdZONK4MjISCCIFZHPYN0C5rv0asko9rbY9r5TXFxHQOusSVUfd5n2f/ZHnwT5XaqKpvP9JhYvIQVU1CudBB+SRpKHBrg61jEvG84jqXqj8RJElVzjECkGjsG6Bd1nOiKu1o1dFWpmPTfip6bkY93Kb1v61M1weSUOFoo5EGSagQVU1CoVxZklBx77UhCdU6+TidT7SqBCZV2c482DdAO84JhKFepGPTfipSlqiLmHFM1oe4i67EwUAyklAhSEKhDHFXfETaO6yw99brdRERGT16tPKyxeGWu/xsChZ1qsp25sG+AdpxTiAM9SIdm/ZTkbKkmSi8wVT824pYGCiGickBi2S5UtJ4XG0S1Vdkent7edQsAEAJ+hMAWaSNf+PoGK1EWwYUx0goRkJBsyxXjIrcjqfjKplNV95cUpX9VpXtzIN9AwDJaCvTsWk/lTUSKuu6035flvXZtN8BFzESCtpxb3Q4W66YcHygmi1120bsGwBIRluZjs/7qeyR953xMLEwUD5GQjESShmuFhSX5el4nZ1o0meS5qZqSJqjimOazHTCz/T3AwAAPxWJMaLiSl1Ph04z8qr1yc+dbHxaH+ASJiYPQRJKLRIW6qTZl1k61rTv7/xMlkCDxIc9OBcBAIBtkmJF1fFLllg568Va4l4gGUmoECSh1OKHrzppOrY0HWtr55l2qHPeY8bxtwfHAsiHHxUAYI7qNrhoEioudiLWApKRhApBEkotGuNypblik+cee5VJqMb38yOuXJyLQLyoHzqcOwDgj9a2PiomVp2E4mIGsB5JqBAkodSi0S1X3lv2kkZHpfnBlfa++SzrhDqmf0jTFsB2UeeI6XMHAKBHVEzciE9UJaHoR4D1SEKFIAkFl+VNQiXNE5Wmo8z6iF0633KZDoBMfz+QhB8PAFAtqmNi+hEgWVS+pctAWQAooOJxtj4/8rfKOK4AAMBGto6WJnYCysNIKEZCwSOdHbuuR8vG3ebH42zBVUCzbA3wbcIVbL9xDgD2KrudbbQHquNT+hEgGbfjhSAJBdfkebRtZ6erIhCP62DpfEEdMIv9n4wJZf3GOQDYS8X5maWt1vXgHJJQQDKSUCFIQsE1ee5nD7vyU/RHFUkoxKEOmMX+T0ayyW82nAPUMSCcivMzyzqSYuO85yVJKCAZSagQJKFQJhUBaZ4kVJiinWHcttD5gh9fZnEOoupsOAdsKAP852J/qyIpVDQJleZzSaL2Pec+sB5JqBAkoVCmLJ1S3o6trCRUHBcDIsAnBMCoOhvOARvKgPKYin1crGet+ypstH6aaSRsSEJFIQ4G1iMJFYIkFMpUtMNMM8TXhiQUALNc/FECqGTDOWBDGVAeU8fb9XqWJm4N2x6bk1AA1ovKt3QZKAsATdJcUVKBqzyAvXjMNKquiucA/TIQrrU9UNk2cM4B+TESipFQKEmWe+BVPrlJx1Uy16+8IT+CLgBIVnY/Sb9sVtlPfIv73t7eXmf65bwjofLGIirPE845IBm344UgCYUyJXW0rUGDyo5NR9KAjre6OPYAkKzshD1ts1llP/Et7jN5vtuEWq2WamSSym1ReV5yzgHJSEKFIAmFMiVNxCiyvvNSORJKBzre6uLYA4B9aJvNIgmVnevzmHLOAcmYEwowrDVZlHTlJ+rvYa+nSULZkrwCAADwTRXnIdNF574kHgbswEgoRkIZU+WOIO+Vq7irLnH7U/XVmiofu6rjyh8A2Id+2X2MhFpH5/QTtk934XI5gDDcjheCJJRZVf4xqyMJlfdvQBbUJQAA1CMJtY7OicJ9jGF83Cb4g9vxAIv09vYydBtOot4CAKCeqv417XpsHEFDjAFUAyOhGAlljOuPlS1K1RUv0yOhbAxiAAAAfFckBjM9gkb195saCWU6DjZ9HIE43I4XgiSUWS4PIVYhT6eRd94nnXNChV218v0Ymg44gDK5Wt9dLTcAlMF08qKMJFRnjKoyZm30MabjYNPHEYhDEioESSizSEKVdwVI9Y+xpMfq+n4M6fBRJa7Wd1fLDQBlMN1GlhEHd8r7lOms3+fyfgRUYk4oWId5kbIpkkji6j8AAIC9GL2ZTtR+av1NEfX7wsf9yW8puIiRUIyEMqrK2fuoTjTq9aR9Vea+ZCRUdestqsfV+u5quQFUU9ltlumkV9j3h+ksU965n8LeV4QtI6EAm3E7XgiSUObxI6G/qH1CEsoe1FtUiav13dVyA6gm2ix1k4uThALswO14sBJDSPVqXGUq48oWxxIuMn0lGAAAlKNWq9HHAxZgJBQjoWAZlSOhwt4XJ+0P8qr/cK/69vuEK8/JXK3vrpYbQDXRH+kfCRX23iRJ02eYfjoeYDNuxwtBEgo2ypuEiusMe3t7U/340h0A8aMQtiHoBwDYgP6oeBKqEWf29PS0/TdufUXLlCa2dTH+dbHMsA9JqBAkoWCjqM4ubWdQ5D543QEQARZsQ50EANiAH/3p+uRardYvuVSv1yMf4pO0PhVlKmMdZXOxzLAPSagQJKFgo6JBCEkoID3qJAAAdihywTXqroGw92VBEmo928sM+zAxOeCIsq96pX1ELuAjJtQHAMAOumLgtH09MTFQDkZCMRIKnsk6EirpqhEjoQAAAGCLrCOh0saaaUZSZVlf3Hptj39dLDPsw0gowDM65w5gdAgAAPoxDxBgN2JiQD2jSaiDDjpIzjjjDNlnn31ku+22k2OPPVZ+9rOftb2nVqvJuHHjZPDgwfLwww/LKaecIk8//XTz71tttZVcccUVMmbMGBERmTp1qowfP15WrFhR6rYAZQvrFKMC1zwdqI4guEodOT8s1mE/APpwfrkvS18OwKy856aL8a+LZYY7jN6Od8QRR8iBBx4of/3rX+XGG2+Uk08+uS0JNWHCBDn33HPl2GOPlWeeeUa+//3vy4EHHii77babrFy5UkRE7rjjDtlxxx3l+OOPFxGRn/zkJ/LCCy80k1JxuB0PLssyFDlq+GytVovsZBhyWwzDmNfxZT/wYx828uX8qjKOIZBdVJ9c5Ha8uJg4y3oArGf90/HefPNNOfXUU9uSUAsXLpQrr7xSzj//fBER2XjjjWXp0qVyxhlnyOTJk2X33XeXOXPmyAEHHCCzZs0SEZEDDjhAZsyYIbvttpvMmzcv9jtJQsFlYR1tb29v87G19Xq9+XrUj+W4e9/L7Gh9/IFflR8WScfOl/3gy3b4wsc2Iw/qpfs4hoA6YedTvV6X0aNH5/psJ85NIBvnklA77bSTvPDCC7LvvvvKn//85+b7fv/738urr74qxx57rBx33HFy+eWXyxZbbNFvXePHj5cbbrgh9jtJQkGlsn8UqZhQPE8SSsd2+hiE+7hNYZK205f94Mt2+ILjsQ77wX0cQ0CdIiOhsiShuBACpOPcxOTDhg0TEZElS5a0vb5kyRLZbrvtmu9ZtmxZv88uXbq0+flOJ5xwgowbN05ERIYMGaKyyKi4pHkdVHdYrd9X5n3bzF8BAG7jB5Q9mHcFafh2zurant7e3lLOKWJhoLjAhuXNN98Mxo4d2/z3iBEjgiAIgh122KHtfdddd10wbdq0QESCs88+O3j++ef7rev5558PzjrrrMTvnD17tvHtZvFnCZPl7zq/O8vnkj6vYzt07htb64MvS9J2+rIffNkOXxaOR7H9wP5jYXFr8e2c1bk9KtvFqPX4djxYWHQtUfkWa0dCLV68WEREuru7Zf78+c3Xu7u7m39bvHixbLPNNv0+O3To0OZ7AGTTOpcU8uPq9jrsB0Afzi8A0Ic2FtDD2iRUX1+fLFq0SA499NDmnFCDBg2Sgw46SM4880wREXnwwQdl8803lxEjRsiDDz4oIiIjRoyQzTbbrDlROWCzzuHIZQ/lbXSurZ1sY2JzFMOw7HV82Q8EorCRL+cXALTGxLa0bbaUA/CN0STUBz7wAdl5551FRGTgwIGy4447yic+8Ql5/fXXZf78+XLZZZfJOeecI3PnzpV58+bJueeeKytXrpT/+Z//ERGRuXPnyp133inXXnttc56na6+9Vm6//fbEJ+Mhnm/3ntuq84dt3n2c9wfyxIkTQ4912fiBb4c8531Vjh3tn12qUu8AoCpa23VVc6YCsJPRp+ONGjUq9NafG264QY477jgRWfej6MQTT5TBgwfLww8/LKeccoo89dRTzfdutdVWMmnSJBkzZoyIiEydOlVOPfVUWbFiReL383S8aAFPa8ksz6PqO5l46kZUucp8Oh7swHkPVAPnOuCWouesbbFbUkxsYuLvLPvYtv0J2Coq32I0CWUaSahovgWoNnQWnWUI62Ab+7jM/Z81CZXEhn2NfHw77wGEo50G3FL0nLUtidW6vrQjl3THIypiINpWoB1JqBAkoaL59mM07/bo7EyiylSr1WITVKqFlaO3tzf3dvpWd6qEY1cMwScAwEZF+3ed8UGaOwVUfl+WcmT9TuIooB1JqBAkoaL51ojm3Z6yO90BAwYoH5mUtxy2rA/l4dgVw/4DANiIJFS+cpCEAoqJyrdY+3Q8wHc2T5zIiA53cKwAAICrwp7UbAtiLEAPRkIxEiqUb42ujSOhsnxn43t1HJewdRa5HZCrQOVSub99O+/LRt0HANjI5pFQcd/RSvdk5SriYeIAoB2344UgCZWPiz9UXU9CNeZoKqs8Rb6HDrhc7G97cCwAADYyPbF53u9oTQKVOV9qQ9btVj3PKuA6klAhSELl4+IPrbydry1JqLKfmlfkMbU9PT1Sr9fbXqPz1cfF89FXHAsAgI/KuACd1IfaFpM3tO6bnp4e6enpSfwMUBXMCYVKy9tRmrg/XdV3ljViLay8o0ePVv49cIeLoyVVsHE+CwAAiiqjDy+jD9URn9D3A9kxEoqRUJlxtd+cLPu+yHHK0kknDZ+uQvLBJBsTPrQRAABAJRNPr0sTY6V5uh8xEKqK2/FCkITKhx+Y5pSVhCpaJt3fCbvRRgAAAJVMJKHyrlP1dwCu4nY8aGfjiAyf1Gq1fnMtdf4bAABUG/EYfJR02xv1HragLiZjJBQjoTKLOrEY/aCXqid0NKhqDBkJhU60BfAJwSRcQxu8HudvdaSp94yEQhlog9fjdrwQJKHU4oTTS0USKu1ns2gN8MKuUlX10bRVDnxpC/Sqct0ygfoM11Bn12NfVIepJFRnnxwWC1PnqoV2Zz2SUCFIQqnFCadXkckUy+oQoxJfLtQDVT/sG+upchBCkkQvG9tan4+5jfsbiEOdXY994Ze4vsZUEqoTdQ7UgfVIQoUgCaUWJ1w71T/Kiuzfso5NrVZzNvmiah/FjUBzYT/k5XMSwjY2trU2lkkVn7cNfqLOrufLvvCpjy2yLXHHkyQUbEEdWI8kVAiSUGr51EEWpSMZoysJZVOyzCSSUPGS6omrx90mac9FG/e1jWVSxedtg5+Ix9bz5fz1ZTtEzMazab9bV6IM1UAbvB5JqBAkoaCLjtvSdHXaqjtLVztfklDxkvaPq8fdJmn3oY372sYyqeLztgG+8+X89WU7RMyO7C+jn/XpWAFFReVbugyUBUDJkh5rmwdZfgBVoKP9hL/oG+3C+YtWKusD53q1cfyLYSQUI6GggW0joXSsN+pzrjbKOkdCNYIeF/ZDFEZC6VfGbQK6cPyBdTgXoINP9cqFUUZ555eKSnKZ7qOhnk/npE6MhAIc58rVPFc7WlX7N2w9ru4T2MnG+uRK+wQAcJfOvibsAk9Wvb29JCKAFBgJxUgoaBB1daToj0cdIyBUj4SCn5KOd1mjc2wcBaQK5xTgPs5j6OBT35dnW8rY/rg5PUXSjYQKe5/LfKp3qtHWp8PE5CFIQkEXXY22jgaPJBTSsCUQ8bne2bKPdfB524BWPrdRgCllnFdJt9eledJeo1y+9Hm0Z9HYN+mQhApBEgqu0TEahSSU23wJdNIqq95Vbb/qRnuBqqDtANRL04cUPfey9lO1Wi309sABAwZ40+f5sh060NanQxIqBEkouEbH5NAkodxWteNg06SkSI/9CQDIK+9E4Vn6GZUxtC99ni/bAXOYmByAMiomb4Q+jePDFRkAAAD1arWa1Ov1ttc6/w0gHCOhGAkFh+gYCdWaUOrp6RGR9k40LJFRhckYXRE3kaaPx4ORUG5ifwIA8ipjJNT06dP7vTZ69OhcZfKlz/NlO2AOI6EAD+h4NG1rkqmx/kYyqvPvgGk6H8+MamE+BwAwK207XEbf3xr7Yh1iLujCSChGQlWaqR8htj49L+3no54gwg+48lVtJFRZkp6S00CdT8fGhA9XeAGEsbG9iuNaeRviJvbOo+w5oeLe7+oxAVRjYvIQJKFg6keIru/V8WSQsMfT8uPNHo1jrjKQQ/i5xD72C+0YWvGjEQ2utQ2ulbdB9dQOumPgznW6ut+BMpGECkESCq4loXQHyXGjakS4wmMzjol+BJx+4XiiFfUBDa7VBdfK21A0CaU67kmKgRuIhYH0SEKFIAkF15JQusubNgkFVJGrgT7CcTzRivqABtfqgmvlbSiahFK93VmTUACSMTE5gEStw47zTkbIlSEAAAC4JCzuzRoLEwMD6TASipFQlebTSKgyhiXbMFoLMIW67Rd+LKCVyfObumgX19p618rbUPQhN2m3u8j5pXKyctiPtlg9bscLQRIKrj0dL65zK2NYcuv6orbBtw6YDgkNPtQFH7YB0MFk3+Vbv+k619pJ18rbkLbcRePNIudX1GerEgNXDcdPPZJQIUhCoSyqAoQyk1BJZY76Pt8acN+2B9VGfQbCmfwhz3mJOK4mmRp0PLUuS7xZ5PzKmmziXHYbx089klAhSEKhLFkatbjOOu5vZTecVemAfdseVBv1GbAP5yXiuF4/spa/M9YNm5cpbjRS0e9PoyoxcNVw/NQjCRWCJBTKkqVRc2G+qLjvc/2KXSc6JPiE+gzYh/MScVyvHyrmVcry+TTr60xsZY1TqxIDV43r55qNSEKFIAmFsphOQpV5Fcg3VdlOVAP1GbAP5yXiuF4/bExCFVlf1DpdOiYIx3FVLyrf0mWgLAA0yPsYWa7QAABgTtb+G0B6necX5xuiUDfKw0goRkKhBCpHQuUZ6ht3FShvhr8qQ46rsp2oBuozbEOdBOK5PjpDxUioNMmBtO2Giv1JuwWkw+14IUhCoSxZOqukzjFP56kjCQUAQFE6nlwF+MT1ej59+vR+r40ePTry/WnahCLthutJPazj+nlRFSShQpCEgo2SGlUbklA0/AAAFfgxCfit6NPxRPrHmDa0G8TCZtH+u4EkVAiSUHBRnka30VFGPea2jDIAnQjgANjwYxKAPrY9HCfqdj9VT8hDOdj/biAJFYIkFEwo+sPbhoCdhr/aVCWPqEcAbOjTgLy4mJIs7RxPZcXCtVpNyUVZ2h+z2P9uIAkVgiQUTCjaaBYJeFQNiabhrzaSmQBUKbNPA1SjDiaLmxKiVVmxcFSZor6fWNhO7H83kIQKQRIKJphsNFU8oWTAgAE0/BVHEgqADWhDYBp1MJmOJFRRKp5azbE3i/3vhqh8S5eBsgBwQNiVHwAAbJHmse2+4fYvuCbsPHXl3CUWtpcNdYj2OD9GQjESCiWzbSRUZyPeaDyjrlwNGDCARrfiGAkFAGbQbtqF45GP6f2WNh4mFkYc0/XYBdyOF4IkFEww2WB1dphxEzPGdbyoNh5vDABm6JjkGfnZ8CPUxb40qR7rLn/aeLjKsbCL9apsNpz/tiMJFYIkFEzQ2WBl7TDiylLljhfxCEwAwAwb59epMhv6Qxd/CLfuNxVPqgtbb0Oa45Fl3qfG33znYr0qG/soGUmoECShYILOBkvVxONRf+vt7Y3tzG0IxgAA8JVvSSjihuJc/yGssvx515UlCVWVWNj1elUG9lEyklAhSELBBFeSULVaTXp6etr+Vq/Xc4+sAgAAxYT9wFU5kqRsxA3Fub4PbU5CVTkW9mU7dPIl4agTSagQJKFggitJKB3rAwAAarnc97pcdlu4vg9tTkLlWafrx6PBl+2AWVH5li4DZQFgCRsebwoAAAD3+DIShHgYKBdJKKBkNnV0ZQQKjQDFxaAEAADb2RRXoHwmj7+KJzPaUH+JUfuz4bjAX9yOx+148EjeobNRV7JUDEHOUg4AsFXSFX9fRgQAZeKWH7fZdvzytMNJn6nq7XiACswJFYIkFHxTxlNB4tbX6MhdniQV6/CDGmineg49APQ1rrOt3ctTn5gfFdCHJFQIklDwTdSjZFuFdcZxTwXplCY4dLkDJiBex+VjCOhgaxKq6m2Wzu2v+r6Fv1TVbdtihaSnPndKM+o/676ybZ/kUaW2r0rbagJJqBAkoWCKrgYv7na4hrCOUHWH6VIH3HksGMW1jqpjSOdeDvazfrYmoVxqb3Ww6YmzQJmKtPs29PE6+q08T7mrcgwcxYdtSKtK22oCSagQJKFgiq4GjyRUdnn3me9UHUOX6oLL2M/6kYSyE0koVFWR+mlD3dZRBpJQaviwDWlVaVtNiMq38HQ8AMrxRA0AAABUDTEwkIwkFADlHSa3AbktbIi8zvVTX+CCpHaSHx4ATGvtX23uW3XHGVkQAwPl43Y8bseDAbbdjpeVT/PPcDtef1ET3KuatLRT1favDgwnr66qH3tux0NVJfWvNj/BLarsRcsQF5/q2Gaf4uFWputHmaq0rSZwOx7giawdno6r82Hr9KHTbWBEQ38+HV/AJ1Vvr3Ruf9X3LfzlU91OGxcTD6fnU/1IUqVttQkjoRgJBQN0TSaZ59G0efh01SBqv/h6dSsNlceXpw+WI219rXK9BgCftLbnrvWtukdct+4PnX2cT/EwoANPxwtBEgqmpOm0on4s5k00qewoq9DpVmEbo3B7i7/Y/wDgH9fa9qjy5rlQUuS2xKJc2+9A2UhChSAJBVPSdFqqHyVLEiqbKmxjFJJQ/mL/A4B/XGvbVca4JKEAezEnFIzg1o9wrtx/zPGrJuZYcRPnKwBUk2t9q0vlpW8F1GMkFCOhtOIKQX42jITKOlzap46augvXFBlhCQBp+NTPwz42joTKMg1GT0+P1Ov1ttc4P1Bl3I4XgiSUflX9waMiSFN5v3zc+lR+xqfj7dO26MAPEfuQhAKyoy3LhjbEPJfrbFLZ89Qv3RO0ZykT54fdXD53XEUSKgRJqOyynrxVbYyTtjvNflS971RN9liVJBQdVTwfjrVvx7jIAw+AqvKhLSsT+8s8k0+DKyqp7EWTSDr6OJJQ/uD4lI8kVAiSUNlVOSmRRdJ2u/JjkeONKD4cax+2oZVv2wOUgfMmG/aXeSYn4i4qqexhSSjTSTWSUP7g+JSPiclhhEsTD9rGdKcbx4YEGYB2tLcAAJe5GEuGxcQA4jESipFQmZBBTkfFSCgbZJ0c3ZXtQnE+HGsftgFAMbQD2bC/zPN5JJSNZc8T00e9F2bRfpWPkVCwQpVH0NRqNe+3lZEYAAD4i36+fD6MtPFhG7LgPAHiMRKKkVCZFM0gVyUDXavVYidXdGU/5BnxVOVEY5X4cJxdOQ8B6ONDWwa/xU3mreNpcDokjRZqcKXsSSOhbJzbCrT3JjAxeQiSUNkVPXmr9KNPZaLGVKOZJwlVpWNcVb504r5sRxVx7ABUhQ8X/ookakzHzEVvxwv7DFAVJKFCkIQqX5USFCq3Ved+i+uso/5GEqraOMYwjToIoCp8aO+KbENZT2qOinmTklokoYBoJKFCkIQqnw8daVoqr1zp3G951h1X/iod46riGMM06iCAqtDd3pUxmipqG9J8d1lJKJXJK1dukwR0IwkVgiRU+VwZNlxEYxt7enqar9XrdRHJn6hJ8/68+1Z1cJNlfVWoDz4iAQDTqIMAXJc2BtIdK5XRnuYZWd+QNa7MmwBy5Q4GwCUkoUKQhIIOqjtUXess+jkV66OTdhPHDaZRBwG4zpZ2zGQ5VMe3UbfGkYQCzIjKt3QZKAvgHEbs9Be1T3gsLQAAAHxHLAzkw0goRkIhBdWje7JeIZk+fXq/10aPHl1onaY+p3odKB9JWZhGHQTgOltiINtHQqWZ5iJufb29vdqmp7DlGAK24na8ECShkJbpJJTO2/HSJLjylqmMdQAAALjGlhjI9iRUlvcW2ZZardaW6BJZl+wy9eAgwAfcjgdYxKZhup0dblGMUNCHfQsAsBH9k7tMxqQ2xcNht9H19PRkrsecC0AyRkIxEgopmH7im01Px2t8T9TTR0zvK59xxS0e9QkAisvTltI/ZUeflY3OWDjLd7R+V9okGucCqorb8UKQhFLL585UxbYVWYfO4E7FrYGNTjjt43aRD/s2HvsHAIpjbhy3uBp/Zy13GXWs6O2Bvb29kRdpgSoiCRWCJJRaBCDxiuwf25NQre+nHujDvo3H/gGA4khCucXVfa9jftQyyxT1XlePB6ADc0IBDrPpnnkAAACgTEViYVdHiwG+IgkFiL7OKWy9eejsKElwoQgCOwAA9PGhn1URDxfZ5rBYN2x9xMRAObgdj9vxlHF5+KmusoetN+k7bA82kvaV7eV3mY371qbz3qayAICr8rSlNvZPvvBhGoSkeLghbbJIxfcX3UdR6+RcANZjTqgQJKHUcqETjGJTEipu4u9Wpjo0Ole0sum8T6qb1F0ASEZbaZcqJaHCqHgCno59xHkCJCMJFYIklFouN8ZlJqFaE0ph+ydtR52lfC4fG9jNheC3waWyAgAg4scI9LQXWNM8WU7VxPmtT3YGoAdJqBAkodBQZhIqT0cZJkv5yvrx7UIgBLVcSuy4VFYAAET86LvSbkOa9xW5XTRNkqsI4mCgHUmoECSh0EASSg0fAiVk49Ixd6msAACI+NF3mU5CqfisDesHXBOVb+HpeIDoexoGT9lYd1WIq0D+oo4D+XDFHEAavb290tPT0/aaa7EVsQKAVoyEYiQULFOr1foFG53/FnFnJJSu7wKy4golbEJ9BJBWVdqL6dOn93tt9OjRbf9mJBTgDkZCAY6YOHFi6ska0wi72g5UEVdiAQCwV9hF107Ew4D7GAnFSChYSOWVlKgngkycOFH57SCMhAKAdLhiDiCtqrQXOrezjHi4KscJSIuJyUNUKQnF3BNuKSsJpbqzrNVq2p88AsAs+hM1+LHiD86JcOwXdarSXujazqT4VNX3VuU4uYI2yDySUCGqlITyoVH0pSFJsx0qjlfc42gb69NRL3w5TgDC+dCf2IC20h+cE+HiLoIhm7j2wtW2JKzcui5kJo3UV3UOu3osfEXbbB5JqBAkodw6CX3YBhH9j5+NW0fn+nzZpwDKQ7sBtOOcCMct+uVwtf4lxakNLiWhYBeOq3lMTO4hsu3+smECZeoXAAAAymJD/BuGmBhQi5FQDo+EypLd9SET7MM2iOTbjjydX9GRUL7sb1UIQIB1aBuAdpwT4fKMhKKvzc7V+pel3EXrRdKtoUllcXUfVx3HzTxuxwtBEsqtk9DFbVB1v3uebU+ThIrr1F3c3zqxP9rxQ6G6XDwXqK/QycVzogx5klDsy/6S2i9X9lnndmSJh4tuY9LnfdnHaMdxM48kVIgqJaF8CMBdbEhU3e+uKglVr9eb/80zksr2/a0T+6Md+6N8trTjtpQjC9fqq4v7uMp8O16qtifPE3NdO1fL4MsonTQxsa4kVGud7unpEZH1MbFIvrsLbNzHaOdb2+wiklAhqpSE8oGLDUnU8N9OOjq/uKfjdX62zCeUuKpq51sS9kf52Of5ubbvXCsv/KKy/mWN3aj7/RUdxWOLNDFxVLlV1os8sTn1EsjH+yTUSSedJGeeeaZsu+228tRTT8lpp50mM2bMiP2M60koVzqdKlPVaRVZT5rgJazzzZMs8xkBSDv2R/nY5/m5tu9cKy/8YrL+Uff782Wf6Ixli5YjTCMOnjhxIr+5gJy8TkL98z//s/ziF7+Qk08+WWbMmCEnn3yyHHfccbLnnnvK/PnzIz/nehIK9nMhCcUjlNPxJQhUhf1RPvZ5fq7tO9fKC7+QhLKLL/vEtSRU0e8BEJ1v6TJQFuX+4z/+Q2644Qb5yU9+IiIi3/72t+Xwww+Xk046Sc455xzDpQOKs/WRtVXCMQAAQC/6WoShXgB+cT4JteGGG8o+++wjl1xySdvrd999t4wcObLf+0844QQZN26ciIgMGTKklDKiulR1mgz5NY9j0I6AEC6hvgJuoK/tz5f2q8h2UC8AvzifhBoyZIh0dXXJkiVL2l5fsmSJHHLIIf3eP2XKFJkyZYqIrBseBuhkQ6fpS/ACu9hQt6uGczk/1+orxxomUf/s4lr7FcWW7Ug7DyoAfZxPQgGIl6fTpzMG7GNLAA/9ONYwifoHn8XVb+JfoBzOJ6FeffVVee+996S7u7vt9e7ublm8eLGhUgHu4Cl4AAAAqCriXqBczieh1qxZI3/5y1/k0EMPlVtuuaX5+qGHHiq/+c1vDJYMcAMdLwAAAKqOmBgoh/NJKBGRSy+9VH7+85/LI488IjNnzpRvfetb8g//8A9yzTXXmC4aAAAAAAAAxJMk1K9//WvZeuut5dxzz5Vtt91WnnzySfn85z8vL7/8sumiAQAAAAAAQDxJQomIXH311XL11VebLgYAAAAAAABCDDRdAAAAAAAAAPiPJBQAAAAAAAC0IwkFAAAAAAAA7UhCAQAAAAAAQDuSUAAAAAAAANCOJBQAAAAAAAC0IwkFAAAAAAAA7UhCAQAAAAAAQDuSUAAAAAAAANCOJBQAAAAAAAC0IwkFAAAAAAAA7UhCAQAAAAAAQDuSUAAAAAAAANCOJBQAAAAAAAC0IwkFAAAAAAAA7UhCAQAAAAAAQDuSUAAAAAAAANCOJBQAAAAAAAC0IwkFAAAAAAAA7UhCAQAAAAAAQDuSUAAAAAAAANCOJBQAAAAAAAC0IwkFAAAAAAAA7UhCAQAAAAAAQDuSUAAAAAAAANCOJBQAAAAAAAC0IwkFAAAAAAAA7UhCAQAAAAAAQLsBIhKYLoQpS5culZdeesl0MeCQIUOGyKuvvmq6GIBW1HP4jjqOKqCeowqo5/Cdy3X8Qx/6kAwdOrTf65VOQgFZzZ49W/bdd1/TxQC0op7Dd9RxVAH1HFVAPYfvfKzj3I4HAAAAAAAA7UhCAQAAAAAAQDuSUEAGkydPNl0EQDvqOXxHHUcVUM9RBdRz+M7HOs6cUAAAAAAAANCOkVAAAAAAAADQjiQUAAAAAAAAtCMJBQAAAAAAAO1IQqGyzjrrLAmCQCZNmtR87aijjpJp06bJ0qVLJQgCGTVqVL/PbbTRRnLFFVfIsmXLZOXKlfK73/1Otttuu7b37LDDDjJ16lRZuXKlLFu2TC6//HLZcMMNtW8T0Kmznnd1dcmFF14ojz/+uKxcuVIWLlwoN910k+ywww5tn6OewxVhbfkPfvADmTNnjqxcuVJef/11+eMf/ygjRoxo+xx1HC4Jq+etrrnmGgmCQE4//fS216nncElYPb/++uslCIK25cEHH2z7HPUcrohqy3fZZRf5zW9+I8uXL5e33npL/vKXv8juu+/e/LtvdZwkFCrpM5/5jIwbN04ef/zxttc/8IEPyKxZs+Q//uM/Ij972WWXyZe//GX5+te/LgcddJBsscUW8vvf/14GDlx3Og0cOFD+8Ic/yOabby4HHXSQfP3rX5evfOUr8qMf/UjrNgGdwur5pptuKnvvvbf88Ic/lL333luOPPJI2WGHHWTatGmywQYbNN9HPYcLotryZ555Rk455RT52Mc+JgceeKD09fXJtGnTZOjQoc33UMfhiqh63vDlL39Z9ttvP3nllVf6/Y16DlfE1fN77rlHhg0b1lw+//nPt/2deg4XRNXxD3/4wzJz5kzp6+uTz33uc7LXXnvJueeeKytXrmy+x8c6HrCwVGnZYostgueeey7o6ekJpk+fHkyaNKnfe7beeusgCIJg1KhR/T67evXq4Oijj26+tv322wdr164NDjvssEBEgsMPPzxYu3ZtsP322zff841vfCN45513gs0339z49rNUY0lTzxvLHnvsEQRBEOy1117Nz1LPWWxfstTxzTffPAiCoFl/qeMsrixJ9XzHHXcMFixYEOy+++5BX19fcPrpp7d9lnrO4sISV8+vv/764Pbbb4/9LPWcxfYlro7fdNNNwS9+8YvYz/pWxxkJhcqZPHmy3HLLLVKv1zN/dp999pGNNtpI7r777uZrCxYskDlz5sjIkSNFRGTEiBEyZ84cWbBgQfM9d911l2y88cayzz77FC4/kEaWer7FFluIiMjy5ctFhHoON6St4xtuuKGMGzdOVqxYIY899piIUMfhjrh6vsEGG8jNN98s5513nsydO7ff36nncEVSe37ggQfKkiVL5JlnnpHJkyfLNtts0/wb9RwuiKrjAwYMkH/6p3+Sp59+Wu68805ZunSpPPLII/LP//zPzff4WMe7TBcAKNPxxx8vO++8s/zLv/xLrs8PGzZM3nvvPXn11VfbXl+yZIkMGzas+Z4lS5a0/f3VV1+V9957r/keQKcs9XzDDTeUH/3oRzJ16tTmrRzUc9guTR3/whe+IL/85S9l0003lUWLFsmhhx4qS5cuFRHqONyQVM8nTpwor776qlxzzTWhf6eewwVJ9XzatGly6623Sl9fn3z4wx+W8847T+677z7ZZ5995N1336Wew3pxdXzo0KGy+eabyznnnCPf+9735KyzzpLPfe5zctNNN8nKlSvljjvu8LKOk4RCZey6665y/vnny4EHHijvvfee6eIAWmSp5xtssIH84he/kK222krGjBlTUgmBYtLW8enTp8snP/lJGTJkiJxwwgny61//WkaMGCGLFy8usbRAPkn1fNSoUXLsscfKJz/5yfILByiSpj3/1a9+1fz/J598Uv7yl7/ISy+9JF/4whfktttuK6uoQC5Jdbwxp9Pvfvc7+e///m8REXn88cfl05/+tJx66qlyxx13lFresnA7HipjxIgRss0228hTTz0la9askTVr1khPT4+cfPLJsmbNGtloo40S17F48WLp6uqSIUOGtL3e3d3d/GGzePFi6e7ubvv7kCFDpKurix8/0C5tPW/cxvHxj39cDj74YHn99deb66Cew2Zp6/jbb78tzz//vDz88MNy/PHHy5o1a+T4448XEeo47JdUz//xH/9Rtt12W1m0aFHz7x/+8Ifl//7f/yvz588XEeo57JcnNl+0aJEsWLBAdtllFxGhnsNuSXX8tddekzVr1sjTTz/d9rk5c+bIjjvuKCL+1nHjE1OxsJSxbLnllsHw4cPblkceeSS46aabguHDh7e9N2li8q9//evN17bbbrvQieG222675nu+/vWvWzsxHItfS5p63tXVFdxyyy3B3Llzg2HDhvVbB/WcxeYlS1veujz33HPBf/3XfwUi1HEW+5ekej506NB+f1+wYEFw8cUXB7vuumsgQj1nsX/J055vvfXWwerVq4NjjjkmEKGes9i9pKnjM2fODG688ca2z914443BH/7wh0DE2zpuvAAsLMaWzqcTDB48OPjEJz4RjBo1KgiCIPi3f/u34BOf+ETQ3d3dfM+Pf/zjYP78+cHBBx8cfPKTnwzuu+++4NFHHw0GDhwYiEgwcODA4Iknngjuvffe4JOf/GRw8MEHBwsWLAiuuOIK49vLUs2ltZ5vsMEGwW233RYsWLAg+NSnPhV0d3c3l4033rj5Geo5i0tLax3ffPPNg//6r/8K9ttvv2CHHXYI9t577+C6664LVq1aFXzsYx9rfoY6zuLakvQUyM6n44lQz1ncW1rr+Qc+8IHg4osvDvbff//gQx/6UDBq1Khg1qxZwfz584PNNtus+RnqOYtLS2dbfuSRRwarV68OTjjhhOCjH/1ocPzxxwfvvvtu8PnPf775Hg/ruPECsLAYWzobgbFjxwZharVa8z0bbbRRcMUVVwSvvvpq8NZbbwVTp05texymiAQ77LBDcPvttwdvvfVW8OqrrwaXX355sNFGGxnfXpZqLq31/EMf+lBoHQ+CIBg7dmzzM9RzFpeW1jq+ySabBLfeemvwyiuvBKtWrQpeeeWV4Le//W2w3377tX2GOs7i2pInCUU9Z3Ftaa3nG2+8cTBt2rRgyZIlwerVq4MXX3wxuP766/vVYeo5i0tLWFs+duzY4Jlnngnefvvt4PHHHw++9rWvtf3dtzo+4P/9DwAAAAAAAKANE5MDAAAAAABAO5JQAAAAAAAA0I4kFAAAAAAAALQjCQUAAAAAAADtSEIBAAAAAABAO5JQAAAAAAAA0I4kFAAAQIhRo0ZJEAQyduxY00UJFQRBc7nnnnuMlWPOnDnNcvT19RkrBwAAsF+X6QIAAACY8olPfEK++MUvyg033CAvvfSS6eJkdv/998vkyZNl0aJFxspw5plnypZbbin/+Z//KZtssomxcgAAAPsNEJHAdCEAAABMGDt2rNxwww3S09Mjf/rTn9r+NmDAANloo41kzZo18v777xsqYbQgCOSGG26Q4447znRRRERk+vTp8uEPf1h22mkn00UBAACWYiQUAABAiCAIZPXq1aaLAQAA4A3mhAIAAJVUq9XkhhtuEBGRer3enNfo+uuvF5HwOaFaXzvppJNk7ty58s4778gTTzwhX/jCF0REZK+99pI777xTVqxYIa+++qpcfvnl0tXV/7rfzjvvLDfeeKMsXLhQVq9eLX19fXLRRRfJpptuWnjb+vr6ZPr06fLxj39c7rnnHnnzzTdlyZIlcskll8gGG2wggwYNkosvvlgWLFgg77zzjvzpT3+S3XffvW0dgwYNklqtJnPnzpW33npLli9fLk888YRcdNFFhcsHAACqiZFQAACgkm699VbZdttt5cQTT5Qf/vCHMmfOHBERef755xM/e8opp8jgwYPlJz/5iaxatUq+/e1vy2233SZf/epXZcqUKXLzzTfLb3/7WznssMPk29/+tixdulR++MMfNj+/9957y3333Sd///vf5dprr5VXXnlFPvGJT8i3v/1tOeCAA2TUqFHy3nvvFdq+7bffXu655x751a9+Jbfccoscdthhcvrpp8t7770nw4cPl0022UQuvPBCGTJkiJxxxhny29/+VvbYYw8JgnUzNVx11VXyb//2b/Kzn/1MLr30Uunq6pJddtlFPve5zxUqFwAAqLaAhYWFhYWFhaWKy9ixY4MgCIJRo0b1+9uoUaOCIAiCsWPH9nttwYIFwRZbbNF8/WMf+1gQBEGwdu3a4Kijjmpbz5///Odg4cKFba899thjwZw5c4LNNtus7fUvfvGL/b4zagmCILj++utD/9bX1xcEQRB85Stf6VeWtWvXBr/97W/bXh8/fnwQBEFw2GGHNV977bXXgj/84Q+p9+X06dODvr4+48eUhYWFhYWFxd6F2/EAAAAyuuGGG+SNN95o/vtvf/ubrFixQhYuXCi33XZb23tnzJgh2267rXzgAx8QkXW3633iE5+Q//mf/5FBgwbJ1ltv3VxmzJghK1eulMMOO6xwGRcsWCC33HJLv7IMHDhQJk2a1Pb6Aw88ICIiu+yyS/O1FStWyPDhw2X48OGFywIAACDCnFAAAACZvfDCC/1eW758ufT19YW+LiKy9dZbi4jIHnvsISIiP/jBD+TVV19tW5YtWyabbbaZdHd3Fy5jXFk6/9ZZRhGR0047TQYPHixPPvmkPPfcczJlyhQZM2aMDBgwoHDZAABANTEnFAAAQEZr167N9LqINJM3jf9ecsklMm3atND3NpJCRcSVJepvrQmmqVOnyoc//GH5/Oc/L6NGjZJDDjlEjj/+eLn//vvlkEMOkTVr1hQuIwAAqBaSUAAAoLIak3CX6dlnnxWRdYmge++9t/Tvz2L58uVy0003yU033SQiIhdeeKF897vflSOPPLLfrX4AAABJuB0PAABU1sqVK0VE5IMf/GBp3/noo4/K3/72N/nWt74lO+20U7+/b7DBBjJ48ODSyhNm4MCBsuWWW/Z7/dFHHxWRcvcXAADwByOhAABAZc2ePVvWrl0r//mf/ymDBw+Wt956S/r6+uSRRx7R+r3HHHOM3HffffLEE0/IT3/6U3nqqadk0003lZ133lm+9KUvydlnny0/+9nPtJYhzuabby6LFi2SqVOnyqOPPipLly6VnXbaSU466SR5/fXX5fbbbzdWNgAA4C6SUAAAoLLmz58v3/zmN+W73/2uXH311bLRRhvJDTfcoD0J9fjjj8unPvUpOfvss2XMmDHyrW99S95880158cUX5YYbbjB+m97bb78tl112mRx88MFyyCGHyGabbdZMSl1wwQWyaNEio+UDAABuGiAi5U+GAAAAgEKCIJCbb75Zxo8fL++++668+eabRsqx5ZZbSldXl/zud7+T7bbbLvQWQwAAABGSUAAAAE5qnVT9j3/8oxx66KFGyjFnzhzZfffdRUTkxRdfJAkFAAAicTseAACAgw455JDm/7/22mvGynHcccfJBz7wAREReeedd4yVAwAA2I+RUAAAAAAAANBuoOkCAAAAAAAAwH8koQAAAAAAAKAdSSgAAAAAAABoRxIKAAAAAAAA2pGEAgAAAAAAgHYkoQAAAAAAAKDd/w9ImZlxJ2fTOwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -190,7 +190,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqMAAAK0CAYAAAA3TDRLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABYxklEQVR4nO3df5QW5X3//9cuPxbDgiIruysiYjUSjPUnSUA4NWnwi9p8P+0n+aSRbw3aFqtJVRr6pSklxfXbox5MLaax1SU5/mqxyUlIjMnBQCqGxhVEDBqIC0YIAtkfAhFdcZHdne8fZOeeW+7Ze+aea+5rfjwf5+w5w71zX3PNzDXDtdf7+lEjyREAAABgQa3tDAAAACC/qIwCAADAGiqjAAAAsIbKKAAAAKyhMgoAAABrqIwCAADAmuG2MwAAAJBXA70/lWrHWc3Dj/97v6666iprx6cyCgAAYEvtODkHP201Cw0Nq6wen8ooAACARQMasJ0Fq+gzCgAAAGuojAIAAMAawvQAAACWOI7U7xCmBwAAAKygMgoAAABrCNMDAABY42hAju1MWEXLKAAAAKyhZRQAAMASR8wzSssoAAAArKEyCgAAAGsI0wMAAFjU7zCACQAAALCCllEAAABLjg9gomUUAAAAsILKKAAAAKwhTA8AAGCNo37C9AAAAIAdVEYBAABgDWF6AAAASxhNT8soAAAALKJlFAAAwCJWYAIAAAAsoTIKAAAAawjTAwAAWHJ8AFO+0TIKAAAAa2gZBQAAsIgVmAAAAABLqIwCAADAGsL0AAAAljiS+vMdpadlFAAAAPZQGQUAAIA1hOkBAAAsYp5RAAAAwBJaRgEAACxxJPWrxnY2rKJlFAAAANZQGQUAAIA1hOkBAAAsGmCeUQAAAMAOKqMAAACwhjA9AACAJYymp2UUAAAAFtEyCgAAYAkto7SMAgAAwCIqowAAALAmFZXRm2++Wbt27dK7776rF154QbNmzbKdJSTYsmXL5DhO0U9HR8cJ++zfv19HjhzR+vXrNW3aNEu5RVLMnj1bTzzxhPbt2yfHcTR//vwT9ilXbk455RQ9+uijevPNN/Xmm2/q0Ucf1cknn1ytU0BClCtLDz300AnvqOeee65on5EjR+prX/ua3njjDfX09OiJJ57QxIkTq3kaqBanRgOWf2xLfGX0s5/9rO677z7deeeduvjii9XW1qY1a9Zo0qRJtrOGBGtvb1dTU5P7c8EFF7i/W7x4sRYtWqRbbrlF06dPV3d3t9atW6f6+nqLOYZt9fX12rZtm2677TYdOXLkhN8HKTerVq3SJZdcorlz52ru3Lm65JJL9Nhjj1XzNJAA5cqSJK1bt67oHXX11VcX/X7FihX69Kc/rWuvvVazZ8/W2LFj9cMf/lC1tYn/bxsIrUbH+84m1saNG/Xyyy/rxhtvdD/buXOnvvOd72jJkiUWc4akWrZsmT7zmc8UVUC9fvOb3+jrX/+67rzzTknSqFGj1N3drb/9279Va2trNbOKhHr77bf113/913rkkUfcz8qVm6lTp+qVV17R5Zdfrra2NknS5Zdfrp/97Gc677zztHPnTivnArtKlaWHHnpIDQ0N+tSnPlXyO2PHjtUbb7yhG264QatWrZIknXHGGdqzZ4+uuuoqrV27tip5R3X09L6kHV1/ZDUPA92rNX36dGvHT/SfWCNGjNCll156woO3du1azZw501KukAZnn3229u/fr127dunxxx/XlClTJElTpkxRc3NzUZnq7e3Vhg0bKFPwFaTczJgxQ2+//bZbEZWkZ599Vj09PZQtnGDWrFnq6urSjh071NraqtNOO8393aWXXqqRI0cWlbd9+/bplVdeoSwhkxJdGW1oaNDw4cPV1dVV9HlXV5eampos5QpJt2nTJl1//fWaO3euFixYoKamJrW1tenUU091yw1lCmEEKTdNTU164403Tvhud3c3ZQtFnnrqKX3+85/XH/7hH2rRokX6yEc+oqefflojR46UdLws9fX16cCBA0Xf4z2FrGKeUWTOU089VfTvjRs3ateuXZo/f742btxoKVcAcNy3vvUtd3vbtm3asmWL9uzZo2uuuUbf+973LOYMtvRbbhu0PYQp0S2jBw4cUF9fnxobG4s+b2xsVGdnp6VcIW3eeecdbd++Xeeee65bbihTCCNIuens7CwKtQ6aMGECZQtD6ujo0L59+3TuuedKOl6Whg8froaGhqL9eE8hqxJdGT127Ji2bNmiOXPmFH0+Z86con5ZwFDq6uo0depUdXR0aPfu3ero6CgqU3V1dZo9ezZlCr6ClJvnnntOY8aM0YwZM9x9ZsyYofr6esoWhjR+/HhNnDjRnYJuy5Yteu+994rK28SJE/WhD32IsoRMSnyY/t5779Vjjz2m559/Xs8++6xuuukmnX766XrggQdsZw0Jdc899+jJJ5/U66+/rgkTJugrX/mKRo8e7Y5mXbFihZYsWaL29nbt3LlTS5cuVU9PjztqFfk0evRonXPOOZKk2tpanXnmmbrwwgt16NAh7d27t2y5aW9v15o1a/Tggw+6s388+OCDevLJJxlJnzNDlaVDhw7p9ttv13e/+111dHTorLPO0l133aXu7m43RP/WW2/pm9/8ppYvX67u7m4dPHhQ9957r15++WX95Cc/sXlqiIEjWZ/rc5jVox/nJP3n5ptvdnbv3u309vY6L7zwgjN79mzreeInuT+PP/64s3//fufo0aPOvn37nO985zvOhz70oaJ9li1b5vzmN79x3n33XeeZZ55xzj//fOv55sfuzx/8wR84pTz00EPuPuXKzSmnnOI89thjzuHDh53Dhw87jz32mHPyySdbPzd+klOWRo0a5Tz11FNOV1eXc/ToUefXv/6189BDDzlnnHFGURojR450vva1rzkHDhxw3nnnHecHP/jBCfvwk42ft3tfcjb++iyrP5s3b7Z6DRI/zygAAEBWvd37sl7u/F9W8zDyjW8zzygAAADyicooAAAArEn8ACYAAICsciT1O/luG8z32QMAAMAqWkYBAAAsGsh522C+zx4AAABWVb0yevPNN2vXrl1699139cILL2jWrFmBvrdgwYKYc4a8oCzBBMoRTKAcAVWujH72s5/VfffdpzvvvFMXX3yx2tratGbNGk2aNKnsdwdXNAGioizBBMoRTKAcwVGN+i3/2FbVyuiXvvQlPfzww/rGN76h9vZ23Xrrrero6NDNN99czWwAAAAgIao2gGnEiBG69NJL9dWvfrXo87Vr12rmzJlDfvfNN95S75Gj2vHibqm/P85sZk+N5y8ex2exrSD7ZMjJp43Vjs2/sp0NpBzlCCaEKke8z41qnHyaTplwsu1spMKyZct0++23F33W2dmp5ubmon1uvPFGjRs3Tps2bdIXv/hF/fKXvwyUftUqow0NDRo+fLi6urqKPu/q6tInP/nJE/ZfsGCBG77oPXJUn79gsSRp4O23489shtSMGOluO8feq3gfAIBdvM/Nuv/5u21nwZWGeUbb29t1xRVXuP/u9zQOLl68WIsWLdL111+vHTt26B//8R+1bt06nXfeeerp6SmbdmKndlq5cqVWrlwpSdqx+VduJXTY+FPdffoPHir53aw8jIPn4T0Hv3Pz+zzI+aftGpm+v1kpLwCSpdQ7PMz33v/dLL7PkR59fX0nNCgOWrhwoe6++26tXr1akjR//nx1d3dr3rx5am1tLZt21ariBw4cUF9fnxobG4s+b2xsVGdnZ7WyAQAAkBiOpAHVWP0J4uyzz9b+/fu1a9cuPf7445oyZYokacqUKWpubtbatWvdfXt7e7Vhw4ay3TAHVa0yeuzYMW3ZskVz5swp+nzOnDlqa2urVjYAAADg0dDQoM2bN7s/759ybNOmTbr++us1d+5cLViwQE1NTWpra9Opp56qpqYmSSrZDXPwd+VUNUx/77336rHHHtPzzz+vZ599VjfddJNOP/10PfDAA4HT8IbmhzcXTrKvo9C6mpUwRanziHJutWPGuNtp7ntbacjL73tZKS9R0FXBjDivY5KeX8pLMIPXJo7rlfXyECZNymN0Bw4c0PTp031//9RTTxX9e+PGjdq1a5fmz5+vjRs3Rj5+VSuj3/72tzV+/HgtXbpUzc3N2rZtm66++mq9/vrr1cwGAABAQtSoP2ULYr7zzjvavn27zj33XH3/+9+XdLzb5d69e919wnTDrPrZ//u//7umTJmiUaNG6bLLLtP//M//VDsLAAAAqFBdXZ2mTp2qjo4O7d69Wx0dHUXdMOvq6jR79uzA3TATO5o+CG9oPu/N9IFGWfYerUJOkieP5SEsrpEZcV5H26FYL8pLOGGvV9re53GUhzBpUh7jd8899+jJJ5/U66+/rgkTJugrX/mKRo8erUceeUSStGLFCi1ZskTt7e3auXOnli5dqp6eHq1atSpQ+qmujAIAAKSZo+TPM3rGGWfo8ccfV0NDg9544w1t3LhRH/vYx9xulsuXL9dJJ52k+++/3530/sorrww0x6hEZRQAAABDuPbaa8vu09LSopaWlorST11lNMhkwEEmxk+rIN0R/EZZ5j2UkaTRp8iXvHcjQuXS/D6n3Ac3kLIBTKbl++wBAABgFZVRAAAAWJO6MH2Qpn5vaD5todlyYY0g55+G87TB1nUhVAXue3JU83msdG16ryDvraS+Y5KUlyRznBr1O8GW5MwqWkYBAABgTepaRgEAALLCkVK3ApNpma+MekMcw849W5LU/+ouW9kpqVyIJcjsAGHDNEkN6ySJqWvE9UWS8Ozb5e065p243nsvuEdmcB3TI99VcQAAAFiV+ZZRr8EW0aT9tVQuD0HmSvVLI8i8rCgtzdcoaWUcyZH38lDN8y91rCADknifm5Gm6zKQ8BWY4pbvswcAAIBVVEYBAABgTa7C9IOStnRopSHVIN+jU3w+cX+BAhtziwY5Vth88T7PJkc1uR9Nn++zBwAAgFW5bBkFAABIiryvwJT7yqg3ND+8ucnd7uvorFoeKg2x1IyqC5WGd58gc90BpcQRHiTkiDjZHkEfRJRnwMR30/bc8c7IFsL0AAAAsCb3LaMAAAC2OJIGct42SGXUo5qheROCTJ4cx3eRb3GExAizIY+SsMxwWp+9tOYbpVEZBQAAsKZG/azABAAAANhBy2gA3pHncYe3S40Q9Bs1yGhCADak+d1jYwJ83tvA0KiMAgAAWHJ8AFO+5xklTA8AAABraBkNwBuaj3st+1LhnCDrzvshxA/AtDS/M2xMgG/qfetNp9RxgLSiMgoAAGARo+kBAAAAS2gZDckbmq/mKPtSgoR+gnxOKD8buF/5xH2vnkqvdZQuVUHSoQykm6Ma9ee8bTDfZw8AAACrqIwCAADAGsL0EXhD83GMliyXTtxrExPuiZfp0Br3K5+yft9NPydR0gu7f7kZUaKkbeq7SABHGnCYZxQAAACwgsooAAAArCFMb4g3TBJ2Yvxyo9lNhWAYcVmaresS570OgvKANLAdmg/73Wo9Vzy/2eFIjKa3nQEAAADkFy2jAAAA1tRoIOcrMFEZjYE3ND988iR3u2/P3pL7+000X07YyeqZ0L60JJy/6TWswxwziyjf8Iry7osy4n5wYZQgi6JUc/ERng8kTb6r4gAAALCKllEAAABLjg9gyvc8o1RGY+YNzYdde7hcyD7KZPWEZpKJ+2IG1xF+qlk2BsPzUdadj2NREp4PJA2VUQAAAIvyPoAp32cPAAAAq2gZrSJvaOToNdPd7bofbS67/yC/0H2Q0ZdxTt6cttGZRfm9+LzC5z/fUfjcwnkEuY5ByoANYfOe1JHBNspyGp6fKO+eavE7fu1F0wo7vVboOhVllLvX8Oamwj71Hyik/+t9Q34vyjvZy/S1tn0f36/UeSchXzCHyigAAIAljmpyP4CJMD0AAACsyVXLaKn1v22FDb2h+Y+9dMzd3njhiCHTDhu6DfJdE/sneb3nUvfdu73nj+rd7bN+buaYpgXpemE7v2FDkabyW+l3gywOUS1Rnp8g6ZjoQmH7GQjCr3ztm3OKu1136cnu9vhvPhcqTa+iezCy8N7esayQ/tR/OP5uD7LgiW/aAfY3Le73eVhh0rT9HkRlclUZBQAASBpG0wMAAACWZL5l1EToKUqIK8h3vaH533+x0In5Fx8dMeT3Btc9lvxHhfqFe2pG1ZX9bqWChJji7DLg992ikLbn/Cf/YyFUV+O5pjVnnu5u928vjLIPq9KyEborg+ecTIWnSpWxsCHEanaLGbwGTu9RK/mKM0QYpBxFSSepodBy5x3k+Kff0+Zu7/v7me62d5T9wNZfutvDxp/qbvcfPFQ6X57nzRuGP6+l8D7fd9/xLkDN/yfc9UpStydbXQZK5TGrIXhHUj8towAAAIAdVEYBAABgTerC9GGb6U005QcJiQXZJ0jeB0PzkvSlV44P7f7nc84vfUxPKNKPX75MTfZc7phBRAkDhbkfgbpYeK7pQAyh+TDiLt9B8ugtJ2HComGPE2X/JI38jvO4UULzphchsBWaD8Pvep1xVyFk73g+Hz55UuHL7xVmOPGG7Afe6ils+7xDBye6l6TGe453A9j12FT3symfe7lkvvzEsYCE6Xsd9wj6MO+eai64YU6NBphnFAAAALAjdS2jUf6iGfwL169Dup9qtsZ6vzvYIvp7m0e5n702vbfkvkHyWM1BQ4O8A2D8BpWYGkxV6XnHMTdjkHtjukXPVHmodIBLHPN2mnj2ggz0szFoKe6WrSiDKittBTc1KMzEezbsM+A3F2hY3jSHvfyaJOn3FhR+3/7AR9ztaS2vu9v9B3wGSiVo+d8gz5IpJloyw0YQbHEcBjDl++wBAABgFZVRAAAAWJO6MH2U0GnY8Hy540QRJgThDc0f+ZOPutsf+N6mkmkkac7EIKGcsOEeE8tLen/vF3oy1SUjznBaHKFx2537TR/fVPnyU+mArjjmWQ1SBuIss3Es/WpikJWteVFLlb3zbtla+EdDYXBU7VlnuNv9r+4qmZ7tZzNKaN724OOkG3AYwAQAAABYQWUUAAAA1qQuTG+6ed9vichS8yu+P+0oXQb8lBp97v2eNzQ/8N+FefFq/7AwEtTUPJ9xLC9Z6pjVGrHrF44Pcq+9TIUcvUzPpWgibT9JGDVvYolIP3GPVI+T6S46pmZcqFa3kbCzW1R6nKDpDL5z/Lr/HJ16urvd8bHCrCmTvrqv5P5+gsxa4ifMMxOl3Jt4Hox3QatJRmjcUY36c942mO+zBwAAgFWpaxkFAADIkrwPYEpdZdTE0pF+4Zuw4YUoXQb8QhylRiv6hSa8ofn/+5cH3e0fTBtf8pjVCqX4HdPvOKZDtH7pBBkJGkdo3i99ExMy+3U9KOp+EqHrQZg8RrmPYZW773GH0U0tJBBm3yBdioII8w6Ne9Jw090aTJVvU+/Kcvdm2PoX3e3JLxdG1p+/qbAc6cuXlD1MLIuFVDuN9zPxzPjtg+QhTA8AAABrUtcyCgAAkBWOpIGctw2mrjIadmRh2EnMTTMR/gwSZvSG5lt2bXG3bz9vRsn9wx7Xq9LJ5YPsE+do5CAjTuMYKW5auW4d72d6kvGwXS/C5sv73dqx9e6236IVlc6i4CeOMhhmZoogYeEoo8Mr7V5ke6aAKEyVzTh5y/f2OYWQ/e+/+FvP5+NK7m+qq1M51VqwwG//sN3eyu7vOKHyhPjkuyoOAAAAq1LXMgoAAJAl/YymT4GamlAT85YLxVVznWTTo26DHNMbmv/oC++42xsvHBEqL37iDGEFCWcGCcmU+jyOkHYUcU50H2deTHW9CNIlwi80H+b4cZTvsO+BSt9JUUZ1mxp9X+44UcQ5e0fY90eU9MulE3aEt7fc/+KjhX36nxrtbo/4bOn9g6jWey7W/yt8rp1f1560dS3Jm3RURgEAADLIUU3u5xmlzygAAACsSUfLqOOUbGKvdD3eKKO3TYXwwuwT5Zje0Hzn9z/kbjf98SvudpR1jcvlxS886Bui9Rw/iCD3stT60H5MTdxeafePKCHlKCH7ctdOKtwbv9+HDf/GscBAmHsdhem8mwop+3VPqFZ5LJde0DQrfa7iHEk+1P5+nw+Wx7D31y+PI24qvM9//YWp7vaUb+xyt/s6Okseq1Km/j+LMy/ezyvt2gO70lEZBQAAyCJHGnDyHajO99kDAADAqlS3jFa6JrNf+CpIyDHKaM0gYbNKR70GCY14Q/Mjnml2t49d0RH4OGHzEmVUdZTjelV6HU2tTx32uKbTi3IepbpWBJl0v1qTcAfNj+lj+glzrnGU9bCjvU2U6zieE9szdhh7J/2ua4upWRH6Xy2E4ye8WFjo5NfXn+1uT26NPhuFre5rYY7jV6bTuDiDI6lfDGACAAAArKAyCgAAAGvSEaYPOem9n7IjMQOM5I47jFtpmNGPXzcEb2h+33fPd7cnfe7Vkt81Icg18usqYWKt8yRMfm5DlPMo9XnYexEkRBwlNF/uu2G7ysTNRIgy7D4mZsbwSy+OLjdxzjYSZfELEyPLo3Sl8O5T96PNhZ1+f6a72f97Ewv7v9VTNr/ljmlKtf4/SSvmGQUAAAAsoTIKAAAAa9IRpveZ9N74YRI04jOsQCE8n24I3tC837q+1eIXQkvStfZKUr7i6MJS6nNbMw7EnSZOZOudaGoEdyX7Rk0nzMT8UUate7876asvlP2uCWnolpRGx5cDzXfbYL7PHgAAAFalo2UUAAAgowZyPs8oldEITE3UHWa0qN+6715hw6Xez72h+eHNTe626fWOq6nS0dZpY+M8wi4aYUMco72TJIvnVKk0Xwvv8+PtUlXN7i/lpO2aIj0I0wMAAMAaWkYBAAAscST1255n1PLhqYxGEOcE/H77VHPS7jSH5sPISujJ9nkkKTTvx/Y1ikMWz6lSabsWSViEAUgCKqMAAADWJGBqJ8sto/QZBQAAgDW0jGZQ3CNKkzpqGsmU5hHOQLUEWbPe1PPDM4mkoTIKAABgieNIA7YHMFlGmB4AAADW0DKaQXGHXQjNIwzCgEB51ZzcnmcSSUNlFAAAwCKWA4UVWetAnubzIe9AtsX9nJQbfMSzCQyNyigAAIBFDGACAAAALKFl1BK/sE2c4aQ40457Xrw4pSGPfuLOe9ruJWFRlBL3+ynL5S1t7wCkE5VRAAAAS5wkLAdqWb7PHgAAAFbRMpoCQZbfDBJKqRlVV3YfE7xpDzv3bHe7/9VdpfOVoDBQkvISlrecOL1HC9shzyPN12Awv0k7hzD5MZX3KOnkvbuDsXvwu3euNw1T7/NqLcscNu9xMlGmK/ku4kdlFAAAwCJG0wMAAACW0DKaMKXCB96QaxTesEq1Qhbe0Pyw8acWPj94qCrHDytJeQnLL2wWNrSW5mswKGnnECY/SRjhbSIPSQ2LBsmLqfwOPm9F18LnfR72epn6fyEM20tB2y7TcXHECky0jAIAAMAaKqMAAACwhjB9ApQLz5iaIN922MwbmvcL2dtg+7rELUhoLa2LLSAeJkbTJ+leV7MMljpWkHd4mqXtGXfzW5Oc0DgDmAAAAABLaBkFAACwxanJfcsoldEEKBfC8U5W7w25hl1v2cb68X7H8Ybmh0+e5G737dkbW178pCGsFLc4ywbXN32yds9MnU+l71lTk96H/bxa0lZe3Pw6jt2MwEWYHgAAAIF9+ctfluM4+td//deiz5ctW6b9+/fryJEjWr9+vaZNmxYoPSqjAAAAljg6PoDJ5k8YH/3oR3XjjTfqpZdeKvp88eLFWrRokW655RZNnz5d3d3dWrdunerr68umSZg+BcJOVO4N2RStR++zXnmc6w0HCd94Q/NB1rKPk+1wVxSm8p628y4lzfcRyWWiLEVZeGJYQ2EWkr6Ozsh5AcIaO3as/vM//1N//ud/rmXLlhX9buHChbr77ru1evVqSdL8+fPV3d2tefPmqbW1dch0aRkFAABAWa2trfrOd76jZ555pujzKVOmqLm5WWvXrnU/6+3t1YYNGzRz5syy6dIyCgAAYJHt0fQNDQ3avHmz++/W1latXLmyaJ+//Mu/1DnnnKM/+7M/O+H7TU1NkqSurq6iz7u6ujRx4sSyx6cymmCVhoS83wuShu31hr1shOa90hzSTXPeTeNaIAlMl0O/0DzlHVEdOHBA06dP9/39Bz/4Qd15552aNWuW+vr6jB+fMD0AAIAljqQB1Vj9KWfGjBk67bTTtH37dh07dkzHjh3TFVdcoS984Qs6duyYDh48KElqbGws+l5jY6M6O8v3b6YyCgAAAF/f//739eEPf1gXXXSR+7N582b913/9ly666CLt3LlTHR0dmjNnjvuduro6zZ49W21tbWXTJ0yfALZH/to+fhBxjvhPw/kDeRLnMxn3827jfcI7DHE7fPiwDh8+XPTZO++8o0OHDmn79u2SpBUrVmjJkiVqb2/Xzp07tXTpUvX09GjVqlVl06cyCgAAYJHtAUwmLF++XCeddJLuv/9+jRs3Tps2bdKVV16pnp6est+lMgoAAIBQPv7xj5/wWUtLi1paWkKnlbrKaBbDEWHOI8jaxJWmnWTe0Pzw5iZ328TEz1m5RkCcqvnujTN923kPch2z/j7H+4VfBSlrGMAEAAAAa6iMAgAAwJrUhenzFKYoFarxC80HCfdk5dp5Q/PDJ08qfO5Z4z4NsnhvSsnLeWYd9y68wbIf9v2cp/c5JMfJxgCmKGgZBQAAgDVURgEAAGBN6sL0eRQkNB9k9GXYkFAaeEPzpkfZxy3N1z2MvJxnGhH2jdfgNQ17naO8z1Fa0q8XYXoAAADAElpGAQAALHJy3jJKZTTBSoUS/MILjL4sDs3n6byBSvFsVEfY68z73DyuV7IRpgcAAIA1tIwCAABY4kgaUL7D9EZaRpctWybHcYp+Ojo6Tthn//79OnLkiNavX69p06ZFPm7NiJHuT5r5nYeJc3OOvef+1I4Z4/74HT8r19R73sMnTyqaHP/9snLONnDtqodrbUbc17FU+qaO6fc+z3vZyPv5Z4GxMH17e7uamprcnwsuuMD93eLFi7Vo0SLdcsstmj59urq7u7Vu3TrV19ebOjwAAABSyFiYvq+vT11dXSV/t3DhQt19991avXq1JGn+/Pnq7u7WvHnz1NraWvEx/Toke1v+Bt5+u+L0q6XSueP8ztPvc79rkfWO3YNzkfotHcpggcpxXYIxUZa41mbEMVdnufmfo/xfFfZ9niTVeoem/9moYZ5RUwmdffbZ2r9/v3bt2qXHH39cU6ZMkSRNmTJFzc3NWrt2rbtvb2+vNmzYoJkzZ5o6PAAAAFLISMvopk2bdP3116u9vV0TJkzQ0qVL1dbWpvPPP19NTcdXxXl/q2lXV5cmTpzom+aCBQt04403SpJOPm2siWwCAAAkDvOMGvDUU08V/Xvjxo3atWuX5s+fr40bN1aU5sqVK7Vy5UpJ0o7Nvwr13TSHL2pG1Q35Pe++vmH33qMRc5dNRUuH+oTsvZIa+klq94Gk5isJ8nI9qlkGyoXAgyydbCqP5ZZm9gu1e9/Vfvny7p+2ZywNeUQyxDLP6DvvvKPt27fr3HPPVWfn8YnIGxsbi/ZpbGx0fwcAAIB8iqUyWldXp6lTp6qjo0O7d+9WR0eH5syZU/T72bNnq62tLY7DAwAApILjSANOjdUf24yE6e+55x49+eSTev311zVhwgR95Stf0ejRo/XII49IklasWKElS5aovb1dO3fu1NKlS9XT06NVq1aFPlYawhRB8uhcfJ67veePClNcTf7H505Ix5tGkNGXpq5LmGsd9r7EvX+p73q/5w3Nd37/Q+520x+/Eipt0/zub5CQo5eNZ8PbxSRIHr2S9CzbeMeYKN9DfdfUPuX29SsDcQiTfvdfFwbLjttZ+N6ItS+U/W6QZ6/m/HPc7d3/+2R3++z7dkiS+g8eKpl2Up+Tar6fw+an3HHSUEfAiYxURs844ww9/vjjamho0BtvvKGNGzfqYx/7mF5//XVJ0vLly3XSSSfp/vvv17hx47Rp0yZdeeWV6unpMXF4AACA1GIAkwHXXntt2X1aWlrU0tJi4nAAAADIiNStTZ+GZvdAYY2f73C3z/q553NPmLbUqPiwodsoo0jDXOuwIRNT+0fJ2yBvaL72osIytQNbf1nxMSsVtutF2DBfnGwtqlCqzEQJ1dl4x8RZvk3tE+SaJmkmE28eGx8shOO9XQkGQqbj97njeVecvffUQvpvHY/+Beq6FaA7VrW65STtmTHxfxGSLXWVUQAAgCxJwiAim2IZTQ8AAAAEkauW0XKTJFeT76jMM093twe27zjh90FC12FDuklaMzjOvAQKM3pD8x+5oLD9/C/iylaRKGG4pI60NfVdP6XSScIzbprtUcJpvqZFIfCzznC3azxdocK+H30nqX+rMDC39oPHl8Xu376j7Pe8bHV5SRLb5R3VlavKKAAAQJI4Oj7XaJ4RpgcAAIA1uWoZTWpTvzdf3nBOqd/7iXOkfFaEPmdPaD6p3RpsiHvkN0rj2pnR/+qusvtEeYfaeJ9nUb7Ou0YDYgATAAAAYAWVUQAAAFiTqzB91hDKqR4bMxEAyA/eK/mW9+VAaRkFAACANbSMAgAAWOI4rMBEZTQFTK3XbmrN+rzzXqNh4wvrUPcfPGQjOwBSxG/d+Sij7Kv1Duf/CsSFMD0AAACsoWUUAADAoryvwERlNAXiDocQbqmcNzRPCAtZMViWKcfm+a07H4Tt7lWUB8SFMD0AAACsoWUUAADAorzPM0plNMFMh8oIscTLdggNMMV2mbXx/MR5zDjStn2PAJOojAIAAFiU95ZR+owCAADAmsy3jKYtXFoqv2k7BxTfJ79JrgGUZmPi9jiOWaqrFe9z4ESZr4wCAAAklaOa3C8HSpgeAAAA1mS+ZTRtYZBS+fU7B8I96eANzXPPALuq+dzxPgeCyXxlFAAAILEclgMlTA8AAABraBk1xFSIxZtOmPRKfS9qXtIgbaEtbx6HT57kbvft2WsjO4mUtnuKeJkuD37pxVHuyr3Pg+TF77vIFuYZBQAAACyhMgoAAABrCNMbYircE2b/sGlnMfyZ5vPwhuZLTY6dV1wDeJkuD37pxVHuyqUZJS9ZfJ/nGWF6AAAAwBJaRmMQpYN6ufRM5QsFfst1VrPlYTD94c1N7md9HZ2xHhOoVDUHAZngfcad3qOF7RgHKklSzag6SfEsA5yk61stSS1fJuR8ZidaRgEAAGAPlVEAAABYQ5g+ZmE7qGc5DJFUcYTQKuUNzVMWkFTVHARkgl/3G1OSet5Zk9Xr7IgBTLSMAgAAwBoqowAAALCGMH0CEI61y+/6274XaRilDKRBNZ8fnlWE5ij3w+lpGQUAAIA1tIwCAABYlPcBTFRGLYkzlEOYqLy0XSNC9kDlqvmcxHksnn1kFWF6AAAAWEPLKAAAgEVOzgcwURlNAL9JmEuFYfzCNLbXV09b+CjNYW9vHoede7a73f/qLhvZsS5t9y8NBq9pHGu327hHcR+/3Hs5yMIa3jQG17QP+l0g7aiMAgAAWFOT+wFM9BkFAACANbSMRhAl9OMXJvaGZ0rt6/e9sGGgsPkqd35+v/frPuAn6+E807yh+WHnn1f4fPsOG9kJxdS1TsN9ilOQ6xj2Wpu+pkl6lqv5jDu9Ryv6HmH9yqXtHY7jqIwCAADYRJgeAAAAsCOXLaNJCw+WWw89bBgu7DGj7FM2jZBhKhthlayEcryh+eGTJ7nbfXv22shOWVm57kGUej7jeH9E2Sdr/M45jmsR58IlQeQ9NO+Vx7KeBbmsjAIAACSCwzyjhOkBAABgTS5bRtPWjB8k3BS260G1RhwGmZgf5nlD81x3+9L2zoEZg/c9jtkMwobykXC0jAIAAAB2UBkFAACANbkM02dRlEn3q4UQsR1cd8CuOGY8oOtHdjgSy4HazgAAAADyi8ooAAAArCFMHwNTI9UH0yEcgziwhjNQHs8JqoLR9AAAAIAdtIwCAABYlPcBTKmujCY1fFLNNacH+U2AHGRifBvXMan3Lk+8133Y+FPd7f6Dh4weh3ttRpKuY5LyEjcb78Qgxw+7f9rkqYyBMD0AAAAsSnXLKAAAQKo5yv0AplRXRvPSdB8kXOEXdvfbJ8jnJvjl3XY3ARTzhuZNrGXPPTUvSdcxSXlJmyDvxCj7Z0XWzw/FUl0ZBQAASL98D2CizygAAACsoWU0YUqFSIOEK4KERf3Cr6ZDqmHTIxyTLN6yMXzyJHe7b8/ewGnYuqcsFGFWFrtbVHMU+uA71/tMxTE6Ps77lMUygOShMgoAAGBTzgcwEaYHAACANbSMJkyp8LmxSfR7j56Qtsn040oP9nhD84MT45ueFN8kyp5ZWbye1Qx7D77PTc2I4ifO2UmyWAaQPFRGAQAAbMp5mJ7KqEcSOmqHyYPfX89h5/ZMwnknEdel2GCLaKWDmobCtUa1hG2lNHGsIOn5DTANO+8vzw/SiMooAACANTWSwzyjAAAAgBW0jHqkLbwRNr9Bwj1ZDJdWOhAsK+dvWqlBTVK0gU1ca+Sd3zvZ73MTy/YCSUFlFAAAwCIn5wOYCNMDAADAGlpGLQky4r3Uvl5h55YLOxIzK2Ggcte0ZlSdu53m87TBG5of3tzkbvd1dNrITllZ7IaC8qp530sdK+xyzd45oaO8z5ESjnI/tRMtowAAALCGyigAAACsIUxvSZhQUZB9w4bsTYX106pc14g8qzSk6Q3NJ7WLB/c6n6p530sdK8jxo8xwYrobAt1ZLGCeUQAAAMAOKqMAAACwhjB9AviFRCqdrN0vba+wYX2/NCvNm6kwUJLykmamr4E35Djs3LPd7f5Xd0VOGwir3Dv2/Z+bOlaYtP26tvjlN055fQ/aVMNoegAAAKC0L3zhC3rppZd0+PBhHT58WG1tbbr66quL9lm2bJn279+vI0eOaP369Zo2bVrg9KmMAgAA2ORY/ilj3759+ru/+ztdcskluuyyy/T000/r+9//vi644AJJ0uLFi7Vo0SLdcsstmj59urq7u7Vu3TrV19cHOn3C9JZUK2wUR7glSfmKM5yUp/B9nOfnDc0PnzzJ3faucY/K5amcmhB3aL7UwiHVHE1vQprLVJrznmQ/+MEPiv69dOlS3XzzzZoxY4Z+8YtfaOHChbr77ru1evVqSdL8+fPV3d2tefPmqbW1tWz6tIwCAAAgkNraWv3pn/6p6uvr1dbWpilTpqi5uVlr16519+nt7dWGDRs0c+bMQGnSMgoAAGCT5XlGGxoatHnzZvffra2tWrlyZdE+H/7wh/Xcc89p1KhR6unp0Z/8yZ9o27ZtmjFjhiSpq6uraP+uri5NnDgx0PGpjFpiOjQfJexPKKO0tF2XNISnvKH5YeNPdbe9a9wjnKTe6ySJe0S6X/qVLvgQ9n1uugykuUylOe82HThwQNOnTx9ynx07duiiiy7SySefrM985jN65JFHdMUVVxg5PmF6AAAADOnYsWN67bXX9OKLL2rJkiXaunWr/uZv/kadncdX32tsbCzav7Gx0f1dOVRGAQAAbLE9kr7COU5ra2tVV1en3bt3q6OjQ3PmzHF/V1dXp9mzZ6utrS1QWoTpPWyFOU2E5sOmnYaQbrVk5fyrdR6myo43ND+8ucnd9q5xj2yz8R6K+zim3+fVnLA/TfJ+/tV211136Uc/+pH27t2rMWPGaN68ebriiit0zTXXSJJWrFihJUuWqL29XTt37tTSpUvV09OjVatWBUqfyigAAIBNCV+BqampSf/xH/+hpqYmHT58WC+//LKuuuoqdwT98uXLddJJJ+n+++/XuHHjtGnTJl155ZXq6ekJlD6VUQAAAPi64YYbyu7T0tKilpaWitKnMuqRtKb+cmschw3BE9ZIlrTejzjy6g3Ne0P2/QcKofw0XSMEk6R7Gufz6BeCD/s+R0GSyg6iozIKAABgU8LD9HFjND0AAACsoWU0wQbDEGHDNLVj691t74hlwhrJwv0ozRuaH9ZQmBi/0lH2ae0OgeqKs2yEnXTfu0/NqLqS6VCWM8byCky20TIKAAAAa6iMAgAAwBrC9CkQNhzDOt9IM295NzEBPuFMJEmQ8kg4Pn9qGMAEAAAA2EFlFAAAANYQpk8xU6OEGW2MtKkdM8bdHnj7bYs5QRqk4R0XJY9pOD8MwRHzjNrOAAAAAPKLyigAAACsIUxviYn146OsO09Yp7S0XZe05dcUb2jeu5a9idH3aRNHGRhMM8o7JqniPo9Sk9qHHUEfJI9ZuR9h5PGc84KWUQAAAFhDyygAAIAlNWKeUSqjlviGXjzrEJfdN2TIolojkNMcSiG/xdJwL72h+WHjj69lb2vhBxvXK47jlEozqfc/CL8QeBz3y5vO4Ds3bNpJutZJ6jKQpOsCs6iMAgAA2OTU2M6BVVRGYxb2L0an92jg/f3+2vfbp1rzMaZ5YJXt4ydN2q7BYIvoYAup97NqMNFyRBmsnrhb+rzv8zBMDHCtJP1Sghy/WuWUZyO7GMAEAAAAa2gZBQAAsIkBTIiTiY7rQQYeleo0H/T4QUL8lUpbx33bx0exSsNy3tD88MmT3O2+PXvNZCykMHmnDMYr7Jyfpo8VR9elsGH9Ss/Pdtm0fXzEhzA9AAAArKFlFAAAwCbC9Ei6IKPgveGYsKPmbc8dh2yIe87GSnlD85Rp2BZH1yW/fSjjSAsqowAAALY4rMBEn1EAAABYQ8toApgIHYb9XpBjEuJBGGkoL36zTlRrQQjYUc3uGUl9nwNJRmUUAADAJsL0AAAAgB20jCZAuTXm4wi7EMpB3nlD84Tssy3s+u6mw95xh9F5nyPtqIwCAADYRJgeAAAAsIOWUUsqXTPYRogp67heIGRvRlKfpbD5Mp33KOkl9ZrCLOYZBQAAACyhMgoAAABrCNNbEudkyIRywuF6wYvQfOWS+ixVM19JCvEjLWokp8Z2JqyiZRQAAADW0DIKAABgiyOmdrKdAQAAAORXoMro7Nmz9cQTT2jfvn1yHEfz588/YZ9ly5Zp//79OnLkiNavX69p06YV/f6UU07Ro48+qjfffFNvvvmmHn30UZ188slmzgIAAACpFKgyWl9fr23btum2227TkSNHTvj94sWLtWjRIt1yyy2aPn26uru7tW7dOtXX17v7rFq1Spdcconmzp2ruXPn6pJLLtFjjz1m7kwAAABSqMax+2NboD6ja9as0Zo1ayRJDz/88Am/X7hwoe6++26tXr1akjR//nx1d3dr3rx5am1t1dSpU3XVVVfp8ssv18aNGyVJf/VXf6Wf/exn+uAHP6idO3caOp18YQJ8wA4mxodpvM+RZ5H7jE6ZMkXNzc1au3at+1lvb682bNigmTNnSpJmzJiht99+W21tbe4+zz77rHp6etx9AAAAkD+RR9M3NTVJkrq6uoo+7+rq0sSJE9193njjjRO+293d7X7//RYsWKAbb7xRknTyaWOjZhMAACCZEhAqtymxUzutXLlSK1eulCTt2Pwry7mxq9J17IPuAyAcb2ie0CnC4H0OnChymL6zs1OS1NjYWPR5Y2Oj+7vOzk6ddtppJ3x3woQJ7j4AAAB5lPcBTJEro7t371ZHR4fmzJnjflZXV6fZs2e7fUSfe+45jRkzRjNmzHD3mTFjhurr64v6kQIAACBfAoXpR48erXPOOUeSVFtbqzPPPFMXXnihDh06pL1792rFihVasmSJ2tvbtXPnTi1dulQ9PT1atWqVJKm9vV1r1qzRgw8+6PYDffDBB/Xkk09GGkmfxfBYqXMyNbIyi9cL8Bos47bWImeUfbrE/U4sVR5NHSdJ73PKPaIK1DJ62WWXaevWrdq6das+8IEP6I477tDWrVt1xx13SJKWL1+uf/mXf9H999+vF154Qc3NzbryyivV09PjpjFv3jy99NJL+vGPf6wf//jHeumll3TdddfFc1YAAABp4Vj+sSxQy+hPf/pT1dTUDLlPS0uLWlpafH//5ptvUvkEAABAkcSOpg/CdmgiDmHOKez5Z/F6AV62yzghynSJu7zEmb7tsu5FuUdUqa6MAgAApFpCQuU2RR5NDwAAAFQqky2jSRplWC3ec64ZVedu2w6fJOleJCkvccvTuZaStPMf3lxYaa6vY+i5lZOW9zyKcg9M3L+svM+D7B8mzaw+GzVKxlyfNtEyCgAAAGuojAIAAMCaTIbps9R8/37eMIVX2EmVqxXuSNK9SFJeEK+k3WtvaH7Y+FMlSf0HD5XcN2l5z6Mo96DS74adON5GyDrKDC5+5xfnDDJID1pGAQAAYE0mW0azJo6/gPkLM9u4v8k12CKa1cEYGJrffQ87OCltZSbs+eXu+WAAEwAAAGAHlVEAAABYQ5jekjAhiCghityFOirANYINQQZ3wLy4n/dy6UcZBJSnd1Wp887yOTPPKAAAAGAJlVEAAABYQ5jeEtPhBr/wje2wRhrCSknNFyqXtHJXLj/e0HzS8p41cc/DbOKe8T4vNnisTD8bhOkBAAAAO2gZBQAAsMVR7ltGqYxmhF/IwnZYI3OhFKRC0spdpUse2n5+88r2teZ9Xv74tq8FzCJMDwAAAGtoGQUAALAo7/OMproymsWJoisNPQQZfendxyvrIY5KJ0zOUxgoT+eaJt57Mby5yd3u6+i0kR1XmstLNfNu+t2Tp4USyp1fnq5FHqS6MgoAAJB6OW8Zpc8oAAAArEl1y2hWmuP9QjJhQjw1o+pKpuEnbaG1KCo9V64RksQbmh8+eVLh8z17q56XaoW3TR2rmmHcUnkPez5B3udO79FKs5gKpRaCyOu1yINUV0YBAADSLu8DmAjTAwAAwBpaRiOIY1Sm34j3cr+PY23rNI+YDSMr55mG84j7mUnqeZvmDc0PO/dsd7v/1V02smOc6fvoDeMmaTR9Nd/naTZ43n7dLZgMP/2ojAIAANhEmB4AAACwg5bRCEyFAEysWx3lu74jFHMS4sjKeabhPOLIYxrOO07e0HySJsZPkmqWERPv8yDv9qSuXx+nIKPmU3ldHNEyajsDAAAAyC8qowAAALCGMH0KBFmn2CtIOL5aYYpEh0aAjPGG5qNM9F7pmuooL8o72Xb3Ktvv81SG4ANinlEAAADAEiqjAAAAsIYwfQL4jZwcDDdEmrjeZ43jaoU10hAyyUKIR8rOecAMb2g+7Cj7rJWfuJ+NMOnzPjfPmy+/sp7UvLsI0wMAAAB20DIKAABgU85bRnNVGU3qCNFyE9kHCcH47RN2FG0eJa08VCor5wHzvOHKPE6MH2SxkCjPT7n3ctj3dpD3uY1uOWnoCuQt02nIL44jTA8AAABrctUyCgAAkCQ1Yp7RXFVG09BMXypUw3rewRCSAcozNTF+WtlYpz6OxUeSNOl8UpXtnlFTU8XcYCi5qowCAAAkiqPcD2CizygAAACsoWU0AUyEcNIWPolDpdeA8D7yyvbobBtsTIAf9jhZvv62lLymTs6bIxOEyigAAIBFeR/ARJgeAAAA1tAymgDlQjJBJkYOkl6SJklOUkjQ1PGTdH3zhGtQWtjrUmp97yxOih93GQnzPvf7XpSFTuKU5meN0fTJRmUUAADAppyH6amMpoDfX6BBWkmDpBPnX7tB8p4VWZz3Lw0tIUnNl21Rrstgi2ge5yGNm6nyaiPSlOZnjQFMyUZlFAAAwKac14sZwAQAAABraBm1JM6wShpCq1Fw7aonDdeAexYfb2h++ORJ7nbfnr02slOxapaRcscKmxfKN/KAyigAAIBFeR/XT5geAAAA1qS6ZbRa4YskhXj89vXK+tJzWQ7N28pLkq5BWGnLb6Vs3yNvaH7Y+FPd7f6Dh6qelyjiuI7l5lOudJnnoPtn8RkodU1tPwOxYgATAAAAYAeVUQAAAFiT6sqoc+w99ydtx/FLM8yxvPuGzWPNiJHuT95VqxwlOS9JugYoLUn3qP/gIfcnDe+SKO/KsOmX+txUen7ScA/CKnUNkvQMGOVINZZ/yvnyl7+s559/XocPH1Z3d7d+8IMf6Pzzzz9hv2XLlmn//v06cuSI1q9fr2nTpgW6BKmujAIAACBeV1xxhf7t3/5NM2fO1Cc+8Qn19fXpJz/5icaNG+fus3jxYi1atEi33HKLpk+fru7ubq1bt0719fVl00/1ACYAAADEa+7cuUX/vu6663T48GFdfvnl+uEPfyhJWrhwoe6++26tXr1akjR//nx1d3dr3rx5am1tHTJ9KqOWhAmnxLEGsY11jZPEe841o+rcbdvrb+fxXiQN9yAc7zVK6sT4tWPGuNtxP+OlZhooN9r+/Z8jh1I2mn7MmDEaNmyYfvvb30qSpkyZoubmZq1du9bdp7e3Vxs2bNDMmTOpjAIAAMBfQ0ODNm/e7P67tbVVK1eu9N3/vvvu089//nM999xzkqSmpiZJUldXV9F+XV1dmjhxYtnjUxkFAACwyXLL6IEDBzR9+vRA+/7zP/+zZs2apVmzZmlgYMDI8amMWhImJBN3KKda4aEkhaSiTEIdpyTlJa+4B5XzhuaT9LxXs/tNqUUA4g7N276+yI97771Xn/vc5/Txj39cu3fvdj/v7OyUJDU2Nmrv3sJ7oLGx0f3dUBhNDwAAgCGtWLFC1157rT7xiU9ox44dRb/bvXu3Ojo6NGfOHPezuro6zZ49W21tbWXTpmUUAADAoiBzfdr09a9/Xdddd53++I//WL/97W/V2NgoSerp6dE777wj6XhldcmSJWpvb9fOnTu1dOlS9fT0aNWqVWXTpzKaAqZCPLbDZoSSzLN9TwE/3vJYzdHsSef3nIZ9lnn2UU1f/OIXJUlPP/100ee33367WlpaJEnLly/XSSedpPvvv1/jxo3Tpk2bdOWVV6qnp6ds+lRGAQAA4KumpibQfi0tLW7lNAwqowAAADYlPEwfNyqjKWNqontkA/cUaZD30HwQYZ9lnn1kCZVRAAAAS2qc5A9gihtTOwEAAMAaWkYzwm+te0I5SANGBucTo+xL432OvKEyCgAAYBNhegAAAMAOWkYzgvAN0ozym0+E5kvjecgfBjABAAAAllAZBQAAgDWE6RNscESlqZCN34jlNIxkTkMevdKWX6RL1svXsPGnutv9Bw9V5ZhxXtM40mbEfcYQpgcAAADsoDIKAAAAawjTG2IqDFMunTjCPWkI66Qhj15B8pv1UCvik/Xy4g3Nmw7Z+z13cVzTMF2tgrwPeGdkGGF6AAAAwA5aRgEAAGxxmGeUyqgh1QqZRzkOYZ1k4X4A5ZkeTV/N5y7MsYLsyzsDWUWYHgAAANbQMgoAAGATYXokSamJjOMOzeRxhGYezxnIksFR9tWaFD+oUu+War5veLchjaiMAgAAWOOoxsl30yiV0YSx8ZdsHv96zuM5A1mStBbRQaXeLUkdNAUkBQOYAAAAYA0towAAADblO0pPZdQWE53M414+jo7wANKkdswYd3vg7bct5iSYsO9Y3snIKsL0AAAAsIaWUQAAAItYDhRWeEMspeYW9e7jF5qJe/m4LIeByl3zNCKEh7zzhuYH5yGVikfex/Gc+KU5+Lnf+z7s8XmukVVURgEAAGxxlPsBTPQZBQAAgDW5bxmtZsjGq/aiae72vjmnuNun39N2QjpBQjy2R82nbVSo95jdfz3T3W588IWS+1SL32jgOO67aUHy6BUlvybSTMM19eMtJ07v0cJ2DLNqlErDy5tekkaze0Pzv/qPi93tc/7s56HSCVJOhp3e6G7v/vwkd3vyil+ckF4c70fTZdb28cMeJ4vdrvIm95VRAAAAW2rEACbC9AAAALAm8y2jpZrvw45IjzK5vO93X9vrbtZderK7ve/vCyHjM+4qhOzDpB3k85pRde62iXBa2JBJNbsSlOvuMG6n53PPdak96wx3u//VXaGOWer4Q+Vh8HNvyDXIOccdXi6VZtiQmG8ZNDSq2C/NSvNlI7QX9h3j14XDj4muPkGe8ThC85XeG+/3vKH5j710zN3eeOGIsukEOWb/b7rc7ZNfm+huv/b3H5YkTVnyXNk0/I5poytZ3O/zIIKU6ziPj+rKfGUUAAAg0QjTAwAAAHZkvmXURPN9lMnl/T73hrPGf7MQwvGOsndKhJf9+IU0okyYX6k40jYxeb/ftRixtjCCfsDzvRpPyDyKMGUjDYsU2JitYSjlJhkPm0YUlZ5rHO+YsEzn15RKj+X3PW9ovv/jl7jbw9a/aCT9sas2FrY/ckGoNAeFCVEPlRcT+9saTZ+30DsDmAAAAABLqIwCAADAmsyH6dNmYOsv3e3hk49Pnty3Z2/JffMWxoiqmqHbKDMwJEm1url4pXntbtvHDyINeazWs+ENzQ++byX/d25oz/+iorTTcI+80pbfxGE5UFpGAQAAYA8towAAABblfQATldGEGTb+1MI/3jvmv+P7pG0t4TSIO1yc1usRd76zuLZ2mPTT/MyYYuO8i8Ln3lHwz5+4vrwUbPGA2rH1xzdCvMuHStvU/pWyXTZtHx/xIUwPAAAAa2gZBQAAsMnJd5yeymgMooyk7j94yN0uCtmXkdRRx2kIpdhYGCAJwoa80nQ9kvY8JHVC+bwIHd71hOaHNze5230dnaHS8b7Pw0ha+a32cZJ6fMSHMD0AAACsoWUUAADAIkbTo2JRwrtB9hl4q6eyjHmkYfJ128fPa+gnr+eN/IlS1r2heW/XKb8QfKmR9XHP0OB3fCAtqIwCAADYlPOWUfqMAgAAwBpaRiMwFQ7xhltqRtW52wNvvx34e355ScMoadvHDzJ5te08Aqhc2JB2kNlO/EbZew1Oel/pqPqh8E5CllAZBQAAsMWRagZsZ8IuwvQAAACwhpZRS7whHo0c4W4WrY9sQF7WLA7CNxx//jmFz7f+suQ+1RJlTWqvtN0DxMv0dU/DffTmcdjpje52/2+6yn43yDl5Q/P9H7+kcKz1L7rb5WZEMdV9wLSk3t80zA5TMQYwAQAAAHZQGQUAAIA1uQ/Tx9GkH2iUe/0H3O0dy052t89rKYTsB36974Q0bOW3nLDfixKOrvRYftdx9/8uXP+z9xYmtfaG2GyHe6IssFAtYWclMFWWK03HL0TqVa1nLO7uGSaesSB5DDIpvCnlJpT3fr7785Pc7ZNfm+huj121cci0h0rTyxuav/nVX7nb/37uOSekF8fza/r/hbjf52G/G2bxgCS9E4OqESsw0TIKAAAAa6iMAgAAwJrUhelNhLPChkmijOCrHTPG3fZOYj8Ygpekqf9wzN3ed1+9u914zzRJ0rCXXyuZhl/afrz7O71HS+a3Un5hLb9J/P3CtV5B7lOYif/9jnP2fTsKefSE5ms/OMXd7t++Q5UKE6b2Xi8vv3Pzu6dBvhtEqTIWZQR/2DIb1mD6Qcp33OuFh3nPRHkPBeluECSdMHkMMim8KZXm1/u9ySt+4W6/9vcfdrfHfuSCwheeL+wzOFm9VHxO3jS9+3jfG4OheUn68W+2SpL+r9MvGjKvQZnq5hLmu3HP2BHm3Z7akfJBOPmO09MyCgAAAGtS1zIa9i9D0525w/6V7m398fuud27R5v9T2GfXY1MlSb+3oHS+grQs+eUxbGtKmOP4fR5HJ/4wA2X8Wqz9Wj7iaA0tJ2xrYZD9o7QmlCq/YVup44hEeJkoS6ZaXOJsrTHVKmYinbjneDQxqMXv8ylLniv5+fDJhUFOeu9YyX2CtAJ78z7YIjrw34W0a/9wb8l9/cRRpkzc60rTq+S4YQYw+Ul0q6rDACZaRgEAAGANlVEAAABYk7owvVfYpvbB0GzYUGg1Q3jefaZ87mVJUvsDH3E/O++WrcbzEmf4IsgAm7CDWkzMseh3nLDXxS/vcXdPCMPU4AYTg3DCMlE24+7OY2Ke0yih9ijphwmBh00v7vMLM/AmSHqmlmIudSxvaH7EM83u9rErOsqmF+R9V60QdNwDEL1Mz82beITpy5s9e7aeeOIJ7du3T47jaP78+UW/f+ihh+Q4TtHPc88V98sZOXKkvva1r+mNN95QT0+PnnjiCU2cOFEAAADIr0CV0fr6em3btk233Xabjhw5UnKfdevWqampyf25+uqri36/YsUKffrTn9a1116r2bNna+zYsfrhD3+o2lp6CgAAAORVoDD9mjVrtGbNGknSww8/XHKfo0ePqqurq+Tvxo4dq7/4i7/QDTfcoJ/85CeSpOuuu0579uzRJz/5Sa1du7aCrIdXKkwcZY7LKMKMFp3W8nrhw4bCcntHp57ubnuXowt7nLBzfobhF8rxHidsuKfSWQHCzrMa5JzDzmjgldQwk+28mD5+3OdTafqm8hW2W4XpEfQm0jbF1vHDhJS9ofnf/L8z3e3T72krmXbY912lc3EH6hrh09UqDlWZm7emprLMxYDR9IbMmjVLXV1d2rFjh1pbW3Xaaae5v7v00ks1cuTIokrnvn379Morr2jmzJmlkgMAAEAOGBnA9NRTT2n16tXavXu3zjrrLP3TP/2Tnn76aV166aV677331NTUpL6+Ph04cKDoe11dXWpqaiqZ5oIFC3TjjTdKkk4+bayJbAIAACRPzldgMlIZ/da3vuVub9u2TVu2bNGePXt0zTXX6Hvf+15Faa5cuVIrV66UJO3Y/CsT2SzZrB/HsnpB9gkTQuo/UJhcufasM9ztjo+Ncrcnv1wI3weZjDnISMyisLaBkZumJ9oPe3y/BQiiLDEb5zJ8YdMLImw5LfW534jasJ8HOb6fNIeDK53VIwhTMweY7npQrWfGdheTsLyh+XeeOtvdHj13V9nvmupSZbqrhp9qzYzhVfYZyHkFMEliGT3U0dGhffv26dxzz5UkdXZ2avjw4WpoaCjar7GxUZ2dnXFkAQAAACkQS2V0/Pjxmjhxojo6jnfU3rJli9577z3NmTPH3WfixIn60Ic+pLa20p22AQAA8qDGsftjW6Aw/ejRo3XOOedIkmpra3XmmWfqwgsv1KFDh3To0CHdfvvt+u53v6uOjg6dddZZuuuuu9Td3e2G6N966y1985vf1PLly9Xd3a2DBw/q3nvv1csvv+yOrg8qSmii0rWM/ZgKd4UJPfS/WgjfTPrqPnf7/E2FtZS3zykdsg8d0vUZOWl6Ym9TIVoT4Ty/kHIcCx8YCVuNqnO348hv0bF+l6bvggE+5SVIaL7cMSX/bi6l9ol7ze8ooeZy4fkg5TvIfQ+SvlelXZaivAfjXpCg3HFMvEuC7lOONzTfsmuLu73s7EuNHieKuBcyqPRYYf+fKXyYnNH0eReoZfSyyy7T1q1btXXrVn3gAx/QHXfcoa1bt+qOO+5Qf3+/LrjgAj3xxBPauXOnHnnkEe3YsUMzZsxQT0+Pm8bChQv1ve99T9/61rf07LPPqqenR5/61Kc0MDAQ28kBAAAkmpOAH8sCtYz+9Kc/Vc0Qf0HMnTu3bBrvvfeebr31Vt16663BcwcAAIBMS93a9EGa+oOsF14tJsIaQUZ+v3xJ4Xu//+Jv3e1ffLTyMJSJsHq1QlxBBBnVHWTN+iQxNSI7TNkI8nxFCYv6haPDlNMoIddYujh4zqOUIDNtBOmmEESlz6TtGQyiCHu94lx4Ich19Ibm/5/2Qnes/5xamE3FxqweUY4TJZ1y36v4/zZG0ydG6iqjAAAAWZKEQUQ2sTA8AAAArElHy2hNTaj1cysdrRooK4ZGWcYZJtk+Z5y73f/UaHd7xE0jCp97RuXbGDnq5T3+sIbCTAB9HaXnoK00HBxktHk1Q7omJn6OQ7l8BekaYGrEcrUmxw57zLDpmxhBH6U7jd/o+zDiCM2bvtbVGp0/1HHDHCvI97yh+ZtfLSwA8+/nnhMmi6HyZUqcM1b4XbvasfXutnc2mbR1LcmbdFRGAQAAsmog33F6wvQAAACwJh0to45TdlSvd8LtMCO8TY/2M5lmmK4JXt7QxIjPFj7/9RemutsTXhzvbtf9aPMJx6zkuKX43SMv73H8QvN+goQ0S60FbipkY2oS+zD3OtSkzgHzVWneg8xQ4MfUc1jqu3GH5KJcx1L3OkhIOeyzFGaRgCB5jKJa3V/ivu9BFmHw27+Sfd//uTc0P+KZZnf72BUdPjmujjjfMX5pFH3u6Ybi/f8vVfLdMErLKAAAAOyhMgoAAABr0hGm9xEkLFguTBJlMuSwIRu/dLzChDKCrKPuDVlM+UZhBP2vrz+7kNDvz3Q3J331hSGPGVal90gyN1G1X0gzTBp+4lizvlImRkyfkGaZ8wu77nyUZyZMvoLsG8ck7nHORhHlnlY6Y0aUZzPK/TUtbDeQOGdcMbVIgTc0/8Cen7nbN02eFTgvfuKYYcVEGTA16X3S1DjMM0rLKAAAAKxJdcsoAABAujm5X5o0HZXRkJPee8U5EtPWJNDuvgFG1Hp5R6pPbi3s0/97EwMfMw5xh3jiDNUkKQwUJYwbJvxlY2GEKOlXc/Jz20x1gwjzPduT4ceRxyhlptLZXKJcR29o/ug1091t70wpYcQ5Ij5uSc0XhkaYHgAAANako2UUAAAgo/I+gCkdlVGfSe/zLso18Y6yr3mrx0R2kHFpfQbTEFo0Jevn55WFc41jUYE4FzHJwjVHMhGmBwAAgDXpaBkFAADIKsL0yDtCL8gyyjeyLk8zRiCbqIwCAABYVJPzeUbpMwoAAABraBmNWdjRjCZGP8Y9ejhPo5ORTpRR+Klm2ah0sZZSaURNx6t2zBh3O8piGYApVEYBAABscSQN2M6EXYTpAQAAYA0tox5xhEPiXO/e9DrUQRH2RNJRRuGnmmWj3LGC/J8TR369oXkTXQmAqKiMAgAAWJT30fRURj3S9pdh2vILAChIwjs8CXkAqIwCAADYlO+GUQYwAQAAwB5aRi2xPQ+i7eMnCdfCPL9ryrWGDVmfe9n08ZmHFNVGZRQAAMCmnA9gIkwPAAAAa6iMWuIce8/98aoZMdL9Mc2btt/xTR8nDeK8FmlX6b30u6ZxX+s0lTtUj7fcxfF+Kvc+j5vp52rg7bfdn7S9z1PJkWos/wQxe/ZsPfHEE9q3b58cx9H8+fNP2GfZsmXav3+/jhw5ovXr12vatGmB0qYyCgAAgCHV19dr27Ztuu2223TkyJETfr948WItWrRIt9xyi6ZPn67u7m6tW7dO9fX1ZdOmMgoAAIAhrVmzRv/wD/+g7373uxoYGDjh9wsXLtTdd9+t1atXa/v27Zo/f77GjBmjefPmlU2bAUwp4Dey0S9sEmVZOROjMr3fy/qoTNujaOOWtnMazG/S7kuY/JjKe5QZDfK+RGSc5cf7TnR6j5Y8TpTjm867N43hkye523179kZOO6wkXRfjUj6AacqUKWpubtbatWvdz3p7e7VhwwbNnDlTra2tQ36fyigAAECONTQ0aPPmze6/W1tbtXLlysDfb2pqkiR1dXUVfd7V1aWJEyeW/T6VUQAAgBw7cOCApk+fbu34VEYTplT4wC+8HUeowXSaWQzNeyUy3IPE3Zcw+TGV9yjddZJ2/Uyq5vmHeZ+bOn6c985GaN4rqdclqhpJNSd2wUyVzs5OSVJjY6P27i2Uk8bGRvd3Q2EAEwAAACq2e/dudXR0aM6cOe5ndXV1mj17ttra2sp+n5ZRAAAAa5xUDGAaPXq0zjnnHElSbW2tzjzzTF144YU6dOiQ9u7dqxUrVmjJkiVqb2/Xzp07tXTpUvX09GjVqlVl0051ZTTxo+MCCjsqvtT3qjVS3hTygjjYHgWe9dkj0irKzAJRjmU6bb/j2H5vDRt/qrvdf/CQxZwgTpdddpmeeeYZ99933HGH7rjjDj388MO64YYbtHz5cp100km6//77NW7cOG3atElXXnmlenp6yqad6sooAAAA4vfTn/5UNTU1Q+7T0tKilpaW0GlTGQUAALDF+d1PjqW6Mmo7NGGKicnl4zxOHMgL4mD7XhKaT6YoMwuYOlZajxMEoXlElerKKAAAQNrVpGAAU5yY2gkAAADWZLJlNEmjDG3I+/n74brAFsoeKpXmspPmvKO6MlkZBQAASA3C9AAAAIAdmWwZzXI4IEjYI20T4FdLXs4TyeMte4MT4zPyHl5pXsTET6lyL1H2caJMVkYBAABSY8B2BuwiTA8AAABraBlNGVPhmKSGdYCsI0SJUsJ2u0rbO5xyPwSHeUZpGQUAAIA1VEYBAABgDWF6AIhZGkY+wwzudThcr98hTA8AAADYQWUUAAAA1hCmB4CY5Tr8mDPc63C4XpLkEKa3nQEAAADkFy2jAAAANuV8BaZUV0azOAqv1DkFOc8sXgvb8nRN83SuSRH2midpbe80l5dq5n3wWN7jhH2fe6XtWkcxbPyp7nb/wUMWc4JqIEwPAAAAa1LdMgoAAJBqLAea7spomkMWfqGaUuGcIOeZ5mthW5B7kXV5OtekCBu69YbmbYfJKS/+Ku1q5cX1LQ7ND3ZRsd09BfFJdWUUAAAg9WgZRZKE+Qs6bCd3G60ptltw0obrFZ6Jlqi4lctP2FZS7+fegU1O79Gy3zUhade3HL93ZZD9g5yf3/5holu8z/0NtogOnzzJ/axvz96qHR/xYwATAAAArKFlFAAAwCbC9BhUzRBEkPBbpWl4lQsfhT1mWGkI4SUpj0nKSzVFKY/lwt5JUOlzHXZgU7Uk7fqWY6JMVbJ/qc+jDJgM293ANNv33RuaZx7SbCFMDwAAAGtoGQUAALCJMH16mQ412w5BRBFlibmsCzOiFXZwb0qLMmo+bSPe45SkaxGle1XRPqPqQqWZNd7Q/PDmJne7r6PTRnYQUaorowAAAKnmSBqwnQm76DMKAAAAa1LdMpqV0ETYyY7L7etNr3ZsvbvtDWvkKWQfZvGANJepNJxHGvKYVH6j5oOMziaMGa84u4yFfZ/n8bnylulh557tbve/ustGdlCBVFdGAQAA0s1RTc4HMBGmBwAAgDW5ahlN6qhq02Fk7z5+kwEn7RrYlJVrkYbzSEMe0ybINfWGMfMY0rW1iEk5Qe4F7/NwvKH5VJV1WkYBAAAAO6iMAgAAwJpchekT30z/PmFGvJsYkR+HaoZJUhWSAWIQ5D3gN1K71Oc8R2aEfT/zPjcjVTNKDBCmBwAAAKygMgoAAABrchWmT5swo+zDfK+aqrludpLOG7CBZyCZorwHk3RPk5SXsLyh+doxY45vDBtmKTfv44jR9LYzAAAAgPyiZRQAAMCmnLeMpqIyOm7yWK3cdY8OHDhgOyvIgIaGBsoSIqMcwQTKkT3jzhhtOwv4nVRURidMmKDNmzdr+vTptrOCDKAswQTKEUygHAEpqYwCAABkk5P7MD0DmAAAAGBNaiqjra2ttrOAjKAswQTKEUygHAFSjY7PcAUAAIAq2/Hy67rtf91nNQ//37c/Z7XvcmpaRgEAAJA9DGACAACwxZHkDNjOhVW0jAIAAMAaKqMAAACwhjA9AACATcwzCgAAANhByygAAIA1jjRAyygAAABgBZVRAAAAWEOYHgAAwCYGMAEAAAB2UBkFAACANYTpAQAAbHFEmN52BgAAAJBftIwCAADYRMsoAAAAYAeVUQAAAFhDmB4AAMAaRxoYsJ0Jq2gZBQAAgDW0jAIAANjEACYAAADADiqjAAAAsIYwPQAAgC2swETLKAAAAOyhMgoAAABrCNMDAADYNECYHgAAALCCllEAAABrHDkOKzABAAAAVlAZBQAAgDWE6QEAAGxxxAAm2xkAAABAflEZBQAAgDWE6QEAAGxiOVAAAADADlpGAQAAbBpgnlEAAADACiqjAAAAsIYwPQAAgC2OwwAm2xkAAABAftEyCgAAYJHDACYAAADADiqjAAAAsIYwPQAAgE0MYAIAAADsoDIKAAAAawjTAwAA2OI40gBhegAAAMAKWkYBAABscphnFAAAALCCyigAAACsIUwPAABgkcMAJgAAAMAOWkYBAACscRjAZDsDAAAAyC8qowAAALCGMD0AAIAtDgOYaBkFAABAWTfffLN27dqld999Vy+88IJmzZplJF0qowAAABjSZz/7Wd1333268847dfHFF6utrU1r1qzRpEmTIqdNZRQAAMAmZ8DuTwBf+tKX9PDDD+sb3/iG2tvbdeutt6qjo0M333xz5NOnMgoAAABfI0aM0KWXXqq1a9cWfb527VrNnDkzcvoMYAIAALBk14FXddfzf2c1D6NGjdLmzZvdf7e2tmrlypXuvxsaGjR8+HB1dXUVfa+rq0uf/OQnIx+fyigAAIAlV111le0sWEeYHgAAAL4OHDigvr4+NTY2Fn3e2Niozs7OyOlTGQUAAICvY8eOacuWLZozZ07R53PmzFFbW1vk9AnTAwAAYEj33nuvHnvsMT3//PN69tlnddNNN+n000/XAw88EDltKqMAAAAY0re//W2NHz9eS5cuVXNzs7Zt26arr75ar7/+euS0ayTlew0qAAAAWEOfUQAAAFhDZRQAAADWUBkFAACANVRGAQAAYA2VUQAAAFhDZRQAAADWUBkFAACANVRGAQAAYA2VUQAAAFjz/wNEeHyDYneh7wAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqMAAAK0CAYAAAA3TDRLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABYxklEQVR4nO3df5QW5X3//9cuPxbDgiIruysiYjUSjPUnSUA4NWnwi9p8P+0n+aSRbw3aFqtJVRr6pSklxfXbox5MLaax1SU5/mqxyUlIjMnBQCqGxhVEDBqIC0YIAtkfAhFdcZHdne8fZOeeW+7Ze+aea+5rfjwf5+w5w71zX3PNzDXDtdf7+lEjyREAAABgQa3tDAAAACC/qIwCAADAGiqjAAAAsIbKKAAAAKyhMgoAAABrqIwCAADAmuG2MwAAAJBXA70/lWrHWc3Dj/97v6666iprx6cyCgAAYEvtODkHP201Cw0Nq6wen8ooAACARQMasJ0Fq+gzCgAAAGuojAIAAMAawvQAAACWOI7U7xCmBwAAAKygMgoAAABrCNMDAABY42hAju1MWEXLKAAAAKyhZRQAAMASR8wzSssoAAAArKEyCgAAAGsI0wMAAFjU7zCACQAAALCCllEAAABLjg9gomUUAAAAsILKKAAAAKwhTA8AAGCNo37C9AAAAIAdVEYBAABgDWF6AAAASxhNT8soAAAALKJlFAAAwCJWYAIAAAAsoTIKAAAAawjTAwAAWHJ8AFO+0TIKAAAAa2gZBQAAsIgVmAAAAABLqIwCAADAGsL0AAAAljiS+vMdpadlFAAAAPZQGQUAAIA1hOkBAAAsYp5RAAAAwBJaRgEAACxxJPWrxnY2rKJlFAAAANZQGQUAAIA1hOkBAAAsGmCeUQAAAMAOKqMAAACwhjA9AACAJYymp2UUAAAAFtEyCgAAYAkto7SMAgAAwCIqowAAALAmFZXRm2++Wbt27dK7776rF154QbNmzbKdJSTYsmXL5DhO0U9HR8cJ++zfv19HjhzR+vXrNW3aNEu5RVLMnj1bTzzxhPbt2yfHcTR//vwT9ilXbk455RQ9+uijevPNN/Xmm2/q0Ucf1cknn1ytU0BClCtLDz300AnvqOeee65on5EjR+prX/ua3njjDfX09OiJJ57QxIkTq3kaqBanRgOWf2xLfGX0s5/9rO677z7deeeduvjii9XW1qY1a9Zo0qRJtrOGBGtvb1dTU5P7c8EFF7i/W7x4sRYtWqRbbrlF06dPV3d3t9atW6f6+nqLOYZt9fX12rZtm2677TYdOXLkhN8HKTerVq3SJZdcorlz52ru3Lm65JJL9Nhjj1XzNJAA5cqSJK1bt67oHXX11VcX/X7FihX69Kc/rWuvvVazZ8/W2LFj9cMf/lC1tYn/bxsIrUbH+84m1saNG/Xyyy/rxhtvdD/buXOnvvOd72jJkiUWc4akWrZsmT7zmc8UVUC9fvOb3+jrX/+67rzzTknSqFGj1N3drb/9279Va2trNbOKhHr77bf113/913rkkUfcz8qVm6lTp+qVV17R5Zdfrra2NknS5Zdfrp/97Gc677zztHPnTivnArtKlaWHHnpIDQ0N+tSnPlXyO2PHjtUbb7yhG264QatWrZIknXHGGdqzZ4+uuuoqrV27tip5R3X09L6kHV1/ZDUPA92rNX36dGvHT/SfWCNGjNCll156woO3du1azZw501KukAZnn3229u/fr127dunxxx/XlClTJElTpkxRc3NzUZnq7e3Vhg0bKFPwFaTczJgxQ2+//bZbEZWkZ599Vj09PZQtnGDWrFnq6urSjh071NraqtNOO8393aWXXqqRI0cWlbd9+/bplVdeoSwhkxJdGW1oaNDw4cPV1dVV9HlXV5eampos5QpJt2nTJl1//fWaO3euFixYoKamJrW1tenUU091yw1lCmEEKTdNTU164403Tvhud3c3ZQtFnnrqKX3+85/XH/7hH2rRokX6yEc+oqefflojR46UdLws9fX16cCBA0Xf4z2FrGKeUWTOU089VfTvjRs3ateuXZo/f742btxoKVcAcNy3vvUtd3vbtm3asmWL9uzZo2uuuUbf+973LOYMtvRbbhu0PYQp0S2jBw4cUF9fnxobG4s+b2xsVGdnp6VcIW3eeecdbd++Xeeee65bbihTCCNIuens7CwKtQ6aMGECZQtD6ujo0L59+3TuuedKOl6Whg8froaGhqL9eE8hqxJdGT127Ji2bNmiOXPmFH0+Z86con5ZwFDq6uo0depUdXR0aPfu3ero6CgqU3V1dZo9ezZlCr6ClJvnnntOY8aM0YwZM9x9ZsyYofr6esoWhjR+/HhNnDjRnYJuy5Yteu+994rK28SJE/WhD32IsoRMSnyY/t5779Vjjz2m559/Xs8++6xuuukmnX766XrggQdsZw0Jdc899+jJJ5/U66+/rgkTJugrX/mKRo8e7Y5mXbFihZYsWaL29nbt3LlTS5cuVU9PjztqFfk0evRonXPOOZKk2tpanXnmmbrwwgt16NAh7d27t2y5aW9v15o1a/Tggw+6s388+OCDevLJJxlJnzNDlaVDhw7p9ttv13e/+111dHTorLPO0l133aXu7m43RP/WW2/pm9/8ppYvX67u7m4dPHhQ9957r15++WX95Cc/sXlqiIEjWZ/rc5jVox/nJP3n5ptvdnbv3u309vY6L7zwgjN79mzreeInuT+PP/64s3//fufo0aPOvn37nO985zvOhz70oaJ9li1b5vzmN79x3n33XeeZZ55xzj//fOv55sfuzx/8wR84pTz00EPuPuXKzSmnnOI89thjzuHDh53Dhw87jz32mHPyySdbPzd+klOWRo0a5Tz11FNOV1eXc/ToUefXv/6189BDDzlnnHFGURojR450vva1rzkHDhxw3nnnHecHP/jBCfvwk42ft3tfcjb++iyrP5s3b7Z6DRI/zygAAEBWvd37sl7u/F9W8zDyjW8zzygAAADyicooAAAArEn8ACYAAICsciT1O/luG8z32QMAAMAqWkYBAAAsGsh522C+zx4AAABWVb0yevPNN2vXrl1699139cILL2jWrFmBvrdgwYKYc4a8oCzBBMoRTKAcAVWujH72s5/VfffdpzvvvFMXX3yx2tratGbNGk2aNKnsdwdXNAGioizBBMoRTKAcwVGN+i3/2FbVyuiXvvQlPfzww/rGN76h9vZ23Xrrrero6NDNN99czWwAAAAgIao2gGnEiBG69NJL9dWvfrXo87Vr12rmzJlDfvfNN95S75Gj2vHibqm/P85sZk+N5y8ex2exrSD7ZMjJp43Vjs2/sp0NpBzlCCaEKke8z41qnHyaTplwsu1spMKyZct0++23F33W2dmp5ubmon1uvPFGjRs3Tps2bdIXv/hF/fKXvwyUftUqow0NDRo+fLi6urqKPu/q6tInP/nJE/ZfsGCBG77oPXJUn79gsSRp4O23489shtSMGOluO8feq3gfAIBdvM/Nuv/5u21nwZWGeUbb29t1xRVXuP/u9zQOLl68WIsWLdL111+vHTt26B//8R+1bt06nXfeeerp6SmbdmKndlq5cqVWrlwpSdqx+VduJXTY+FPdffoPHir53aw8jIPn4T0Hv3Pz+zzI+aftGpm+v1kpLwCSpdQ7PMz33v/dLL7PkR59fX0nNCgOWrhwoe6++26tXr1akjR//nx1d3dr3rx5am1tLZt21ariBw4cUF9fnxobG4s+b2xsVGdnZ7WyAQAAkBiOpAHVWP0J4uyzz9b+/fu1a9cuPf7445oyZYokacqUKWpubtbatWvdfXt7e7Vhw4ay3TAHVa0yeuzYMW3ZskVz5swp+nzOnDlqa2urVjYAAADg0dDQoM2bN7s/759ybNOmTbr++us1d+5cLViwQE1NTWpra9Opp56qpqYmSSrZDXPwd+VUNUx/77336rHHHtPzzz+vZ599VjfddJNOP/10PfDAA4HT8IbmhzcXTrKvo9C6mpUwRanziHJutWPGuNtp7ntbacjL73tZKS9R0FXBjDivY5KeX8pLMIPXJo7rlfXyECZNymN0Bw4c0PTp031//9RTTxX9e+PGjdq1a5fmz5+vjRs3Rj5+VSuj3/72tzV+/HgtXbpUzc3N2rZtm66++mq9/vrr1cwGAABAQtSoP2ULYr7zzjvavn27zj33XH3/+9+XdLzb5d69e919wnTDrPrZ//u//7umTJmiUaNG6bLLLtP//M//VDsLAAAAqFBdXZ2mTp2qjo4O7d69Wx0dHUXdMOvq6jR79uzA3TATO5o+CG9oPu/N9IFGWfYerUJOkieP5SEsrpEZcV5H26FYL8pLOGGvV9re53GUhzBpUh7jd8899+jJJ5/U66+/rgkTJugrX/mKRo8erUceeUSStGLFCi1ZskTt7e3auXOnli5dqp6eHq1atSpQ+qmujAIAAKSZo+TPM3rGGWfo8ccfV0NDg9544w1t3LhRH/vYx9xulsuXL9dJJ52k+++/3530/sorrww0x6hEZRQAAABDuPbaa8vu09LSopaWlorST11lNMhkwEEmxk+rIN0R/EZZ5j2UkaTRp8iXvHcjQuXS/D6n3Ac3kLIBTKbl++wBAABgFZVRAAAAWJO6MH2Qpn5vaD5todlyYY0g55+G87TB1nUhVAXue3JU83msdG16ryDvraS+Y5KUlyRznBr1O8GW5MwqWkYBAABgTepaRgEAALLCkVK3ApNpma+MekMcw849W5LU/+ouW9kpqVyIJcjsAGHDNEkN6ySJqWvE9UWS8Ozb5e065p243nsvuEdmcB3TI99VcQAAAFiV+ZZRr8EW0aT9tVQuD0HmSvVLI8i8rCgtzdcoaWUcyZH38lDN8y91rCADknifm5Gm6zKQ8BWY4pbvswcAAIBVVEYBAABgTa7C9IOStnRopSHVIN+jU3w+cX+BAhtziwY5Vth88T7PJkc1uR9Nn++zBwAAgFW5bBkFAABIiryvwJT7yqg3ND+8ucnd7uvorFoeKg2x1IyqC5WGd58gc90BpcQRHiTkiDjZHkEfRJRnwMR30/bc8c7IFsL0AAAAsCb3LaMAAAC2OJIGct42SGXUo5qheROCTJ4cx3eRb3GExAizIY+SsMxwWp+9tOYbpVEZBQAAsKZG/azABAAAANhBy2gA3pHncYe3S40Q9Bs1yGhCADak+d1jYwJ83tvA0KiMAgAAWHJ8AFO+5xklTA8AAABraBkNwBuaj3st+1LhnCDrzvshxA/AtDS/M2xMgG/qfetNp9RxgLSiMgoAAGARo+kBAAAAS2gZDckbmq/mKPtSgoR+gnxOKD8buF/5xH2vnkqvdZQuVUHSoQykm6Ma9ee8bTDfZw8AAACrqIwCAADAGsL0EXhD83GMliyXTtxrExPuiZfp0Br3K5+yft9NPydR0gu7f7kZUaKkbeq7SABHGnCYZxQAAACwgsooAAAArCFMb4g3TBJ2Yvxyo9lNhWAYcVmaresS570OgvKANLAdmg/73Wo9Vzy/2eFIjKa3nQEAAADkFy2jAAAA1tRoIOcrMFEZjYE3ND988iR3u2/P3pL7+000X07YyeqZ0L60JJy/6TWswxwziyjf8Iry7osy4n5wYZQgi6JUc/ERng8kTb6r4gAAALCKllEAAABLjg9gyvc8o1RGY+YNzYdde7hcyD7KZPWEZpKJ+2IG1xF+qlk2BsPzUdadj2NREp4PJA2VUQAAAIvyPoAp32cPAAAAq2gZrSJvaOToNdPd7bofbS67/yC/0H2Q0ZdxTt6cttGZRfm9+LzC5z/fUfjcwnkEuY5ByoANYfOe1JHBNspyGp6fKO+eavE7fu1F0wo7vVboOhVllLvX8Oamwj71Hyik/+t9Q34vyjvZy/S1tn0f36/UeSchXzCHyigAAIAljmpyP4CJMD0AAACsyVXLaKn1v22FDb2h+Y+9dMzd3njhiCHTDhu6DfJdE/sneb3nUvfdu73nj+rd7bN+buaYpgXpemE7v2FDkabyW+l3gywOUS1Rnp8g6ZjoQmH7GQjCr3ztm3OKu1136cnu9vhvPhcqTa+iezCy8N7esayQ/tR/OP5uD7LgiW/aAfY3Le73eVhh0rT9HkRlclUZBQAASBpG0wMAAACWZL5l1EToKUqIK8h3vaH533+x0In5Fx8dMeT3Btc9lvxHhfqFe2pG1ZX9bqWChJji7DLg992ikLbn/Cf/YyFUV+O5pjVnnu5u928vjLIPq9KyEborg+ecTIWnSpWxsCHEanaLGbwGTu9RK/mKM0QYpBxFSSepodBy5x3k+Kff0+Zu7/v7me62d5T9wNZfutvDxp/qbvcfPFQ6X57nzRuGP6+l8D7fd9/xLkDN/yfc9UpStydbXQZK5TGrIXhHUj8towAAAIAdVEYBAABgTerC9GGb6U005QcJiQXZJ0jeB0PzkvSlV44P7f7nc84vfUxPKNKPX75MTfZc7phBRAkDhbkfgbpYeK7pQAyh+TDiLt9B8ugtJ2HComGPE2X/JI38jvO4UULzphchsBWaD8Pvep1xVyFk73g+Hz55UuHL7xVmOPGG7Afe6ils+7xDBye6l6TGe453A9j12FT3symfe7lkvvzEsYCE6Xsd9wj6MO+eai64YU6NBphnFAAAALAjdS2jUf6iGfwL169Dup9qtsZ6vzvYIvp7m0e5n702vbfkvkHyWM1BQ4O8A2D8BpWYGkxV6XnHMTdjkHtjukXPVHmodIBLHPN2mnj2ggz0szFoKe6WrSiDKittBTc1KMzEezbsM+A3F2hY3jSHvfyaJOn3FhR+3/7AR9ztaS2vu9v9B3wGSiVo+d8gz5IpJloyw0YQbHEcBjDl++wBAABgFZVRAAAAWJO6MH2U0GnY8Hy540QRJgThDc0f+ZOPutsf+N6mkmkkac7EIKGcsOEeE8tLen/vF3oy1SUjznBaHKFx2537TR/fVPnyU+mArjjmWQ1SBuIss3Es/WpikJWteVFLlb3zbtla+EdDYXBU7VlnuNv9r+4qmZ7tZzNKaN724OOkG3AYwAQAAABYQWUUAAAA1qQuTG+6ed9vichS8yu+P+0oXQb8lBp97v2eNzQ/8N+FefFq/7AwEtTUPJ9xLC9Z6pjVGrHrF44Pcq+9TIUcvUzPpWgibT9JGDVvYolIP3GPVI+T6S46pmZcqFa3kbCzW1R6nKDpDL5z/Lr/HJ16urvd8bHCrCmTvrqv5P5+gsxa4ifMMxOl3Jt4Hox3QatJRmjcUY36c942mO+zBwAAgFWpaxkFAADIkrwPYEpdZdTE0pF+4Zuw4YUoXQb8QhylRiv6hSa8ofn/+5cH3e0fTBtf8pjVCqX4HdPvOKZDtH7pBBkJGkdo3i99ExMy+3U9KOp+EqHrQZg8RrmPYZW773GH0U0tJBBm3yBdioII8w6Ne9Jw090aTJVvU+/Kcvdm2PoX3e3JLxdG1p+/qbAc6cuXlD1MLIuFVDuN9zPxzPjtg+QhTA8AAABrUtcyCgAAkBWOpIGctw2mrjIadmRh2EnMTTMR/gwSZvSG5lt2bXG3bz9vRsn9wx7Xq9LJ5YPsE+do5CAjTuMYKW5auW4d72d6kvGwXS/C5sv73dqx9e6236IVlc6i4CeOMhhmZoogYeEoo8Mr7V5ke6aAKEyVzTh5y/f2OYWQ/e+/+FvP5+NK7m+qq1M51VqwwG//sN3eyu7vOKHyhPjkuyoOAAAAq1LXMgoAAJAl/YymT4GamlAT85YLxVVznWTTo26DHNMbmv/oC++42xsvHBEqL37iDGEFCWcGCcmU+jyOkHYUcU50H2deTHW9CNIlwi80H+b4cZTvsO+BSt9JUUZ1mxp9X+44UcQ5e0fY90eU9MulE3aEt7fc/+KjhX36nxrtbo/4bOn9g6jWey7W/yt8rp1f1560dS3Jm3RURgEAADLIUU3u5xmlzygAAACsSUfLqOOUbGKvdD3eKKO3TYXwwuwT5Zje0Hzn9z/kbjf98SvudpR1jcvlxS886Bui9Rw/iCD3stT60H5MTdxeafePKCHlKCH7ctdOKtwbv9+HDf/GscBAmHsdhem8mwop+3VPqFZ5LJde0DQrfa7iHEk+1P5+nw+Wx7D31y+PI24qvM9//YWp7vaUb+xyt/s6Okseq1Km/j+LMy/ezyvt2gO70lEZBQAAyCJHGnDyHajO99kDAADAqlS3jFa6JrNf+CpIyDHKaM0gYbNKR70GCY14Q/Mjnml2t49d0RH4OGHzEmVUdZTjelV6HU2tTx32uKbTi3IepbpWBJl0v1qTcAfNj+lj+glzrnGU9bCjvU2U6zieE9szdhh7J/2ua4upWRH6Xy2E4ye8WFjo5NfXn+1uT26NPhuFre5rYY7jV6bTuDiDI6lfDGACAAAArKAyCgAAAGvSEaYPOem9n7IjMQOM5I47jFtpmNGPXzcEb2h+33fPd7cnfe7Vkt81Icg18usqYWKt8yRMfm5DlPMo9XnYexEkRBwlNF/uu2G7ysTNRIgy7D4mZsbwSy+OLjdxzjYSZfELEyPLo3Sl8O5T96PNhZ1+f6a72f97Ewv7v9VTNr/ljmlKtf4/SSvmGQUAAAAsoTIKAAAAa9IRpveZ9N74YRI04jOsQCE8n24I3tC837q+1eIXQkvStfZKUr7i6MJS6nNbMw7EnSZOZOudaGoEdyX7Rk0nzMT8UUate7876asvlP2uCWnolpRGx5cDzXfbYL7PHgAAAFalo2UUAAAgowZyPs8oldEITE3UHWa0qN+6715hw6Xez72h+eHNTe626fWOq6nS0dZpY+M8wi4aYUMco72TJIvnVKk0Xwvv8+PtUlXN7i/lpO2aIj0I0wMAAMAaWkYBAAAscST1255n1PLhqYxGEOcE/H77VHPS7jSH5sPISujJ9nkkKTTvx/Y1ikMWz6lSabsWSViEAUgCKqMAAADWJGBqJ8sto/QZBQAAgDW0jGZQ3CNKkzpqGsmU5hHOQLUEWbPe1PPDM4mkoTIKAABgieNIA7YHMFlGmB4AAADW0DKaQXGHXQjNIwzCgEB51ZzcnmcSSUNlFAAAwCKWA4UVWetAnubzIe9AtsX9nJQbfMSzCQyNyigAAIBFDGACAAAALKFl1BK/sE2c4aQ40457Xrw4pSGPfuLOe9ruJWFRlBL3+ynL5S1t7wCkE5VRAAAAS5wkLAdqWb7PHgAAAFbRMpoCQZbfDBJKqRlVV3YfE7xpDzv3bHe7/9VdpfOVoDBQkvISlrecOL1HC9shzyPN12Awv0k7hzD5MZX3KOnkvbuDsXvwu3euNw1T7/NqLcscNu9xMlGmK/ku4kdlFAAAwCJG0wMAAACW0DKaMKXCB96QaxTesEq1Qhbe0Pyw8acWPj94qCrHDytJeQnLL2wWNrSW5mswKGnnECY/SRjhbSIPSQ2LBsmLqfwOPm9F18LnfR72epn6fyEM20tB2y7TcXHECky0jAIAAMAaKqMAAACwhjB9ApQLz5iaIN922MwbmvcL2dtg+7rELUhoLa2LLSAeJkbTJ+leV7MMljpWkHd4mqXtGXfzW5Oc0DgDmAAAAABLaBkFAACwxanJfcsoldEEKBfC8U5W7w25hl1v2cb68X7H8Ybmh0+e5G737dkbW178pCGsFLc4ywbXN32yds9MnU+l71lTk96H/bxa0lZe3Pw6jt2MwEWYHgAAAIF9+ctfluM4+td//deiz5ctW6b9+/fryJEjWr9+vaZNmxYoPSqjAAAAljg6PoDJ5k8YH/3oR3XjjTfqpZdeKvp88eLFWrRokW655RZNnz5d3d3dWrdunerr68umSZg+BcJOVO4N2RStR++zXnmc6w0HCd94Q/NB1rKPk+1wVxSm8p628y4lzfcRyWWiLEVZeGJYQ2EWkr6Ozsh5AcIaO3as/vM//1N//ud/rmXLlhX9buHChbr77ru1evVqSdL8+fPV3d2tefPmqbW1dch0aRkFAABAWa2trfrOd76jZ555pujzKVOmqLm5WWvXrnU/6+3t1YYNGzRz5syy6dIyCgAAYJHt0fQNDQ3avHmz++/W1latXLmyaJ+//Mu/1DnnnKM/+7M/O+H7TU1NkqSurq6iz7u6ujRx4sSyx6cymmCVhoS83wuShu31hr1shOa90hzSTXPeTeNaIAlMl0O/0DzlHVEdOHBA06dP9/39Bz/4Qd15552aNWuW+vr6jB+fMD0AAIAljqQB1Vj9KWfGjBk67bTTtH37dh07dkzHjh3TFVdcoS984Qs6duyYDh48KElqbGws+l5jY6M6O8v3b6YyCgAAAF/f//739eEPf1gXXXSR+7N582b913/9ly666CLt3LlTHR0dmjNnjvuduro6zZ49W21tbWXTJ0yfALZH/to+fhBxjvhPw/kDeRLnMxn3827jfcI7DHE7fPiwDh8+XPTZO++8o0OHDmn79u2SpBUrVmjJkiVqb2/Xzp07tXTpUvX09GjVqlVl06cyCgAAYJHtAUwmLF++XCeddJLuv/9+jRs3Tps2bdKVV16pnp6est+lMgoAAIBQPv7xj5/wWUtLi1paWkKnlbrKaBbDEWHOI8jaxJWmnWTe0Pzw5iZ328TEz1m5RkCcqvnujTN923kPch2z/j7H+4VfBSlrGMAEAAAAa6iMAgAAwJrUhenzFKYoFarxC80HCfdk5dp5Q/PDJ08qfO5Z4z4NsnhvSsnLeWYd9y68wbIf9v2cp/c5JMfJxgCmKGgZBQAAgDVURgEAAGBN6sL0eRQkNB9k9GXYkFAaeEPzpkfZxy3N1z2MvJxnGhH2jdfgNQ17naO8z1Fa0q8XYXoAAADAElpGAQAALHJy3jJKZTTBSoUS/MILjL4sDs3n6byBSvFsVEfY68z73DyuV7IRpgcAAIA1tIwCAABY4kgaUL7D9EZaRpctWybHcYp+Ojo6Tthn//79OnLkiNavX69p06ZFPm7NiJHuT5r5nYeJc3OOvef+1I4Z4/74HT8r19R73sMnTyqaHP/9snLONnDtqodrbUbc17FU+qaO6fc+z3vZyPv5Z4GxMH17e7uamprcnwsuuMD93eLFi7Vo0SLdcsstmj59urq7u7Vu3TrV19ebOjwAAABSyFiYvq+vT11dXSV/t3DhQt19991avXq1JGn+/Pnq7u7WvHnz1NraWvEx/Toke1v+Bt5+u+L0q6XSueP8ztPvc79rkfWO3YNzkfotHcpggcpxXYIxUZa41mbEMVdnufmfo/xfFfZ9niTVeoem/9moYZ5RUwmdffbZ2r9/v3bt2qXHH39cU6ZMkSRNmTJFzc3NWrt2rbtvb2+vNmzYoJkzZ5o6PAAAAFLISMvopk2bdP3116u9vV0TJkzQ0qVL1dbWpvPPP19NTcdXxXl/q2lXV5cmTpzom+aCBQt04403SpJOPm2siWwCAAAkDvOMGvDUU08V/Xvjxo3atWuX5s+fr40bN1aU5sqVK7Vy5UpJ0o7Nvwr13TSHL2pG1Q35Pe++vmH33qMRc5dNRUuH+oTsvZIa+klq94Gk5isJ8nI9qlkGyoXAgyydbCqP5ZZm9gu1e9/Vfvny7p+2ZywNeUQyxDLP6DvvvKPt27fr3HPPVWfn8YnIGxsbi/ZpbGx0fwcAAIB8iqUyWldXp6lTp6qjo0O7d+9WR0eH5syZU/T72bNnq62tLY7DAwAApILjSANOjdUf24yE6e+55x49+eSTev311zVhwgR95Stf0ejRo/XII49IklasWKElS5aovb1dO3fu1NKlS9XT06NVq1aFPlYawhRB8uhcfJ67veePClNcTf7H505Ix5tGkNGXpq5LmGsd9r7EvX+p73q/5w3Nd37/Q+520x+/Eipt0/zub5CQo5eNZ8PbxSRIHr2S9CzbeMeYKN9DfdfUPuX29SsDcQiTfvdfFwbLjttZ+N6ItS+U/W6QZ6/m/HPc7d3/+2R3++z7dkiS+g8eKpl2Up+Tar6fw+an3HHSUEfAiYxURs844ww9/vjjamho0BtvvKGNGzfqYx/7mF5//XVJ0vLly3XSSSfp/vvv17hx47Rp0yZdeeWV6unpMXF4AACA1GIAkwHXXntt2X1aWlrU0tJi4nAAAADIiNStTZ+GZvdAYY2f73C3z/q553NPmLbUqPiwodsoo0jDXOuwIRNT+0fJ2yBvaL72osIytQNbf1nxMSsVtutF2DBfnGwtqlCqzEQJ1dl4x8RZvk3tE+SaJmkmE28eGx8shOO9XQkGQqbj97njeVecvffUQvpvHY/+Beq6FaA7VrW65STtmTHxfxGSLXWVUQAAgCxJwiAim2IZTQ8AAAAEkauW0XKTJFeT76jMM093twe27zjh90FC12FDuklaMzjOvAQKM3pD8x+5oLD9/C/iylaRKGG4pI60NfVdP6XSScIzbprtUcJpvqZFIfCzznC3azxdocK+H30nqX+rMDC39oPHl8Xu376j7Pe8bHV5SRLb5R3VlavKKAAAQJI4Oj7XaJ4RpgcAAIA1uWoZTWpTvzdf3nBOqd/7iXOkfFaEPmdPaD6p3RpsiHvkN0rj2pnR/+qusvtEeYfaeJ9nUb7Ou0YDYgATAAAAYAWVUQAAAFiTqzB91hDKqR4bMxEAyA/eK/mW9+VAaRkFAACANbSMAgAAWOI4rMBEZTQFTK3XbmrN+rzzXqNh4wvrUPcfPGQjOwBSxG/d+Sij7Kv1Duf/CsSFMD0AAACsoWUUAADAoryvwERlNAXiDocQbqmcNzRPCAtZMViWKcfm+a07H4Tt7lWUB8SFMD0AAACsoWUUAADAorzPM0plNMFMh8oIscTLdggNMMV2mbXx/MR5zDjStn2PAJOojAIAAFiU95ZR+owCAADAmsy3jKYtXFoqv2k7BxTfJ79JrgGUZmPi9jiOWaqrFe9z4ESZr4wCAAAklaOa3C8HSpgeAAAA1mS+ZTRtYZBS+fU7B8I96eANzXPPALuq+dzxPgeCyXxlFAAAILEclgMlTA8AAABraBk1xFSIxZtOmPRKfS9qXtIgbaEtbx6HT57kbvft2WsjO4mUtnuKeJkuD37pxVHuyr3Pg+TF77vIFuYZBQAAACyhMgoAAABrCNMbYircE2b/sGlnMfyZ5vPwhuZLTY6dV1wDeJkuD37pxVHuyqUZJS9ZfJ/nGWF6AAAAwBJaRmMQpYN6ufRM5QsFfst1VrPlYTD94c1N7md9HZ2xHhOoVDUHAZngfcad3qOF7RgHKklSzag6SfEsA5yk61stSS1fJuR8ZidaRgEAAGAPlVEAAABYQ5g+ZmE7qGc5DJFUcYTQKuUNzVMWkFTVHARkgl/3G1OSet5Zk9Xr7IgBTLSMAgAAwBoqowAAALCGMH0CEI61y+/6274XaRilDKRBNZ8fnlWE5ij3w+lpGQUAAIA1tIwCAABYlPcBTFRGLYkzlEOYqLy0XSNC9kDlqvmcxHksnn1kFWF6AAAAWEPLKAAAgEVOzgcwURlNAL9JmEuFYfzCNLbXV09b+CjNYW9vHoede7a73f/qLhvZsS5t9y8NBq9pHGu327hHcR+/3Hs5yMIa3jQG17QP+l0g7aiMAgAAWFOT+wFM9BkFAACANbSMRhAl9OMXJvaGZ0rt6/e9sGGgsPkqd35+v/frPuAn6+E807yh+WHnn1f4fPsOG9kJxdS1TsN9ilOQ6xj2Wpu+pkl6lqv5jDu9Ryv6HmH9yqXtHY7jqIwCAADYRJgeAAAAsCOXLaNJCw+WWw89bBgu7DGj7FM2jZBhKhthlayEcryh+eGTJ7nbfXv22shOWVm57kGUej7jeH9E2Sdr/M45jmsR58IlQeQ9NO+Vx7KeBbmsjAIAACSCwzyjhOkBAABgTS5bRtPWjB8k3BS260G1RhwGmZgf5nlD81x3+9L2zoEZg/c9jtkMwobykXC0jAIAAAB2UBkFAACANbkM02dRlEn3q4UQsR1cd8CuOGY8oOtHdjgSy4HazgAAAADyi8ooAAAArCFMHwNTI9UH0yEcgziwhjNQHs8JqoLR9AAAAIAdtIwCAABYlPcBTKmujCY1fFLNNacH+U2AHGRifBvXMan3Lk+8133Y+FPd7f6Dh4weh3ttRpKuY5LyEjcb78Qgxw+7f9rkqYyBMD0AAAAsSnXLKAAAQKo5yv0AplRXRvPSdB8kXOEXdvfbJ8jnJvjl3XY3ARTzhuZNrGXPPTUvSdcxSXlJmyDvxCj7Z0XWzw/FUl0ZBQAASL98D2CizygAAACsoWU0YUqFSIOEK4KERf3Cr6ZDqmHTIxyTLN6yMXzyJHe7b8/ewGnYuqcsFGFWFrtbVHMU+uA71/tMxTE6Ps77lMUygOShMgoAAGBTzgcwEaYHAACANbSMJkyp8LmxSfR7j56Qtsn040oP9nhD84MT45ueFN8kyp5ZWbye1Qx7D77PTc2I4ifO2UmyWAaQPFRGAQAAbMp5mJ7KqEcSOmqHyYPfX89h5/ZMwnknEdel2GCLaKWDmobCtUa1hG2lNHGsIOn5DTANO+8vzw/SiMooAACANTWSwzyjAAAAgBW0jHqkLbwRNr9Bwj1ZDJdWOhAsK+dvWqlBTVK0gU1ca+Sd3zvZ73MTy/YCSUFlFAAAwCIn5wOYCNMDAADAGlpGLQky4r3Uvl5h55YLOxIzK2Ggcte0ZlSdu53m87TBG5of3tzkbvd1dNrITllZ7IaC8qp530sdK+xyzd45oaO8z5ESjnI/tRMtowAAALCGyigAAACsIUxvSZhQUZB9w4bsTYX106pc14g8qzSk6Q3NJ7WLB/c6n6p530sdK8jxo8xwYrobAt1ZLGCeUQAAAMAOKqMAAACwhjB9AviFRCqdrN0vba+wYX2/NCvNm6kwUJLykmamr4E35Djs3LPd7f5Xd0VOGwir3Dv2/Z+bOlaYtP26tvjlN055fQ/aVMNoegAAAKC0L3zhC3rppZd0+PBhHT58WG1tbbr66quL9lm2bJn279+vI0eOaP369Zo2bVrg9KmMAgAA2ORY/ilj3759+ru/+ztdcskluuyyy/T000/r+9//vi644AJJ0uLFi7Vo0SLdcsstmj59urq7u7Vu3TrV19cHOn3C9JZUK2wUR7glSfmKM5yUp/B9nOfnDc0PnzzJ3faucY/K5amcmhB3aL7UwiHVHE1vQprLVJrznmQ/+MEPiv69dOlS3XzzzZoxY4Z+8YtfaOHChbr77ru1evVqSdL8+fPV3d2tefPmqbW1tWz6tIwCAAAgkNraWv3pn/6p6uvr1dbWpilTpqi5uVlr16519+nt7dWGDRs0c+bMQGnSMgoAAGCT5XlGGxoatHnzZvffra2tWrlyZdE+H/7wh/Xcc89p1KhR6unp0Z/8yZ9o27ZtmjFjhiSpq6uraP+uri5NnDgx0PGpjFpiOjQfJexPKKO0tF2XNISnvKH5YeNPdbe9a9wjnKTe6ySJe0S6X/qVLvgQ9n1uugykuUylOe82HThwQNOnTx9ynx07duiiiy7SySefrM985jN65JFHdMUVVxg5PmF6AAAADOnYsWN67bXX9OKLL2rJkiXaunWr/uZv/kadncdX32tsbCzav7Gx0f1dOVRGAQAAbLE9kr7COU5ra2tVV1en3bt3q6OjQ3PmzHF/V1dXp9mzZ6utrS1QWoTpPWyFOU2E5sOmnYaQbrVk5fyrdR6myo43ND+8ucnd9q5xj2yz8R6K+zim3+fVnLA/TfJ+/tV211136Uc/+pH27t2rMWPGaN68ebriiit0zTXXSJJWrFihJUuWqL29XTt37tTSpUvV09OjVatWBUqfyigAAIBNCV+BqampSf/xH/+hpqYmHT58WC+//LKuuuoqdwT98uXLddJJJ+n+++/XuHHjtGnTJl155ZXq6ekJlD6VUQAAAPi64YYbyu7T0tKilpaWitKnMuqRtKb+cmschw3BE9ZIlrTejzjy6g3Ne0P2/QcKofw0XSMEk6R7Gufz6BeCD/s+R0GSyg6iozIKAABgU8LD9HFjND0AAACsoWU0wQbDEGHDNLVj691t74hlwhrJwv0ozRuaH9ZQmBi/0lH2ae0OgeqKs2yEnXTfu0/NqLqS6VCWM8byCky20TIKAAAAa6iMAgAAwBrC9CkQNhzDOt9IM295NzEBPuFMJEmQ8kg4Pn9qGMAEAAAA2EFlFAAAANYQpk8xU6OEGW2MtKkdM8bdHnj7bYs5QRqk4R0XJY9pOD8MwRHzjNrOAAAAAPKLyigAAACsIUxviYn146OsO09Yp7S0XZe05dcUb2jeu5a9idH3aRNHGRhMM8o7JqniPo9Sk9qHHUEfJI9ZuR9h5PGc84KWUQAAAFhDyygAAIAlNWKeUSqjlviGXjzrEJfdN2TIolojkNMcSiG/xdJwL72h+WHjj69lb2vhBxvXK47jlEozqfc/CL8QeBz3y5vO4Ds3bNpJutZJ6jKQpOsCs6iMAgAA2OTU2M6BVVRGYxb2L0an92jg/f3+2vfbp1rzMaZ5YJXt4ydN2q7BYIvoYAup97NqMNFyRBmsnrhb+rzv8zBMDHCtJP1Sghy/WuWUZyO7GMAEAAAAa2gZBQAAsIkBTIiTiY7rQQYeleo0H/T4QUL8lUpbx33bx0exSsNy3tD88MmT3O2+PXvNZCykMHmnDMYr7Jyfpo8VR9elsGH9Ss/Pdtm0fXzEhzA9AAAArKFlFAAAwCbC9Ei6IKPgveGYsKPmbc8dh2yIe87GSnlD85Rp2BZH1yW/fSjjSAsqowAAALY4rMBEn1EAAABYQ8toApgIHYb9XpBjEuJBGGkoL36zTlRrQQjYUc3uGUl9nwNJRmUUAADAJsL0AAAAgB20jCZAuTXm4wi7EMpB3nlD84Tssy3s+u6mw95xh9F5nyPtqIwCAADYRJgeAAAAsIOWUUsqXTPYRogp67heIGRvRlKfpbD5Mp33KOkl9ZrCLOYZBQAAACyhMgoAAABrCNNbEudkyIRywuF6wYvQfOWS+ixVM19JCvEjLWokp8Z2JqyiZRQAAADW0DIKAABgiyOmdrKdAQAAAORXoMro7Nmz9cQTT2jfvn1yHEfz588/YZ9ly5Zp//79OnLkiNavX69p06YV/f6UU07Ro48+qjfffFNvvvmmHn30UZ188slmzgIAAACpFKgyWl9fr23btum2227TkSNHTvj94sWLtWjRIt1yyy2aPn26uru7tW7dOtXX17v7rFq1Spdcconmzp2ruXPn6pJLLtFjjz1m7kwAAABSqMax+2NboD6ja9as0Zo1ayRJDz/88Am/X7hwoe6++26tXr1akjR//nx1d3dr3rx5am1t1dSpU3XVVVfp8ssv18aNGyVJf/VXf6Wf/exn+uAHP6idO3caOp18YQJ8wA4mxodpvM+RZ5H7jE6ZMkXNzc1au3at+1lvb682bNigmTNnSpJmzJiht99+W21tbe4+zz77rHp6etx9AAAAkD+RR9M3NTVJkrq6uoo+7+rq0sSJE9193njjjRO+293d7X7//RYsWKAbb7xRknTyaWOjZhMAACCZEhAqtymxUzutXLlSK1eulCTt2Pwry7mxq9J17IPuAyAcb2ie0CnC4H0OnChymL6zs1OS1NjYWPR5Y2Oj+7vOzk6ddtppJ3x3woQJ7j4AAAB5lPcBTJEro7t371ZHR4fmzJnjflZXV6fZs2e7fUSfe+45jRkzRjNmzHD3mTFjhurr64v6kQIAACBfAoXpR48erXPOOUeSVFtbqzPPPFMXXnihDh06pL1792rFihVasmSJ2tvbtXPnTi1dulQ9PT1atWqVJKm9vV1r1qzRgw8+6PYDffDBB/Xkk09GGkmfxfBYqXMyNbIyi9cL8Bos47bWImeUfbrE/U4sVR5NHSdJ73PKPaIK1DJ62WWXaevWrdq6das+8IEP6I477tDWrVt1xx13SJKWL1+uf/mXf9H999+vF154Qc3NzbryyivV09PjpjFv3jy99NJL+vGPf6wf//jHeumll3TdddfFc1YAAABp4Vj+sSxQy+hPf/pT1dTUDLlPS0uLWlpafH//5ptvUvkEAABAkcSOpg/CdmgiDmHOKez5Z/F6AV62yzghynSJu7zEmb7tsu5FuUdUqa6MAgAApFpCQuU2RR5NDwAAAFQqky2jSRplWC3ec64ZVedu2w6fJOleJCkvccvTuZaStPMf3lxYaa6vY+i5lZOW9zyKcg9M3L+svM+D7B8mzaw+GzVKxlyfNtEyCgAAAGuojAIAAMCaTIbps9R8/37eMIVX2EmVqxXuSNK9SFJeEK+k3WtvaH7Y+FMlSf0HD5XcN2l5z6Mo96DS74adON5GyDrKDC5+5xfnDDJID1pGAQAAYE0mW0azJo6/gPkLM9u4v8k12CKa1cEYGJrffQ87OCltZSbs+eXu+WAAEwAAAGAHlVEAAABYQ5jekjAhiCghityFOirANYINQQZ3wLy4n/dy6UcZBJSnd1Wp887yOTPPKAAAAGAJlVEAAABYQ5jeEtPhBr/wje2wRhrCSknNFyqXtHJXLj/e0HzS8p41cc/DbOKe8T4vNnisTD8bhOkBAAAAO2gZBQAAsMVR7ltGqYxmhF/IwnZYI3OhFKRC0spdpUse2n5+88r2teZ9Xv74tq8FzCJMDwAAAGtoGQUAALAo7/OMproymsWJoisNPQQZfendxyvrIY5KJ0zOUxgoT+eaJt57Mby5yd3u6+i0kR1XmstLNfNu+t2Tp4USyp1fnq5FHqS6MgoAAJB6OW8Zpc8oAAAArEl1y2hWmuP9QjJhQjw1o+pKpuEnbaG1KCo9V64RksQbmh8+eVLh8z17q56XaoW3TR2rmmHcUnkPez5B3udO79FKs5gKpRaCyOu1yINUV0YBAADSLu8DmAjTAwAAwBpaRiOIY1Sm34j3cr+PY23rNI+YDSMr55mG84j7mUnqeZvmDc0PO/dsd7v/1V02smOc6fvoDeMmaTR9Nd/naTZ43n7dLZgMP/2ojAIAANhEmB4AAACwg5bRCEyFAEysWx3lu74jFHMS4sjKeabhPOLIYxrOO07e0HySJsZPkmqWERPv8yDv9qSuXx+nIKPmU3ldHNEyajsDAAAAyC8qowAAALCGMH0KBFmn2CtIOL5aYYpEh0aAjPGG5qNM9F7pmuooL8o72Xb3Ktvv81SG4ANinlEAAADAEiqjAAAAsIYwfQL4jZwcDDdEmrjeZ43jaoU10hAyyUKIR8rOecAMb2g+7Cj7rJWfuJ+NMOnzPjfPmy+/sp7UvLsI0wMAAAB20DIKAABgU85bRnNVGU3qCNFyE9kHCcH47RN2FG0eJa08VCor5wHzvOHKPE6MH2SxkCjPT7n3ctj3dpD3uY1uOWnoCuQt02nIL44jTA8AAABrctUyCgAAkCQ1Yp7RXFVG09BMXypUw3rewRCSAcozNTF+WtlYpz6OxUeSNOl8UpXtnlFTU8XcYCi5qowCAAAkiqPcD2CizygAAACsoWU0AUyEcNIWPolDpdeA8D7yyvbobBtsTIAf9jhZvv62lLymTs6bIxOEyigAAIBFeR/ARJgeAAAA1tAymgDlQjJBJkYOkl6SJklOUkjQ1PGTdH3zhGtQWtjrUmp97yxOih93GQnzPvf7XpSFTuKU5meN0fTJRmUUAADAppyH6amMpoDfX6BBWkmDpBPnX7tB8p4VWZz3Lw0tIUnNl21Rrstgi2ge5yGNm6nyaiPSlOZnjQFMyUZlFAAAwKac14sZwAQAAABraBm1JM6wShpCq1Fw7aonDdeAexYfb2h++ORJ7nbfnr02slOxapaRcscKmxfKN/KAyigAAIBFeR/XT5geAAAA1qS6ZbRa4YskhXj89vXK+tJzWQ7N28pLkq5BWGnLb6Vs3yNvaH7Y+FPd7f6Dh6qelyjiuI7l5lOudJnnoPtn8RkodU1tPwOxYgATAAAAYAeVUQAAAFiT6sqoc+w99ydtx/FLM8yxvPuGzWPNiJHuT95VqxwlOS9JugYoLUn3qP/gIfcnDe+SKO/KsOmX+txUen7ScA/CKnUNkvQMGOVINZZ/yvnyl7+s559/XocPH1Z3d7d+8IMf6Pzzzz9hv2XLlmn//v06cuSI1q9fr2nTpgW6BKmujAIAACBeV1xxhf7t3/5NM2fO1Cc+8Qn19fXpJz/5icaNG+fus3jxYi1atEi33HKLpk+fru7ubq1bt0719fVl00/1ACYAAADEa+7cuUX/vu6663T48GFdfvnl+uEPfyhJWrhwoe6++26tXr1akjR//nx1d3dr3rx5am1tHTJ9KqOWhAmnxLEGsY11jZPEe841o+rcbdvrb+fxXiQN9yAc7zVK6sT4tWPGuNtxP+OlZhooN9r+/Z8jh1I2mn7MmDEaNmyYfvvb30qSpkyZoubmZq1du9bdp7e3Vxs2bNDMmTOpjAIAAMBfQ0ODNm/e7P67tbVVK1eu9N3/vvvu089//nM999xzkqSmpiZJUldXV9F+XV1dmjhxYtnjUxkFAACwyXLL6IEDBzR9+vRA+/7zP/+zZs2apVmzZmlgYMDI8amMWhImJBN3KKda4aEkhaSiTEIdpyTlJa+4B5XzhuaT9LxXs/tNqUUA4g7N276+yI97771Xn/vc5/Txj39cu3fvdj/v7OyUJDU2Nmrv3sJ7oLGx0f3dUBhNDwAAgCGtWLFC1157rT7xiU9ox44dRb/bvXu3Ojo6NGfOHPezuro6zZ49W21tbWXTpmUUAADAoiBzfdr09a9/Xdddd53++I//WL/97W/V2NgoSerp6dE777wj6XhldcmSJWpvb9fOnTu1dOlS9fT0aNWqVWXTpzKaAqZCPLbDZoSSzLN9TwE/3vJYzdHsSef3nIZ9lnn2UU1f/OIXJUlPP/100ee33367WlpaJEnLly/XSSedpPvvv1/jxo3Tpk2bdOWVV6qnp6ds+lRGAQAA4KumpibQfi0tLW7lNAwqowAAADYlPEwfNyqjKWNqontkA/cUaZD30HwQYZ9lnn1kCZVRAAAAS2qc5A9gihtTOwEAAMAaWkYzwm+te0I5SANGBucTo+xL432OvKEyCgAAYBNhegAAAMAOWkYzgvAN0ozym0+E5kvjecgfBjABAAAAllAZBQAAgDWE6RNscESlqZCN34jlNIxkTkMevdKWX6RL1svXsPGnutv9Bw9V5ZhxXtM40mbEfcYQpgcAAADsoDIKAAAAawjTG2IqDFMunTjCPWkI66Qhj15B8pv1UCvik/Xy4g3Nmw7Z+z13cVzTMF2tgrwPeGdkGGF6AAAAwA5aRgEAAGxxmGeUyqgh1QqZRzkOYZ1k4X4A5ZkeTV/N5y7MsYLsyzsDWUWYHgAAANbQMgoAAGATYXokSamJjOMOzeRxhGYezxnIksFR9tWaFD+oUu+War5veLchjaiMAgAAWOOoxsl30yiV0YSx8ZdsHv96zuM5A1mStBbRQaXeLUkdNAUkBQOYAAAAYA0towAAADblO0pPZdQWE53M414+jo7wANKkdswYd3vg7bct5iSYsO9Y3snIKsL0AAAAsIaWUQAAAItYDhRWeEMspeYW9e7jF5qJe/m4LIeByl3zNCKEh7zzhuYH5yGVikfex/Gc+KU5+Lnf+z7s8XmukVVURgEAAGxxlPsBTPQZBQAAgDW5bxmtZsjGq/aiae72vjmnuNun39N2QjpBQjy2R82nbVSo95jdfz3T3W588IWS+1SL32jgOO67aUHy6BUlvybSTMM19eMtJ07v0cJ2DLNqlErDy5tekkaze0Pzv/qPi93tc/7s56HSCVJOhp3e6G7v/vwkd3vyil+ckF4c70fTZdb28cMeJ4vdrvIm95VRAAAAW2rEACbC9AAAALAm8y2jpZrvw45IjzK5vO93X9vrbtZderK7ve/vCyHjM+4qhOzDpB3k85pRde62iXBa2JBJNbsSlOvuMG6n53PPdak96wx3u//VXaGOWer4Q+Vh8HNvyDXIOccdXi6VZtiQmG8ZNDSq2C/NSvNlI7QX9h3j14XDj4muPkGe8ThC85XeG+/3vKH5j710zN3eeOGIsukEOWb/b7rc7ZNfm+huv/b3H5YkTVnyXNk0/I5poytZ3O/zIIKU6ziPj+rKfGUUAAAg0QjTAwAAAHZkvmXURPN9lMnl/T73hrPGf7MQwvGOsndKhJf9+IU0okyYX6k40jYxeb/ftRixtjCCfsDzvRpPyDyKMGUjDYsU2JitYSjlJhkPm0YUlZ5rHO+YsEzn15RKj+X3PW9ovv/jl7jbw9a/aCT9sas2FrY/ckGoNAeFCVEPlRcT+9saTZ+30DsDmAAAAABLqIwCAADAmsyH6dNmYOsv3e3hk49Pnty3Z2/JffMWxoiqmqHbKDMwJEm1url4pXntbtvHDyINeazWs+ENzQ++byX/d25oz/+iorTTcI+80pbfxGE5UFpGAQAAYA8towAAABblfQATldGEGTb+1MI/3jvmv+P7pG0t4TSIO1yc1usRd76zuLZ2mPTT/MyYYuO8i8Ln3lHwz5+4vrwUbPGA2rH1xzdCvMuHStvU/pWyXTZtHx/xIUwPAAAAa2gZBQAAsMnJd5yeymgMooyk7j94yN0uCtmXkdRRx2kIpdhYGCAJwoa80nQ9kvY8JHVC+bwIHd71hOaHNze5230dnaHS8b7Pw0ha+a32cZJ6fMSHMD0AAACsoWUUAADAIkbTo2JRwrtB9hl4q6eyjHmkYfJ128fPa+gnr+eN/IlS1r2heW/XKb8QfKmR9XHP0OB3fCAtqIwCAADYlPOWUfqMAgAAwBpaRiMwFQ7xhltqRtW52wNvvx34e355ScMoadvHDzJ5te08Aqhc2JB2kNlO/EbZew1Oel/pqPqh8E5CllAZBQAAsMWRagZsZ8IuwvQAAACwhpZRS7whHo0c4W4WrY9sQF7WLA7CNxx//jmFz7f+suQ+1RJlTWqvtN0DxMv0dU/DffTmcdjpje52/2+6yn43yDl5Q/P9H7+kcKz1L7rb5WZEMdV9wLSk3t80zA5TMQYwAQAAAHZQGQUAAIA1uQ/Tx9GkH2iUe/0H3O0dy052t89rKYTsB36974Q0bOW3nLDfixKOrvRYftdx9/8uXP+z9xYmtfaG2GyHe6IssFAtYWclMFWWK03HL0TqVa1nLO7uGSaesSB5DDIpvCnlJpT3fr7785Pc7ZNfm+huj121cci0h0rTyxuav/nVX7nb/37uOSekF8fza/r/hbjf52G/G2bxgCS9E4OqESsw0TIKAAAAa6iMAgAAwJrUhelNhLPChkmijOCrHTPG3fZOYj8Ygpekqf9wzN3ed1+9u914zzRJ0rCXXyuZhl/afrz7O71HS+a3Un5hLb9J/P3CtV5B7lOYif/9jnP2fTsKefSE5ms/OMXd7t++Q5UKE6b2Xi8vv3Pzu6dBvhtEqTIWZQR/2DIb1mD6Qcp33OuFh3nPRHkPBeluECSdMHkMMim8KZXm1/u9ySt+4W6/9vcfdrfHfuSCwheeL+wzOFm9VHxO3jS9+3jfG4OheUn68W+2SpL+r9MvGjKvQZnq5hLmu3HP2BHm3Z7akfJBOPmO09MyCgAAAGtS1zIa9i9D0525w/6V7m398fuud27R5v9T2GfXY1MlSb+3oHS+grQs+eUxbGtKmOP4fR5HJ/4wA2X8Wqz9Wj7iaA0tJ2xrYZD9o7QmlCq/YVup44hEeJkoS6ZaXOJsrTHVKmYinbjneDQxqMXv8ylLniv5+fDJhUFOeu9YyX2CtAJ78z7YIjrw34W0a/9wb8l9/cRRpkzc60rTq+S4YQYw+Ul0q6rDACZaRgEAAGANlVEAAABYk7owvVfYpvbB0GzYUGg1Q3jefaZ87mVJUvsDH3E/O++WrcbzEmf4IsgAm7CDWkzMseh3nLDXxS/vcXdPCMPU4AYTg3DCMlE24+7OY2Ke0yih9ijphwmBh00v7vMLM/AmSHqmlmIudSxvaH7EM83u9rErOsqmF+R9V60QdNwDEL1Mz82beITpy5s9e7aeeOIJ7du3T47jaP78+UW/f+ihh+Q4TtHPc88V98sZOXKkvva1r+mNN95QT0+PnnjiCU2cOFEAAADIr0CV0fr6em3btk233Xabjhw5UnKfdevWqampyf25+uqri36/YsUKffrTn9a1116r2bNna+zYsfrhD3+o2lp6CgAAAORVoDD9mjVrtGbNGknSww8/XHKfo0ePqqurq+Tvxo4dq7/4i7/QDTfcoJ/85CeSpOuuu0579uzRJz/5Sa1du7aCrIdXKkwcZY7LKMKMFp3W8nrhw4bCcntHp57ubnuXowt7nLBzfobhF8rxHidsuKfSWQHCzrMa5JzDzmjgldQwk+28mD5+3OdTafqm8hW2W4XpEfQm0jbF1vHDhJS9ofnf/L8z3e3T72krmXbY912lc3EH6hrh09UqDlWZm7emprLMxYDR9IbMmjVLXV1d2rFjh1pbW3Xaaae5v7v00ks1cuTIokrnvn379Morr2jmzJmlkgMAAEAOGBnA9NRTT2n16tXavXu3zjrrLP3TP/2Tnn76aV166aV677331NTUpL6+Ph04cKDoe11dXWpqaiqZ5oIFC3TjjTdKkk4+bayJbAIAACRPzldgMlIZ/da3vuVub9u2TVu2bNGePXt0zTXX6Hvf+15Faa5cuVIrV66UJO3Y/CsT2SzZrB/HsnpB9gkTQuo/UJhcufasM9ztjo+Ncrcnv1wI3weZjDnISMyisLaBkZumJ9oPe3y/BQiiLDEb5zJ8YdMLImw5LfW534jasJ8HOb6fNIeDK53VIwhTMweY7npQrWfGdheTsLyh+XeeOtvdHj13V9nvmupSZbqrhp9qzYzhVfYZyHkFMEliGT3U0dGhffv26dxzz5UkdXZ2avjw4WpoaCjar7GxUZ2dnXFkAQAAACkQS2V0/Pjxmjhxojo6jnfU3rJli9577z3NmTPH3WfixIn60Ic+pLa20p22AQAA8qDGsftjW6Aw/ejRo3XOOedIkmpra3XmmWfqwgsv1KFDh3To0CHdfvvt+u53v6uOjg6dddZZuuuuu9Td3e2G6N966y1985vf1PLly9Xd3a2DBw/q3nvv1csvv+yOrg8qSmii0rWM/ZgKd4UJPfS/WgjfTPrqPnf7/E2FtZS3zykdsg8d0vUZOWl6Ym9TIVoT4Ty/kHIcCx8YCVuNqnO348hv0bF+l6bvggE+5SVIaL7cMSX/bi6l9ol7ze8ooeZy4fkg5TvIfQ+SvlelXZaivAfjXpCg3HFMvEuC7lOONzTfsmuLu73s7EuNHieKuBcyqPRYYf+fKXyYnNH0eReoZfSyyy7T1q1btXXrVn3gAx/QHXfcoa1bt+qOO+5Qf3+/LrjgAj3xxBPauXOnHnnkEe3YsUMzZsxQT0+Pm8bChQv1ve99T9/61rf07LPPqqenR5/61Kc0MDAQ28kBAAAkmpOAH8sCtYz+9Kc/Vc0Qf0HMnTu3bBrvvfeebr31Vt16663BcwcAAIBMS93a9EGa+oOsF14tJsIaQUZ+v3xJ4Xu//+Jv3e1ffLTyMJSJsHq1QlxBBBnVHWTN+iQxNSI7TNkI8nxFCYv6haPDlNMoIddYujh4zqOUIDNtBOmmEESlz6TtGQyiCHu94lx4Ich19Ibm/5/2Qnes/5xamE3FxqweUY4TJZ1y36v4/zZG0ydG6iqjAAAAWZKEQUQ2sTA8AAAArElHy2hNTaj1cysdrRooK4ZGWcYZJtk+Z5y73f/UaHd7xE0jCp97RuXbGDnq5T3+sIbCTAB9HaXnoK00HBxktHk1Q7omJn6OQ7l8BekaYGrEcrUmxw57zLDpmxhBH6U7jd/o+zDiCM2bvtbVGp0/1HHDHCvI97yh+ZtfLSwA8+/nnhMmi6HyZUqcM1b4XbvasfXutnc2mbR1LcmbdFRGAQAAsmog33F6wvQAAACwJh0to45TdlSvd8LtMCO8TY/2M5lmmK4JXt7QxIjPFj7/9RemutsTXhzvbtf9aPMJx6zkuKX43SMv73H8QvN+goQ0S60FbipkY2oS+zD3OtSkzgHzVWneg8xQ4MfUc1jqu3GH5KJcx1L3OkhIOeyzFGaRgCB5jKJa3V/ivu9BFmHw27+Sfd//uTc0P+KZZnf72BUdPjmujjjfMX5pFH3u6Ybi/f8vVfLdMErLKAAAAOyhMgoAAABr0hGm9xEkLFguTBJlMuSwIRu/dLzChDKCrKPuDVlM+UZhBP2vrz+7kNDvz3Q3J331hSGPGVal90gyN1G1X0gzTBp+4lizvlImRkyfkGaZ8wu77nyUZyZMvoLsG8ck7nHORhHlnlY6Y0aUZzPK/TUtbDeQOGdcMbVIgTc0/8Cen7nbN02eFTgvfuKYYcVEGTA16X3S1DjMM0rLKAAAAKxJdcsoAABAujm5X5o0HZXRkJPee8U5EtPWJNDuvgFG1Hp5R6pPbi3s0/97EwMfMw5xh3jiDNUkKQwUJYwbJvxlY2GEKOlXc/Jz20x1gwjzPduT4ceRxyhlptLZXKJcR29o/ug1091t70wpYcQ5Ij5uSc0XhkaYHgAAANako2UUAAAgo/I+gCkdlVGfSe/zLso18Y6yr3mrx0R2kHFpfQbTEFo0Jevn55WFc41jUYE4FzHJwjVHMhGmBwAAgDXpaBkFAADIKsL0yDtCL8gyyjeyLk8zRiCbqIwCAABYVJPzeUbpMwoAAABraBmNWdjRjCZGP8Y9ejhPo5ORTpRR+Klm2ah0sZZSaURNx6t2zBh3O8piGYApVEYBAABscSQN2M6EXYTpAQAAYA0tox5xhEPiXO/e9DrUQRH2RNJRRuGnmmWj3LGC/J8TR369oXkTXQmAqKiMAgAAWJT30fRURj3S9pdh2vILAChIwjs8CXkAqIwCAADYlO+GUQYwAQAAwB5aRi2xPQ+i7eMnCdfCPL9ryrWGDVmfe9n08ZmHFNVGZRQAAMCmnA9gIkwPAAAAa6iMWuIce8/98aoZMdL9Mc2btt/xTR8nDeK8FmlX6b30u6ZxX+s0lTtUj7fcxfF+Kvc+j5vp52rg7bfdn7S9z1PJkWos/wQxe/ZsPfHEE9q3b58cx9H8+fNP2GfZsmXav3+/jhw5ovXr12vatGmB0qYyCgAAgCHV19dr27Ztuu2223TkyJETfr948WItWrRIt9xyi6ZPn67u7m6tW7dO9fX1ZdOmMgoAAIAhrVmzRv/wD/+g7373uxoYGDjh9wsXLtTdd9+t1atXa/v27Zo/f77GjBmjefPmlU2bAUwp4Dey0S9sEmVZOROjMr3fy/qoTNujaOOWtnMazG/S7kuY/JjKe5QZDfK+RGSc5cf7TnR6j5Y8TpTjm867N43hkye523179kZOO6wkXRfjUj6AacqUKWpubtbatWvdz3p7e7VhwwbNnDlTra2tQ36fyigAAECONTQ0aPPmze6/W1tbtXLlysDfb2pqkiR1dXUVfd7V1aWJEyeW/T6VUQAAgBw7cOCApk+fbu34VEYTplT4wC+8HUeowXSaWQzNeyUy3IPE3Zcw+TGV9yjddZJ2/Uyq5vmHeZ+bOn6c985GaN4rqdclqhpJNSd2wUyVzs5OSVJjY6P27i2Uk8bGRvd3Q2EAEwAAACq2e/dudXR0aM6cOe5ndXV1mj17ttra2sp+n5ZRAAAAa5xUDGAaPXq0zjnnHElSbW2tzjzzTF144YU6dOiQ9u7dqxUrVmjJkiVqb2/Xzp07tXTpUvX09GjVqlVl0051ZTTxo+MCCjsqvtT3qjVS3hTygjjYHgWe9dkj0irKzAJRjmU6bb/j2H5vDRt/qrvdf/CQxZwgTpdddpmeeeYZ99933HGH7rjjDj388MO64YYbtHz5cp100km6//77NW7cOG3atElXXnmlenp6yqad6sooAAAA4vfTn/5UNTU1Q+7T0tKilpaW0GlTGQUAALDF+d1PjqW6Mmo7NGGKicnl4zxOHMgL4mD7XhKaT6YoMwuYOlZajxMEoXlElerKKAAAQNrVpGAAU5yY2gkAAADWZLJlNEmjDG3I+/n74brAFsoeKpXmspPmvKO6MlkZBQAASA3C9AAAAIAdmWwZzXI4IEjYI20T4FdLXs4TyeMte4MT4zPyHl5pXsTET6lyL1H2caJMVkYBAABSY8B2BuwiTA8AAABraBlNGVPhmKSGdYCsI0SJUsJ2u0rbO5xyPwSHeUZpGQUAAIA1VEYBAABgDWF6AIhZGkY+wwzudThcr98hTA8AAADYQWUUAAAA1hCmB4CY5Tr8mDPc63C4XpLkEKa3nQEAAADkFy2jAAAANuV8BaZUV0azOAqv1DkFOc8sXgvb8nRN83SuSRH2midpbe80l5dq5n3wWN7jhH2fe6XtWkcxbPyp7nb/wUMWc4JqIEwPAAAAa1LdMgoAAJBqLAea7spomkMWfqGaUuGcIOeZ5mthW5B7kXV5OtekCBu69YbmbYfJKS/+Ku1q5cX1LQ7ND3ZRsd09BfFJdWUUAAAg9WgZRZKE+Qs6bCd3G60ptltw0obrFZ6Jlqi4lctP2FZS7+fegU1O79Gy3zUhade3HL93ZZD9g5yf3/5holu8z/0NtogOnzzJ/axvz96qHR/xYwATAAAArKFlFAAAwCbC9BhUzRBEkPBbpWl4lQsfhT1mWGkI4SUpj0nKSzVFKY/lwt5JUOlzHXZgU7Uk7fqWY6JMVbJ/qc+jDJgM293ANNv33RuaZx7SbCFMDwAAAGtoGQUAALCJMH16mQ412w5BRBFlibmsCzOiFXZwb0qLMmo+bSPe45SkaxGle1XRPqPqQqWZNd7Q/PDmJne7r6PTRnYQUaorowAAAKnmSBqwnQm76DMKAAAAa1LdMpqV0ETYyY7L7etNr3ZsvbvtDWvkKWQfZvGANJepNJxHGvKYVH6j5oOMziaMGa84u4yFfZ/n8bnylulh557tbve/ustGdlCBVFdGAQAA0s1RTc4HMBGmBwAAgDW5ahlN6qhq02Fk7z5+kwEn7RrYlJVrkYbzSEMe0ybINfWGMfMY0rW1iEk5Qe4F7/NwvKH5VJV1WkYBAAAAO6iMAgAAwJpchekT30z/PmFGvJsYkR+HaoZJUhWSAWIQ5D3gN1K71Oc8R2aEfT/zPjcjVTNKDBCmBwAAAKygMgoAAABrchWmT5swo+zDfK+aqrludpLOG7CBZyCZorwHk3RPk5SXsLyh+doxY45vDBtmKTfv44jR9LYzAAAAgPyiZRQAAMCmnLeMpqIyOm7yWK3cdY8OHDhgOyvIgIaGBsoSIqMcwQTKkT3jzhhtOwv4nVRURidMmKDNmzdr+vTptrOCDKAswQTKEUygHAEpqYwCAABkk5P7MD0DmAAAAGBNaiqjra2ttrOAjKAswQTKEUygHAFSjY7PcAUAAIAq2/Hy67rtf91nNQ//37c/Z7XvcmpaRgEAAJA9DGACAACwxZHkDNjOhVW0jAIAAMAaKqMAAACwhjA9AACATcwzCgAAANhByygAAIA1jjRAyygAAABgBZVRAAAAWEOYHgAAwCYGMAEAAAB2UBkFAACANYTpAQAAbHFEmN52BgAAAJBftIwCAADYRMsoAAAAYAeVUQAAAFhDmB4AAMAaRxoYsJ0Jq2gZBQAAgDW0jAIAANjEACYAAADADiqjAAAAsIYwPQAAgC2swETLKAAAAOyhMgoAAABrCNMDAADYNECYHgAAALCCllEAAABrHDkOKzABAAAAVlAZBQAAgDWE6QEAAGxxxAAm2xkAAABAflEZBQAAgDWE6QEAAGxiOVAAAADADlpGAQAAbBpgnlEAAADACiqjAAAAsIYwPQAAgC2OwwAm2xkAAABAftEyCgAAYJHDACYAAADADiqjAAAAsIYwPQAAgE0MYAIAAADsoDIKAAAAawjTAwAA2OI40gBhegAAAMAKWkYBAABscphnFAAAALCCyigAAACsIUwPAABgkcMAJgAAAMAOWkYBAACscRjAZDsDAAAAyC8qowAAALCGMD0AAIAtDgOYaBkFAABAWTfffLN27dqld999Vy+88IJmzZplJF0qowAAABjSZz/7Wd1333268847dfHFF6utrU1r1qzRpEmTIqdNZRQAAMAmZ8DuTwBf+tKX9PDDD+sb3/iG2tvbdeutt6qjo0M333xz5NOnMgoAAABfI0aM0KWXXqq1a9cWfb527VrNnDkzcvoMYAIAALBk14FXddfzf2c1D6NGjdLmzZvdf7e2tmrlypXuvxsaGjR8+HB1dXUVfa+rq0uf/OQnIx+fyigAAIAlV111le0sWEeYHgAAAL4OHDigvr4+NTY2Fn3e2Niozs7OyOlTGQUAAICvY8eOacuWLZozZ07R53PmzFFbW1vk9AnTAwAAYEj33nuvHnvsMT3//PN69tlnddNNN+n000/XAw88EDltKqMAAAAY0re//W2NHz9eS5cuVXNzs7Zt26arr75ar7/+euS0ayTlew0qAAAAWEOfUQAAAFhDZRQAAADWUBkFAACANVRGAQAAYA2VUQAAAFhDZRQAAADWUBkFAACANVRGAQAAYA2VUQAAAFjz/wNEeHyDYneh7wAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -241,7 +241,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqcAAAK5CAYAAACCOYfvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACAPElEQVR4nO3deXxU1f3/8U/CqoBiQQKEfd9UEIOAUG2VotSliNKqVfTLFwtS97pr/YKtuwhaCkL5yVKk8pXyVakI7q0sEmIRg0AIYUkCCeBKWEMyvz/SOfcMuTdzZ+bO3DOT1/PxyMOPN3funCQ3N5fzvuecNBEJCAAAAGCAdL8bAAAAAARxcwoAAABjcHMKAAAAY3BzCgAAAGNwcwoAAABjcHMKAAAAY3BzCgAAAGNwcwoAAIAaDR06VN58800pKiqSQCAgY8aMCfuaPn36yMcffyyHDx+WoqIieeyxx1y9FzenAAAAqFHjxo0lNzdX7rzzTjl8+HDY/Zs0aSLvvfeelJaWSlZWltx5551y3333yT333OPq/QJ88MEHH3zwwQcffPDh5uPgwYOBMWPG1LjP+PHjA99//32gYcOGatsjjzwSKCoqCnt8ek4BAADgqUGDBsm//vUvOXr0qNq2YsUKyczMlA4dOtT42rpxbhsAAAAcVB79RCT9DF/bsGlrWshN5KxZs2T27NkxHbNly5ZSVFQUsq20tFR9bufOnY6v5eYUAADAL+lnSODrUb424ejR1yQrK8vXNui4OQUAAPBRpVT63QTPlZSUSEZGRsi24P+XlJTU+FqeOQUAAICn1qxZI0OHDpUGDRqobcOGDZPi4uIaI30Rbk4BAAAQRqNGjeScc86Rc845R9LT06Vdu3ZyzjnnSNu2bUVE5Mknn5T3339f7f/aa6/J4cOHZe7cudK7d28ZOXKkPPjggzJlypSw78XNKQAAgE8CAZGKQKWvH26cd955smHDBtmwYYOceuqpMnnyZNmwYYNMnjxZRERatWolnTt3Vvv/8MMPMmzYMGndurWsX79epk+fLi+88IKrm9M0qZpTCgAAAAlWcWyjlH99la9t+LJ4sVEDoug5BQAAgDEYrQ8AAOCbgFQSYoeg5xQAAADGoOcUAADAJwFJzXlOY0HPKQAAAIzBzSkAAACMQawPAADgo4oAA6J09JwCAADAGPScAgAA+KRqQBQ9pzp6TgEAAGAMbk4BAABgDGJ9AAAA3wSkglg/BD2nAAAAMAY3pwAAADAGsT4AAIBPGK1fHT2nAAAAMAY9pwAAAD5ihahQ9JwCAADAGNycAgAAwBjE+gAAAD6pGhAFHT2nAAAAMAY9pwAAAD5ihahQ9JwCAADAGNycAgAAwBjE+gAAAD4JiEgFqX4Iek4BAABgDG5OAQAAYAxifQAAAB8xz2koek4BAABgDHpOAQAAfBIQkQpJ87sZRqHnFAAAAMbg5hQAAADGINYHAADwUSXznIag5xQAAADG4OYUAAAAxiDWBwAA8Amj9auj5xQAAADGoOcUAADAJ/ScVkfPKQAAAIzBzSkAAACMQawPAADgl0CaVAaI9XVJ0XM6YcIEKSgokCNHjsj69etlyJAhfjcJBnv88cclEAiEfOzdu7faPsXFxXL48GH56KOPpFevXj61FqYYOnSovPnmm1JUVCSBQEDGjBlTbZ9w503Tpk1l/vz58t1338l3330n8+fPl9NPPz1RXwIMEe5cevXVV6tdo9asWROyT/369eWll16S/fv3S1lZmbz55puSmZmZyC8D8I3xN6ejR4+WadOmyZNPPin9+vWT1atXy/Lly6Vt27Z+Nw0G27Jli7Rs2VJ9nHXWWepz999/v9x7771y++23S1ZWluzbt0/ee+89ady4sY8tht8aN24subm5cuedd8rhw4erfd7NefPaa6/JueeeK5deeqlceumlcu6558qCBQsS+WXAAOHOJRGR9957L+QaNWLEiJDPT506VUaNGiXXXXedDB06VE477TRZtmyZpKcb/2cbEQoOiPLzwzRpUvV9MdbatWtl48aNcuutt6pteXl58sYbb8jDDz/sY8tgqscff1yuueaakBtS3Z49e+RPf/qTPPnkkyIi0rBhQ9m3b5/87ne/k1mzZiWyqTDUwYMH5be//a3MmzdPbQt33vTo0UM2b94sF1xwgaxevVpERC644AL59NNPpXv37pKXl+fL1wJ/2Z1Lr776qjRv3lyuuOIK29ecdtppsn//frnlllvktddeExGRNm3ayK5du+Syyy6TlStXJqTtSIyyo1/I1tLLfW1D5b6/S1ZWlq9t0Bn9T7B69epJ//79q/0irly5UgYPHuxTq5AMOnXqJMXFxVJQUCCLFi2Sjh07iohIx44dpVWrViHn1NGjR+Wf//wn5xQcuTlvBg0aJAcPHlQ3piIiq1atkrKyMs4tVDNkyBApLS2VrVu3yqxZs+TMM89Un+vfv7/Ur18/5HwrKiqSzZs3cy6hVjD65rR58+ZSt25dKS0tDdleWloqLVu29KlVMN1nn30mN998s1x66aUybtw4admypaxevVp+9KMfqfOGcwqRcHPetGzZUvbv31/ttfv27ePcQoh3331XbrrpJrn44ovl3nvvlQEDBsiHH34o9evXF5Gqc+nEiRNy4MCBkNdxnUpdFZLu64dpGK2PlPPuu++G/P/atWuloKBAxowZI2vXrvWpVQBQ5fXXX1d1bm6u5OTkyK5du+TnP/+5LF261MeWAWYw73ZZc+DAATlx4oRkZGSEbM/IyJCSkhKfWoVkc+jQIdm0aZN07dpVnTecU4iEm/OmpKQkJJoNatGiBecWarR3714pKiqSrl27ikjVuVS3bl1p3rx5yH5cp1BbGH1zWl5eLjk5OTJs2LCQ7cOGDQt5rguoSYMGDaRHjx6yd+9e2bFjh+zduzfknGrQoIEMHTqUcwqO3Jw3a9askSZNmsigQYPUPoMGDZLGjRtzbqFGzZo1k8zMTDXlXU5Ojhw/fjzkfMvMzJSePXtyLqWggIhU/meuU78+TGN8rD9lyhRZsGCBrFu3TlatWiXjx4+X1q1by8yZM/1uGgz13HPPydtvvy27d++WFi1ayGOPPSaNGjVSo2WnTp0qDz/8sGzZskXy8vLk0UcflbKyMjUqFrVTo0aNpEuXLiIikp6eLu3atZNzzjlHvvnmGyksLAx73mzZskWWL18ur7zyippd5JVXXpG3336bkfq1TE3n0jfffCP/8z//I0uWLJG9e/dKhw4d5KmnnpJ9+/apSP+HH36QOXPmyLPPPiv79u2Tr7/+WqZMmSIbN26U999/388vDUgI429OFy9eLM2aNZNHH31UWrVqJbm5uTJixAjZvXu3302Dodq0aSOLFi2S5s2by/79+2Xt2rUycOBAdc48++yzcsopp8j06dPljDPOkM8++0x+9rOfSVlZmc8th5/OO+88+fjjj9X/T548WSZPnixz586VW265xdV5c/3118vLL78sK1asEBGRt956S377298m+kuBz2o6lyZMmCBnnXWW3HTTTdK0aVPZu3evfPTRRzJ69OiQc+muu+6SEydOyOuvvy6nnHKKfPDBB3LTTTdJZWWlD18R4sv/uUbr+Pru1Rk/zykAAECqOnh0o2wsucrXNtTfv5h5TgEAAAA7xsf6AAAAqSogIhUB+gp1fDcAAABgDHpOAQAAfFRJX2EIvhsAAAAwRtLcnI4bN87vJiBFcC7BC5xH8ALnEVBdwm9OJ0yYIAUFBXLkyBFZv369DBkyxNXrgpNaA7HiXIIXOI/gBc4jBP4zz6mfH6ZJ6M3p6NGjZdq0afLkk09Kv379ZPXq1bJ8+XJp27ZtIpsBAAAAQyV0Ev61a9fKxo0bQ/6lmJeXJ2+88YY8/PDDjq/7+vAhOVxeLt8cOSINCw8loqkp40d9jqv6m9z6tvtknHVU1aVfNox7m/x2+pmnyff7f/C7GUhynEfwQiTnUfM+x1R9ILeB7T4tzzqi6pIvT4mtcSkuo/2Z0rTF6X43Q74/+qWs3zvK1zacdmChUZPwJ2y0fr169aR///7y/PPPh2xfuXKlDB48uNr+48aNUzexh8vLZeirfxERkS53r41/Y1PIDVuKVL1wQBvbfe7O36zqFwf0jHubAACRG5u3Q9VzBnS03eeh7RtV/dSAs+PepmQ2fd3TfjdBYZ7TUAm7OW3evLnUrVtXSktLQ7aXlpbKJZdcUm3/2bNny+zZs0VEZGt2vropzX9xoNrH6UY15Iash/0NWTK4ZesuERF5tXt7te26LXtUvahHa1U7fc1uvv4XuyTXDemSIuvnPqrNwBr2dGdx0RpVj24zKObjAYCIyCMFG0RE5I+d+kb0ulvzClQ9q1snVc/pZn9DqnuqMzekSH7McwoAAOCTgIhUGjgoyU8J60c+cOCAnDhxQjIyMkK2Z2RkSElJSaKaAQAAAIMlrOe0vLxccnJyZNiwYfLGG2+o7cOGDZMlS5a4Po4e5TtF/Mkc5ev0OD9Ij/Ijtaw4R9WXZ/aP+jh+izTKD8b2TpE9Ub7I0qJ1qh7ZZoCPLUlu7xR/ruoRmed6euwVezaoenjrvp4eO1Kpci2Jt2CcP3Fbnto2vWs3T45t0s/greJsVV+Z6c2gmkge3/L6US/4L6Gx/pQpU2TBggWybt06WbVqlYwfP15at24tM2fOTGQzAAAADJEmFcmzJlJCJPTmdPHixdKsWTN59NFHpVWrVpKbmysjRoyQ3bt3J7IZAAAAMFRC5zmN1tbsfJk44MEa93Ezir+2C5mGxMWoTwCAmSZsy1f1jK5dfGxJ8pq+7mnpnuX/9+67o7myas8vfW1Di6/n1s55TgEAABAqIMxzejK+GwAAADBG0vWcOk0272YUfypwmoRf5zSKs7ZH+SaNdkbtEo/RzKgdnK7nyRDlc967V0lfYQi+GwAAADAGN6cAAAAwRtLF+m4m2E/miN9pTeUgN5Pw+z0hs6n8ivKZIBpEmuZYWLhK1Te0vSCu7/VIwQYRsSbjj4ab6/m9+ZtU/UKX3lG/l9c4790JBNKkIsDypTp6TgEAAGCMpOs5BQAASBUBEVaIOknK35zaRfymxfvhJlN2M8rcaRaDaN8TIouL1qh6dJtBUR+HKB8m4TETf+mj75eUNVf1q93bqzrc411wh3M9eXGrDgAAAGOkzPKlkUi2QVKxiLRHFamBHgMg9bAEtbdMWb706yOb5L2iMb62ofN3M4xavpSeUwAAABiDm1MAAAAYI+UHRNkxbR7UaAcn3bS1UNXzu7e13UeP8omEag+ifMDix9ymIuHnN71l6y5V6wOinOjXbQa1po6ApDFa/yR8NwAAAGCMWtlzCgAAYApWiApV629OTYj4o41krmlcour5Yh/r6/RISJ9rb+WRRqp+qUuPqNqC2mNp0TpVj2wzwJNj6ucjy+/Ca/GO8nWRLFV6PFBH1W4e09Idrayn6jvyt6g60mv4czur/tbd1yG5HgViRpLURqwPAAAAY9T6nlMAAAC/BESkkr7CELVyEn43TBjFDwAA4sOUSfj3H/lK/lE41tc29P7+JaMm4afnFAAAwDdpUhGg51THdwMAAADGoOfUgV+j+Ad/cVzVq8+pLyIi/f9dqbbl9LP+PZG1oULV2X2tUZ8AEE/xmLEhUSYVWDNDPN4pvjNDBEfg66Pvh+f+oOoVfU6L6/sDyYqbUwAAAJ9UDYhinlMdsT4AAACMQc+pC4mM+INRvojIoXc7iYhITr8C233dRPkNPmmp6mMXWpP2R7qmMwAEJVuUr4t3lK8Lxvn1Pm6ltq3oE/3xmvyruaova56r6sU9W9rtDiQtbk4BAAB8xGj9UHw3AAAAYAx6TiOUyIi/eO8ZIiLSzeHzef/vPFV3+6/1tvvoUb5Oj/LH5u1Q9ZxuHVU9cVueqqd3dWoFTBFcI1sk+dbJRvTm7v5U1Te3G+JjS1LfjqcGqbrjQ2tcv678or3hj73oHOvY131hu8/BoQdUvVisKJ9rdXILSJpU0FcYgu8GAAAAjMHNKQAAAIyRJlVTbBlta3a+TBzwoN/NqJFXEX+0sRGSz735m1T9QpfePrYEMJfTjCPRKlpi/a61GbWphj1jV/Bs1fW80/1cy000fd3T0j2ri9/NkNLDW2Txrgm+tmFg2bOSlZXlaxt09JwCAADAGNycAgAAwBiM1vdILKP4ix8crOqOD62utj3z6dXVXhONbS+dr+qud3zmyTFTQd9/W/WGfol7Xz3K/33B5yIiMrnTuQl7/yd2ZKv6sY7mxDmAzosof9+bPVTd5qrIovz9461Hrc6cGT6eL73Dup53ut+ba7edvFnW72y3W7Nr2BOmC4gwWv8kfDcAAABgDHpOAQAAfJMmlawQFYKb0ziINOLXY/u991qRUPrxmt9H37fVC9Yx9vzO2t76eWu7HuVvm2fFx13HfF7zG6W4REb5ToJxfjDe17fFSypH+VN2WvHrPR0G1bAnaoMWV21RdeEb1uL2ba/Jtds9hJsoX5fxknXN7ZzdUEREtmcdDfu6wket63bbP1jHKHxM2/6E9pjAibSI2qW7f/uXqn6281lRHweIF27VAQAAYAx6TgEAAHxSNSAq+p7wVMQk/AkU6Sj+r8dVxZHNZjOBMwAkq30TrWi+xfT4jeBHZEyZhH/v4a3y1523+9qGiw790ahJ+Ok5BQAA8BEDokLx3QAAAIAx6DlNoEhH8dvF+Qd/ab1Of0Slyd+sY/xwnbXPaYus7ZFGS5GsQT1xW56qp3ftFvbYfmv3WSNVz267StVjdw9RddHAsoS2SURkwrZ8Vc/oah833ZpXYLt9VrdOcWmTW48UbFD1Hzv1td3noe0bVf1U57M9eV+vRx77sThBMiyIoP/s0tMqVa3/rOPx841Eyf/1VHXLX2xW9Yo9G1S99miFqh/v1D/sMYOPV4k4P2L18i7rGtKtnnVtGXj/eBFxvt5+e7N17DPmhn98S2/LsabWH4DWz3n7qIBp5+NzO6v/jbyvw0CbPZEquDkFAADwSUDSGBB1EmJ9AAAAGKNWjdYPRqZ6XOomRo1U8YNWfK5PsO8k0lH8do6NsI9eGrxj5prLkT4GcMvWXap+tXv7iN7r9E+biYjI90O+tv28Hvldv+Mnqk5Ps3419g/+LqL3jNbYvB2qntOtY9jtN2wpsj3Owh5t4tC66OiPIeiPHsTyM/XCvfnWoyovdOldw57muTvfiqyPB+qo2ul3yelnoNPPpWjPH5O+p8V/t94/d+BC232Gt+4b9fHLrj1f1e+9+LKqT02vr+pjgXIREbkyM7Jo/NA159tub/TGZ7bb/WbSohdP7lin6oc7DqhxX1NG6+85nCdzd9zpaxuGHZ7MaH0AAABUYbR+KL4bAAAAMEbK95zqcZZdbO8myh/8hbXI/epz6tvus+MpK8ro+JAV5e+914r4W71gH/E7jeLv+GbV+9b5+POTXyIiItumWft2vdP+cYATF1ujUcsbW/Hfof/+TtXNr8gTL+mPSqSLNapXjxwjHdEfS+wbjPOb/Ku52vbnDm+qenjrC1Q9d/fbqm5Vt7G1j/SN+v3brLWOo88AMGrzPlUv6dlCRESOVtZT227aWqhqPcrXlQesX+Ffn2btv1C8ifXfKrYeCwlGk/ojBnW0p4Kc4uJ4R/l6HH1dk1IREVl+uIna5nSu6bGzm5kG3HhmhxW7PtDRPpqNlv59f7GLNSpd/546OVRpXbecfgaRRPn6YwV6W+poo/i9cvw9q431h1lt/2ZZ1c/1R5fbX78qK60BJnp8rz/Go9f6Pm5Gq3997WFVj2xjxcfvFFvX6wZpVb/P5T87T22rt3K97fF0kcb3+8dbf3/OnBl+1H/eDKu93Sasq2HP0HP61PQTqr69/QV2u3vG7nfSze/poYD932iTBUSkgp7TEHw3AAAAYAxuTgEAAGCMpBut7/cI30PvWhFl8d4zVN3tlhxruzZaP916IkDqH7S+1U6TOVdcdK6qd1xVFU84juAfqE1yvXaj/T6aSKOlkrutr6Pli/FbD1qPK/VY203MWOej1qquqNT+rXWxFfWmfZgpIiKBnxarbad8kmF7vEptrrljF5aEfX8nwRkCRJxnCbh807eqXta76lwa+dV+tW1przMjes/LNn2n6uW9m4bdf3juD6pe0ec01/u72VcX6dcU6dehCz4KMb9724heZ9Ioczf06+DRgPU7s6hHa7vdHV35lXVuvtWrWQ17unNH/hZVv9SlR9THydpgTZSf3beO7T773qw6fourtth+XrdrsbU4Q/vR1qIN+mNU2385U9VllUdVvfqo9YjIY5P+W9VNF9hfw/VHqT5YMKfa5/XHByov7KfqQJo2z6VW1vnI/rGuI1dZ0fwpb9YczSe74O9nLL+bdr/jpozWLz68TWZtv9fXNlx+9DGjRuvTcwoAAABjJF3PaSyCD79HOrdd/39bD/nn9Ev8/bybeVDT+ln/ogz8u+alRhNpWbHVo7zooNVbqfeK6vtcnhl+OcEQH2i9qxfbz/lpR+85PXJhadT71Pu4larLL9pru0+zVVYP+9cXfGu7j9cu3HhE1Z+cfUpErx34Rbmq155Tr4Y9Q0XaE+vkp18eUnWDdKstkfaiBsV0frkQ7WCqeMyxrLMbcCfirrc02Ksf7NGPhtOgqURx6i1NpG1/qhoUl37E+ruRf8MMVa88bP1+PX/j9eEPmG51qaat2hB7AyPkNIAsHrxYEls/hi54PFN6TosObZOZ2+/ztQ1XHXvEVc/phAkT5L777pNWrVrJpk2b5K677pJPP/3Ucf/rrrtO7r//funWrZv88MMP8v7778vvfvc7KS21/5saRM8pAAAAajR69GiZNm2aPPnkk9KvXz9ZvXq1LF++XNq2tX+MavDgwbJgwQKZN2+e9O7dW37xi19Ir169ZOFC+0UxdNycAgAAoEb33HOPzJ07V/7yl7/Ili1b5I477pC9e/fKhAkTbPcfNGiQFBUVydSpU2Xnzp3y2Wefycsvvyznnx9+mr2ki/Wv27JHbXd6+N/NPn47+Esrqm/yuvslS91E/HV6d1d1xaatUbSuyg/XWe912qLollWNC4coXx+s1ujSAnFr9m4rkhjXbkhsbUuwWAYPeS2WRwlM4mapz1jYLaMcC68HNcXCacBqLI8wfP+Otf/pI/Jr2NPZjkXnqLrjdV9EdQy3TvzUenSk7oc51T6vP4L1X68vU/VVjQ6oWl/uNK2/9shWjjmPbEXKq7mEvWRSrP/n/Pt9bcPI4w/XGOvXq1dPDh8+LNddd5288cYbavuf/vQn6dOnj1x00UXVXjNw4ED55JNPZNSoUbJs2TJp1qyZLFy4UL7//nv55S9/WWN76DkFAACoxZo3by7Z2dnqY9y4cdU+X7du3WrPipaWlkrLli1tj7l27Vr51a9+JQsXLpTjx4/LgQMHJC0tTcaMGRO2PSm/QhQAAACcHThwwPOppHr27Ckvv/yyPPHEE7JixQpp1aqVPPfcc/LKK6+EvUFNuptTNzF9JFG+vkTkNY2teS31WMVpzr28/2fNG9rtv+znDXVcvjTNZmc5aUnSRf9ZHk+bw9RpqVN9e6RR/rGfW1/riVOszvSy0dbo69MWRXTIsOzm+HRNi/KPreyg6kY/qznKn7nLiu/Ht7fiez3KD86JKhI6L6rOzSh+J/rXXaGdBNFG8vrr9NHy+nyxXkfsTvF9LO8T6QwBTjMDBOdUjXSOWJ2bKN9pJPqkAivGfbyT9zMDhBPLPLm6S3IPiojI+32a2H7eKb53mns6lkcYIonyd/+vNUK/3bXWCH09ys9fYM0tKvsbqLLLPZE9unRolPXcXP2D1t8IfQ7pbS9X7dP1dmsJUH02ldGNv9eOaJ33IbOvuIjy9b9Fmf+w/kY1WhJ+GdTCx6r+RrV9Ivxc1k6PvLhZ7tWLKN+LEfz6cc7MPBpmz8QISJpUGB5kHzhwQE6cOCEZGaFzhGdkZEhJif2c4A899JCsW7dOnn/+eRER+fLLL+XQoUPy6aefysMPPyzFxfZ/Y0WI9QEAAFCD8vJyycnJkWHDhoVsHzZsmKxebf8Pm1NPPVUqKipCtgX/Pz295tvPpOs5BQAASCWVAYc41SBTpkyRBQsWyLp162TVqlUyfvx4ad26tcycWbW62rx580REVGT/9ttvy+zZs2X8+PEq1p86dark5ORIYWGh4/uIJOFo/Ru22E+07mapy+Br3eybSMdGWDFIg3eyq33ezQT7ribqz7Iir0C2FXk5vX+0Mwro9Ah80I+sSOjDsxqpevRmKxJY3NP+weoQDqP1y7TR+o0jGK3vRsgyqT/ZU8Oe7nkx0v6tYuvnpT+KokfvOqfo3Wmhie7rraixQfoJERFpXOeY2rb6nPqqHvzFcdvtTvT3rJdu/es6kon/RawIWsSKoZ1m7NAf44l0idNYRLI8qlPb9cj+ltN3qlr/ubuhn3eHK6xYWz83gt/TU7X1lxulWz/3hmnWYxixLCPtVUwbzo6/WUs9d/yV9ZhU/hTtuqnF+vt+az2O1eJP8Vu6WVf5gXU+vtfzbVXHe7L7SMR74Qid3bnhdL64OY/sJuS/MPM1+dEpfWJua6wKD+XLS9tiX2goFqPLH3A9Cf/9998vrVq1ktzcXLn77rvlX//6l4iIfPTRRyIi8pOf/ETt/9vf/lbGjx8vHTt2lO+//14+/PBDeeCBB2qM9EXoOQUAAIALM2bMkBkzZth+Tr8pDfrTn/4kf/rTnyJ+H25OAQAAfBIQkUqGAIVIuptTN5G801rafsT5e35nxUOtn7fiIX2C+wbfhz4wfDI9yneaYN9pFH+3Od+pujI7svWlnaL8vfdoMxBMqTny0kezfyiNbPfRo/x4Tiqvj9afsN2aADhkVL7DIwNeRfle0ONdN5FupKPo++RYF8nc/uXVPj/YYQ5zp4i/0mFqitD43npPPe5/MsOKYJ3iTacR5UFO1wMnY/N2qHpOt45h93fj4lOsSPyFMPs6zTaij75fKlatT8Kvc5qQ383vld33VH/cIJYo3w8hUf5ftdH6++z3T1SUr0u/2HrkZPgHl6t6xR5rov7L8y5TdflFe1Ud7tGwk+2bqD22MN391xpplB/LxPt28bxTZB9pxB/c3mtdw4jahMThVh0AAADGSLqeUwAAgFRSkQSj9RMpKUbr7z/ylSzb/V8i4k00r4/4j/R4DT6xIuhjF9pPPBuLExdr6zJ/UH1dZjfS+/RQdd7Ypqp2GsVvkqVF61Q9ss2AsPvX+7iVqvWYKx6j6000arOVSx7TJt4vD1gTceuT1PvBaRS/0+IWySCS0fduOD1KEPFMFhqvRvcnk31vWte+FldtCbt/3kzrGtNt/Loa9qzy9dhBqm42Z42q9YVM0su1P6mVVXW99+2v5Wn9tXMnzbo5CazPtTafZ40mf/etv6p6XOEFqt59/qGwbU81d+Tb/3x/fqo1sX64mQ6mr3taumfFd9YBN3YfypcpeY/42oYbTvzO8xWiYkHPKQAAgE8CkpYU85wmEs+cAgAAwBhJEevrk/Dr9FG4Sw/9SNWRjLCNx8jcbS9Zay53vcN+bWOn0ZJHrrJiprpHqkYt62s1O3GaYF/nNFF/3qvWowSt37E60xv/b/h1me0U/92Kqt477xVV36ytYe80Kl8feew02thJ6Chza8T3kqKqr3VUm4HVXnOyoRutSOhfZ4cfyamv8d4g3RrZHmnbg2uVxzIKWo/49VjfTVv0Sfv10f2Li6zo8rkDVeemHsG7eQzD6dhOIp3MXxe8JrgZlR8PT+6wvh8Pdwz/WEok9NHy+iT4RwPW4xxOI/0jFTyXlvRs4cnxIn0MQt9//WFrcY1IZ56wc8Yq62/Ftxd8E/PxahKcGaDLr/8ddt/KIX1tt6d/ukHV+t+8emnW72FeuRXr397eivu9oC+kos++ontmh/W34oGO59vu4wWn8yjax2xMifV3HdouL2z1N9a/seJeYn0AAACISECkMkCQreO7AQAAAGMkdawfqeC6wE4TCbuZrDsYv4q4i2C3zTtX1V3HfB52/wNvW5MGN7+i+lrAXnGK+OPJKcp3Wkvcb6a2y4nTIyqxzE6h++mXVdGh/viC04TukS6mcPmmb1W9rPcZEbUr2p+T1yPu3bp/e9VjN892PivMnqHcPILktI9+3dJ5MZm+X9/HaL1VbE1S7zRzwYn326m67iW7o36v726sGt1f77D1mFGjJZE9LlX+s/NUrT/itWLPBtv953xvzeoQ6QwPQfqjWZlXb6phT/ee22n9nbmvQ/hHrMLRJ/h3Em7if1Ni/Z1l2+WZrb/3tQ3/VXmXUbE+PacAAAAwBjenAAAAMEZSxPrfHc2VVcVVa6G/2KVn3N5Hn9T3pS49atizSjxG+kdCn/jZ6aeor7Osj8rvdov1CIMe8be0BmdL48WJn7Tf6dEKfULx8oA1jq9CW7fdKT4OTmQebcRVE5MizeBjKyKRr4HtNEtCMMoXEfnwrEY17utEj+zrpZ1Qtb5WfKQiebzm7vzNqo7n9SMV6dfEemItmuB0rseylrrOzawHwfdy8z5etSvtw0xVB35abLvP7setmVjaTaq+bn3ZtdZodn1GlMMjtVHu2pSXp/5d2+fq8223O0X8A+8fr+rT/2r+IiyJZlKs/9SWx31tw38H7iTWBwAAAOxwcwoAAABjJEWs79Vo/VRz6Bor4mn0RvgRoE5xUtloK9YvsZaOTtgo/ngLjlaPZaQ67CXDjAbB0fEikY+QB+Lp+xusa+/pCyO73n7/a+u1gfTwS182nb8m7D7hmPQYkxdMifV3lBXIk5v/x9c23Cq3E+sDAAAAdlghCgAAwEeVEr73uzbh5jQGE7dZk+RP79qthj2rK1piRSJtRtlPclxyd9Woz5YvWiM+f7jOinLKRlvrulfWsbY3ed0+HtKj/JDt2qj8Lout7X5M1B8P4eL8VBnN7cfsEXqU72YRCz/oUf6kAquNj3cyp42xiOU6lGp+X2AtdDK507k17GkGPY7/Zpn1s0t/3ZoFo+kC+zjej9H3qRDlIzkQ6wMAAMAY9JwCAAD4JCAiFQGfY33DnipgtD5cSZWIHwAAEXNG6xeUFcjkryb72oaJaRONGq1PzykAAIBv0qQy4PNTlob1nPLMKQAAAIxBz2kK2nuPtbZzqynV13aOhh7lE/EjEn7MIgAkmz33W9ft1s+uDrs9Frsft47ZbpI3xwS8xM0pAACATwIBkUq/B0QZhlgfAAAAxqDnNAV5FeU7sYv4iffhhCgfCM8psvcqytcR5cN03JwCAAD4iOVLQ3Fz6pNUWXIw2GOazIOkpu60ehHu6jC4hj3Nk8xtBxLl5V2rVH17+ws8P/6ozftUvaRnC1UPz61aYnpFn9M8f08glXFzCgAA4CMGRIViQBQAAACMQc+pT5yi/Anb8lU9o6u3y6oV/723qjOv3uTpsZN5HtRkjsPj3fZHCjao+o+d+sb1vbwwd/enIiJyc7shPrcEJtGj/HhE/HqUr/tR3bL/VMkb63fObqjq7VlHfWwJahNuTgEAAHwSMGH5UsPw3QAAAIAx6Dk1TLpUVtu2rDhH1Zdn9rd93SmfZKj6yIWltvu8d94rqr5Z4hd7Rhrx37J1l6pf7d4+bu1yY+auT1U9vn1yRcMr9mxQ9Y7yMlVH+nU8s+MzVT/Q8fyY25VIwTh/cdEatW10m0F+NUd5p/hzVY/IPLfGfd8qzlb1lZlZUb/n3wqtmRx+1Tayxz8WFlZF3ze09X5ku98apgXC7uPV78ANTfaKiMgiaa22Bb+3Is7f3zNW/UjV317wje0+C7Tj3BjHn5Me5evXmOGt+8btPZ24+VsYj9ci8bg5BQAA8BGj9UMR6wMAAMAYaSISPuPw2dbsfJk44EG/m+GbG7YUqXphjza2+/z0y0Oq/vCsRmGPedmm71S9vHfTqNsWiWQbxZ8q/I7iUDstLVqn6pFtBvjYEv/pk/SXVVij3/XJ+YMT9p+83cnlm75V9bLeZ8TaxFpp+rqnpXuWt7PiRGPbwZ3ywMZnfG3DQ/X/S7Kyon+MyGv0nAIAAMAY3JwCAADAGAyIMsDEbXmqtpuc3ynKjzTW8SPK15k6Uf9zO633v6/DwBr2TE5uovzZu61ZCsZ5PIG9m9HJMEtwtoNYZjowKcpP5DloN/uI0yT9epQfqfS06jO7+CXZHuEIzojRoNmhMHsmDgOiQtFzCgAAAGPQcwoAAOCXQBo9pydhtL7BxubtEBGRkY2sSZidJg8evblE1Yt7tgx77Ou27FH1oh6ta9gzNm4m2Dcp4kd8I34gmT1SsEHVf+zUN+z+weuffu1zs8jClV99be3fq1nY7cG/FSIic7p1DNsuVDFmtP4Pu+TeL571tQ2PNbyZ0foAAACAHWJ9AAAAnwSEAVEn4+bUYEcr64mIu3WA9ShfH5V/6+nWTACv/tBZ1XqUH881h52ifJ1Jo/gnFVjfi8c7Jdf6y3O1OP7mGOL4VIjyWUcb8eAmytcdD9Spts0pytfpkb1uYtNCax+x9jlc2SCidgGmI9YHAACAMeg5BQAA8BGxfihG68NYfkf8AIDUZcpo/bwfdsld/37e1zZMOvUmo0br03MKAADgk4CIVAo9pzqeOQUAAIAx6Dk1gJuJ6uNp5Ff7Vb2015kJf38niRrFzwTWgFkWF61R9eg2gzw99sxd1qwW49t7PzOFPlvK8t5NPT++HafJ+YFkxc0pAACAjxgQFYpYHwAAAMZIup7TJUVWpDuqzcAa9kweEUX5H7Sx6ouL7Lfr9H0clAfMPw3iGfET5QPhebXIgxteR/m6eET5unBR/vH3rOt9/WG7bPc58X47VaenWRPqpF9caLe7lNtM9o9kkkbP6UnoOQUAAIAxuDkFAACAMczPc0+SKlG+G3U+ai0iIhWV2r8htJj+2MoOqm5w8U7bY9T7uJWqyy/aa7tPRZLNr5aoUfzxlsiY1E+15etMdfzsohB83Eq7bh89Yf3ZPbq8s6pPu2y7qutesrvm4510zMMVDWJsKPwUCDAg6mT0nAIAAMAY3JwCAADAGEkX69cmKs7X4ptD73ZSdaOfFai6TNuua3yRtU+fHOvfIrn9K1WdqImi4yGZI/7aEpPWlq8zGc3RHrkYy8/Je/+5duvX59Mu3e60t/L9O9Z673XSrWt144vtr+efnH1KTM2sDRYWrlL1DW0v8LEl9oj1Q9FzCgAAAGPQcwoAAOCjAD2nIbg5NZnNBPqNLi2w2VGkscP24Ih/EZHc/nu8aZehkjniB/xAlJ8YTtdnJ6ePyLf/hDZaP7d/+AVWYDExyoczYn0AAAAYg55TAAAAnwREpDLJ5huPt6S+OV1ctEbV8VyLOd5O/7SZqr8f8rWq0z7MFBGRwE+Loz52xU+sKH9JkRVv64sZjN5coup6aSdUvbCHNuFzkrGL+J3ifTcLFcAeE+wnTqpc7/zW/9/W6Pecft6Hh/pI+2A8f/y99mpb/WG7oj+49qiXfj3/6w/WZP5Le50Z/fGT1N8KV6v6V20H+9gSeMWT38zHH39cAoFAyMfevXur7VNcXCyHDx+Wjz76SHr16uXFWwMAACCFeNZzumXLFrnooovU/1dUVKj6/vvvl3vvvVduvvlm2bp1q/z+97+X9957T7p37y5lZWVRv6dT78GKPRtUPbx136iPnyh6b2mTfzVX9cGhNfeYztxl9VqNbz8k7HanpV8X92zpvrFJKNhj6jRIyqm3tNE/rR6IQz/eH6fWJTd6S91ZWrRO1SPbDIjqGPSWekPvLW3wiXXtO3Zhid3uruxZanW2tB7xlfWJ/wxgqn+xfW/pn7Vr9W3t7X+XIr2emyRRvf3J31uaxjynJ/Es0zhx4oSUlpaqjwMHDqjP3XXXXfL000/L3//+d9m0aZOMGTNGmjRpItdff71Xbw8AAIAU4NnNaadOnaS4uFgKCgpk0aJF0rFjRxER6dixo7Rq1UpWrlyp9j169Kj885//lMGDnf+1M27cOMnOzpbs7Gw5/czTvGomAACAUQKBNF8/TJMmVQPFYnLppZdKkyZNZMuWLdKiRQt59NFHpUePHtK7d2/p3r27rF69Wtq1ayeFhYXqNXPmzJHMzEy59NJLwx5/a3a+TBzwYKzNNEq7zxqpevf5h1S9QFti7daCq6u97siFpWGPHRxIJRLbYKpUlszzoOrnyI0Gzd1naruQOIk8By7f9K2IiCzrfYbt54fn/qDqFX2sDo54D4jSlyptdsphERH5U8c31LZx2qMwlR+0VXW6/qfYZo5rkZMf+zpguw/cm77uaeme1SX8jnG2+ftCGfvZy762YdoZ10pWVpavbdB58szpu+++G/L/a9eulYKCAhkzZoysXZtcf/gBAADgn7hMwn/o0CHZtGmTdO3aVUpKqh4yz8jICNknIyNDfQ4AAKA2CgREKgNpvn6YJi7znDZo0EB69OghH330kezYsUP27t0rw4YNk/Xr16vPDx06VO67776Ij50Mc/31/bdVb+hnv8/stlb8JdqqosNbW1HYKZ9U/VeP8mdr80qOcxgp7VWUf3f+ZlW/2KVnjftO3WnNM3dXh/AjJ5/bafWo39ch/KjTsXk7VD2nW8ew++uC85jqo/JNXerUaaaJOdrP/ca21s9dj1F1fsTqLeo0st2ut7EiYP8UkUmj/t8qzlb1lZmJibliGc2/UPv+Oi3R6GY+Wv0cC7esqVN873QOxINTnB9UoU1qrv9e6YZL37Dvc+DtbqpufkWeqvf+n3VN3DhgkfYK670qAlWPEIzItP9+pl9sPeoWGvHbS1SU7+bvjM6L2Shqos9jGuQ0Qp85T1ODJzenzz33nLz99tuye/duadGihTz22GPSqFEjmTdvnoiITJ06VR5++GHZsmWL5OXlyaOPPiplZWXy2muvefH2AAAAScvEQUl+8uTmtE2bNrJo0SJp3ry57N+/X9auXSsDBw6U3bt3i4jIs88+K6eccopMnz5dzjjjDPnss8/kZz/7WUxznAIAACD1eDJaP95ScbR+m7WNVX2kop6qX2j7tqp/s+MaEXGeHNpxVP4H2rKj2qjPoRuPqvpfZzeMvNFRcJpA2smkghxVP96pf1zaVBOTIv5I1dbR8nYxnh/RfKpL5vPrp19aM6JMPONLVcdjIvtlxdY17Kq8K0REpKJSC+odRuLrnK6b+sIg5za1HglI1PU81ZgyWv+r7wrllrXTfW3Dn5qNSr3R+gAAAIiOiYOS/BSX0foAAABANGpVrB8c6W/aKP8zVzdV9V87fKzq4GjtUz6xpuFyMwm/G9dtsaYIWNSjtSfHNJ0eiR368f6w+/sR8U/Zac1GoU/K7WYGhESJJd51M2oc9pJhppJkoI/cv3KbtQiM/vjU9+9YUe/pI/Jtj7NnaS9Vtx75lap/WN5Z1WvOWSIioTNvOD12hVCJGHVvUqw/Zs2ffW3Dn5tfTawPAACAqh5Ch1n2ai1ifQAAABijVsX6qazOR1Y0X/GTPTXsiWgk8yh+AMnFcSYWeMqUWH/Td0Vy42p/Y/1XzhxpVKxPzykAAACMwc0pAAAAjMGAqCQWOoqfKD+e9CifiB+A1+p93ErV5RcR5dc2LF8aip5TAAAAGIOeUwAAAJ8EAqwQdTJuTpNAaNyzV9WRTsg/PPcHVa/oc5qq783fpOoXuvSOpom1ChE/gGjN1haiGKctRKFf252csepHqv72gm9UPWGbtVDAjK7xG33+VnG2qq/MNGdkN1IPsT4AAACMQc8pAACAj1ghKhQ3p0nATdzjRoP0ctvtRPnRI+JHKpr7n+j5Zi12hjfGxfA91aP8K7/6WtXxjPJ1RPlIFGJ9AAAAGIOeUwAAAB8xz2kobk4NdvqnzURE5PshX4fZ0523ejXz5DiwR8SPVOF3nD9xW56qp3ftlpD3/PYfXVV9xs+3eXrs0AVTIptlxQnXc6Qybk4BAAB8RM9pKJ45BQAAgDFSvud0SZEVqY5qM7CGPc3QZm1jVRcNrIrzm606Q237+oJvE94mRI6IH4hePKP8sz+3eqg2nmvN3+N1lC8icubqpiIisn+wFeVzPQfCS/mbUwAAAFMFJI3lS09CrA8AAABjpHzPaTJE+bqigWXVtjlFP5dvsrYv632G7T7wHxE/YA49yo+3/YO/q7aN6zkQXsrfnAIAABgrwPKlJyPWBwAAgDHoOfXIvfmbVB3LWvWjNu9T9bHKeiLiHPFUiPUA9WWbvrPdZ3nvplG3JRkE1wAX8X/icDeI+MNbWrRO1SPbDPCxJTDBlJ1rVH1Ph0ExH29SQY6qH+/UX9U3bS1U9fzubWN+HxHreq4Pdlna60xVX/mVtcCKPqm+vr2OVNq+FqmFeU5D0XMKAAAAY3BzCgAAAGOkiYjxj+Fuzc6XiQMe9LsZrv2+4HNVT+50ro8tCXXL1l2qfrV7ex9bgpMFI37ifQBucD2P3fR1T0v3rC5+N0O+/KZYrvnoL7624a/tRkhWVpavbdDRcwoAAABjMCAqDvTeUqde1Anb8lV9PFBH1Uf/MwhKRORwZQMR8e4heP51bW/Fng2qHt66r6q9HohRk2CPKYOkkAycloVeXGT9zoxuE9/fmUjov+N55YdUfXv7Czw5vj6YSh/ANKrxARERuTyzf7XXxKo2Xs/fKbb+no7INCeV9ILxEXaC0XMKAAAAY3BzCgAAAGMQ68eZ04CoGV3tH8LW4yHmtEsMPcrXpfsQtDAPKpKB07LQJkX5Ov13/OVdqzw/vtO8qOl5lbbbEZ1Ui/KDAsI8pyej5xQAAADG4OYUAAAAxiDWN8DYvB2qntOto48tqZ3maEugjtWWQL2rw2A/mqMQ8QPemLnL+h0f3z6+yxzfmleg6lndOsX1vZAiAsJw/ZPQcwoAAABj0HMKAADgIwZEheLm1CfxjH5GfrVf1Yz4t7eg0Bqxe2Pb+MZ8XiDiB6IX7yhfF88oX5/NxWmGACAVEOsDAADAGNycAgAA+CgQ8PfDrQkTJkhBQYEcOXJE1q9fL0OG1JxK1KtXTyZNmiQFBQVy9OhR2bVrl9x+++1h34dY3wA3bClSdXnA+pEs7tmy2r6XbfpO1ct7N1X1W8XZqr4yM0vVozbvU/WSni1ibaqjqTtXq9rvUe5u3NjWWlM7NOL3Zq3teCLiD+V07iN6i4vWiIh3k+ovKbLOTacJ/OPJaUYOrzjF7cuKc0RE5PLM/mGPMXpziap/fZp1PP2cruC5RPho9OjRMm3aNLntttvk008/ldtuu02WL18uvXr1ksLCQtvX/O1vf5M2bdrIrbfeKtu2bZOMjAw55ZRTwr4XN6cAAAC+SUuKAVH33HOPzJ07V/7yl7+IiMgdd9whl156qUyYMEEefvjhavsPGzZMLr74YuncubN8/fXXIiKya9cuV+9FrA8AAABH9erVk/79+8vKlStDtq9cuVIGD7ZPS3/xi19Idna23HPPPVJYWCh5eXkybdo0adSoUdj3o+c0Bs/ttKKq+zpEFlXpIzr1WF+Pcw5uaigiofG9Xg/P/UHVTnHmscp6qtYj/qZ1Dqm6flqFqmd07aLqSBYHcIryV+zZYLXXYQ173Vwtfrs5DvFbOET8iePVz7q2R/luIvNgTC/iLqr3Ks4P8iPKn+0Q5b+8y/odv729N7/j5YE6ttsXHcxwfYyjAeta7XRO6499Xbdlj6pvbGI9EpCq68+7FXyUQsTd4xSo0rx5c8nOth6RmjVrlsyePTvk83Xr1pXS0tKQ15WWlsoll1xie8xOnTrJkCFD5NixYzJq1Chp2rSpvPzyy9K6dWu59tpra2wPN6cAAAB+8jnWP3DggGRlefsP/fT0dAkEAnL99dfLDz9Udab99re/lZUrV0qLFi1k3759zq/1tCUAAABIKQcOHJATJ05IRkZoGpCRkSElJSW2r9m7d68UFxerG1MRkc2bN4uISLt27Wp8v1rZc+rVyNFIo3wnC3u0sWppU+3zF248oupPzrZGuR3VInt9H50eN6UHKlUdLqZ3u084O8rLItrfjyg/GeJ7N5It4vfjZ+0XPWqslKrfQ68eR3BzDfM6pk8G4xzOL6+ifN2iHq1tt1dG0P9TGbD2vXzTt7b7OD0+UNujfB1RfnyUl5dLTk6ODBs2TN544w21fdiwYbJkyRLb16xatUquvfZaadSokRw6VPUoYbdu3UQk/MAoek4BAAD84vMcp27nOZ0yZYrcfPPNMnbsWOnRo4dMnTpVWrduLTNnzhQRkXnz5sm8efPU/q+99pp8/fXX8uqrr0qvXr1k8ODBMm3aNPnf//1f2b9/v9PbiEgt7TkFAACAe4sXL5ZmzZrJo48+Kq1atZLc3FwZMWKE7N69W0SqR/WHDh2SSy65RF5++WXJzs6Wb7/9Vv7v//5PHnzwwbDvlSYiEawN4I+t2fkycUD4L6Y2c4r+negzBOiPFcRTpCP34Y1kiPiBVDbyK6uXaGmvM2330aP8Zb3PCHtMfdJ+uwVbEN70dU9L96wu4XeMs40H9shVK171tQ2Lu/3M8wFRsSDWBwAAgDG4OQUAAIAxeOY0RbiJ8nWJivJ1RPn+SLZR/ECqcYrydW6ifB1RfuoIiCTF8qWJRM8pAAAAjMHNKQAAAIxBrB8HT+yw1qd9rGP0o9+G51atqrCiz2kxtwkQIeIHIvXQ9o2qfqrz2T62BCnN+HmTEoueUwAAABiDnlMAAAAfMSAqVFLfnC4tWqfqkW0G+NiSULFE+bpI4vz+/6603Z7Tz+ocd5qo/8qvvlb1W72aRdLEqM3e/amqndbARnwlKuK/O3+zql/s0tPTY9cmJl3vTGpLvCUqyr8k96Dt9vf7NLHdrk/a36SOdW1f1KO1tw3zyTvFn6t6ROa5PrYEfiDWBwAAgDGSuucUAAAgqQWEAVEnSZMk+JZszc6XiQMe9LsZvhn4Rbmq155TL+z+fXKsDvHc/vZxf6I8s+MzVT/Q8XzbfYj4zeJFxH/L1l2qfrV7+5jbBKSKSK/nke4P96ave1q6Z3Xxuxnyxf49cuU783xtwxu9LpGsLG8eSfQCPacAAAC+YkCUjmdOAQAAYAx6Tg3zVrE1gf+VmVVd7G6inO7rrX1y+5fb7rO4aI2qR7cZpOqffnlI1R+e1ch9Yx08UrBB1U5Rvo4o3yxejOL3K8pfULhKRERubHuBL++fapyuGcns5V2rVF2hTd9zV4fBnr9XcFYDfUYDp+t533/bH8PN9V8fub+s9xkRtDC8udpjVzdzrUaCcHMKAADgJ+NH/yQWsT4AAACMwWh9gw3P/UFE3E3Gf/bnVjy18Vz7H2nWhgpVN6lzVNVeRPlIfcGI3+tJ+gHT3L/9S1U/2/msmI+nT7DvNKm+LpYR+qM271P1kp4tInptbWPUaP1/zPe1DW/0vpjR+gAAAPgP47sJE4ubU40JS/KNzduh6jndOta4r74caXmgjqoHf2Hts/qc+qrO7mvtc9km61/mfixfmgyCg2tEGGAjYvWYxmOpU+ZFRaLM0Qb4jHUY4ONFb6mIdW11c111+vsT6d8lekuRCrg5BQAA8E2aSIB5TnUMiAIAAIAx6DnV+BXl6+pE8ODJJ2efEtGx3cRD123Zo+pFPVpHdHxTBefpi3SOPqJ8e17Mg3oyonwkSiIXdK4Twbs5XZOdttvNiQ2kCm5OAQAAfBRgQFQIYn0AAAAYg55Tn+hLfP6xU19Vz+rWqdq+wflORUSOVlpz3umx/uAvjqtaH6Gvc/PYgh7lLyvOUfXlmf3DvtZUdnG+PhK/RR1rntfhrfsmokkpIx4Rfzy5GamN1JPIn/tlm75T9dJeZ4pI6DXcad5q/bGrqd9YswU4Pb5FlJ9CAsJUUieh5xQAAADG4OYUAAAAxmD50hTkJuLXo6flvZvGuUVIJl5MiJ8MET+QDPTFVpwi/pFf7Vd18FGCWMzcZT0GMb596j7+Yszypfv2yhVvLvC1DUv6/sSo5UvpOQUAAIAxuDkFAACAMRitb4Bb8wpUrY/WD0Y1kcY0lWItg6ZH/PXSKlStR/mXb/pW1ct6nxH2+GPzdqh6TreOEbUtaKE2Wv6GGCa7n6uNwo10kv0gfeR+bZ14/+78zap+sUvPmI+XbKP4kdqcRuu/vMv63b+9vTe/+/ojU8Fr7lu9moV9ndMiKXqUr0f89dJPqLrC436mVI7yTZVm/AOWiUXPKQAAAIxBzykAAICf6DkNwc2pTx7avlHVT3U+W9VejJTWOY3W19VLOxF2H120Ub4ulihfF22Ur6twWDfOi0cGkoUXUb4TIv74SpXFMuKpXPsV/7M2Ev02j+Jrp0ej3irOrvqvhI/1nRZJGbrxqKrdjNb3QjKP1uf3ITUQ6wMAAMAY9JwCAAD4KZAWfp9ahJtTn3gd5ff/d6Wq155TT9VZG6wR+tl969i+1otJm1NRskX5yfAYAhG/94guw9Oj6ak7V3t+fD3K/+mXh1R9ZWZ0k5rrs6z86+yGqtYjfn2719fwZIvydfw+pAZifQAAABiDnlMAAAC/BITR+ifh5lTj1yi/aKP8gV+UO3zG6hB3ivIjnXg/lZkagUcqUV+HVzNKEPHjneLPVT0i89yEvOddHQbH9fgfntUoqtfpkb3Tdj3KvyT3oKrf79MkqvdMZk6LFiA1cHMKAADgJ3pOQ/DMKQAAAIxBz6nGtFF+wTWaj1Vao+/1yEgfla/TR+7n9LP+/aGPAK3tUb4JkjWW8mJxiJM5Rfy3XPyxqvVIE6khUVG+G/dv/1LVz3Y+y9Nj6yP4j2rXc32RFKfz2+nxrcpA7e5bSqZrJiLHzSkAAICfiPVD1O5/egEAAMAo9JwabHnvpiJixftuPZmxUdXDpa+q9QgJ/iOWsnfLxR+r+tUPLlJ1F4luFP/EbXmqnt61W3SNQsrzOsrX6Y9j6RG/iP01Wd/n9jM2qXqkWNeMaGcFgKFYISoEPacAAAAwBjenAAAAMAaxfhIIxvtuDW/dNy7tABJBH7WsR/nRTtRPlA+TuInj9X0+FB7/qQ3SGBAVgp5TAAAAGIObUwAAABiDWD+JDc/9QdUr+pwW9XG8WisdiCenifojifhRO/1516eqvq39EB9b4kyflSXSR7lu2lqo6vnd23rUIiRMQJjn9CT0nAIAAMAY3JwCAADAGMT6PnFax/mGLUWqXtijTY3H0KP8S3IPqvr9Pk3Cvv91W/aomijf8rfC1ar+VdvBPrbEnbeKs1V9ZWaWjy1JLCJ+y9Kidar2amGH4DH14yXzuVYh1gTnU3dav+N3dfD+d3zkV/tVXS+tQkREFvdsGfZ1epTvJuIfvblE1bUlyo/HuQ4z0XMKAAAAY9BzCgAA4JM0YZ7Tk6VJEowR25qdLxMHPOh3MxJiWXGOqheXtRAR58hGj4+W9jozomNfntk/2iaGNXe3NTL25nZmjoyFOwsKV6n6xrYX+NgSd4IRv1/xfrJ9v2ojfeT+oYDVP3Nfh4F2u8ckeM2Nx/V2bN4OVc/p1tHz4we5OaeTNW6fvu5p6Z7Vxe9myMaSvXLV6wt9bcPiwRdKVpY5j+vQcwoAAOCnQFr4fWoRbk7jbMrONaq+p8OgsPsvP2wNZgr3kLveW6oPcNIt6tFa1fHsLdXpvaWLi6yvf3Sb8F9/onp3nSTzoI94SLbev2CPqV+DpJy+X5H8HnAOxlcD7R7gtvb2vaVP7LB+Bo91jP5noF/PI+HUK6rPSR1Lb+nvCz5X9eRO59a4r35OO/WQJqq3lN+N2oMBUQAAADAGPacAAAB+Mn70T2IxICoJRBp1R7r/3fmbVV0v7YSq9flXAT9M3Jan6uldu0V1jNo+DyrM4mYgk76Pzmn/e/M3qfqFLr1V/UjBBlX/sVPfCFpZOxg1IGrRa762YfGQHxs1IIpYHwAAAMYg1gcAAPCT8Rl2YnFzmgTcRPM3bS2MaH/di1162m6fVGA9HvB4p8SPnEdymaPNbzvWo/lto43ydSx1CpO4GWXfMK1c1W5+B/QoX0eUj2TFzSkAAIBfAqwQdTKeOQUAAIAx6Dk1gNNIy0iEm7A/mvckykckvIry44mIv3ZK5JLKXlzPI32chUewkGq4OQUAAPATsX4IYn0AAAAYg55TAzhNmny0sl61z8fjPYHaiIi/9tCjfDcR/zM7PlP1Ax3Pj+i9GqaXV9sW78nwifKRarg5BQAA8BOxfghifQAAABiDnlOfPLEjW9WPdbTWsw0X+dyaV6DqWd062e7jZu1mWN4qtn4WV2aas7YwEoeI3xvLiq1R45EuBhJPcyIcrR9plK87XNmg2rZYovw78reo+qUuPaI+DszGPKeh6DkFAACAMbg5BQAAgDHSJAkew92anS8TBzzodzMA1DJE/EDqmr7uaeme1cXvZsjGvSUycv5rvrbhbz8dKllZ5jzWRs8pAAAAjMGAKAAAAL8EJAky7MTi5hQAHDCKHwASz1WsP3ToUHnzzTelqKhIAoGAjBkzpto+jz/+uBQXF8vhw4flo48+kl69eoV8vmnTpjJ//nz57rvv5LvvvpP58+fL6aef7s1XAQAAgJTg6ua0cePGkpubK3feeaccPny42ufvv/9+uffee+X222+XrKws2bdvn7z33nvSuHFjtc9rr70m5557rlx66aVy6aWXyrnnnisLFizw7isBAABIQmkBfz9M4yrWX758uSxfvlxERObOnVvt83fddZc8/fTT8ve//11ERMaMGSP79u2T66+/XmbNmiU9evSQyy67TC644AJZu7YqDvvNb34jn376qXTr1k3y8vI8+nJql7vzN6v6xS49bfe5N3+Tql/o0jvubQJSFRE/4snN9dzNPkAqiHm0fseOHaVVq1aycuVKte3o0aPyz3/+UwYPHiwiIoMGDZKDBw/K6tWr1T6rVq2SsrIytQ8AAAAQ84Coli1biohIaWlpyPbS0lLJzMxU++zfv7/aa/ft26def7Jx48bJrbfeKiIip595WqzNBAAAMJOB0bqfjB2tP3v2bJk9e7aIVE3CX5s9UrBB1foazW5iHaJ8wHtE/IiWUzTv5npOlI/aIuZYv6SkREREMjIyQrZnZGSoz5WUlMiZZ55Z7bUtWrRQ+wAAANRGDIgKFfPN6Y4dO2Tv3r0ybNgwta1BgwYydOhQ9YzpmjVrpEmTJjJo0CC1z6BBg6Rx48Yhz6ECAACgdnMV6zdq1Ei6dKlafzY9PV3atWsn55xzjnzzzTdSWFgoU6dOlYcffli2bNkieXl58uijj0pZWZm89lrVWrFbtmyR5cuXyyuvvKKeI33llVfk7bffjmmk/jvFn6t6ROa5UR/HJM/s+EzVD3Q8X0RCo3zdpIIcVT/eqX/YYz+5Y52qH+44IMoWAuZaULhKRERubHtBwt6TiD95zdn9qarHthvi+fF/X1D1N2pyJ+vvk1fR/HM7rfPrvg4Da9gz/lbs2aDq4a37+tYOpA5XPafnnXeebNiwQTZs2CCnnnqqTJ48WTZs2CCTJ08WEZFnn31WXnzxRZk+fbqsX79eWrVqJT/72c+krKxMHeP666+XL774QlasWCErVqyQL774Qm688cb4fFUAAADJIuDzh2Fc9Zx+8sknkpaWVuM+kyZNkkmTJjl+/rvvvuNmFAAAADVKEyPvmUNtzc6XiQMe9LsZAOAaET9gtunrnpbuWV38boZs3FMio/7fa7624bXhQyUrK8vXNuiMnUoKAAAg5Rkarfsp5tH6AAAAgFdSsuf0reJsVV+ZaU43dTzdm79J1RefckzVfs9iYNKMCkuLrNkKRrZJ7dkKlhVbMzlcnhl+JodUs7hojapHtxlUw57xE+0ofqdFN5A4U3daUxze1SGyJbb1a3G0i6DoE/UPO+WIqv2+hv6t0Pq+/Kpt+O/LzF3WbAjj29vPhjBlp/W7ek+Hmn9XX961StW3t0/cjBzxliZmzjXqJ3pOAQAAYAxuTgEAAGAMRusnmQnb8m23z+ga2YjD+7d/qepnO58VU5tgntr4aEuyCEb8jOCHzulRHP2ar1/nvXh8IJFMnKjflNH6XxaXyKg5/o7WX3iZWaP16TkFAACAMVJyQFSqcfqXcyzoLU1t9JaaK9hjyjyotdPYvB2qntOto6qdBi4eD9Sx3Z4MvaW6SHtL7ZbyTmnGZ9iJRc8pAAAAjMHNKQAAAIxBrO+TJ3ZYA1Ye61hzBBtLlO8UIcFSm+Y/hTminQcVsVlQaM2VeWNb7+fKnLgtT9XTu3ar9vlIr8P6/rds3aXqV7u3j6J1yUOP8oN/L8P9rUxmzHMaip5TAAAAGIObUwAAABiDWN8nXscT123Zo+pFPVqr2u8oPxnm2yTKTz2mnXfhliQl4k8cN1F+LMuX2kX5kRq9uUTVi3u2VLXfUX68H4lwEvx7mdJL+xLrh6DnFAAAAMag5xQAAMAvAaHn9CQsX5rinOIhAOYj4oeO67nloe0bVf1U57OjOoYxy5cWlcg1s/xdvvSvV7B8KQAAAGCLWB8AAMBHzHMaKqlvTlfs2aDqSNftNVW0k+aP/Gq/qpf2OlPVevSjj+g/Nf1YVO+TjBYXrRERkdFtBkX1umhem2xYiMBMpo7in737U1WPazfEx5ZELpFtv2FLkYiILOzRJqLXubmeLyvOUfXlmf2jbaKx3in+XNUjMs+t9nk9yg+3L5JPUt+cAgAAJD16TkPwzCkAAACMkdQ9p6kS5d+dv1nVL3bpqergOspuJl6+5fSdql4qZ9ru0zCtXNWpHuXroo3kUz3K1xHlm8+kiD/ecfiSIutrGtVmYA17uhP6CFh8237T1kJVz+/eVkRERm3ep7Yt6dki7DHcXM+XlDWPsoXJQY/ng5PvO028v+oY/WypJqlvTgEAAJIdA6JC8c8NAAAAGIOe0xjM1UZ93hxDzHU8UEfVwShfRORooF61fa/86mvbY+jrh+v7vNWrWY3Hq8nEbXmq9mK9aFMt1NaLviGB60V7zesoNB7iMcK4Ns40YFLEHw9en79FJ8pUHe/R+uXa9Tw4Q8qiHq1t971807e22/Xrub7Pst5nqDrS63kyC8b5TqPy9bjfi8n54T9uTgEAAPxErB+CWB8AAADGSJMkuF/fmp0vEwc86HczjOM0UbNTrK+LdrJ/AOZKxYi/tnB6ZEvndD3XpfK1/fcFVqw/uVNkk+3bvXb6uqele1YXbxoXgy8LS2T0n1/ztQ3zrx4qWVlZ4XdMEHpOAQAAENaECROkoKBAjhw5IuvXr5chQ9w9t33BBRdIeXm5fPnll6725+YUAAAANRo9erRMmzZNnnzySenXr5+sXr1ali9fLm3btq3xdU2bNpX58+fLBx984Pq9iPWTQKQTOOucov9E+VvhalX/qu3ghL8/UFvFEvFHuyY8wnPz2FU8XusFU2fGeGJHtqof62gfTdvtY1Ks/8vp/sb680aFj/XXrl0rGzdulFtvvVVty8vLkzfeeEMefvhhx9ctWbJEvvjiC0lLS5NrrrlGzjrrrLDtoecUAACgFmvevLlkZ2erj3HjxoV8vl69etK/f39ZuXJlyPaVK1fK4MHOHU8TJkyQjIwM+cMf/hBRe5hKCgAAoBY7cOBAjT2nzZs3l7p160ppaWnI9tLSUrnkkktsX9OnTx95/PHHZeDAgVJZWRlRe7g5NcCteQWqPlRZX9XBSC3SKF/ntEazPtn/q93bR338cJIhyvdqMQW/LS5ao+rRbQb52BKYIJaJ+lMtzp+5y/odH9/e+9/xSB69iiWO/+/Trb8Vb4l1nERdz02K8nV6lL9izwZVD2/d13YfIxn/gGVk6tevL6+//rr87ne/k507d0b8em5OAQAA4OjAgQNy4sQJycjICNmekZEhJSUl1fZv1aqV9OrVS1599VV59dVXRUQkPT1d0tPTpby8XEaMGCHvvfee4/txcwoAAOAnw3tOy8vLJScnR4YNGyZvvPGG2j5s2DBZsmRJtf2Li4ulT58+Idtuu+02GTZsmIwcOTJsb2qtujkNrj1u2rrjs7p1UrUezwS5GaF52abvVL28d1PrtZmGRxkGSOYoX0eUDyexRPypQI/y/6xF/McD1pjguzpE/wiSU5QfvJ47Re2Xb/pW1ct6nxF2u349v27LHlXHM8rXmTpaX6dH+W5G8cO9KVOmyIIFC2TdunWyatUqGT9+vLRu3VpmzpwpIiLz5s0TEZExY8bIiRMnZNOmTSGv37dvnxw7dqzadju16uYUAAAAkVu8eLE0a9ZMHn30UWnVqpXk5ubKiBEjZPfu3SIi0q5dO8/ei5tTAAAAn6SJSJrhsX7QjBkzZMaMGbaf+8lPflLjaydNmiSTJk1y9T616ubUtDjfjh7PBON8N6M7D1c0iPp9UsUcbdT92BSJ6gGv1faI/7Y4jNZ3ErzOOj2apUf2uqOB8H+aF/VoHWPrImdqlO9Ej/Kf3LGu2uczWx5KZHMQgVp1cwoAAGCUgBg/ICrRWCEKAAAAxqDn1ADBdaxFQie/jmSy5k/OPsXTNiWjaKN8HgdAbVUbI/6Xd61S9e3tL/D8+KM3W3M+Lu7ZUkQin3j//T5NPG0TRB7uWP2RhOnrGvnQErjBzSkAAICPkmVAVKIQ6wMAAMAY9JwaINw61k4TMl+Se9B2f6dIKJL1n72ysNCK0G5oa0VoJq0D71WUP1d7PCBRE/ub9H30SzJMDO4Hp8eFnNhF/KkY78cjytcFo3wn+oIpldoiACv6nKbq4bk/2G7X6ZPwJ2rk/lvF1qT2ybbAy9Sdq6tta5tR5kNL4AY3pwAAAH4i1g+RJknwLdmanS8TBzzodzOM5maJUyd35G9R9UtdenjWJiQ/emZrt9oySMo0I7/ar+qlvc4Mu/+EbfmqntG1S1zalIqmr3taumf5//3K3V0iv5r6mq9tePW6oZKVZU5vOD2nAAAAfjK+mzCxGBAFAAAAY9Bz6pOHtm9U9VOdz475eI3Sj6k60gfl60lFzO+fSPEceLRAG8B1Y9v4DpxIBskQ5SfzIA3Tpco8qE4DM+Nh4rY8VU/v2q3a590MVGuYXq5qN9fzemknIm4nYDJuTgEAAHyU5ncDDEOsDwAAAGMkdc/psuIcVV+e2T9u7xOPeRTT0yptt9+dv1nVL3bpWeMxbtm6y3b7q93bR9SWF7r0jmh/v6VylL+kyIpLR7UZWMOe3krmuUJrS5Q/W3ucZZwPy+ymSsQfj8eCnKL84PVcv5a7mXO2YZoV67u5nqfiLCt2Pyc/5pJOGAZEhaDnFAAAAMbg5hQAAADGYBL+Wure/E2qTrZYH4A5kjniTxVcz6NjzCT8u0rk+in+TsI/59dmTcJPzykAAACMwc0pAAAAjJHUo/WTmT4J//FAHVXX0UbxHw3UE5HQkZj6CP1IR+Xr9OjnkYINqv5jp75RHzOZ6CP0W9RppOrhrfv60BoLa9n7L1GzgKSKZBjFv2LPBlXH+3fc7r2cRvN7dT2v4zD7C5KI8Q9YJhY9pwAAADAGPacAAAB+ouc0BKP1k0AkE/ObLJknegcQGVMjfr85RfxIPKNG6z/v82j9mxitDwAAANgi1gcAAPBRmvEZdmJxc5oE9Ch/wrZ8Vc/oGlkc4fdEzUT53ltSZMWlo9oMrGFPILGSYRS/H5yi/Eiv7fqML091Pjv2hgEGIdYHAACAMeg5BQAA8BOxfghuTpNMpFG+jjWXUw9RPpIBEX94kV7bifKRyrg5BQAA8ElagAFRJ+OZUwAAABiDntMUoU/srGOSZySDd4o/V/WIzHN9bAnijYg/vDvyt9huf6lLjwS3BPAHN6cAAAB+ItYPQawPAAAAY9BzmiKI75HMiPJrJyJ+e8T3tQ8DokLRcwoAAABjcHMKAAAAYxDrGyxrQ4WIiGT3rePJ8e7N36RqfUL+J3esU/XDHQd48l5eW1y0RtWj2wzysSXu6LMn8MgFvLakyIq9U2UhBr8j/ib/aq7qg0MPeHrsgV+Uq3rtOfU8OeYjBRtU3TDNOv5jHbM8OT4SjFg/BD2nAAAAMAY3pwAAADAGsb5HGnzSUtXHLiyJ+jjH32uv6uy+u6p9/vt3rPWXTx+RH9Gx1x/uZLvd1ChflwxRvs5NlD9lp/Wowj0dkuvrg79SJcp3Es+Iv+xd6zrY+NICVXsd5YuInHi/nYiIrD1nd9h9D2ntaqS1S1f5QVtV/9H+co5kRawfgp5TAAAAGIOeUwAAAL8EmOf0ZNyceiSWKF9Xf1j1KF8XaZSv++TsU6J+LbxHlA+E53XE39ghMo+HupeEj/ODnKJ8XfrFhbE0B0gaxPoAAAAwBj2nAAAAfiLWD8HNqWG+WWaN8j5RUdWx3eKqLXF9T30y5z926hvX9zLF5Zu+VfWy3mf42BIAbtlF/ImapN+tvJnW7CfdxlctcLLvzR5qW7yv58/s+EzVD3Q8P67vBcQLN6cAAAC+CUhagK5THTenhvnR5Xnhd/JYbekt1dFbCiS3YI+pH0ud1iTYW6qLd2+pjt5SpAIGRAEAAMAY9JwCAAD4iVQ/BDenPin5v56qbvmLzVEdY/f/nqXqdtd+abtPLA/i/77gc1VP7nRuhK0DgPiL51Kn8Vb4Rh9Vt70mN+z+B962Bsw2vyLxj4ABiUKsDwAAAGPQcwoAAOAjli8Nxc2pT/Qov/jvvVVdWZmm6mDMs2uxFd+3H23F905Rvi6WUaKpHOUPz/1B1RVifc/f79PEj+Z4YvbuT1U9rt0QH1sC+MNNxL/9tb6q7nz9Bk/ed9ekwapu//hqVW+b219ERLrenGO9/8J+1vtf8++I3ocoH7UFN6cAAAB+CQgDok7CM6cAAAAwRq3vOV1YuErVN7S9wJNjuhkhv2LPBu3/rHp4676qDsb5epS/Y9E5qu543RfW9r+dbW3/1caI2uvF8qUv77K+j7e3D/99jMf3PRIr+pxm1drPovLLrqr+8KxGiWxStbbo58LMXVZkP769FdnP0aL8sT5H+U5t0beXa70D+tcRqT9r3w/9sQw3517QXK1dNzu01+/vqRP9PCk6UaZqp/Y6nT+R0H9ndfrvr9P56wfHiP/6yEbxFz5mRfZtn1htu33LuD9bLxhnlf84XHX9v33+9Wpb1xusWVCcOD3K5eTufOsxsRe79KxhT3ciPV/+Vmh9X37VdnANe8bG6e+Gm3MTyaXW35wCAAD4JU0YEHUyYn0AAAAYI02S4DHcrdn5MnHAg1G91q67P9Ku/kkF1kjLxzv1t92naIk14r7NqE2qdppkWT/mwIZ1bI8ZLhbLX2CN+uxyozXqM/+v2vZfW9vPWPUjVc/rsELVV2Zm1fg+kdIj/obaPwdjGUEeSyzZ/9+VIiKS0y+92jYRkSczrMcgyiqPqrpxekNVxxJRnv25FTtvPNf6ftidV/r3Tucmro700Qo37I6px96V2r5ufr56HH88YP087uoQfRQ4dacVKdZPq2pRA+tb7iqad4r4E2WBdp260eH65DQbQ6SzNOg/g9u036VIzp9Efr/K3u2k6saXFrh+ndOofK8m6i9+wP6czb3zz9W2xXL9cDO7wIRt+aqe0bVL2GM+sSNb1Y91rPn6r59fp6ZZv1jxjsz1c8yOF+fd9HVPS/es8N+vePuqYK+MmfSar234829/LFlZ3t4LxIJYHwAAwE/GdxMmFrE+AAAAjJHysX6y0Ue7dn59vIg4R0/5UwbabtdVnmoFr93Gr4utcUmuwSctVX3swhLP909FemQebfQej8cNnDy3s+p35b4O4X834iEZRvp78TNNFV5F/E6C1/NIY/3tL1jt0p5+iUsbveD3YzHRMinWv/lxf2P96XeYFevTcwoAAABjcHMKAAAAYxDrGyzaSAj++/Yf1mT+Z/x8m+0+N20tVPX87m3j3qZkcf92a9LxZzufVcOeSFVN/tVc1QeHHkjIe8Yz4jdpcQJYjIn1txsQ699JrA8AAADYYiopAAAAH7FCVChuTg2jT45cVlnh+nX7fmuNum3xp9U17FnlxPvtVF33kt2u3ydSz+z4TNUPdDw/bu8TD9+/Y8U9p4/Ir2HP6pyifF2yRfnBuD3eUbsXx49kknGR+J+nkYyQZzR94qJ8nR7lu4n4Axf0VXXaqg2qPn6pdb799qXXRUTk24rDEbVl/4RBqj5zxpqw+7de20TVewYejOi9IhHLYihe4Hej9iDWBwAAgDHoOQUAAPBTgFxfx2j9ONg/XotkZtpHMl+Ps/ZpNtt+n3vzN4mIyAtdenvYOpzswNvdVN38ijwfW5JYD23fqOqnOp/tY0uA+Cp8zIqA2z4R/rEnXaSj+Csv7Kfq9E/+HdF7IbFMGq1/y2MLfW3Dn+6+kNH6AAAAgB1ifQAAAB8xWj8UN6cx2PGUFc13fMiK5p2ifJ1TlK97bNJ/i4hIUwm/r5Ovx2qPD8yxP07ah5mqDvy0OOr3itYjBRtU/cdOfRP+/rUpytcR5aO2iDTK10U6il+P8o/9vCombfCPbNt9Y1H0kPWowtHeR6x2/ZpHCZD8uDkFAADwEz2nIXjmFAAAAMag5zQGepQfi7JrrUm/v77Wmqy5/eiaj39olPW6Rks+s93HKcrX+RHl6/yI8nV7/6+nqlv9YrOq9yztperWI79KaJsAeEcfrZ9+3Nqe+Yx93O80wX6kEX//yTkiIpL7j0ha606bp6J/VAEwHTenAAAAfgmIpFX63QizEOsDAADAGPSc+uTlXatU3abOOlWPbDPA9THqH6wIu09wtKhIfEaMBo3avE/VS3q2iNv7xMIppt84YJGqh0tf230S5aathaqe371tRPuXB+qoelGP1t42zCOXb/pW1ct6n+FjS2oXr38/J26zZriY3rVbDXv6Z9ckK8rfMu7Pqu4z7bawr9WjfCduIv7ciX3+U1kLXuj0CfsDaWmqrvPx57b7l//sPFXXW7k+bBujFVwARsSsRWDcLByStIuLMCAqBD2nAAAAMAY3pwAAADBGrY/14zEBfOkdVpyU8ZL9iMpu9RrZbn+n2IpzfnbTOBERqftBjtp24qf9Ve0m1kkvD58V7H7cam+7SdGNAI00Krxl6y5Vv9q9fdj9L9v0naqX924a0Xt9/07V2smtR1gxfdm7nbQ9NqhqWbH1vf7xxtGqPu2y7RG9Z7TqiP1T8bfmFah6Vjer7W6i/0Rx+hnp2/Uo/6dfHlL1h2fZ/z64MfKr/ape2utM16/To8uG6eWqPlzZQNUvdukpXggXk0Yak0f6OIeb38/Rm0tUvbhny6jauGLPBlUPb9037HvGIm9m1SNQ3cavs/18+8e1a9k4q8y904r4hz/T1/a1xy+1Hoeqe+SEqvUJ9nVhI/6BWry81oqdnY7nJL3c/vqwb6J1DW8xPfZR/JFG+ZMKrOvm453617BndXfkb1H1S1162O5z//YvRcRdTJ9UUf5/pAkrRJ2MnlMAAAAYg5tTAAAAGCNNkmCM2NbsfJk44EERiTyG1/eP5HU6NyOoC5611rDvdL818X3n7Iaq3p51VNXf/9qKfj555mVVN0irV+3Ynf7+G1V3/a012f62l61J+Lvebj8Jf/klVsSy62YrEmq+wmpX0wWxLyYwPPcHVf+obpmqb2iyV9WXZ9rHPXrEf1yLKBf2aBP+jT/Q9rm4yPW+DepaUd3SLu+o+oq8y1X9TndreywR5Zmrm6p6/+DvVG03glp/rGDpoR+pek63jrbH1vdfdDBD1ZXavztjGbm/tKj6TBJXfvW12qY/huAUqev7//fp1uMJV2Zm2e0eMT2Ovum0qgUllh9uorYlcjT57wusx3ImdzrX02PfsMU6v/Xfjeu27FG1m591pI/U2Lk731qswqtHH5yceL+dqutestv167bNta43Lw9ZqOqfn3rUbveQ33Gnx2j02U+CE+yL6KPyJSS2D0b8TpP0x+LYCG0mlncim4ll2zTr70/XO2tu2xM7rGM3SrOum/d0sP7mPbPD+vvzQEfr71Is7M4xr8+76euelu5ZXWI+Tqw25++VsQ/81dc2THvwIsnK8uaa7AV6TgEAAGCMpOs51fkx1169j1upuvyivTXsWZ2bh9b1eew+nPsXERHpsnCC2tb5Pm+WTHWz9KnX4j0Xqj7IqfGlVs/H8feqeofqD7N6jGbv/lTV49oNsQ4SSU9sDU75xOrFPHJhqe0+0Q7kiZRX73NJ7kEREXm/TxPbz+u95yv6nBb1+3g1UCoS8RgYGU9e/S7pvdpv9WoWU5tEvLsmD/zCGqC29pzqaZKIyL43qwbPtLhqi+3nddvmW73YXW+yn0NUH8z1bYW1jPSv2g622bsGNoOfnOZBTeuvDTzS5jnV60D2l7Zvc+Jiq2dYHzSbioI92XovdrTH0I9jTM/ptr3y3z73nE59iJ5TAAAAwBY3pwAAADBGUsf6kQoOHnEamOPEq7gyWnrcdOnPb1B14N+bbPaOXNm1VsTf+H+9jfgXFlrLtM7//ixV69/Ht4qtB+7dDJIJxvQiIkdPWFP1ej4XqYuI3/HxAE2zVdbcnl9f8K3tPiZxE6nG0+Avjqtan3802oh/bN4OVTsNLItFtIM04t2uWCL74Ny0+ny1TgOynPi9xOn2hdbSoJ1viGw+0XhyividpPfR5v6sY8X9lV9Y512iljVN5Dy24X4/Iv39sdvfqFj/fp9j/YeJ9QEAAABbrm5Ohw4dKm+++aYUFRVJIBCQMWPGhHz+1VdflUAgEPKxZk3owJ369evLSy+9JPv375eysjJ58803JTMz07uvBAAAAEnP1fKljRs3ltzcXJk/f77Mnz/fdp/33ntPbrzxRvX/x48fD/n81KlT5aqrrpLrrrtOvv76a5kyZYosW7ZM+vfvL5WV9kuyeW1JWfNq29zMsRmPKP/bm6054s6Yaz8Cv/LCqlhq5WErvv+v15epenTj71XtFLHoo0EDOfaPAehR/vc3WJFTIN2KkKKdC/WGthfYbtcflYh0vkt91P3R5Z1dv+7Pu6wIfnz+dapOv7jQbndXo/WdonydU5Tv9Uhpr/gR5etWn1Nf+7/6jvu5FY/IXBftfItetevyTdb5pS8P63ROOe2vqwxU77dwE+Xr11M/ovzCN6z5Rjtfk7goP3itFrFfklS/Dodd6vTkY+dasxGkn22/vGdahfV03tErBqi64dv2S7vqCh+pmo2g7R/DL3v61qFTw+7jlXC/H25+f5zmqw1ub97mWJSt8x7Ll4ZydXO6fPlyWb58uYiIzJ0713afY8eOSWmp/ZQ5p512mowdO1ZuueUWef/990VE5MYbb5Rdu3bJJZdcIitXroyi6QAAAEg1nj1zOmTIECktLZWtW7fKrFmz5MwzrfkU+/fvL/Xr1w+5CS0qKpLNmzfL4MH2c8iNGzdOsrOzJTs7W04/M/GDkAAAABIiEPD3wzCuek7Deffdd+Xvf/+77NixQzp06CB/+MMf5MMPP5T+/fvL8ePHpWXLlnLixAk5cOBAyOtKS0ulZcuWtsecPXu2zJ49W0SqRut7wW6pPn2bvkypGzsWnaPqjtd9YbtP4aPWzXfbP1ixiVOUrwv8ZyLm52+8Xm17+42/aHtY8WvlB9ayqiExtTaZc+WQvtY+n25Q9eGR1mj90xda0dI3y7RYboFV7rnf+ppaPxs+CgrSo3yvRDJC/7b2VgSf/oH1y+j4vXMQy0IMeqTqRZSvL915NKCdDzaxrIhzjBucYF8kdJL9vlpCueE/yaXdkqbRbNcN3WgtKfmvsxva7qMLjiYXCR1RniixLKMY7awhbrh5VMTpHNBF+yiT03KoE7ZZ1/AZXSMbHX1IW1yjkba4hp221+RGdGyvBPQJ9O04fD7SiD/EgLNsN7uJ8nVu4vygWB7VuDffeqzshS69a9jTmVNM78Rpn+D2c9Y1iKodiD9Pbk5ff/11Vefm5kpOTo7s2rVLfv7zn8vSpUu9eAsAAADUAnGZSmrv3r1SVFQkXbt2FRGRkpISqVu3rjRvHjogKSMjQ0pKSuwOAQAAUCukBfz9MI0nPacna9asmWRmZsrevVWRZ05Ojhw/flyGDRsmixYtEhGRzMxM6dmzp6xe7T5SEAnt1te56eIPtz7v/O5tbbc7cYrydXqU7+TQNdo6929ok+DbJEH6yPa0flY08t4/Fqp6+AeXqzpwsRZzabF+CIdEKv11+1gwkij/jFU/UvWKPvb7RDpq/cT77VRd95Ldqv7+HSsuPH1EmEdBtJH4+r/QZuoj+rXHANI+tKY9K7+oOGwbneiRqhej9X99mvUYgn5uuBmRHang5PxO0fzUb+xjRqf99cn2nfz0y0Oq1ifh16N8u4hfn3Bb1zDNmtQ/logy0ihffwwgXJyvP6qxuKf12NPIr/ar+pbTd6pa/7nr55QT/dw4GrD+BOiPcwQfwTk13RrNrC+IoH8fnaJ8nVOUf0e+NRL9pS72I9HDRflu7FpsnZvtR1tr1W9/wYrSO99rRen7J1izqZw5I/wjWHU+/rzmHcLF/uIu4q/cuEXsxOUPuY1YHs+INMqPJMJ3s6/dvYNJo/URytU53ahRI+nSpepETE9Pl3bt2sk555wj33zzjXzzzTfyP//zP7JkyRLZu3evdOjQQZ566inZt2+fivR/+OEHmTNnjjz77LOyb98+NZXUxo0b1eh9AACAWicgSbBWZ2K5ivXPO+882bBhg2zYsEFOPfVUmTx5smzYsEEmT54sFRUVctZZZ8mbb74peXl5Mm/ePNm6dasMGjRIysrK1DHuuusuWbp0qbz++uuyatUqKSsrkyuuuCJhc5wCAADAfGmSBPfrW7PzZeKAB13vHxwNKxKfEbGRKHxMG63/hH0c7hjr/0dgkDUrQPrxE9Z2h0n19fWPL73y19b+662IP5a1mKMdre8Vp9H1Zdqo3sY2UaBTZO8XPaZd2uvMGvaMXCyxfjC+F7GfkN/N6PsLNx5R9Sdnn6Jqp1H5+vZybTGMB5pZ0wU4vVc4ka7B7SZqjtQ7xVbs+/bhqpHw+qIfsUzIr/+s09Osf+x7vbDDdVv2qHpRj9aeHDMe3+twtr/WV9WBUuscdDVC3gPpfayvU59g34njKP6BZ1v12o0RtSHSxxai9dB2q136+e4m4o90ZH6419ltn77uaemeFdnjCfGwOW+v3HrvgvA7xtGU3/9EsrIiWxAnnhL1qAoAAABsmDgoyU9xGa0PAAAARCMpYv2vj2ySlUU3iYg361FHGvPpmvzLmg7r4NADNexZs6/HWbFKs9k1xyqBC/qqOm3VhrDH1ieJX9ZtuarLAxWq1h93OHy19VjBqX+v/lhBvOkjjCc2tWL64a37hn/xB9p639oIfMft/+H0c2z0TyteP/Tj/RKOPhvBtxd8E3Z/L+iLRVQErFHA5drIaz0a9/qRgUhFGvF7QV/j3c1o8kjFMgm/Haf2Oo3cd0P/vfrv061IUx/dnwwiWSTjwNvWDAzNr8iLW5tOpj8mlV5uPVpR56Pqo/jTz9HOF4eVeZxG5Uc8UX8Km7jN/ud7ZaPDqg73N8SkWP839/gb67/wOLE+AAAAgiqN7ydMKGJ9AAAAGCMpYn2n0fr6qPx/HD5d1ZFMDqxPKny00hqZ7BQFuonZ8mZpXeMnrNi1223WKOc992kj3p+zH/F+5Kqq0cmnvBnZWsm6dp9ZE5fPbrvKdh89+vj+11ZsdPpfY4+NFhRa7/n6D71UHY9RxX1yrH9r5fa3jr+kqOrrGNVmYLXXnCyWqDmWSfWDsW4sEbQ+mroiYP/vTqdzNtrR/W8VZ6vaKS6+JPegqvWJ3p32qdTark+870T/nWxSp+oRAi8e/4nGczut35n7Otifb8E1xiOdlFy/3i0psx5LORqwrltuRtG7GXUf3MerUfn6qO2nOp9dw55VHinYoOo/durrSRu8UPSQdd1u81T4mUqOjaj6nahzzLoe1f0gx37nAdoiFuushQKcRuWbFPE/scO6DjzW0f468PsC6xGHyZ3Ojep99MdpdMNOsR4dGpHp/thGxfp3zve1DS9M/qlRsT49pwAAADAGN6cAAAAwRlLH+m4EIzSdU5wW6YTQ+mjBWNbp1u0fr02OPLPmUfx5/88aIdrtv6yJ9INRkohIg3esuOXlXVbE3q2efVx6/oMTVN10fvwmZ9bpsyccrmygaj1S1CNzfST64Qprf30kuC442X08Rq3Hsta01/SJ3iOJtkSco95o4359gYEK7d/AdcSKN2P5eegzFszv3raGPUOvAfrv/qQCK159vJO/i3XEW7SzF+jnd700awEQ/fqof3/raI/rPNtZi6kj5CYmjoQeB+uPQTj9zrZeaz1+smeg9chJ/l/7qbrLr/8tdvZNtKL/FtOrR//6yP60Cvs/v47RvwOniP/gL63tTV53H/3vfN16lKDDLyOb4N9vkTxCYkqsv2Wr/7H+808Q6wMAAAC2mEoKAADANwHHOW9rq6SI9b8/+qWs3zNKRNyN9KwtDo2yJs9vtCSyyfP1Ec5jT7dqP2J9JIdRm/eJiMiSni18bgmcxLLASLJ5ZkfVNe+BjueH2dNcR68YoOqGb0c/K4sunqP44/Eom5/MifX3yG/u8DnW/8PFxPoAAACAHWJ9AAAAH6UZn2EnVlLcnJZ8eYo8NYA4/2SRRvk6fTL22b/+hfUJ+tLhIFnjfFMndI+HVI/ydckc5wd5FeXro/L1KN/riD8VonwkB25FAAAAYIyk6DkFAABIWcT6Ibg5hZz+V3/XZQbiKdWjfMBpgv14RvyonSZMmCD33XeftGrVSjZt2iR33XWXfPrpp7b7jhw5UsaPHy/9+vWThg0byldffSV//OMf5e233w77PsT6AAAAPkoLBHz9cGP06NEybdo0efLJJ6Vfv36yevVqWb58ubRta79K34UXXigffvih/PznP5d+/frJO++8I0uXLpUhQ4aEfS9uTgEAAFCje+65R+bOnSt/+ctfZMuWLXLHHXfI3r17ZcKECbb733XXXfLMM89Idna2bN++XSZPniw5OTnyi1/8Iux7EevH2f3bv1S1m7Wm82ZYkzJ3mxDdSM5wazvHavfj1vHbTfL++ECsfl/wuaondzrXx5bANE/syFb1Yx3jO+n4tmlVUXrXO6OP0fdPGKTqM2dEvzAKET9q0rx5c8nOtn43Zs2aJbNnz1b/X69ePenfv788//zzIa9buXKlDB48WNxq0qSJfPvtt2H34+YUAADALwERqfS3CQcOHKhxhajmzZtL3bp1pbS0NGR7aWmpXHLJJa7e47bbbpM2bdrIggULwu7LzSkAAADi5uqrr5bnnntOfvnLX8ru3bvD7s/Nqea5nVa8cV+HgTXs6Z6bKF8XSZRf+JjVld72CStej0eUryPKh+mI8uEk3lG+LlycX/iIdg3/o/11NZYo34ldxE+8j5ocOHBATpw4IRkZGSHbMzIypKSkpMbXjho1SubPny833XSTLFu2zNX7MSAKAADAR6aP1i8vL5ecnBwZNmxYyPZhw4bJ6tXOHVbXXnutLFiwQG6++WZZsmSJ6+8HPacar3pLE0XvLQUAJBen3tJECvaYMkgK4UyZMkUWLFgg69atk1WrVsn48eOldevWMnPmTBERmTdvnoiIjBkzRkREfvnLX8qCBQvkd7/7nfzzn/9Uva7Hjx8POyiKm1MAAAA/JcEKUYsXL5ZmzZrJo48+Kq1atZLc3FwZMWKEeoa0Xbt2IfuPHz9e6tWrJ9OmTZNp06ap7R9//LH85Cc/qfG9uDkFAABAWDNmzJAZM2bYfu7kG85wN6A14ebUJ4mca89O8d97qzrz6k0Jf3+TzN5tLb02rl34lSsQ3sxd1vd0fPshYbcD8RTv8+7efOsa+kKX3jXsGR87Xz9b1R1+uTGqYzAPKkzCzSkAAICfXC4hWlswWh8AAADGoOfUJ05R/jM7PlP1Ax3P9/Q9T/nEmp8s88L4RfmdsxuqenvW0bi9j1eI8p3N1R55uDmC75NTdBrvKH9B4SoREbmx7QVxfR8kF/28i8djPE5RfvDxrXg/uhVtlO+EiD/BAiJpdJyGoOcUAAAAxuDmFAAAAMYg1jfMqeknqm1bsWeDqoe37qvqW/MKVF0nrVLVM7p2sT32kQtLw76/F6NO9Sjfqe2p4q1ia9aFKzMTP+tCvEUS5ZsgGOcvLbKWAR7ZZoBfzVH+VmhNtv6rtoNr2NN6NEEktscTnL4Hbr43wfM6Fc/pU9PSwu7j1ej+Rmk1X8/fOnSqqqd37abqCdvyVe10PXcycVue7TGjZVLEv1D73bghwt+NWF6bEAyICkHPKQAAAIzBzSkAAACMkSZJsGjW1ux8mTjgQb+bAQAAxP+I3wvT1z0t3bMie2wiHrZu3iMT//v/+dqGp6YOl6wscx7joecUAAAAxmBAFAAAgG8CDIg6SVLfnKbKSOkpO9fYbr+nw6AaXxec4FnE3STP8ZzgP1ImjaY2qS2ITfBn6dfPMdVnp0hWTrMlRLvIRE0mFeSouuF/RuvH43ob6fXfayaN4kfqIdYHAACAMZK65xQAACCpBSQJhqYnFqP1AQCAJ5Ip4jdmtP5XxTJxrM+j9V+61KjR+vScAgAA+CiNAVEheOYUAAAAxkjJntNUGcUfrUcKNqj6j536+tYO0ywusmZFGN2m5pkQAC95tVY7ap+Htm9U9VOdz/axJe4wih9eSMmbUwAAgKRBrB+CWB8AAADGSMme01SO8t1E9m6i/Od2WhHLfR0G1rBn6iDKh1/0KD84UT+T9EN3b/4mVb/Qpbeqjwfq2O7/+4LPVT2507nxa1gMiPgRrZS8OQUAAEgalX43wCzE+gAAADAGPadJxqvR97UlygdMQ5wPO3qU72a7qVG+EyL+GgSY5/Rk9JwCAADAGNycAgAAwBjE+gAQZ1N2WgtA3NOBWSNS2R35W1T9UpcePrbEXET8Noj1Q9BzCgAAAGNwcwoAAABjEOsDQJwR5dceRPmRIeIXEQkQ65+EnlMAAAAYg55TAAAAP7FCVIikvjldUmR1+49qkxqTyj9SsEHVwQn3J27LU9umd+1m+zo3+yAyfytcrepftR3sY0vi751ia53uEZnJNbl3snpmx2eqfqDj+WH3N+lnNHf3p6q+ud0QH1sSuUS2/e78zSIi8mKXnmrb2Lwdqp7TraPt627NK7DdPqtbJw9bZx4ifgQR6wMAAMAYSd1zCgAAkNRYvrSapL45TeYo/7mdVkyhr3MfjPJFRO7N3yQizmsr64jyo+cU36d6lK/zOyaujfQo/4kd2ap+rGOW7f76z8ju8Z9ESrYoP5Hu3/6lqp/tfJaIhMb0bqL5VI/v3bCL+In3a4+kvjkFAABIevSchuDm1DCR9Ijog6B0Tr2owZ5YEXe9sV5YVpyj6ssz+yfkPZOZSYNeksXSonWqHtlmgIiIvFVs9URemWnfE5lIL+9aperb219Q7fN6b6mba4C+XT9n1h6z9pncKX7nT7INiFpYaH3/y13cA0zdaaUpd3UIn6A8tH2jqp/qfLaq7QZEOYl0EFTw2G6P7wX9+3hD2+rncbwEe0wZJFV7MCAKAAAAxqDnFAAAwE/E+iHSRMT478jW7HyZOODBuL9PKs6bekf+FlXry+r5PaAC0NlF83COi5G83Mxz6kR/lKt+WoWqExXrm8SLiH/6uqele1YXr5oUta25RXLHdTN8bcMf/t8vJCvL/0eggoj1AQAAYAxifQAAAD8R64dI6ptTr2P4ZI7y3Sxfqo/Wr02C85jWpnlLkw1Rvj09ytdH5a86ZoVeTo/luJk7tbbwa5S5HTdRvpt5UYedckTVL8berKTDUqepLalvTgEAAJJaQEQq/W6EWXjmFAAAAMZI6p7TZI7hdU/usEYqHwrUV3Uko+j1KF+P+H9+6lFVD29tHU8frZ/qwsX5TsuXJptkWPAgGdpoKqdFGZxG9OtR/oo9G1StXwfgDa9nVdCjfD3iv7LRYVUPb22dD7V9Vgci/tST1DenAAAAyS0gaQyICkGsDwAAAGPUqkn4g6P7k+1xADcj8QHADUbxm8PNqHxEL1zEb8wk/F8Wyp3XTve1DU8sGMUk/AAAAIAdbk4BAABgjFo1ICrZ4vzgpPlHA/XC7qtH/zq/HwNI5OhskybaBvzw+wJrov562trrenyv1/pMIQ93tBZCmLqzagaLuzok7+wVJtHj+wpJU7VTlK/vr/M7+k+2a2xSjeKvNP4Jy4Si5xQAAADG4OYUAAAAxqhVsX6yeaFL7xo/b2qUr3OK8t8qtkYMX5npzQjBZIiZgHia3Ml+on74y01877SP31G+LpmvsXYR/9G2jfxqTqiAiDDPaQh6TgEAAGAMek4BAAD8RM9piKSYhH/fvn1y6NAhOXDggN9NQQpo3rw55xJixnkEL3Ae+ad9+/bSokULv5shWzcWyp1Xv+RrG55YNNqoSfiToue0RYsWkp2dbdQ3DsmLcwle4DyCFziPgOqS4uYUAAAgNQWI9U/CgCgAAAAYI2luTmfNmuV3E5AiOJfgBc4jeIHzCKguKQZEAQAApKKtG3fLnVdN87UNTyz+lVHPPidNzykAAABSHwOiAAAA/BIQkUCl360wCj2nAAAAMAY3pwAAADAGsT4AAICfmOc0BD2nAAAAMAY9pwAAAL4JiFTSc6qj5xQAAADG4OYUAAAAxiDWBwAA8BMDokLQcwoAAABjcHMKAAAAYxDrAwAA+CUgxPonoecUAAAAxqDnFAAAwE/0nIag5xQAAADG4OYUAAAAxiDWBwAA8E1ApLLS70YYhZ5TAAAAGIOeUwAAAD8xICoEPacAAAAwBjenAAAAMAaxPgAAgF9YIaoaek4BAABgDG5OAQAAYAxifQAAAD9VEuvr6DkFAACAMeg5BQAA8E1AAgFWiNLRcwoAAABjcHMKAAAAYxDrAwAA+CUgDIg6CT2nAAAAMAY3pwAAADAGsT4AAICfWL40BD2nAAAAMAY9pwAAAH6qZJ5THT2nAAAAMAY3pwAAADAGsT4AAIBfAgEGRJ2EnlMAAAAYg55TAAAAHwUYEBWCnlMAAAAYg5tTAAAAGINYHwAAwE8MiApBzykAAACMwc0pAAAAjEGsDwAA4JdAQKSSWF9HzykAAACMQc8pAACAnwLMc6qj5xQAAADG4OYUAAAAxiDWBwAA8FGAAVEh6DkFAACAMeg5BQAA8E2AAVEnoecUAAAAxuDmFAAAAMYg1gcAAPBLgAFRJ6PnFAAAAMbg5hQAAABhTZgwQQoKCuTIkSOyfv16GTJkSI37//jHP5b169fLkSNHZPv27fKb3/zG1ftwcwoAAOCnQKW/Hy6MHj1apk2bJk8++aT069dPVq9eLcuXL5e2bdva7t+hQwd55513ZPXq1dKvXz956qmn5OWXX5arr7467HuliQgPOgAAAPhga3a+TBzwoK9teGrdA5KVlVXjPmvXrpWNGzfKrbfeqrbl5eXJG2+8IQ8//HC1/Z9++mm5+uqrpVu3bmrb7NmzpXfv3jJ48OAa34sBUQAAAD4pOLBNnlr3gK9taNiwoWRnZ6v/nzVrlsyePVv9f7169aR///7y/PPPh7xu5cqVjjeagwYNkpUrV4ZsW7FihYwZM0bq1q0rJ06ccGwPN6cAAAA+ueyyy/xuQljNmzeXunXrSmlpacj20tJSueSSS2xf07JlS3n//fer7V+vXj1p3ry5lJSUOL4fz5wCAADAGNycAgAAwNGBAwfkxIkTkpGREbI9IyPDsQe0pKTEdv/y8nI5cOBAje/HzSkAAAAclZeXS05OjgwbNixk+7Bhw2T16tW2r1mzZo3t/uvXr6/xedOgAB988MEHH3zwwQcffDh9jB49OnDs2LHA2LFjAz169AhMnTo1cPDgwUC7du0CIhKYN29eYN68eWr/Dh06BMrKygIvvvhioEePHoGxY8cGjh07Frj66qvdvJ//XzAffPDBBx988MEHH2Z/TJgwIbBjx47A0aNHA+vXrw8MHTpUfe6jjz4KfPTRRyH7//jHPw7k5OQEjh49GigoKAj85je/cfU+zHMKAAAAY/DMKQAAAIzBzSkAAACMwc0pAAAAjMHNKQAAAIzBzSkAAACMwc0pAAAAjMHNKQAAAIzBzSkAAACM8f8B4+spaOe2GOMAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqcAAAK5CAYAAACCOYfvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACAPElEQVR4nO3deXxU1f3/8U/CqoBiQQKEfd9UEIOAUG2VotSliNKqVfTLFwtS97pr/YKtuwhaCkL5yVKk8pXyVakI7q0sEmIRg0AIYUkCCeBKWEMyvz/SOfcMuTdzZ+bO3DOT1/PxyMOPN3funCQ3N5fzvuecNBEJCAAAAGCAdL8bAAAAAARxcwoAAABjcHMKAAAAY3BzCgAAAGNwcwoAAABjcHMKAAAAY3BzCgAAAGNwcwoAAIAaDR06VN58800pKiqSQCAgY8aMCfuaPn36yMcffyyHDx+WoqIieeyxx1y9FzenAAAAqFHjxo0lNzdX7rzzTjl8+HDY/Zs0aSLvvfeelJaWSlZWltx5551y3333yT333OPq/QJ88MEHH3zwwQcffPDh5uPgwYOBMWPG1LjP+PHjA99//32gYcOGatsjjzwSKCoqCnt8ek4BAADgqUGDBsm//vUvOXr0qNq2YsUKyczMlA4dOtT42rpxbhsAAAAcVB79RCT9DF/bsGlrWshN5KxZs2T27NkxHbNly5ZSVFQUsq20tFR9bufOnY6v5eYUAADAL+lnSODrUb424ejR1yQrK8vXNui4OQUAAPBRpVT63QTPlZSUSEZGRsi24P+XlJTU+FqeOQUAAICn1qxZI0OHDpUGDRqobcOGDZPi4uIaI30Rbk4BAAAQRqNGjeScc86Rc845R9LT06Vdu3ZyzjnnSNu2bUVE5Mknn5T3339f7f/aa6/J4cOHZe7cudK7d28ZOXKkPPjggzJlypSw78XNKQAAgE8CAZGKQKWvH26cd955smHDBtmwYYOceuqpMnnyZNmwYYNMnjxZRERatWolnTt3Vvv/8MMPMmzYMGndurWsX79epk+fLi+88IKrm9M0qZpTCgAAAAlWcWyjlH99la9t+LJ4sVEDoug5BQAAgDEYrQ8AAOCbgFQSYoeg5xQAAADGoOcUAADAJwFJzXlOY0HPKQAAAIzBzSkAAACMQawPAADgo4oAA6J09JwCAADAGPScAgAA+KRqQBQ9pzp6TgEAAGAMbk4BAABgDGJ9AAAA3wSkglg/BD2nAAAAMAY3pwAAADAGsT4AAIBPGK1fHT2nAAAAMAY9pwAAAD5ihahQ9JwCAADAGNycAgAAwBjE+gAAAD6pGhAFHT2nAAAAMAY9pwAAAD5ihahQ9JwCAADAGNycAgAAwBjE+gAAAD4JiEgFqX4Iek4BAABgDG5OAQAAYAxifQAAAB8xz2koek4BAABgDHpOAQAAfBIQkQpJ87sZRqHnFAAAAMbg5hQAAADGINYHAADwUSXznIag5xQAAADG4OYUAAAAxiDWBwAA8Amj9auj5xQAAADGoOcUAADAJ/ScVkfPKQAAAIzBzSkAAACMQawPAADgl0CaVAaI9XVJ0XM6YcIEKSgokCNHjsj69etlyJAhfjcJBnv88cclEAiEfOzdu7faPsXFxXL48GH56KOPpFevXj61FqYYOnSovPnmm1JUVCSBQEDGjBlTbZ9w503Tpk1l/vz58t1338l3330n8+fPl9NPPz1RXwIMEe5cevXVV6tdo9asWROyT/369eWll16S/fv3S1lZmbz55puSmZmZyC8D8I3xN6ejR4+WadOmyZNPPin9+vWT1atXy/Lly6Vt27Z+Nw0G27Jli7Rs2VJ9nHXWWepz999/v9x7771y++23S1ZWluzbt0/ee+89ady4sY8tht8aN24subm5cuedd8rhw4erfd7NefPaa6/JueeeK5deeqlceumlcu6558qCBQsS+WXAAOHOJRGR9957L+QaNWLEiJDPT506VUaNGiXXXXedDB06VE477TRZtmyZpKcb/2cbEQoOiPLzwzRpUvV9MdbatWtl48aNcuutt6pteXl58sYbb8jDDz/sY8tgqscff1yuueaakBtS3Z49e+RPf/qTPPnkkyIi0rBhQ9m3b5/87ne/k1mzZiWyqTDUwYMH5be//a3MmzdPbQt33vTo0UM2b94sF1xwgaxevVpERC644AL59NNPpXv37pKXl+fL1wJ/2Z1Lr776qjRv3lyuuOIK29ecdtppsn//frnlllvktddeExGRNm3ayK5du+Syyy6TlStXJqTtSIyyo1/I1tLLfW1D5b6/S1ZWlq9t0Bn9T7B69epJ//79q/0irly5UgYPHuxTq5AMOnXqJMXFxVJQUCCLFi2Sjh07iohIx44dpVWrViHn1NGjR+Wf//wn5xQcuTlvBg0aJAcPHlQ3piIiq1atkrKyMs4tVDNkyBApLS2VrVu3yqxZs+TMM89Un+vfv7/Ur18/5HwrKiqSzZs3cy6hVjD65rR58+ZSt25dKS0tDdleWloqLVu29KlVMN1nn30mN998s1x66aUybtw4admypaxevVp+9KMfqfOGcwqRcHPetGzZUvbv31/ttfv27ePcQoh3331XbrrpJrn44ovl3nvvlQEDBsiHH34o9evXF5Gqc+nEiRNy4MCBkNdxnUpdFZLu64dpGK2PlPPuu++G/P/atWuloKBAxowZI2vXrvWpVQBQ5fXXX1d1bm6u5OTkyK5du+TnP/+5LF261MeWAWYw73ZZc+DAATlx4oRkZGSEbM/IyJCSkhKfWoVkc+jQIdm0aZN07dpVnTecU4iEm/OmpKQkJJoNatGiBecWarR3714pKiqSrl27ikjVuVS3bl1p3rx5yH5cp1BbGH1zWl5eLjk5OTJs2LCQ7cOGDQt5rguoSYMGDaRHjx6yd+9e2bFjh+zduzfknGrQoIEMHTqUcwqO3Jw3a9askSZNmsigQYPUPoMGDZLGjRtzbqFGzZo1k8zMTDXlXU5Ojhw/fjzkfMvMzJSePXtyLqWggIhU/meuU78+TGN8rD9lyhRZsGCBrFu3TlatWiXjx4+X1q1by8yZM/1uGgz13HPPydtvvy27d++WFi1ayGOPPSaNGjVSo2WnTp0qDz/8sGzZskXy8vLk0UcflbKyMjUqFrVTo0aNpEuXLiIikp6eLu3atZNzzjlHvvnmGyksLAx73mzZskWWL18ur7zyippd5JVXXpG3336bkfq1TE3n0jfffCP/8z//I0uWLJG9e/dKhw4d5KmnnpJ9+/apSP+HH36QOXPmyLPPPiv79u2Tr7/+WqZMmSIbN26U999/388vDUgI429OFy9eLM2aNZNHH31UWrVqJbm5uTJixAjZvXu3302Dodq0aSOLFi2S5s2by/79+2Xt2rUycOBAdc48++yzcsopp8j06dPljDPOkM8++0x+9rOfSVlZmc8th5/OO+88+fjjj9X/T548WSZPnixz586VW265xdV5c/3118vLL78sK1asEBGRt956S377298m+kuBz2o6lyZMmCBnnXWW3HTTTdK0aVPZu3evfPTRRzJ69OiQc+muu+6SEydOyOuvvy6nnHKKfPDBB3LTTTdJZWWlD18R4sv/uUbr+Pru1Rk/zykAAECqOnh0o2wsucrXNtTfv5h5TgEAAAA7xsf6AAAAqSogIhUB+gp1fDcAAABgDHpOAQAAfFRJX2EIvhsAAAAwRtLcnI4bN87vJiBFcC7BC5xH8ALnEVBdwm9OJ0yYIAUFBXLkyBFZv369DBkyxNXrgpNaA7HiXIIXOI/gBc4jBP4zz6mfH6ZJ6M3p6NGjZdq0afLkk09Kv379ZPXq1bJ8+XJp27ZtIpsBAAAAQyV0Ev61a9fKxo0bQ/6lmJeXJ2+88YY8/PDDjq/7+vAhOVxeLt8cOSINCw8loqkp40d9jqv6m9z6tvtknHVU1aVfNox7m/x2+pmnyff7f/C7GUhynEfwQiTnUfM+x1R9ILeB7T4tzzqi6pIvT4mtcSkuo/2Z0rTF6X43Q74/+qWs3zvK1zacdmChUZPwJ2y0fr169aR///7y/PPPh2xfuXKlDB48uNr+48aNUzexh8vLZeirfxERkS53r41/Y1PIDVuKVL1wQBvbfe7O36zqFwf0jHubAACRG5u3Q9VzBnS03eeh7RtV/dSAs+PepmQ2fd3TfjdBYZ7TUAm7OW3evLnUrVtXSktLQ7aXlpbKJZdcUm3/2bNny+zZs0VEZGt2vropzX9xoNrH6UY15Iash/0NWTK4ZesuERF5tXt7te26LXtUvahHa1U7fc1uvv4XuyTXDemSIuvnPqrNwBr2dGdx0RpVj24zKObjAYCIyCMFG0RE5I+d+kb0ulvzClQ9q1snVc/pZn9DqnuqMzekSH7McwoAAOCTgIhUGjgoyU8J60c+cOCAnDhxQjIyMkK2Z2RkSElJSaKaAQAAAIMlrOe0vLxccnJyZNiwYfLGG2+o7cOGDZMlS5a4Po4e5TtF/Mkc5ev0OD9Ij/Ijtaw4R9WXZ/aP+jh+izTKD8b2TpE9Ub7I0qJ1qh7ZZoCPLUlu7xR/ruoRmed6euwVezaoenjrvp4eO1Kpci2Jt2CcP3Fbnto2vWs3T45t0s/greJsVV+Z6c2gmkge3/L6US/4L6Gx/pQpU2TBggWybt06WbVqlYwfP15at24tM2fOTGQzAAAADJEmFcmzJlJCJPTmdPHixdKsWTN59NFHpVWrVpKbmysjRoyQ3bt3J7IZAAAAMFRC5zmN1tbsfJk44MEa93Ezir+2C5mGxMWoTwCAmSZsy1f1jK5dfGxJ8pq+7mnpnuX/9+67o7myas8vfW1Di6/n1s55TgEAABAqIMxzejK+GwAAADBG0vWcOk0272YUfypwmoRf5zSKs7ZH+SaNdkbtEo/RzKgdnK7nyRDlc967V0lfYQi+GwAAADAGN6cAAAAwRtLF+m4m2E/miN9pTeUgN5Pw+z0hs6n8ivKZIBpEmuZYWLhK1Te0vSCu7/VIwQYRsSbjj4ab6/m9+ZtU/UKX3lG/l9c4790JBNKkIsDypTp6TgEAAGCMpOs5BQAASBUBEVaIOknK35zaRfymxfvhJlN2M8rcaRaDaN8TIouL1qh6dJtBUR+HKB8m4TETf+mj75eUNVf1q93bqzrc411wh3M9eXGrDgAAAGOkzPKlkUi2QVKxiLRHFamBHgMg9bAEtbdMWb706yOb5L2iMb62ofN3M4xavpSeUwAAABiDm1MAAAAYI+UHRNkxbR7UaAcn3bS1UNXzu7e13UeP8omEag+ifMDix9ymIuHnN71l6y5V6wOinOjXbQa1po6ApDFa/yR8NwAAAGCMWtlzCgAAYApWiApV629OTYj4o41krmlcour5Yh/r6/RISJ9rb+WRRqp+qUuPqNqC2mNp0TpVj2wzwJNj6ucjy+/Ca/GO8nWRLFV6PFBH1W4e09Idrayn6jvyt6g60mv4czur/tbd1yG5HgViRpLURqwPAAAAY9T6nlMAAAC/BESkkr7CELVyEn43TBjFDwAA4sOUSfj3H/lK/lE41tc29P7+JaMm4afnFAAAwDdpUhGg51THdwMAAADGoOfUgV+j+Ad/cVzVq8+pLyIi/f9dqbbl9LP+PZG1oULV2X2tUZ8AEE/xmLEhUSYVWDNDPN4pvjNDBEfg66Pvh+f+oOoVfU6L6/sDyYqbUwAAAJ9UDYhinlMdsT4AAACMQc+pC4mM+INRvojIoXc7iYhITr8C233dRPkNPmmp6mMXWpP2R7qmMwAEJVuUr4t3lK8Lxvn1Pm6ltq3oE/3xmvyruaova56r6sU9W9rtDiQtbk4BAAB8xGj9UHw3AAAAYAx6TiOUyIi/eO8ZIiLSzeHzef/vPFV3+6/1tvvoUb5Oj/LH5u1Q9ZxuHVU9cVueqqd3dWoFTBFcI1sk+dbJRvTm7v5U1Te3G+JjS1LfjqcGqbrjQ2tcv678or3hj73oHOvY131hu8/BoQdUvVisKJ9rdXILSJpU0FcYgu8GAAAAjMHNKQAAAIyRJlVTbBlta3a+TBzwoN/NqJFXEX+0sRGSz735m1T9QpfePrYEMJfTjCPRKlpi/a61GbWphj1jV/Bs1fW80/1cy000fd3T0j2ri9/NkNLDW2Txrgm+tmFg2bOSlZXlaxt09JwCAADAGNycAgAAwBiM1vdILKP4ix8crOqOD62utj3z6dXVXhONbS+dr+qud3zmyTFTQd9/W/WGfol7Xz3K/33B5yIiMrnTuQl7/yd2ZKv6sY7mxDmAzosof9+bPVTd5qrIovz9461Hrc6cGT6eL73Dup53ut+ba7edvFnW72y3W7Nr2BOmC4gwWv8kfDcAAABgDHpOAQAAfJMmlawQFYKb0ziINOLXY/u991qRUPrxmt9H37fVC9Yx9vzO2t76eWu7HuVvm2fFx13HfF7zG6W4REb5ToJxfjDe17fFSypH+VN2WvHrPR0G1bAnaoMWV21RdeEb1uL2ba/Jtds9hJsoX5fxknXN7ZzdUEREtmcdDfu6wket63bbP1jHKHxM2/6E9pjAibSI2qW7f/uXqn6281lRHweIF27VAQAAYAx6TgEAAHxSNSAq+p7wVMQk/AkU6Sj+r8dVxZHNZjOBMwAkq30TrWi+xfT4jeBHZEyZhH/v4a3y1523+9qGiw790ahJ+Ok5BQAA8BEDokLx3QAAAIAx6DlNoEhH8dvF+Qd/ab1Of0Slyd+sY/xwnbXPaYus7ZFGS5GsQT1xW56qp3ftFvbYfmv3WSNVz267StVjdw9RddHAsoS2SURkwrZ8Vc/oah833ZpXYLt9VrdOcWmTW48UbFD1Hzv1td3noe0bVf1U57M9eV+vRx77sThBMiyIoP/s0tMqVa3/rOPx841Eyf/1VHXLX2xW9Yo9G1S99miFqh/v1D/sMYOPV4k4P2L18i7rGtKtnnVtGXj/eBFxvt5+e7N17DPmhn98S2/LsabWH4DWz3n7qIBp5+NzO6v/jbyvw0CbPZEquDkFAADwSUDSGBB1EmJ9AAAAGKNWjdYPRqZ6XOomRo1U8YNWfK5PsO8k0lH8do6NsI9eGrxj5prLkT4GcMvWXap+tXv7iN7r9E+biYjI90O+tv28Hvldv+Mnqk5Ps3419g/+LqL3jNbYvB2qntOtY9jtN2wpsj3Owh5t4tC66OiPIeiPHsTyM/XCvfnWoyovdOldw57muTvfiqyPB+qo2ul3yelnoNPPpWjPH5O+p8V/t94/d+BC232Gt+4b9fHLrj1f1e+9+LKqT02vr+pjgXIREbkyM7Jo/NA159tub/TGZ7bb/WbSohdP7lin6oc7DqhxX1NG6+85nCdzd9zpaxuGHZ7MaH0AAABUYbR+KL4bAAAAMEbK95zqcZZdbO8myh/8hbXI/epz6tvus+MpK8ro+JAV5e+914r4W71gH/E7jeLv+GbV+9b5+POTXyIiItumWft2vdP+cYATF1ujUcsbW/Hfof/+TtXNr8gTL+mPSqSLNapXjxwjHdEfS+wbjPOb/Ku52vbnDm+qenjrC1Q9d/fbqm5Vt7G1j/SN+v3brLWOo88AMGrzPlUv6dlCRESOVtZT227aWqhqPcrXlQesX+Ffn2btv1C8ifXfKrYeCwlGk/ojBnW0p4Kc4uJ4R/l6HH1dk1IREVl+uIna5nSu6bGzm5kG3HhmhxW7PtDRPpqNlv59f7GLNSpd/546OVRpXbecfgaRRPn6YwV6W+poo/i9cvw9q431h1lt/2ZZ1c/1R5fbX78qK60BJnp8rz/Go9f6Pm5Gq3997WFVj2xjxcfvFFvX6wZpVb/P5T87T22rt3K97fF0kcb3+8dbf3/OnBl+1H/eDKu93Sasq2HP0HP61PQTqr69/QV2u3vG7nfSze/poYD932iTBUSkgp7TEHw3AAAAYAxuTgEAAGCMpBut7/cI30PvWhFl8d4zVN3tlhxruzZaP916IkDqH7S+1U6TOVdcdK6qd1xVFU84juAfqE1yvXaj/T6aSKOlkrutr6Pli/FbD1qPK/VY203MWOej1qquqNT+rXWxFfWmfZgpIiKBnxarbad8kmF7vEptrrljF5aEfX8nwRkCRJxnCbh807eqXta76lwa+dV+tW1przMjes/LNn2n6uW9m4bdf3juD6pe0ec01/u72VcX6dcU6dehCz4KMb9724heZ9Ioczf06+DRgPU7s6hHa7vdHV35lXVuvtWrWQ17unNH/hZVv9SlR9THydpgTZSf3beO7T773qw6fourtth+XrdrsbU4Q/vR1qIN+mNU2385U9VllUdVvfqo9YjIY5P+W9VNF9hfw/VHqT5YMKfa5/XHByov7KfqQJo2z6VW1vnI/rGuI1dZ0fwpb9YczSe74O9nLL+bdr/jpozWLz68TWZtv9fXNlx+9DGjRuvTcwoAAABjJF3PaSyCD79HOrdd/39bD/nn9Ev8/bybeVDT+ln/ogz8u+alRhNpWbHVo7zooNVbqfeK6vtcnhl+OcEQH2i9qxfbz/lpR+85PXJhadT71Pu4larLL9pru0+zVVYP+9cXfGu7j9cu3HhE1Z+cfUpErx34Rbmq155Tr4Y9Q0XaE+vkp18eUnWDdKstkfaiBsV0frkQ7WCqeMyxrLMbcCfirrc02Ksf7NGPhtOgqURx6i1NpG1/qhoUl37E+ruRf8MMVa88bP1+PX/j9eEPmG51qaat2hB7AyPkNIAsHrxYEls/hi54PFN6TosObZOZ2+/ztQ1XHXvEVc/phAkT5L777pNWrVrJpk2b5K677pJPP/3Ucf/rrrtO7r//funWrZv88MMP8v7778vvfvc7KS21/5saRM8pAAAAajR69GiZNm2aPPnkk9KvXz9ZvXq1LF++XNq2tX+MavDgwbJgwQKZN2+e9O7dW37xi19Ir169ZOFC+0UxdNycAgAAoEb33HOPzJ07V/7yl7/Ili1b5I477pC9e/fKhAkTbPcfNGiQFBUVydSpU2Xnzp3y2Wefycsvvyznnx9+mr2ki/Wv27JHbXd6+N/NPn47+Esrqm/yuvslS91E/HV6d1d1xaatUbSuyg/XWe912qLollWNC4coXx+s1ujSAnFr9m4rkhjXbkhsbUuwWAYPeS2WRwlM4mapz1jYLaMcC68HNcXCacBqLI8wfP+Otf/pI/Jr2NPZjkXnqLrjdV9EdQy3TvzUenSk7oc51T6vP4L1X68vU/VVjQ6oWl/uNK2/9shWjjmPbEXKq7mEvWRSrP/n/Pt9bcPI4w/XGOvXq1dPDh8+LNddd5288cYbavuf/vQn6dOnj1x00UXVXjNw4ED55JNPZNSoUbJs2TJp1qyZLFy4UL7//nv55S9/WWN76DkFAACoxZo3by7Z2dnqY9y4cdU+X7du3WrPipaWlkrLli1tj7l27Vr51a9+JQsXLpTjx4/LgQMHJC0tTcaMGRO2PSm/QhQAAACcHThwwPOppHr27Ckvv/yyPPHEE7JixQpp1aqVPPfcc/LKK6+EvUFNuptTNzF9JFG+vkTkNY2teS31WMVpzr28/2fNG9rtv+znDXVcvjTNZmc5aUnSRf9ZHk+bw9RpqVN9e6RR/rGfW1/riVOszvSy0dbo69MWRXTIsOzm+HRNi/KPreyg6kY/qznKn7nLiu/Ht7fiez3KD86JKhI6L6rOzSh+J/rXXaGdBNFG8vrr9NHy+nyxXkfsTvF9LO8T6QwBTjMDBOdUjXSOWJ2bKN9pJPqkAivGfbyT9zMDhBPLPLm6S3IPiojI+32a2H7eKb53mns6lkcYIonyd/+vNUK/3bXWCH09ys9fYM0tKvsbqLLLPZE9unRolPXcXP2D1t8IfQ7pbS9X7dP1dmsJUH02ldGNv9eOaJ33IbOvuIjy9b9Fmf+w/kY1WhJ+GdTCx6r+RrV9Ivxc1k6PvLhZ7tWLKN+LEfz6cc7MPBpmz8QISJpUGB5kHzhwQE6cOCEZGaFzhGdkZEhJif2c4A899JCsW7dOnn/+eRER+fLLL+XQoUPy6aefysMPPyzFxfZ/Y0WI9QEAAFCD8vJyycnJkWHDhoVsHzZsmKxebf8Pm1NPPVUqKipCtgX/Pz295tvPpOs5BQAASCWVAYc41SBTpkyRBQsWyLp162TVqlUyfvx4ad26tcycWbW62rx580REVGT/9ttvy+zZs2X8+PEq1p86dark5ORIYWGh4/uIJOFo/Ru22E+07mapy+Br3eybSMdGWDFIg3eyq33ezQT7ribqz7Iir0C2FXk5vX+0Mwro9Ah80I+sSOjDsxqpevRmKxJY3NP+weoQDqP1y7TR+o0jGK3vRsgyqT/ZU8Oe7nkx0v6tYuvnpT+KokfvOqfo3Wmhie7rraixQfoJERFpXOeY2rb6nPqqHvzFcdvtTvT3rJdu/es6kon/RawIWsSKoZ1m7NAf44l0idNYRLI8qlPb9cj+ltN3qlr/ubuhn3eHK6xYWz83gt/TU7X1lxulWz/3hmnWYxixLCPtVUwbzo6/WUs9d/yV9ZhU/hTtuqnF+vt+az2O1eJP8Vu6WVf5gXU+vtfzbVXHe7L7SMR74Qid3bnhdL64OY/sJuS/MPM1+dEpfWJua6wKD+XLS9tiX2goFqPLH3A9Cf/9998vrVq1ktzcXLn77rvlX//6l4iIfPTRRyIi8pOf/ETt/9vf/lbGjx8vHTt2lO+//14+/PBDeeCBB2qM9EXoOQUAAIALM2bMkBkzZth+Tr8pDfrTn/4kf/rTnyJ+H25OAQAAfBIQkUqGAIVIuptTN5G801rafsT5e35nxUOtn7fiIX2C+wbfhz4wfDI9yneaYN9pFH+3Od+pujI7svWlnaL8vfdoMxBMqTny0kezfyiNbPfRo/x4Tiqvj9afsN2aADhkVL7DIwNeRfle0ONdN5FupKPo++RYF8nc/uXVPj/YYQ5zp4i/0mFqitD43npPPe5/MsOKYJ3iTacR5UFO1wMnY/N2qHpOt45h93fj4lOsSPyFMPs6zTaij75fKlatT8Kvc5qQ383vld33VH/cIJYo3w8hUf5ftdH6++z3T1SUr0u/2HrkZPgHl6t6xR5rov7L8y5TdflFe1Ud7tGwk+2bqD22MN391xpplB/LxPt28bxTZB9pxB/c3mtdw4jahMThVh0AAADGSLqeUwAAgFRSkQSj9RMpKUbr7z/ylSzb/V8i4k00r4/4j/R4DT6xIuhjF9pPPBuLExdr6zJ/UH1dZjfS+/RQdd7Ypqp2GsVvkqVF61Q9ss2AsPvX+7iVqvWYKx6j6000arOVSx7TJt4vD1gTceuT1PvBaRS/0+IWySCS0fduOD1KEPFMFhqvRvcnk31vWte+FldtCbt/3kzrGtNt/Loa9qzy9dhBqm42Z42q9YVM0su1P6mVVXW99+2v5Wn9tXMnzbo5CazPtTafZ40mf/etv6p6XOEFqt59/qGwbU81d+Tb/3x/fqo1sX64mQ6mr3taumfFd9YBN3YfypcpeY/42oYbTvzO8xWiYkHPKQAAgE8CkpYU85wmEs+cAgAAwBhJEevrk/Dr9FG4Sw/9SNWRjLCNx8jcbS9Zay53vcN+bWOn0ZJHrrJiprpHqkYt62s1O3GaYF/nNFF/3qvWowSt37E60xv/b/h1me0U/92Kqt477xVV36ytYe80Kl8feew02thJ6Chza8T3kqKqr3VUm4HVXnOyoRutSOhfZ4cfyamv8d4g3RrZHmnbg2uVxzIKWo/49VjfTVv0Sfv10f2Li6zo8rkDVeemHsG7eQzD6dhOIp3MXxe8JrgZlR8PT+6wvh8Pdwz/WEok9NHy+iT4RwPW4xxOI/0jFTyXlvRs4cnxIn0MQt9//WFrcY1IZ56wc8Yq62/Ftxd8E/PxahKcGaDLr/8ddt/KIX1tt6d/ukHV+t+8emnW72FeuRXr397eivu9oC+kos++ontmh/W34oGO59vu4wWn8yjax2xMifV3HdouL2z1N9a/seJeYn0AAACISECkMkCQreO7AQAAAGMkdawfqeC6wE4TCbuZrDsYv4q4i2C3zTtX1V3HfB52/wNvW5MGN7+i+lrAXnGK+OPJKcp3Wkvcb6a2y4nTIyqxzE6h++mXVdGh/viC04TukS6mcPmmb1W9rPcZEbUr2p+T1yPu3bp/e9VjN892PivMnqHcPILktI9+3dJ5MZm+X9/HaL1VbE1S7zRzwYn326m67iW7o36v726sGt1f77D1mFGjJZE9LlX+s/NUrT/itWLPBtv953xvzeoQ6QwPQfqjWZlXb6phT/ee22n9nbmvQ/hHrMLRJ/h3Em7if1Ni/Z1l2+WZrb/3tQ3/VXmXUbE+PacAAAAwBjenAAAAMEZSxPrfHc2VVcVVa6G/2KVn3N5Hn9T3pS49atizSjxG+kdCn/jZ6aeor7Osj8rvdov1CIMe8be0BmdL48WJn7Tf6dEKfULx8oA1jq9CW7fdKT4OTmQebcRVE5MizeBjKyKRr4HtNEtCMMoXEfnwrEY17utEj+zrpZ1Qtb5WfKQiebzm7vzNqo7n9SMV6dfEemItmuB0rseylrrOzawHwfdy8z5etSvtw0xVB35abLvP7setmVjaTaq+bn3ZtdZodn1GlMMjtVHu2pSXp/5d2+fq8223O0X8A+8fr+rT/2r+IiyJZlKs/9SWx31tw38H7iTWBwAAAOxwcwoAAABjJEWs79Vo/VRz6Bor4mn0RvgRoE5xUtloK9YvsZaOTtgo/ngLjlaPZaQ67CXDjAbB0fEikY+QB+Lp+xusa+/pCyO73n7/a+u1gfTwS182nb8m7D7hmPQYkxdMifV3lBXIk5v/x9c23Cq3E+sDAAAAdlghCgAAwEeVEr73uzbh5jQGE7dZk+RP79qthj2rK1piRSJtRtlPclxyd9Woz5YvWiM+f7jOinLKRlvrulfWsbY3ed0+HtKj/JDt2qj8Lout7X5M1B8P4eL8VBnN7cfsEXqU72YRCz/oUf6kAquNj3cyp42xiOU6lGp+X2AtdDK507k17GkGPY7/Zpn1s0t/3ZoFo+kC+zjej9H3qRDlIzkQ6wMAAMAY9JwCAAD4JCAiFQGfY33DnipgtD5cSZWIHwAAEXNG6xeUFcjkryb72oaJaRONGq1PzykAAIBv0qQy4PNTlob1nPLMKQAAAIxBz2kK2nuPtbZzqynV13aOhh7lE/EjEn7MIgAkmz33W9ft1s+uDrs9Frsft47ZbpI3xwS8xM0pAACATwIBkUq/B0QZhlgfAAAAxqDnNAV5FeU7sYv4iffhhCgfCM8psvcqytcR5cN03JwCAAD4iOVLQ3Fz6pNUWXIw2GOazIOkpu60ehHu6jC4hj3Nk8xtBxLl5V2rVH17+ws8P/6ozftUvaRnC1UPz61aYnpFn9M8f08glXFzCgAA4CMGRIViQBQAAACMQc+pT5yi/Anb8lU9o6u3y6oV/723qjOv3uTpsZN5HtRkjsPj3fZHCjao+o+d+sb1vbwwd/enIiJyc7shPrcEJtGj/HhE/HqUr/tR3bL/VMkb63fObqjq7VlHfWwJahNuTgEAAHwSMGH5UsPw3QAAAIAx6Dk1TLpUVtu2rDhH1Zdn9rd93SmfZKj6yIWltvu8d94rqr5Z4hd7Rhrx37J1l6pf7d4+bu1yY+auT1U9vn1yRcMr9mxQ9Y7yMlVH+nU8s+MzVT/Q8fyY25VIwTh/cdEatW10m0F+NUd5p/hzVY/IPLfGfd8qzlb1lZlZUb/n3wqtmRx+1Tayxz8WFlZF3ze09X5ku98apgXC7uPV78ANTfaKiMgiaa22Bb+3Is7f3zNW/UjV317wje0+C7Tj3BjHn5Me5evXmOGt+8btPZ24+VsYj9ci8bg5BQAA8BGj9UMR6wMAAMAYaSISPuPw2dbsfJk44EG/m+GbG7YUqXphjza2+/z0y0Oq/vCsRmGPedmm71S9vHfTqNsWiWQbxZ8q/I7iUDstLVqn6pFtBvjYEv/pk/SXVVij3/XJ+YMT9p+83cnlm75V9bLeZ8TaxFpp+rqnpXuWt7PiRGPbwZ3ywMZnfG3DQ/X/S7Kyon+MyGv0nAIAAMAY3JwCAADAGAyIMsDEbXmqtpuc3ynKjzTW8SPK15k6Uf9zO633v6/DwBr2TE5uovzZu61ZCsZ5PIG9m9HJMEtwtoNYZjowKcpP5DloN/uI0yT9epQfqfS06jO7+CXZHuEIzojRoNmhMHsmDgOiQtFzCgAAAGPQcwoAAOCXQBo9pydhtL7BxubtEBGRkY2sSZidJg8evblE1Yt7tgx77Ou27FH1oh6ta9gzNm4m2Dcp4kd8I34gmT1SsEHVf+zUN+z+weuffu1zs8jClV99be3fq1nY7cG/FSIic7p1DNsuVDFmtP4Pu+TeL571tQ2PNbyZ0foAAACAHWJ9AAAAnwSEAVEn4+bUYEcr64mIu3WA9ShfH5V/6+nWTACv/tBZ1XqUH881h52ifJ1Jo/gnFVjfi8c7Jdf6y3O1OP7mGOL4VIjyWUcb8eAmytcdD9Spts0pytfpkb1uYtNCax+x9jlc2SCidgGmI9YHAACAMeg5BQAA8BGxfihG68NYfkf8AIDUZcpo/bwfdsld/37e1zZMOvUmo0br03MKAADgk4CIVAo9pzqeOQUAAIAx6Dk1gJuJ6uNp5Ff7Vb2015kJf38niRrFzwTWgFkWF61R9eg2gzw99sxd1qwW49t7PzOFPlvK8t5NPT++HafJ+YFkxc0pAACAjxgQFYpYHwAAAMZIup7TJUVWpDuqzcAa9kweEUX5H7Sx6ouL7Lfr9H0clAfMPw3iGfET5QPhebXIgxteR/m6eET5unBR/vH3rOt9/WG7bPc58X47VaenWRPqpF9caLe7lNtM9o9kkkbP6UnoOQUAAIAxuDkFAACAMczPc0+SKlG+G3U+ai0iIhWV2r8htJj+2MoOqm5w8U7bY9T7uJWqyy/aa7tPRZLNr5aoUfzxlsiY1E+15etMdfzsohB83Eq7bh89Yf3ZPbq8s6pPu2y7qutesrvm4510zMMVDWJsKPwUCDAg6mT0nAIAAMAY3JwCAADAGEkX69cmKs7X4ptD73ZSdaOfFai6TNuua3yRtU+fHOvfIrn9K1WdqImi4yGZI/7aEpPWlq8zGc3RHrkYy8/Je/+5duvX59Mu3e60t/L9O9Z673XSrWt144vtr+efnH1KTM2sDRYWrlL1DW0v8LEl9oj1Q9FzCgAAAGPQcwoAAOCjAD2nIbg5NZnNBPqNLi2w2VGkscP24Ih/EZHc/nu8aZehkjniB/xAlJ8YTtdnJ6ePyLf/hDZaP7d/+AVWYDExyoczYn0AAAAYg55TAAAAnwREpDLJ5huPt6S+OV1ctEbV8VyLOd5O/7SZqr8f8rWq0z7MFBGRwE+Loz52xU+sKH9JkRVv64sZjN5coup6aSdUvbCHNuFzkrGL+J3ifTcLFcAeE+wnTqpc7/zW/9/W6Pecft6Hh/pI+2A8f/y99mpb/WG7oj+49qiXfj3/6w/WZP5Le50Z/fGT1N8KV6v6V20H+9gSeMWT38zHH39cAoFAyMfevXur7VNcXCyHDx+Wjz76SHr16uXFWwMAACCFeNZzumXLFrnooovU/1dUVKj6/vvvl3vvvVduvvlm2bp1q/z+97+X9957T7p37y5lZWVRv6dT78GKPRtUPbx136iPnyh6b2mTfzVX9cGhNfeYztxl9VqNbz8k7HanpV8X92zpvrFJKNhj6jRIyqm3tNE/rR6IQz/eH6fWJTd6S91ZWrRO1SPbDIjqGPSWekPvLW3wiXXtO3Zhid3uruxZanW2tB7xlfWJ/wxgqn+xfW/pn7Vr9W3t7X+XIr2emyRRvf3J31uaxjynJ/Es0zhx4oSUlpaqjwMHDqjP3XXXXfL000/L3//+d9m0aZOMGTNGmjRpItdff71Xbw8AAIAU4NnNaadOnaS4uFgKCgpk0aJF0rFjRxER6dixo7Rq1UpWrlyp9j169Kj885//lMGDnf+1M27cOMnOzpbs7Gw5/czTvGomAACAUQKBNF8/TJMmVQPFYnLppZdKkyZNZMuWLdKiRQt59NFHpUePHtK7d2/p3r27rF69Wtq1ayeFhYXqNXPmzJHMzEy59NJLwx5/a3a+TBzwYKzNNEq7zxqpevf5h1S9QFti7daCq6u97siFpWGPHRxIJRLbYKpUlszzoOrnyI0Gzd1naruQOIk8By7f9K2IiCzrfYbt54fn/qDqFX2sDo54D4jSlyptdsphERH5U8c31LZx2qMwlR+0VXW6/qfYZo5rkZMf+zpguw/cm77uaeme1SX8jnG2+ftCGfvZy762YdoZ10pWVpavbdB58szpu+++G/L/a9eulYKCAhkzZoysXZtcf/gBAADgn7hMwn/o0CHZtGmTdO3aVUpKqh4yz8jICNknIyNDfQ4AAKA2CgREKgNpvn6YJi7znDZo0EB69OghH330kezYsUP27t0rw4YNk/Xr16vPDx06VO67776Ij50Mc/31/bdVb+hnv8/stlb8JdqqosNbW1HYKZ9U/VeP8mdr80qOcxgp7VWUf3f+ZlW/2KVnjftO3WnNM3dXh/AjJ5/bafWo39ch/KjTsXk7VD2nW8ew++uC85jqo/JNXerUaaaJOdrP/ca21s9dj1F1fsTqLeo0st2ut7EiYP8UkUmj/t8qzlb1lZmJibliGc2/UPv+Oi3R6GY+Wv0cC7esqVN873QOxINTnB9UoU1qrv9e6YZL37Dvc+DtbqpufkWeqvf+n3VN3DhgkfYK670qAlWPEIzItP9+pl9sPeoWGvHbS1SU7+bvjM6L2Shqos9jGuQ0Qp85T1ODJzenzz33nLz99tuye/duadGihTz22GPSqFEjmTdvnoiITJ06VR5++GHZsmWL5OXlyaOPPiplZWXy2muvefH2AAAAScvEQUl+8uTmtE2bNrJo0SJp3ry57N+/X9auXSsDBw6U3bt3i4jIs88+K6eccopMnz5dzjjjDPnss8/kZz/7WUxznAIAACD1eDJaP95ScbR+m7WNVX2kop6qX2j7tqp/s+MaEXGeHNpxVP4H2rKj2qjPoRuPqvpfZzeMvNFRcJpA2smkghxVP96pf1zaVBOTIv5I1dbR8nYxnh/RfKpL5vPrp19aM6JMPONLVcdjIvtlxdY17Kq8K0REpKJSC+odRuLrnK6b+sIg5za1HglI1PU81ZgyWv+r7wrllrXTfW3Dn5qNSr3R+gAAAIiOiYOS/BSX0foAAABANGpVrB8c6W/aKP8zVzdV9V87fKzq4GjtUz6xpuFyMwm/G9dtsaYIWNSjtSfHNJ0eiR368f6w+/sR8U/Zac1GoU/K7WYGhESJJd51M2oc9pJhppJkoI/cv3KbtQiM/vjU9+9YUe/pI/Jtj7NnaS9Vtx75lap/WN5Z1WvOWSIioTNvOD12hVCJGHVvUqw/Zs2ffW3Dn5tfTawPAACAqh5Ch1n2ai1ifQAAABijVsX6qazOR1Y0X/GTPTXsiWgk8yh+AMnFcSYWeMqUWH/Td0Vy42p/Y/1XzhxpVKxPzykAAACMwc0pAAAAjMGAqCQWOoqfKD+e9CifiB+A1+p93ErV5RcR5dc2LF8aip5TAAAAGIOeUwAAAJ8EAqwQdTJuTpNAaNyzV9WRTsg/PPcHVa/oc5qq783fpOoXuvSOpom1ChE/gGjN1haiGKctRKFf252csepHqv72gm9UPWGbtVDAjK7xG33+VnG2qq/MNGdkN1IPsT4AAACMQc8pAACAj1ghKhQ3p0nATdzjRoP0ctvtRPnRI+JHKpr7n+j5Zi12hjfGxfA91aP8K7/6WtXxjPJ1RPlIFGJ9AAAAGIOeUwAAAB8xz2kobk4NdvqnzURE5PshX4fZ0523ejXz5DiwR8SPVOF3nD9xW56qp3ftlpD3/PYfXVV9xs+3eXrs0AVTIptlxQnXc6Qybk4BAAB8RM9pKJ45BQAAgDFSvud0SZEVqY5qM7CGPc3QZm1jVRcNrIrzm606Q237+oJvE94mRI6IH4hePKP8sz+3eqg2nmvN3+N1lC8icubqpiIisn+wFeVzPQfCS/mbUwAAAFMFJI3lS09CrA8AAABjpHzPaTJE+bqigWXVtjlFP5dvsrYv632G7T7wHxE/YA49yo+3/YO/q7aN6zkQXsrfnAIAABgrwPKlJyPWBwAAgDHoOfXIvfmbVB3LWvWjNu9T9bHKeiLiHPFUiPUA9WWbvrPdZ3nvplG3JRkE1wAX8X/icDeI+MNbWrRO1SPbDPCxJTDBlJ1rVH1Ph0ExH29SQY6qH+/UX9U3bS1U9fzubWN+HxHreq4Pdlna60xVX/mVtcCKPqm+vr2OVNq+FqmFeU5D0XMKAAAAY3BzCgAAAGOkiYjxj+Fuzc6XiQMe9LsZrv2+4HNVT+50ro8tCXXL1l2qfrV7ex9bgpMFI37ifQBucD2P3fR1T0v3rC5+N0O+/KZYrvnoL7624a/tRkhWVpavbdDRcwoAAABjMCAqDvTeUqde1Anb8lV9PFBH1Uf/MwhKRORwZQMR8e4heP51bW/Fng2qHt66r6q9HohRk2CPKYOkkAycloVeXGT9zoxuE9/fmUjov+N55YdUfXv7Czw5vj6YSh/ANKrxARERuTyzf7XXxKo2Xs/fKbb+no7INCeV9ILxEXaC0XMKAAAAY3BzCgAAAGMQ68eZ04CoGV3tH8LW4yHmtEsMPcrXpfsQtDAPKpKB07LQJkX5Ov13/OVdqzw/vtO8qOl5lbbbEZ1Ui/KDAsI8pyej5xQAAADG4OYUAAAAxiDWN8DYvB2qntOto48tqZ3maEugjtWWQL2rw2A/mqMQ8QPemLnL+h0f3z6+yxzfmleg6lndOsX1vZAiAsJw/ZPQcwoAAABj0HMKAADgIwZEheLm1CfxjH5GfrVf1Yz4t7eg0Bqxe2Pb+MZ8XiDiB6IX7yhfF88oX5/NxWmGACAVEOsDAADAGNycAgAA+CgQ8PfDrQkTJkhBQYEcOXJE1q9fL0OG1JxK1KtXTyZNmiQFBQVy9OhR2bVrl9x+++1h34dY3wA3bClSdXnA+pEs7tmy2r6XbfpO1ct7N1X1W8XZqr4yM0vVozbvU/WSni1ibaqjqTtXq9rvUe5u3NjWWlM7NOL3Zq3teCLiD+V07iN6i4vWiIh3k+ovKbLOTacJ/OPJaUYOrzjF7cuKc0RE5PLM/mGPMXpziap/fZp1PP2cruC5RPho9OjRMm3aNLntttvk008/ldtuu02WL18uvXr1ksLCQtvX/O1vf5M2bdrIrbfeKtu2bZOMjAw55ZRTwr4XN6cAAAC+SUuKAVH33HOPzJ07V/7yl7+IiMgdd9whl156qUyYMEEefvjhavsPGzZMLr74YuncubN8/fXXIiKya9cuV+9FrA8AAABH9erVk/79+8vKlStDtq9cuVIGD7ZPS3/xi19Idna23HPPPVJYWCh5eXkybdo0adSoUdj3o+c0Bs/ttKKq+zpEFlXpIzr1WF+Pcw5uaigiofG9Xg/P/UHVTnHmscp6qtYj/qZ1Dqm6flqFqmd07aLqSBYHcIryV+zZYLXXYQ173Vwtfrs5DvFbOET8iePVz7q2R/luIvNgTC/iLqr3Ks4P8iPKn+0Q5b+8y/odv729N7/j5YE6ttsXHcxwfYyjAeta7XRO6499Xbdlj6pvbGI9EpCq68+7FXyUQsTd4xSo0rx5c8nOth6RmjVrlsyePTvk83Xr1pXS0tKQ15WWlsoll1xie8xOnTrJkCFD5NixYzJq1Chp2rSpvPzyy9K6dWu59tpra2wPN6cAAAB+8jnWP3DggGRlefsP/fT0dAkEAnL99dfLDz9Udab99re/lZUrV0qLFi1k3759zq/1tCUAAABIKQcOHJATJ05IRkZoGpCRkSElJSW2r9m7d68UFxerG1MRkc2bN4uISLt27Wp8v1rZc+rVyNFIo3wnC3u0sWppU+3zF248oupPzrZGuR3VInt9H50eN6UHKlUdLqZ3u084O8rLItrfjyg/GeJ7N5It4vfjZ+0XPWqslKrfQ68eR3BzDfM6pk8G4xzOL6+ifN2iHq1tt1dG0P9TGbD2vXzTt7b7OD0+UNujfB1RfnyUl5dLTk6ODBs2TN544w21fdiwYbJkyRLb16xatUquvfZaadSokRw6VPUoYbdu3UQk/MAoek4BAAD84vMcp27nOZ0yZYrcfPPNMnbsWOnRo4dMnTpVWrduLTNnzhQRkXnz5sm8efPU/q+99pp8/fXX8uqrr0qvXr1k8ODBMm3aNPnf//1f2b9/v9PbiEgt7TkFAACAe4sXL5ZmzZrJo48+Kq1atZLc3FwZMWKE7N69W0SqR/WHDh2SSy65RF5++WXJzs6Wb7/9Vv7v//5PHnzwwbDvlSYiEawN4I+t2fkycUD4L6Y2c4r+negzBOiPFcRTpCP34Y1kiPiBVDbyK6uXaGmvM2330aP8Zb3PCHtMfdJ+uwVbEN70dU9L96wu4XeMs40H9shVK171tQ2Lu/3M8wFRsSDWBwAAgDG4OQUAAIAxeOY0RbiJ8nWJivJ1RPn+SLZR/ECqcYrydW6ifB1RfuoIiCTF8qWJRM8pAAAAjMHNKQAAAIxBrB8HT+yw1qd9rGP0o9+G51atqrCiz2kxtwkQIeIHIvXQ9o2qfqrz2T62BCnN+HmTEoueUwAAABiDnlMAAAAfMSAqVFLfnC4tWqfqkW0G+NiSULFE+bpI4vz+/6603Z7Tz+ocd5qo/8qvvlb1W72aRdLEqM3e/amqndbARnwlKuK/O3+zql/s0tPTY9cmJl3vTGpLvCUqyr8k96Dt9vf7NLHdrk/a36SOdW1f1KO1tw3zyTvFn6t6ROa5PrYEfiDWBwAAgDGSuucUAAAgqQWEAVEnSZMk+JZszc6XiQMe9LsZvhn4Rbmq155TL+z+fXKsDvHc/vZxf6I8s+MzVT/Q8XzbfYj4zeJFxH/L1l2qfrV7+5jbBKSKSK/nke4P96ave1q6Z3Xxuxnyxf49cuU783xtwxu9LpGsLG8eSfQCPacAAAC+YkCUjmdOAQAAYAx6Tg3zVrE1gf+VmVVd7G6inO7rrX1y+5fb7rO4aI2qR7cZpOqffnlI1R+e1ch9Yx08UrBB1U5Rvo4o3yxejOL3K8pfULhKRERubHuBL++fapyuGcns5V2rVF2hTd9zV4fBnr9XcFYDfUYDp+t533/bH8PN9V8fub+s9xkRtDC8udpjVzdzrUaCcHMKAADgJ+NH/yQWsT4AAACMwWh9gw3P/UFE3E3Gf/bnVjy18Vz7H2nWhgpVN6lzVNVeRPlIfcGI3+tJ+gHT3L/9S1U/2/msmI+nT7DvNKm+LpYR+qM271P1kp4tInptbWPUaP1/zPe1DW/0vpjR+gAAAPgP47sJE4ubU40JS/KNzduh6jndOta4r74caXmgjqoHf2Hts/qc+qrO7mvtc9km61/mfixfmgyCg2tEGGAjYvWYxmOpU+ZFRaLM0Qb4jHUY4ONFb6mIdW11c111+vsT6d8lekuRCrg5BQAA8E2aSIB5TnUMiAIAAIAx6DnV+BXl6+pE8ODJJ2efEtGx3cRD123Zo+pFPVpHdHxTBefpi3SOPqJ8e17Mg3oyonwkSiIXdK4Twbs5XZOdttvNiQ2kCm5OAQAAfBRgQFQIYn0AAAAYg55Tn+hLfP6xU19Vz+rWqdq+wflORUSOVlpz3umx/uAvjqtaH6Gvc/PYgh7lLyvOUfXlmf3DvtZUdnG+PhK/RR1rntfhrfsmokkpIx4Rfzy5GamN1JPIn/tlm75T9dJeZ4pI6DXcad5q/bGrqd9YswU4Pb5FlJ9CAsJUUieh5xQAAADG4OYUAAAAxmD50hTkJuLXo6flvZvGuUVIJl5MiJ8MET+QDPTFVpwi/pFf7Vd18FGCWMzcZT0GMb596j7+Yszypfv2yhVvLvC1DUv6/sSo5UvpOQUAAIAxuDkFAACAMRitb4Bb8wpUrY/WD0Y1kcY0lWItg6ZH/PXSKlStR/mXb/pW1ct6nxH2+GPzdqh6TreOEbUtaKE2Wv6GGCa7n6uNwo10kv0gfeR+bZ14/+78zap+sUvPmI+XbKP4kdqcRuu/vMv63b+9vTe/+/ojU8Fr7lu9moV9ndMiKXqUr0f89dJPqLrC436mVI7yTZVm/AOWiUXPKQAAAIxBzykAAICf6DkNwc2pTx7avlHVT3U+W9VejJTWOY3W19VLOxF2H120Ub4ulihfF22Ur6twWDfOi0cGkoUXUb4TIv74SpXFMuKpXPsV/7M2Ev02j+Jrp0ej3irOrvqvhI/1nRZJGbrxqKrdjNb3QjKP1uf3ITUQ6wMAAMAY9JwCAAD4KZAWfp9ahJtTn3gd5ff/d6Wq155TT9VZG6wR+tl969i+1otJm1NRskX5yfAYAhG/94guw9Oj6ak7V3t+fD3K/+mXh1R9ZWZ0k5rrs6z86+yGqtYjfn2719fwZIvydfw+pAZifQAAABiDnlMAAAC/BITR+ifh5lTj1yi/aKP8gV+UO3zG6hB3ivIjnXg/lZkagUcqUV+HVzNKEPHjneLPVT0i89yEvOddHQbH9fgfntUoqtfpkb3Tdj3KvyT3oKrf79MkqvdMZk6LFiA1cHMKAADgJ3pOQ/DMKQAAAIxBz6nGtFF+wTWaj1Vao+/1yEgfla/TR+7n9LP+/aGPAK3tUb4JkjWW8mJxiJM5Rfy3XPyxqvVIE6khUVG+G/dv/1LVz3Y+y9Nj6yP4j2rXc32RFKfz2+nxrcpA7e5bSqZrJiLHzSkAAICfiPVD1O5/egEAAMAo9JwabHnvpiJixftuPZmxUdXDpa+q9QgJ/iOWsnfLxR+r+tUPLlJ1F4luFP/EbXmqnt61W3SNQsrzOsrX6Y9j6RG/iP01Wd/n9jM2qXqkWNeMaGcFgKFYISoEPacAAAAwBjenAAAAMAaxfhIIxvtuDW/dNy7tABJBH7WsR/nRTtRPlA+TuInj9X0+FB7/qQ3SGBAVgp5TAAAAGIObUwAAABiDWD+JDc/9QdUr+pwW9XG8WisdiCenifojifhRO/1516eqvq39EB9b4kyflSXSR7lu2lqo6vnd23rUIiRMQJjn9CT0nAIAAMAY3JwCAADAGMT6PnFax/mGLUWqXtijTY3H0KP8S3IPqvr9Pk3Cvv91W/aomijf8rfC1ar+VdvBPrbEnbeKs1V9ZWaWjy1JLCJ+y9Kidar2amGH4DH14yXzuVYh1gTnU3dav+N3dfD+d3zkV/tVXS+tQkREFvdsGfZ1epTvJuIfvblE1bUlyo/HuQ4z0XMKAAAAY9BzCgAA4JM0YZ7Tk6VJEowR25qdLxMHPOh3MxJiWXGOqheXtRAR58hGj4+W9jozomNfntk/2iaGNXe3NTL25nZmjoyFOwsKV6n6xrYX+NgSd4IRv1/xfrJ9v2ojfeT+oYDVP3Nfh4F2u8ckeM2Nx/V2bN4OVc/p1tHz4we5OaeTNW6fvu5p6Z7Vxe9myMaSvXLV6wt9bcPiwRdKVpY5j+vQcwoAAOCnQFr4fWoRbk7jbMrONaq+p8OgsPsvP2wNZgr3kLveW6oPcNIt6tFa1fHsLdXpvaWLi6yvf3Sb8F9/onp3nSTzoI94SLbev2CPqV+DpJy+X5H8HnAOxlcD7R7gtvb2vaVP7LB+Bo91jP5noF/PI+HUK6rPSR1Lb+nvCz5X9eRO59a4r35OO/WQJqq3lN+N2oMBUQAAADAGPacAAAB+Mn70T2IxICoJRBp1R7r/3fmbVV0v7YSq9flXAT9M3Jan6uldu0V1jNo+DyrM4mYgk76Pzmn/e/M3qfqFLr1V/UjBBlX/sVPfCFpZOxg1IGrRa762YfGQHxs1IIpYHwAAAMYg1gcAAPCT8Rl2YnFzmgTcRPM3bS2MaH/di1162m6fVGA9HvB4p8SPnEdymaPNbzvWo/lto43ydSx1CpO4GWXfMK1c1W5+B/QoX0eUj2TFzSkAAIBfAqwQdTKeOQUAAIAx6Dk1gNNIy0iEm7A/mvckykckvIry44mIv3ZK5JLKXlzPI32chUewkGq4OQUAAPATsX4IYn0AAAAYg55TAzhNmny0sl61z8fjPYHaiIi/9tCjfDcR/zM7PlP1Ax3Pj+i9GqaXV9sW78nwifKRarg5BQAA8BOxfghifQAAABiDnlOfPLEjW9WPdbTWsw0X+dyaV6DqWd062e7jZu1mWN4qtn4WV2aas7YwEoeI3xvLiq1R45EuBhJPcyIcrR9plK87XNmg2rZYovw78reo+qUuPaI+DszGPKeh6DkFAACAMbg5BQAAgDHSJAkew92anS8TBzzodzMA1DJE/EDqmr7uaeme1cXvZsjGvSUycv5rvrbhbz8dKllZ5jzWRs8pAAAAjMGAKAAAAL8EJAky7MTi5hQAHDCKHwASz1WsP3ToUHnzzTelqKhIAoGAjBkzpto+jz/+uBQXF8vhw4flo48+kl69eoV8vmnTpjJ//nz57rvv5LvvvpP58+fL6aef7s1XAQAAgJTg6ua0cePGkpubK3feeaccPny42ufvv/9+uffee+X222+XrKws2bdvn7z33nvSuHFjtc9rr70m5557rlx66aVy6aWXyrnnnisLFizw7isBAABIQmkBfz9M4yrWX758uSxfvlxERObOnVvt83fddZc8/fTT8ve//11ERMaMGSP79u2T66+/XmbNmiU9evSQyy67TC644AJZu7YqDvvNb34jn376qXTr1k3y8vI8+nJql7vzN6v6xS49bfe5N3+Tql/o0jvubQJSFRE/4snN9dzNPkAqiHm0fseOHaVVq1aycuVKte3o0aPyz3/+UwYPHiwiIoMGDZKDBw/K6tWr1T6rVq2SsrIytQ8AAAAQ84Coli1biohIaWlpyPbS0lLJzMxU++zfv7/aa/ft26def7Jx48bJrbfeKiIip595WqzNBAAAMJOB0bqfjB2tP3v2bJk9e7aIVE3CX5s9UrBB1foazW5iHaJ8wHtE/IiWUzTv5npOlI/aIuZYv6SkREREMjIyQrZnZGSoz5WUlMiZZ55Z7bUtWrRQ+wAAANRGDIgKFfPN6Y4dO2Tv3r0ybNgwta1BgwYydOhQ9YzpmjVrpEmTJjJo0CC1z6BBg6Rx48Yhz6ECAACgdnMV6zdq1Ei6dKlafzY9PV3atWsn55xzjnzzzTdSWFgoU6dOlYcffli2bNkieXl58uijj0pZWZm89lrVWrFbtmyR5cuXyyuvvKKeI33llVfk7bffjmmk/jvFn6t6ROa5UR/HJM/s+EzVD3Q8X0RCo3zdpIIcVT/eqX/YYz+5Y52qH+44IMoWAuZaULhKRERubHtBwt6TiD95zdn9qarHthvi+fF/X1D1N2pyJ+vvk1fR/HM7rfPrvg4Da9gz/lbs2aDq4a37+tYOpA5XPafnnXeebNiwQTZs2CCnnnqqTJ48WTZs2CCTJ08WEZFnn31WXnzxRZk+fbqsX79eWrVqJT/72c+krKxMHeP666+XL774QlasWCErVqyQL774Qm688cb4fFUAAADJIuDzh2Fc9Zx+8sknkpaWVuM+kyZNkkmTJjl+/rvvvuNmFAAAADVKEyPvmUNtzc6XiQMe9LsZAOAaET9gtunrnpbuWV38boZs3FMio/7fa7624bXhQyUrK8vXNuiMnUoKAAAg5Rkarfsp5tH6AAAAgFdSsuf0reJsVV+ZaU43dTzdm79J1RefckzVfs9iYNKMCkuLrNkKRrZJ7dkKlhVbMzlcnhl+JodUs7hojapHtxlUw57xE+0ofqdFN5A4U3daUxze1SGyJbb1a3G0i6DoE/UPO+WIqv2+hv6t0Pq+/Kpt+O/LzF3WbAjj29vPhjBlp/W7ek+Hmn9XX961StW3t0/cjBzxliZmzjXqJ3pOAQAAYAxuTgEAAGAMRusnmQnb8m23z+ga2YjD+7d/qepnO58VU5tgntr4aEuyCEb8jOCHzulRHP2ar1/nvXh8IJFMnKjflNH6XxaXyKg5/o7WX3iZWaP16TkFAACAMVJyQFSqcfqXcyzoLU1t9JaaK9hjyjyotdPYvB2qntOto6qdBi4eD9Sx3Z4MvaW6SHtL7ZbyTmnGZ9iJRc8pAAAAjMHNKQAAAIxBrO+TJ3ZYA1Ye61hzBBtLlO8UIcFSm+Y/hTminQcVsVlQaM2VeWNb7+fKnLgtT9XTu3ar9vlIr8P6/rds3aXqV7u3j6J1yUOP8oN/L8P9rUxmzHMaip5TAAAAGIObUwAAABiDWN8nXscT123Zo+pFPVqr2u8oPxnm2yTKTz2mnXfhliQl4k8cN1F+LMuX2kX5kRq9uUTVi3u2VLXfUX68H4lwEvx7mdJL+xLrh6DnFAAAAMag5xQAAMAvAaHn9CQsX5rinOIhAOYj4oeO67nloe0bVf1U57OjOoYxy5cWlcg1s/xdvvSvV7B8KQAAAGCLWB8AAMBHzHMaKqlvTlfs2aDqSNftNVW0k+aP/Gq/qpf2OlPVevSjj+g/Nf1YVO+TjBYXrRERkdFtBkX1umhem2xYiMBMpo7in737U1WPazfEx5ZELpFtv2FLkYiILOzRJqLXubmeLyvOUfXlmf2jbaKx3in+XNUjMs+t9nk9yg+3L5JPUt+cAgAAJD16TkPwzCkAAACMkdQ9p6kS5d+dv1nVL3bpqergOspuJl6+5fSdql4qZ9ru0zCtXNWpHuXroo3kUz3K1xHlm8+kiD/ecfiSIutrGtVmYA17uhP6CFh8237T1kJVz+/eVkRERm3ep7Yt6dki7DHcXM+XlDWPsoXJQY/ng5PvO028v+oY/WypJqlvTgEAAJIdA6JC8c8NAAAAGIOe0xjM1UZ93hxDzHU8UEfVwShfRORooF61fa/86mvbY+jrh+v7vNWrWY3Hq8nEbXmq9mK9aFMt1NaLviGB60V7zesoNB7iMcK4Ns40YFLEHw9en79FJ8pUHe/R+uXa9Tw4Q8qiHq1t971807e22/Xrub7Pst5nqDrS63kyC8b5TqPy9bjfi8n54T9uTgEAAPxErB+CWB8AAADGSJMkuF/fmp0vEwc86HczjOM0UbNTrK+LdrJ/AOZKxYi/tnB6ZEvndD3XpfK1/fcFVqw/uVNkk+3bvXb6uqele1YXbxoXgy8LS2T0n1/ztQ3zrx4qWVlZ4XdMEHpOAQAAENaECROkoKBAjhw5IuvXr5chQ9w9t33BBRdIeXm5fPnll6725+YUAAAANRo9erRMmzZNnnzySenXr5+sXr1ali9fLm3btq3xdU2bNpX58+fLBx984Pq9iPWTQKQTOOucov9E+VvhalX/qu3ghL8/UFvFEvFHuyY8wnPz2FU8XusFU2fGeGJHtqof62gfTdvtY1Ks/8vp/sb680aFj/XXrl0rGzdulFtvvVVty8vLkzfeeEMefvhhx9ctWbJEvvjiC0lLS5NrrrlGzjrrrLDtoecUAACgFmvevLlkZ2erj3HjxoV8vl69etK/f39ZuXJlyPaVK1fK4MHOHU8TJkyQjIwM+cMf/hBRe5hKCgAAoBY7cOBAjT2nzZs3l7p160ppaWnI9tLSUrnkkktsX9OnTx95/PHHZeDAgVJZWRlRe7g5NcCteQWqPlRZX9XBSC3SKF/ntEazPtn/q93bR338cJIhyvdqMQW/LS5ao+rRbQb52BKYIJaJ+lMtzp+5y/odH9/e+9/xSB69iiWO/+/Trb8Vb4l1nERdz02K8nV6lL9izwZVD2/d13YfIxn/gGVk6tevL6+//rr87ne/k507d0b8em5OAQAA4OjAgQNy4sQJycjICNmekZEhJSUl1fZv1aqV9OrVS1599VV59dVXRUQkPT1d0tPTpby8XEaMGCHvvfee4/txcwoAAOAnw3tOy8vLJScnR4YNGyZvvPGG2j5s2DBZsmRJtf2Li4ulT58+Idtuu+02GTZsmIwcOTJsb2qtujkNrj1u2rrjs7p1UrUezwS5GaF52abvVL28d1PrtZmGRxkGSOYoX0eUDyexRPypQI/y/6xF/McD1pjguzpE/wiSU5QfvJ47Re2Xb/pW1ct6nxF2u349v27LHlXHM8rXmTpaX6dH+W5G8cO9KVOmyIIFC2TdunWyatUqGT9+vLRu3VpmzpwpIiLz5s0TEZExY8bIiRMnZNOmTSGv37dvnxw7dqzadju16uYUAAAAkVu8eLE0a9ZMHn30UWnVqpXk5ubKiBEjZPfu3SIi0q5dO8/ei5tTAAAAn6SJSJrhsX7QjBkzZMaMGbaf+8lPflLjaydNmiSTJk1y9T616ubUtDjfjh7PBON8N6M7D1c0iPp9UsUcbdT92BSJ6gGv1faI/7Y4jNZ3ErzOOj2apUf2uqOB8H+aF/VoHWPrImdqlO9Ej/Kf3LGu2uczWx5KZHMQgVp1cwoAAGCUgBg/ICrRWCEKAAAAxqDn1ADBdaxFQie/jmSy5k/OPsXTNiWjaKN8HgdAbVUbI/6Xd61S9e3tL/D8+KM3W3M+Lu7ZUkQin3j//T5NPG0TRB7uWP2RhOnrGvnQErjBzSkAAICPkmVAVKIQ6wMAAMAY9JwaINw61k4TMl+Se9B2f6dIKJL1n72ysNCK0G5oa0VoJq0D71WUP1d7PCBRE/ub9H30SzJMDO4Hp8eFnNhF/KkY78cjytcFo3wn+oIpldoiACv6nKbq4bk/2G7X6ZPwJ2rk/lvF1qT2ybbAy9Sdq6tta5tR5kNL4AY3pwAAAH4i1g+RJknwLdmanS8TBzzodzOM5maJUyd35G9R9UtdenjWJiQ/emZrt9oySMo0I7/ar+qlvc4Mu/+EbfmqntG1S1zalIqmr3taumf5//3K3V0iv5r6mq9tePW6oZKVZU5vOD2nAAAAfjK+mzCxGBAFAAAAY9Bz6pOHtm9U9VOdz475eI3Sj6k60gfl60lFzO+fSPEceLRAG8B1Y9v4DpxIBskQ5SfzIA3Tpco8qE4DM+Nh4rY8VU/v2q3a590MVGuYXq5qN9fzemknIm4nYDJuTgEAAHyU5ncDDEOsDwAAAGMkdc/psuIcVV+e2T9u7xOPeRTT0yptt9+dv1nVL3bpWeMxbtm6y3b7q93bR9SWF7r0jmh/v6VylL+kyIpLR7UZWMOe3krmuUJrS5Q/W3ucZZwPy+ymSsQfj8eCnKL84PVcv5a7mXO2YZoV67u5nqfiLCt2Pyc/5pJOGAZEhaDnFAAAAMbg5hQAAADGYBL+Wure/E2qTrZYH4A5kjniTxVcz6NjzCT8u0rk+in+TsI/59dmTcJPzykAAACMwc0pAAAAjJHUo/WTmT4J//FAHVXX0UbxHw3UE5HQkZj6CP1IR+Xr9OjnkYINqv5jp75RHzOZ6CP0W9RppOrhrfv60BoLa9n7L1GzgKSKZBjFv2LPBlXH+3fc7r2cRvN7dT2v4zD7C5KI8Q9YJhY9pwAAADAGPacAAAB+ouc0BKP1k0AkE/ObLJknegcQGVMjfr85RfxIPKNG6z/v82j9mxitDwAAANgi1gcAAPBRmvEZdmJxc5oE9Ch/wrZ8Vc/oGlkc4fdEzUT53ltSZMWlo9oMrGFPILGSYRS/H5yi/Eiv7fqML091Pjv2hgEGIdYHAACAMeg5BQAA8BOxfghuTpNMpFG+jjWXUw9RPpIBEX94kV7bifKRyrg5BQAA8ElagAFRJ+OZUwAAABiDntMUoU/srGOSZySDd4o/V/WIzHN9bAnijYg/vDvyt9huf6lLjwS3BPAHN6cAAAB+ItYPQawPAAAAY9BzmiKI75HMiPJrJyJ+e8T3tQ8DokLRcwoAAABjcHMKAAAAYxDrGyxrQ4WIiGT3rePJ8e7N36RqfUL+J3esU/XDHQd48l5eW1y0RtWj2wzysSXu6LMn8MgFvLakyIq9U2UhBr8j/ib/aq7qg0MPeHrsgV+Uq3rtOfU8OeYjBRtU3TDNOv5jHbM8OT4SjFg/BD2nAAAAMAY3pwAAADAGsb5HGnzSUtXHLiyJ+jjH32uv6uy+u6p9/vt3rPWXTx+RH9Gx1x/uZLvd1ChflwxRvs5NlD9lp/Wowj0dkuvrg79SJcp3Es+Iv+xd6zrY+NICVXsd5YuInHi/nYiIrD1nd9h9D2ntaqS1S1f5QVtV/9H+co5kRawfgp5TAAAAGIOeUwAAAL8EmOf0ZNyceiSWKF9Xf1j1KF8XaZSv++TsU6J+LbxHlA+E53XE39ghMo+HupeEj/ODnKJ8XfrFhbE0B0gaxPoAAAAwBj2nAAAAfiLWD8HNqWG+WWaN8j5RUdWx3eKqLXF9T30y5z926hvX9zLF5Zu+VfWy3mf42BIAbtlF/ImapN+tvJnW7CfdxlctcLLvzR5qW7yv58/s+EzVD3Q8P67vBcQLN6cAAAC+CUhagK5THTenhvnR5Xnhd/JYbekt1dFbCiS3YI+pH0ud1iTYW6qLd2+pjt5SpAIGRAEAAMAY9JwCAAD4iVQ/BDenPin5v56qbvmLzVEdY/f/nqXqdtd+abtPLA/i/77gc1VP7nRuhK0DgPiL51Kn8Vb4Rh9Vt70mN+z+B962Bsw2vyLxj4ABiUKsDwAAAGPQcwoAAOAjli8Nxc2pT/Qov/jvvVVdWZmm6mDMs2uxFd+3H23F905Rvi6WUaKpHOUPz/1B1RVifc/f79PEj+Z4YvbuT1U9rt0QH1sC+MNNxL/9tb6q7nz9Bk/ed9ekwapu//hqVW+b219ERLrenGO9/8J+1vtf8++I3ocoH7UFN6cAAAB+CQgDok7CM6cAAAAwRq3vOV1YuErVN7S9wJNjuhkhv2LPBu3/rHp4676qDsb5epS/Y9E5qu543RfW9r+dbW3/1caI2uvF8qUv77K+j7e3D/99jMf3PRIr+pxm1drPovLLrqr+8KxGiWxStbbo58LMXVZkP769FdnP0aL8sT5H+U5t0beXa70D+tcRqT9r3w/9sQw3517QXK1dNzu01+/vqRP9PCk6UaZqp/Y6nT+R0H9ndfrvr9P56wfHiP/6yEbxFz5mRfZtn1htu33LuD9bLxhnlf84XHX9v33+9Wpb1xusWVCcOD3K5eTufOsxsRe79KxhT3ciPV/+Vmh9X37VdnANe8bG6e+Gm3MTyaXW35wCAAD4JU0YEHUyYn0AAAAYI02S4DHcrdn5MnHAg1G91q67P9Ku/kkF1kjLxzv1t92naIk14r7NqE2qdppkWT/mwIZ1bI8ZLhbLX2CN+uxyozXqM/+v2vZfW9vPWPUjVc/rsELVV2Zm1fg+kdIj/obaPwdjGUEeSyzZ/9+VIiKS0y+92jYRkSczrMcgyiqPqrpxekNVxxJRnv25FTtvPNf6ftidV/r3Tucmro700Qo37I6px96V2r5ufr56HH88YP087uoQfRQ4dacVKdZPq2pRA+tb7iqad4r4E2WBdp260eH65DQbQ6SzNOg/g9u036VIzp9Efr/K3u2k6saXFrh+ndOofK8m6i9+wP6czb3zz9W2xXL9cDO7wIRt+aqe0bVL2GM+sSNb1Y91rPn6r59fp6ZZv1jxjsz1c8yOF+fd9HVPS/es8N+vePuqYK+MmfSar234829/LFlZ3t4LxIJYHwAAwE/GdxMmFrE+AAAAjJHysX6y0Ue7dn59vIg4R0/5UwbabtdVnmoFr93Gr4utcUmuwSctVX3swhLP909FemQebfQej8cNnDy3s+p35b4O4X834iEZRvp78TNNFV5F/E6C1/NIY/3tL1jt0p5+iUsbveD3YzHRMinWv/lxf2P96XeYFevTcwoAAABjcHMKAAAAYxDrGyzaSAj++/Yf1mT+Z/x8m+0+N20tVPX87m3j3qZkcf92a9LxZzufVcOeSFVN/tVc1QeHHkjIe8Yz4jdpcQJYjIn1txsQ699JrA8AAADYYiopAAAAH7FCVChuTg2jT45cVlnh+nX7fmuNum3xp9U17FnlxPvtVF33kt2u3ydSz+z4TNUPdDw/bu8TD9+/Y8U9p4/Ir2HP6pyifF2yRfnBuD3eUbsXx49kknGR+J+nkYyQZzR94qJ8nR7lu4n4Axf0VXXaqg2qPn6pdb799qXXRUTk24rDEbVl/4RBqj5zxpqw+7de20TVewYejOi9IhHLYihe4Hej9iDWBwAAgDHoOQUAAPBTgFxfx2j9ONg/XotkZtpHMl+Ps/ZpNtt+n3vzN4mIyAtdenvYOpzswNvdVN38ijwfW5JYD23fqOqnOp/tY0uA+Cp8zIqA2z4R/rEnXaSj+Csv7Kfq9E/+HdF7IbFMGq1/y2MLfW3Dn+6+kNH6AAAAgB1ifQAAAB8xWj8UN6cx2PGUFc13fMiK5p2ifJ1TlK97bNJ/i4hIUwm/r5Ovx2qPD8yxP07ah5mqDvy0OOr3itYjBRtU/cdOfRP+/rUpytcR5aO2iDTK10U6il+P8o/9vCombfCPbNt9Y1H0kPWowtHeR6x2/ZpHCZD8uDkFAADwEz2nIXjmFAAAAMag5zQGepQfi7JrrUm/v77Wmqy5/eiaj39olPW6Rks+s93HKcrX+RHl6/yI8nV7/6+nqlv9YrOq9yztperWI79KaJsAeEcfrZ9+3Nqe+Yx93O80wX6kEX//yTkiIpL7j0ha606bp6J/VAEwHTenAAAAfgmIpFX63QizEOsDAADAGPSc+uTlXatU3abOOlWPbDPA9THqH6wIu09wtKhIfEaMBo3avE/VS3q2iNv7xMIppt84YJGqh0tf230S5aathaqe371tRPuXB+qoelGP1t42zCOXb/pW1ct6n+FjS2oXr38/J26zZriY3rVbDXv6Z9ckK8rfMu7Pqu4z7bawr9WjfCduIv7ciX3+U1kLXuj0CfsDaWmqrvPx57b7l//sPFXXW7k+bBujFVwARsSsRWDcLByStIuLMCAqBD2nAAAAMAY3pwAAADBGrY/14zEBfOkdVpyU8ZL9iMpu9RrZbn+n2IpzfnbTOBERqftBjtp24qf9Ve0m1kkvD58V7H7cam+7SdGNAI00Krxl6y5Vv9q9fdj9L9v0naqX924a0Xt9/07V2smtR1gxfdm7nbQ9NqhqWbH1vf7xxtGqPu2y7RG9Z7TqiP1T8bfmFah6Vjer7W6i/0Rx+hnp2/Uo/6dfHlL1h2fZ/z64MfKr/ape2utM16/To8uG6eWqPlzZQNUvdukpXggXk0Yak0f6OIeb38/Rm0tUvbhny6jauGLPBlUPb9037HvGIm9m1SNQ3cavs/18+8e1a9k4q8y904r4hz/T1/a1xy+1Hoeqe+SEqvUJ9nVhI/6BWry81oqdnY7nJL3c/vqwb6J1DW8xPfZR/JFG+ZMKrOvm453617BndXfkb1H1S1162O5z//YvRcRdTJ9UUf5/pAkrRJ2MnlMAAAAYg5tTAAAAGCNNkmCM2NbsfJk44EERiTyG1/eP5HU6NyOoC5611rDvdL818X3n7Iaq3p51VNXf/9qKfj555mVVN0irV+3Ynf7+G1V3/a012f62l61J+Lvebj8Jf/klVsSy62YrEmq+wmpX0wWxLyYwPPcHVf+obpmqb2iyV9WXZ9rHPXrEf1yLKBf2aBP+jT/Q9rm4yPW+DepaUd3SLu+o+oq8y1X9TndreywR5Zmrm6p6/+DvVG03glp/rGDpoR+pek63jrbH1vdfdDBD1ZXavztjGbm/tKj6TBJXfvW12qY/huAUqev7//fp1uMJV2Zm2e0eMT2Ovum0qgUllh9uorYlcjT57wusx3ImdzrX02PfsMU6v/Xfjeu27FG1m591pI/U2Lk731qswqtHH5yceL+dqutestv167bNta43Lw9ZqOqfn3rUbveQ33Gnx2j02U+CE+yL6KPyJSS2D0b8TpP0x+LYCG0mlncim4ll2zTr70/XO2tu2xM7rGM3SrOum/d0sP7mPbPD+vvzQEfr71Is7M4xr8+76euelu5ZXWI+Tqw25++VsQ/81dc2THvwIsnK8uaa7AV6TgEAAGCMpOs51fkx1169j1upuvyivTXsWZ2bh9b1eew+nPsXERHpsnCC2tb5Pm+WTHWz9KnX4j0Xqj7IqfGlVs/H8feqeofqD7N6jGbv/lTV49oNsQ4SSU9sDU75xOrFPHJhqe0+0Q7kiZRX73NJ7kEREXm/TxPbz+u95yv6nBb1+3g1UCoS8RgYGU9e/S7pvdpv9WoWU5tEvLsmD/zCGqC29pzqaZKIyL43qwbPtLhqi+3nddvmW73YXW+yn0NUH8z1bYW1jPSv2g622bsGNoOfnOZBTeuvDTzS5jnV60D2l7Zvc+Jiq2dYHzSbioI92XovdrTH0I9jTM/ptr3y3z73nE59iJ5TAAAAwBY3pwAAADBGUsf6kQoOHnEamOPEq7gyWnrcdOnPb1B14N+bbPaOXNm1VsTf+H+9jfgXFlrLtM7//ixV69/Ht4qtB+7dDJIJxvQiIkdPWFP1ej4XqYuI3/HxAE2zVdbcnl9f8K3tPiZxE6nG0+Avjqtan3802oh/bN4OVTsNLItFtIM04t2uWCL74Ny0+ny1TgOynPi9xOn2hdbSoJ1viGw+0XhyividpPfR5v6sY8X9lV9Y512iljVN5Dy24X4/Iv39sdvfqFj/fp9j/YeJ9QEAAABbrm5Ohw4dKm+++aYUFRVJIBCQMWPGhHz+1VdflUAgEPKxZk3owJ369evLSy+9JPv375eysjJ58803JTMz07uvBAAAAEnP1fKljRs3ltzcXJk/f77Mnz/fdp/33ntPbrzxRvX/x48fD/n81KlT5aqrrpLrrrtOvv76a5kyZYosW7ZM+vfvL5WV9kuyeW1JWfNq29zMsRmPKP/bm6054s6Yaz8Cv/LCqlhq5WErvv+v15epenTj71XtFLHoo0EDOfaPAehR/vc3WJFTIN2KkKKdC/WGthfYbtcflYh0vkt91P3R5Z1dv+7Pu6wIfnz+dapOv7jQbndXo/WdonydU5Tv9Uhpr/gR5etWn1Nf+7/6jvu5FY/IXBftfItetevyTdb5pS8P63ROOe2vqwxU77dwE+Xr11M/ovzCN6z5Rjtfk7goP3itFrFfklS/Dodd6vTkY+dasxGkn22/vGdahfV03tErBqi64dv2S7vqCh+pmo2g7R/DL3v61qFTw+7jlXC/H25+f5zmqw1ub97mWJSt8x7Ll4ZydXO6fPlyWb58uYiIzJ0713afY8eOSWmp/ZQ5p512mowdO1ZuueUWef/990VE5MYbb5Rdu3bJJZdcIitXroyi6QAAAEg1nj1zOmTIECktLZWtW7fKrFmz5MwzrfkU+/fvL/Xr1w+5CS0qKpLNmzfL4MH2c8iNGzdOsrOzJTs7W04/M/GDkAAAABIiEPD3wzCuek7Deffdd+Xvf/+77NixQzp06CB/+MMf5MMPP5T+/fvL8ePHpWXLlnLixAk5cOBAyOtKS0ulZcuWtsecPXu2zJ49W0SqRut7wW6pPn2bvkypGzsWnaPqjtd9YbtP4aPWzXfbP1ixiVOUrwv8ZyLm52+8Xm17+42/aHtY8WvlB9ayqiExtTaZc+WQvtY+n25Q9eGR1mj90xda0dI3y7RYboFV7rnf+ppaPxs+CgrSo3yvRDJC/7b2VgSf/oH1y+j4vXMQy0IMeqTqRZSvL915NKCdDzaxrIhzjBucYF8kdJL9vlpCueE/yaXdkqbRbNcN3WgtKfmvsxva7qMLjiYXCR1RniixLKMY7awhbrh5VMTpHNBF+yiT03KoE7ZZ1/AZXSMbHX1IW1yjkba4hp221+RGdGyvBPQJ9O04fD7SiD/EgLNsN7uJ8nVu4vygWB7VuDffeqzshS69a9jTmVNM78Rpn+D2c9Y1iKodiD9Pbk5ff/11Vefm5kpOTo7s2rVLfv7zn8vSpUu9eAsAAADUAnGZSmrv3r1SVFQkXbt2FRGRkpISqVu3rjRvHjogKSMjQ0pKSuwOAQAAUCukBfz9MI0nPacna9asmWRmZsrevVWRZ05Ojhw/flyGDRsmixYtEhGRzMxM6dmzp6xe7T5SEAnt1te56eIPtz7v/O5tbbc7cYrydXqU7+TQNdo6929ok+DbJEH6yPa0flY08t4/Fqp6+AeXqzpwsRZzabF+CIdEKv11+1gwkij/jFU/UvWKPvb7RDpq/cT77VRd95Ldqv7+HSsuPH1EmEdBtJH4+r/QZuoj+rXHANI+tKY9K7+oOGwbneiRqhej9X99mvUYgn5uuBmRHang5PxO0fzUb+xjRqf99cn2nfz0y0Oq1ifh16N8u4hfn3Bb1zDNmtQ/logy0ihffwwgXJyvP6qxuKf12NPIr/ar+pbTd6pa/7nr55QT/dw4GrD+BOiPcwQfwTk13RrNrC+IoH8fnaJ8nVOUf0e+NRL9pS72I9HDRflu7FpsnZvtR1tr1W9/wYrSO99rRen7J1izqZw5I/wjWHU+/rzmHcLF/uIu4q/cuEXsxOUPuY1YHs+INMqPJMJ3s6/dvYNJo/URytU53ahRI+nSpepETE9Pl3bt2sk555wj33zzjXzzzTfyP//zP7JkyRLZu3evdOjQQZ566inZt2+fivR/+OEHmTNnjjz77LOyb98+NZXUxo0b1eh9AACAWicgSbBWZ2K5ivXPO+882bBhg2zYsEFOPfVUmTx5smzYsEEmT54sFRUVctZZZ8mbb74peXl5Mm/ePNm6dasMGjRIysrK1DHuuusuWbp0qbz++uuyatUqKSsrkyuuuCJhc5wCAADAfGmSBPfrW7PzZeKAB13vHxwNKxKfEbGRKHxMG63/hH0c7hjr/0dgkDUrQPrxE9Z2h0n19fWPL73y19b+662IP5a1mKMdre8Vp9H1Zdqo3sY2UaBTZO8XPaZd2uvMGvaMXCyxfjC+F7GfkN/N6PsLNx5R9Sdnn6Jqp1H5+vZybTGMB5pZ0wU4vVc4ka7B7SZqjtQ7xVbs+/bhqpHw+qIfsUzIr/+s09Osf+x7vbDDdVv2qHpRj9aeHDMe3+twtr/WV9WBUuscdDVC3gPpfayvU59g34njKP6BZ1v12o0RtSHSxxai9dB2q136+e4m4o90ZH6419ltn77uaemeFdnjCfGwOW+v3HrvgvA7xtGU3/9EsrIiWxAnnhL1qAoAAABsmDgoyU9xGa0PAAAARCMpYv2vj2ySlUU3iYg361FHGvPpmvzLmg7r4NADNexZs6/HWbFKs9k1xyqBC/qqOm3VhrDH1ieJX9ZtuarLAxWq1h93OHy19VjBqX+v/lhBvOkjjCc2tWL64a37hn/xB9p639oIfMft/+H0c2z0TyteP/Tj/RKOPhvBtxd8E3Z/L+iLRVQErFHA5drIaz0a9/qRgUhFGvF7QV/j3c1o8kjFMgm/Haf2Oo3cd0P/vfrv061IUx/dnwwiWSTjwNvWDAzNr8iLW5tOpj8mlV5uPVpR56Pqo/jTz9HOF4eVeZxG5Uc8UX8Km7jN/ud7ZaPDqg73N8SkWP839/gb67/wOLE+AAAAgiqN7ydMKGJ9AAAAGCMpYn2n0fr6qPx/HD5d1ZFMDqxPKny00hqZ7BQFuonZ8mZpXeMnrNi1223WKOc992kj3p+zH/F+5Kqq0cmnvBnZWsm6dp9ZE5fPbrvKdh89+vj+11ZsdPpfY4+NFhRa7/n6D71UHY9RxX1yrH9r5fa3jr+kqOrrGNVmYLXXnCyWqDmWSfWDsW4sEbQ+mroiYP/vTqdzNtrR/W8VZ6vaKS6+JPegqvWJ3p32qdTark+870T/nWxSp+oRAi8e/4nGczut35n7Otifb8E1xiOdlFy/3i0psx5LORqwrltuRtG7GXUf3MerUfn6qO2nOp9dw55VHinYoOo/durrSRu8UPSQdd1u81T4mUqOjaj6nahzzLoe1f0gx37nAdoiFuushQKcRuWbFPE/scO6DjzW0f468PsC6xGHyZ3Ojep99MdpdMNOsR4dGpHp/thGxfp3zve1DS9M/qlRsT49pwAAADAGN6cAAAAwRlLH+m4EIzSdU5wW6YTQ+mjBWNbp1u0fr02OPLPmUfx5/88aIdrtv6yJ9INRkohIg3esuOXlXVbE3q2efVx6/oMTVN10fvwmZ9bpsyccrmygaj1S1CNzfST64Qprf30kuC442X08Rq3Hsta01/SJ3iOJtkSco95o4359gYEK7d/AdcSKN2P5eegzFszv3raGPUOvAfrv/qQCK159vJO/i3XEW7SzF+jnd700awEQ/fqof3/raI/rPNtZi6kj5CYmjoQeB+uPQTj9zrZeaz1+smeg9chJ/l/7qbrLr/8tdvZNtKL/FtOrR//6yP60Cvs/v47RvwOniP/gL63tTV53H/3vfN16lKDDLyOb4N9vkTxCYkqsv2Wr/7H+808Q6wMAAAC2mEoKAADANwHHOW9rq6SI9b8/+qWs3zNKRNyN9KwtDo2yJs9vtCSyyfP1Ec5jT7dqP2J9JIdRm/eJiMiSni18bgmcxLLASLJ5ZkfVNe+BjueH2dNcR68YoOqGb0c/K4sunqP44/Eom5/MifX3yG/u8DnW/8PFxPoAAACAHWJ9AAAAH6UZn2EnVlLcnJZ8eYo8NYA4/2SRRvk6fTL22b/+hfUJ+tLhIFnjfFMndI+HVI/ydckc5wd5FeXro/L1KN/riD8VonwkB25FAAAAYIyk6DkFAABIWcT6Ibg5hZz+V3/XZQbiKdWjfMBpgv14RvyonSZMmCD33XeftGrVSjZt2iR33XWXfPrpp7b7jhw5UsaPHy/9+vWThg0byldffSV//OMf5e233w77PsT6AAAAPkoLBHz9cGP06NEybdo0efLJJ6Vfv36yevVqWb58ubRta79K34UXXigffvih/PznP5d+/frJO++8I0uXLpUhQ4aEfS9uTgEAAFCje+65R+bOnSt/+ctfZMuWLXLHHXfI3r17ZcKECbb733XXXfLMM89Idna2bN++XSZPniw5OTnyi1/8Iux7EevH2f3bv1S1m7Wm82ZYkzJ3mxDdSM5wazvHavfj1vHbTfL++ECsfl/wuaondzrXx5bANE/syFb1Yx3jO+n4tmlVUXrXO6OP0fdPGKTqM2dEvzAKET9q0rx5c8nOtn43Zs2aJbNnz1b/X69ePenfv788//zzIa9buXKlDB48WNxq0qSJfPvtt2H34+YUAADALwERqfS3CQcOHKhxhajmzZtL3bp1pbS0NGR7aWmpXHLJJa7e47bbbpM2bdrIggULwu7LzSkAAADi5uqrr5bnnntOfvnLX8ru3bvD7s/Nqea5nVa8cV+HgTXs6Z6bKF8XSZRf+JjVld72CStej0eUryPKh+mI8uEk3lG+LlycX/iIdg3/o/11NZYo34ldxE+8j5ocOHBATpw4IRkZGSHbMzIypKSkpMbXjho1SubPny833XSTLFu2zNX7MSAKAADAR6aP1i8vL5ecnBwZNmxYyPZhw4bJ6tXOHVbXXnutLFiwQG6++WZZsmSJ6+8HPacar3pLE0XvLQUAJBen3tJECvaYMkgK4UyZMkUWLFgg69atk1WrVsn48eOldevWMnPmTBERmTdvnoiIjBkzRkREfvnLX8qCBQvkd7/7nfzzn/9Uva7Hjx8POyiKm1MAAAA/JcEKUYsXL5ZmzZrJo48+Kq1atZLc3FwZMWKEeoa0Xbt2IfuPHz9e6tWrJ9OmTZNp06ap7R9//LH85Cc/qfG9uDkFAABAWDNmzJAZM2bYfu7kG85wN6A14ebUJ4mca89O8d97qzrz6k0Jf3+TzN5tLb02rl34lSsQ3sxd1vd0fPshYbcD8RTv8+7efOsa+kKX3jXsGR87Xz9b1R1+uTGqYzAPKkzCzSkAAICfXC4hWlswWh8AAADGoOfUJ05R/jM7PlP1Ax3P9/Q9T/nEmp8s88L4RfmdsxuqenvW0bi9j1eI8p3N1R55uDmC75NTdBrvKH9B4SoREbmx7QVxfR8kF/28i8djPE5RfvDxrXg/uhVtlO+EiD/BAiJpdJyGoOcUAAAAxuDmFAAAAMYg1jfMqeknqm1bsWeDqoe37qvqW/MKVF0nrVLVM7p2sT32kQtLw76/F6NO9Sjfqe2p4q1ia9aFKzMTP+tCvEUS5ZsgGOcvLbKWAR7ZZoBfzVH+VmhNtv6rtoNr2NN6NEEktscTnL4Hbr43wfM6Fc/pU9PSwu7j1ej+Rmk1X8/fOnSqqqd37abqCdvyVe10PXcycVue7TGjZVLEv1D73bghwt+NWF6bEAyICkHPKQAAAIzBzSkAAACMkSZJsGjW1ux8mTjgQb+bAQAAxP+I3wvT1z0t3bMie2wiHrZu3iMT//v/+dqGp6YOl6wscx7joecUAAAAxmBAFAAAgG8CDIg6SVLfnKbKSOkpO9fYbr+nw6AaXxec4FnE3STP8ZzgP1ImjaY2qS2ITfBn6dfPMdVnp0hWTrMlRLvIRE0mFeSouuF/RuvH43ob6fXfayaN4kfqIdYHAACAMZK65xQAACCpBSQJhqYnFqP1AQCAJ5Ip4jdmtP5XxTJxrM+j9V+61KjR+vScAgAA+CiNAVEheOYUAAAAxkjJntNUGcUfrUcKNqj6j536+tYO0ywusmZFGN2m5pkQAC95tVY7ap+Htm9U9VOdz/axJe4wih9eSMmbUwAAgKRBrB+CWB8AAADGSMme01SO8t1E9m6i/Od2WhHLfR0G1rBn6iDKh1/0KD84UT+T9EN3b/4mVb/Qpbeqjwfq2O7/+4LPVT2507nxa1gMiPgRrZS8OQUAAEgalX43wCzE+gAAADAGPadJxqvR97UlygdMQ5wPO3qU72a7qVG+EyL+GgSY5/Rk9JwCAADAGNycAgAAwBjE+gAQZ1N2WgtA3NOBWSNS2R35W1T9UpcePrbEXET8Noj1Q9BzCgAAAGNwcwoAAABjEOsDQJwR5dceRPmRIeIXEQkQ65+EnlMAAAAYg55TAAAAP7FCVIikvjldUmR1+49qkxqTyj9SsEHVwQn3J27LU9umd+1m+zo3+yAyfytcrepftR3sY0vi751ia53uEZnJNbl3snpmx2eqfqDj+WH3N+lnNHf3p6q+ud0QH1sSuUS2/e78zSIi8mKXnmrb2Lwdqp7TraPt627NK7DdPqtbJw9bZx4ifgQR6wMAAMAYSd1zCgAAkNRYvrSapL45TeYo/7mdVkyhr3MfjPJFRO7N3yQizmsr64jyo+cU36d6lK/zOyaujfQo/4kd2ap+rGOW7f76z8ju8Z9ESrYoP5Hu3/6lqp/tfJaIhMb0bqL5VI/v3bCL+In3a4+kvjkFAABIevSchuDm1DCR9Ijog6B0Tr2owZ5YEXe9sV5YVpyj6ssz+yfkPZOZSYNeksXSonWqHtlmgIiIvFVs9URemWnfE5lIL+9aperb219Q7fN6b6mba4C+XT9n1h6z9pncKX7nT7INiFpYaH3/y13cA0zdaaUpd3UIn6A8tH2jqp/qfLaq7QZEOYl0EFTw2G6P7wX9+3hD2+rncbwEe0wZJFV7MCAKAAAAxqDnFAAAwE/E+iHSRMT478jW7HyZOODBuL9PKs6bekf+FlXry+r5PaAC0NlF83COi5G83Mxz6kR/lKt+WoWqExXrm8SLiH/6uqele1YXr5oUta25RXLHdTN8bcMf/t8vJCvL/0eggoj1AQAAYAxifQAAAD8R64dI6ptTr2P4ZI7y3Sxfqo/Wr02C85jWpnlLkw1Rvj09ytdH5a86ZoVeTo/luJk7tbbwa5S5HTdRvpt5UYedckTVL8berKTDUqepLalvTgEAAJJaQEQq/W6EWXjmFAAAAMZI6p7TZI7hdU/usEYqHwrUV3Uko+j1KF+P+H9+6lFVD29tHU8frZ/qwsX5TsuXJptkWPAgGdpoKqdFGZxG9OtR/oo9G1StXwfgDa9nVdCjfD3iv7LRYVUPb22dD7V9Vgci/tST1DenAAAAyS0gaQyICkGsDwAAAGPUqkn4g6P7k+1xADcj8QHADUbxm8PNqHxEL1zEb8wk/F8Wyp3XTve1DU8sGMUk/AAAAIAdbk4BAABgjFo1ICrZ4vzgpPlHA/XC7qtH/zq/HwNI5OhskybaBvzw+wJrov562trrenyv1/pMIQ93tBZCmLqzagaLuzok7+wVJtHj+wpJU7VTlK/vr/M7+k+2a2xSjeKvNP4Jy4Si5xQAAADG4OYUAAAAxqhVsX6yeaFL7xo/b2qUr3OK8t8qtkYMX5npzQjBZIiZgHia3Ml+on74y01877SP31G+LpmvsXYR/9G2jfxqTqiAiDDPaQh6TgEAAGAMek4BAAD8RM9piKSYhH/fvn1y6NAhOXDggN9NQQpo3rw55xJixnkEL3Ae+ad9+/bSokULv5shWzcWyp1Xv+RrG55YNNqoSfiToue0RYsWkp2dbdQ3DsmLcwle4DyCFziPgOqS4uYUAAAgNQWI9U/CgCgAAAAYI2luTmfNmuV3E5AiOJfgBc4jeIHzCKguKQZEAQAApKKtG3fLnVdN87UNTyz+lVHPPidNzykAAABSHwOiAAAA/BIQkUCl360wCj2nAAAAMAY3pwAAADAGsT4AAICfmOc0BD2nAAAAMAY9pwAAAL4JiFTSc6qj5xQAAADG4OYUAAAAxiDWBwAA8BMDokLQcwoAAABjcHMKAAAAYxDrAwAA+CUgxPonoecUAAAAxqDnFAAAwE/0nIag5xQAAADG4OYUAAAAxiDWBwAA8E1ApLLS70YYhZ5TAAAAGIOeUwAAAD8xICoEPacAAAAwBjenAAAAMAaxPgAAgF9YIaoaek4BAABgDG5OAQAAYAxifQAAAD9VEuvr6DkFAACAMeg5BQAA8E1AAgFWiNLRcwoAAABjcHMKAAAAYxDrAwAA+CUgDIg6CT2nAAAAMAY3pwAAADAGsT4AAICfWL40BD2nAAAAMAY9pwAAAH6qZJ5THT2nAAAAMAY3pwAAADAGsT4AAIBfAgEGRJ2EnlMAAAAYg55TAAAAHwUYEBWCnlMAAAAYg5tTAAAAGINYHwAAwE8MiApBzykAAACMwc0pAAAAjEGsDwAA4JdAQKSSWF9HzykAAACMQc8pAACAnwLMc6qj5xQAAADG4OYUAAAAxiDWBwAA8FGAAVEh6DkFAACAMeg5BQAA8E2AAVEnoecUAAAAxuDmFAAAAMYg1gcAAPBLgAFRJ6PnFAAAAMbg5hQAAABhTZgwQQoKCuTIkSOyfv16GTJkSI37//jHP5b169fLkSNHZPv27fKb3/zG1ftwcwoAAOCnQKW/Hy6MHj1apk2bJk8++aT069dPVq9eLcuXL5e2bdva7t+hQwd55513ZPXq1dKvXz956qmn5OWXX5arr7467HuliQgPOgAAAPhga3a+TBzwoK9teGrdA5KVlVXjPmvXrpWNGzfKrbfeqrbl5eXJG2+8IQ8//HC1/Z9++mm5+uqrpVu3bmrb7NmzpXfv3jJ48OAa34sBUQAAAD4pOLBNnlr3gK9taNiwoWRnZ6v/nzVrlsyePVv9f7169aR///7y/PPPh7xu5cqVjjeagwYNkpUrV4ZsW7FihYwZM0bq1q0rJ06ccGwPN6cAAAA+ueyyy/xuQljNmzeXunXrSmlpacj20tJSueSSS2xf07JlS3n//fer7V+vXj1p3ry5lJSUOL4fz5wCAADAGNycAgAAwNGBAwfkxIkTkpGREbI9IyPDsQe0pKTEdv/y8nI5cOBAje/HzSkAAAAclZeXS05OjgwbNixk+7Bhw2T16tW2r1mzZo3t/uvXr6/xedOgAB988MEHH3zwwQcffDh9jB49OnDs2LHA2LFjAz169AhMnTo1cPDgwUC7du0CIhKYN29eYN68eWr/Dh06BMrKygIvvvhioEePHoGxY8cGjh07Frj66qvdvJ//XzAffPDBBx988MEHH2Z/TJgwIbBjx47A0aNHA+vXrw8MHTpUfe6jjz4KfPTRRyH7//jHPw7k5OQEjh49GigoKAj85je/cfU+zHMKAAAAY/DMKQAAAIzBzSkAAACMwc0pAAAAjMHNKQAAAIzBzSkAAACMwc0pAAAAjMHNKQAAAIzBzSkAAACM8f8B4+spaOe2GOMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -303,7 +303,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqcAAAK5CAYAAACCOYfvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB8AklEQVR4nO3deXwV1f3/8c+9Sdh3AmGXRTaXKmJUEGqtRhFrrVWp2lb0Z1VQq37dai1+rbZfa10o1FoUbBGoWBdqUSsCWlcWWSoqlEX2LSSERQiQkOTO7494zzlDZnJncm8yk5vX8/HIww9zz507uXcST857zpmIiFgCAAAAhEA06AMAAAAA4uicAgAAIDTonAIAACA06JwCAAAgNOicAgAAIDTonAIAACA06JwCAAAgNOicAgAAoFrDhw+X2bNny/bt28WyLBk9enTC55x00knywQcfyOHDh2X79u3y4IMPenotOqcAAACoVosWLWTlypVyxx13yOHDhxO2b9mypcyfP18KCgokNzdX7rjjDrn33nvlrrvu8vR6Fl988cUXX3zxxRdffHn5OnjwoDV69Ohq24wZM8b6+uuvrSZNmqhtv/rVr6zt27cn3D8jpwAAAEipIUOGyMcffywlJSVq29y5c6Vr167Ss2fPap+bWcvHBgAAABexkg9Fom0DPYZVayO2TuTkyZNlypQpSe2zU6dOsn37dtu2goIC9djmzZtdn0vnFAAAICjRtmLtuTzQQygpmSm5ubmBHoOJzikAAECAYhIL+hBSbteuXZKTk2PbFv/3rl27qn0u15wCAAAgpRYtWiTDhw+Xxo0bq215eXmyY8eOaiN9ETqnAAAASKB58+ZyyimnyCmnnCLRaFR69Oghp5xyinTv3l1ERB599FF59913VfuZM2fK4cOH5YUXXpATTzxRLrvsMrn//vtl/PjxCV+LzikAAEBALEukwooF+uXF6aefLitWrJAVK1ZIs2bN5JFHHpEVK1bII488IiIinTt3lj59+qj2Bw4ckLy8POnSpYssW7ZMnnnmGXnqqac8dU4jUrmmFAAAAOpYRekXUrbn0kCP4csdr4RqQhQjpwAAAAgNZusDAAAExpIYIbYNI6cAAAAIDUZOAQAAAmJJeq5zmgxGTgEAABAadE4BAAAQGsT6AAAAAaqwmBBlYuQUAAAAocHIKQAAQEAqJ0Qxcmpi5BQAAAChQecUAAAAoUGsDwAAEBhLKoj1bRg5BQAAQGjQOQUAAEBoEOsDAAAEhNn6VTFyCgAAgNBg5BQAACBA3CHKjpFTAAAAhAadUwAAAIQGsT4AAEBAKidEwcTIKQAAAEKDkVMAAIAAcYcoO0ZOAQAAEBp0TgEAABAaxPoAAAABsUSkglTfhpFTAAAAhAadUwAAAIQGsT4AAECAWOfUjpFTAAAAhAYjpwAAAAGxRKRCIkEfRqgwcgoAAIDQoHMKAACA0CDWBwAACFCMdU5tGDkFAABAaNA5BQAAQGgQ6wMAAASE2fpVMXIKAACA0GDkFAAAICCMnFbFyCkAAABCg84pAAAAQoNYHwAAIChWRGIWsb6pXoycjh07VjZu3ChHjhyRZcuWybBhw4I+JITYQw89JJZl2b7y8/OrtNmxY4ccPnxY3n//fTnhhBMCOlqExfDhw2X27Nmyfft2sSxLRo8eXaVNovOmTZs2Mn36dNm/f7/s379fpk+fLq1bt66rbwEhkehcmjp1apXfUYsWLbK1adSokfzxj3+U3bt3S3FxscyePVu6du1al98GEJjQd05HjRolEydOlEcffVQGDRokCxculDlz5kj37t2DPjSE2Jo1a6RTp07q6+STT1aP3XfffXL33XfLz3/+c8nNzZXCwkKZP3++tGjRIsAjRtBatGghK1eulDvuuEMOHz5c5XEv583MmTPltNNOkxEjRsiIESPktNNOkxkzZtTlt4EQSHQuiYjMnz/f9jtq5MiRtscnTJggl19+uVx99dUyfPhwadWqlbz11lsSjYb+f9vwKT4hKsivsIlI5fsSWosXL5YvvvhCbrrpJrVt3bp18tprr8kDDzwQ4JEhrB566CG54oorbB1S086dO+VPf/qTPProoyIi0qRJEyksLJR77rlHJk+eXJeHipA6ePCg3HbbbTJt2jS1LdF5M2DAAFm9erWcffbZsnDhQhEROfvss+WTTz6R/v37y7p16wL5XhAsp3Np6tSpkp2dLZdcconjc1q1aiW7d++W66+/XmbOnCkiIt26dZMtW7bIRRddJPPmzauTY0fdKC75XNYWfC/QY4gV/kNyc3MDPQZTqP8Ey8rKksGDB1f5QZw3b54MHTo0oKNCfdC7d2/ZsWOHbNy4UV566SXp1auXiIj06tVLOnfubDunSkpK5KOPPuKcgisv582QIUPk4MGDqmMqIrJgwQIpLi7m3EIVw4YNk4KCAlm7dq1MnjxZOnTooB4bPHiwNGrUyHa+bd++XVavXs25hAYh1J3T7OxsyczMlIKCAtv2goIC6dSpU0BHhbD79NNP5brrrpMRI0bIjTfeKJ06dZKFCxdKu3bt1HnDOQU/vJw3nTp1kt27d1d5bmFhIecWbN555x259tpr5bzzzpO7775bzjjjDPn3v/8tjRo1EpHKc6m8vFyKiopsz+P3VPqqkGigX2HDbH2knXfeecf278WLF8vGjRtl9OjRsnjx4oCOCgAqvfzyy6peuXKlLF++XLZs2SIXX3yxvP766wEeGRAO4esuG4qKiqS8vFxycnJs23NycmTXrl0BHRXqm0OHDsmqVaukb9++6rzhnIIfXs6bXbt22aLZuI4dO3JuoVr5+fmyfft26du3r4hUnkuZmZmSnZ1ta8fvKTQUoe6clpWVyfLlyyUvL8+2PS8vz3ZdF1Cdxo0by4ABAyQ/P182bdok+fn5tnOqcePGMnz4cM4puPJy3ixatEhatmwpQ4YMUW2GDBkiLVq04NxCtdq3by9du3ZVS94tX75cjh49ajvfunbtKgMHDuRcSkOWiMS+Wes0qK+wCX2sP378eJkxY4YsWbJEFixYIGPGjJEuXbrIs88+G/ShIaSeeOIJefPNN2Xr1q3SsWNHefDBB6V58+ZqtuyECRPkgQcekDVr1si6detk3LhxUlxcrGbFomFq3ry5HH/88SIiEo1GpUePHnLKKafI3r17Zdu2bQnPmzVr1sicOXPkueeeU6uLPPfcc/Lmm28yU7+Bqe5c2rt3r/z617+WWbNmSX5+vvTs2VN+97vfSWFhoYr0Dxw4IH/5y1/k8ccfl8LCQtmzZ4+MHz9evvjiC3n33XeD/NaAOhH6zukrr7wi7du3l3Hjxknnzp1l5cqVMnLkSNm6dWvQh4aQ6tatm7z00kuSnZ0tu3fvlsWLF8tZZ52lzpnHH39cmjZtKs8884y0bdtWPv30U7ngggukuLg44CNHkE4//XT54IMP1L8feeQReeSRR+SFF16Q66+/3tN5c80118jTTz8tc+fOFRGRN954Q2677ba6/lYQsOrOpbFjx8rJJ58s1157rbRp00by8/Pl/fffl1GjRtnOpTvvvFPKy8vl5ZdflqZNm8p7770n1157rcRisQC+I9Su4NcazQj01asK/TqnAAAA6epgyRfyxa5LAz2GRrtfYZ1TAAAAwEnoY30AAIB0ZYlIhcVYoYl3AwAAAKHByCkAAECAYowV2vBuAAAAIDTqTef0xhtvDPoQkCY4l5AKnEdIBc4joKo675yOHTtWNm7cKEeOHJFly5bJsGHDPD0vvqg1kCzOJaQC5xFSgfMI1jfrnAb5FTZ12jkdNWqUTJw4UR599FEZNGiQLFy4UObMmSPdu3evy8MAAABASNXpIvyLFy+WL774wvaX4rp16+S1116TBx54wPV5+wu/lpLDpfL17gN1cZhIc607tOJcQtI4j5AKnEfByTmug7Tp2Drow5CvS76UZfmXB3oMrYpeDNUi/HU2Wz8rK0sGDx4sTz75pG37vHnzZOjQoVXa33jjjaoTW3K4VH7S65Y6OU4AAJD+nlnyWNCHoLDOqV2dvRvZ2dmSmZkpBQUFtu0FBQXSqVOnKu2nTJkiubm5kpuby1+VAAAADQTrnAIAAATEEpFYCCclBanORk6LioqkvLxccnJybNtzcnJk165ddXUYAAAACLE665yWlZXJ8uXLJS8vz7Y9Ly9PFi5cWFeHAQAAgBCr01h//PjxMmPGDFmyZIksWLBAxowZI126dJFnn322Lg8DAAAgJCJSUX/uiVQn6rRz+sorr0j79u1l3Lhx0rlzZ1m5cqWMHDlStm7dWpeHAQAAgJCq8wlRkyZNkkmTJtX1ywIAAKAeYLY+AABAQCxhndNj8W4AAAAgNBg5BQAACFCMsUIb3g0AAACEBp1TAAAAhAaxPgAAQEAsKyIVFrcvNTFyCgAAgNBg5BQAACAglgh3iDoG7wYAAABCg84pAAAAQoNYHwAAIEAx7hBlw7sBAACA0KBzCgAAgNAg1gcAAAiIJRFm6x+DdwMAAAChwcgpAABAgLhDlB0jpwAAAAgNOqcAAAAIDWJ9AACAgFgiEmOs0IZ3AwAAAKHByCkAAEBgIlLBHaJseDcAAAAQGnROAQAAEBrE+gAAAAGpnBDFOqcmRk4BAAAQGnROAQAAEBrE+gAAAAFitr4d7wYAAABCg5FTAACAgFgSkQrGCm14NwAAABAadE4BAAAQGsT6AAAAQbFEYhbrnJoYOQUAAEBo0DkFAABAaBDrAwAABMQSYbb+MXg3AAAAEBqMnAIAAAQmIjHuEGXDuwEAAIDQoHMKAACA0CDWBwAACEjlhCjWOTWlf+c0YnzglhXccQAAACCh9O+cAgAAhBgToux4NwAAABAaaT9y+uLWT1T94x7DKgvifQAAgFBK+84pAABAWFkSYULUMYj1AQAAEBppP3LaJJKh6lnbFomIyFlP36W2df39wjo/JgAAADhL+84pAABAmDFb3453AwAAAKHRIEdOF/98vKrPEiJ+AAAQDEtEKhg5teHdAAAAQGjQOQUAAEBoNMhY30TEDwAAghORGOuc2jByCgAAgNCgc2pY/PPx6mvHL4aqLwAAgNpgWZUTooL88mrs2LGyceNGOXLkiCxbtkyGDRtWbfurr75aPvvsMzl06JDk5+fLjBkzJCcnJ+Hr0DkFAABAtUaNGiUTJ06URx99VAYNGiQLFy6UOXPmSPfu3R3bDx06VGbMmCHTpk2TE088UX7wgx/ICSecIC+++GLC16JzCgAAgGrddddd8sILL8jzzz8va9askdtvv13y8/Nl7Nixju2HDBki27dvlwkTJsjmzZvl008/laefflrOPPPMhK/V4CdEuWGiFAAAqAsxK9wTorKysmTw4MHy5JNP2rbPmzdPhg51vvxxwYIF8uijj8r3vvc9eeutt6R9+/Zy1VVXydtvv53w9Rg5BQAAaMCys7Nl6dKl6uvGG2+s8nhmZqYUFBTYthcUFEinTp0c97l48WK56qqr5MUXX5SjR49KUVGRRCIRGT16dMLjYeQUAACgASsqKpLc3NyU7nPgwIHy9NNPy29+8xuZO3eudO7cWZ544gl57rnnEnZQ075z2jTSqNrHj1hHE+6DiB8AANQGSyJSEfIgu6ioSMrLy6vMtM/JyZFdu3Y5PueXv/ylLFmyRF0K8OWXX8qhQ4fkk08+kQceeEB27Njh+nrhfjcAAAAQqLKyMlm+fLnk5eXZtufl5cnChc4Ddc2aNZOKigrbtvi/o9Hqu59pP3IKAAAQZmGfECUiMn78eJkxY4YsWbJEFixYIGPGjJEuXbrIs88+KyIi06ZNExFRkf2bb74pU6ZMkTFjxqhYf8KECbJ8+XLZtm1bta+V9p3TGQf1hbo/bVl16NmM/b1E/BFL1zvv0zPUujxOxA8AANLTK6+8Iu3bt5dx48ZJ586dZeXKlTJy5EjZunWriIj06NHD1n7atGnSsmVLue222+Spp56Sr7/+Wv7973/LL37xi4SvlfadUwAAACRv0qRJMmnSJMfHzj333Crb/vSnP8mf/vQn369D5xQAACAglojEmAJk06A6p/GI3yneF/EW8ZuXhRDxAwAApBZddQAAAIRGgxo5BQAACJuKejBbvy41yM5pohn8IslF/AAAAKiZBtk5BQAACANLIvVindO6xDWnAAAACI20Hzm9tPlmVc8+1LPK42bEb1p3xHm7G/7oAQAASF7ad04BAABCyxKJWQTZJt4NAAAAhEbaj5yaUX484neK94/10opcVV996lJVf/+qT1T9xt+HJX18AACg4bJEpEK4NtDEyCkAAABCg84pAAAAQiPtY31TPM5PNIP/WGbEb9NfL87f74blSRwZAABoqFjn1I6RUwAAAIQGnVMAAACERtrH+g9/dKmqH/r2bBHxFuV7ErFUue6vp6m63//7j3N7y3LeDgAAGqTK25cyVmji3QAAAEBopP3IKQAAQJjFWOfUJv07p8bnbUb8cf1uXqZqM5pP7jXdBqRjuiTiBwAAqIJYHwAAAKGR/iOnAAAAIWWJSEXQ65yG7KoCOqdGvN7ver2Q/rqpg2u8y0jU+VNe/7uzfO2nz72LanwMAAAA9RGdUwAAgMCEYCmpkI2ccs0pAAAAQiPtR0773bi0Zs9LUcSfjA1PDBERe7yfkdNR1RUFhXV+TAAAALUp7TunAAAAYWVZIrGgJ0SFDLE+AAAAQoORUw/MiN9NJLP23sp4vC8i0u/JDaom4gcAAOmGzikAAECAuH2pHZ3TFLHKy1XtNop6z8Vv+Nrnk//6fpVtq3/dU9UDf71Z1YyiAgCAdEDnFAAAIEBMiLJjQhQAAABCg5HTWuAW8f/+w4tV/Ytz/pVwP/HLAD7Z39fx8Xb/OqRq8+4Sby8+U9V9f/6phyMGAAAIBzqnAAAAAbHCcPvSkOHdAAAAQGgwclrLzIjf5Cfi/2WXOar+3c6LVL33aHNV39flHf2Es3T59tNE/AAAoP6gcwoAABAgZuvbEesDAAAgNBg5rW2RxH8NpSLiN93U4UP9DyJ+AABCyxLuEHUsRk4BAAAQGnROAQAAEBrE+rXNslTZ75alql7351zH5jWN+CtcIgEifgAAwo0JUXaMnAIAACA0GDkFAAAIihVh5PQYdE7rUk0jfiPeH95svWPbDNH7dov4TSPPWqFqIn4AABAWxPoAAAAIDUZOAQAAAmIJE6KORec0KD4ifnMGfzIR/96jzVTdrtFhVRPxAwCAsCDWBwAAQGgwcgoAABAgYn07OqdhUEcRv4mIHwAAhBGdUwAAgIBYIhLzsARkQ8I1pwAAAAgNRk7DxiHiN+P9Tj33qHralrN0Lboe2+tDVX+4f4CqV88cqOqB16xWtRnxm846bZ2qlz02RNW97l+U4JsAAACoGTqnAAAAAWJClB2xPgAAAEKDkdMQiDZzjtUjvbqLiMjAP32ttpVOLHNse7gsS9WTNp2jajPi/498S9VuEb8Xm4j4AQBIkQgjp8dg5BQAAAChQecUAAAAoZH2sX7JJWeousmbS+rkNTO7d/PVPrZnr+e2u9/W++4wcruqm2XpuN8t4v/6zBJVt/60iapTEfET7wMA4J9lMSHqWIycAgAAIDTonAIAACA00j7WN8Uj/lTF+3N3rnB5xG27ljfqOlXvG9Fd1R0+3afqotPaiohI9lLn2N+M+FttqVB1htEmq1hvP87YvuXHzhH/qld0xH/KVStVbbn9GRP75r8RI5IwbiQAAACqR6xvx8gpAAAAQqNBjZwCAACEjcXIqU3ad07nTPqTqi8ae1uAR2I3/5UXVH36Q2NVvfvMtqqOfjMBvyi3ndrWbe4eVW+/sL2qDxynw3wz4i9robfbIv4XzUHzo6pq/O8vVF34TEzV/Tptdfw+YtmtRUQk0k4fd6z4kKqt0lLH5wEAADgh1gcAAEBopP3IKQAAQFhZIhITYn1T2ndOsyI61o5H/Je9eYZb80Ase3iSqs2IP/bNWvpRvb5+rUT8piMjTlV103dWJD74b1jdO6k6Y99BVVfsKtRtiPgBAEACKYn1H3roIbEsy/aVn59fpc2OHTvk8OHD8v7778sJJ5yQipcGAABAGknZyOmaNWvkO9/5jvp3RYUembvvvvvk7rvvluuuu07Wrl0r//u//yvz58+X/v37S3FxcaoOIaH4KOqs7YvVtsu7nVVnr++F0yhqTN+NNLBR1BYrduoHEqxjGmvbUtXmmquMogIAcKwI65weI2UTosrLy6WgoEB9FRUVqcfuvPNOeeyxx+Qf//iHrFq1SkaPHi0tW7aUa665JlUvDwAAgDSQss5p7969ZceOHbJx40Z56aWXpFevXiIi0qtXL+ncubPMmzdPtS0pKZGPPvpIhg4d6rq/G2+8UZYuXSpLly6V1h1apeowAQAAQsWyIoF+hU1KYv1PP/1UrrvuOlmzZo107NhRxo0bJwsXLpQTTzxROnWqnChTUFBge05BQYF07drVdZ9TpkyRKVOmiIjI2qXrU3GYStTokycT8V/Y5VRVu9/KtObiEb/TJCmR2o/4Y430+1Rwob7Fas7cbfoYir6ubPvNeqfHIuIHAAB+pKRz+s4779j+vXjxYtm4caOMHj1aFi9e7PIsAAAAwK5WFuE/dOiQrFq1Svr27Su7du0SEZGcnBxbm5ycHPUYAABAQ2RZIjErEuhX2NTKOqeNGzeWAQMGyPvvvy+bNm2S/Px8ycvLk2XLlqnHhw8fLvfee29tvHxC5tqnpZa+RWdYI/5E66CKuEf8XeftVfWOC/R2vxF/c/tVGVqk8qSOx/siRPwAAKDmUtI5feKJJ+TNN9+UrVu3SseOHeXBBx+U5s2by7Rp00REZMKECfLAAw/ImjVrZN26dTJu3DgpLi6WmTNnpuLlAQAA6q0wTkoKUko6p926dZOXXnpJsrOzZffu3bJ48WI566yzZOvWrSIi8vjjj0vTpk3lmWeekbZt28qnn34qF1xwQZ2ucQoAAIDwS0nn9Oqrr07Y5uGHH5aHH344FS+XUubM/ZjEqmnpXZgi/j2nt1W1W8TvRfSofm/MGD6jU8fKIqL/6iPiBwAANVUr15wCAADAmzBOSgpSrczWBwAAAGqCkVNDtBb66kFE/O0/26/qPYPa6Nol4j/Y3zl6d2OVHVV1PIZX8b4IET8AAKgxOqcAAAABsaRyrVNoxPoAAAAIjbQfOR3w6q2qXnPlMyIiUmZVuDVXYucMUnX0w89Sciy1GfEfyXa+mNot4je1nPOl4/bY4cMJXzce8TvO4D+Gl4jfZO6HiB8AkJ4iEhMmRJkYOQUAAEBo0DkFAABAaKR9rG+KR/y9X/cXC9eHiH/Vz/+s6pHPfNuxTfamHaquOHAg6dc0Oc3gFxHJyOng2N5vxG+KNG6sX5eIHwBQz3H7UjtGTgEAABAaDWrkFAAAIEwsiztEHSvtO6dWVC8eFomF88NPdcRvGQumRSJ1/z3bI/4CVWd0ynFsf6Rrc1VntWzs2CarUZaqY1t3OLYBAAD1H7E+AAAAQiPtR04BAADCjDtE2aV957T7fPMT9/7pW1GXONwtJk/RmZWKiD928GBKjiUVrPJyVZdv13F8tFkzVTfd4WG2/oFi/dw2un1FQaFTawAAUE8R6wMAACA00n7kFAAAIMxY59SuQXZOj7bSM78bHShL2D6WpQeYs5o2Tdzewz3pvYhH/KmYwR825nuUsb2gmpbVy8hur+q7P/3Asc3jfU6u8f4BAEDdapCdUwAAgLBg5NSOa04BAAAQGg1+5NSM+Ju8uUQ/YMzK9xLlm8yZ6LEjR5wb+Zjdb87gh7usSIWqy6wMVf9q4woREfm/3qfW8REBAAC/GnznFAAAICiWRLh96TGI9QEAABAajJwaSi45Q9VN3lqakn1GjUsCbBG/uZh/A781REXRHlWbs+/9ahUp1f8w3t5DVuWlG/+78T9q2yO9T6vx6wAAgNpD5xQAACAoVoMfo6qCWB8AAAChwcipi5Lv5aq62XsrU7JPIv7E/Eb8h8/snbBN80jljRbi8b4IET8AIDxY59SOkVMAAACEBp1TAAAAhAaxvgfmfeDNBfaT4Rbx7/jFUFVHEiT8XR5fmJJjMUUyE58SVsw4sFiFe8Mk+Y34r3jtTlXPvnJ8lcfbGLP598caq5qIHwAQJGJ9O0ZOAQAAEBppP3Jq3pLUXMc0zrjLpTtjwpKXUdSND5zi/QBFpPejnztuj/8h5TaCuvM+PcpqG0WNePgLzOfEq1+v+9Rz20fOuMDXvs0RUi9t3EZRrU4lqv7+x7eo+o3hf67Stk2UUVQAQDg07KnQVTFyCgAAgNCgcwoAAIDQSPtY33ZL0m8ifqd43zOfEb8X5mUAmYeMl4pV/te8Ttot4jcnUnX9vYeI3+faqtH4wXjw66Xv6Dp3RML2ZkzvN+IXSbzOaTzid4r3RYj4AQDBsYQJUcdi5BQAAAChQecUAAAAoZH2sb4pHuebM/g9zWx3Y0b85u1Ik3DuD5er+oPXBld53MvIvy3if3xR4if4fA/OaJyVuNE3ajvib/yvpfofVw2qtm2iGfwiRPwAgDpmCdP1j8HIKQAAAEKjQY2cAgAAhA0TouwaZOfUNoP/raXVtPQhogehIxX6JLMy/I3Vz5+rI+O8Kyojfqd436sd9w1RtZeI36rQtyONZHi5Q0H1zEsAajviH/CgbrPmN9Xf7pSIHwCAcCLWBwAAQGjQOQUAAAiQZQX75dXYsWNl48aNcuTIEVm2bJkMGzas2vZZWVny8MMPy8aNG6WkpES2bNkiP//5zxO+TkTqwRyxtUvXy61n3F+j5/pZcN+M+KONG1fTsqpYqY6AzYh/y0NnqtpvxB9f9/67F32mtn30mnOMbC7O7+XSFU+z+A2ZnXJU/a/l71TT0pslpWWq9hLxm7xE/Jk9e6g6UcRvcov4TWbEbyLiB4D645klj0n/3OODPgz5Ys8OuezdvwZ6DH/vPUJyc3OrbTNq1Cj529/+Jrfccot88skncsstt8j1118vJ5xwgmzbts3xObNmzZJu3brJr371K/nqq68kJydHmjZtKh9++GG1r9UgrzkFAAAIh0i9mBB11113yQsvvCDPP/+8iIjcfvvtMmLECBk7dqw88MADVdrn5eXJeeedJ3369JE9eyoHlbZs2eLptYj1AQAA4CorK0sGDx4s8+bNs22fN2+eDB061PE5P/jBD2Tp0qVy1113ybZt22TdunUyceJEad68ecLXY+TUUPI9PaTdbP4Xvp5rXgZgRvzHPfypqs2I31WkavT/77d1XPzdK/RM8WQifr+z+Mvzd6l6U1mxqntltUj4XCe1PYu/fPNWVQ94sPK/XuL9ZGbxZ3TooI9r9+6ErwUAQBhkZ2fL0qX60sbJkyfLlClTbI9nZmZKQUGB7XkFBQVy/vnnO+6zd+/eMmzYMCktLZXLL79c2rRpI08//bR06dJFrrzyymqPh84pAABAkAKO9YuKihJec+pXNBoVy7LkmmuukQMHDoiIyG233Sbz5s2Tjh07SmFhoftzU3okAAAASCtFRUVSXl4uOTk5tu05OTmya9cux+fk5+fLjh07VMdURGT16tUiItKjRw/H58Qxcuri0IXfUnXzuXUY8Sf468kt4v/41VqO+KN6Qf4xvc5R9ZTNlTPuemTWLN4XqbuIPx7vi/iP+N1E85uous8+HYlEMvWPllVennA/AACEVVlZmSxfvlzy8vLktddeU9vz8vJk1qxZjs9ZsGCBXHnlldK8eXM5dOiQiIj069dPRBJPjGLkFAAAICgBr3HqdZ3T8ePHy3XXXSc33HCDDBgwQCZMmCBdunSRZ599VkREpk2bJtOmTVPtZ86cKXv27JGpU6fKCSecIEOHDpWJEyfKq6++KrsTzMtg5BQAAADVeuWVV6R9+/Yybtw46dy5s6xcuVJGjhwpW7dWppPHRvWHDh2S888/X55++mlZunSp7Nu3T/75z3/K/fcnXreeRfhdWC5jyl4i/s33uUTsFY6bJdbI61GJRE446Lh93LfeVvVDyy9RddMVzRzbu0X8brF+JDPLcXtGdjsREZn0qR7mTybiN9XmQv01XaS/OgMe1K9prhYAAAif0CzCX7RTLp07NdBjeKXfBSmfEJUMYn0AAACEBp1TAAAAhEbaX3Pa5M0lqvYT8cfvay9ij/iTmcVv6Qnvtog/o0TXFXryty+//WKk4/Yjpx5WtRnxu87iN6+Mjnhfd+3/XXu7qv86/Y+qTtUs/lRzWqRfJHURPwAAXlgi9eL2pXWJkVMAAACEBp1TAAAAhEbax/r7rx1SZdueC3WO3vXviaNjt4g/VqL3E23iL4+3RfzG/lMR8fd4QX+sW6/TC8B7ifj9qijaW1n076K21UbE//Ty2ar++eBLfT3XnJmfiDnjnogfAFAnQr9uUt1i5BQAAAChkfYjpwAAAGHGhCi7tO+cRq8uVHXspY4iItJ+rs7Ld1xV84jfZEb8vtlmy+syHvGb8f5tJ36QcHdPXn2Bqnu94PYRH1VV1rxlCfdplesF8Z0W5M/8RK9cUD5Mr2iQqoi/sfEeHT6jd+L2b1e/CL8XZsRfeG7XpPcHAAASI9YHAABAaKT9yCkAAEBoWcKEqGM0qM5pPOKPx/siyUX89p3r6ffHPaoX/t96v1743+2SABuHiN+cwf/XCd9T9d4hRyWRURPmqPqZtec4Nxp7giq7XPZf4/Wdf1qsMv26kcyqp5DfiN+v5p9tU/X+Ycep+q3xf3B5xkIRESkzfvqvH361r9dsN3VRwjblCVsAAIBEGlTnFAAAIHyYEGXimlMAAACERoMcOXWawS9ij/hL2ur2baYnjnQlVmG8gH5bezyWRMTvIOfqLfofL+lI20vEf2v/D1XtFvHvfN0l4ndhlVeG2U7xvkjtRPw7rtSz9ZvnV1TT0i7L+Mt06scvqdpLxG8u5F++eavn1wQAAP40yM4pAABAaDAhyoZYHwAAAKHByKkH+68domovEb8V038CRaI6Sk7HiD/jhH5VtsUaO6904Bbxf//J+6o/WBGJGWeq+RfV170zqrT1gogfAIBwonMKAAAQJGJ9m7TvnJoTnsyJUDVlG0X9mx4JNUdIvajpKOqWeT1VfdwFm1XtNooqZyY+lqRGUeNroUb09x8t1bc6tY2intxfleYoqnxLf/9uosYiorEUn7WMogIAEB5p3zkFAAAIr4iIxTqnJiZEAQAAIDQiUg+udFi7dL3cesb9NXquGcPHua1zmoy2M5f6am9OmjJtv9/I4X18MmbEX2DG+oYb73zD+w7FPeIvWdta1X2nFVVtEHH+C9BtolTGvoOq3vH9bj6O0B7xHzxeZ///uWSCr/04SeZ2pzWN+DM7d/L3Ovm7avQ6ANDQPbPkMemfe3zQhyGf786X7785PdBjeO3k70pubm6gx2Ai1gcAAAiQFfphwrpFrA8AAIDQSPuR0z3fcvhzZFUHVbZP0evs/bEeDm/3YuKI35zdb0b83R77VNUq4vfwF5U5i7+JyxOmTPi+qr1E/F5m8a++r5WIiAx8/IDeaP4J6GEW//4zuqi66xvbVV3aK1vVGUeM6fouins3VfVpb96p6ppG/PVhFr95GQARPwDUQ5bUgwss6xYjpwAAAAgNOqcAAAAIjbSP9RMxY//2X6RmnTGrokLVkYzEt9dMFPH7ncGfPVnfYrXopqqrFYgkF/E/tVY/N7OgkYjoeF/Ef8TfeuVeVR84rbOqW368MeFxmTKK9azLihb6bgbxiD+ZGfxuEf+5k+5N+NwW27uq2svtb2uKiB8A6inWObVh5BQAAAChQecUAAAAodHgY31TyiJ+I8pOJuL/9br4zP0lCZ/3UO/Bjtv9RvzH/WR9wtdyEo/3RTxG/C5artYRf/HZvVTdYsGmhM/t+pGe0b/j2/rUjkf8qZjBL2KP+Bfe8pSqh/757oTPNW8KQcQPABARiTBb34aRUwAAAIQGI6cAAABBYuTUhs6pC78Rv+uQfBIRfzRSGUfHrMQD3A9vXK7qZCL+LX/TM95TEfEno8Xafar2EvE3W7pZ1V2lp6rjEb/TDH6R5CL+ZDhF/GYEb0bzySDiBwDUJ8T6AAAACA1GTgEAAILEOqc2dE49MCP+PvcsrvmOahjxx+N9kfoX8Ves/krVGQP71mgfIqmJ+J1m8IukLuKP6vsKSLMCfxcQxSN+cwY/ET8AoCEi1gcAAEBoMHIKAAAQFEuYrX+MtO+cmjH8hifPSnp/5j58R/wR52tKwhTxuzk02fjHY8e7tqtObUT8bg6c07vqRuPtsqL6N0Ekpj8XvxF/zOXGAodz9D69RPxZ1xSIiMiha/RxH5jvHOV3n7kx4f68IOIHAIRR2ndOAQAAQo2RUxuuOQUAAEBoNKiR03gMn4p4/9j9mBH/ur+e7ms//W7Q0bsZ8T/Y+wwREXl4wzK17bjMI772vaW8qaq9RPwmtxni/SZWnSHvNxZOVcRfsXu33k+HDtW2zVmiL4koOENfPlHewriswoj4B8/+H1/HMvBvOm7f+hOHywp8apWn31Mz4t9mRP9eIv79w3t6eDXdpsUrSaxIAQBAkhpU5xQAACB0iPVtiPUBAAAQGg1y5NTvDH7XSfHG5Pv1fzD2Eymr2rYa6/6iI3Yz4o97qI++TOCFLR/72rd5GUAyEX/hiF7VN4jox/ed4O9PQPPzSFXEXzSq+kXrzTUR2s9uruqCs3X0b0b8fvUwIv6ivATvnQepivi9yOzZQ9Xlm7emZJ8AgGpwhygbRk4BAAAQGnROAQAAEBoNMtY3pXqRfhGRiLHAu2VEw0+e/WriJ6/V5S/euKbKw/8oLlL1z1rrGHdvRWnCXacq4ndkJPl9Bm1X9YbPuiV8alI3NnBRWtQ0caNvmFF+zoKo4/Yu7+vPMf8cf8fSZrq+ycH+a4f4e7IDIn4ASC8RJkTZMHIKAACA0KBzCgAAgNBo8LG+yXfEbw7Du0y0MyN+vxb/6CkRETnr5bsdH3/+ax3jJhPxb6torGoz4v/N2Rd7P1gXQUX8LTfoU/tgn3LPz3OL+Csa6TYD/2+z43O93IjALeIvm5kjIiJZ1xR4PdRqmRF/y22xalpWdeR4l5sZfLO9yXJ9rlXs2+f/4AAAmiWsc3oMRk4BAAAQGnROAQAAEBrE+i7MSHn9eH8Rf/9b9JT7tX/un/SxxON9EXvE/z8j/6XqZCL+7hm6jRnx22Pq5BeSDzri9xPvi9gj/v5TDqm6olN7VVufrarxcTlF/PF4XyR1Ef/B7vpv0O6ztlfTspJrrP+NksH6XCPiBwCkGiOnAAAACA1GTgEAAAISEdY5PVZE6sEcsbVL18utZ9wf9GFUimY4bo5E9XT9SGMdjUtUD07/bPnnvl7qnKb51T7uFvGb/Eb8put6GqvNxyr0fq73vpB8u59sS9jGS8Rv8hvx5989tMo2vxG/yYz4TclE/HFui/S7RfzmIvx+uUX8iWJ9N0T8AOqTZ5Y8Jv1zjw/6MOSLXfly6csvBnoMrww9R3JzcwM9BhOxPgAAAEKDkdMkRJs1U3Uk07hCIsv5agnraJmq/YyiJhpBFXEfRc0QPann+tabVe1lFHX4q/eous+9S/UDIR1FdRohNeVe+YWql776LVWHdRTVTaLvsybMUdSajpyaGEUFEHahGjn9+8xAj+GVs7/NyCkAAADghAlRAAAAQQp9hl23iPVTJKNVK/0Pl1jfFHTEb3pyziWeX1/EOeL3E++L1E7E3yzfexBQ2xF/bcb6plRF/J2fWqjqzJ49VE3EDyBdhSrWfyngWH8YsT4AAADgiFgfAAAgSKHPsOsWndMUqThwQNUZ7dslbB9plKXq5wefoupEEf+HRzqr2i3iv2fkm6p+8m0d2btF/PdcZLT3EPFHMvRar/Gfp3ZT9a04vUT8e//WXdVuEX/jXgdVXbqpZcJ9DrvqP6r+5O+nVdvWjPJTFfGvvbG5qvvd4uupNWbG8amK+Ms3b1V1U2N7KiL+jLZtVU3EDwBwQucUAAAgKBZ3iDoW15wCAAAgNBg5rQUVe/aquqFE/Jal91EbEX9tqo2IPwh1FfGnIt4XIeIHADijcwoAABAkYn0bYn0AAACEBiOntSypiH/QySIi8rPPvkz4PDPi9+IPb1+sai8L9ddUMhG/fO+Ae0MH8z48VdXNfD1T8xLx1wdmxJ8q8Yg/1TP4RYj4AQAanVMAAIAgEevbEOsDAAAgNBg5rQXRJk2cH4jpP40irVro7UfLHJtHGjUSEZHnTz1JbVsz/iTHtm5+8e1/JWxjRvymvuNWOD8hQ/9NY1V4vwzAjPhj5wxK2L7NHxupelPihQNsUjFzPV0i/lQzZ/BnGbUZzScjs2cPx9cCgHTFOqd2jJwCAAAgNOicAgAAIDSI9WtBrLRU1dHGjR3bWAeKVR1pottYR45UaWvO4B94/1pVr36sf8Jj+f1HOrLPSNjaLlZSomrXSxVqKPrhZ77a9/mw5q8Vj/iTWZjeLcqvjVnx9ZU5y56IHwC8iohYkaAPIlQYOQUAAEBoMHIKAAAQFEtYSuoYdE5rmRnxZzRtWk3LShGjzaFpVaP0iDGl7zirUNVNf6BriekZ9Fa58z3hrYoK5wOwnH9Cts3s49zeQdcfrvLctib2X5t4MX9Tm+mVqwTUxr3nzf2kOuLf8ORZvtr3uWdxSl8/GamK+HeO7Gb8S9cd/8zlFACQrjzF+sOHD5fZs2fL9u3bxbIsGT16dJU2Dz30kOzYsUMOHz4s77//vpxwwgm2x9u0aSPTp0+X/fv3y/79+2X69OnSunXr1HwXAAAASAueOqctWrSQlStXyh133CGHDx+u8vh9990nd999t/z85z+X3NxcKSwslPnz50uLFnotz5kzZ8ppp50mI0aMkBEjRshpp50mM2bMSN13AgAAUA9FrGC/wsZTrD9nzhyZM2eOiIi88MILVR6/88475bHHHpN//OMfIiIyevRoKSwslGuuuUYmT54sAwYMkIsuukjOPvtsWby4Mnq8+eab5ZNPPpF+/frJunXrUvTthFvF/v2qzmjTJmH7eIRveZjFd+SfHVXd9Pu79D4y9Udsi/gjxt8lMZeIv4Z2/ONEVdd2xO9F/DKAeLwvUjsRf6pdcM4KX+3nGZcBhDXi9yKzdcuEbQpv0Z8ZET8ApJekZ+v36tVLOnfuLPPmzVPbSkpK5KOPPpKhQyv/BzJkyBA5ePCgLFyo/yeyYMECKS4uVm0AAACApCdEderUSURECgoKbNsLCgqka9euqs3u3burPLewsFA9/1g33nij3HTTTSIi0rpDq2QPEwAAIJxCGK0HKbSz9adMmSJTpkwREZG1S9cHfDQ+mTPeI86RfOzgQVWbw9fmgvx6F3p/niL+N3SH3zXiP1qmnxA1ludP44jfnOVf3yJ+L8zLAMIa8XthX2y/m2u7OCJ+AEgvScf6u3ZVdn5ycnJs23NyctRju3btkg4dOlR5bseOHVUbAACAhogJUXZJd043bdok+fn5kpeXp7Y1btxYhg8frq4xXbRokbRs2VKGDNEjV0OGDJEWLVrYrkMFAABAw+Yp1m/evLkcf/zxIiISjUalR48ecsopp8jevXtl27ZtMmHCBHnggQdkzZo1sm7dOhk3bpwUFxfLzJkzRURkzZo1MmfOHHnuuefUdaTPPfecvPnmm7U+U3/o50dVvfCURrX6Wo6SiPhFqo/4K2K6ddTlTx+3iD/aKEu/fppE/NGrCxM3+sZ+IeKvD7JXHVF10YmJb2IRj/iJ9wGg/vI0cnr66afLihUrZMWKFdKsWTN55JFHZMWKFfLII4+IiMjjjz8uf/jDH+SZZ56RZcuWSefOneWCCy6Q4uJitY9rrrlGPv/8c5k7d67MnTtXPv/8c/npT39aO98VAABAfWEF/BUynkZOP/zwQ4m4jPrFPfzww/Lwww+7Pr5//346owAAAKhWaGfr14Z4xB9IvO+RGfE3ubRUROwL7JvMKD9mzOKvjYg/skjfavZHP/236/GLiPx9/eBqHxdJLuI3Y3hzBr4f5iUAXiL+IHzy99NUPeyq/9R4P/U54t91ho7yD51Yqupunfc6tj84u7OIMIMfAOqzBtU5BQAACJWQRutBSnq2PgAAAJAqDXLkNPAZ/CJiVeiZ8JGMDOc2RyuPs+kPdAQdWMRvXHL88ozvqtop4r/q+OWqrsuI/8DVfXw9N85LxB8E87KCT0TH1A014m++Sq9esV3aqdqM+Ftemi8iOt4XIeIHEG4RCedao0Fi5BQAAAChQecUAAAAodEgY32TudB6ymZnJ1h2q7KN/rsgUcQfj/dFvEX8Ji8R/yEjAm3+TSwqYo/43cQjfrcZ/KmK+GPnDEr43F2b9fF26rlH1SO6rE743Lh3rtZ1fYv4L2+31N9Oz9FlukX8LY3zmIgfAOoXRk4BAAAQGg1+5NSU1CiqOVoa8dDnt2KO7Tc9nOv5JXv/4HNV18YoatOLtqraMr89h6cmmiQlktwoaueJCZvL8X/XE7jWX9VeP9Al8XPjzFHW+jaKevkt/kZObSOtaTaK6jRJSoRRVAAhxYQoG0ZOAQAAEBp0TgEAABAaDT7WL23rPJae2bmT4/by/F2O28XS+4lkJJ4QZcWi5j8Stney8VenqLrXSB3RHv5X94TPNSN+L7o+8amqd959ZrVtayPi92JXrr7VZYsNevue3OYiItI+65Cv/blF/DK9RofnScklZ/hqb0b8D+VdquqH+872tR+3iH9D1aaywYj9vfByacC+0c63oW1aqH+umlyjf/b2vdvZqbmK+BOtgypCxA8gPFjn1I6RUwAAAIQGnVMAAACERtrH+rOmf6f6Bi6xvhsz7neL+L3cmjQS1bG6LeJPxOVwN/1az/LvedESVR+Z08P7vo8Vq3Dc3OUJHXvuvHeoY5u4oCJ+0/KiysscBmdvU9uSifjfvlbn3kHP3DcvAyibqc+1h65JTcT/uJycxNFV2pCi2f8lM/XPXttrdDzvFPG7rYNqc0apPq6p+tIac03d6Ief1ehYAcAXYn0bRk4BAAAQGmk/cgoAABBaljByeoy075yas5nNRfZToTYi/oTMpi4n8+ZHdNSbVMRv3FggMvhExyZd3z8gIiJrf9ZMbWuxwfm0SibiN+NVL7cyNR14t/JzWn6+3pZMxF84xLzcITyL8zfZp4+rZGaOqpOJ+Pdfm9rvL+iI/9CJpVUeFxHZcL0OkcyIHwBQ94j1AQAAEBppP3IKAAAQZqxzapf2ndM3duiZx9/vWvVxt8X2/crsqm/gXr4z37GNl4i/10P6eDc9XDkDP++C//g6lvlzT1O1W8Tve+F/I+I3bzgQ1//5w6r2G/G7vqTLdreIv7h/WbX7K97W3nG7GfF/sVefJFs2dEx4jGbE3yYFi/Nvu8DfzRG6z3P+jeYl4vdLR/yp+S1qRvztvqz5fpwi/kSL9Fdnl3EfhC4f1vy4AAA1k/adUwAAgFBj5NSGa04BAAAQGg1q5DQe8X+/q16w3pxln1TEH9MxeWYXHSmmJOK/wPlxN3kX6ssAXCP+B33OlHaI8t34jfiTYUb82b31zPKioeXVPm+nh4jf5CXiT8Xi7X1eO6rqDVc0StjevAzAb8RfU+2/0K+551up+XN/78l6P+2+9Hdpgyke8SeawQ8ACK8G1TkFAAAIGyZE2RHrAwAAIDTSfuQ0avS/Y1IZvdtn8NdCxG9IRcT/wSy9GP13Ll9e5fHquEb8v9EzpX1H/D74jfjLmzlulow2rR23V+z/WtUd39lkPNJLVUT8mi3ib+vvchEnYY34/SzSDwAIl7TvnAIAAIQasb4NsT4AAABCo0GNnMYj/ni8X50wRPx6oy4/eM2I+K+ou4jfWr5K1ZHBJ/p63bjamMVvxv2l/fWNEFpv0vdQP9C7cuH1o52qj/dF3CP+A+/qc6CFsb3T0iNeDzUp9SHi73OPPnfMBfaTQcQPIO1ZwsjpMRg5BQAAQEJjx46VjRs3ypEjR2TZsmUybNgwT887++yzpaysTL780tvtAOmcAgAAoFqjRo2SiRMnyqOPPiqDBg2ShQsXypw5c6R79+7VPq9NmzYyffp0ee+99zy/VoOK9eOiPvvkQUX8cV0fX6TqHffpheZrI+J3kzGwr/7HYR0xFz1RNYs4sDzbcR893zioajPiN0XXO8+Q9yJi3CjAihix9nuVEf+28/R91V0jfmOxuZ3b2+ntA446NBbZJU1VnUzEb87uj9t4mfN94Pu8pi9ZSJeIv9/grYl3qk93KXrhuJocli3ib2rkaG2nLXJqDgB1oj6sc3rXXXfJCy+8IM8//7yIiNx+++0yYsQIGTt2rDzwwAOuz/vLX/4i06ZNk0gkIldccYWn12LkFAAAoAHLzs6WpUuXqq8bb7zR9nhWVpYMHjxY5s2bZ9s+b948GTp0qOt+x44dKzk5OfLb3/7W1/E0yJFTAAAAVCoqKpLc3FzXx7OzsyUzM1MKCgps2wsKCuT88893fM5JJ50kDz30kJx11lkSiyWeiG5q8J3TI5fq+803nb0kYXtPEb/5IURTOzjtFvF/+KrOPM+5suYR/1cP+jueIx92EBGRpufsVttaDS5StRnxb/5+S1WbEb/p0PD+qm7+8Vp/B2Nwivjj8b6Ix4jf3F+pjrqtxjoCLzbj/qWSUr1f18drRvxm7SXiH3nWCv0PI2F/e9Gpju373q7Psf3XDnFs40dtzOI3IzCrZpP4ASA86kGs70ejRo3k5ZdflnvuuUc2b97s+/kNvnMKAAAAd0VFRVJeXi45OTm27Tk5ObJr164q7Tt37iwnnHCCTJ06VaZOnSoiItFoVKLRqJSVlcnIkSNl/vz5rq9H5xQAACBIIR85LSsrk+XLl0teXp689tpranteXp7MmjWrSvsdO3bISSedZNt2yy23SF5enlx22WUJR1PTvnN63i1jPbdNKuLv2qWalgkYEbREvGeUtTGLf+e9ej9dnvA+gzke74t4i/jX3qxnuXed63zpw6bb9WL/vf64yrGNm51nN62yzTImoWcYaXyfF3VMv/HKrIT7NiP+Th/rz6vR+p2qLt+xU1IpVRG/aeSQFao2I35z5YA201M7i90t4r+7x1xf+3lAblI1ET8A1L7x48fLjBkzZMmSJbJgwQIZM2aMdOnSRZ599lkREZk2bZqIiIwePVrKy8tl1Sr7/7cLCwultLS0ynYnad85BQAAQHJeeeUVad++vYwbN046d+4sK1eulJEjR8rWrZVLAfbo0SNlr0XnFAAAICARqR/rnIqITJo0SSZNmuT42Lnnnlvtcx9++GF5+OGHPb1Og+qc7vyR80LqTrqIh4g/quPd8ny9vEJmj67O7SuMWfzmjH4fUb4bLxG/G7cfCjPi7/5WkXMjB14i/t0726h6x4X6vTAj/vb/1XF72Sm9VZ31+UbH141l6OeWN63+Jz3jqH7Pdw5vouomxnXdJZ0qJJFdw42F3D/W2wtv0eu+tdqWeDWARgfKEraJc4v4Bz61UtXrl+povnHUed+lMX0Jgxnxr511gqrNiD/64Weej9ELM+KXy/w9N+sa/fNWNlNfoB8/l8Mc70dbtqyyLXbQefUKAGiIGlTnFAAAIFQsCf2EqLrGHaIAAAAQGoycujAvAfAU8Rsq8gsStrGOer/EwItIhr7EoNtT+hi3332GU3P7sRgRqFvEX7H6K1VnDOyr6u5vVsb2277XocpzRESOfGBE/N/REX+HLvtV7SXiz1ql773uJeJPpKKR/kbNiN/UZJfzPebbrkkc95sOdNc/Zm4R/9FWlRG7n3hfxB7xyzBdXpKrI/gyy/n7iEb0e/2vT/TlH72l1Km5ivhTHe+LiPzPn29Wdau8qmvmVccp4jfP41SvOFAbzKifiB9AQ0fnFAAAIED1ZUJUXSHWBwAAQGik/cipLYb/0ak12ocZ8feZrbdHmzfzt6MKHQdHmupF4s2I36rwFxmr/WU6f5TdJ/5H1dvuOC3hflwjfuNGARX/XafqeMTf/S0d2ddGxN/qA70fM+LffKteqP+jMU84vq6Ts1+4R9VeIn7TvgE6JneL+EvOdY5mS4y6NF+fP93nVx5DPN4X8R/xv2nM0DdjfS8uHqZv1rD69ZOqaVm7M/hFRA7M76Tqmkb8rRob7/T1+gYZ65Y7r8NnWzkgYET8ABq6tO+cAgAAhBqxvk2D6py2f6dytHLPiCM13sf+a/Xan23+pkdlPY2iGpOWbKOojRo5bvczaSp2VI+yRRs534IzmVFUcy3W/T89q0rb/X3Nf+mfskYHnEcizVHUQ8cZ74XRpuMi/a+9F+oXaDdXT87quMLf6GLcguueVHWqRlHbLPR3DI07H1b1trzK8yc+gioS3Cjq+qv06x7/9+pfN1WjqJ2f0m9e/t16jdiajqKat0N9auuFqu43WI+6m6Oo5q1UGUUFgGA1qM4pAABA6DByasOEKAAAAIRGROpBf33t0vVy6xn3p2x/ZjTvN+KPXxogYo+9279sRJpZzrG6K5dJUPHJUa7xfkT/beEW5fsVK3Ve49LkFOvbHu/rvN0t4jeZEb/JjPhNTfbr9q88O0HVNf2ry4z4Td3ed/4MIjH949P4Kx07F15wnKqLRxYnfN0Le6+usu3N/57s2Lb38wl3Z4vmUyVRxG9K1UQpM+I3JYr4H+4723G7GfGbgpgo5XQbU6+I+IHkPbPkMemfe3zQhyErt+6Sq/4wM9BjmHrNcMnNzQ30GEzE+gAAAAFKPHTTsBDrAwAAIDTSfuTUaRau/XaGQyQV9lylZy23f+Vz/UCG860jbdxm8ce3G7P5bRG/pdcBTZVo48aqjpWUOLZJdLvTNnoyvS3iP9oq8Sz+5lv0e+EW8XthvjN+/gJzm8W//Vz9GZgRvxVN/Pdui7dbqNpLxB93yQlfqtqM+Df+TLdxi/jNCN5LxN9xkX7fC4c4v+/x/XiJ9+vbLH43tTmL34zm/Ub8zOIH0kzoL7CsW4ycAgAAIDTonAIAACA00n62vhnLxbnFc+Ysfr/sC9br0nfEb3KYxW+7vam5YL9Rm9F8qpgR/77RVd8np3j/WMnM4m++0/kSBnNB/sNn9la1OXM/Lpm/xLzM4m+yUd+SVcrKVWnO3DeZEb/TbH03tTGL34z1TW4Rf5wZ8Td+2Dle37A723F7jyu/dNzuhZ9Z/G4z9003v36jr9dnFj9Q/4Vmtv6WXXLN+GBn6//lJ+Garc/IKQAAAEKDzikAAABCo0HG+qZ6EfEnWKT/2DZBRPxeYn2T34i/0xJ9s4SD3fT3ZMb6ptqM+C/6X+eIv+P7O1Rdvlnfwz2zaxdVu0X8Z9+2tEbHkqqI3y3WNyWK+E8cuM1xu1usb0p1xO82g98t4vcb65uI+IH6KVSx/lMBx/o/JdYHAAAAHKX9OqcAAAChFvoMu27ROXVhLtTvN+I3I27zfIsd0dF0tGlT/UCiiN9tkf6IEYFn6o8yYtSxo3o2dbSJEfHHar6Af7RJE1W3nVb5Pnl5jxLFwiIiR40EuN/YJY5tWpv/yG7v2KbZpxtVPWrMnSJij/dLLP3JNIn4u3HcnEf0Qv0XPeQc8ZvKd+xUdbupujYXql91V2U8f+J4f/G220L9R1vpyL7Jm87vY78Pde3l84tH/14+R7+2vqqP3W/E77RQv7lIv+l/5t+s6mFX/cfX67ip6UL9JZec4et1mn3gfUUHERbqB1B/EesDAAAgNBg5BQAACJDfScXpjtn6PmfaJjOL37xUQIwo2VfEbypLfI9zU21E/LHS0srCiMnd3qNk4mC3iN+U4RLxx5kz+P826Q+ObfxG/KZrL7hO1RVrNzo3ijm/B2bEH+c34jd99uvTHLe7Rfymmp7jBy4pTtzIp5rO4ndbpN/N4c41/xlwk+h3i99Y3+Q34jcR8QOVwjRb/8dPBDtb//nRzNYHAAAAHBHrAwAABCn0GXbdonPqUzKz+G2MGNx1Fn+KRRvpGdyxklK93UPEr+L7Y1lVf6JS9h4Z1k3SEahbxF9RtKfafTT+l3785m9fo+rnPtJxit9Z/GZ71yjfFDUu2zAi/uiHn1VucpjBL5JcxG8yo2S3iL+mn58ZwZuz75NR01n85gx+vxJdChQGh78zUNXJRPwAEEZ0TgEAAAISsZgQdSyuOQUAAEBopP3IaW3e99o2+z4ZbhF/48ZOrZ1Fjb8zPMy+9xvxm8fiGvE7MN+jwiE1n51sMqPveBzuV/nmrar2EvG7HkuNXv0bDhG/+f24RfwbLm+UcNfdPVzA5Dfi9yNMEb9f5u+M+hbxe1mNAQDCLu07pwAAAKFGrG9DrA8AAIDQYOQ0bMyI/5v43FO8n8RC+l4ifvNyA6cZ+l6Ys+zN2ffJqKuIv9bFI36HGfwi9u+zz6yjqvYS8QeNiN+ZGcEnsyC/yculGgDChwlRdoycAgAAIDTonAIAACA0iPXD7Jv4PFZS4vy4Mds7kuX8UUabNvH1kuZfK2bELxHjEcv5/vB+1IeI/4Yew/w9ORV/6iVYpP9YfT/Udaqi4dqULhF/qhHxAw0csb4NI6cAAAAIDTqnAAAACA1i/frMiH2tMr05EtX3hLeMaD7SJPGsf7ONLeI/ar6Acc/5Gs7cN5kRvxnNJyMVEb//FzUudzDjeR8yO2Y77/rQYeftBw+qujai4dpUGxF/OiDiBxogYn0bRk4BAAAQGoycAgAABMVindNjpX3nNGNg3yrbKlZ/lZJ9z925osbPvbDLqSk5BsWMlDP0wuyRRsYi7THj7Deif1OkSRPn2lgxwKrQC/5HenSpLMoTz+CvWLs+YRu3hee9mP/SVM9tU/7+H+PRDfqe9BlGXhN1+Q101/W3iIjInj76sopWW8sc2zZetFbvr2VLVbtF/H5ltGntuL3slN4iIrKvnz4vOny6z3kn6/WqB7HDzpckRIybS/S+92tV737G+fKTw6X6XK6o0KFP08b6pgQZ2e1FROToScc57qPRig2O2yv2f+24vTaN36zPkahrprdQVVc8d4+qW29KfNONrEPObbb/cqiqM484NpFX/+cJERHZW6E/6xJL36zjd32+lfD1AaCmiPUBAAAQGmk/cgoAABBqxPo2Datz+s0s84wT+qlNFf9dF8ihmJcE1DRi3jZuaMI2ljE23mvCSv0PDxG/1b6NqouPd4l6m1e+QPN8Ha022nnAsW1s2KmqzvyPh/c9iYg/EbdLMlIV95tRflYkcQQ7ceozIiIy+rd3qW0HeugYtfHXeh+lI05Qdat3/qtqt4g/kmVc2mGIHtdVv9apHVV9sGv1Kw1kHdbf2+4z2+rtxcY5dWIbVbb7eJuqy7fvcNznkeM7qLrps/r1y28tUnXrZs4ZdOvG+pKTw2dUXnpQOCjLsa2cfaIqez6zStXmpQzJRPyZPXskbHO0WzsREYkakX0jD+fIG2MeV/X3n71P1RmlTq0rXyGu5TZ92U15M/05He5VXu1rtsvQ7+1e48qdX274QtVE/ABSrWF1TgEAAELFkkgKlmVMJ2nfOd0xQo/IdJ1bVOXxdBlFdWMOyGy68yRVu46i1tChzuboXCtVuY2ilp+m33e3UdRos2b6H7U4imqqzc/CixnjnlL1T397t6pLW+tRMHMU9YCHUdRIs6aOr3W0e1vH7W7K1cehR9rNUdSyFsZ2YxR17/Duqm73sd5fxe6qP4/HsqZ2TNhmT2P9usWnOqcATjbf6jyKWvGd01Td6PNNCfdTsc9lUlgCXkZL3fgdRT3Y3RwNr9nPO6OoAOoKE6IAAAAQGmk/cgoAABBqpPo2ad85zTh3j6q3RypvDdntHec4kYhfxCo9Kslyi/gjZc4xJhG/FjMi81RF/EcHdlN1o9Xbkz7G8mbmv2oe8TfZ21nvpSLY38xmxN9lgY6vj57SS9VuEX9GW3+XRzix3SrY53P9RvyWy1wxP4j4AdQmYn0AAACERtqPnAIAAIQZty+1i0g9uNJh7dL1cusZ99foubvf6F9lW/kH7VXtFvGbvET8ydzKNBG3SNnLOqdeuK6F2kmvdFA8sL1UJ77eaXVKW+mot/1Kl/smGryshWreGrM2PwOTl4jfvAzhyf++l/Rrmre3NCN+kxnxm5rudr4NqpHIS0l756zXac1Te6yvZRp3KTUjfpNtLVRDk716vc1YI30ulTXzF+583adqe8v7BP5Kxi66fKzj69K2+j1q9Z+djk/df0YXVbde5TyLv7hfmyrbpk4c7/TyviN+00/u17c7zTrsvKeve+vxiQMDq54ncy+c4Os1ud0p6pNnljwm/XOPD/owZNWmfBn9yMxAj2HSLd+W3NzcQI/BxMgpAABAUCypB8OEdYtrTgEAABAaDTLWNxHx27lF/FZvPeP70HEtqt0HEb8dEX/dR/xO8b6Ix4jf5WXar6xw3F7TiN8p3hch4gfqSmhi/Y0hiPVvJdYHAACAVI4NMCHKjlgfAAAAoZH2sf6u/9Fxt7kgv5NURfyRLL0I/TtbliTcT03VacT/R33vcatnV1UT8WsNJeJ3ivdFiPhF7BF/aW+92sWRbP0+1qeI3yneFyHiR3oIS6z/3435MvrhYGP9P99GrA8AAIC40A8T1i1ifQAAAIRGg4r14xLF+yLJRfxmrH/g8tNUvXD8swn3U1O1HvEbSW6viVUj/kTxvkjwEX9dxfsi9Tvib/zVLlWX9uukaiJ+581uEX/j/c6ReDzi97NIv0gwEX+iGfwiRPyov8IU61/3ULCx/jO3hyvWZ+QUAAAAoUHnFAAAAKHRICdEVbyvI3u3iD/zO3r7dslWtRnxl7duquo9Nw1x3I85433ggp+qevXZM7wfsAdmZG1Gyt1/u1DVyUT8ESO53HTHiaqOR/zNJfEM/qxDOjZ0i/gbH9CR7p6T9PvrJeKfs35hwjZ1xe3zkIjOj2NH9Pd0zwnniUhy8X5M/N5EPrHG63TEL99E/Ga833KHPjHMiN+M782I3x736+N1i/jdZBxxjtITRfytN+hz0Iz4zTUGXSN+M/U2XmbvQP19t1utj6vxxt2qNmfuNy2qjMe/PrGtPi4j4m+xbr+qzYj/+jvuUnWqIv6yZuZnUPXx1hv1pRSRcv25f32yjvgvnHunqr1E/M2i+rklFXqfv9zwhaqJ+NGgcPvSKhg5BQAAQGg0yJFTAACAsOAOUXZp3zntOlfH8NtHVMbz5kngJeJ385Op/1L1ta0Sz+g3fVSi6283cW+XSrUR8ceKD1UWq9arbc1Fz35MJuJvt7a0xsdY38Qj/ni8L5JcxN9kn35/S9omDkga7fxaH8t+XUfbtFa1ivhdZvD7jfiT0WSZPt9ivbrpB7o1FxFvM/jbr9KR9Z4T9a9C3xG/B04RfzzeF0ldxJ8q7zzzp2ofzzAuTxnwr1tU7TfiBwAnxPoAAAAIjbQfOQUAAAg1i1zflPadU3Nx/Hj4F4/3RbxF/LVxLUhtRvnXr92i6qn9j3Ns4zfi/8Hlnzhuf6X12ZWF8SYd/8v/qDqZiN+K6uiw0e5i3aZD4gX/w2TdpDMSN8qoepJ9798nqHpp3kRVF1T4Czy+NtaYzjjq/NziLjmq7vTHjY5t4hH/9u/ok7eiiT7uihZm1q0j/pbrnCN+NweuOOi4fZ/xfZeO6qvqAbeuVHVT6VNZfBPvi3iL+Lu+f0jVO87Vz21vzL7fM9D5hgOdF+lrdErbGDcqiBqvG9PvTTzid5rBLyJypIe+lKLpVn2JRW1H/FkHnVdAcFJm6bZrLv6zqon4AaQCsT4AAABCI+1HTgEAAMKM2fp26d85jeooLh7xG3N7PUX8Xd/RM20rVn+l6q8rdPwn4m+2fm3qkmXes9s51jd5ifgrEg2yG9Oa1//uNFWbEX+L/DaqjnXRkaabjEL9fZTv2Knq6Fqj0bcGGP8IzyL8fv3+O6+IiMgvPhilN5br9zR3/h2qzmqqI+C+D+x33F+L7Z+p+mC3030dy+6bz1J1h+cWV9s2o8Sczq7PETPiP9hPR8CdP9Ct2ywv0P8wrrf66rttHF8r5jJ1fs3TJ6t64L2VP+Mt9ut9VLTRl4GU5iReLuC41/RxRcr0jP5Wnzm1tsvYpC+pkV7Gz55DxO+2SH+zFVtVffjUHqr2EvHffvaPVF3epZ3jMUZXb1Z1TpttVY7LLzPiXzXyGVVfeeYPVP0/D1/p+Fzz59oL15tbAEgr6d85BQAACDNGTm245hQAAAChkfYjpxktdPQeO1w5Vdicwd/ZqN24zWGtqIV7mQfNjPhNr/Y9zXG7dKxcKH/s4A/VpvWHO6o6Y6H+++fjV/W08a5/WOa8P0tHi17mDkc2+4sFa+qivmerOnboUDUtK637szFD38dpEo/3RUR+8b4R8ZfpnZSVNVL1f+/X73W/m5c67jOjtOZ/kjtF/OaMe/NSmKxDxje6R19OY9604aBOqaXlP50/u7LDxiUf5ntXkfiNXP1k5Sz+gffoy2+iB/VKD023VXlK5csYvyesYv35xg4fSfiatv1k6l+p5Zt1PJ/Z0/jG4xG/wwz+Y5kRf0WR801Cmhm/wmw/M9t3OLY3w/tYsX5vIo0aGW1qFvGbz3v503+o+vJuZzk1T0o84ifeB9JP2ndOAQAAQssSidTs78G0RawPAACA0Ej7kdPVE/Vi3QPvqIz64vG+iIhVXl7lOV7NObGNqk8z1i2vzQX2PypJ3CZoxzcrVLUZ8Q+/Us/c/1j0DHJbxB8x/l6ynP+UjDbTM66tHl1UfcPWYar+Sw/nmwbU1JyvFqjab8RfU78/1yXid7HuuVxVu0X8yYhH/GZMn8zyJztv1+dA56eMy0nc4nsfl0fE430Re8TvxtqvZ8KLEc1HGulF9a2jZZKIFdNvSCRDX9pgRvxmfK5UOF/EkpHd3nF7bbCOHlX1FT0rf5Ze25yan6NZ2/WqD8lE/GaEH4/1mcGPtMCEKBtGTgEAABAadE4BAAAQGhGpB4PJa5eul1vPuL9Gz103dXCVbfF4XyR1Eb/pVxtXqLo2I/6z77jZcbt5YXXzWZ+m5LUyTuin6jW/qHpve3O2vhvbLH4jD/74Vb0SgNssfqtMR45mrC+99SzoiBGNdp6ar+pUR/ymi/oPV3XsoPM94f3M3P/9eS8nfE0vEb/JjPh3jxmi6ozv6dnfEePzeKDfHMf9HLWq3lv+92svdGxb9kG243YvzIh/3eTcalo6cHp/je/NS8TvxfpJPR23Wy43Cuhz7Urd5pvz1DHeF3GN+P3y/fssoo/dvCQhLlURvykVs/jNWN9ExI9EnlnymPTPPT5xw1q2en2+3HD/i4Eew8RfnCO5uT5/39YiRk4BAAAQGnROAQAAEBoNMtY3pUvEX9sRlhnrm+IRv5dY32RG/KZFLw9SdefxixzbRJs2ddweOa6rqveepmc5n3LH5yIi8lw35/2lSjIR/5hh71dpe21r55u5f1yiv89kIv69bzl/pr/q/3a1+3CK90XqOOKv6f0vjIh/wG0rq2lYvQ1T+6vaLcp3E4/4t4w7I0FLux6/dr5BRq34JuJ3ivdFiPiRHkIV6//ib4Eew8T7v0OsDwAAADhp8COnJkZRvXEaRTUnSdX2KKrbKK6U64kkhcP0LTAzSypP8fgIqkj4RlHHDK86cmqqjVHUdl302p4PDqh+tNSNl1HUX/Sfq+o/bjwv4T4PzO/kuN08B9ZNPt2xjS8+R1H3/aObqp8a8Eo1LStdt/j/Vft4xld6Yp/f9WJrfRQ1UnU0mFFUpJvQjJx+lS8/C3jkdMIvGTkFAAAAHNE5BQAAQGgQ67uo7Yj/xW36dpjZGc1Tsk8nQUT8b7+bOPI0PbG3j6q9RPxdJ61QdaR7F4fWIntP15NwyptURpTxeF8kfBH/d7/0fhvUVEX8z533gqp/ufoyVac64ndT3yJ+v7G+ySniH/utj1Q9edYIp0Oxyfue8y1p35vlHMV1+10Kon8z3jduLRyJOm9/bZP+npKRiljfRMQPJ6GK9e8LONZ/gFgfAAAAcOSpczp8+HCZPXu2bN++XSzLktGjR9senzp1qliWZftatMg+GtWoUSP54x//KLt375bi4mKZPXu2dO3aVQAAAIC4TC+NWrRoIStXrpTp06fL9OnTHdvMnz9ffvrTn6p/Hz161Pb4hAkT5NJLL5Wrr75a9uzZI+PHj5e33npLBg8eLLFY7NjdBW71xL6q7n+jjoBtMZdV8ysiftz9bFXXZsRvxlnJRFiZPXs4P3C4RERECs+t+R8a97bboOonjO1mxF96RrGqdww/TtUt/t5a1cVd9N9azQr0ORWP8+PxvojI5xNPUfXNd+jXrO2IP9qyparNiP+vs88XEZH/d+m7Cfcx/Wt9iYMZ8Q9vssPXsTy78zuqdovym0TKqmwrsbIc2zaK6NUSvET8t/d+T9VuEX+rvF2qdov4+92kb3lb44jfWKs00qSxYxPzFq/3rL1S1U/2fzXh7l8466+q3nC08rz+brPNatuo679Q9V/26VUc/v76dxLu+7zLddxvRvzbfzlU1TWO+G2/48zf086f7xW9vq3qVEX8qWD+7jN/J6bq9yOQLL8rdqQ7T53TOXPmyJw5lffbfuGFFxzblJaWSkFBgeNjrVq1khtuuEGuv/56effdyv/5/vSnP5UtW7bI+eefL/PmzavBoQMAACDdpOya02HDhklBQYGsXbtWJk+eLB066HUmBw8eLI0aNbJ1Qrdv3y6rV6+WoUOHOu1ObrzxRlm6dKksXbpUWndolarDBAAACBfLCvYrZHzP1j948KDcdtttMm3aNLXtRz/6kRw+fFg2bdokPXv2lN/+9reSkZEhgwcPlqNHj8rVV18t06dPl6wsexz43nvvyVdffSVjxoyp9jWTma3/P+tXq3rsxz+p0T5M/f7ff5wfSNGHG9ZZ/K6xvoN/LXzD59E4M2fxP79KXwbRuHHVqFnEW8QfZ0b8tT2L35yt7yYe8V++ulBt+0GLr9yaK1P3n6pqM+L/2wF92cKfF3zX8bmDBm5W9c5i/d7d3/cdx/Z+In5Tbczib37RJlU7LQ6/dtKgKtu8GnDHKr3vRvr72/dS4tuweon4T2pUKiIis4u7q21mxG8yI/49Zf5+H7jO4n/M5bx2mI1vxfTPRtR4L2JH9bngtji/+d69uvY9xzZuUj1b3w2z+Bu2MM3Wv/GeGYEewx/GnRuq2fqeYv1EXn75ZVWvXLlSli9fLlu2bJGLL75YXn/99VS8BAAAABqAWllKKj8/X7Zv3y59+1ZOKtq1a5dkZmZKdrZ95CEnJ0d27drltAsAAIAGIWIF+xU2KRk5PVb79u2la9eukp+fLyIiy5cvl6NHj0peXp689NJLIiLStWtXGThwoCxcWLv3iL5l4Y9VPWl45SK3Yz/Sqwp4+lSs1MzQ98Kcxd/j08oYb0r3BW7Na6w+zFI1Z/E/L/p9KS3VcaFrxL9TR/nxiN9pBr+It1n8ptqc0T9pnZ7tLMb9Ddwi/uvbrFD11P06yo5G9Pd6y9n/VrUZ8X+2uqeqc7rvU/VjX+kF4c2IPx7hm/G+WXuJ+L3wMot/37U69m07Y4mq43F0/7H6EgffEb+xeohVUqrqNpfp1RD2v+68OsXda/TNDxIt1H9pi22qnl3cU9VmxH9DW/29HTZ+D/1p93eq3bdINbP47x+iatssfuPXnNoUddgo/iP+K/vrz9G8kUm0aRPH9pHGJbq9ufJLin//MosfCCdPndPmzZvL8cdXXpcRjUalR48ecsopp8jevXtl79698utf/1pmzZol+fn50rNnT/nd734nhYWFKtI/cOCA/OUvf5HHH39cCgsL1VJSX3zxhZq9DwAA0OBYUg/u1Vm3PMX6p59+uqxYsUJWrFghzZo1k0ceeURWrFghjzzyiFRUVMjJJ58ss2fPlnXr1sm0adNk7dq1MmTIECku1mtT3nnnnfL666/Lyy+/LAsWLJDi4mK55JJLQrnGKQAAAILhe7Z+EJKZrf/V9NOqbPvz0BdVbYv4TS7vSr8bljk/UIt23K+X21p5+59r9bXcIiw/s/VNqZq5b+r/8bWO29u/3qza5yWawS/iPovf1GaNXjw/smazfiBa80u447P1C2cPcHx8bD9/C5o/NevShG16jtOXJ+y6Q59jTS8sdGruOos/Eb+z9f/vvyMdtzf+ZxvH7ZbxtmfPrIzzzejYN3PWeobLZ2p81vtnddbHYjnH4GbEH5+t78bLLH6/Eb/JdRb/7z9VtVOcH8lMHLSZEb9bZG/bZ5aHfR4pMf6hfyatsqMOrVPvrM/197T4lNRcuoJwCM1s/XX5ctPdwc7WH/+/aThbHwAAADUTxklJQaqV2foAAABATTTIWN/kN+IPItY3bfuVjl//eysRvxnxd5qhY8SyFtX/3eUl4je1+88eVVtbdyY+MJ8Rf6JY3xR0xF/TeF/EHvGb8f2vTnjbcbvJS6wfF4/3RVIX8dsYsXckout9/+iWcJfxiD9RvC/iHvGbi/Nf3UbPyk9VxN/9iSWO2+O8RPy2n4GI8+UOXmJ9k7l6glVR+XNbV/E+0k+YYv2b7wo21n/qIWJ9AAAAxMVCP05Yp4j1AQAAEBppH+vft+FLVd+4YLTn5/W9Tt9j3Zy5alVUJH5yLS/UH0fEb3fOTTc5bk91xN/2n18mbBM7dChhm0TqMuI3Y31TbUb8D626xFf7RrPbJG7kkB6HNeL3M4NfxB7xbyrt6NjGb8TvFuvHJYr3RZKL+P3G+k6sMv2ZWqXO72NSnzvSVqhi/TumB3oMTz3y3VDF+oycAgAAIDTonAIAACA0GtSEqClnTxMRkZsW6hnebotmuzHvHe0p4q9F3f9P3xf7BLlF1bUR8bvda7p881YR8R/vXzz0+6pOVcT/4eTJqjYj/qziyqjeLd5vsdM5ym/93/0pOa6a6njpGlW7RfyT1n1b1V4i/rsvn61qL7P4O03U59guqYz4zXj/sa9GqDqZiN/U/O+tVX3oqq/9PTl+RY3Lj7UZQfuOei3jPDEjfnNheGNz2x9uV7VTxH/3mlGq9hvxT39Pf+7Xnqc/95f261jutg4fqNrvLP64bffqVQHcIn7zfXSN+M07ARoRvxnJ+434Iy1aVBbGnQhtx2VE/El97kAti1isc3osRk4BAAAQGg1q5BQAACBcrDqbSF1fNKjZ+k7cIn632fpubBF/wCdZJKuRqt/Zkni2bTKcZvHXdAa/SOoifreZ+3GJZvAfyxbxb9iWsH0qZuu7qY1Z/LMGOs/+dpJoBr9XR+bq1zQvH3Czb/QQVTstvO8m+6XPErbxG/Xaomzj583WxvidYEbW+1/v7tTc0V3Hz1f1L/91tbFz5/ZmxG9ym8WfaLa+qdvvP1W1l9+JtT2LX8X6BsuI+JnFj0TCMlt/zdqdcvPtwc7Wf/K35zFbHwAAAHBCrA8AABAgJkTZpX3ndMynP1X1s2dWf+/aiHF2mLPybVxm7EYyo85tzKfWUYRk3mt6xHF6tm1tRPzxWfxOM/hFgpvF3+zD1aref8mJVR5vdEB/Rp4i/vX6e4odPlzj40oFv7P4PdGT+G37jzZrVqVpl/f2qvqr7tmq7vatXY67LilPza+ZttP0jQJqGvG7MSPo2NEy50a2n33jxhzGz5trxG9EzG0uq7wsxC3ejxmXFz351QXuB+3AnMVv2y56e5PdNXzDYvoyBUv070e3iL82ZvFH2uiVHJyYj1u79+jtjRvr7W6z+L3cPjIW7AotQENBrA8AAIDQSPuRUwAAgFAj1rdJ+86pGdWbEX9cv5vXOj/RiJJiJc4zPSMuyX+kaVPn7UZtGfs0Y8FUq8uI30kYIv42b64SEXu8f7SVDg3MiN9N0FG+Gy8Rf/PGtXd+9X1hv6q/uq6Tqt2i44ySxPvM7HWc/oe58oUR+3b4OF/V5Rs3q9oxPvYya9wQbZSl6pg5y9vDKhy2n+Wo8y+IeGTd+nubnHfiEh23la9UvX78WQmPxU23x/TlEdvvH1JNy2rUQsQfO3JE/8O4ZCoqTfRmo31Z57bVH6PxeMYX6/U+3CJ+43e+680BKozLOUK0QgtQV8aOHSv33nuvdO7cWVatWiV33nmnfPLJJ45tL7vsMhkzZowMGjRImjRpIv/973/l//7v/+TNN99M+DrE+gAAAAGKWFagX16MGjVKJk6cKI8++qgMGjRIFi5cKHPmzJHu3Z2vnz/nnHPk3//+t1x88cUyaNAgefvtt+X111+XYcOGJXwtOqcAAACo1l133SUvvPCCPP/887JmzRq5/fbbJT8/X8aOHevY/s4775Tf//73snTpUtmwYYM88sgjsnz5cvnBD36Q8LXSPtZPBVvcc9SMSJ1ju2i7No7bT39jo+P2spjeT4Xx98KKQd6P0YvajPhvWqe/t8n9eju2SSbid1rs/1jRli2rfTwe74vYI/4DNx5Q9eES59nWjfvrhec7P5V4wfggeIn4vcjs2kXVsX37PT/PHvG3UbUZ8VfohNZTxL/5mqr3pBc5doa+Pt7uv638bNzupe5pYXhD1IyAT3JZrNtl1CFjz0HdxLhUwEnF+s2O281VCUydTihQ9UPH64jsTzvOU/Vd3eap+rW9enHtD+/R+4waC4h0eaKG57XPiN+8VMJ8f932GTuiT5TIIR397/lW1+oPK0O/fubAb6m64/s79fHu1z/75qU7thUCGjn/Trhg0Q7H7RVS9ft+96TqfzcBQcvOzpalS/XNOiZPnixTpkxR/87KypLBgwfLk08+aXvevHnzZOjQoeJVy5YtZd++fQnb0TkFAAAIiiUiiac+1KqioqJq7xCVnZ0tmZmZUlBQYNteUFAg559/vqfXuOWWW6Rbt24yY0b1y3qK0DkFAABALfrhD38oTzzxhPzoRz+SrVu3Jmyf9p3TXld/rv/xzexZW9zkEtm4MmaRWuV6se5IZvWxXXWyosasT+Ovp1M/q3ytVMf7IuGK+INgRvxbep2savNCjUyX2Dn/7voV8R96x/kzcGUsjG4N7KXqyGqX2eUOzIjfZqPz5+530CBiPMGM+LeNq/xs4vG+SOoifr8K8nTsnDPfOQKOy+yh2/r92Xh4/SWO2/93/aW+9rPzXn1eBxHxu854N1cvKHVeOSWR8ib69QvP1ZeBdHhdx/rRFs31SxYf0tuNhf1j+79O+FoZxppA8Yj//JX6Eg8iftRHRUVFUl5eLjk5ObbtOTk5smuX8w1Y4i6//HKZPn26XHvttfLWW295ej0mRAEAAAQo7LP1y8rKZPny5ZKXl2fbnpeXJwsXuv8xe+WVV8qMGTPkuuuuk1mzZnl+P9J+5NTmm7/Azb/oLZc1TD0xb1+aoeuj3ds7No/KBufDMi6gN0dRo9+cMKd+po/381znj8y25p5xXF5ut2eOopoTj+K3JvWie9Yex+2/2aS3P9jL/XqWVNh72UmqLmteTUMRyfnbyoT7Kzcm79TnUdTW19d8jdaMnfrzq/hmFNU2gtrb38Q2W3tjFNW8Termq/Uo4skX6xFgN1/+S0/+io+ixkdQReyjqObao5bLbUpf3PKR4/YM+bfj9qt/cGPCY/Q1iupzsqCbB/q8repHN4xUddvz9Rqx+97t7Pjc+ChqjUdQReyjqCm6ni7WRy9Zc/Cb5XDLOjjfFrr5Brc0S/++3X2ZPnc6vKbTlIxs43e4Meprn+xa/ecookdRzUlS5ijqe6fqtVhZNxVhN378eJkxY4YsWbJEFixYIGPGjJEuXbrIs88+KyIi06ZNExGR0aNHi4jIj370I5kxY4bcc8898tFHH6lR16NHjyacFNWwOqcAAABhUw/+HnnllVekffv2Mm7cOOncubOsXLlSRo4cqa4h7dHD/of1mDFjJCsrSyZOnCgTJ05U2z/44AM599xzq30tOqcAAABIaNKkSTJp0iTHx47tcCbqgFanYXZOzajb5RaDfkWaN0vcyEXU+JPJjPgzIlWzsNOX6WNfdrpeIzCS4XKrRHOKj4eI32RG/OYkJ5NbnO/kN5v0Gmq1HfFn6fkMjhF/wU9OqrqxGvU54i/P1xerZ3buVE3L6sUj/gq3SVIpivib7PE3hGBG//GI32mSlIh7xJ+Ml/6p1wL0E/EnivdFRIq76d8HLbbXfGilphF/SiZJ1ZKmuyvfm7IOzo8f6qMv2zAj/rJWZisj4r9Cr33cce4WVVst9O/2SHHNLpFxmiQlInLeCh1tmhG/yZzEBzQUDbNzCgAAEBZcZ2zDbH0AAACERkTqwWW4a5eul1vPuL/2XyiJmC+jrV4LT4z1E8v6dnFoLTLsmcTricYcboNXYTn/PWFG/G6smPFR+4z4TWbE7yfWd+M34o+d47zw6/qrnGfndlxU+bkmmsEvIlLSznk9RjduEb8pTBG/KZmIP66ii57VnFTEbyg82zne7HvtWs/7cJrBfyxbxG94cduChPvPiiT+u/5Hl/5M1UWntaqmpbeIf9OP9a1czYg/6+oCp+Y2Dx7/L8ftZsRvcpvFHxdUxB8ZdGKVbWtv8XdJldss/iy95Klkluj313a702b6+h4z4j/vX3qmf02ZcT8Rf914Zslj0j/X5bbEdWjN6p1y681TAz2Gx566oNo7RNU1Rk4BAAAQGnROAQAAEBrE+m58Rvxusb6pphG/U7wv4h7x/+fbzpFQ7LCOoVIV8Zsz8FPBS8TvN9aPi8f7IkT8xwpTxL/pynaqbr7T+ddTbUb8XmL97AwPJ5BhxCU/VnV9ivgTxfsidRvxO8X6+0/UtwMtOMff77J6EfEPzjYeMG5sQMSftFDF+jf9NdBjeGz8hcT6AAAAgBM6pwAAAAgNYn0vkpnF36G94/ZURPzm4v1llvMx1lXEn+p4X8Q94neL9U1BRPxeYn0TEX9ibjP3M4/outfNNYv43XR7NHHE7zfWN8Uj/kTxvggRf3WCiPg7fK5/b2Zt2a1qq3ULfVxE/PVGWGL9tat3yq0/CzbW/90EYn0AAADAEXeIAgAACIzFHaKOkfaxfrfFOm7ZflZxqg7JO+OSADPijxgz+o/26uj4VC8L9TtJ94jfS6xvqquI32+sb0rniD/29QHnB7xE/Bu3qrLwp6eo2oz1TamI+M1ovM30Rar++zb9GbXN8LfwuxM/M/hFgon4a7pIv0jdRfxO8b5I7Uf8Xd7Y4tjGKeJPJt6vcFmthYg/eeGJ9XfIrTcEHOtPHEGsDwAAADgh1gcAAAiKJfUgw65bDapzGo/46zTeN6Lxit36PvSZnXNU3WhToarNiP+TW88QkZrH+8eKGDcKsPZ9repoMx1RVhQf0k8wVynwEfGbEXyqIv791w5RtRm1eon4j/97mYi4x/uFQ/T35iXib7JX/xbxu1B/fVOev0vVNY34zctGzHPNjOy9RPwdZ3yu6r1XnOLYZtNz/UXEW7x/8sVrVO1lFv9Vxw1X9dztyxO2T+SdN19Utd+I302vF7erevc5XVVd9pL+feMW8f9m/cWqdpvFH0bWZzoyNyP+NqsOGq38RfyH+pSp2oz4y4yPxirW/x+JtDCi/K+N/798E7G/d7E+rlTM4BcRiTRqpI/l6FG93WhDxI/6qkF1TgEAAMImwoQoG645BQAAQGg0yJHTwGbwmxF/kY74M7L1LH6niD8e74vUQcTfXMeusUM6jq3PEf/2c5uKiEgTI80c+N2vHNt+Jr1UbUb8brIO6b92j3QINuLf+urJvtr3uPJLX+3jEX8yM/jNiN9m5Rrn7S7Mz908H+Li8b6I/4jffK6bC7sNVnWqI/7rt+rLB778y0k13mfbafo92jdav0dmxN/jZ84/B8/nVx5Dlxb6d8PO4taObYOS2dXhRiaF+1S551x9qUhtRPyxvnr/0fX6coqI+Tv0QOXrRlvp16zLiN+cxc9SRahPGmTnFAAAIDT448GGWB8AAACh0eBHTvPvHqpq3wuhR51j30hUx7te4pbYvv16l23bqDoe8TvN4BdJXcQvjYxZ7KX6GF0j/hqqjYjflHFAH/uWS3UE2euczVXarv53X1WbEf+gE/V94P1G/Ob5Y55XYWVeBuAn4jdn8IeBn4g/enVhlceTdVF/HcPPWftx0vub0G2equ+8QW8vnO98Ew0v3CL+tW/2U3X/S9ZVed6q2XoVgxMv1Zc+7JPEi/DXtv1nV7/CQ4bx69ZckD+ZiD+qE36xzKt4zEXwzd+VsVjlfw7o17RF/Ofr30Pnvet8iYVf5v9zxLipilVuHjyjdAi3Bt85BQAACFQs6AMIF2J9AAAAhAYjpwa/EX9GW+fZq5Es58XerZISoy7VtRH3O0X85gx+05KRPfU+Dhs3GzdnaGaYcbSxaHSrFuIk0ti4DMGI+L+acLo+rqPVz0rvc8/iah8XsUf8TlFsTWz5vvF5JEitzKi/NiL+srMOJmwTJjWN+FPF7RzIusZ5wfgD851XDIj/3LrtL/ZSR8ftJvMyAVPE+FmKtmujH2iv65Hnj1L12+++kvC1nLSINFb1890/VPXWD3VcPOa4YTXat4g94s+68kxV5/+xT5W2rUT/Ljl4hf7d0EM2qrouL/PI6K/vg77zO96HmrKX6s9ud65eSb/9Sv2eWpFmkkj2x3pWvlTo168oNX6fl+mF7+PnjPkb04z4TfPPcFkFI+b2fRoxvcv/cyJN9Lkk+n8/Eu3bU9UV/616OQfqmMU6p8di5BQAAAChQecUAAAAoZH2sX5e2+oXOV4q36qjIxGJNGni/IARtzhF/OYMfvsOjbDIcol+XCJ+64Bx84EMn3+j2G7eXPXhDU+epWovEX+i2da1zW/Ev2ORjhZTJR6rBxGpH6umEb/fz84tPveiVZ6Oks2IP35pjnlZTm2cU7G9+1UdNWJ9UyoiflOPTB07P7vlE1UnE/H7sX/Ycapu88kWVZs3ZQjbSg5xRbn696AZ8e85Sb+n7f6rL4060Ktp4p26/N6MZOn/rZoRv3rc/EfU5Xeva5TvoixxxG/bfWPdJn6pRMXa9f5eE6lFrG/DyCkAAABCg84pAAAAQiPtY/1ff/696hucqWdONvq0ZTUNU8tPxF9RWKSfZ0RJtsWWvTAX/ne7x7nBMhZwjpbV7L7xyUT8psigEx23i7G913c2q3rTBz2r1ObjbtwiftNxX+r7jVufpebe2HHJzJo325v7Cep4EklV3O4U8Sd1cw2fYl9tVrU5C9pkRvwvzn1BRERaRV1+B/iUTMRvxvNmbJ9IUBH/jouM1RYyy9wbioiUO//Ocov4s/YcUnW7zzeo2rzUKvEy/XbxiN8W7xuXYO2d3evYp1QRjejfw21/uL2alt8oc35frDL9fWSUVm1jroRAxF/XLGL9YzByCgAAgNBI+5FTAACAUOMOUTZp3zktK9XfYlbjqjMnTUfP9LdwesU+He9m9Nb3efYyOB8p1rF6ooh/1vqPfB3XFSdf6PyAEetHMo0ZpeXVvy+p4jfiT4aXCD/hPoyIf9OHPR3bmJcbpCLi/+XJc/Q/9K3M5ZG3rnBs7/Y+1mbEX7aluePj/QZvcdy+Z2riuNi8572XhfLdxCN+pxn8IuGI+Edv/KGIiEzr/Q+1zUvEnxHRQVevLOebaMzduULVF3Y5NeE+TfUh4o+eu1e/VqLjKjAu0/IQ8Ytkq6qD8WMV2aFvBGH+rrQqvIf85gz+1zboGys0jSxJ+NyzP9eXhOz7RzdVe4r4a4iIH0Ej1gcAAEBopP3IKQAAQGhx+9IqIuIthQ7U2qXr5dYz7q/Rc9fPGFRlW7dXEi9SbGryZuLoJdpML+Yc6ZLja/9mxG+ySipz/ddWzve1P5NbxG8d0QtOx4z7Qksk8WD6hidyjR3V+NAULxG/62x9w5bvt1Z1KmJ9kzn7/7g3vnZv+A0z4vcTq9tifRd+I35TKiJ+8xjNY+k3eGvC5yYT8WddU+DUPCEz4jclE/FHsvytlGFG/JmTDlR5/K+9Z6m6bdR5AfgMDz+bbrxE/GYMH+cn3j+WGfGbkon4d92pL9EwI/5EvET8JnMWf4fFerUUSUHEb4/1/Z1HZsRvanPZNsft5koDbrPBzQg/kXSL+J9Z8pj0z039TVX8Wrtyu9z+4+cCPYbfPv99yc3NTdywjjByCgAAECRGTm3SfuT0olX7Vf30f86t8njKRlGNW4lmtGmjt7vc2tCN0yjqq8ve9LUPN75HUY0fFnMyk+mekVWP7cm3L6nhEYr0+8sex+07RnRw3N75Az2KaY6cmurTKKqXkVNTEKOobsfIKKo3jd5tV+3j5TE9Qvpmv7dUnczIqWlErzP1P4wRP3MkMKyjqObIaZyfEVSR4EdRkxk5NQ1Z8SPH7W0v2aj/EXM+FqfRUtsasoaucwodt6fDKGqoRk6veTbQY/jtXy4N1cgpE6IAAAAQGsT6AAAAQSLWt0n7WN+cEPXz094XEXu87zfWN9kifiPWNycVZbRupbfXMOJPVaxv8hvxb3jiTKfmcsE5K0RE5M6O7zk+PqHwPFXP+/DUhMcV66Av4B/wmPO6s24R/9FWjpuVVMf7It4ifrf1T51idb+xvqmuIn4vsb6JiN9ZonhfxB7xv93/7RodU3UuPvtSVVds26HqeEztFO+LpC7i9xvrm3G0UwxdpxH/LOef60QRvxnrm+oy4k80CaqhRPyhivWvnhToMfz2rz8g1gcAAACcEOsDAAAEiVjfJu1jfQAAgGOFKta/6s+BHsNvp14WqlifkVMAAICgWCISC/ogwoVrTgEAABAadE4BAAAQGsT6AAAAgbEkwoQoG0ZOAQAAEBqMnAIAAASJkVMbRk4BAAAQGnROAQAAEBrE+gAAAEGKEeubGDkFAABAaNA5BQAAQGgQ6wMAAATFEmbrH4ORUwAAAIQGI6cAAABBYuTUpl50Ttse10qmbHxCioqKgj4UpIHs7GzOJSSN8wipwHkUnLbHtQr6EOCiXnROO3bsKEuXLpXc3NygDwVpgHMJqcB5hFTgPAKqqhedUwAAgPRkEesfgwlRAAAACI160zmdPHly0IeANMG5hFTgPEIqcB4BVUWkcoUtAAAA1LG1X2yVOy6dGOgx/OaVq0J17XO9GTkFAABA+mNCFAAAQFAsEbFiQR9FqDByCgAAgNCgcwoAAIDQINYHAAAIEuuc2jByCgAAgNBg5BQAACAwlkiMkVMTI6cAAAAIDTqnAAAACA1ifQAAgCAxIcqGkVMAAACEBp1TAAAAhAaxPgAAQFAsIdY/BiOnAAAACA1GTgEAAILEyKkNI6cAAAAIDTqnAAAACA1ifQAAgMBYIrFY0AcRKoycAgAAIDQYOQUAAAgSE6JsGDkFAABAaNA5BQAAQGgQ6wMAAASFO0RVwcgpAAAAQoPOKQAAAEKDWB8AACBIMWJ9EyOnAAAACA1GTgEAAAJjiWVxhygTI6cAAAAIDTqnAAAACA1ifQAAgKBYwoSoYzByCgAAgNCgcwoAAIDQINYHAAAIErcvtWHkFAAAAKHByCkAAECQYqxzamLkFAAAAKFB5xQAAAChQawPAAAQFMtiQtQxGDkFAABAaDByCgAAECCLCVE2jJwCAAAgNOicAgAAIDSI9QEAAILEhCgbRk4BAAAQGnROAQAAEBrE+gAAAEGxLJEYsb6JkVMAAACEBiOnAAAAQbJY59TEyCkAAABCg84pAAAAQoNYHwAAIEAWE6JsGDkFAABAaDByCgAAEBiLCVHHYOQUAAAAoUHnFAAAAKFBrA8AABAUiwlRx2LkFAAAAKFB5xQAAAAJjR07VjZu3ChHjhyRZcuWybBhw6pt/+1vf1uWLVsmR44ckQ0bNsjNN9/s6XXonAIAAATJigX75cGoUaNk4sSJ8uijj8qgQYNk4cKFMmfOHOnevbtj+549e8rbb78tCxculEGDBsnvfvc7efrpp+WHP/xhwteKiAgXOgAAAARg7dL1cusZ9wd6DL9b8gvJzc2tts3ixYvliy++kJtuukltW7dunbz22mvywAMPVGn/2GOPyQ9/+EPp16+f2jZlyhQ58cQTZejQodW+FhOiAAAAArKx6Cv53ZJfBHoMTZo0kaVLl6p/T548WaZMmaL+nZWVJYMHD5Ynn3zS9rx58+a5djSHDBki8+bNs22bO3eujB49WjIzM6W8vNz1eOicAgAABOSiiy4K+hASys7OlszMTCkoKLBtLygokPPPP9/xOZ06dZJ33323SvusrCzJzs6WXbt2ub4e15wCAAAgNOicAgAAwFVRUZGUl5dLTk6ObXtOTo7rCOiuXbsc25eVlUlRUVG1r0fnFAAAAK7Kyspk+fLlkpeXZ9uel5cnCxcudHzOokWLHNsvW7as2utN4yy++OKLL7744osvvvhy+xo1apRVWlpq3XDDDdaAAQOsCRMmWAcPHrR69OhhiYg1bdo0a9q0aap9z549reLiYusPf/iDNWDAAOuGG26wSktLrR/+8IdeXi/4b5gvvvjiiy+++OKLr3B/jR071tq0aZNVUlJiLVu2zBo+fLh67P3337fef/99W/tvf/vb1vLly62SkhJr48aN1s033+zpdVjnFAAAAKHBNacAAAAIDTqnAAAACA06pwAAAAgNOqcAAAAIDTqnAAAACA06pwAAAAgNOqcAAAAIDTqnAAAACI3/D4nu1JrXTx6iAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqcAAAK5CAYAAACCOYfvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB8AklEQVR4nO3deXwV1f3/8c+9Sdh3AmGXRTaXKmJUEGqtRhFrrVWp2lb0Z1VQq37dai1+rbZfa10o1FoUbBGoWBdqUSsCWlcWWSoqlEX2LSSERQiQkOTO7494zzlDZnJncm8yk5vX8/HIww9zz507uXcST857zpmIiFgCAAAAhEA06AMAAAAA4uicAgAAIDTonAIAACA06JwCAAAgNOicAgAAIDTonAIAACA06JwCAAAgNOicAgAAoFrDhw+X2bNny/bt28WyLBk9enTC55x00knywQcfyOHDh2X79u3y4IMPenotOqcAAACoVosWLWTlypVyxx13yOHDhxO2b9mypcyfP18KCgokNzdX7rjjDrn33nvlrrvu8vR6Fl988cUXX3zxxRdffHn5OnjwoDV69Ohq24wZM8b6+uuvrSZNmqhtv/rVr6zt27cn3D8jpwAAAEipIUOGyMcffywlJSVq29y5c6Vr167Ss2fPap+bWcvHBgAAABexkg9Fom0DPYZVayO2TuTkyZNlypQpSe2zU6dOsn37dtu2goIC9djmzZtdn0vnFAAAICjRtmLtuTzQQygpmSm5ubmBHoOJzikAAECAYhIL+hBSbteuXZKTk2PbFv/3rl27qn0u15wCAAAgpRYtWiTDhw+Xxo0bq215eXmyY8eOaiN9ETqnAAAASKB58+ZyyimnyCmnnCLRaFR69Oghp5xyinTv3l1ERB599FF59913VfuZM2fK4cOH5YUXXpATTzxRLrvsMrn//vtl/PjxCV+LzikAAEBALEukwooF+uXF6aefLitWrJAVK1ZIs2bN5JFHHpEVK1bII488IiIinTt3lj59+qj2Bw4ckLy8POnSpYssW7ZMnnnmGXnqqac8dU4jUrmmFAAAAOpYRekXUrbn0kCP4csdr4RqQhQjpwAAAAgNZusDAAAExpIYIbYNI6cAAAAIDUZOAQAAAmJJeq5zmgxGTgEAABAadE4BAAAQGsT6AAAAAaqwmBBlYuQUAAAAocHIKQAAQEAqJ0Qxcmpi5BQAAAChQecUAAAAoUGsDwAAEBhLKoj1bRg5BQAAQGjQOQUAAEBoEOsDAAAEhNn6VTFyCgAAgNBg5BQAACBA3CHKjpFTAAAAhAadUwAAAIQGsT4AAEBAKidEwcTIKQAAAEKDkVMAAIAAcYcoO0ZOAQAAEBp0TgEAABAaxPoAAAABsUSkglTfhpFTAAAAhAadUwAAAIQGsT4AAECAWOfUjpFTAAAAhAYjpwAAAAGxRKRCIkEfRqgwcgoAAIDQoHMKAACA0CDWBwAACFCMdU5tGDkFAABAaNA5BQAAQGgQ6wMAAASE2fpVMXIKAACA0GDkFAAAICCMnFbFyCkAAABCg84pAAAAQoNYHwAAIChWRGIWsb6pXoycjh07VjZu3ChHjhyRZcuWybBhw4I+JITYQw89JJZl2b7y8/OrtNmxY4ccPnxY3n//fTnhhBMCOlqExfDhw2X27Nmyfft2sSxLRo8eXaVNovOmTZs2Mn36dNm/f7/s379fpk+fLq1bt66rbwEhkehcmjp1apXfUYsWLbK1adSokfzxj3+U3bt3S3FxscyePVu6du1al98GEJjQd05HjRolEydOlEcffVQGDRokCxculDlz5kj37t2DPjSE2Jo1a6RTp07q6+STT1aP3XfffXL33XfLz3/+c8nNzZXCwkKZP3++tGjRIsAjRtBatGghK1eulDvuuEMOHz5c5XEv583MmTPltNNOkxEjRsiIESPktNNOkxkzZtTlt4EQSHQuiYjMnz/f9jtq5MiRtscnTJggl19+uVx99dUyfPhwadWqlbz11lsSjYb+f9vwKT4hKsivsIlI5fsSWosXL5YvvvhCbrrpJrVt3bp18tprr8kDDzwQ4JEhrB566CG54oorbB1S086dO+VPf/qTPProoyIi0qRJEyksLJR77rlHJk+eXJeHipA6ePCg3HbbbTJt2jS1LdF5M2DAAFm9erWcffbZsnDhQhEROfvss+WTTz6R/v37y7p16wL5XhAsp3Np6tSpkp2dLZdcconjc1q1aiW7d++W66+/XmbOnCkiIt26dZMtW7bIRRddJPPmzauTY0fdKC75XNYWfC/QY4gV/kNyc3MDPQZTqP8Ey8rKksGDB1f5QZw3b54MHTo0oKNCfdC7d2/ZsWOHbNy4UV566SXp1auXiIj06tVLOnfubDunSkpK5KOPPuKcgisv582QIUPk4MGDqmMqIrJgwQIpLi7m3EIVw4YNk4KCAlm7dq1MnjxZOnTooB4bPHiwNGrUyHa+bd++XVavXs25hAYh1J3T7OxsyczMlIKCAtv2goIC6dSpU0BHhbD79NNP5brrrpMRI0bIjTfeKJ06dZKFCxdKu3bt1HnDOQU/vJw3nTp1kt27d1d5bmFhIecWbN555x259tpr5bzzzpO7775bzjjjDPn3v/8tjRo1EpHKc6m8vFyKiopsz+P3VPqqkGigX2HDbH2knXfeecf278WLF8vGjRtl9OjRsnjx4oCOCgAqvfzyy6peuXKlLF++XLZs2SIXX3yxvP766wEeGRAO4esuG4qKiqS8vFxycnJs23NycmTXrl0BHRXqm0OHDsmqVaukb9++6rzhnIIfXs6bXbt22aLZuI4dO3JuoVr5+fmyfft26du3r4hUnkuZmZmSnZ1ta8fvKTQUoe6clpWVyfLlyyUvL8+2PS8vz3ZdF1Cdxo0by4ABAyQ/P182bdok+fn5tnOqcePGMnz4cM4puPJy3ixatEhatmwpQ4YMUW2GDBkiLVq04NxCtdq3by9du3ZVS94tX75cjh49ajvfunbtKgMHDuRcSkOWiMS+Wes0qK+wCX2sP378eJkxY4YsWbJEFixYIGPGjJEuXbrIs88+G/ShIaSeeOIJefPNN2Xr1q3SsWNHefDBB6V58+ZqtuyECRPkgQcekDVr1si6detk3LhxUlxcrGbFomFq3ry5HH/88SIiEo1GpUePHnLKKafI3r17Zdu2bQnPmzVr1sicOXPkueeeU6uLPPfcc/Lmm28yU7+Bqe5c2rt3r/z617+WWbNmSX5+vvTs2VN+97vfSWFhoYr0Dxw4IH/5y1/k8ccfl8LCQtmzZ4+MHz9evvjiC3n33XeD/NaAOhH6zukrr7wi7du3l3Hjxknnzp1l5cqVMnLkSNm6dWvQh4aQ6tatm7z00kuSnZ0tu3fvlsWLF8tZZ52lzpnHH39cmjZtKs8884y0bdtWPv30U7ngggukuLg44CNHkE4//XT54IMP1L8feeQReeSRR+SFF16Q66+/3tN5c80118jTTz8tc+fOFRGRN954Q2677ba6/lYQsOrOpbFjx8rJJ58s1157rbRp00by8/Pl/fffl1GjRtnOpTvvvFPKy8vl5ZdflqZNm8p7770n1157rcRisQC+I9Su4NcazQj01asK/TqnAAAA6epgyRfyxa5LAz2GRrtfYZ1TAAAAwEnoY30AAIB0ZYlIhcVYoYl3AwAAAKHByCkAAECAYowV2vBuAAAAIDTqTef0xhtvDPoQkCY4l5AKnEdIBc4joKo675yOHTtWNm7cKEeOHJFly5bJsGHDPD0vvqg1kCzOJaQC5xFSgfMI1jfrnAb5FTZ12jkdNWqUTJw4UR599FEZNGiQLFy4UObMmSPdu3evy8MAAABASNXpIvyLFy+WL774wvaX4rp16+S1116TBx54wPV5+wu/lpLDpfL17gN1cZhIc607tOJcQtI4j5AKnEfByTmug7Tp2Drow5CvS76UZfmXB3oMrYpeDNUi/HU2Wz8rK0sGDx4sTz75pG37vHnzZOjQoVXa33jjjaoTW3K4VH7S65Y6OU4AAJD+nlnyWNCHoLDOqV2dvRvZ2dmSmZkpBQUFtu0FBQXSqVOnKu2nTJkiubm5kpuby1+VAAAADQTrnAIAAATEEpFYCCclBanORk6LioqkvLxccnJybNtzcnJk165ddXUYAAAACLE665yWlZXJ8uXLJS8vz7Y9Ly9PFi5cWFeHAQAAgBCr01h//PjxMmPGDFmyZIksWLBAxowZI126dJFnn322Lg8DAAAgJCJSUX/uiVQn6rRz+sorr0j79u1l3Lhx0rlzZ1m5cqWMHDlStm7dWpeHAQAAgJCq8wlRkyZNkkmTJtX1ywIAAKAeYLY+AABAQCxhndNj8W4AAAAgNBg5BQAACFCMsUIb3g0AAACEBp1TAAAAhAaxPgAAQEAsKyIVFrcvNTFyCgAAgNBg5BQAACAglgh3iDoG7wYAAABCg84pAAAAQoNYHwAAIEAx7hBlw7sBAACA0KBzCgAAgNAg1gcAAAiIJRFm6x+DdwMAAAChwcgpAABAgLhDlB0jpwAAAAgNOqcAAAAIDWJ9AACAgFgiEmOs0IZ3AwAAAKHByCkAAEBgIlLBHaJseDcAAAAQGnROAQAAEBrE+gAAAAGpnBDFOqcmRk4BAAAQGnROAQAAEBrE+gAAAAFitr4d7wYAAABCg5FTAACAgFgSkQrGCm14NwAAABAadE4BAAAQGsT6AAAAQbFEYhbrnJoYOQUAAEBo0DkFAABAaBDrAwAABMQSYbb+MXg3AAAAEBqMnAIAAAQmIjHuEGXDuwEAAIDQoHMKAACA0CDWBwAACEjlhCjWOTWlf+c0YnzglhXccQAAACCh9O+cAgAAhBgToux4NwAAABAaaT9y+uLWT1T94x7DKgvifQAAgFBK+84pAABAWFkSYULUMYj1AQAAEBppP3LaJJKh6lnbFomIyFlP36W2df39wjo/JgAAADhL+84pAABAmDFb3453AwAAAKHRIEdOF/98vKrPEiJ+AAAQDEtEKhg5teHdAAAAQGjQOQUAAEBoNMhY30TEDwAAghORGOuc2jByCgAAgNCgc2pY/PPx6mvHL4aqLwAAgNpgWZUTooL88mrs2LGyceNGOXLkiCxbtkyGDRtWbfurr75aPvvsMzl06JDk5+fLjBkzJCcnJ+Hr0DkFAABAtUaNGiUTJ06URx99VAYNGiQLFy6UOXPmSPfu3R3bDx06VGbMmCHTpk2TE088UX7wgx/ICSecIC+++GLC16JzCgAAgGrddddd8sILL8jzzz8va9askdtvv13y8/Nl7Nixju2HDBki27dvlwkTJsjmzZvl008/laefflrOPPPMhK/V4CdEuWGiFAAAqAsxK9wTorKysmTw4MHy5JNP2rbPmzdPhg51vvxxwYIF8uijj8r3vvc9eeutt6R9+/Zy1VVXydtvv53w9Rg5BQAAaMCys7Nl6dKl6uvGG2+s8nhmZqYUFBTYthcUFEinTp0c97l48WK56qqr5MUXX5SjR49KUVGRRCIRGT16dMLjYeQUAACgASsqKpLc3NyU7nPgwIHy9NNPy29+8xuZO3eudO7cWZ544gl57rnnEnZQ075z2jTSqNrHj1hHE+6DiB8AANQGSyJSEfIgu6ioSMrLy6vMtM/JyZFdu3Y5PueXv/ylLFmyRF0K8OWXX8qhQ4fkk08+kQceeEB27Njh+nrhfjcAAAAQqLKyMlm+fLnk5eXZtufl5cnChc4Ddc2aNZOKigrbtvi/o9Hqu59pP3IKAAAQZmGfECUiMn78eJkxY4YsWbJEFixYIGPGjJEuXbrIs88+KyIi06ZNExFRkf2bb74pU6ZMkTFjxqhYf8KECbJ8+XLZtm1bta+V9p3TGQf1hbo/bVl16NmM/b1E/BFL1zvv0zPUujxOxA8AANLTK6+8Iu3bt5dx48ZJ586dZeXKlTJy5EjZunWriIj06NHD1n7atGnSsmVLue222+Spp56Sr7/+Wv7973/LL37xi4SvlfadUwAAACRv0qRJMmnSJMfHzj333Crb/vSnP8mf/vQn369D5xQAACAglojEmAJk06A6p/GI3yneF/EW8ZuXhRDxAwAApBZddQAAAIRGgxo5BQAACJuKejBbvy41yM5pohn8IslF/AAAAKiZBtk5BQAACANLIvVindO6xDWnAAAACI20Hzm9tPlmVc8+1LPK42bEb1p3xHm7G/7oAQAASF7ad04BAABCyxKJWQTZJt4NAAAAhEbaj5yaUX484neK94/10opcVV996lJVf/+qT1T9xt+HJX18AACg4bJEpEK4NtDEyCkAAABCg84pAAAAQiPtY31TPM5PNIP/WGbEb9NfL87f74blSRwZAABoqFjn1I6RUwAAAIQGnVMAAACERtrH+g9/dKmqH/r2bBHxFuV7ErFUue6vp6m63//7j3N7y3LeDgAAGqTK25cyVmji3QAAAEBopP3IKQAAQJjFWOfUJv07p8bnbUb8cf1uXqZqM5pP7jXdBqRjuiTiBwAAqIJYHwAAAKGR/iOnAAAAIWWJSEXQ65yG7KoCOqdGvN7ver2Q/rqpg2u8y0jU+VNe/7uzfO2nz72LanwMAAAA9RGdUwAAgMCEYCmpkI2ccs0pAAAAQiPtR0773bi0Zs9LUcSfjA1PDBERe7yfkdNR1RUFhXV+TAAAALUp7TunAAAAYWVZIrGgJ0SFDLE+AAAAQoORUw/MiN9NJLP23sp4vC8i0u/JDaom4gcAAOmGzikAAECAuH2pHZ3TFLHKy1XtNop6z8Vv+Nrnk//6fpVtq3/dU9UDf71Z1YyiAgCAdEDnFAAAIEBMiLJjQhQAAABCg5HTWuAW8f/+w4tV/Ytz/pVwP/HLAD7Z39fx8Xb/OqRq8+4Sby8+U9V9f/6phyMGAAAIBzqnAAAAAbHCcPvSkOHdAAAAQGgwclrLzIjf5Cfi/2WXOar+3c6LVL33aHNV39flHf2Es3T59tNE/AAAoP6gcwoAABAgZuvbEesDAAAgNBg5rW2RxH8NpSLiN93U4UP9DyJ+AABCyxLuEHUsRk4BAAAQGnROAQAAEBrE+rXNslTZ75alql7351zH5jWN+CtcIgEifgAAwo0JUXaMnAIAACA0GDkFAAAIihVh5PQYdE7rUk0jfiPeH95svWPbDNH7dov4TSPPWqFqIn4AABAWxPoAAAAIDUZOAQAAAmIJE6KORec0KD4ifnMGfzIR/96jzVTdrtFhVRPxAwCAsCDWBwAAQGgwcgoAABAgYn07OqdhUEcRv4mIHwAAhBGdUwAAgIBYIhLzsARkQ8I1pwAAAAgNRk7DxiHiN+P9Tj33qHralrN0Lboe2+tDVX+4f4CqV88cqOqB16xWtRnxm846bZ2qlz02RNW97l+U4JsAAACoGTqnAAAAAWJClB2xPgAAAEKDkdMQiDZzjtUjvbqLiMjAP32ttpVOLHNse7gsS9WTNp2jajPi/498S9VuEb8Xm4j4AQBIkQgjp8dg5BQAAAChQecUAAAAoZH2sX7JJWeousmbS+rkNTO7d/PVPrZnr+e2u9/W++4wcruqm2XpuN8t4v/6zBJVt/60iapTEfET7wMA4J9lMSHqWIycAgAAIDTonAIAACA00j7WN8Uj/lTF+3N3rnB5xG27ljfqOlXvG9Fd1R0+3afqotPaiohI9lLn2N+M+FttqVB1htEmq1hvP87YvuXHzhH/qld0xH/KVStVbbn9GRP75r8RI5IwbiQAAACqR6xvx8gpAAAAQqNBjZwCAACEjcXIqU3ad07nTPqTqi8ae1uAR2I3/5UXVH36Q2NVvfvMtqqOfjMBvyi3ndrWbe4eVW+/sL2qDxynw3wz4i9robfbIv4XzUHzo6pq/O8vVF34TEzV/Tptdfw+YtmtRUQk0k4fd6z4kKqt0lLH5wEAADgh1gcAAEBopP3IKQAAQFhZIhITYn1T2ndOsyI61o5H/Je9eYZb80Ase3iSqs2IP/bNWvpRvb5+rUT8piMjTlV103dWJD74b1jdO6k6Y99BVVfsKtRtiPgBAEACKYn1H3roIbEsy/aVn59fpc2OHTvk8OHD8v7778sJJ5yQipcGAABAGknZyOmaNWvkO9/5jvp3RYUembvvvvvk7rvvluuuu07Wrl0r//u//yvz58+X/v37S3FxcaoOIaH4KOqs7YvVtsu7nVVnr++F0yhqTN+NNLBR1BYrduoHEqxjGmvbUtXmmquMogIAcKwI65weI2UTosrLy6WgoEB9FRUVqcfuvPNOeeyxx+Qf//iHrFq1SkaPHi0tW7aUa665JlUvDwAAgDSQss5p7969ZceOHbJx40Z56aWXpFevXiIi0qtXL+ncubPMmzdPtS0pKZGPPvpIhg4d6rq/G2+8UZYuXSpLly6V1h1apeowAQAAQsWyIoF+hU1KYv1PP/1UrrvuOlmzZo107NhRxo0bJwsXLpQTTzxROnWqnChTUFBge05BQYF07drVdZ9TpkyRKVOmiIjI2qXrU3GYStTokycT8V/Y5VRVu9/KtObiEb/TJCmR2o/4Y430+1Rwob7Fas7cbfoYir6ubPvNeqfHIuIHAAB+pKRz+s4779j+vXjxYtm4caOMHj1aFi9e7PIsAAAAwK5WFuE/dOiQrFq1Svr27Su7du0SEZGcnBxbm5ycHPUYAABAQ2RZIjErEuhX2NTKOqeNGzeWAQMGyPvvvy+bNm2S/Px8ycvLk2XLlqnHhw8fLvfee29tvHxC5tqnpZa+RWdYI/5E66CKuEf8XeftVfWOC/R2vxF/c/tVGVqk8qSOx/siRPwAAKDmUtI5feKJJ+TNN9+UrVu3SseOHeXBBx+U5s2by7Rp00REZMKECfLAAw/ImjVrZN26dTJu3DgpLi6WmTNnpuLlAQAA6q0wTkoKUko6p926dZOXXnpJsrOzZffu3bJ48WI566yzZOvWrSIi8vjjj0vTpk3lmWeekbZt28qnn34qF1xwQZ2ucQoAAIDwS0nn9Oqrr07Y5uGHH5aHH344FS+XUubM/ZjEqmnpXZgi/j2nt1W1W8TvRfSofm/MGD6jU8fKIqL/6iPiBwAANVUr15wCAADAmzBOSgpSrczWBwAAAGqCkVNDtBb66kFE/O0/26/qPYPa6Nol4j/Y3zl6d2OVHVV1PIZX8b4IET8AAKgxOqcAAAABsaRyrVNoxPoAAAAIjbQfOR3w6q2qXnPlMyIiUmZVuDVXYucMUnX0w89Sciy1GfEfyXa+mNot4je1nPOl4/bY4cMJXzce8TvO4D+Gl4jfZO6HiB8AkJ4iEhMmRJkYOQUAAEBo0DkFAABAaKR9rG+KR/y9X/cXC9eHiH/Vz/+s6pHPfNuxTfamHaquOHAg6dc0Oc3gFxHJyOng2N5vxG+KNG6sX5eIHwBQz3H7UjtGTgEAABAaDWrkFAAAIEwsiztEHSvtO6dWVC8eFomF88NPdcRvGQumRSJ1/z3bI/4CVWd0ynFsf6Rrc1VntWzs2CarUZaqY1t3OLYBAAD1H7E+AAAAQiPtR04BAADCjDtE2aV957T7fPMT9/7pW1GXONwtJk/RmZWKiD928GBKjiUVrPJyVZdv13F8tFkzVTfd4WG2/oFi/dw2un1FQaFTawAAUE8R6wMAACA00n7kFAAAIMxY59SuQXZOj7bSM78bHShL2D6WpQeYs5o2Tdzewz3pvYhH/KmYwR825nuUsb2gmpbVy8hur+q7P/3Asc3jfU6u8f4BAEDdapCdUwAAgLBg5NSOa04BAAAQGg1+5NSM+Ju8uUQ/YMzK9xLlm8yZ6LEjR5wb+Zjdb87gh7usSIWqy6wMVf9q4woREfm/3qfW8REBAAC/GnznFAAAICiWRLh96TGI9QEAABAajJwaSi45Q9VN3lqakn1GjUsCbBG/uZh/A781REXRHlWbs+/9ahUp1f8w3t5DVuWlG/+78T9q2yO9T6vx6wAAgNpD5xQAACAoVoMfo6qCWB8AAAChwcipi5Lv5aq62XsrU7JPIv7E/Eb8h8/snbBN80jljRbi8b4IET8AIDxY59SOkVMAAACEBp1TAAAAhAaxvgfmfeDNBfaT4Rbx7/jFUFVHEiT8XR5fmJJjMUUyE58SVsw4sFiFe8Mk+Y34r3jtTlXPvnJ8lcfbGLP598caq5qIHwAQJGJ9O0ZOAQAAEBppP3Jq3pLUXMc0zrjLpTtjwpKXUdSND5zi/QBFpPejnztuj/8h5TaCuvM+PcpqG0WNePgLzOfEq1+v+9Rz20fOuMDXvs0RUi9t3EZRrU4lqv7+x7eo+o3hf67Stk2UUVQAQDg07KnQVTFyCgAAgNCgcwoAAIDQSPtY33ZL0m8ifqd43zOfEb8X5mUAmYeMl4pV/te8Ttot4jcnUnX9vYeI3+faqtH4wXjw66Xv6Dp3RML2ZkzvN+IXSbzOaTzid4r3RYj4AQDBsYQJUcdi5BQAAAChQecUAAAAoZH2sb4pHuebM/g9zWx3Y0b85u1Ik3DuD5er+oPXBld53MvIvy3if3xR4if4fA/OaJyVuNE3ajvib/yvpfofVw2qtm2iGfwiRPwAgDpmCdP1j8HIKQAAAEKjQY2cAgAAhA0TouwaZOfUNoP/raXVtPQhogehIxX6JLMy/I3Vz5+rI+O8Kyojfqd436sd9w1RtZeI36rQtyONZHi5Q0H1zEsAajviH/CgbrPmN9Xf7pSIHwCAcCLWBwAAQGjQOQUAAAiQZQX75dXYsWNl48aNcuTIEVm2bJkMGzas2vZZWVny8MMPy8aNG6WkpES2bNkiP//5zxO+TkTqwRyxtUvXy61n3F+j5/pZcN+M+KONG1fTsqpYqY6AzYh/y0NnqtpvxB9f9/67F32mtn30mnOMbC7O7+XSFU+z+A2ZnXJU/a/l71TT0pslpWWq9hLxm7xE/Jk9e6g6UcRvcov4TWbEbyLiB4D645klj0n/3OODPgz5Ys8OuezdvwZ6DH/vPUJyc3OrbTNq1Cj529/+Jrfccot88skncsstt8j1118vJ5xwgmzbts3xObNmzZJu3brJr371K/nqq68kJydHmjZtKh9++GG1r9UgrzkFAAAIh0i9mBB11113yQsvvCDPP/+8iIjcfvvtMmLECBk7dqw88MADVdrn5eXJeeedJ3369JE9eyoHlbZs2eLptYj1AQAA4CorK0sGDx4s8+bNs22fN2+eDB061PE5P/jBD2Tp0qVy1113ybZt22TdunUyceJEad68ecLXY+TUUPI9PaTdbP4Xvp5rXgZgRvzHPfypqs2I31WkavT/77d1XPzdK/RM8WQifr+z+Mvzd6l6U1mxqntltUj4XCe1PYu/fPNWVQ94sPK/XuL9ZGbxZ3TooI9r9+6ErwUAQBhkZ2fL0qX60sbJkyfLlClTbI9nZmZKQUGB7XkFBQVy/vnnO+6zd+/eMmzYMCktLZXLL79c2rRpI08//bR06dJFrrzyymqPh84pAABAkAKO9YuKihJec+pXNBoVy7LkmmuukQMHDoiIyG233Sbz5s2Tjh07SmFhoftzU3okAAAASCtFRUVSXl4uOTk5tu05OTmya9cux+fk5+fLjh07VMdURGT16tUiItKjRw/H58Qxcuri0IXfUnXzuXUY8Sf468kt4v/41VqO+KN6Qf4xvc5R9ZTNlTPuemTWLN4XqbuIPx7vi/iP+N1E85uous8+HYlEMvWPllVennA/AACEVVlZmSxfvlzy8vLktddeU9vz8vJk1qxZjs9ZsGCBXHnlldK8eXM5dOiQiIj069dPRBJPjGLkFAAAICgBr3HqdZ3T8ePHy3XXXSc33HCDDBgwQCZMmCBdunSRZ599VkREpk2bJtOmTVPtZ86cKXv27JGpU6fKCSecIEOHDpWJEyfKq6++KrsTzMtg5BQAAADVeuWVV6R9+/Yybtw46dy5s6xcuVJGjhwpW7dWppPHRvWHDh2S888/X55++mlZunSp7Nu3T/75z3/K/fcnXreeRfhdWC5jyl4i/s33uUTsFY6bJdbI61GJRE446Lh93LfeVvVDyy9RddMVzRzbu0X8brF+JDPLcXtGdjsREZn0qR7mTybiN9XmQv01XaS/OgMe1K9prhYAAAif0CzCX7RTLp07NdBjeKXfBSmfEJUMYn0AAACEBp1TAAAAhEbaX3Pa5M0lqvYT8cfvay9ij/iTmcVv6Qnvtog/o0TXFXryty+//WKk4/Yjpx5WtRnxu87iN6+Mjnhfd+3/XXu7qv86/Y+qTtUs/lRzWqRfJHURPwAAXlgi9eL2pXWJkVMAAACEBp1TAAAAhEbax/r7rx1SZdueC3WO3vXviaNjt4g/VqL3E23iL4+3RfzG/lMR8fd4QX+sW6/TC8B7ifj9qijaW1n076K21UbE//Ty2ar++eBLfT3XnJmfiDnjnogfAFAnQr9uUt1i5BQAAAChkfYjpwAAAGHGhCi7tO+cRq8uVHXspY4iItJ+rs7Ld1xV84jfZEb8vtlmy+syHvGb8f5tJ36QcHdPXn2Bqnu94PYRH1VV1rxlCfdplesF8Z0W5M/8RK9cUD5Mr2iQqoi/sfEeHT6jd+L2b1e/CL8XZsRfeG7XpPcHAAASI9YHAABAaKT9yCkAAEBoWcKEqGM0qM5pPOKPx/siyUX89p3r6ffHPaoX/t96v1743+2SABuHiN+cwf/XCd9T9d4hRyWRURPmqPqZtec4Nxp7giq7XPZf4/Wdf1qsMv26kcyqp5DfiN+v5p9tU/X+Ycep+q3xf3B5xkIRESkzfvqvH361r9dsN3VRwjblCVsAAIBEGlTnFAAAIHyYEGXimlMAAACERoMcOXWawS9ij/hL2ur2baYnjnQlVmG8gH5bezyWRMTvIOfqLfofL+lI20vEf2v/D1XtFvHvfN0l4ndhlVeG2U7xvkjtRPw7rtSz9ZvnV1TT0i7L+Mt06scvqdpLxG8u5F++eavn1wQAAP40yM4pAABAaDAhyoZYHwAAAKHByKkH+68domovEb8V038CRaI6Sk7HiD/jhH5VtsUaO6904Bbxf//J+6o/WBGJGWeq+RfV170zqrT1gogfAIBwonMKAAAQJGJ9m7TvnJoTnsyJUDVlG0X9mx4JNUdIvajpKOqWeT1VfdwFm1XtNooqZyY+lqRGUeNroUb09x8t1bc6tY2intxfleYoqnxLf/9uosYiorEUn7WMogIAEB5p3zkFAAAIr4iIxTqnJiZEAQAAIDQiUg+udFi7dL3cesb9NXquGcPHua1zmoy2M5f6am9OmjJtv9/I4X18MmbEX2DG+oYb73zD+w7FPeIvWdta1X2nFVVtEHH+C9BtolTGvoOq3vH9bj6O0B7xHzxeZ///uWSCr/04SeZ2pzWN+DM7d/L3Ovm7avQ6ANDQPbPkMemfe3zQhyGf786X7785PdBjeO3k70pubm6gx2Ai1gcAAAiQFfphwrpFrA8AAIDQSPuR0z3fcvhzZFUHVbZP0evs/bEeDm/3YuKI35zdb0b83R77VNUq4vfwF5U5i7+JyxOmTPi+qr1E/F5m8a++r5WIiAx8/IDeaP4J6GEW//4zuqi66xvbVV3aK1vVGUeM6fouins3VfVpb96p6ppG/PVhFr95GQARPwDUQ5bUgwss6xYjpwAAAAgNOqcAAAAIjbSP9RMxY//2X6RmnTGrokLVkYzEt9dMFPH7ncGfPVnfYrXopqqrFYgkF/E/tVY/N7OgkYjoeF/Ef8TfeuVeVR84rbOqW368MeFxmTKK9azLihb6bgbxiD+ZGfxuEf+5k+5N+NwW27uq2svtb2uKiB8A6inWObVh5BQAAAChQecUAAAAodHgY31TyiJ+I8pOJuL/9br4zP0lCZ/3UO/Bjtv9RvzH/WR9wtdyEo/3RTxG/C5artYRf/HZvVTdYsGmhM/t+pGe0b/j2/rUjkf8qZjBL2KP+Bfe8pSqh/757oTPNW8KQcQPABARiTBb34aRUwAAAIQGI6cAAABBYuTUhs6pC78Rv+uQfBIRfzRSGUfHrMQD3A9vXK7qZCL+LX/TM95TEfEno8Xafar2EvE3W7pZ1V2lp6rjEb/TDH6R5CL+ZDhF/GYEb0bzySDiBwDUJ8T6AAAACA1GTgEAAILEOqc2dE49MCP+PvcsrvmOahjxx+N9kfoX8Ves/krVGQP71mgfIqmJ+J1m8IukLuKP6vsKSLMCfxcQxSN+cwY/ET8AoCEi1gcAAEBoMHIKAAAQFEuYrX+MtO+cmjH8hifPSnp/5j58R/wR52tKwhTxuzk02fjHY8e7tqtObUT8bg6c07vqRuPtsqL6N0Ekpj8XvxF/zOXGAodz9D69RPxZ1xSIiMiha/RxH5jvHOV3n7kx4f68IOIHAIRR2ndOAQAAQo2RUxuuOQUAAEBoNKiR03gMn4p4/9j9mBH/ur+e7ms//W7Q0bsZ8T/Y+wwREXl4wzK17bjMI772vaW8qaq9RPwmtxni/SZWnSHvNxZOVcRfsXu33k+HDtW2zVmiL4koOENfPlHewriswoj4B8/+H1/HMvBvOm7f+hOHywp8apWn31Mz4t9mRP9eIv79w3t6eDXdpsUrSaxIAQBAkhpU5xQAACB0iPVtiPUBAAAQGg1y5NTvDH7XSfHG5Pv1fzD2Eymr2rYa6/6iI3Yz4o97qI++TOCFLR/72rd5GUAyEX/hiF7VN4jox/ed4O9PQPPzSFXEXzSq+kXrzTUR2s9uruqCs3X0b0b8fvUwIv6ivATvnQepivi9yOzZQ9Xlm7emZJ8AgGpwhygbRk4BAAAQGnROAQAAEBoNMtY3pXqRfhGRiLHAu2VEw0+e/WriJ6/V5S/euKbKw/8oLlL1z1rrGHdvRWnCXacq4ndkJPl9Bm1X9YbPuiV8alI3NnBRWtQ0caNvmFF+zoKo4/Yu7+vPMf8cf8fSZrq+ycH+a4f4e7IDIn4ASC8RJkTZMHIKAACA0KBzCgAAgNBo8LG+yXfEbw7Du0y0MyN+vxb/6CkRETnr5bsdH3/+ax3jJhPxb6torGoz4v/N2Rd7P1gXQUX8LTfoU/tgn3LPz3OL+Csa6TYD/2+z43O93IjALeIvm5kjIiJZ1xR4PdRqmRF/y22xalpWdeR4l5sZfLO9yXJ9rlXs2+f/4AAAmiWsc3oMRk4BAAAQGnROAQAAEBrE+i7MSHn9eH8Rf/9b9JT7tX/un/SxxON9EXvE/z8j/6XqZCL+7hm6jRnx22Pq5BeSDzri9xPvi9gj/v5TDqm6olN7VVufrarxcTlF/PF4XyR1Ef/B7vpv0O6ztlfTspJrrP+NksH6XCPiBwCkGiOnAAAACA1GTgEAAAISEdY5PVZE6sEcsbVL18utZ9wf9GFUimY4bo5E9XT9SGMdjUtUD07/bPnnvl7qnKb51T7uFvGb/Eb8put6GqvNxyr0fq73vpB8u59sS9jGS8Rv8hvx5989tMo2vxG/yYz4TclE/HFui/S7RfzmIvx+uUX8iWJ9N0T8AOqTZ5Y8Jv1zjw/6MOSLXfly6csvBnoMrww9R3JzcwM9BhOxPgAAAEKDkdMkRJs1U3Uk07hCIsv5agnraJmq/YyiJhpBFXEfRc0QPann+tabVe1lFHX4q/eous+9S/UDIR1FdRohNeVe+YWql776LVWHdRTVTaLvsybMUdSajpyaGEUFEHahGjn9+8xAj+GVs7/NyCkAAADghAlRAAAAQQp9hl23iPVTJKNVK/0Pl1jfFHTEb3pyziWeX1/EOeL3E++L1E7E3yzfexBQ2xF/bcb6plRF/J2fWqjqzJ49VE3EDyBdhSrWfyngWH8YsT4AAADgiFgfAAAgSKHPsOsWndMUqThwQNUZ7dslbB9plKXq5wefoupEEf+HRzqr2i3iv2fkm6p+8m0d2btF/PdcZLT3EPFHMvRar/Gfp3ZT9a04vUT8e//WXdVuEX/jXgdVXbqpZcJ9DrvqP6r+5O+nVdvWjPJTFfGvvbG5qvvd4uupNWbG8amK+Ms3b1V1U2N7KiL+jLZtVU3EDwBwQucUAAAgKBZ3iDoW15wCAAAgNBg5rQUVe/aquqFE/Jal91EbEX9tqo2IPwh1FfGnIt4XIeIHADijcwoAABAkYn0bYn0AAACEBiOntSypiH/QySIi8rPPvkz4PDPi9+IPb1+sai8L9ddUMhG/fO+Ae0MH8z48VdXNfD1T8xLx1wdmxJ8q8Yg/1TP4RYj4AQAanVMAAIAgEevbEOsDAAAgNBg5rQXRJk2cH4jpP40irVro7UfLHJtHGjUSEZHnTz1JbVsz/iTHtm5+8e1/JWxjRvymvuNWOD8hQ/9NY1V4vwzAjPhj5wxK2L7NHxupelPihQNsUjFzPV0i/lQzZ/BnGbUZzScjs2cPx9cCgHTFOqd2jJwCAAAgNOicAgAAIDSI9WtBrLRU1dHGjR3bWAeKVR1pottYR45UaWvO4B94/1pVr36sf8Jj+f1HOrLPSNjaLlZSomrXSxVqKPrhZ77a9/mw5q8Vj/iTWZjeLcqvjVnx9ZU5y56IHwC8iohYkaAPIlQYOQUAAEBoMHIKAAAQFEtYSuoYdE5rmRnxZzRtWk3LShGjzaFpVaP0iDGl7zirUNVNf6BriekZ9Fa58z3hrYoK5wOwnH9Cts3s49zeQdcfrvLctib2X5t4MX9Tm+mVqwTUxr3nzf2kOuLf8ORZvtr3uWdxSl8/GamK+HeO7Gb8S9cd/8zlFACQrjzF+sOHD5fZs2fL9u3bxbIsGT16dJU2Dz30kOzYsUMOHz4s77//vpxwwgm2x9u0aSPTp0+X/fv3y/79+2X69OnSunXr1HwXAAAASAueOqctWrSQlStXyh133CGHDx+u8vh9990nd999t/z85z+X3NxcKSwslPnz50uLFnotz5kzZ8ppp50mI0aMkBEjRshpp50mM2bMSN13AgAAUA9FrGC/wsZTrD9nzhyZM2eOiIi88MILVR6/88475bHHHpN//OMfIiIyevRoKSwslGuuuUYmT54sAwYMkIsuukjOPvtsWby4Mnq8+eab5ZNPPpF+/frJunXrUvTthFvF/v2qzmjTJmH7eIRveZjFd+SfHVXd9Pu79D4y9Udsi/gjxt8lMZeIv4Z2/ONEVdd2xO9F/DKAeLwvUjsRf6pdcM4KX+3nGZcBhDXi9yKzdcuEbQpv0Z8ZET8ApJekZ+v36tVLOnfuLPPmzVPbSkpK5KOPPpKhQyv/BzJkyBA5ePCgLFyo/yeyYMECKS4uVm0AAACApCdEderUSURECgoKbNsLCgqka9euqs3u3burPLewsFA9/1g33nij3HTTTSIi0rpDq2QPEwAAIJxCGK0HKbSz9adMmSJTpkwREZG1S9cHfDQ+mTPeI86RfOzgQVWbw9fmgvx6F3p/niL+N3SH3zXiP1qmnxA1ludP44jfnOVf3yJ+L8zLAMIa8XthX2y/m2u7OCJ+AEgvScf6u3ZVdn5ycnJs23NyctRju3btkg4dOlR5bseOHVUbAACAhogJUXZJd043bdok+fn5kpeXp7Y1btxYhg8frq4xXbRokbRs2VKGDNEjV0OGDJEWLVrYrkMFAABAw+Yp1m/evLkcf/zxIiISjUalR48ecsopp8jevXtl27ZtMmHCBHnggQdkzZo1sm7dOhk3bpwUFxfLzJkzRURkzZo1MmfOHHnuuefUdaTPPfecvPnmm7U+U3/o50dVvfCURrX6Wo6SiPhFqo/4K2K6ddTlTx+3iD/aKEu/fppE/NGrCxM3+sZ+IeKvD7JXHVF10YmJb2IRj/iJ9wGg/vI0cnr66afLihUrZMWKFdKsWTN55JFHZMWKFfLII4+IiMjjjz8uf/jDH+SZZ56RZcuWSefOneWCCy6Q4uJitY9rrrlGPv/8c5k7d67MnTtXPv/8c/npT39aO98VAABAfWEF/BUynkZOP/zwQ4m4jPrFPfzww/Lwww+7Pr5//346owAAAKhWaGfr14Z4xB9IvO+RGfE3ubRUROwL7JvMKD9mzOKvjYg/skjfavZHP/236/GLiPx9/eBqHxdJLuI3Y3hzBr4f5iUAXiL+IHzy99NUPeyq/9R4P/U54t91ho7yD51Yqupunfc6tj84u7OIMIMfAOqzBtU5BQAACJWQRutBSnq2PgAAAJAqDXLkNPAZ/CJiVeiZ8JGMDOc2RyuPs+kPdAQdWMRvXHL88ozvqtop4r/q+OWqrsuI/8DVfXw9N85LxB8E87KCT0TH1A014m++Sq9esV3aqdqM+Ftemi8iOt4XIeIHEG4RCedao0Fi5BQAAAChQecUAAAAodEgY32TudB6ymZnJ1h2q7KN/rsgUcQfj/dFvEX8Ji8R/yEjAm3+TSwqYo/43cQjfrcZ/KmK+GPnDEr43F2b9fF26rlH1SO6rE743Lh3rtZ1fYv4L2+31N9Oz9FlukX8LY3zmIgfAOoXRk4BAAAQGg1+5NSU1CiqOVoa8dDnt2KO7Tc9nOv5JXv/4HNV18YoatOLtqraMr89h6cmmiQlktwoaueJCZvL8X/XE7jWX9VeP9Al8XPjzFHW+jaKevkt/kZObSOtaTaK6jRJSoRRVAAhxYQoG0ZOAQAAEBp0TgEAABAaDT7WL23rPJae2bmT4/by/F2O28XS+4lkJJ4QZcWi5j8Stney8VenqLrXSB3RHv5X94TPNSN+L7o+8amqd959ZrVtayPi92JXrr7VZYsNevue3OYiItI+65Cv/blF/DK9RofnScklZ/hqb0b8D+VdquqH+872tR+3iH9D1aaywYj9vfByacC+0c63oW1aqH+umlyjf/b2vdvZqbmK+BOtgypCxA8gPFjn1I6RUwAAAIQGnVMAAACERtrH+rOmf6f6Bi6xvhsz7neL+L3cmjQS1bG6LeJPxOVwN/1az/LvedESVR+Z08P7vo8Vq3Dc3OUJHXvuvHeoY5u4oCJ+0/KiysscBmdvU9uSifjfvlbn3kHP3DcvAyibqc+1h65JTcT/uJycxNFV2pCi2f8lM/XPXttrdDzvFPG7rYNqc0apPq6p+tIac03d6Ief1ehYAcAXYn0bRk4BAAAQGmk/cgoAABBaljByeoy075yas5nNRfZToTYi/oTMpi4n8+ZHdNSbVMRv3FggMvhExyZd3z8gIiJrf9ZMbWuxwfm0SibiN+NVL7cyNR14t/JzWn6+3pZMxF84xLzcITyL8zfZp4+rZGaOqpOJ+Pdfm9rvL+iI/9CJpVUeFxHZcL0OkcyIHwBQ94j1AQAAEBppP3IKAAAQZqxzapf2ndM3duiZx9/vWvVxt8X2/crsqm/gXr4z37GNl4i/10P6eDc9XDkDP++C//g6lvlzT1O1W8Tve+F/I+I3bzgQ1//5w6r2G/G7vqTLdreIv7h/WbX7K97W3nG7GfF/sVefJFs2dEx4jGbE3yYFi/Nvu8DfzRG6z3P+jeYl4vdLR/yp+S1qRvztvqz5fpwi/kSL9Fdnl3EfhC4f1vy4AAA1k/adUwAAgFBj5NSGa04BAAAQGg1q5DQe8X+/q16w3pxln1TEH9MxeWYXHSmmJOK/wPlxN3kX6ssAXCP+B33OlHaI8t34jfiTYUb82b31zPKioeXVPm+nh4jf5CXiT8Xi7X1eO6rqDVc0StjevAzAb8RfU+2/0K+551up+XN/78l6P+2+9Hdpgyke8SeawQ8ACK8G1TkFAAAIGyZE2RHrAwAAIDTSfuQ0avS/Y1IZvdtn8NdCxG9IRcT/wSy9GP13Ll9e5fHquEb8v9EzpX1H/D74jfjLmzlulow2rR23V+z/WtUd39lkPNJLVUT8mi3ib+vvchEnYY34/SzSDwAIl7TvnAIAAIQasb4NsT4AAABCo0GNnMYj/ni8X50wRPx6oy4/eM2I+K+ou4jfWr5K1ZHBJ/p63bjamMVvxv2l/fWNEFpv0vdQP9C7cuH1o52qj/dF3CP+A+/qc6CFsb3T0iNeDzUp9SHi73OPPnfMBfaTQcQPIO1ZwsjpMRg5BQAAQEJjx46VjRs3ypEjR2TZsmUybNgwT887++yzpaysTL780tvtAOmcAgAAoFqjRo2SiRMnyqOPPiqDBg2ShQsXypw5c6R79+7VPq9NmzYyffp0ee+99zy/VoOK9eOiPvvkQUX8cV0fX6TqHffpheZrI+J3kzGwr/7HYR0xFz1RNYs4sDzbcR893zioajPiN0XXO8+Q9yJi3CjAihix9nuVEf+28/R91V0jfmOxuZ3b2+ntA446NBbZJU1VnUzEb87uj9t4mfN94Pu8pi9ZSJeIv9/grYl3qk93KXrhuJocli3ib2rkaG2nLXJqDgB1oj6sc3rXXXfJCy+8IM8//7yIiNx+++0yYsQIGTt2rDzwwAOuz/vLX/4i06ZNk0gkIldccYWn12LkFAAAoAHLzs6WpUuXqq8bb7zR9nhWVpYMHjxY5s2bZ9s+b948GTp0qOt+x44dKzk5OfLb3/7W1/E0yJFTAAAAVCoqKpLc3FzXx7OzsyUzM1MKCgps2wsKCuT88893fM5JJ50kDz30kJx11lkSiyWeiG5q8J3TI5fq+803nb0kYXtPEb/5IURTOzjtFvF/+KrOPM+5suYR/1cP+jueIx92EBGRpufsVttaDS5StRnxb/5+S1WbEb/p0PD+qm7+8Vp/B2Nwivjj8b6Ix4jf3F+pjrqtxjoCLzbj/qWSUr1f18drRvxm7SXiH3nWCv0PI2F/e9Gpju373q7Psf3XDnFs40dtzOI3IzCrZpP4ASA86kGs70ejRo3k5ZdflnvuuUc2b97s+/kNvnMKAAAAd0VFRVJeXi45OTm27Tk5ObJr164q7Tt37iwnnHCCTJ06VaZOnSoiItFoVKLRqJSVlcnIkSNl/vz5rq9H5xQAACBIIR85LSsrk+XLl0teXp689tpranteXp7MmjWrSvsdO3bISSedZNt2yy23SF5enlx22WUJR1PTvnN63i1jPbdNKuLv2qWalgkYEbREvGeUtTGLf+e9ej9dnvA+gzke74t4i/jX3qxnuXed63zpw6bb9WL/vf64yrGNm51nN62yzTImoWcYaXyfF3VMv/HKrIT7NiP+Th/rz6vR+p2qLt+xU1IpVRG/aeSQFao2I35z5YA201M7i90t4r+7x1xf+3lAblI1ET8A1L7x48fLjBkzZMmSJbJgwQIZM2aMdOnSRZ599lkREZk2bZqIiIwePVrKy8tl1Sr7/7cLCwultLS0ynYnad85BQAAQHJeeeUVad++vYwbN046d+4sK1eulJEjR8rWrZVLAfbo0SNlr0XnFAAAICARqR/rnIqITJo0SSZNmuT42Lnnnlvtcx9++GF5+OGHPb1Og+qc7vyR80LqTrqIh4g/quPd8ny9vEJmj67O7SuMWfzmjH4fUb4bLxG/G7cfCjPi7/5WkXMjB14i/t0726h6x4X6vTAj/vb/1XF72Sm9VZ31+UbH141l6OeWN63+Jz3jqH7Pdw5vouomxnXdJZ0qJJFdw42F3D/W2wtv0eu+tdqWeDWARgfKEraJc4v4Bz61UtXrl+povnHUed+lMX0Jgxnxr511gqrNiD/64Weej9ELM+KXy/w9N+sa/fNWNlNfoB8/l8Mc70dbtqyyLXbQefUKAGiIGlTnFAAAIFQsCf2EqLrGHaIAAAAQGoycujAvAfAU8Rsq8gsStrGOer/EwItIhr7EoNtT+hi3332GU3P7sRgRqFvEX7H6K1VnDOyr6u5vVsb2277XocpzRESOfGBE/N/REX+HLvtV7SXiz1ql773uJeJPpKKR/kbNiN/UZJfzPebbrkkc95sOdNc/Zm4R/9FWlRG7n3hfxB7xyzBdXpKrI/gyy/n7iEb0e/2vT/TlH72l1Km5ivhTHe+LiPzPn29Wdau8qmvmVccp4jfP41SvOFAbzKifiB9AQ0fnFAAAIED1ZUJUXSHWBwAAQGik/cipLYb/0ak12ocZ8feZrbdHmzfzt6MKHQdHmupF4s2I36rwFxmr/WU6f5TdJ/5H1dvuOC3hflwjfuNGARX/XafqeMTf/S0d2ddGxN/qA70fM+LffKteqP+jMU84vq6Ts1+4R9VeIn7TvgE6JneL+EvOdY5mS4y6NF+fP93nVx5DPN4X8R/xv2nM0DdjfS8uHqZv1rD69ZOqaVm7M/hFRA7M76Tqmkb8rRob7/T1+gYZ65Y7r8NnWzkgYET8ABq6tO+cAgAAhBqxvk2D6py2f6dytHLPiCM13sf+a/Xan23+pkdlPY2iGpOWbKOojRo5bvczaSp2VI+yRRs534IzmVFUcy3W/T89q0rb/X3Nf+mfskYHnEcizVHUQ8cZ74XRpuMi/a+9F+oXaDdXT87quMLf6GLcguueVHWqRlHbLPR3DI07H1b1trzK8yc+gioS3Cjq+qv06x7/9+pfN1WjqJ2f0m9e/t16jdiajqKat0N9auuFqu43WI+6m6Oo5q1UGUUFgGA1qM4pAABA6DByasOEKAAAAIRGROpBf33t0vVy6xn3p2x/ZjTvN+KPXxogYo+9279sRJpZzrG6K5dJUPHJUa7xfkT/beEW5fsVK3Ve49LkFOvbHu/rvN0t4jeZEb/JjPhNTfbr9q88O0HVNf2ry4z4Td3ed/4MIjH949P4Kx07F15wnKqLRxYnfN0Le6+usu3N/57s2Lb38wl3Z4vmUyVRxG9K1UQpM+I3JYr4H+4723G7GfGbgpgo5XQbU6+I+IHkPbPkMemfe3zQhyErt+6Sq/4wM9BjmHrNcMnNzQ30GEzE+gAAAAFKPHTTsBDrAwAAIDTSfuTUaRau/XaGQyQV9lylZy23f+Vz/UCG860jbdxm8ce3G7P5bRG/pdcBTZVo48aqjpWUOLZJdLvTNnoyvS3iP9oq8Sz+5lv0e+EW8XthvjN+/gJzm8W//Vz9GZgRvxVN/Pdui7dbqNpLxB93yQlfqtqM+Df+TLdxi/jNCN5LxN9xkX7fC4c4v+/x/XiJ9+vbLH43tTmL34zm/Ub8zOIH0kzoL7CsW4ycAgAAIDTonAIAACA00n62vhnLxbnFc+Ysfr/sC9br0nfEb3KYxW+7vam5YL9Rm9F8qpgR/77RVd8np3j/WMnM4m++0/kSBnNB/sNn9la1OXM/Lpm/xLzM4m+yUd+SVcrKVWnO3DeZEb/TbH03tTGL34z1TW4Rf5wZ8Td+2Dle37A723F7jyu/dNzuhZ9Z/G4z9003v36jr9dnFj9Q/4Vmtv6WXXLN+GBn6//lJ+Garc/IKQAAAEKDzikAAABCo0HG+qZ6EfEnWKT/2DZBRPxeYn2T34i/0xJ9s4SD3fT3ZMb6ptqM+C/6X+eIv+P7O1Rdvlnfwz2zaxdVu0X8Z9+2tEbHkqqI3y3WNyWK+E8cuM1xu1usb0p1xO82g98t4vcb65uI+IH6KVSx/lMBx/o/JdYHAAAAHKX9OqcAAAChFvoMu27ROXVhLtTvN+I3I27zfIsd0dF0tGlT/UCiiN9tkf6IEYFn6o8yYtSxo3o2dbSJEfHHar6Af7RJE1W3nVb5Pnl5jxLFwiIiR40EuN/YJY5tWpv/yG7v2KbZpxtVPWrMnSJij/dLLP3JNIn4u3HcnEf0Qv0XPeQc8ZvKd+xUdbupujYXql91V2U8f+J4f/G220L9R1vpyL7Jm87vY78Pde3l84tH/14+R7+2vqqP3W/E77RQv7lIv+l/5t+s6mFX/cfX67ip6UL9JZec4et1mn3gfUUHERbqB1B/EesDAAAgNBg5BQAACJDfScXpjtn6PmfaJjOL37xUQIwo2VfEbypLfI9zU21E/LHS0srCiMnd3qNk4mC3iN+U4RLxx5kz+P826Q+ObfxG/KZrL7hO1RVrNzo3ijm/B2bEH+c34jd99uvTHLe7Rfymmp7jBy4pTtzIp5rO4ndbpN/N4c41/xlwk+h3i99Y3+Q34jcR8QOVwjRb/8dPBDtb//nRzNYHAAAAHBHrAwAABCn0GXbdonPqUzKz+G2MGNx1Fn+KRRvpGdyxklK93UPEr+L7Y1lVf6JS9h4Z1k3SEahbxF9RtKfafTT+l3785m9fo+rnPtJxit9Z/GZ71yjfFDUu2zAi/uiHn1VucpjBL5JcxG8yo2S3iL+mn58ZwZuz75NR01n85gx+vxJdChQGh78zUNXJRPwAEEZ0TgEAAAISsZgQdSyuOQUAAEBopP3IaW3e99o2+z4ZbhF/48ZOrZ1Fjb8zPMy+9xvxm8fiGvE7MN+jwiE1n51sMqPveBzuV/nmrar2EvG7HkuNXv0bDhG/+f24RfwbLm+UcNfdPVzA5Dfi9yNMEb9f5u+M+hbxe1mNAQDCLu07pwAAAKFGrG9DrA8AAIDQYOQ0bMyI/5v43FO8n8RC+l4ifvNyA6cZ+l6Ys+zN2ffJqKuIv9bFI36HGfwi9u+zz6yjqvYS8QeNiN+ZGcEnsyC/yculGgDChwlRdoycAgAAIDTonAIAACA0iPXD7Jv4PFZS4vy4Mds7kuX8UUabNvH1kuZfK2bELxHjEcv5/vB+1IeI/4Yew/w9ORV/6iVYpP9YfT/Udaqi4dqULhF/qhHxAw0csb4NI6cAAAAIDTqnAAAACA1i/frMiH2tMr05EtX3hLeMaD7SJPGsf7ONLeI/ar6Acc/5Gs7cN5kRvxnNJyMVEb//FzUudzDjeR8yO2Y77/rQYeftBw+qujai4dpUGxF/OiDiBxogYn0bRk4BAAAQGoycAgAABMVindNjpX3nNGNg3yrbKlZ/lZJ9z925osbPvbDLqSk5BsWMlDP0wuyRRsYi7THj7Deif1OkSRPn2lgxwKrQC/5HenSpLMoTz+CvWLs+YRu3hee9mP/SVM9tU/7+H+PRDfqe9BlGXhN1+Q101/W3iIjInj76sopWW8sc2zZetFbvr2VLVbtF/H5ltGntuL3slN4iIrKvnz4vOny6z3kn6/WqB7HDzpckRIybS/S+92tV737G+fKTw6X6XK6o0KFP08b6pgQZ2e1FROToScc57qPRig2O2yv2f+24vTaN36zPkahrprdQVVc8d4+qW29KfNONrEPObbb/cqiqM484NpFX/+cJERHZW6E/6xJL36zjd32+lfD1AaCmiPUBAAAQGmk/cgoAABBqxPo2Datz+s0s84wT+qlNFf9dF8ihmJcE1DRi3jZuaMI2ljE23mvCSv0PDxG/1b6NqouPd4l6m1e+QPN8Ha022nnAsW1s2KmqzvyPh/c9iYg/EbdLMlIV95tRflYkcQQ7ceozIiIy+rd3qW0HeugYtfHXeh+lI05Qdat3/qtqt4g/kmVc2mGIHtdVv9apHVV9sGv1Kw1kHdbf2+4z2+rtxcY5dWIbVbb7eJuqy7fvcNznkeM7qLrps/r1y28tUnXrZs4ZdOvG+pKTw2dUXnpQOCjLsa2cfaIqez6zStXmpQzJRPyZPXskbHO0WzsREYkakX0jD+fIG2MeV/X3n71P1RmlTq0rXyGu5TZ92U15M/05He5VXu1rtsvQ7+1e48qdX274QtVE/ABSrWF1TgEAAELFkkgKlmVMJ2nfOd0xQo/IdJ1bVOXxdBlFdWMOyGy68yRVu46i1tChzuboXCtVuY2ilp+m33e3UdRos2b6H7U4imqqzc/CixnjnlL1T397t6pLW+tRMHMU9YCHUdRIs6aOr3W0e1vH7W7K1cehR9rNUdSyFsZ2YxR17/Duqm73sd5fxe6qP4/HsqZ2TNhmT2P9usWnOqcATjbf6jyKWvGd01Td6PNNCfdTsc9lUlgCXkZL3fgdRT3Y3RwNr9nPO6OoAOoKE6IAAAAQGmk/cgoAABBqpPo2ad85zTh3j6q3RypvDdntHec4kYhfxCo9Kslyi/gjZc4xJhG/FjMi81RF/EcHdlN1o9Xbkz7G8mbmv2oe8TfZ21nvpSLY38xmxN9lgY6vj57SS9VuEX9GW3+XRzix3SrY53P9RvyWy1wxP4j4AdQmYn0AAACERtqPnAIAAIQZty+1i0g9uNJh7dL1cusZ99foubvf6F9lW/kH7VXtFvGbvET8ydzKNBG3SNnLOqdeuK6F2kmvdFA8sL1UJ77eaXVKW+mot/1Kl/smGryshWreGrM2PwOTl4jfvAzhyf++l/Rrmre3NCN+kxnxm5rudr4NqpHIS0l756zXac1Te6yvZRp3KTUjfpNtLVRDk716vc1YI30ulTXzF+583adqe8v7BP5Kxi66fKzj69K2+j1q9Z+djk/df0YXVbde5TyLv7hfmyrbpk4c7/TyviN+00/u17c7zTrsvKeve+vxiQMDq54ncy+c4Os1ud0p6pNnljwm/XOPD/owZNWmfBn9yMxAj2HSLd+W3NzcQI/BxMgpAABAUCypB8OEdYtrTgEAABAaDTLWNxHx27lF/FZvPeP70HEtqt0HEb8dEX/dR/xO8b6Ix4jf5WXar6xw3F7TiN8p3hch4gfqSmhi/Y0hiPVvJdYHAACAVI4NMCHKjlgfAAAAoZH2sf6u/9Fxt7kgv5NURfyRLL0I/TtbliTcT03VacT/R33vcatnV1UT8WsNJeJ3ivdFiPhF7BF/aW+92sWRbP0+1qeI3yneFyHiR3oIS6z/3435MvrhYGP9P99GrA8AAIC40A8T1i1ifQAAAIRGg4r14xLF+yLJRfxmrH/g8tNUvXD8swn3U1O1HvEbSW6viVUj/kTxvkjwEX9dxfsi9Tvib/zVLlWX9uukaiJ+581uEX/j/c6ReDzi97NIv0gwEX+iGfwiRPyov8IU61/3ULCx/jO3hyvWZ+QUAAAAoUHnFAAAAKHRICdEVbyvI3u3iD/zO3r7dslWtRnxl7duquo9Nw1x3I85433ggp+qevXZM7wfsAdmZG1Gyt1/u1DVyUT8ESO53HTHiaqOR/zNJfEM/qxDOjZ0i/gbH9CR7p6T9PvrJeKfs35hwjZ1xe3zkIjOj2NH9Pd0zwnniUhy8X5M/N5EPrHG63TEL99E/Ga833KHPjHMiN+M782I3x736+N1i/jdZBxxjtITRfytN+hz0Iz4zTUGXSN+M/U2XmbvQP19t1utj6vxxt2qNmfuNy2qjMe/PrGtPi4j4m+xbr+qzYj/+jvuUnWqIv6yZuZnUPXx1hv1pRSRcv25f32yjvgvnHunqr1E/M2i+rklFXqfv9zwhaqJ+NGgcPvSKhg5BQAAQGg0yJFTAACAsOAOUXZp3zntOlfH8NtHVMbz5kngJeJ385Op/1L1ta0Sz+g3fVSi6283cW+XSrUR8ceKD1UWq9arbc1Fz35MJuJvt7a0xsdY38Qj/ni8L5JcxN9kn35/S9omDkga7fxaH8t+XUfbtFa1ivhdZvD7jfiT0WSZPt9ivbrpB7o1FxFvM/jbr9KR9Z4T9a9C3xG/B04RfzzeF0ldxJ8q7zzzp2ofzzAuTxnwr1tU7TfiBwAnxPoAAAAIjbQfOQUAAAg1i1zflPadU3Nx/Hj4F4/3RbxF/LVxLUhtRvnXr92i6qn9j3Ns4zfi/8Hlnzhuf6X12ZWF8SYd/8v/qDqZiN+K6uiw0e5i3aZD4gX/w2TdpDMSN8qoepJ9798nqHpp3kRVF1T4Czy+NtaYzjjq/NziLjmq7vTHjY5t4hH/9u/ok7eiiT7uihZm1q0j/pbrnCN+NweuOOi4fZ/xfZeO6qvqAbeuVHVT6VNZfBPvi3iL+Lu+f0jVO87Vz21vzL7fM9D5hgOdF+lrdErbGDcqiBqvG9PvTTzid5rBLyJypIe+lKLpVn2JRW1H/FkHnVdAcFJm6bZrLv6zqon4AaQCsT4AAABCI+1HTgEAAMKM2fp26d85jeooLh7xG3N7PUX8Xd/RM20rVn+l6q8rdPwn4m+2fm3qkmXes9s51jd5ifgrEg2yG9Oa1//uNFWbEX+L/DaqjnXRkaabjEL9fZTv2Knq6Fqj0bcGGP8IzyL8fv3+O6+IiMgvPhilN5br9zR3/h2qzmqqI+C+D+x33F+L7Z+p+mC3030dy+6bz1J1h+cWV9s2o8Sczq7PETPiP9hPR8CdP9Ct2ywv0P8wrrf66rttHF8r5jJ1fs3TJ6t64L2VP+Mt9ut9VLTRl4GU5iReLuC41/RxRcr0jP5Wnzm1tsvYpC+pkV7Gz55DxO+2SH+zFVtVffjUHqr2EvHffvaPVF3epZ3jMUZXb1Z1TpttVY7LLzPiXzXyGVVfeeYPVP0/D1/p+Fzz59oL15tbAEgr6d85BQAACDNGTm245hQAAAChkfYjpxktdPQeO1w5Vdicwd/ZqN24zWGtqIV7mQfNjPhNr/Y9zXG7dKxcKH/s4A/VpvWHO6o6Y6H+++fjV/W08a5/WOa8P0tHi17mDkc2+4sFa+qivmerOnboUDUtK637szFD38dpEo/3RUR+8b4R8ZfpnZSVNVL1f+/X73W/m5c67jOjtOZ/kjtF/OaMe/NSmKxDxje6R19OY9604aBOqaXlP50/u7LDxiUf5ntXkfiNXP1k5Sz+gffoy2+iB/VKD023VXlK5csYvyesYv35xg4fSfiatv1k6l+p5Zt1PJ/Z0/jG4xG/wwz+Y5kRf0WR801Cmhm/wmw/M9t3OLY3w/tYsX5vIo0aGW1qFvGbz3v503+o+vJuZzk1T0o84ifeB9JP2ndOAQAAQssSidTs78G0RawPAACA0Ej7kdPVE/Vi3QPvqIz64vG+iIhVXl7lOV7NObGNqk8z1i2vzQX2PypJ3CZoxzcrVLUZ8Q+/Us/c/1j0DHJbxB8x/l6ynP+UjDbTM66tHl1UfcPWYar+Sw/nmwbU1JyvFqjab8RfU78/1yXid7HuuVxVu0X8yYhH/GZMn8zyJztv1+dA56eMy0nc4nsfl0fE430Re8TvxtqvZ8KLEc1HGulF9a2jZZKIFdNvSCRDX9pgRvxmfK5UOF/EkpHd3nF7bbCOHlX1FT0rf5Ze25yan6NZ2/WqD8lE/GaEH4/1mcGPtMCEKBtGTgEAABAadE4BAAAQGhGpB4PJa5eul1vPuL9Gz103dXCVbfF4XyR1Eb/pVxtXqLo2I/6z77jZcbt5YXXzWZ+m5LUyTuin6jW/qHpve3O2vhvbLH4jD/74Vb0SgNssfqtMR45mrC+99SzoiBGNdp6ar+pUR/ymi/oPV3XsoPM94f3M3P/9eS8nfE0vEb/JjPh3jxmi6ozv6dnfEePzeKDfHMf9HLWq3lv+92svdGxb9kG243YvzIh/3eTcalo6cHp/je/NS8TvxfpJPR23Wy43Cuhz7Urd5pvz1DHeF3GN+P3y/fssoo/dvCQhLlURvykVs/jNWN9ExI9EnlnymPTPPT5xw1q2en2+3HD/i4Eew8RfnCO5uT5/39YiRk4BAAAQGnROAQAAEBoNMtY3pUvEX9sRlhnrm+IRv5dY32RG/KZFLw9SdefxixzbRJs2ddweOa6rqveepmc5n3LH5yIi8lw35/2lSjIR/5hh71dpe21r55u5f1yiv89kIv69bzl/pr/q/3a1+3CK90XqOOKv6f0vjIh/wG0rq2lYvQ1T+6vaLcp3E4/4t4w7I0FLux6/dr5BRq34JuJ3ivdFiPiRHkIV6//ib4Eew8T7v0OsDwAAADhp8COnJkZRvXEaRTUnSdX2KKrbKK6U64kkhcP0LTAzSypP8fgIqkj4RlHHDK86cmqqjVHUdl302p4PDqh+tNSNl1HUX/Sfq+o/bjwv4T4PzO/kuN08B9ZNPt2xjS8+R1H3/aObqp8a8Eo1LStdt/j/Vft4xld6Yp/f9WJrfRQ1UnU0mFFUpJvQjJx+lS8/C3jkdMIvGTkFAAAAHNE5BQAAQGgQ67uo7Yj/xW36dpjZGc1Tsk8nQUT8b7+bOPI0PbG3j6q9RPxdJ61QdaR7F4fWIntP15NwyptURpTxeF8kfBH/d7/0fhvUVEX8z533gqp/ufoyVac64ndT3yJ+v7G+ySniH/utj1Q9edYIp0Oxyfue8y1p35vlHMV1+10Kon8z3jduLRyJOm9/bZP+npKRiljfRMQPJ6GK9e8LONZ/gFgfAAAAcOSpczp8+HCZPXu2bN++XSzLktGjR9senzp1qliWZftatMg+GtWoUSP54x//KLt375bi4mKZPXu2dO3aVQAAAIC4TC+NWrRoIStXrpTp06fL9OnTHdvMnz9ffvrTn6p/Hz161Pb4hAkT5NJLL5Wrr75a9uzZI+PHj5e33npLBg8eLLFY7NjdBW71xL6q7n+jjoBtMZdV8ysiftz9bFXXZsRvxlnJRFiZPXs4P3C4RERECs+t+R8a97bboOonjO1mxF96RrGqdww/TtUt/t5a1cVd9N9azQr0ORWP8+PxvojI5xNPUfXNd+jXrO2IP9qyparNiP+vs88XEZH/d+m7Cfcx/Wt9iYMZ8Q9vssPXsTy78zuqdovym0TKqmwrsbIc2zaK6NUSvET8t/d+T9VuEX+rvF2qdov4+92kb3lb44jfWKs00qSxYxPzFq/3rL1S1U/2fzXh7l8466+q3nC08rz+brPNatuo679Q9V/26VUc/v76dxLu+7zLddxvRvzbfzlU1TWO+G2/48zf086f7xW9vq3qVEX8qWD+7jN/J6bq9yOQLL8rdqQ7T53TOXPmyJw5lffbfuGFFxzblJaWSkFBgeNjrVq1khtuuEGuv/56effdyv/5/vSnP5UtW7bI+eefL/PmzavBoQMAACDdpOya02HDhklBQYGsXbtWJk+eLB066HUmBw8eLI0aNbJ1Qrdv3y6rV6+WoUOHOu1ObrzxRlm6dKksXbpUWndolarDBAAACBfLCvYrZHzP1j948KDcdtttMm3aNLXtRz/6kRw+fFg2bdokPXv2lN/+9reSkZEhgwcPlqNHj8rVV18t06dPl6wsexz43nvvyVdffSVjxoyp9jWTma3/P+tXq3rsxz+p0T5M/f7ff5wfSNGHG9ZZ/K6xvoN/LXzD59E4M2fxP79KXwbRuHHVqFnEW8QfZ0b8tT2L35yt7yYe8V++ulBt+0GLr9yaK1P3n6pqM+L/2wF92cKfF3zX8bmDBm5W9c5i/d7d3/cdx/Z+In5Tbczib37RJlU7LQ6/dtKgKtu8GnDHKr3vRvr72/dS4tuweon4T2pUKiIis4u7q21mxG8yI/49Zf5+H7jO4n/M5bx2mI1vxfTPRtR4L2JH9bngtji/+d69uvY9xzZuUj1b3w2z+Bu2MM3Wv/GeGYEewx/GnRuq2fqeYv1EXn75ZVWvXLlSli9fLlu2bJGLL75YXn/99VS8BAAAABqAWllKKj8/X7Zv3y59+1ZOKtq1a5dkZmZKdrZ95CEnJ0d27drltAsAAIAGIWIF+xU2KRk5PVb79u2la9eukp+fLyIiy5cvl6NHj0peXp689NJLIiLStWtXGThwoCxcWLv3iL5l4Y9VPWl45SK3Yz/Sqwp4+lSs1MzQ98Kcxd/j08oYb0r3BW7Na6w+zFI1Z/E/L/p9KS3VcaFrxL9TR/nxiN9pBr+It1n8ptqc0T9pnZ7tLMb9Ddwi/uvbrFD11P06yo5G9Pd6y9n/VrUZ8X+2uqeqc7rvU/VjX+kF4c2IPx7hm/G+WXuJ+L3wMot/37U69m07Y4mq43F0/7H6EgffEb+xeohVUqrqNpfp1RD2v+68OsXda/TNDxIt1H9pi22qnl3cU9VmxH9DW/29HTZ+D/1p93eq3bdINbP47x+iatssfuPXnNoUddgo/iP+K/vrz9G8kUm0aRPH9pHGJbq9ufJLin//MosfCCdPndPmzZvL8cdXXpcRjUalR48ecsopp8jevXtl79698utf/1pmzZol+fn50rNnT/nd734nhYWFKtI/cOCA/OUvf5HHH39cCgsL1VJSX3zxhZq9DwAA0OBYUg/u1Vm3PMX6p59+uqxYsUJWrFghzZo1k0ceeURWrFghjzzyiFRUVMjJJ58ss2fPlnXr1sm0adNk7dq1MmTIECku1mtT3nnnnfL666/Lyy+/LAsWLJDi4mK55JJLQrnGKQAAAILhe7Z+EJKZrf/V9NOqbPvz0BdVbYv4TS7vSr8bljk/UIt23K+X21p5+59r9bXcIiw/s/VNqZq5b+r/8bWO29u/3qza5yWawS/iPovf1GaNXjw/smazfiBa80u447P1C2cPcHx8bD9/C5o/NevShG16jtOXJ+y6Q59jTS8sdGruOos/Eb+z9f/vvyMdtzf+ZxvH7ZbxtmfPrIzzzejYN3PWeobLZ2p81vtnddbHYjnH4GbEH5+t78bLLH6/Eb/JdRb/7z9VtVOcH8lMHLSZEb9bZG/bZ5aHfR4pMf6hfyatsqMOrVPvrM/197T4lNRcuoJwCM1s/XX5ctPdwc7WH/+/aThbHwAAADUTxklJQaqV2foAAABATTTIWN/kN+IPItY3bfuVjl//eysRvxnxd5qhY8SyFtX/3eUl4je1+88eVVtbdyY+MJ8Rf6JY3xR0xF/TeF/EHvGb8f2vTnjbcbvJS6wfF4/3RVIX8dsYsXckout9/+iWcJfxiD9RvC/iHvGbi/Nf3UbPyk9VxN/9iSWO2+O8RPy2n4GI8+UOXmJ9k7l6glVR+XNbV/E+0k+YYv2b7wo21n/qIWJ9AAAAxMVCP05Yp4j1AQAAEBppH+vft+FLVd+4YLTn5/W9Tt9j3Zy5alVUJH5yLS/UH0fEb3fOTTc5bk91xN/2n18mbBM7dChhm0TqMuI3Y31TbUb8D626xFf7RrPbJG7kkB6HNeL3M4NfxB7xbyrt6NjGb8TvFuvHJYr3RZKL+P3G+k6sMv2ZWqXO72NSnzvSVqhi/TumB3oMTz3y3VDF+oycAgAAIDTonAIAACA0GtSEqClnTxMRkZsW6hnebotmuzHvHe0p4q9F3f9P3xf7BLlF1bUR8bvda7p881YR8R/vXzz0+6pOVcT/4eTJqjYj/qziyqjeLd5vsdM5ym/93/0pOa6a6njpGlW7RfyT1n1b1V4i/rsvn61qL7P4O03U59guqYz4zXj/sa9GqDqZiN/U/O+tVX3oqq/9PTl+RY3Lj7UZQfuOei3jPDEjfnNheGNz2x9uV7VTxH/3mlGq9hvxT39Pf+7Xnqc/95f261jutg4fqNrvLP64bffqVQHcIn7zfXSN+M07ARoRvxnJ+434Iy1aVBbGnQhtx2VE/El97kAti1isc3osRk4BAAAQGg1q5BQAACBcrDqbSF1fNKjZ+k7cIn632fpubBF/wCdZJKuRqt/Zkni2bTKcZvHXdAa/SOoifreZ+3GJZvAfyxbxb9iWsH0qZuu7qY1Z/LMGOs/+dpJoBr9XR+bq1zQvH3Czb/QQVTstvO8m+6XPErbxG/Xaomzj583WxvidYEbW+1/v7tTc0V3Hz1f1L/91tbFz5/ZmxG9ym8WfaLa+qdvvP1W1l9+JtT2LX8X6BsuI+JnFj0TCMlt/zdqdcvPtwc7Wf/K35zFbHwAAAHBCrA8AABAgJkTZpX3ndMynP1X1s2dWf+/aiHF2mLPybVxm7EYyo85tzKfWUYRk3mt6xHF6tm1tRPzxWfxOM/hFgpvF3+zD1aref8mJVR5vdEB/Rp4i/vX6e4odPlzj40oFv7P4PdGT+G37jzZrVqVpl/f2qvqr7tmq7vatXY67LilPza+ZttP0jQJqGvG7MSPo2NEy50a2n33jxhzGz5trxG9EzG0uq7wsxC3ejxmXFz351QXuB+3AnMVv2y56e5PdNXzDYvoyBUv070e3iL82ZvFH2uiVHJyYj1u79+jtjRvr7W6z+L3cPjIW7AotQENBrA8AAIDQSPuRUwAAgFAj1rdJ+86pGdWbEX9cv5vXOj/RiJJiJc4zPSMuyX+kaVPn7UZtGfs0Y8FUq8uI30kYIv42b64SEXu8f7SVDg3MiN9N0FG+Gy8Rf/PGtXd+9X1hv6q/uq6Tqt2i44ySxPvM7HWc/oe58oUR+3b4OF/V5Rs3q9oxPvYya9wQbZSl6pg5y9vDKhy2n+Wo8y+IeGTd+nubnHfiEh23la9UvX78WQmPxU23x/TlEdvvH1JNy2rUQsQfO3JE/8O4ZCoqTfRmo31Z57bVH6PxeMYX6/U+3CJ+43e+680BKozLOUK0QgtQV8aOHSv33nuvdO7cWVatWiV33nmnfPLJJ45tL7vsMhkzZowMGjRImjRpIv/973/l//7v/+TNN99M+DrE+gAAAAGKWFagX16MGjVKJk6cKI8++qgMGjRIFi5cKHPmzJHu3Z2vnz/nnHPk3//+t1x88cUyaNAgefvtt+X111+XYcOGJXwtOqcAAACo1l133SUvvPCCPP/887JmzRq5/fbbJT8/X8aOHevY/s4775Tf//73snTpUtmwYYM88sgjsnz5cvnBD36Q8LXSPtZPBVvcc9SMSJ1ju2i7No7bT39jo+P2spjeT4Xx98KKQd6P0YvajPhvWqe/t8n9eju2SSbid1rs/1jRli2rfTwe74vYI/4DNx5Q9eES59nWjfvrhec7P5V4wfggeIn4vcjs2kXVsX37PT/PHvG3UbUZ8VfohNZTxL/5mqr3pBc5doa+Pt7uv638bNzupe5pYXhD1IyAT3JZrNtl1CFjz0HdxLhUwEnF+s2O281VCUydTihQ9UPH64jsTzvOU/Vd3eap+rW9enHtD+/R+4waC4h0eaKG57XPiN+8VMJ8f932GTuiT5TIIR397/lW1+oPK0O/fubAb6m64/s79fHu1z/75qU7thUCGjn/Trhg0Q7H7RVS9ft+96TqfzcBQcvOzpalS/XNOiZPnixTpkxR/87KypLBgwfLk08+aXvevHnzZOjQoeJVy5YtZd++fQnb0TkFAAAIiiUiiac+1KqioqJq7xCVnZ0tmZmZUlBQYNteUFAg559/vqfXuOWWW6Rbt24yY0b1y3qK0DkFAABALfrhD38oTzzxhPzoRz+SrVu3Jmyf9p3TXld/rv/xzexZW9zkEtm4MmaRWuV6se5IZvWxXXWyosasT+Ovp1M/q3ytVMf7IuGK+INgRvxbep2savNCjUyX2Dn/7voV8R96x/kzcGUsjG4N7KXqyGqX2eUOzIjfZqPz5+530CBiPMGM+LeNq/xs4vG+SOoifr8K8nTsnDPfOQKOy+yh2/r92Xh4/SWO2/93/aW+9rPzXn1eBxHxu854N1cvKHVeOSWR8ib69QvP1ZeBdHhdx/rRFs31SxYf0tuNhf1j+79O+FoZxppA8Yj//JX6Eg8iftRHRUVFUl5eLjk5ObbtOTk5smuX8w1Y4i6//HKZPn26XHvttfLWW295ej0mRAEAAAQo7LP1y8rKZPny5ZKXl2fbnpeXJwsXuv8xe+WVV8qMGTPkuuuuk1mzZnl+P9J+5NTmm7/Azb/oLZc1TD0xb1+aoeuj3ds7No/KBufDMi6gN0dRo9+cMKd+po/381znj8y25p5xXF5ut2eOopoTj+K3JvWie9Yex+2/2aS3P9jL/XqWVNh72UmqLmteTUMRyfnbyoT7Kzcm79TnUdTW19d8jdaMnfrzq/hmFNU2gtrb38Q2W3tjFNW8Termq/Uo4skX6xFgN1/+S0/+io+ixkdQReyjqObao5bLbUpf3PKR4/YM+bfj9qt/cGPCY/Q1iupzsqCbB/q8repHN4xUddvz9Rqx+97t7Pjc+ChqjUdQReyjqCm6ni7WRy9Zc/Cb5XDLOjjfFrr5Brc0S/++3X2ZPnc6vKbTlIxs43e4Meprn+xa/ecookdRzUlS5ijqe6fqtVhZNxVhN378eJkxY4YsWbJEFixYIGPGjJEuXbrIs88+KyIi06ZNExGR0aNHi4jIj370I5kxY4bcc8898tFHH6lR16NHjyacFNWwOqcAAABhUw/+HnnllVekffv2Mm7cOOncubOsXLlSRo4cqa4h7dHD/of1mDFjJCsrSyZOnCgTJ05U2z/44AM599xzq30tOqcAAABIaNKkSTJp0iTHx47tcCbqgFanYXZOzajb5RaDfkWaN0vcyEXU+JPJjPgzIlWzsNOX6WNfdrpeIzCS4XKrRHOKj4eI32RG/OYkJ5NbnO/kN5v0Gmq1HfFn6fkMjhF/wU9OqrqxGvU54i/P1xerZ3buVE3L6sUj/gq3SVIpivib7PE3hGBG//GI32mSlIh7xJ+Ml/6p1wL0E/EnivdFRIq76d8HLbbXfGilphF/SiZJ1ZKmuyvfm7IOzo8f6qMv2zAj/rJWZisj4r9Cr33cce4WVVst9O/2SHHNLpFxmiQlInLeCh1tmhG/yZzEBzQUDbNzCgAAEBZcZ2zDbH0AAACERkTqwWW4a5eul1vPuL/2XyiJmC+jrV4LT4z1E8v6dnFoLTLsmcTricYcboNXYTn/PWFG/G6smPFR+4z4TWbE7yfWd+M34o+d47zw6/qrnGfndlxU+bkmmsEvIlLSznk9RjduEb8pTBG/KZmIP66ii57VnFTEbyg82zne7HvtWs/7cJrBfyxbxG94cduChPvPiiT+u/5Hl/5M1UWntaqmpbeIf9OP9a1czYg/6+oCp+Y2Dx7/L8ftZsRvcpvFHxdUxB8ZdGKVbWtv8XdJldss/iy95Klkluj313a702b6+h4z4j/vX3qmf02ZcT8Rf914Zslj0j/X5bbEdWjN6p1y681TAz2Gx566oNo7RNU1Rk4BAAAQGnROAQAAEBrE+m58Rvxusb6pphG/U7wv4h7x/+fbzpFQ7LCOoVIV8Zsz8FPBS8TvN9aPi8f7IkT8xwpTxL/pynaqbr7T+ddTbUb8XmL97AwPJ5BhxCU/VnV9ivgTxfsidRvxO8X6+0/UtwMtOMff77J6EfEPzjYeMG5sQMSftFDF+jf9NdBjeGz8hcT6AAAAgBM6pwAAAAgNYn0vkpnF36G94/ZURPzm4v1llvMx1lXEn+p4X8Q94neL9U1BRPxeYn0TEX9ibjP3M4/outfNNYv43XR7NHHE7zfWN8Uj/kTxvggRf3WCiPg7fK5/b2Zt2a1qq3ULfVxE/PVGWGL9tat3yq0/CzbW/90EYn0AAADAEXeIAgAACIzFHaKOkfaxfrfFOm7ZflZxqg7JO+OSADPijxgz+o/26uj4VC8L9TtJ94jfS6xvqquI32+sb0rniD/29QHnB7xE/Bu3qrLwp6eo2oz1TamI+M1ovM30Rar++zb9GbXN8LfwuxM/M/hFgon4a7pIv0jdRfxO8b5I7Uf8Xd7Y4tjGKeJPJt6vcFmthYg/eeGJ9XfIrTcEHOtPHEGsDwAAADgh1gcAAAiKJfUgw65bDapzGo/46zTeN6Lxit36PvSZnXNU3WhToarNiP+TW88QkZrH+8eKGDcKsPZ9repoMx1RVhQf0k8wVynwEfGbEXyqIv791w5RtRm1eon4j/97mYi4x/uFQ/T35iXib7JX/xbxu1B/fVOev0vVNY34zctGzHPNjOy9RPwdZ3yu6r1XnOLYZtNz/UXEW7x/8sVrVO1lFv9Vxw1X9dztyxO2T+SdN19Utd+I302vF7erevc5XVVd9pL+feMW8f9m/cWqdpvFH0bWZzoyNyP+NqsOGq38RfyH+pSp2oz4y4yPxirW/x+JtDCi/K+N/798E7G/d7E+rlTM4BcRiTRqpI/l6FG93WhDxI/6qkF1TgEAAMImwoQoG645BQAAQGg0yJHTwGbwmxF/kY74M7L1LH6niD8e74vUQcTfXMeusUM6jq3PEf/2c5uKiEgTI80c+N2vHNt+Jr1UbUb8brIO6b92j3QINuLf+urJvtr3uPJLX+3jEX8yM/jNiN9m5Rrn7S7Mz908H+Li8b6I/4jffK6bC7sNVnWqI/7rt+rLB778y0k13mfbafo92jdav0dmxN/jZ84/B8/nVx5Dlxb6d8PO4taObYOS2dXhRiaF+1S551x9qUhtRPyxvnr/0fX6coqI+Tv0QOXrRlvp16zLiN+cxc9SRahPGmTnFAAAIDT448GGWB8AAACh0eBHTvPvHqpq3wuhR51j30hUx7te4pbYvv16l23bqDoe8TvN4BdJXcQvjYxZ7KX6GF0j/hqqjYjflHFAH/uWS3UE2euczVXarv53X1WbEf+gE/V94P1G/Ob5Y55XYWVeBuAn4jdn8IeBn4g/enVhlceTdVF/HcPPWftx0vub0G2equ+8QW8vnO98Ew0v3CL+tW/2U3X/S9ZVed6q2XoVgxMv1Zc+7JPEi/DXtv1nV7/CQ4bx69ZckD+ZiD+qE36xzKt4zEXwzd+VsVjlfw7o17RF/Ofr30Pnvet8iYVf5v9zxLipilVuHjyjdAi3Bt85BQAACFQs6AMIF2J9AAAAhAYjpwa/EX9GW+fZq5Es58XerZISoy7VtRH3O0X85gx+05KRPfU+Dhs3GzdnaGaYcbSxaHSrFuIk0ti4DMGI+L+acLo+rqPVz0rvc8/iah8XsUf8TlFsTWz5vvF5JEitzKi/NiL+srMOJmwTJjWN+FPF7RzIusZ5wfgD851XDIj/3LrtL/ZSR8ftJvMyAVPE+FmKtmujH2iv65Hnj1L12+++kvC1nLSINFb1890/VPXWD3VcPOa4YTXat4g94s+68kxV5/+xT5W2rUT/Ljl4hf7d0EM2qrouL/PI6K/vg77zO96HmrKX6s9ud65eSb/9Sv2eWpFmkkj2x3pWvlTo168oNX6fl+mF7+PnjPkb04z4TfPPcFkFI+b2fRoxvcv/cyJN9Lkk+n8/Eu3bU9UV/616OQfqmMU6p8di5BQAAAChQecUAAAAoZH2sX5e2+oXOV4q36qjIxGJNGni/IARtzhF/OYMfvsOjbDIcol+XCJ+64Bx84EMn3+j2G7eXPXhDU+epWovEX+i2da1zW/Ev2ORjhZTJR6rBxGpH6umEb/fz84tPveiVZ6Oks2IP35pjnlZTm2cU7G9+1UdNWJ9UyoiflOPTB07P7vlE1UnE/H7sX/Ycapu88kWVZs3ZQjbSg5xRbn696AZ8e85Sb+n7f6rL4060Ktp4p26/N6MZOn/rZoRv3rc/EfU5Xeva5TvoixxxG/bfWPdJn6pRMXa9f5eE6lFrG/DyCkAAABCg84pAAAAQiPtY/1ff/696hucqWdONvq0ZTUNU8tPxF9RWKSfZ0RJtsWWvTAX/ne7x7nBMhZwjpbV7L7xyUT8psigEx23i7G913c2q3rTBz2r1ObjbtwiftNxX+r7jVufpebe2HHJzJo325v7Cep4EklV3O4U8Sd1cw2fYl9tVrU5C9pkRvwvzn1BRERaRV1+B/iUTMRvxvNmbJ9IUBH/jouM1RYyy9wbioiUO//Ocov4s/YcUnW7zzeo2rzUKvEy/XbxiN8W7xuXYO2d3evYp1QRjejfw21/uL2alt8oc35frDL9fWSUVm1jroRAxF/XLGL9YzByCgAAgNBI+5FTAACAUOMOUTZp3zktK9XfYlbjqjMnTUfP9LdwesU+He9m9Nb3efYyOB8p1rF6ooh/1vqPfB3XFSdf6PyAEetHMo0ZpeXVvy+p4jfiT4aXCD/hPoyIf9OHPR3bmJcbpCLi/+XJc/Q/9K3M5ZG3rnBs7/Y+1mbEX7aluePj/QZvcdy+Z2riuNi8572XhfLdxCN+pxn8IuGI+Edv/KGIiEzr/Q+1zUvEnxHRQVevLOebaMzduULVF3Y5NeE+TfUh4o+eu1e/VqLjKjAu0/IQ8Ytkq6qD8WMV2aFvBGH+rrQqvIf85gz+1zboGys0jSxJ+NyzP9eXhOz7RzdVe4r4a4iIH0Ej1gcAAEBopP3IKQAAQGhx+9IqIuIthQ7U2qXr5dYz7q/Rc9fPGFRlW7dXEi9SbGryZuLoJdpML+Yc6ZLja/9mxG+ySipz/ddWzve1P5NbxG8d0QtOx4z7Qksk8WD6hidyjR3V+NAULxG/62x9w5bvt1Z1KmJ9kzn7/7g3vnZv+A0z4vcTq9tifRd+I35TKiJ+8xjNY+k3eGvC5yYT8WddU+DUPCEz4jclE/FHsvytlGFG/JmTDlR5/K+9Z6m6bdR5AfgMDz+bbrxE/GYMH+cn3j+WGfGbkon4d92pL9EwI/5EvET8JnMWf4fFerUUSUHEb4/1/Z1HZsRvanPZNsft5koDbrPBzQg/kXSL+J9Z8pj0z039TVX8Wrtyu9z+4+cCPYbfPv99yc3NTdywjjByCgAAECRGTm3SfuT0olX7Vf30f86t8njKRlGNW4lmtGmjt7vc2tCN0yjqq8ve9LUPN75HUY0fFnMyk+mekVWP7cm3L6nhEYr0+8sex+07RnRw3N75Az2KaY6cmurTKKqXkVNTEKOobsfIKKo3jd5tV+3j5TE9Qvpmv7dUnczIqWlErzP1P4wRP3MkMKyjqObIaZyfEVSR4EdRkxk5NQ1Z8SPH7W0v2aj/EXM+FqfRUtsasoaucwodt6fDKGqoRk6veTbQY/jtXy4N1cgpE6IAAAAQGsT6AAAAQSLWt0n7WN+cEPXz094XEXu87zfWN9kifiPWNycVZbRupbfXMOJPVaxv8hvxb3jiTKfmcsE5K0RE5M6O7zk+PqHwPFXP+/DUhMcV66Av4B/wmPO6s24R/9FWjpuVVMf7It4ifrf1T51idb+xvqmuIn4vsb6JiN9ZonhfxB7xv93/7RodU3UuPvtSVVds26HqeEztFO+LpC7i9xvrm3G0UwxdpxH/LOef60QRvxnrm+oy4k80CaqhRPyhivWvnhToMfz2rz8g1gcAAACcEOsDAAAEiVjfJu1jfQAAgGOFKta/6s+BHsNvp14WqlifkVMAAICgWCISC/ogwoVrTgEAABAadE4BAAAQGsT6AAAAgbEkwoQoG0ZOAQAAEBqMnAIAAASJkVMbRk4BAAAQGnROAQAAEBrE+gAAAEGKEeubGDkFAABAaNA5BQAAQGgQ6wMAAATFEmbrH4ORUwAAAIQGI6cAAABBYuTUpl50Ttse10qmbHxCioqKgj4UpIHs7GzOJSSN8wipwHkUnLbHtQr6EOCiXnROO3bsKEuXLpXc3NygDwVpgHMJqcB5hFTgPAKqqhedUwAAgPRkEesfgwlRAAAACI160zmdPHly0IeANMG5hFTgPEIqcB4BVUWkcoUtAAAA1LG1X2yVOy6dGOgx/OaVq0J17XO9GTkFAABA+mNCFAAAQFAsEbFiQR9FqDByCgAAgNCgcwoAAIDQINYHAAAIEuuc2jByCgAAgNBg5BQAACAwlkiMkVMTI6cAAAAIDTqnAAAACA1ifQAAgCAxIcqGkVMAAACEBp1TAAAAhAaxPgAAQFAsIdY/BiOnAAAACA1GTgEAAILEyKkNI6cAAAAIDTqnAAAACA1ifQAAgMBYIrFY0AcRKoycAgAAIDQYOQUAAAgSE6JsGDkFAABAaNA5BQAAQGgQ6wMAAASFO0RVwcgpAAAAQoPOKQAAAEKDWB8AACBIMWJ9EyOnAAAACA1GTgEAAAJjiWVxhygTI6cAAAAIDTqnAAAACA1ifQAAgKBYwoSoYzByCgAAgNCgcwoAAIDQINYHAAAIErcvtWHkFAAAAKHByCkAAECQYqxzamLkFAAAAKFB5xQAAAChQawPAAAQFMtiQtQxGDkFAABAaDByCgAAECCLCVE2jJwCAAAgNOicAgAAIDSI9QEAAILEhCgbRk4BAAAQGnROAQAAEBrE+gAAAEGxLJEYsb6JkVMAAACEBiOnAAAAQbJY59TEyCkAAABCg84pAAAAQoNYHwAAIEAWE6JsGDkFAABAaDByCgAAEBiLCVHHYOQUAAAAoUHnFAAAAKFBrA8AABAUiwlRx2LkFAAAAKFB5xQAAAAJjR07VjZu3ChHjhyRZcuWybBhw6pt/+1vf1uWLVsmR44ckQ0bNsjNN9/s6XXonAIAAATJigX75cGoUaNk4sSJ8uijj8qgQYNk4cKFMmfOHOnevbtj+549e8rbb78tCxculEGDBsnvfvc7efrpp+WHP/xhwteKiAgXOgAAAARg7dL1cusZ9wd6DL9b8gvJzc2tts3ixYvliy++kJtuukltW7dunbz22mvywAMPVGn/2GOPyQ9/+EPp16+f2jZlyhQ58cQTZejQodW+FhOiAAAAArKx6Cv53ZJfBHoMTZo0kaVLl6p/T548WaZMmaL+nZWVJYMHD5Ynn3zS9rx58+a5djSHDBki8+bNs22bO3eujB49WjIzM6W8vNz1eOicAgAABOSiiy4K+hASys7OlszMTCkoKLBtLygokPPPP9/xOZ06dZJ33323SvusrCzJzs6WXbt2ub4e15wCAAAgNOicAgAAwFVRUZGUl5dLTk6ObXtOTo7rCOiuXbsc25eVlUlRUVG1r0fnFAAAAK7Kyspk+fLlkpeXZ9uel5cnCxcudHzOokWLHNsvW7as2utN4yy++OKLL7744osvvvhy+xo1apRVWlpq3XDDDdaAAQOsCRMmWAcPHrR69OhhiYg1bdo0a9q0aap9z549reLiYusPf/iDNWDAAOuGG26wSktLrR/+8IdeXi/4b5gvvvjiiy+++OKLr3B/jR071tq0aZNVUlJiLVu2zBo+fLh67P3337fef/99W/tvf/vb1vLly62SkhJr48aN1s033+zpdVjnFAAAAKHBNacAAAAIDTqnAAAACA06pwAAAAgNOqcAAAAIDTqnAAAACA06pwAAAAgNOqcAAAAIDTqnAAAACI3/D4nu1JrXTx6iAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -342,7 +342,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAALECAYAAADzQA1JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAeK0lEQVR4nO3da4xV5bnA8UeCoGUEquAM4gWMeFBjUHAIIKMfLJbqJ2NCIomOjYGWnHhJSOiJsaGSxhptLJpYK6SBQgKxsRrUlFsr1tRhLJAixYikgaIDc4EakAEBadf5cE4nbrk8A+658vslb8Lstfbsd2fekD9rXtY+LyKKAAAATqlPV08AAAC6O9EMAAAJ0QwAAAnRDAAACdEMAAAJ0QwAAAnRDAAAiR4RzbNmzYodO3bEF198ERs3bozJkyd39ZTgjMydOzeKoigZjY2NJ5yze/fuOHz4cKxbty6uv/76LpotnFpNTU2sWLEiGhoaoiiKqK2tPeGcbC0PHjw4lixZEvv374/9+/fHkiVLYtCgQZ31FuCksrW9aNGiE/4eX79+fck5/fr1ixdeeCH27t0bra2tsWLFihg+fHhnvg06ULeP5mnTpsXzzz8fTz31VNx8881RV1cXK1eujCuuuKKrpwZnZNu2bVFVVdU2brzxxrZjc+bMidmzZ8fDDz8c1dXV0dLSEmvXro2KioounDGcqKKiIrZu3RqPPvpoHD58+ITj7VnLy5Yti7Fjx8bUqVNj6tSpMXbs2Fi6dGlnvg04Qba2IyLWrl1b8vf4XXfdVXJ8/vz5ce+998Z9990XNTU1MXDgwHjrrbeiT59un1u0U9GdR319fbFgwYKSx7Zv31489dRTXT43w2jvmDt3bvG3v/3tlMf37NlTPP74421fX3DBBcXnn39ezJw5s8vnbhinGgcPHixqa2tLHsvW8ujRo4uiKIpJkya1nXPrrbcWRVEU1157bZe/J8OIOPnaXrRoUfHmm2+e8jkDBw4sjh49WkyfPr3tscsvv7z417/+Vdx5551d/p6Mbz669T99zj///Bg3blysWbOm5PE1a9bEpEmTumhWcHauvvrq2L17d+zYsSOWL18eI0eOjIiIkSNHxrBhw0rW+ZEjR+Ldd9+1zulR2rOWJ06cGAcPHoy6urq2c957771obW213un2Jk+eHM3NzfHxxx/HggULYujQoW3Hxo0bF/369StZ/w0NDfHRRx9Z271Et47mIUOGRN++faO5ubnk8ebm5qiqquqiWcGZe//99+PBBx+MqVOnxowZM6Kqqirq6uri4osvblvL1jk9XXvWclVVVezdu/eE57a0tFjvdGurVq2KBx54IO64446YPXt2jB8/Pt5+++3o169fRPzf2j5+/Hjs27ev5Hn+Lu89+nb1BOBcsGrVqpKv6+vrY8eOHVFbWxv19fVdNCsA2uuVV15p+/PWrVtj06ZNsWvXrrj77rvj9ddf78KZ0Vm69ZXmffv2xfHjx6OysrLk8crKymhqauqiWcE3d+jQofjwww9j1KhRbWvZOqena89abmpqKvmV9n9ceuml1js9SmNjYzQ0NMSoUaMi4v/Wdt++fWPIkCEl5/m7vPfo1tH85ZdfxqZNm2LKlCklj0+ZMqVkPxz0NP3794/Ro0dHY2Nj7Ny5MxobG0vWef/+/aOmpsY6p0dpz1pev359XHTRRTFx4sS2cyZOnBgVFRXWOz3KJZdcEsOHD2+7feimTZvi2LFjJet/+PDhcd1111nbvUiX/2/E041p06YVR48eLR566KFi9OjRxfz584uDBw8WV155ZZfPzTDaO5599tnitttuK0aMGFGMHz++ePPNN4sDBw60reM5c+YU+/fvL+65557ihhtuKJYvX17s3r27qKio6PK5G8ZXx4ABA4oxY8YUY8aMKQ4dOlT8+Mc/LsaMGVNcccUVRUT71vLvf//7YsuWLcWECROKCRMmFFu2bCneeOONLn9vxrk9Tre2BwwYUDz77LPFhAkTiquuuqq4/fbbi7q6uuLTTz8tWdu//OUvi08//bS44447iptuuql4++23i7/+9a9Fnz59uvz9GWUZXT6BdMyaNavYuXNnceTIkWLjxo1FTU1Nl8/JMM5k/Cccjh49WjQ0NBSvvvpqcd1115WcM3fu3GLPnj3FF198UbzzzjvFDTfc0OXzNoyvj9tvv704mUWLFrWdk63lwYMHF0uXLi0OHDhQHDhwoFi6dGkxaNCgLn9vxrk9Tre2L7jggmLVqlVFc3NzcfTo0eIf//hHsWjRouLyyy8v+R79+vUrXnjhhWLfvn3FoUOHijfeeOOEc4yeO877/z8AAACn0K33NAMAQHcgmgEAICGaAQAgIZoBACAhmgEAICGaAQAg0aOiecaMGV09BSg765reytqmt7K2z02dHs2zZs2KHTt2xBdffBEbN26MyZMnt/u5M2fO7MCZQdewrumtrG16K2v73NSp0Txt2rR4/vnn46mnnoqbb7456urqYuXKlXHFFVd05jQAAOCMdOonAtbX18eWLVtK/oW2ffv2ePXVV+Pxxx8/5fP2txyI5l17Y9DQgXFg7+edMVXoNNY1vZW1TW9lbfdelVcNjcGXDjrpsb6dNYnzzz8/xo0bFz//+c9LHl+zZk1MmjTptM9t3rU3/nv8/3Tk9AAAOMe9+JenT3ms07ZnDBkyJPr27RvNzc0ljzc3N0dVVdUJ58+YMSM2bNgQGzZsiEFDB3bWNAEA4ATd9u4ZCxcujOrq6qiurvYrEAAAulSnRfO+ffvi+PHjUVlZWfJ4ZWVlNDU1ddY0AADgjHVaNH/55ZexadOmmDJlSsnjU6ZMibq6us6aBgAAnLFO+4+AERHPPfdcLF26NP7yl7/Ee++9Fz/84Q/jsssui1/96ledOQ0AADgjnRrNv/3tb+OSSy6JJ554IoYNGxZbt26Nu+66Kz755JPOnAYAAJyRTo3miIiXXnopXnrppc5+WQAAOGvd9u4ZAADQXYhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiUJZrnzp0bRVGUjMbGxhPO2b17dxw+fDjWrVsX119/fTleGgAAOlzZrjRv27Ytqqqq2saNN97YdmzOnDkxe/bsePjhh6O6ujpaWlpi7dq1UVFRUa6XBwCADlO2aD5+/Hg0Nze3jX379rUde+yxx+Lpp5+O1157LT788MOora2Niy66KKZPn16ulwcAgA5Ttmi++uqrY/fu3bFjx45Yvnx5jBw5MiIiRo4cGcOGDYs1a9a0nXvkyJF49913Y9KkSeV6eQAA6DBlieb3338/HnzwwZg6dWrMmDEjqqqqoq6uLi6++OKoqqqKiIjm5uaS5zQ3N7cdO5kZM2bEhg0bYsOGDTFo6MByTBMAAM5K33J8k1WrVpV8XV9fHzt27Ija2tqor68/q++5cOHCWLhwYUREfLzh7994jgAAcLY65JZzhw4dig8//DBGjRoVTU1NERFRWVlZck5lZWXbMQAA6M46JJr79+8fo0ePjsbGxti5c2c0NjbGlClTSo7X1NREXV1dR7w8AACUVVmi+dlnn43bbrstRowYEePHj49XX301BgwYEL/5zW8iImL+/Pnxox/9KO6555644YYbYvHixdHa2hrLli0rx8sDAECHKsue5ssvvzyWL18eQ4YMib1790Z9fX1MmDAhPvnkk4iIeOaZZ+LCCy+MF198Mb797W/H+++/H3feeWe0traW4+XPGav3bD7lse9edlOnzQMA4FxTlmi+77770nOefPLJePLJJ8vxcgAA0Kk6ZE8zAAD0JqIZAAASZdmeQeewbxkAoGu40gwAAAnRDAAACdEMAAAJe5p7ia/fw9n+ZwCA8nGlGQAAEqIZAAAStmf0ErZjAAB0HFeaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAING3qycA5bR6z+aSr7972U1dMg8AoHdxpRkAABKiGQAAErZn0KvYjgEAdARXmgEAICGaAQAgIZoBACBhTzO92ldvQWe/MwBwtlxpBgCAhGgGAICEaAYAgIQ9zfRq9jEDAOXgSjMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAk2hXNNTU1sWLFimhoaIiiKKK2tvaEc+bOnRu7d++Ow4cPx7p16+L6668vOT548OBYsmRJ7N+/P/bv3x9LliyJQYMGleddAABAB2pXNFdUVMTWrVvj0UcfjcOHD59wfM6cOTF79ux4+OGHo7q6OlpaWmLt2rVRUVHRds6yZcti7NixMXXq1Jg6dWqMHTs2li5dWr53AgAAHaRve05auXJlrFy5MiIiFi9efMLxxx57LJ5++ul47bXXIiKitrY2WlpaYvr06bFgwYIYPXp0fO9734tbb7016uvrIyLiBz/4Qfz5z3+Oa6+9NrZv316mtwMAAOX3jfc0jxw5MoYNGxZr1qxpe+zIkSPx7rvvxqRJkyIiYuLEiXHw4MGoq6trO+e9996L1tbWtnMAAKC7ateV5tOpqqqKiIjm5uaSx5ubm2P48OFt5+zdu/eE57a0tLQ9/+tmzJgRM2fOjIiIQUMHftNpAgDAWeu2d89YuHBhVFdXR3V1dRzY+3lXTwcAgHPYN47mpqamiIiorKwsebyysrLtWFNTUwwdOvSE51566aVt5wAAQHf1jaN5586d0djYGFOmTGl7rH///lFTU9O2h3n9+vVx0UUXxcSJE9vOmThxYlRUVJTscwYAgO6oXXuaBwwYENdcc01ERPTp0yeuvPLKGDNmTHz22Wfx6aefxvz58+Pxxx+Pbdu2xfbt2+OJJ56I1tbWWLZsWUREbNu2LVauXBkvv/xy2z7ll19+Od588013zgAAoNtr15XmW265JTZv3hybN2+Ob33rWzFv3rzYvHlzzJs3LyIinnnmmfjFL34RL774YmzcuDGGDRsWd955Z7S2trZ9j+nTp8cHH3wQq1evjtWrV8cHH3wQ999/f8e8KwAAKKPzIqLo6klkPt7w9/jv8f/T1dMAAKAXe/EvT8d/VV9z0mPd9u4ZAADQXYhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASPTt6gnQfqv3bD7lse9edlOnzYPO8fWft58xAHQdV5oBACAhmgEAIGF7Rg/y9V/Pf/XX936Vf+756s/czxsAOpYrzQAAkBDNAACQEM0AAJCwp7kH++o+1tPdjo6eKdunbB8zAHQeV5oBACAhmgEAICGaAQAgYU9zL3G6ezif7DgAAO3nSjMAACREMwAAJGzP6KVsxwAAKB9XmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAg0berJwCc3Oo9m0u+/u5lN3XJPAAAV5oBACAlmgEAICGaAQAgYU9zD/L1Pa6nY/9r72OPMwB0HVeaAQAgIZoBACBhe0YPcrpfx3/9V/d+ld/7fP1n+NWfsZ8vAHQsV5oBACAhmgEAICGaAQAgYU9zL3G6/a70TNk+ZfuYAaDzuNIMAAAJ0QwAAAnRDAAACXuaeyn39AUAKJ92XWmuqamJFStWRENDQxRFEbW1tSXHFy1aFEVRlIz169eXnNOvX7944YUXYu/evdHa2horVqyI4cOHl++dAABAB2lXNFdUVMTWrVvj0UcfjcOHD5/0nLVr10ZVVVXbuOuuu0qOz58/P+6999647777oqamJgYOHBhvvfVW9OljhwgAAN1bu7ZnrFy5MlauXBkREYsXLz7pOUePHo3m5uaTHhs4cGA89NBD8f3vfz/+8Ic/RETE/fffH7t27YrvfOc7sWbNmrOYOmfiTD6C2/YNAIBSZbvMO3ny5Ghubo6PP/44FixYEEOHDm07Nm7cuOjXr19JHDc0NMRHH30UkyZNKtcUAACgQ5TlPwKuWrUqXnvttdi5c2eMGDEifvrTn8bbb78d48aNi2PHjkVVVVUcP3489u3bV/K85ubmqKqqOun3nDFjRsycOTMiIgYNHViOaQIAwFkpSzS/8sorbX/eunVrbNq0KXbt2hV33313vP7662f1PRcuXBgLFy6MiIiPN/y9HNMEAICz0iH/C6+xsTEaGhpi1KhRERHR1NQUffv2jSFDhpScV1lZGU1NTR0xBQAAKJsOieZLLrkkhg8fHo2NjRERsWnTpjh27FhMmTKl7Zzhw4fHddddF3V1dR0xBQAAKJt2bc8YMGBAXHPNNRER0adPn7jyyitjzJgx8dlnn8Vnn30WP/nJT+J3v/tdNDY2xogRI+JnP/tZtLS0tG3N+Pzzz+PXv/51PPPMM9HS0hL//Oc/47nnnostW7a03U0DAAC6q3ZF8y233BLvvPNO29fz5s2LefPmxeLFi2PWrFlx4403xgMPPBCDBw+OxsbGWLduXUybNi1aW1vbnvPYY4/F8ePH45VXXokLL7ww/vjHP8YDDzwQ//73v8v+pjgzPj0QAOD02hXNf/rTn+K888475fGpU6em3+PYsWPxyCOPxCOPPNL+2QEAQDfg4/gAACAhmgEAIFGW+zTTu3x1H7OP2AYAcKUZAABSohkAABKiGQAAEvY0c1qnu4dzdm5P4/7UAMCpuNIMAAAJ0QwAAAnbMzgjp7sdXU+/PV1Pmy8A0HlcaQYAgIRoBgCAhGgGAICEPc2ctex2dG7hBgD0Fq40AwBAQjQDAEBCNAMAQMKeZsrmTD5yGwCgJ3GlGQAAEqIZAAAStmfQYdxmDgDoLVxpBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAIBE366eAADnltV7Npd8/d3LbuqSeQCcCVeaAQAgIZoBACAhmgEAIGFPMwCdyh5moCdypRkAABKiGQAAEqIZAAASohkAABKiGQAAEqIZAAASbjkHQLflI7eB7sKVZgAASIhmAABIiGYAAEjY0wxAt2UPM9BduNIMAAAJ0QwAAAnRDAAACdEMAAAJ0QwAAAnRDAAACdEMAAAJ0QwAAAnRDAAACdEMAAAJH6MNwDlh9Z7NbX/28dzAmXKlGQAAEqIZAAASohkAABL2NANwTrCPGfgmXGkGAICEaAYAgITtGQCc8756O7oIWzmAE7nSDAAACdEMAAAJ0QwAAAl7mgE459nDDGRcaQYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAIDEeRFRdPUkMi0tLbFr164YMmRI7Nu3r6unA2VlXdNbWdv0VtZ273XVVVfFpZdeetJjPSKa/2PDhg1RXV3d1dOAsrKu6a2sbXora/vcZHsGAAAkRDMAACR6VDQvWLCgq6cAZWdd01tZ2/RW1va5qUftaQYAgK7Qo640AwBAVxDNAACQEM0AAJAQzQAAkBDNAACQ+F8b+Y6yrc/L+QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs0AAALECAYAAADzQA1JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAeK0lEQVR4nO3da4xV5bnA8UeCoGUEquAM4gWMeFBjUHAIIKMfLJbqJ2NCIomOjYGWnHhJSOiJsaGSxhptLJpYK6SBQgKxsRrUlFsr1tRhLJAixYikgaIDc4EakAEBadf5cE4nbrk8A+658vslb8Lstfbsd2fekD9rXtY+LyKKAAAATqlPV08AAAC6O9EMAAAJ0QwAAAnRDAAACdEMAAAJ0QwAAAnRDAAAiR4RzbNmzYodO3bEF198ERs3bozJkyd39ZTgjMydOzeKoigZjY2NJ5yze/fuOHz4cKxbty6uv/76LpotnFpNTU2sWLEiGhoaoiiKqK2tPeGcbC0PHjw4lixZEvv374/9+/fHkiVLYtCgQZ31FuCksrW9aNGiE/4eX79+fck5/fr1ixdeeCH27t0bra2tsWLFihg+fHhnvg06ULeP5mnTpsXzzz8fTz31VNx8881RV1cXK1eujCuuuKKrpwZnZNu2bVFVVdU2brzxxrZjc+bMidmzZ8fDDz8c1dXV0dLSEmvXro2KioounDGcqKKiIrZu3RqPPvpoHD58+ITj7VnLy5Yti7Fjx8bUqVNj6tSpMXbs2Fi6dGlnvg04Qba2IyLWrl1b8vf4XXfdVXJ8/vz5ce+998Z9990XNTU1MXDgwHjrrbeiT59un1u0U9GdR319fbFgwYKSx7Zv31489dRTXT43w2jvmDt3bvG3v/3tlMf37NlTPP74421fX3DBBcXnn39ezJw5s8vnbhinGgcPHixqa2tLHsvW8ujRo4uiKIpJkya1nXPrrbcWRVEU1157bZe/J8OIOPnaXrRoUfHmm2+e8jkDBw4sjh49WkyfPr3tscsvv7z417/+Vdx5551d/p6Mbz669T99zj///Bg3blysWbOm5PE1a9bEpEmTumhWcHauvvrq2L17d+zYsSOWL18eI0eOjIiIkSNHxrBhw0rW+ZEjR+Ldd9+1zulR2rOWJ06cGAcPHoy6urq2c957771obW213un2Jk+eHM3NzfHxxx/HggULYujQoW3Hxo0bF/369StZ/w0NDfHRRx9Z271Et47mIUOGRN++faO5ubnk8ebm5qiqquqiWcGZe//99+PBBx+MqVOnxowZM6Kqqirq6uri4osvblvL1jk9XXvWclVVVezdu/eE57a0tFjvdGurVq2KBx54IO64446YPXt2jB8/Pt5+++3o169fRPzf2j5+/Hjs27ev5Hn+Lu89+nb1BOBcsGrVqpKv6+vrY8eOHVFbWxv19fVdNCsA2uuVV15p+/PWrVtj06ZNsWvXrrj77rvj9ddf78KZ0Vm69ZXmffv2xfHjx6OysrLk8crKymhqauqiWcE3d+jQofjwww9j1KhRbWvZOqena89abmpqKvmV9n9ceuml1js9SmNjYzQ0NMSoUaMi4v/Wdt++fWPIkCEl5/m7vPfo1tH85ZdfxqZNm2LKlCklj0+ZMqVkPxz0NP3794/Ro0dHY2Nj7Ny5MxobG0vWef/+/aOmpsY6p0dpz1pev359XHTRRTFx4sS2cyZOnBgVFRXWOz3KJZdcEsOHD2+7feimTZvi2LFjJet/+PDhcd1111nbvUiX/2/E041p06YVR48eLR566KFi9OjRxfz584uDBw8WV155ZZfPzTDaO5599tnitttuK0aMGFGMHz++ePPNN4sDBw60reM5c+YU+/fvL+65557ihhtuKJYvX17s3r27qKio6PK5G8ZXx4ABA4oxY8YUY8aMKQ4dOlT8+Mc/LsaMGVNcccUVRUT71vLvf//7YsuWLcWECROKCRMmFFu2bCneeOONLn9vxrk9Tre2BwwYUDz77LPFhAkTiquuuqq4/fbbi7q6uuLTTz8tWdu//OUvi08//bS44447iptuuql4++23i7/+9a9Fnz59uvz9GWUZXT6BdMyaNavYuXNnceTIkWLjxo1FTU1Nl8/JMM5k/Cccjh49WjQ0NBSvvvpqcd1115WcM3fu3GLPnj3FF198UbzzzjvFDTfc0OXzNoyvj9tvv704mUWLFrWdk63lwYMHF0uXLi0OHDhQHDhwoFi6dGkxaNCgLn9vxrk9Tre2L7jggmLVqlVFc3NzcfTo0eIf//hHsWjRouLyyy8v+R79+vUrXnjhhWLfvn3FoUOHijfeeOOEc4yeO877/z8AAACn0K33NAMAQHcgmgEAICGaAQAgIZoBACAhmgEAICGaAQAg0aOiecaMGV09BSg765reytqmt7K2z02dHs2zZs2KHTt2xBdffBEbN26MyZMnt/u5M2fO7MCZQdewrumtrG16K2v73NSp0Txt2rR4/vnn46mnnoqbb7456urqYuXKlXHFFVd05jQAAOCMdOonAtbX18eWLVtK/oW2ffv2ePXVV+Pxxx8/5fP2txyI5l17Y9DQgXFg7+edMVXoNNY1vZW1TW9lbfdelVcNjcGXDjrpsb6dNYnzzz8/xo0bFz//+c9LHl+zZk1MmjTptM9t3rU3/nv8/3Tk9AAAOMe9+JenT3ms07ZnDBkyJPr27RvNzc0ljzc3N0dVVdUJ58+YMSM2bNgQGzZsiEFDB3bWNAEA4ATd9u4ZCxcujOrq6qiurvYrEAAAulSnRfO+ffvi+PHjUVlZWfJ4ZWVlNDU1ddY0AADgjHVaNH/55ZexadOmmDJlSsnjU6ZMibq6us6aBgAAnLFO+4+AERHPPfdcLF26NP7yl7/Ee++9Fz/84Q/jsssui1/96ledOQ0AADgjnRrNv/3tb+OSSy6JJ554IoYNGxZbt26Nu+66Kz755JPOnAYAAJyRTo3miIiXXnopXnrppc5+WQAAOGvd9u4ZAADQXYhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiUJZrnzp0bRVGUjMbGxhPO2b17dxw+fDjWrVsX119/fTleGgAAOlzZrjRv27Ytqqqq2saNN97YdmzOnDkxe/bsePjhh6O6ujpaWlpi7dq1UVFRUa6XBwCADlO2aD5+/Hg0Nze3jX379rUde+yxx+Lpp5+O1157LT788MOora2Niy66KKZPn16ulwcAgA5Ttmi++uqrY/fu3bFjx45Yvnx5jBw5MiIiRo4cGcOGDYs1a9a0nXvkyJF49913Y9KkSeV6eQAA6DBlieb3338/HnzwwZg6dWrMmDEjqqqqoq6uLi6++OKoqqqKiIjm5uaS5zQ3N7cdO5kZM2bEhg0bYsOGDTFo6MByTBMAAM5K33J8k1WrVpV8XV9fHzt27Ija2tqor68/q++5cOHCWLhwYUREfLzh7994jgAAcLY65JZzhw4dig8//DBGjRoVTU1NERFRWVlZck5lZWXbMQAA6M46JJr79+8fo0ePjsbGxti5c2c0NjbGlClTSo7X1NREXV1dR7w8AACUVVmi+dlnn43bbrstRowYEePHj49XX301BgwYEL/5zW8iImL+/Pnxox/9KO6555644YYbYvHixdHa2hrLli0rx8sDAECHKsue5ssvvzyWL18eQ4YMib1790Z9fX1MmDAhPvnkk4iIeOaZZ+LCCy+MF198Mb797W/H+++/H3feeWe0traW4+XPGav3bD7lse9edlOnzQMA4FxTlmi+77770nOefPLJePLJJ8vxcgAA0Kk6ZE8zAAD0JqIZAAASZdmeQeewbxkAoGu40gwAAAnRDAAACdEMAAAJe5p7ia/fw9n+ZwCA8nGlGQAAEqIZAAAStmf0ErZjAAB0HFeaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAING3qycA5bR6z+aSr7972U1dMg8AoHdxpRkAABKiGQAAErZn0KvYjgEAdARXmgEAICGaAQAgIZoBACBhTzO92ldvQWe/MwBwtlxpBgCAhGgGAICEaAYAgIQ9zfRq9jEDAOXgSjMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAkRDMAACREMwAAJEQzAAAk2hXNNTU1sWLFimhoaIiiKKK2tvaEc+bOnRu7d++Ow4cPx7p16+L6668vOT548OBYsmRJ7N+/P/bv3x9LliyJQYMGleddAABAB2pXNFdUVMTWrVvj0UcfjcOHD59wfM6cOTF79ux4+OGHo7q6OlpaWmLt2rVRUVHRds6yZcti7NixMXXq1Jg6dWqMHTs2li5dWr53AgAAHaRve05auXJlrFy5MiIiFi9efMLxxx57LJ5++ul47bXXIiKitrY2WlpaYvr06bFgwYIYPXp0fO9734tbb7016uvrIyLiBz/4Qfz5z3+Oa6+9NrZv316mtwMAAOX3jfc0jxw5MoYNGxZr1qxpe+zIkSPx7rvvxqRJkyIiYuLEiXHw4MGoq6trO+e9996L1tbWtnMAAKC7ateV5tOpqqqKiIjm5uaSx5ubm2P48OFt5+zdu/eE57a0tLQ9/+tmzJgRM2fOjIiIQUMHftNpAgDAWeu2d89YuHBhVFdXR3V1dRzY+3lXTwcAgHPYN47mpqamiIiorKwsebyysrLtWFNTUwwdOvSE51566aVt5wAAQHf1jaN5586d0djYGFOmTGl7rH///lFTU9O2h3n9+vVx0UUXxcSJE9vOmThxYlRUVJTscwYAgO6oXXuaBwwYENdcc01ERPTp0yeuvPLKGDNmTHz22Wfx6aefxvz58+Pxxx+Pbdu2xfbt2+OJJ56I1tbWWLZsWUREbNu2LVauXBkvv/xy2z7ll19+Od588013zgAAoNtr15XmW265JTZv3hybN2+Ob33rWzFv3rzYvHlzzJs3LyIinnnmmfjFL34RL774YmzcuDGGDRsWd955Z7S2trZ9j+nTp8cHH3wQq1evjtWrV8cHH3wQ999/f8e8KwAAKKPzIqLo6klkPt7w9/jv8f/T1dMAAKAXe/EvT8d/VV9z0mPd9u4ZAADQXYhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASIhmAABIiGYAAEiIZgAASPTt6gnQfqv3bD7lse9edlOnzYPO8fWft58xAHQdV5oBACAhmgEAIGF7Rg/y9V/Pf/XX936Vf+756s/czxsAOpYrzQAAkBDNAACQEM0AAJCwp7kH++o+1tPdjo6eKdunbB8zAHQeV5oBACAhmgEAICGaAQAgYU9zL3G6ezif7DgAAO3nSjMAACREMwAAJGzP6KVsxwAAKB9XmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAgIZoBACAhmgEAICGaAQAg0berJwCc3Oo9m0u+/u5lN3XJPAAAV5oBACAlmgEAICGaAQAgYU9zD/L1Pa6nY/9r72OPMwB0HVeaAQAgIZoBACBhe0YPcrpfx3/9V/d+ld/7fP1n+NWfsZ8vAHQsV5oBACAhmgEAICGaAQAgYU9zL3G6/a70TNk+ZfuYAaDzuNIMAAAJ0QwAAAnRDAAACXuaeyn39AUAKJ92XWmuqamJFStWRENDQxRFEbW1tSXHFy1aFEVRlIz169eXnNOvX7944YUXYu/evdHa2horVqyI4cOHl++dAABAB2lXNFdUVMTWrVvj0UcfjcOHD5/0nLVr10ZVVVXbuOuuu0qOz58/P+6999647777oqamJgYOHBhvvfVW9OljhwgAAN1bu7ZnrFy5MlauXBkREYsXLz7pOUePHo3m5uaTHhs4cGA89NBD8f3vfz/+8Ic/RETE/fffH7t27YrvfOc7sWbNmrOYOmfiTD6C2/YNAIBSZbvMO3ny5Ghubo6PP/44FixYEEOHDm07Nm7cuOjXr19JHDc0NMRHH30UkyZNKtcUAACgQ5TlPwKuWrUqXnvttdi5c2eMGDEifvrTn8bbb78d48aNi2PHjkVVVVUcP3489u3bV/K85ubmqKqqOun3nDFjRsycOTMiIgYNHViOaQIAwFkpSzS/8sorbX/eunVrbNq0KXbt2hV33313vP7662f1PRcuXBgLFy6MiIiPN/y9HNMEAICz0iH/C6+xsTEaGhpi1KhRERHR1NQUffv2jSFDhpScV1lZGU1NTR0xBQAAKJsOieZLLrkkhg8fHo2NjRERsWnTpjh27FhMmTKl7Zzhw4fHddddF3V1dR0xBQAAKJt2bc8YMGBAXHPNNRER0adPn7jyyitjzJgx8dlnn8Vnn30WP/nJT+J3v/tdNDY2xogRI+JnP/tZtLS0tG3N+Pzzz+PXv/51PPPMM9HS0hL//Oc/47nnnostW7a03U0DAAC6q3ZF8y233BLvvPNO29fz5s2LefPmxeLFi2PWrFlx4403xgMPPBCDBw+OxsbGWLduXUybNi1aW1vbnvPYY4/F8ePH45VXXokLL7ww/vjHP8YDDzwQ//73v8v+pjgzPj0QAOD02hXNf/rTn+K888475fGpU6em3+PYsWPxyCOPxCOPPNL+2QEAQDfg4/gAACAhmgEAIFGW+zTTu3x1H7OP2AYAcKUZAABSohkAABKiGQAAEvY0c1qnu4dzdm5P4/7UAMCpuNIMAAAJ0QwAAAnbMzgjp7sdXU+/PV1Pmy8A0HlcaQYAgIRoBgCAhGgGAICEPc2ctex2dG7hBgD0Fq40AwBAQjQDAEBCNAMAQMKeZsrmTD5yGwCgJ3GlGQAAEqIZAAAStmfQYdxmDgDoLVxpBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAIBE366eAADnltV7Npd8/d3LbuqSeQCcCVeaAQAgIZoBACAhmgEAIGFPMwCdyh5moCdypRkAABKiGQAAEqIZAAASohkAABKiGQAAEqIZAAASbjkHQLflI7eB7sKVZgAASIhmAABIiGYAAEjY0wxAt2UPM9BduNIMAAAJ0QwAAAnRDAAACdEMAAAJ0QwAAAnRDAAACdEMAAAJ0QwAAAnRDAAACdEMAAAJH6MNwDlh9Z7NbX/28dzAmXKlGQAAEqIZAAASohkAABL2NANwTrCPGfgmXGkGAICEaAYAgITtGQCc8756O7oIWzmAE7nSDAAACdEMAAAJ0QwAAAl7mgE459nDDGRcaQYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAICEaAYAgIRoBgCAhGgGAIDEeRFRdPUkMi0tLbFr164YMmRI7Nu3r6unA2VlXdNbWdv0VtZ273XVVVfFpZdeetJjPSKa/2PDhg1RXV3d1dOAsrKu6a2sbXora/vcZHsGAAAkRDMAACR6VDQvWLCgq6cAZWdd01tZ2/RW1va5qUftaQYAgK7Qo640AwBAVxDNAACQEM0AAJAQzQAAkBDNAACQ+F8b+Y6yrc/L+QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -385,7 +385,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAK5CAYAAABdd/3wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA8MklEQVR4nO3df5SXdZ03/ucYYgS6qZMziLpaupLdrRqNBwjStqZj9O2Yet/+2hS8vWmhLaRM83ZpTepQR1uEynsN7SiSElZ2s3oWBRUzHUZ+nDVvWJHdUAkcBgYzQ0BEPt8/3OY4AcME85kLLh6Pc65z+Fyf93XNez5e2csnr/f7U5OkEgAAKKmDip4AAABUk4IXAIBSU/ACAFBqCl4AAEpNwQsAQKkpeAEAKDUFLwAApabgBQCgU8OHD8/s2bOzevXqVCqVjBw5crfX/Lf/9t/y2GOPZdOmTVm9enW+/vWv7zDmvPPOy7Jly7Jly5YsW7Ysn/3sZ6swewUvAAC70a9fvyxdujRXXnllNm3atNvxhx56aObNm5fW1tY0NDTkyiuvzNVXX52vfOUr7WMGDx6cWbNm5e67785pp52Wu+++Oz/96U9zxhlnVOV3qDgcDofD4XA4HF05/vCHP1RGjhzZ6ZgxY8ZUfv/731fe+c53tp/7h3/4h8rq1avbX//kJz+pzJ07t8N18+bNq9xzzz3dPmcJLwAA3WrIkCH51a9+lS1btrSfe+ihhzJgwIAcf/zx7WPmzp3b4bqHHnooQ4cO7fb59Or2OwIA0CXbt/wyOejwQuew7LmaDoXptGnTctttt+3VPevr67N69eoO51pbW9vfe+GFF1JfX99+7u1j6uvr9+pn74yCFwCgKAcdnsqG8wudwpYt96ShoaHQOVSbghcAoEDbs73oKXS7tWvXpq6ursO5P75eu3Ztp2P++H530sMLAEC3WrBgQYYPH55DDjmk/VxjY2PWrFmTF154oX1MY2Njh+saGxvT1NTU7fNR8AIA0Km+ffvm1FNPzamnnpqDDjooxx13XE499dQce+yxSZJJkybl4Ycfbh9/zz33ZNOmTbnzzjvzgQ98IOeee26uvfbaTJ48uX3M1KlT8zd/8zf52te+lpNPPjnXXnttPvaxj2XKlCndPn8FLwBAQSqV5M3K9kKPrvjwhz+cp59+Ok8//XTe9a53ZeLEiXn66aczceLEJEn//v3zvve9r338q6++msbGxhx99NFZvHhxbrnllvzTP/1Th4J3wYIFueiiizJq1Kg888wzueyyy3LhhRdm4cKF3fshJ6nJW/uTAQDQw958/Zm8seGcQufw/9bcW/pFaxJeAABKzS4NAACFqWS7v2yvOgkvAAClJuEFAChIJeXch3dfI+EFAKDUFLwAAJSalgYAgAK9WbFordokvAAAlJqEFwCgIG8tWpPwVpuEFwCAUlPwAgBQaloaAAAKU8mbWhqqTsILAECpKXgBACg1LQ0AAAWxS0PPkPACAFBqEl4AgAL5prXqk/ACAFBqCl4AAEpNSwMAQEHeWrRGtUl4AQAoNQkvAECBfNNa9Ul4AQAoNQUvAAClpqUBAKAglSRv6mioOgkvAAClpuAFAKDUtDQAABTIPrzVJ+EFAKDUJLwAAAWpJHkzNUVPo/QkvAAAlJqCFwCAUtPSAABQoO324a06CS8AAKWm4AUAoNS0NAAAFMQuDT1DwgsAQKlJeAEACiLh7RkSXgAASk3BCwBAqWlpAAAoSqUm2ytaGqptv0h4x44dm5UrV2bz5s1ZvHhxhg0bVvSU2Iddf/31qVQqHY6WlpYdxqxZsyabNm3K/Pnzc8oppxQ0W/YVw4cPz+zZs7N69epUKpWMHDlyhzG7e27e/e5356677sorr7ySV155JXfddVf+4i/+oqd+BfYRu3uW7rjjjh3+HbVgwYIOY3r37p3vfe97Wb9+fTZu3JjZs2dnwIABPflrQKns8wXvBRdckKlTp2bSpEk5/fTT09TUlDlz5uTYY48temrsw5YvX576+vr244Mf/GD7e9dcc02uuuqqfOlLX0pDQ0PWrVuXefPmpV+/fgXOmKL169cvS5cuzZVXXplNmzbt8H5Xnpt77rknH/rQh3L22Wfn7LPPzoc+9KHMmDGjJ38N9gG7e5aSZN68eR3+HTVixIgO70+ZMiXnn39+Lr744gwfPjyHHXZYHnjggRx00D7/f9v8mf64aK3I40BQk7c+631Wc3NznnnmmXz+859vP7dixYr87Gc/y3XXXVfgzNhXXX/99fnv//2/dyhy3+6ll17KD37wg0yaNClJ8s53vjPr1q3LV7/61UybNq0np8o+6g9/+EO++MUvZvr06e3ndvfcDBw4MM8++2w+8pGPpKmpKUnykY98JE888UROPvnkrFixopDfhWLt7Fm64447Ultbm8985jM7veawww7L+vXrc/nll+eee+5JkhxzzDF58cUX86lPfSpz587tkbnTMzZu+XWea/3/Cp3D9nX3paGhodA5VNs+/Z+KBx98cAYNGrTD/7jnzp2boUOHFjQr9gfvfe97s2bNmqxcuTIzZ87MCSeckCQ54YQT0r9//w7P1JYtW/L44497ptilrjw3Q4YMyR/+8If2YjdJnnzyyWzcuNGzxQ6GDRuW1tbWPPfcc5k2bVre8573tL83aNCg9O7du8Pztnr16jz77LOeJdhD+3TBW1tbm169eqW1tbXD+dbW1tTX1xc0K/Z1Tz31VEaNGpWzzz47o0ePTn19fZqamnLEEUe0PzeeKf4cXXlu6uvrs379+h2uXbdunWeLDh588MFcdtll+fjHP56rrroqZ5xxRh599NH07t07yVvP0rZt29LW1tbhOv+eKq83c1Chx4HALg2UzoMPPtjhdXNzc1auXJmRI0emubm5oFkBvGXWrFntf166dGmWLFmSF198MZ/+9Kfzi1/8osCZQXnt02V9W1tbtm3blrq6ug7n6+rqsnbt2oJmxf7mtddey7Jly3LSSSe1PzeeKf4cXXlu1q5d2+Gvpf/oqKOO8mzRqZaWlqxevTonnXRSkreepV69eqW2trbDOP+egj23Txe8b7zxRpYsWZLGxsYO5xsbGzv0yUFnDjnkkAwcODAtLS15/vnn09LS0uGZOuSQQzJ8+HDPFLvUledmwYIFOfTQQzNkyJD2MUOGDEm/fv08W3TqyCOPzIABA9q3T1yyZEm2bt3a4XkbMGBA3v/+93uWSqiSZPt/7cVb1HEg2OdbGiZPnpwZM2Zk4cKFefLJJzNmzJgcffTRufXWW4ueGvuom266Kffff39WrVqVo446Kl//+tfTt2/f9lXSU6ZMyXXXXZfly5dnxYoVmTBhQjZu3Ni+GpoDU9++fXPiiScmSQ466KAcd9xxOfXUU/Pyyy/nt7/97W6fm+XLl2fOnDn54Q9/2L6rzA9/+MPcf//9dmg4wHT2LL388sv5xje+kZ///OdpaWnJ8ccfn29/+9tZt25dezvDq6++mh/96Ee58cYbs27dumzYsCGTJ0/OM888k4cffrjIXw32W/t8wXvvvffmyCOPzIQJE9K/f/8sXbo0I0aMyKpVq4qeGvuoY445JjNnzkxtbW3Wr1+f5ubmDB48uP2ZufHGG9OnT5/ccsstOfzww/PUU0/lk5/8ZDZu3FjwzCnShz/84Tz22GPtrydOnJiJEyfmzjvvzOWXX96l5+aSSy7J97///Tz00ENJkn/5l3/JF7/4xZ7+VShYZ8/S2LFj88EPfjCXXXZZ3v3ud6elpSXz58/PBRdc0OFZGj9+fLZt25ZZs2alT58+eeSRR3LZZZdl+/btBfxGVFfxe+G+o9Cf3jP2+X14AQDK6g9bnskza88pdA69199rH14AANif7fMtDQAAZVVJ8mZF/lhtPmEAAEpNwgsAUKDt8seq8wkDAFBq+03BO3r06KKnQEl4lugOniO6g+cIekaPF7xjx47NypUrs3nz5ixevDjDhg3r0nV/3Mgd9pZnie7gOaI7eI6o/Nc+vEUeB4IeLXgvuOCCTJ06NZMmTcrpp5+epqamzJkzJ8cee2xPTgMAgANIj37xRHNzc5555pkO/0W7YsWK/OxnP8t11123y+s2bHotm954Iy9v3twT06TkjujTx7PEXvMc0R08R8U55rDDcuS7+hY9jfx+y//L4pbzC53DYW13l/6LJ3psl4aDDz44gwYNyne/+90O5+fOnZuhQ4fuMH706NHthfGmN97I8Dtu75F5AgDlN/uivy16Cu3sw1t9PfYJ19bWplevXmltbe1wvrW1NfX19TuMv+2229LQ0JCGhgb/9QsAwB6zDy8AQEEqSbYfIAvHitRjCW9bW1u2bduWurq6Dufr6uqydu3anpoGAAAHmB4reN94440sWbIkjY2NHc43Njamqampp6YBAMABpkdbGiZPnpwZM2Zk4cKFefLJJzNmzJgcffTRufXWW3tyGgAA+4iavLn/fA/YfqtHC9577703Rx55ZCZMmJD+/ftn6dKlGTFiRFatWtWT0wAA4ADS44vW/vmf/zn//M//3NM/FgCAA5RdGgAAClKJfXh7gk8YAIBSk/ACABRou/yx6nzCAACUmoIXAIDdGjt2bFauXJnNmzdn8eLFGTZs2C7H3nHHHalUKjscGzdubB9z5pln7nTMySef3O1z19IAAFCQSqUmb1b2/a8WvuCCCzJ16tR84QtfyBNPPJEvfOELmTNnTk455ZT89re/3WH8lVdemWuvvbbDuSeffDKPP/74DmNPOeWUvPzyy+2v169f3+3zl/ACANCpr3zlK7nzzjtz++23Z/ny5Rk3blxaWloyduzYnY5/9dVX09ra2n68733vy/ve977cdtttO4xdt25dh7Hbt2/v9vkreAEAClJJ8mYOKvSora3NokWL2o/Ro0d3mOPBBx+cQYMGZe7cuR3Oz507N0OHDu3S7zl69OgsXbo0CxYs2OG9xYsX56WXXsrDDz+cs846a08/yk5paQAAOIC1tbWloaFhl+/X1tamV69eaW1t7XC+tbU1n/jEJ3Z7/8MOOywXXHBB/vf//t8dzre0tGTMmDFZtGhRevfunUsvvTSPPPJIzjzzzDzxxBN79svsgoIXAICq+dznPpeDDjooM2bM6HB+xYoVWbFiRfvr5ubmHH/88bn66qsVvAAAZbJ9H/+mtba2tmzbti11dXUdztfV1WXt2rW7vX706NH5+c9/nt/97ne7HfvUU0/loosu2uO57sq+/QkDAFCoN954I0uWLEljY2OH842NjWlqaur02oaGhpx22mk7Xay2M6eddlpaWlr2eK67IuEFAKBTkydPzowZM7Jw4cI8+eSTGTNmTI4++ujceuutSZLp06cnSUaOHNnhus9//vNZsWJFfvnLX+5wzyuvvDIvvPBCli1blt69e+dzn/tczj333Jx33nndPn8FLwBAQSqpyZv7wV+433vvvTnyyCMzYcKE9O/fP0uXLs2IESOyatWqJMlxxx23wzX9+vXLRRddlIkTJ+70nr17985NN92UY445Jps3b86yZcsyYsSIzJkzp9vnX5O3dsTYp/16bUvO+cndRU8DACiJ2Rf9bU6t71/0NNK2+d/z0OpRhc7hr165pdNdGspAwgsAUKD94ZvW9nf7foYOAAB7QcELAECpaWkAAChIJcl2+WPV+YQBACg1CS8AQGFq8uY+/k1rZeATBgCg1BS8AACUmpYGAICCvLVozT681SbhBQCg1BS8AACUmpYGAIAC2aWh+nzCAACUmoQXAKAgldTkTflj1fmEAQAoNQUvAAClpqUBAKAolWR7xT681SbhBQCg1BS8AACUmpYGAICCVBK7NPQAnzAAAKUm4QUAKExNtvumtarzCQMAUGoKXgAASk1LAwBAQd5atGYf3mqT8AIAUGoSXgCAAlm0Vn0+YQAASk3BCwBAqWlpAAAoSCU1Fq31AAkvAAClpuAFAKDUtDQAABTILg3V5xMGAKDUJLwAAAWpJHlTwlt1PmEAAEpNwQsAQKlpaQAAKExNttuHt+okvAAAlJqEFwCgIJWKRWs9wScMAECpKXgBACg1LQ0AAAXaXrFordokvAAAlJqCFwCAUtPSAABQkEpq8qb8sep8wgAAlJqEFwCgQBatVZ+EFwCAUlPwAgBQaloaAAAKUkmyXf5YdT5hAABKTcELAECpaWkAACjQm3ZpqDoJLwAApSbhBQAoSCU19uHtARJeAABKTcELAECpaWkAAChKJdlekT9Wm08YAIBSk/ACABSkkuTNWLRWbRJeAABKTcELAECpaWkAACiQfXirT8ILAECpKXgBACg1LQ0AAAV566uF5Y/V5hMGAKDUJLwAAAXabh/eqpPwAgBQagpeAABKTUsDAEBBKkneLHof3gOgo0LCCwBAqSl4AQAK89a2ZEUeXTV27NisXLkymzdvzuLFizNs2LBdjj3zzDNTqVR2OE4++eQO484777wsW7YsW7ZsybJly/LZz352Tz/ITil4AQDo1AUXXJCpU6dm0qRJOf3009PU1JQ5c+bk2GOP7fS6U045JfX19e3Hf/zHf7S/N3jw4MyaNSt33313TjvttNx999356U9/mjPOOKPb56/gBQCgU1/5yldy55135vbbb8/y5cszbty4tLS0ZOzYsZ1et27durS2trYf27dvb39v/PjxmT9/fiZNmpTly5dn0qRJeeyxxzJ+/Phun7+CFwCgIJVKsr1SU+hRW1ubRYsWtR+jR4/uMMeDDz44gwYNyty5czucnzt3boYOHdrp77d48eK89NJLefjhh3PWWWd1eG/IkCE73POhhx7a7T33hF0aAAAOYG1tbWloaNjl+7W1tenVq1daW1s7nG9tbc0nPvGJnV7T0tKSMWPGZNGiRendu3cuvfTSPPLIIznzzDPzxBNPJEnq6+t3es/6+vq9/I12pOAFAKBbrVixIitWrGh/3dzcnOOPPz5XX311e8Hbk7Q0AAAUaHtqCj12p62tLdu2bUtdXV2H83V1dVm7dm2Xf8+nnnoqJ510UvvrtWvX7vU9u0rBCwDALr3xxhtZsmRJGhsbO5xvbGxMU1NTl+9z2mmnpaWlpf31ggUL9vqeXaWlAQCgQNuL/qa1Lpg8eXJmzJiRhQsX5sknn8yYMWNy9NFH59Zbb02STJ8+PUkycuTIJMmVV16ZF154IcuWLUvv3r3zuc99Lueee27OO++89ntOnTo1jz/+eL72ta/l//7f/5tzzz03H/vYxzrd33dPKXgBAOjUvffemyOPPDITJkxI//79s3Tp0owYMSKrVq1Kkhx33HEdxvfu3Ts33XRTjjnmmGzevDnLli3LiBEjMmfOnPYxCxYsyEUXXZRvfetbmThxYn7zm9/kwgsvzMKFC7t9/jV562uc92m/XtuSc35yd9HTAABKYvZFf5tT6/sXPY385g/P5x+WTip0Dlf1+nynuzSUgYQXAKAglf/6amGqyycMAECpKXgBACg1LQ0AAAXaH3Zp2N9JeAEAKDUJLwBAQSpJl77tjL0j4QUAoNQUvAAAlJqWBgCAAlm0Vn0SXgAASk3CCwBQlEqNhLcHSHgBACg1BS8AAKWmpQEAoCCVWLTWEyS8AACUmoIXAIBS09IAAFAgLQ3VJ+EFAKDUJLwAAAWpJNkeCW+1SXgBACg1BS8AAKWmpQEAoEAWrVWfhBcAgFKT8AIAFKZGwtsDJLwAAJSaghcAgFLT0gAAUJBKxaK1niDhBQCg1BS8AACUmpYGAIACaWmoPgkvAAClJuEFAChQRcJbdRJeAABKTcELAECpaWkAAChIJcn2aGmoNgkvAACl1i0F7/XXX59KpdLhaGlp2WHMmjVrsmnTpsyfPz+nnHJKd/xoAADoVLclvMuXL099fX378cEPfrD9vWuuuSZXXXVVvvSlL6WhoSHr1q3LvHnz0q9fv+768QAA+6GabK8UexwIuq3g3bZtW1pbW9uPtra29vfGjx+f73znO7nvvvuybNmyjBw5MoceemguueSS7vrxAACwU91W8L73ve/NmjVrsnLlysycOTMnnHBCkuSEE05I//79M3fu3PaxW7ZsyeOPP56hQ4fu8n6jR4/OokWLsmjRohzRp093TRMAYJ9SqdQUehwIuqXgfeqppzJq1KicffbZGT16dOrr69PU1JQjjjgi9fX1SZLW1tYO17S2tra/tzO33XZbGhoa0tDQkJc3b+6OaQIAcADqlm3JHnzwwQ6vm5ubs3LlyowcOTLNzc3d8SMAAGCPVGVbstdeey3Lli3LSSedlLVr1yZJ6urqOoypq6trfw8A4EBUqcSitR5QlS+eOOSQQzJw4MDMnz8/zz//fFpaWtLY2JjFixe3vz98+PBcffXV1fjx+4UTv7zz5Ps/bx7cwzMBACi3bil4b7rpptx///1ZtWpVjjrqqHz9619P3759M3369CTJlClTct1112X58uVZsWJFJkyYkI0bN+aee+7pjh8PALDfOlAWjhWpWwreY445JjNnzkxtbW3Wr1+f5ubmDB48OKtWrUqS3HjjjenTp09uueWWHH744XnqqafyyU9+Mhs3buyOHw8AALvULQXvxRdfvNsxN9xwQ2644Ybu+HGloHUBAKBnVKWHFwCArjlQFo4VqSq7NAAAwL5CwruPefvuDdoeAAD2noIXAKAglby1Fy/VpaUBAIBSk/DuY7QxAMCBpCbbY9FatUl4AQAoNQUvAAClpqUBAKBAvlq4+iS8AACUmoQXAKAglYpvWusJEl4AAEpNwQsAQKlpaQAAKJBvWqs+CS8AAKWm4AUAoNS0NAAAFMg+vNUn4QUAoNQkvAAABZLwVp+EFwCAUlPwAgBQaloaAAAKUkmNrxbuARJeAABKTcELAECpaWkAAChKxVcL9wQJLwAAuzV27NisXLkymzdvzuLFizNs2LBdjj333HPz0EMPZd26dXn11VfT3Nycz3zmMx3GjBw5MpVKZYfjkEMO6fa5K3gBAApUqdQUenTFBRdckKlTp2bSpEk5/fTT09TUlDlz5uTYY4/d6fgzzzwzjz76aD796U/n9NNPz7/+67/mF7/4xQ5F8muvvZb6+voOx+uvv77Xn+mf0tIAAECnvvKVr+TOO+/M7bffniQZN25czj777IwdOzbXXXfdDuPHjx/f4fXEiRPz6U9/Op/97GfzxBNPtJ+vVCppbW2t6twTCS8AAJ04+OCDM2jQoMydO7fD+blz52bo0KFdvs+hhx6a3/3udx3O9enTJy+88EJ++9vf5v77789pp53WHVPegYIXAKBARbc01NbWZtGiRe3H6NGjO8yvtrY2vXr12iGJbW1tTX19fZd+xy984Qs55phjMmPGjPZzzz33XP7n//yfOeecc3LxxRdny5YtefLJJ3PiiSfu/Yf6J7Q0AAAcwNra2tLQ0FC1+5933nm56aabcuGFF2bVqlXt55ubm9Pc3Nz+uqmpKU8//XS+9KUv5corr+zWOSh4AQAKtK/vStbW1pZt27alrq6uw/m6urqsXbu202vPP//83HXXXbnsssvywAMPdDp2+/btWbx4cU466aS9nvOf0tIAAMAuvfHGG1myZEkaGxs7nG9sbExTU9Mur/sf/+N/ZMaMGRk1alR+/vOfd+ln/fVf/3VaWlr2ar47I+EFAKBTkydPzowZM7Jw4cI8+eSTGTNmTI4++ujceuutSZLp06cneWtv3SS58MILM2PGjHz1q1/N448/3p4Ob926tX3h2j/+4z+mubk5//Ef/5HDDjss48aNy1//9V9n7Nix3T5/BS8AQEEqSZf3wi3SvffemyOPPDITJkxI//79s3Tp0owYMaK9J/e4447rMH7MmDE5+OCDM3Xq1EydOrX9/GOPPZaPfexjSZJ3v/vdmTZtWurr6/P73/8+//Zv/5aPfvSjWbRoUbfPvyb7futIfr22Jef85O6ipwEAlMTsi/42p9b3L3oaeeblNTn/0R8VOod7/vJTVV20ti/QwwsAQKlpaQAAKEol+8Hfte//JLwAAJSahBcAoED7w6K1/Z2EFwCAUlPwAgBQaloaAAAKVLForeokvAAAlJqEFwCgMDUWrfUACS8AAKUm4aWqTvxyc/uf//PmwQXOBAA4UCl4AQCKpKWh6rQ0AABQahJeqkobAwBQNAUvAEBRKvbh7QlaGgAAKDUJLz3Gjg0AsBMS3qqT8AIAUGoKXgAASk1LAz1GGwMAdFRJfLVwD5DwAgBQagpeAABKTUsDAECR7NJQdRJeAABKTcILAFAgi9aqT8ILAECpKXgBACg1LQ0AAEWpxKK1HiDhBQCg1CS8AACFsmit2iS8AACUmoIXAIBS09IAAFAki9aqTsILAECpKXgBACg1LQ0AAEXS0lB1El4AAEpNwgsAUJiapGIf3mqT8AIAUGoKXgAASk1LAwBAgSoWrVWdhBcAgFKT8AIAFKUS25L1AAkvAAClpuAFAKDUtDQAABTJPrxVJ+EFAKDUFLwAAJSalgYAgALV2KWh6iS8AACUmoQXAKBIEt6qk/ACAFBqCl4AAEpNSwMAQJHsw1t1El4AAEpNwQsAQKlpaQAAKEoldmnoARJeAABKTcILAFAkCW/VSXgBACg1BS8AAKWmpQEAoEhaGqpOwgsAQKlJeAEAiuSb1qpOwgsAQKkpeAEAKDUtDQAABaqxaK3qJLwAAJSaghcAgFLT0gAAUJRK7MPbAyS8AACUmoIXAIBSU/ACAFBqCl4AAHZr7NixWblyZTZv3pzFixdn2LBhnY7/6Ec/msWLF2fz5s35zW9+k7/7u7/b63vuKQUvAEBBavLWPrxFHl1xwQUXZOrUqZk0aVJOP/30NDU1Zc6cOTn22GN3Ov7444/Pv/7rv6apqSmnn356vv3tb+f73/9+zjvvvD2+595Q8AIA0KmvfOUrufPOO3P77bdn+fLlGTduXFpaWjJ27Nidjh8zZkxeeumljBs3LsuXL8/tt9+e6dOn56tf/eoe33NvKHgBANilgw8+OIMGDcrcuXM7nJ87d26GDh2602uGDBmyw/iHHnooH/7wh9OrV689uufeUPACABSpUlPoUVtbm0WLFrUfo0eP7jC92tra9OrVK62trR3Ot7a2pr6+fqe/Un19/U7HH3zwwamtrd2je+4NXzwBAHAAa2trS0NDQ9HTqCoFLwBAkfbxb1pra2vLtm3bUldX1+F8XV1d1q5du9Nr1q5du9Pxb7zxRtra2lJTU/Nn33NvaGkAAGCX3njjjSxZsiSNjY0dzjc2NqapqWmn1yxYsGCn4xcvXpxt27bt0T33hoIXAIBOTZ48OaNGjcoVV1yRgQMHZsqUKTn66KNz6623JkmmT5+e6dOnt4+/9dZbM2DAgNx8880ZOHBgrrjiiowaNSrf/e53u3zP7qSlAQCgSPt4S0OS3HvvvTnyyCMzYcKE9O/fP0uXLs2IESOyatWqJMlxxx3XYfwLL7yQESNG5Oabb87YsWPbtyi77777unzP7lST/eBj/vXalpzzk7uLngYAUBKzL/rbnFrfv+hp5Jm1LTnnnnsKncO9wz9q0RoAAFXyZ3zbGXtODy8AAKWm4AUAoNS0NAAAFElLQ9VJeAEAKDUFLwAApaalAQCgSFoaqk7CCwBAqUl4AQAKZB/e6pPwAgBQagpeAABKTUsDAEBhapJKTdGTKD0JLwAApSbhBQAoSiW2JesBEl4AAEqtSwXv8OHDM3v27KxevTqVSiUjR47cYcz111+fNWvWZNOmTZk/f35OOeWUDu+/+93vzl133ZVXXnklr7zySu666678xV/8Rff8FgAAsAtdKnj79euXpUuX5sorr8ymTZt2eP+aa67JVVddlS996UtpaGjIunXrMm/evPTr1699zD333JMPfehDOfvss3P22WfnQx/6UGbMmNF9vwkAwH6oplLscSDoUg/vnDlzMmfOnCTJnXfeucP748ePz3e+853cd999SZKRI0dm3bp1ueSSSzJt2rQMHDgwn/rUp/KRj3wkzc3NSZK/+7u/yxNPPJG/+qu/yooVK7rp1wEAgI72uof3hBNOSP/+/TN37tz2c1u2bMnjjz+eoUOHJkmGDBmSP/zhD2lqamof8+STT2bjxo3tYwAAoBr2epeG+vr6JElra2uH862trRkwYED7mPXr1+9w7bp169qv/1OjR4/O5z//+STJEX367O00AQD2TQdIW0GR9tldGm677bY0NDSkoaEhL2/eXPR0AADYT+11wbt27dokSV1dXYfzdXV17e+tXbs273nPe3a49qijjmofAwBwILJorfr2uuB9/vnn09LSksbGxvZzhxxySIYPH97es7tgwYIceuihGTJkSPuYIUOGpF+/fh36egEAoLt1qYe3b9++OfHEE5MkBx10UI477riceuqpefnll/Pb3/42U6ZMyXXXXZfly5dnxYoVmTBhQjZu3Jh77rknSbJ8+fLMmTMnP/zhD9v7cn/4wx/m/vvvt0MDAABV1aWE98Mf/nCefvrpPP3003nXu96ViRMn5umnn87EiROTJDfeeGNuvvnm3HLLLVm8eHH69++fT37yk9m4cWP7PS655JL8+te/zkMPPZSHHnoov/71r3PppZdW57cCANhfVAo+DgBdSnh/+ctfpqamptMxN9xwQ2644YZdvv/KK68ocAEA6HH77C4NAADQHfZ6H14AAPbQAdRWUCQJLwAApSbhBQAoSE0OnL1wiyThBQCg1BS8AACUmoIXAIBSU/ACAFBqFq0BABTJorWqk/ACAFBqCl4AAEpNSwMAQIHsw1t9El4AAEpNwQsAQKlpaQAAKJKWhqqT8AIAUGoSXgCAolQi4e0BEl4AAEpNwQsAQKlpaQAAKJB9eKtPwgsAQKlJeAEAiiThrToJLwAApabgBQCg1LQ0AAAUyKK16pPwAgBQagpeAABKTUsDAECRtDRUnYQXAIBSk/ACABSlEglvD5DwAgBQagpeAABKTUsDAECB7MNbfRJeAABKTcELAECpaWkAACiSloaqk/ACAFBqEl4AgCJJeKtOwgsAQKkpeAEAKDUtDQAABamJfXh7goQXAIBSk/ACABSlEovWeoCEFwCAUlPwAgBQaloaAAAKZNFa9Ul4AQAoNQUvAADdpnfv3vne976X9evXZ+PGjZk9e3YGDBjQ6TXXXnttFi5cmN///vdZt25d/uVf/iUf+MAHOoy54447UqlUOhwLFizo0pwUvAAARaoUfHSzKVOm5Pzzz8/FF1+c4cOH57DDDssDDzyQgw7addl51lln5f/8n/+ToUOH5m/+5m+ybdu2PPzwwzn88MM7jJs3b17q6+vbjxEjRnRpTnp4AQDoFocddliuuOKKXH755Xn44YeTJJdeemlefPHFfOITn8jcuXN3et3ZZ5/d4fWll16a3//+9/nIRz6SBx54oP3866+/ntbW1j97XhJeAIAiFZzw1tbWZtGiRe3H6NGj9/hXGTRoUHr37t2hsF29enWeffbZDB06tMv3OfTQQ/OOd7wjv/vd7zqcHzZsWFpbW/Pcc89l2rRpec973tOl+0l4AQAOYG1tbWloaOiWe9XX12fbtm1pa2vrcL61tTX19fVdvs/UqVPzb//2bx16dB988MHcd999ef7553P88cfnW9/6Vh599NEMGjQoW7du7fR+Cl4AADr1zW9+MxMmTOh0zFlnndUtP+uf/umfMmzYsAwbNizbt29vPz9r1qz2Py9dujRLlizJiy++mE9/+tP5xS9+0ek9FbwAAAWqKXoCXTBlypT8+Mc/7nTMqlWrMnjw4PTq1Su1tbUdUt66urr86le/2u3PmTx5ci666KJ87GMfy/PPP9/p2JaWlqxevTonnXTSbu+r4AUAoFMbNmzIhg0bdjtuyZIl2bp1axobGzNz5swkyYABA/L+978/TU1NnV47ZcqUXHjhhfnYxz6W5557brc/68gjj8yAAQPS0tKy27EWrQEAFKlE25K9+uqr+dGPfpQbb7wxH//4x3PaaadlxowZeeaZZ9p3bUiSZ599Nn//93/f/voHP/hBLr/88lxyySX53e9+l7q6utTV1aVv375Jkr59++amm27K4MGD85d/+Zc588wzc//992fdunW7bWdIJLwAAHSj8ePHZ9u2bZk1a1b69OmTRx55JJdddlmHftyBAwemtra2/fUfi99HH320w72+8Y1v5IYbbsibb76ZD37wg7nsssvy7ne/Oy0tLZk/f34uuOCCbNy4cbdzUvACANBttm7dmnHjxmXcuHG7HFNTU9Pp6z+1ZcuWHfbq/XMoeAEAilJJaqrwbWd0pIcXAIBSU/ACAFBqWhoAAIqkpaHqJLwAAJSahBcAoEgS3qqT8AIAUGoKXgAASk1LAwBAgezDW30SXgAASk3BCwBAqWlpAAAokpaGqpPwAgBQahJeAICC1FQsWusJEl4AAEpNwQsAQKlpaQAAKJKWhqqT8AIAUGoSXgCAAlm0Vn0SXgAASk3BCwBAqWlpAAAokpaGqpPwAgBQagpeAABKTUsDAECRtDRUnYQXAIBSk/ACABSlYh/eniDhBQCg1BS8AACUmpYGAIAiaWmoOgkvAAClJuEFAChMJTUVEW+1SXgBACg1BS8AAKWmpQEAoEg6GqpOwgsAQKkpeAEAKDUtDQAABfLVwtUn4QUAoNQkvAAARanEorUeIOEFAKDUJLwFOfHLzTs9/583D+7hmfD2fxY+fwAoHwUvAEBBamLRWk/Q0gAAQKlJeAvy9r86f/tfqfvr9X2HfxYAUA4KXgCAImlpqDotDQAAlJqEdx+wq/YGesau2hW0MQDQEyxaqz4JLwAApabgBQCg1LQ07GN21t7gr9YBoKR8tXCPkPACAFBqEl4AgAJZtFZ9Ct59mFYGAIC9p6UBAIBSk/ACABSpoqeh2iS8AACUmoIXAIBS09IAAFAguzRUn4QXAIBSk/ACABRJwlt1El4AAEpNwQsAQKlpaQAAKEolqdle9CTKT8ILAECpSXg54J345eb2P//nzYMLnAkABySL1qpOwgsAQKkpeAEAKDUtDQX5zYW37nbM+2aN6YGZ8HbaGwDoSTXxTWs9QcILAECpKXgBACg1LQ0F2VW7wttbHf74Z60NPeftbQzaGwDoERU9DdUm4QUAoNv07t073/ve97J+/fps3Lgxs2fPzoABAzq95vrrr0+lUulwtLS07HTcmjVrsmnTpsyfPz+nnHJKl+Yk4d3HvD3N7crCNvbertJbqS4AVVcp36K1KVOm5JxzzsnFF1+cDRs2ZPLkyXnggQcyaNCgbN++66+VW758ec4666z212+++WaH96+55ppcddVVGTVqVJ577rn84z/+Y+bNm5eTTz45Gzdu7HROCl4AALrFYYcdliuuuCKXX355Hn744STJpZdemhdffDGf+MQnMnfu3F1eu23btrS2tu7y/fHjx+c73/lO7rvvviTJyJEjs27dulxyySWZNm1ap/PS0gAAQLcYNGhQevfu3aGwXb16dZ599tkMHTq002vf+973Zs2aNVm5cmVmzpyZE044of29E044If379+9w3y1btuTxxx/f7X0TCe8+7Y/tDW9vbbCADQBKpuCWhtra2ixatKj99bRp03Lbbbft0b3q6+uzbdu2tLW1dTjf2tqa+vr6XV731FNPZdSoUVm+fHmOOuqoTJgwIU1NTfnABz6Ql19+uf3aP02AW1tbd9sfnCh4AQAOaG1tbWloaOh0zDe/+c1MmDCh0zFv77/9cz344IMdXjc3N2flypUZOXJkbr755j2+7x91qaVh+PDhmT17dlavXp1KpZKRI0d2eP+OO+7YYWXdggULOozZkxV7AAAUb8qUKRk4cGCnx8KFC7N27dr06tUrtbW1Ha6vq6vL2rVru/zzXnvttSxbtiwnnXRSkrRfW1dXt0f37VLC269fvyxdujR33XVX7rrrrp2OmTdvXi699NL211u3bu3w/p6u2KNre/ZqdQCA/dP+sEvDhg0bsmHDht2OW7JkSbZu3ZrGxsbMnDkzSTJgwIC8//3vT1NTU5d/3iGHHJKBAwdm/vz5SZLnn38+LS0taWxszOLFi9vHDB8+PFdfffVu79elgnfOnDmZM2dOkuTOO+/c6ZjXX399lyvr9mbFHgAA+4dXX301P/rRj3LjjTdm3bp17SHnM888014DJsmzzz6bH/zgB7nllluSJDfddFPuv//+rFq1KkcddVS+/vWvp2/fvpk+fXr7NVOmTMl1112X5cuXZ8WKFZkwYUI2btyYe+65Z7fz6rYe3mHDhqW1tTWvvPJKfvnLX+Yf/uEfsn79+iS7X7G3s4J39OjR+fznP58kOaJPn+6aJgDAvqVk37Q2fvz4bNu2LbNmzUqfPn3yyCOP5LLLLuvwN/oDBw7s0PZwzDHHZObMmamtrc369evT3NycwYMHZ9WqVe1jbrzxxvTp0ye33HJLDj/88Dz11FP55Cc/uds9eJNuKngffPDB3HfffXn++edz/PHH51vf+lYeffTRDBo0KFu3bt2jFXu33XZb+wrBX6/d8Zs2AADY92zdujXjxo3LuHHjdjmmpqamw+uLL764S/e+4YYbcsMNN/zZc+qWgnfWrFntf166dGmWLFmSF198MZ/+9Kfzi1/8ojt+BAAA7JGqfPFES0tLVq9e3WFlXXes2AMAKJuaSrHHgaAq+/AeeeSRGTBgQFpa3mpF6K4Ve3T09p0Z7NgAALBzXSp4+/btmxNPPDFJctBBB+W4447Lqaeempdffjkvv/xyvvGNb+TnP/95Wlpacvzxx+fb3/521q1b197O0NUVewAAB5RKCv+mtQNBl1oaPvzhD+fpp5/O008/nXe9612ZOHFinn766UycODFvvvlmPvjBD2b27NlZsWJFpk+fnueeey5DhgzpsGpu/Pjx+cUvfpFZs2blySefzMaNG/OZz3zGHrwAAFRVlxLeX/7ylzuspnu7s88+e7f36MqKPfac9gYAgJ2rSg8vAABdc6AsHCtSVXZpAACAfYWEt4R21d6wqzH7khO/3Nz+5/+8eXCBMwEAykLBCwBQpO16GqpNSwMAAKUm4S25XbU37Ks7OWhjAOCAI+CtOgkvAAClpuAFAKDUtDQcQPa39gYAKLuain14e4KEFwCAUpPwAgAUppJURLzVpuA9QHXlyykAAMpASwMAAKUm4QUAKJBFa9Wn4MXODABAqWlpAACg1CS8AABF0tJQdRJeAABKTcILAFCgGvvwVp2EFwCAUlPwAgBQaloaAACKUkmyvehJlJ+EFwCAUlPwAgBQaloaAAAKZJeG6pPwAgBQahJeAIAiCXirTsILAECpKXgBACg1LQ0AAEWyaK3qJLwAAJSahBcAoCiVpEbAW3USXgAASk3BCwBAqWlpAAAokkVrVSfhBQCg1BS8AACUmpYGAICC1CSp2V70LMpPwgsAQKlJeAEAClOxaK0HKHgBusmJX25u//N/3jy4wJkA8HZaGgAAKDUJLwBAUSr/dVBVCl6AbqKNAWDfpOAFAChQjUVrVaeHFwCAUlPwAgBQaloaAACKpKWh6iS8AACUmoIXoAed+OXmDl9QAUD1aWkAACjS9qInUH4SXgAASk3CC9CDfDkF0EHFPrw9QcILAECpKXgBACg1LQ0AAEXS0lB1El4AAEpNwQsAQKlpaQAAKExFS0MPkPACAFBqEl4AgCL5prWqU/AC7AdO/HJz+599eQXAn0dLAwAApSbhBQAoiq8W7hEKXoD9gDYGgD2n4AUAKJKEt+oUvAD7MYvZAHbPojUAALpN7969873vfS/r16/Pxo0bM3v27AwYMKDTa55//vlUKpUdjgceeKB9zPXXX7/D+y0tLV2ak4QXAKBIJWtpmDJlSs4555xcfPHF2bBhQyZPnpwHHngggwYNyvbtO990uKGhIe94xzvaX/fv3z9LlizJvffe22Hc8uXLc9ZZZ7W/fvPNN7s0JwUvwH5MGwOwLznssMNyxRVX5PLLL8/DDz+cJLn00kvz4osv5hOf+ETmzp270+va2to6vL7iiivy6quv7lDwbtu2La2trX/2vLQ0AADQLQYNGpTevXt3KGxXr16dZ599NkOHDu3yfa644or8+Mc/zpYtWzqcf+9735s1a9Zk5cqVmTlzZk444YQu3U/BCwBQpEql0KO2tjaLFi1qP0aPHr3Hv0p9fX22bdu2Q2Lb2tqa+vr6Lt2jsbEx733ve3Pbbbd1OP/UU09l1KhROfvsszN69OjU19enqakpRxxxxG7vqaUBAOAA1tbWloaGhk7HfPOb38yECRM6HfP23tq9MXr06CxcuDDPPPNMh/MPPvhgh9fNzc1ZuXJlRo4cmZtvvrnTeyp4AQCKUkmy83Vc+5QpU6bkxz/+cadjVq1alcGDB6dXr16pra3tkPLW1dXlV7/61W5/znve856cc845+fu///vdjn3ttdeybNmynHTSSbsdq+AFAKBTGzZsyIYNG3Y7bsmSJdm6dWsaGxszc+bMJMmAAQPy/ve/P01NTbu9ftSoUXn99dfbr+3MIYcckoEDB2b+/Pm7HauHFwCAbvHqq6/mRz/6UW688cZ8/OMfz2mnnZYZM2bkmWeead+1IUmeffbZnaa4/+t//a/85Cc/yWuvvbbDezfddFM++tGP5vjjj88ZZ5yRn/3sZ+nbt2+mT5++23lJeAEAClNJTcn24R0/fny2bduWWbNmpU+fPnnkkUdy2WWXddiDd+DAgamtre1w3VlnnZW/+qu/yuc+97md3veYY47JzJkzU1tbm/Xr16e5uTmDBw/OqlWrdjsnBS8AAN1m69atGTduXMaNG7fLMTU1NTuce+yxx3Z6/o8uvvjiPZ6TghcAoEglS3j3RXp4AQAoNQUvAAClpqUBAKBI27U0VJuEFwCAUlPwAgBQaloaAACKUoldGnqAhBcAgFKT8AIAFEnCW3X7RcHb/6B3ZP4556etra3oqVACtbW1niX2mueI7uA5Kk7/g95R9BToQftFwXvUUUdl0aJFaWhoKHoqlIBnie7gOaI7eI6gZ+wXBS8AQDlVtDT0AIvWAAAotf2m4J02bVrRU6AkPEt0B88R3cFzBD2jJm/tAAcAQA977plVufKcqYXO4Zv3XlT6XvL9JuEFAIA9YdEaAEBRKkkq24ueRelJeAEAKDUFLwAApaalAQCgSPbhrToJLwAApSbhBQAoTCXZLuGtNgkvAAClpuAFAKDUtDQAABTJorWqk/ACAFBqCl4AAEpNSwMAQFEq0dLQAyS8AACUmoQXAKBIEt6qk/ACAFBqCl4AAEpNSwMAQGEqyfbtRU+i9CS8AACUmoQXAKBIFq1VnYQXAIBSU/ACAFBqWhoAAIrim9Z6hIQXAIBSU/ACAFBqWhoAAIq0XUtDtUl4AQAoNQkvAEBhKqlUfNNatUl4AQAoNQUvAAClpqUBAKAolVi01gMkvAAAlJqCFwCAUtPSAABQJF8tXHUSXgAASk3CCwBQpO324a02CS8AAKWm4AUAoNS0NAAAFKVSsWitB0h4AQAoNQkvAECBKhatVZ2EFwCAUlPwAgBQaloaAACKZNFa1Ul4AQAoNQUvAAClpqUBAKAolUqyXUtDtUl4AQAoNQkvAECRKvbhrTYJLwAApabgBQCg1LQ0AAAUqGLRWtVJeAEAKDUJLwBAYSoWrfUACS8AAKWm4AUAoNS0NAAAFKVi0VpPkPACAFBqCl4AALrN6NGj8+ijj+Z3v/tdKpVK/vIv/7JL15133nlZtmxZtmzZkmXLluWzn/3sDmOuv/76rFmzJps2bcr8+fNzyimndOneCl4AgCJVthd7dLN3vetdmTt3br7xjW90+ZrBgwdn1qxZufvuu3Paaafl7rvvzk9/+tOcccYZ7WOuueaaXHXVVfnSl76UhoaGrFu3LvPmzUu/fv12e/+aJBpHAAAK8Nyi/8zfn3FtoXP49sKvpaGhodvvO2jQoCxevDjHH398XnzxxU7H/uQnP8kRRxyRT37yk+3n5s2bl/Xr1+eSSy5Jkrz00kv5wQ9+kEmTJiVJ3vnOd2bdunX56le/mmnTpnV6f4vWAAAKsrLtP/LthV8rdA7vfOc7s2jRovbX06ZNy2233dajcxgyZEi+//3vdzj30EMP5Ytf/GKS5IQTTkj//v0zd+7c9ve3bNmSxx9/PEOHDlXwAgDsqz71qU8VPYV9Qn19fVpbWzuca21tTX19ffv7fzz3p2MGDBiw2/vr4QUAoFPf/OY3U6lUOj3OPPPMoqe5SxJeAAA6NWXKlPz4xz/udMyqVav2+P5r165NXV1dh3N1dXVZu3Zt+/t/PPfb3/52p2M6o+AFAKBTGzZsyIYNG6p2/wULFqSxsTHf/e532881NjamqakpSfL888+npaUljY2NWbx4cZLkkEMOyfDhw3P11Vd36WdUHA6Hw+FwOByO7jjq6uoqp556auXiiy+uVCqVyqc+9anKqaeeWjn88MPbxzz88MOVSZMmtb8eMmRI5Y033qh87Wtfq5x88smVa6+9trJ169bKGWec0T7mmmuuqbzyyiuVc889t/KBD3ygMnPmzMqaNWsq/fr168q8iv9gHA6Hw+FwOBzlOK6//vrKzowcObJ9zPPPP1+54447Olx3/vnnV5599tnK66+/Xvn3f//3yrnnnrvTe7/00kuVzZs3Vx577LHKBz7wgS7NyT68AACUml0aAAAoNQUvAAClpuAFAKDUFLwAAJSaghcAgFJT8AIAUGoKXgAASk3BCwBAqf3/rPzjZiM6kv4AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAK5CAYAAABdd/3wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA8MklEQVR4nO3df5SXdZ03/ucYYgS6qZMziLpaupLdrRqNBwjStqZj9O2Yet/+2hS8vWmhLaRM83ZpTepQR1uEynsN7SiSElZ2s3oWBRUzHUZ+nDVvWJHdUAkcBgYzQ0BEPt8/3OY4AcME85kLLh6Pc65z+Fyf93XNez5e2csnr/f7U5OkEgAAKKmDip4AAABUk4IXAIBSU/ACAFBqCl4AAEpNwQsAQKkpeAEAKDUFLwAApabgBQCgU8OHD8/s2bOzevXqVCqVjBw5crfX/Lf/9t/y2GOPZdOmTVm9enW+/vWv7zDmvPPOy7Jly7Jly5YsW7Ysn/3sZ6swewUvAAC70a9fvyxdujRXXnllNm3atNvxhx56aObNm5fW1tY0NDTkyiuvzNVXX52vfOUr7WMGDx6cWbNm5e67785pp52Wu+++Oz/96U9zxhlnVOV3qDgcDofD4XA4HF05/vCHP1RGjhzZ6ZgxY8ZUfv/731fe+c53tp/7h3/4h8rq1avbX//kJz+pzJ07t8N18+bNq9xzzz3dPmcJLwAA3WrIkCH51a9+lS1btrSfe+ihhzJgwIAcf/zx7WPmzp3b4bqHHnooQ4cO7fb59Or2OwIA0CXbt/wyOejwQuew7LmaDoXptGnTctttt+3VPevr67N69eoO51pbW9vfe+GFF1JfX99+7u1j6uvr9+pn74yCFwCgKAcdnsqG8wudwpYt96ShoaHQOVSbghcAoEDbs73oKXS7tWvXpq6ursO5P75eu3Ztp2P++H530sMLAEC3WrBgQYYPH55DDjmk/VxjY2PWrFmTF154oX1MY2Njh+saGxvT1NTU7fNR8AIA0Km+ffvm1FNPzamnnpqDDjooxx13XE499dQce+yxSZJJkybl4Ycfbh9/zz33ZNOmTbnzzjvzgQ98IOeee26uvfbaTJ48uX3M1KlT8zd/8zf52te+lpNPPjnXXnttPvaxj2XKlCndPn8FLwBAQSqV5M3K9kKPrvjwhz+cp59+Ok8//XTe9a53ZeLEiXn66aczceLEJEn//v3zvve9r338q6++msbGxhx99NFZvHhxbrnllvzTP/1Th4J3wYIFueiiizJq1Kg888wzueyyy3LhhRdm4cKF3fshJ6nJW/uTAQDQw958/Zm8seGcQufw/9bcW/pFaxJeAABKzS4NAACFqWS7v2yvOgkvAAClJuEFAChIJeXch3dfI+EFAKDUFLwAAJSalgYAgAK9WbFordokvAAAlJqEFwCgIG8tWpPwVpuEFwCAUlPwAgBQaloaAAAKU8mbWhqqTsILAECpKXgBACg1LQ0AAAWxS0PPkPACAFBqEl4AgAL5prXqk/ACAFBqCl4AAEpNSwMAQEHeWrRGtUl4AQAoNQkvAECBfNNa9Ul4AQAoNQUvAAClpqUBAKAglSRv6mioOgkvAAClpuAFAKDUtDQAABTIPrzVJ+EFAKDUJLwAAAWpJHkzNUVPo/QkvAAAlJqCFwCAUtPSAABQoO324a06CS8AAKWm4AUAoNS0NAAAFMQuDT1DwgsAQKlJeAEACiLh7RkSXgAASk3BCwBAqWlpAAAoSqUm2ytaGqptv0h4x44dm5UrV2bz5s1ZvHhxhg0bVvSU2Iddf/31qVQqHY6WlpYdxqxZsyabNm3K/Pnzc8oppxQ0W/YVw4cPz+zZs7N69epUKpWMHDlyhzG7e27e/e5356677sorr7ySV155JXfddVf+4i/+oqd+BfYRu3uW7rjjjh3+HbVgwYIOY3r37p3vfe97Wb9+fTZu3JjZs2dnwIABPflrQKns8wXvBRdckKlTp2bSpEk5/fTT09TUlDlz5uTYY48temrsw5YvX576+vr244Mf/GD7e9dcc02uuuqqfOlLX0pDQ0PWrVuXefPmpV+/fgXOmKL169cvS5cuzZVXXplNmzbt8H5Xnpt77rknH/rQh3L22Wfn7LPPzoc+9KHMmDGjJ38N9gG7e5aSZN68eR3+HTVixIgO70+ZMiXnn39+Lr744gwfPjyHHXZYHnjggRx00D7/f9v8mf64aK3I40BQk7c+631Wc3NznnnmmXz+859vP7dixYr87Gc/y3XXXVfgzNhXXX/99fnv//2/dyhy3+6ll17KD37wg0yaNClJ8s53vjPr1q3LV7/61UybNq0np8o+6g9/+EO++MUvZvr06e3ndvfcDBw4MM8++2w+8pGPpKmpKUnykY98JE888UROPvnkrFixopDfhWLt7Fm64447Ultbm8985jM7veawww7L+vXrc/nll+eee+5JkhxzzDF58cUX86lPfSpz587tkbnTMzZu+XWea/3/Cp3D9nX3paGhodA5VNs+/Z+KBx98cAYNGrTD/7jnzp2boUOHFjQr9gfvfe97s2bNmqxcuTIzZ87MCSeckCQ54YQT0r9//w7P1JYtW/L44497ptilrjw3Q4YMyR/+8If2YjdJnnzyyWzcuNGzxQ6GDRuW1tbWPPfcc5k2bVre8573tL83aNCg9O7du8Pztnr16jz77LOeJdhD+3TBW1tbm169eqW1tbXD+dbW1tTX1xc0K/Z1Tz31VEaNGpWzzz47o0ePTn19fZqamnLEEUe0PzeeKf4cXXlu6uvrs379+h2uXbdunWeLDh588MFcdtll+fjHP56rrroqZ5xxRh599NH07t07yVvP0rZt29LW1tbhOv+eKq83c1Chx4HALg2UzoMPPtjhdXNzc1auXJmRI0emubm5oFkBvGXWrFntf166dGmWLFmSF198MZ/+9Kfzi1/8osCZQXnt02V9W1tbtm3blrq6ug7n6+rqsnbt2oJmxf7mtddey7Jly3LSSSe1PzeeKf4cXXlu1q5d2+Gvpf/oqKOO8mzRqZaWlqxevTonnXRSkreepV69eqW2trbDOP+egj23Txe8b7zxRpYsWZLGxsYO5xsbGzv0yUFnDjnkkAwcODAtLS15/vnn09LS0uGZOuSQQzJ8+HDPFLvUledmwYIFOfTQQzNkyJD2MUOGDEm/fv08W3TqyCOPzIABA9q3T1yyZEm2bt3a4XkbMGBA3v/+93uWSqiSZPt/7cVb1HEg2OdbGiZPnpwZM2Zk4cKFefLJJzNmzJgcffTRufXWW4ueGvuom266Kffff39WrVqVo446Kl//+tfTt2/f9lXSU6ZMyXXXXZfly5dnxYoVmTBhQjZu3Ni+GpoDU9++fXPiiScmSQ466KAcd9xxOfXUU/Pyyy/nt7/97W6fm+XLl2fOnDn54Q9/2L6rzA9/+MPcf//9dmg4wHT2LL388sv5xje+kZ///OdpaWnJ8ccfn29/+9tZt25dezvDq6++mh/96Ee58cYbs27dumzYsCGTJ0/OM888k4cffrjIXw32W/t8wXvvvffmyCOPzIQJE9K/f/8sXbo0I0aMyKpVq4qeGvuoY445JjNnzkxtbW3Wr1+f5ubmDB48uP2ZufHGG9OnT5/ccsstOfzww/PUU0/lk5/8ZDZu3FjwzCnShz/84Tz22GPtrydOnJiJEyfmzjvvzOWXX96l5+aSSy7J97///Tz00ENJkn/5l3/JF7/4xZ7+VShYZ8/S2LFj88EPfjCXXXZZ3v3ud6elpSXz58/PBRdc0OFZGj9+fLZt25ZZs2alT58+eeSRR3LZZZdl+/btBfxGVFfxe+G+o9Cf3jP2+X14AQDK6g9bnskza88pdA69199rH14AANif7fMtDQAAZVVJ8mZF/lhtPmEAAEpNwgsAUKDt8seq8wkDAFBq+03BO3r06KKnQEl4lugOniO6g+cIekaPF7xjx47NypUrs3nz5ixevDjDhg3r0nV/3Mgd9pZnie7gOaI7eI6o/Nc+vEUeB4IeLXgvuOCCTJ06NZMmTcrpp5+epqamzJkzJ8cee2xPTgMAgANIj37xRHNzc5555pkO/0W7YsWK/OxnP8t11123y+s2bHotm954Iy9v3twT06TkjujTx7PEXvMc0R08R8U55rDDcuS7+hY9jfx+y//L4pbzC53DYW13l/6LJ3psl4aDDz44gwYNyne/+90O5+fOnZuhQ4fuMH706NHthfGmN97I8Dtu75F5AgDlN/uivy16Cu3sw1t9PfYJ19bWplevXmltbe1wvrW1NfX19TuMv+2229LQ0JCGhgb/9QsAwB6zDy8AQEEqSbYfIAvHitRjCW9bW1u2bduWurq6Dufr6uqydu3anpoGAAAHmB4reN94440sWbIkjY2NHc43Njamqampp6YBAMABpkdbGiZPnpwZM2Zk4cKFefLJJzNmzJgcffTRufXWW3tyGgAA+4iavLn/fA/YfqtHC9577703Rx55ZCZMmJD+/ftn6dKlGTFiRFatWtWT0wAA4ADS44vW/vmf/zn//M//3NM/FgCAA5RdGgAAClKJfXh7gk8YAIBSk/ACABRou/yx6nzCAACUmoIXAIDdGjt2bFauXJnNmzdn8eLFGTZs2C7H3nHHHalUKjscGzdubB9z5pln7nTMySef3O1z19IAAFCQSqUmb1b2/a8WvuCCCzJ16tR84QtfyBNPPJEvfOELmTNnTk455ZT89re/3WH8lVdemWuvvbbDuSeffDKPP/74DmNPOeWUvPzyy+2v169f3+3zl/ACANCpr3zlK7nzzjtz++23Z/ny5Rk3blxaWloyduzYnY5/9dVX09ra2n68733vy/ve977cdtttO4xdt25dh7Hbt2/v9vkreAEAClJJ8mYOKvSora3NokWL2o/Ro0d3mOPBBx+cQYMGZe7cuR3Oz507N0OHDu3S7zl69OgsXbo0CxYs2OG9xYsX56WXXsrDDz+cs846a08/yk5paQAAOIC1tbWloaFhl+/X1tamV69eaW1t7XC+tbU1n/jEJ3Z7/8MOOywXXHBB/vf//t8dzre0tGTMmDFZtGhRevfunUsvvTSPPPJIzjzzzDzxxBN79svsgoIXAICq+dznPpeDDjooM2bM6HB+xYoVWbFiRfvr5ubmHH/88bn66qsVvAAAZbJ9H/+mtba2tmzbti11dXUdztfV1WXt2rW7vX706NH5+c9/nt/97ne7HfvUU0/loosu2uO57sq+/QkDAFCoN954I0uWLEljY2OH842NjWlqaur02oaGhpx22mk7Xay2M6eddlpaWlr2eK67IuEFAKBTkydPzowZM7Jw4cI8+eSTGTNmTI4++ujceuutSZLp06cnSUaOHNnhus9//vNZsWJFfvnLX+5wzyuvvDIvvPBCli1blt69e+dzn/tczj333Jx33nndPn8FLwBAQSqpyZv7wV+433vvvTnyyCMzYcKE9O/fP0uXLs2IESOyatWqJMlxxx23wzX9+vXLRRddlIkTJ+70nr17985NN92UY445Jps3b86yZcsyYsSIzJkzp9vnX5O3dsTYp/16bUvO+cndRU8DACiJ2Rf9bU6t71/0NNK2+d/z0OpRhc7hr165pdNdGspAwgsAUKD94ZvW9nf7foYOAAB7QcELAECpaWkAAChIJcl2+WPV+YQBACg1CS8AQGFq8uY+/k1rZeATBgCg1BS8AACUmpYGAICCvLVozT681SbhBQCg1BS8AACUmpYGAIAC2aWh+nzCAACUmoQXAKAgldTkTflj1fmEAQAoNQUvAAClpqUBAKAolWR7xT681SbhBQCg1BS8AACUmpYGAICCVBK7NPQAnzAAAKUm4QUAKExNtvumtarzCQMAUGoKXgAASk1LAwBAQd5atGYf3mqT8AIAUGoSXgCAAlm0Vn0+YQAASk3BCwBAqWlpAAAoSCU1Fq31AAkvAAClpuAFAKDUtDQAABTILg3V5xMGAKDUJLwAAAWpJHlTwlt1PmEAAEpNwQsAQKlpaQAAKExNttuHt+okvAAAlJqEFwCgIJWKRWs9wScMAECpKXgBACg1LQ0AAAXaXrFordokvAAAlJqCFwCAUtPSAABQkEpq8qb8sep8wgAAlJqEFwCgQBatVZ+EFwCAUlPwAgBQaloaAAAKUkmyXf5YdT5hAABKTcELAECpaWkAACjQm3ZpqDoJLwAApSbhBQAoSCU19uHtARJeAABKTcELAECpaWkAAChKJdlekT9Wm08YAIBSk/ACABSkkuTNWLRWbRJeAABKTcELAECpaWkAACiQfXirT8ILAECpKXgBACg1LQ0AAAV566uF5Y/V5hMGAKDUJLwAAAXabh/eqpPwAgBQagpeAABKTUsDAEBBKkneLHof3gOgo0LCCwBAqSl4AQAK89a2ZEUeXTV27NisXLkymzdvzuLFizNs2LBdjj3zzDNTqVR2OE4++eQO484777wsW7YsW7ZsybJly/LZz352Tz/ITil4AQDo1AUXXJCpU6dm0qRJOf3009PU1JQ5c+bk2GOP7fS6U045JfX19e3Hf/zHf7S/N3jw4MyaNSt33313TjvttNx999356U9/mjPOOKPb56/gBQCgU1/5yldy55135vbbb8/y5cszbty4tLS0ZOzYsZ1et27durS2trYf27dvb39v/PjxmT9/fiZNmpTly5dn0qRJeeyxxzJ+/Phun7+CFwCgIJVKsr1SU+hRW1ubRYsWtR+jR4/uMMeDDz44gwYNyty5czucnzt3boYOHdrp77d48eK89NJLefjhh3PWWWd1eG/IkCE73POhhx7a7T33hF0aAAAOYG1tbWloaNjl+7W1tenVq1daW1s7nG9tbc0nPvGJnV7T0tKSMWPGZNGiRendu3cuvfTSPPLIIznzzDPzxBNPJEnq6+t3es/6+vq9/I12pOAFAKBbrVixIitWrGh/3dzcnOOPPz5XX311e8Hbk7Q0AAAUaHtqCj12p62tLdu2bUtdXV2H83V1dVm7dm2Xf8+nnnoqJ510UvvrtWvX7vU9u0rBCwDALr3xxhtZsmRJGhsbO5xvbGxMU1NTl+9z2mmnpaWlpf31ggUL9vqeXaWlAQCgQNuL/qa1Lpg8eXJmzJiRhQsX5sknn8yYMWNy9NFH59Zbb02STJ8+PUkycuTIJMmVV16ZF154IcuWLUvv3r3zuc99Lueee27OO++89ntOnTo1jz/+eL72ta/l//7f/5tzzz03H/vYxzrd33dPKXgBAOjUvffemyOPPDITJkxI//79s3Tp0owYMSKrVq1Kkhx33HEdxvfu3Ts33XRTjjnmmGzevDnLli3LiBEjMmfOnPYxCxYsyEUXXZRvfetbmThxYn7zm9/kwgsvzMKFC7t9/jV562uc92m/XtuSc35yd9HTAABKYvZFf5tT6/sXPY385g/P5x+WTip0Dlf1+nynuzSUgYQXAKAglf/6amGqyycMAECpKXgBACg1LQ0AAAXaH3Zp2N9JeAEAKDUJLwBAQSpJl77tjL0j4QUAoNQUvAAAlJqWBgCAAlm0Vn0SXgAASk3CCwBQlEqNhLcHSHgBACg1BS8AAKWmpQEAoCCVWLTWEyS8AACUmoIXAIBS09IAAFAgLQ3VJ+EFAKDUJLwAAAWpJNkeCW+1SXgBACg1BS8AAKWmpQEAoEAWrVWfhBcAgFKT8AIAFKZGwtsDJLwAAJSaghcAgFLT0gAAUJBKxaK1niDhBQCg1BS8AACUmpYGAIACaWmoPgkvAAClJuEFAChQRcJbdRJeAABKTcELAECpaWkAAChIJcn2aGmoNgkvAACl1i0F7/XXX59KpdLhaGlp2WHMmjVrsmnTpsyfPz+nnHJKd/xoAADoVLclvMuXL099fX378cEPfrD9vWuuuSZXXXVVvvSlL6WhoSHr1q3LvHnz0q9fv+768QAA+6GabK8UexwIuq3g3bZtW1pbW9uPtra29vfGjx+f73znO7nvvvuybNmyjBw5MoceemguueSS7vrxAACwU91W8L73ve/NmjVrsnLlysycOTMnnHBCkuSEE05I//79M3fu3PaxW7ZsyeOPP56hQ4fu8n6jR4/OokWLsmjRohzRp093TRMAYJ9SqdQUehwIuqXgfeqppzJq1KicffbZGT16dOrr69PU1JQjjjgi9fX1SZLW1tYO17S2tra/tzO33XZbGhoa0tDQkJc3b+6OaQIAcADqlm3JHnzwwQ6vm5ubs3LlyowcOTLNzc3d8SMAAGCPVGVbstdeey3Lli3LSSedlLVr1yZJ6urqOoypq6trfw8A4EBUqcSitR5QlS+eOOSQQzJw4MDMnz8/zz//fFpaWtLY2JjFixe3vz98+PBcffXV1fjx+4UTv7zz5Ps/bx7cwzMBACi3bil4b7rpptx///1ZtWpVjjrqqHz9619P3759M3369CTJlClTct1112X58uVZsWJFJkyYkI0bN+aee+7pjh8PALDfOlAWjhWpWwreY445JjNnzkxtbW3Wr1+f5ubmDB48OKtWrUqS3HjjjenTp09uueWWHH744XnqqafyyU9+Mhs3buyOHw8AALvULQXvxRdfvNsxN9xwQ2644Ybu+HGloHUBAKBnVKWHFwCArjlQFo4VqSq7NAAAwL5CwruPefvuDdoeAAD2noIXAKAglby1Fy/VpaUBAIBSk/DuY7QxAMCBpCbbY9FatUl4AQAoNQUvAAClpqUBAKBAvlq4+iS8AACUmoQXAKAglYpvWusJEl4AAEpNwQsAQKlpaQAAKJBvWqs+CS8AAKWm4AUAoNS0NAAAFMg+vNUn4QUAoNQkvAAABZLwVp+EFwCAUlPwAgBQaloaAAAKUkmNrxbuARJeAABKTcELAECpaWkAAChKxVcL9wQJLwAAuzV27NisXLkymzdvzuLFizNs2LBdjj333HPz0EMPZd26dXn11VfT3Nycz3zmMx3GjBw5MpVKZYfjkEMO6fa5K3gBAApUqdQUenTFBRdckKlTp2bSpEk5/fTT09TUlDlz5uTYY4/d6fgzzzwzjz76aD796U/n9NNPz7/+67/mF7/4xQ5F8muvvZb6+voOx+uvv77Xn+mf0tIAAECnvvKVr+TOO+/M7bffniQZN25czj777IwdOzbXXXfdDuPHjx/f4fXEiRPz6U9/Op/97GfzxBNPtJ+vVCppbW2t6twTCS8AAJ04+OCDM2jQoMydO7fD+blz52bo0KFdvs+hhx6a3/3udx3O9enTJy+88EJ++9vf5v77789pp53WHVPegYIXAKBARbc01NbWZtGiRe3H6NGjO8yvtrY2vXr12iGJbW1tTX19fZd+xy984Qs55phjMmPGjPZzzz33XP7n//yfOeecc3LxxRdny5YtefLJJ3PiiSfu/Yf6J7Q0AAAcwNra2tLQ0FC1+5933nm56aabcuGFF2bVqlXt55ubm9Pc3Nz+uqmpKU8//XS+9KUv5corr+zWOSh4AQAKtK/vStbW1pZt27alrq6uw/m6urqsXbu202vPP//83HXXXbnsssvywAMPdDp2+/btWbx4cU466aS9nvOf0tIAAMAuvfHGG1myZEkaGxs7nG9sbExTU9Mur/sf/+N/ZMaMGRk1alR+/vOfd+ln/fVf/3VaWlr2ar47I+EFAKBTkydPzowZM7Jw4cI8+eSTGTNmTI4++ujceuutSZLp06cneWtv3SS58MILM2PGjHz1q1/N448/3p4Ob926tX3h2j/+4z+mubk5//Ef/5HDDjss48aNy1//9V9n7Nix3T5/BS8AQEEqSZf3wi3SvffemyOPPDITJkxI//79s3Tp0owYMaK9J/e4447rMH7MmDE5+OCDM3Xq1EydOrX9/GOPPZaPfexjSZJ3v/vdmTZtWurr6/P73/8+//Zv/5aPfvSjWbRoUbfPvyb7futIfr22Jef85O6ipwEAlMTsi/42p9b3L3oaeeblNTn/0R8VOod7/vJTVV20ti/QwwsAQKlpaQAAKEol+8Hfte//JLwAAJSahBcAoED7w6K1/Z2EFwCAUlPwAgBQaloaAAAKVLForeokvAAAlJqEFwCgMDUWrfUACS8AAKUm4aWqTvxyc/uf//PmwQXOBAA4UCl4AQCKpKWh6rQ0AABQahJeqkobAwBQNAUvAEBRKvbh7QlaGgAAKDUJLz3Gjg0AsBMS3qqT8AIAUGoKXgAASk1LAz1GGwMAdFRJfLVwD5DwAgBQagpeAABKTUsDAECR7NJQdRJeAABKTcILAFAgi9aqT8ILAECpKXgBACg1LQ0AAEWpxKK1HiDhBQCg1CS8AACFsmit2iS8AACUmoIXAIBS09IAAFAki9aqTsILAECpKXgBACg1LQ0AAEXS0lB1El4AAEpNwgsAUJiapGIf3mqT8AIAUGoKXgAASk1LAwBAgSoWrVWdhBcAgFKT8AIAFKUS25L1AAkvAAClpuAFAKDUtDQAABTJPrxVJ+EFAKDUFLwAAJSalgYAgALV2KWh6iS8AACUmoQXAKBIEt6qk/ACAFBqCl4AAEpNSwMAQJHsw1t1El4AAEpNwQsAQKlpaQAAKEoldmnoARJeAABKTcILAFAkCW/VSXgBACg1BS8AAKWmpQEAoEhaGqpOwgsAQKlJeAEAiuSb1qpOwgsAQKkpeAEAKDUtDQAABaqxaK3qJLwAAJSaghcAgFLT0gAAUJRK7MPbAyS8AACUmoIXAIBSU/ACAFBqCl4AAHZr7NixWblyZTZv3pzFixdn2LBhnY7/6Ec/msWLF2fz5s35zW9+k7/7u7/b63vuKQUvAEBBavLWPrxFHl1xwQUXZOrUqZk0aVJOP/30NDU1Zc6cOTn22GN3Ov7444/Pv/7rv6apqSmnn356vv3tb+f73/9+zjvvvD2+595Q8AIA0KmvfOUrufPOO3P77bdn+fLlGTduXFpaWjJ27Nidjh8zZkxeeumljBs3LsuXL8/tt9+e6dOn56tf/eoe33NvKHgBANilgw8+OIMGDcrcuXM7nJ87d26GDh2602uGDBmyw/iHHnooH/7wh9OrV689uufeUPACABSpUlPoUVtbm0WLFrUfo0eP7jC92tra9OrVK62trR3Ot7a2pr6+fqe/Un19/U7HH3zwwamtrd2je+4NXzwBAHAAa2trS0NDQ9HTqCoFLwBAkfbxb1pra2vLtm3bUldX1+F8XV1d1q5du9Nr1q5du9Pxb7zxRtra2lJTU/Nn33NvaGkAAGCX3njjjSxZsiSNjY0dzjc2NqapqWmn1yxYsGCn4xcvXpxt27bt0T33hoIXAIBOTZ48OaNGjcoVV1yRgQMHZsqUKTn66KNz6623JkmmT5+e6dOnt4+/9dZbM2DAgNx8880ZOHBgrrjiiowaNSrf/e53u3zP7qSlAQCgSPt4S0OS3HvvvTnyyCMzYcKE9O/fP0uXLs2IESOyatWqJMlxxx3XYfwLL7yQESNG5Oabb87YsWPbtyi77777unzP7lST/eBj/vXalpzzk7uLngYAUBKzL/rbnFrfv+hp5Jm1LTnnnnsKncO9wz9q0RoAAFXyZ3zbGXtODy8AAKWm4AUAoNS0NAAAFElLQ9VJeAEAKDUFLwAApaalAQCgSFoaqk7CCwBAqUl4AQAKZB/e6pPwAgBQagpeAABKTUsDAEBhapJKTdGTKD0JLwAApSbhBQAoSiW2JesBEl4AAEqtSwXv8OHDM3v27KxevTqVSiUjR47cYcz111+fNWvWZNOmTZk/f35OOeWUDu+/+93vzl133ZVXXnklr7zySu666678xV/8Rff8FgAAsAtdKnj79euXpUuX5sorr8ymTZt2eP+aa67JVVddlS996UtpaGjIunXrMm/evPTr1699zD333JMPfehDOfvss3P22WfnQx/6UGbMmNF9vwkAwH6oplLscSDoUg/vnDlzMmfOnCTJnXfeucP748ePz3e+853cd999SZKRI0dm3bp1ueSSSzJt2rQMHDgwn/rUp/KRj3wkzc3NSZK/+7u/yxNPPJG/+qu/yooVK7rp1wEAgI72uof3hBNOSP/+/TN37tz2c1u2bMnjjz+eoUOHJkmGDBmSP/zhD2lqamof8+STT2bjxo3tYwAAoBr2epeG+vr6JElra2uH862trRkwYED7mPXr1+9w7bp169qv/1OjR4/O5z//+STJEX367O00AQD2TQdIW0GR9tldGm677bY0NDSkoaEhL2/eXPR0AADYT+11wbt27dokSV1dXYfzdXV17e+tXbs273nPe3a49qijjmofAwBwILJorfr2uuB9/vnn09LSksbGxvZzhxxySIYPH97es7tgwYIceuihGTJkSPuYIUOGpF+/fh36egEAoLt1qYe3b9++OfHEE5MkBx10UI477riceuqpefnll/Pb3/42U6ZMyXXXXZfly5dnxYoVmTBhQjZu3Jh77rknSbJ8+fLMmTMnP/zhD9v7cn/4wx/m/vvvt0MDAABV1aWE98Mf/nCefvrpPP3003nXu96ViRMn5umnn87EiROTJDfeeGNuvvnm3HLLLVm8eHH69++fT37yk9m4cWP7PS655JL8+te/zkMPPZSHHnoov/71r3PppZdW57cCANhfVAo+DgBdSnh/+ctfpqamptMxN9xwQ2644YZdvv/KK68ocAEA6HH77C4NAADQHfZ6H14AAPbQAdRWUCQJLwAApSbhBQAoSE0OnL1wiyThBQCg1BS8AACUmoIXAIBSU/ACAFBqFq0BABTJorWqk/ACAFBqCl4AAEpNSwMAQIHsw1t9El4AAEpNwQsAQKlpaQAAKJKWhqqT8AIAUGoSXgCAolQi4e0BEl4AAEpNwQsAQKlpaQAAKJB9eKtPwgsAQKlJeAEAiiThrToJLwAApabgBQCg1LQ0AAAUyKK16pPwAgBQagpeAABKTUsDAECRtDRUnYQXAIBSk/ACABSlEglvD5DwAgBQagpeAABKTUsDAECB7MNbfRJeAABKTcELAECpaWkAACiSloaqk/ACAFBqEl4AgCJJeKtOwgsAQKkpeAEAKDUtDQAABamJfXh7goQXAIBSk/ACABSlEovWeoCEFwCAUlPwAgBQaloaAAAKZNFa9Ul4AQAoNQUvAADdpnfv3vne976X9evXZ+PGjZk9e3YGDBjQ6TXXXnttFi5cmN///vdZt25d/uVf/iUf+MAHOoy54447UqlUOhwLFizo0pwUvAAARaoUfHSzKVOm5Pzzz8/FF1+c4cOH57DDDssDDzyQgw7addl51lln5f/8n/+ToUOH5m/+5m+ybdu2PPzwwzn88MM7jJs3b17q6+vbjxEjRnRpTnp4AQDoFocddliuuOKKXH755Xn44YeTJJdeemlefPHFfOITn8jcuXN3et3ZZ5/d4fWll16a3//+9/nIRz6SBx54oP3866+/ntbW1j97XhJeAIAiFZzw1tbWZtGiRe3H6NGj9/hXGTRoUHr37t2hsF29enWeffbZDB06tMv3OfTQQ/OOd7wjv/vd7zqcHzZsWFpbW/Pcc89l2rRpec973tOl+0l4AQAOYG1tbWloaOiWe9XX12fbtm1pa2vrcL61tTX19fVdvs/UqVPzb//2bx16dB988MHcd999ef7553P88cfnW9/6Vh599NEMGjQoW7du7fR+Cl4AADr1zW9+MxMmTOh0zFlnndUtP+uf/umfMmzYsAwbNizbt29vPz9r1qz2Py9dujRLlizJiy++mE9/+tP5xS9+0ek9FbwAAAWqKXoCXTBlypT8+Mc/7nTMqlWrMnjw4PTq1Su1tbUdUt66urr86le/2u3PmTx5ci666KJ87GMfy/PPP9/p2JaWlqxevTonnXTSbu+r4AUAoFMbNmzIhg0bdjtuyZIl2bp1axobGzNz5swkyYABA/L+978/TU1NnV47ZcqUXHjhhfnYxz6W5557brc/68gjj8yAAQPS0tKy27EWrQEAFKlE25K9+uqr+dGPfpQbb7wxH//4x3PaaadlxowZeeaZZ9p3bUiSZ599Nn//93/f/voHP/hBLr/88lxyySX53e9+l7q6utTV1aVv375Jkr59++amm27K4MGD85d/+Zc588wzc//992fdunW7bWdIJLwAAHSj8ePHZ9u2bZk1a1b69OmTRx55JJdddlmHftyBAwemtra2/fUfi99HH320w72+8Y1v5IYbbsibb76ZD37wg7nsssvy7ne/Oy0tLZk/f34uuOCCbNy4cbdzUvACANBttm7dmnHjxmXcuHG7HFNTU9Pp6z+1ZcuWHfbq/XMoeAEAilJJaqrwbWd0pIcXAIBSU/ACAFBqWhoAAIqkpaHqJLwAAJSahBcAoEgS3qqT8AIAUGoKXgAASk1LAwBAgezDW30SXgAASk3BCwBAqWlpAAAokpaGqpPwAgBQahJeAICC1FQsWusJEl4AAEpNwQsAQKlpaQAAKJKWhqqT8AIAUGoSXgCAAlm0Vn0SXgAASk3BCwBAqWlpAAAokpaGqpPwAgBQagpeAABKTUsDAECRtDRUnYQXAIBSk/ACABSlYh/eniDhBQCg1BS8AACUmpYGAIAiaWmoOgkvAAClJuEFAChMJTUVEW+1SXgBACg1BS8AAKWmpQEAoEg6GqpOwgsAQKkpeAEAKDUtDQAABfLVwtUn4QUAoNQkvAAARanEorUeIOEFAKDUJLwFOfHLzTs9/583D+7hmfD2fxY+fwAoHwUvAEBBamLRWk/Q0gAAQKlJeAvy9r86f/tfqfvr9X2HfxYAUA4KXgCAImlpqDotDQAAlJqEdx+wq/YGesau2hW0MQDQEyxaqz4JLwAApabgBQCg1LQ07GN21t7gr9YBoKR8tXCPkPACAFBqEl4AgAJZtFZ9Ct59mFYGAIC9p6UBAIBSk/ACABSpoqeh2iS8AACUmoIXAIBS09IAAFAguzRUn4QXAIBSk/ACABRJwlt1El4AAEpNwQsAQKlpaQAAKEolqdle9CTKT8ILAECpSXg54J345eb2P//nzYMLnAkABySL1qpOwgsAQKkpeAEAKDUtDQX5zYW37nbM+2aN6YGZ8HbaGwDoSTXxTWs9QcILAECpKXgBACg1LQ0F2VW7wttbHf74Z60NPeftbQzaGwDoERU9DdUm4QUAoNv07t073/ve97J+/fps3Lgxs2fPzoABAzq95vrrr0+lUulwtLS07HTcmjVrsmnTpsyfPz+nnHJKl+Yk4d3HvD3N7crCNvbertJbqS4AVVcp36K1KVOm5JxzzsnFF1+cDRs2ZPLkyXnggQcyaNCgbN++66+VW758ec4666z212+++WaH96+55ppcddVVGTVqVJ577rn84z/+Y+bNm5eTTz45Gzdu7HROCl4AALrFYYcdliuuuCKXX355Hn744STJpZdemhdffDGf+MQnMnfu3F1eu23btrS2tu7y/fHjx+c73/lO7rvvviTJyJEjs27dulxyySWZNm1ap/PS0gAAQLcYNGhQevfu3aGwXb16dZ599tkMHTq002vf+973Zs2aNVm5cmVmzpyZE044of29E044If379+9w3y1btuTxxx/f7X0TCe8+7Y/tDW9vbbCADQBKpuCWhtra2ixatKj99bRp03Lbbbft0b3q6+uzbdu2tLW1dTjf2tqa+vr6XV731FNPZdSoUVm+fHmOOuqoTJgwIU1NTfnABz6Ql19+uf3aP02AW1tbd9sfnCh4AQAOaG1tbWloaOh0zDe/+c1MmDCh0zFv77/9cz344IMdXjc3N2flypUZOXJkbr755j2+7x91qaVh+PDhmT17dlavXp1KpZKRI0d2eP+OO+7YYWXdggULOozZkxV7AAAUb8qUKRk4cGCnx8KFC7N27dr06tUrtbW1Ha6vq6vL2rVru/zzXnvttSxbtiwnnXRSkrRfW1dXt0f37VLC269fvyxdujR33XVX7rrrrp2OmTdvXi699NL211u3bu3w/p6u2KNre/ZqdQCA/dP+sEvDhg0bsmHDht2OW7JkSbZu3ZrGxsbMnDkzSTJgwIC8//3vT1NTU5d/3iGHHJKBAwdm/vz5SZLnn38+LS0taWxszOLFi9vHDB8+PFdfffVu79elgnfOnDmZM2dOkuTOO+/c6ZjXX399lyvr9mbFHgAA+4dXX301P/rRj3LjjTdm3bp17SHnM888014DJsmzzz6bH/zgB7nllluSJDfddFPuv//+rFq1KkcddVS+/vWvp2/fvpk+fXr7NVOmTMl1112X5cuXZ8WKFZkwYUI2btyYe+65Z7fz6rYe3mHDhqW1tTWvvPJKfvnLX+Yf/uEfsn79+iS7X7G3s4J39OjR+fznP58kOaJPn+6aJgDAvqVk37Q2fvz4bNu2LbNmzUqfPn3yyCOP5LLLLuvwN/oDBw7s0PZwzDHHZObMmamtrc369evT3NycwYMHZ9WqVe1jbrzxxvTp0ye33HJLDj/88Dz11FP55Cc/uds9eJNuKngffPDB3HfffXn++edz/PHH51vf+lYeffTRDBo0KFu3bt2jFXu33XZb+wrBX6/d8Zs2AADY92zdujXjxo3LuHHjdjmmpqamw+uLL764S/e+4YYbcsMNN/zZc+qWgnfWrFntf166dGmWLFmSF198MZ/+9Kfzi1/8ojt+BAAA7JGqfPFES0tLVq9e3WFlXXes2AMAKJuaSrHHgaAq+/AeeeSRGTBgQFpa3mpF6K4Ve3T09p0Z7NgAALBzXSp4+/btmxNPPDFJctBBB+W4447Lqaeempdffjkvv/xyvvGNb+TnP/95Wlpacvzxx+fb3/521q1b197O0NUVewAAB5RKCv+mtQNBl1oaPvzhD+fpp5/O008/nXe9612ZOHFinn766UycODFvvvlmPvjBD2b27NlZsWJFpk+fnueeey5DhgzpsGpu/Pjx+cUvfpFZs2blySefzMaNG/OZz3zGHrwAAFRVlxLeX/7ylzuspnu7s88+e7f36MqKPfac9gYAgJ2rSg8vAABdc6AsHCtSVXZpAACAfYWEt4R21d6wqzH7khO/3Nz+5/+8eXCBMwEAykLBCwBQpO16GqpNSwMAAKUm4S25XbU37Ks7OWhjAOCAI+CtOgkvAAClpuAFAKDUtDQcQPa39gYAKLuain14e4KEFwCAUpPwAgAUppJURLzVpuA9QHXlyykAAMpASwMAAKUm4QUAKJBFa9Wn4MXODABAqWlpAACg1CS8AABF0tJQdRJeAABKTcILAFCgGvvwVp2EFwCAUlPwAgBQaloaAACKUkmyvehJlJ+EFwCAUlPwAgBQaloaAAAKZJeG6pPwAgBQahJeAIAiCXirTsILAECpKXgBACg1LQ0AAEWyaK3qJLwAAJSahBcAoCiVpEbAW3USXgAASk3BCwBAqWlpAAAokkVrVSfhBQCg1BS8AACUmpYGAICC1CSp2V70LMpPwgsAQKlJeAEAClOxaK0HKHgBusmJX25u//N/3jy4wJkA8HZaGgAAKDUJLwBAUSr/dVBVCl6AbqKNAWDfpOAFAChQjUVrVaeHFwCAUlPwAgBQaloaAACKpKWh6iS8AACUmoIXoAed+OXmDl9QAUD1aWkAACjS9qInUH4SXgAASk3CC9CDfDkF0EHFPrw9QcILAECpKXgBACg1LQ0AAEXS0lB1El4AAEpNwQsAQKlpaQAAKExFS0MPkPACAFBqEl4AgCL5prWqU/AC7AdO/HJz+599eQXAn0dLAwAApSbhBQAoiq8W7hEKXoD9gDYGgD2n4AUAKJKEt+oUvAD7MYvZAHbPojUAALpN7969873vfS/r16/Pxo0bM3v27AwYMKDTa55//vlUKpUdjgceeKB9zPXXX7/D+y0tLV2ak4QXAKBIJWtpmDJlSs4555xcfPHF2bBhQyZPnpwHHngggwYNyvbtO990uKGhIe94xzvaX/fv3z9LlizJvffe22Hc8uXLc9ZZZ7W/fvPNN7s0JwUvwH5MGwOwLznssMNyxRVX5PLLL8/DDz+cJLn00kvz4osv5hOf+ETmzp270+va2to6vL7iiivy6quv7lDwbtu2La2trX/2vLQ0AADQLQYNGpTevXt3KGxXr16dZ599NkOHDu3yfa644or8+Mc/zpYtWzqcf+9735s1a9Zk5cqVmTlzZk444YQu3U/BCwBQpEql0KO2tjaLFi1qP0aPHr3Hv0p9fX22bdu2Q2Lb2tqa+vr6Lt2jsbEx733ve3Pbbbd1OP/UU09l1KhROfvsszN69OjU19enqakpRxxxxG7vqaUBAOAA1tbWloaGhk7HfPOb38yECRM6HfP23tq9MXr06CxcuDDPPPNMh/MPPvhgh9fNzc1ZuXJlRo4cmZtvvrnTeyp4AQCKUkmy83Vc+5QpU6bkxz/+cadjVq1alcGDB6dXr16pra3tkPLW1dXlV7/61W5/znve856cc845+fu///vdjn3ttdeybNmynHTSSbsdq+AFAKBTGzZsyIYNG3Y7bsmSJdm6dWsaGxszc+bMJMmAAQPy/ve/P01NTbu9ftSoUXn99dfbr+3MIYcckoEDB2b+/Pm7HauHFwCAbvHqq6/mRz/6UW688cZ8/OMfz2mnnZYZM2bkmWeead+1IUmeffbZnaa4/+t//a/85Cc/yWuvvbbDezfddFM++tGP5vjjj88ZZ5yRn/3sZ+nbt2+mT5++23lJeAEAClNJTcn24R0/fny2bduWWbNmpU+fPnnkkUdy2WWXddiDd+DAgamtre1w3VlnnZW/+qu/yuc+97md3veYY47JzJkzU1tbm/Xr16e5uTmDBw/OqlWrdjsnBS8AAN1m69atGTduXMaNG7fLMTU1NTuce+yxx3Z6/o8uvvjiPZ6TghcAoEglS3j3RXp4AQAoNQUvAAClpqUBAKBI27U0VJuEFwCAUlPwAgBQaloaAACKUoldGnqAhBcAgFKT8AIAFEnCW3X7RcHb/6B3ZP4556etra3oqVACtbW1niX2mueI7uA5Kk7/g95R9BToQftFwXvUUUdl0aJFaWhoKHoqlIBnie7gOaI7eI6gZ+wXBS8AQDlVtDT0AIvWAAAotf2m4J02bVrRU6AkPEt0B88R3cFzBD2jJm/tAAcAQA977plVufKcqYXO4Zv3XlT6XvL9JuEFAIA9YdEaAEBRKkkq24ueRelJeAEAKDUFLwAApaalAQCgSPbhrToJLwAApSbhBQAoTCXZLuGtNgkvAAClpuAFAKDUtDQAABTJorWqk/ACAFBqCl4AAEpNSwMAQFEq0dLQAyS8AACUmoQXAKBIEt6qk/ACAFBqCl4AAEpNSwMAQGEqyfbtRU+i9CS8AACUmoQXAKBIFq1VnYQXAIBSU/ACAFBqWhoAAIrim9Z6hIQXAIBSU/ACAFBqWhoAAIq0XUtDtUl4AQAoNQkvAEBhKqlUfNNatUl4AQAoNQUvAAClpqUBAKAolVi01gMkvAAAlJqCFwCAUtPSAABQJF8tXHUSXgAASk3CCwBQpO324a02CS8AAKWm4AUAoNS0NAAAFKVSsWitB0h4AQAoNQkvAECBKhatVZ2EFwCAUlPwAgBQaloaAACKZNFa1Ul4AQAoNQUvAAClpqUBAKAolUqyXUtDtUl4AQAoNQkvAECRKvbhrTYJLwAApabgBQCg1LQ0AAAUqGLRWtVJeAEAKDUJLwBAYSoWrfUACS8AAKWm4AUAoNS0NAAAFKVi0VpPkPACAFBqCl4AALrN6NGj8+ijj+Z3v/tdKpVK/vIv/7JL15133nlZtmxZtmzZkmXLluWzn/3sDmOuv/76rFmzJps2bcr8+fNzyimndOneCl4AgCJVthd7dLN3vetdmTt3br7xjW90+ZrBgwdn1qxZufvuu3Paaafl7rvvzk9/+tOcccYZ7WOuueaaXHXVVfnSl76UhoaGrFu3LvPmzUu/fv12e/+aJBpHAAAK8Nyi/8zfn3FtoXP49sKvpaGhodvvO2jQoCxevDjHH398XnzxxU7H/uQnP8kRRxyRT37yk+3n5s2bl/Xr1+eSSy5Jkrz00kv5wQ9+kEmTJiVJ3vnOd2bdunX56le/mmnTpnV6f4vWAAAKsrLtP/LthV8rdA7vfOc7s2jRovbX06ZNy2233dajcxgyZEi+//3vdzj30EMP5Ytf/GKS5IQTTkj//v0zd+7c9ve3bNmSxx9/PEOHDlXwAgDsqz71qU8VPYV9Qn19fVpbWzuca21tTX19ffv7fzz3p2MGDBiw2/vr4QUAoFPf/OY3U6lUOj3OPPPMoqe5SxJeAAA6NWXKlPz4xz/udMyqVav2+P5r165NXV1dh3N1dXVZu3Zt+/t/PPfb3/52p2M6o+AFAKBTGzZsyIYNG6p2/wULFqSxsTHf/e532881NjamqakpSfL888+npaUljY2NWbx4cZLkkEMOyfDhw3P11Vd36WdUHA6Hw+FwOByO7jjq6uoqp556auXiiy+uVCqVyqc+9anKqaeeWjn88MPbxzz88MOVSZMmtb8eMmRI5Y033qh87Wtfq5x88smVa6+9trJ169bKGWec0T7mmmuuqbzyyiuVc889t/KBD3ygMnPmzMqaNWsq/fr168q8iv9gHA6Hw+FwOBzlOK6//vrKzowcObJ9zPPPP1+54447Olx3/vnnV5599tnK66+/Xvn3f//3yrnnnrvTe7/00kuVzZs3Vx577LHKBz7wgS7NyT68AACUml0aAAAoNQUvAAClpuAFAKDUFLwAAJSaghcAgFJT8AIAUGoKXgAASk3BCwBAqf3/rPzjZiM6kv4AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -473,7 +473,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKEAAALaCAYAAADp8kAfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACpZklEQVR4nOzdd7gU5f3//9c5gGBDOtjFAhisYANEDiLWiCaWRKKCRrFiNCpRo+6iWOI35qOADYxYMRpFRMWCeFZFSkhsSFdRkHYQkHYA5XD//uC3yymzu7O7Mzvt+biu+1LO7tlz78w999zznvd9T4kkIwAAAAAAAMBFpV5XAAAAAAAAAOFHEAoAAAAAAACuIwgFAAAAAAAA1xGEAgAAAAAAgOsIQgEAAAAAAMB1BKEAAAAAAADgOoJQAIBAWbBggRYsWOB1NSzFYjEZY9SjRw9X/06PHj1kjFEsFnP17xTDgQceqDFjxmjp0qUyxmj16tUFfV6Ytg3SSyQS+vLLL1VSUuJ1VfLSr18/GWPUr1+/vH7/4Ycf1qpVq9S8eXOHa5adMUbl5eU5/c6oUaNkjNG+++7rUq2807p1az399NNatGiRtmzZImOMdtttt4L3cTEVo9/cd999ZYzRqFGjXPsbAIKBIBQAXzDG1ChbtmzRypUrVV5eHogBnJv8PpD1e/3gX6WlpRo7dqxOP/10vfnmm4rH47r//vsz/g4XMjjnnHPUo0ePVNA3iu699141bNhQ8Xjc66pIKl4A3o+efvppXXTRRfrwww81ZMgQxeNxbdq0yetqAYBv1fe6AgBQXXJA3aBBAx144IH6zW9+o7KyMh111FEaOHCgt5UDfOI///mPOnTooB9//NHrqhSkbdu26tixo0aMGKErrrjC6+ogIO655x7NnTtXr732mtdVydtrr72mqVOnaunSpXn9/vLly/X000/riiuu0AMPPKBFixY5XMP0OnTooMrKyqL9PT9r0KCBevfurffff18XXnhhjdcK3cdhs3jxYnXo0EFr1qzxuioAPEYQCoCvDB48uMa/u3btqo8++khXX321HnzwQX333XfeVAzwkY0bN2ru3LleV6Nge+yxhyRpyZIlHtcEQXHSSSepffv2uu2227yuSkHWrl2rtWvXFvQZzzzzjK6++moNGDBAd9xxh0M1yy4MfY9T2rRpo3r16ln2YU7s4zDZsmULbQdAiqFQKBSvS5LVa1999ZUxxphzzjmnzmvHHHOM+fe//22WLl1qNm/ebBYuXGgef/xxs/vuu1t+VtOmTc2QIUPMjBkzzIYNG8xPP/1kPv/8c3PfffeZnXbaqcZ7DzzwQPPMM8+YH374wWzevNksXrzYPPPMM+bAAw+s87mxWMwYY0yPHj3MOeecY6ZNm2Y2bNhgVq5caV588UWzxx571Pmdtm3bmieeeMLMnz/fVFZWmpUrV5ovv/zSPPbYY6ZZs2ZGkikvLzfp7LvvvnX+9gUXXGCmTp1q1q1bZxYsWGAkmR49ehhjjInFYpbbZMGCBan31i7nn3++ef/9983KlSvNxo0bzYIFC8zo0aNN586dbddPkqlXr5656qqrzJQpU8yaNWvMhg0bzKeffmquueYaU1JSYvm3r7nmGvPVV1+ZjRs3mh9++MEMGzbMNG7cOGN905UTTzzRvP3222blypVm06ZNZu7cuea+++4zjRs3rvPe5Hdq0KCBueOOO8ycOXPMpk2bzKhRo1Lv6dSpk3n77bfN2rVrzZo1a8yECRPMcccdV2Nf1P7c9u3bm1GjRpmFCxeazZs3m2XLlpkXXnjBtGvXrs57R40aZYwxpm3btubaa681X3zxhamsrDTl5eUZ92my7vXq1TO33nqrmTdvntm0aZNZuHChuf/++02DBg0st0/fvn3N//73P1NZWWmWL19unn32WbP77runPi+Xbd2pUyfzyiuvmOXLl5tNmzaZ7777zjzyyCOmTZs2lsd8benaafW2bqVfv351ts3hhx9u3nzzTbN69WqzYcMGk0gkTJcuXSw/O582alXy3Qe5tI9M+6Vfv341tkft43zXXXc1Dz74oFmwYIH5+eefa2zvfI6TXL7n8ccfb8aNG2cWLVpkNm3aZJYuXWqmTJli7rzzTtvb98UXXzTGGLP//vvX+PmAAQOMMSbtZ7Vu3dr8/PPP5ssvv7T1dw466CBz3333menTp5uKiopUW37iiSfMnnvuWeO9DRo0MP/5z3+MMcaceeaZdT7rmWeeMcYYc/vtt2fdT4ceeqgZPXq0WbBggdm0aZOpqKgw//vf/8z//d//mfr169f57G+//dYsXrzY1nc6+eSTjTHGDBkypMbPy8rKUsfRXnvtVeO1f/3rX6m+qPqxm+yLkm0rneR7kn3avvvuawYMGGC+/PJLs3HjRrNs2TLzxBNPWLaxdGWXXXYxt99+u5kxY4ZZs2aNWbt2rfn666/Nv/71L9OpU6fU8WSMMR988EHaz/nyyy/Nzz//nOqbcu070n3v5LmikGMxl/4gW+ndu7cZN25cqk9euHChGTt2rOnVq1fqPfn0m7vvvru54447zKRJk1JjsMWLF5sXXnjBHHzwwXXev++++9bYPoW0jVyPEwqF4q9CJhSAwPjll19q/PuSSy7RiBEjtHnzZo0bN06LFi3SQQcdpMsuu0xnnnmmjjvuuBpTFPbbbz+Vl5drv/3203//+1899thjKi0tVbt27XTDDTfo8ccf1/fffy9JOuqoo/T+++9r11131bhx4zRr1ix16NBBF154oc466yyddNJJ+u9//1unjldffbX69OmjcePG6cMPP9Sxxx6r3//+9zr88MN1xBFH6Oeff5a07e7p9OnT1bhxY40fP16vvvqqGjVqpLZt2+qiiy7S8OHDtWrVKj399NP66aefdPbZZ2vs2LH6/PPPU3/rp59+qvG3b7zxRvXu3VtvvPGGysvLtdtuuxW0vUeNGqX+/ftrxYoVGjNmjFasWKG99tpLPXv21Ny5c/W///3PVv3q16+vN954Q6eeeqrmzJmj0aNHa9OmTerZs6eGDx+uY489VhdffHGNv/3QQw/pT3/6k5YsWaIRI0bol19+0VlnnaVjjz1WO+ywQ2o72jFgwAA99thj2rBhg/7973+roqJCZWVluuWWW3TmmWeqW7dultMDXn31VR199NF6++23NXbsWFVUVEiSunTpovfff1877LCDxowZo6+//lpHHHGEEomEPvjgA8s6nHLKKRozZowaNGigN954Q19//bX22msv/fa3v9UZZ5yhnj176rPPPqvzew8//LC6d++ut956S+PHj1dVVZWt7zx69Gh1795db7/9ttauXavTTz9df/nLX9SqVStdeumlNd57880364EHHtCqVav0zDPPaM2aNerdu7c++eSTnKdNnHHGGXr11VdVUlKiV155Rd9//706d+6sq6++WmeddZaOP/74VDZjPB7Xfvvtp/79+yuRSCiRSEhS6r9WEomEHnroIV1//fX6/PPPNXbs2NRr1duetO0YHjRokKZMmaInn3xS++yzj8455xxNnDhRRxxxhObNm5d6bz5tNJtc9kG+7SNXO+ywgz744AM1a9ZM7733ntauXZta5D/f48Tu9zzllFP01ltvae3atRo3bpwWL16sZs2a6eCDD9bVV1+tu+66y9Z3OPHEE7V06VJ9++23NX7+wgsv6IEHHtAf//hHDRkyRFu3bq3x+qWXXqoGDRroiSeesPV3fvvb3+rKK69UeXm5Jk+erJ9//lkdO3ZMnV+OOuqoVPbLL7/8ot/97nf67LPPNGrUKB1xxBH64YcfJEn9+/fXxRdfrPfff1/33HNPxr956KGHatq0aTLGaNy4cVqwYIEaN26sAw88UFdffbVuv/12bdmypcbvfPLJJ7rwwgvVsWNHzZw5M+Pnf/zxx9q8ebN69eql22+/PfXzXr161fj/Z555JvXvnj17Zn0YxEMPPaSzzz5bZWVlevrppzNmLD/wwAM65ZRT9MYbb+i9995Tz549NWDAAB144IE16pHJO++8o27dumny5Ml68skntWXLltS56eOPP9ann36quXPn6oMPPtCJJ56ogw46SPPnz6/xGV26dNGhhx6qV155RcuWLavxmt2+46GHHtJ+++1Xpz+q3RdZyXQsOtkfxONxxWIxrVu3TmPHjtWiRYu0xx57qGvXrrrwwgs1ceLEvL67JJ1wwgm65ZZbVF5erldffVXr16/XQQcdpHPPPVd9+vRRt27d9OWXX9qqp2S/beRznADwH88jYRQKhVL7rmmydO/e3WzZssVs2rSpRibFQQcdZDZv3mzmz59fJ8voxBNPNFu2bDFjxoyp8fNPPvnEGGPMLbfcUufvNG/e3DRs2DD171mzZhljjOnbt2+N951//vnGGGNmz55dIzsimaGxZs0ac8ghh9T4nRdeeMEYY8x5552X+tm1115rjDHmuuuuq1OXnXbayTRq1Cj173R3U2v/7fXr15sjjjiizuv5ZEJdfvnlxhhjpk2bVucuZGlpaY19Ybd+Q4cONaWlpTU+58knnzTGGNOnT5/Uz7t06WKMMWb+/PmmadOmqZ83bNjQTJ482RhjbGdC7bPPPmbTpk1mzZo1pn379jVee+SRR4wxxjzxxBM1fp7M8Pjiiy9M8+bN63zm7Nmz69RZkrnuuutS7bh6JlSTJk3MqlWrzIoVK+rcHe7YsaNZt26d+d///lfj58k7wz/88IPZb7/9bO/TZN3/+9//1th2O+20k5k/f77ZsmWLad26dernbdu2NT///LOpqKiokwExevTotMelVdl5553Njz/+aLZs2WKOP/74Gq8NGjTIGGPMu+++m1PbtCrp7qbX/kyrNpnMlnnkkUcKaqOZSq77IJ/2kW8mlDHGTJgwoU7WZyHHid3v+corrxhjjDnssMPq1NnqOLMqyeyWcePGWb4+bNgwY4wxZ5xxRp3XvvnmG7N+/XrbGTd77LGH2WGHHer8vHfv3mbLli3m0UcfrfPaeeedZ4wx5qOPPjKlpaWmQ4cOZv369WbZsmU1tkW6/fT3v/89bVtr0qSJZUZest+56qqrbH2vDz/80Pzyyy81tsPkyZPN//73P7NixQrz7LPPpn5+2GGHGWOMefLJJ2t8hjE1M6GqH0NWWaDS9j7t+++/N3vvvXfq5/Xq1TMffvihMcaYo48+Omv9DznkEGOMqXN+l2RKSkpMkyZNUv8+55xzjDHG/L//9//S1uekk05K/SyfviNTf5TPsZhPf5Cu9O7d2xhjzDfffGOZjV09oy+f796yZUuzyy671Pncww47zKxbt86MHz/e1rbKtW3kc5xQKBR/FZ6OB8BXYrGYYrGYhgwZon/96196//33VVJSoptuuqnG3cqrrrpKO+ywQypbproPPvhA48aN05lnnqlddtlFktSpUyd17dpVn332mf72t7/V+bsrV67U5s2bJW1bh+rggw/W5MmTNXr06Brve/nll/Xxxx+rQ4cOOv744+t8ztChQ/XVV1/V+NnIkSMlScccc0yd92/cuLHOzyorK/N6ss6IESNs3YG1I7kI/BVXXFFnTYutW7fWuXOcTklJiQYOHKilS5fqhhtuqJGdsHXrVt14443aunWr/vCHP6R+fskll0jatvjw6tWrUz/fvHmzbr311py+x4UXXqiGDRtq+PDhddai+Otf/6q1a9fqoosu0g477FDnd++44w6tXLmyxs+6du2qDh066MMPP9S4ceNqvDZ8+HB9/fXXdT7n4osvVtOmTRWLxTR79uwar82cOVMjR45Up06ddPDBB9f53QceeCCvddD+8pe/1Nh2lZWVeuGFF1SvXj0dddRRqZ/37dtXDRo00LBhw1KZG0m33HJLTneTzzrrLDVv3lwvvfSSJk2aVOO1Bx98UAsWLNDJJ5+svffeO+fvk49JkybVyOiQpKeeekq//PJLjWMxnzZqh919UEj7yMeNN95YZ1HpQo4Tu98zyarPq32cpbPPPvtIUtqFnh977DFJqrPI/cknn6z9999fL730ku01epYsWWKZcTlhwgTNnDlTp5xySp3X/v3vf+vxxx9X9+7d9be//U0vv/yydtxxR1100UVavny5rb8rWW+jn376yfJJgMm+OLltspk4caLq16+feordLrvsoqOOOkoTJkxQeXm5TjzxxNR7k9kntbNlCnHXXXfVyFCuqqpKPenS6hyZjtU2MsbUyBAeO3aslixZov79+9dou7vttpvOP/98ff3113r//ffrfI7dvqNQVseik/1B8jx+4403Wq5ZtXjx4jo/y+W7r1ixQuvXr6/zGV9++aU++OAD9ezZU/Xr2590k2vbyOU4AeAvTMcD4Cu1Hze9detW/fGPf9TTTz9d4+ddunSRJPXo0UNHH310nc9p1aqV6tevr3bt2unTTz/VcccdJ0l69913sw5QOnXqJElpp1Z98MEH6t69u4488kh9/PHHNV6zmqKXHFQ1bdo09bNx48bp3nvv1SOPPKJTTjlF7777rj755BPNmjUrY90y+c9//pP371a300476dBDD9WyZcsKDmq1a9dOzZs317x582pM/6hu48aNNQbUye3/4Ycf1nnvpEmTcgqMZNqXP/30kz777DP16NFDHTp0qDNtwGp7Zqrb1q1bNWnSJB144IE1fp5sq4cffrhisVid32vXrp0k6eCDD65z0ZHvPrXbDo888khJqhM0kqSFCxdq0aJFatu2ra2/mWlbV1VV6aOPPlLbtm115JFHFuVJXlbbYMuWLVq+fHmNbZBPG83371vtg0LaR642btxoOT2mkOPE7vd84YUXdM4552jatGl66aWXVF5erk8++cTyQjid5s2bS1KNoFd1s2bN0ocffqjTTjtNe+21VyqwOmDAAEnS448/nnpvv379tN9++9X4/UQiUePY/sMf/qD+/fvr8MMPV9OmTWtcUCdvWtR2/fXXq2vXrrrpppskSffee68mTJhg6/u99NJL+tOf/qSxY8fqlVde0fvvv69PPvmkztTD6latWiVJatGiha2/8cEHH2jw4MHq1auX3njjDfXo0UMNGjTQxIkT9d133+m8885Thw4dNGfOnFRAKt25MB9220s6s2bN0meffaa+fftq33331euvv65Jkybpv//9b50p+1VVVRo5cqRisZjOOeccvfjii5Kkiy66SDvttJNGjBhhu45WfUch0h2LTvYHxx13nLZu3ap33nnHdr1y/e6nn366rrzySh111FFq0aKFGjRoUOP1Fi1a2L5pZbdt5HOcAPAXglAAfKWkpETStkBIly5d9M9//jO1VlN5eXnqfcmLkUGDBmX8vGQmVJMmTSRZ3/mrLbmWUrq77cmfJz+zutrrNElKBU3q1auX+tnChQt1zDHHKB6P69RTT9U555yT+vnf//53DRs2LGs9a7M70Msml22VTXI/tWvXrk6AsbrkfpK2b3+rzIGqqir9+OOPtv9+IfvSantmqlu630lug+SFcDrVt0Gmz7PDau0eq3aY7fssX77cdhCqkG3tBqtjUdq2Hapvg3zaqB1290Eh7SNXyXXNaitk39n9nq+99prOOOMM3Xjjjbr00kt15ZVXStp24XnrrbdaZqTUlsx8aNSoUdr3PProo+rRo4cuu+wyxeNxtW7dWn369NFnn32m6dOnp97Xv39/lZWV1fjdeDyeCkL94x//0A033KAlS5bo3Xff1eLFi1N/v3///nUCWEmbN2/WW2+9pcMOO0y//PKLHnnkkazfK2n69Onq3r27/vrXv+rcc89NrUM2Z84cDR48WP/617/q/M6OO+4oyTorxMrUqVO1fv36VJZTr169tHnzZk2aNCmVddmrVy/Nnz9fJ5xwgmbOnJlTFlc2ds+R6WzdulUnnnii7rzzTp177rl64IEHJG17Et0zzzyjW2+9VRs2bEi9f8SIEfrrX/+qK664IhWEGjBggDZv3pzKsrFTx2Q97dTRjnTHopP9QZMmTbR69eqcMqtz+e7XXXedHn74Ya1atUoTJkzQwoULVVlZKWOMzj77bB1xxBFq2LBhQX/bqm3kc5wA8BeCUAB8qbKyUhMnTtSZZ56pTz/9VM8884zat2+fGmgnL3waN26sdevWZf285OBmzz33zPre5Ge3adPG8vXdd9+9xvvyNWfOHP3+979XvXr1dPjhh+ukk07SwIEDNXToUG3YsEFPPfVUTp+XLsMrOb0oXVp8kyZNagz+ctlW2SS30ZgxY1KBNru/07p16zqL4darV08tWrSoM3Us22e1adPGMsss131ZvW5WrNpM8ncOO+wwzZgxw9bfSXJ7WkFyalLr1q0tt0+672mlWMeN0/Jpo278/VzaR/KYrlevXp3F6jMF+dK1J6ePk3TGjx+v8ePHa6eddtKxxx6rX//617rqqqv05ptv6sgjj8ya2ZG8cE9eqFsZM2aMli1bpj/+8Y+666670i5I3rNnz7Sf0bJlS1133XWaMWOGunbtWmfK0QUXXJD2d7t166abb75ZK1asUMuWLfXUU0/p1FNPzfi9qps6darOPPNM7bDDDurcubNOPfVUDRw4UC+++KJWrFhRZ2pcclukC2rUtmXLFk2aNEmnnnqqWrdurV69emnKlCnauHGj5s+fr0WLFumkk07Sp59+qsaNGzuaBeWUn376SX/+85/15z//WQcccIB69OihK664QgMHDlSTJk1qPERgyZIlGjdunH7729+qffv2atasmQ499FD961//yumGhtOyHYv5nC9q++mnn9S8eXM1atQoryn+mdSrV0/xeFxLly5Vp06d6twwSWZ0uSXX4wSAv7AmFABfmzFjhkaOHKm9995bN9xwQ+rnU6dOlSR1797d1uck33/KKaeksq3SST51pvZd8qTkxcunn35q629nU1VVpU8//VQPPPBA6uLm7LPPrvG6ZO8usZXk1BWrtXgOOOCAOhetlZWVmjFjhtq0aaMjjjjCVv3T1W/OnDlavXq1jjvuONtrQyS3a3LNkuqOP/74nNaYyLQvd9ttNx1xxBHauHGj7WlOmepWWlpquU5Yrm21mJLbx6re++yzT07rN2Xa1vXq1Ut9/0KPm0KPh9ryaaNOyqd9ZDqmrdZhysbp4ySbyspKlZeX68Ybb9S9996rhg0b6rTTTsv6ezNnztSWLVvUoUOHtO/ZsmWLnnzySe21114688wzddlll2ndunV64YUXbNdv//33V7169fTee+/VCUDtueee2n///S1/r1mzZnrxxRf1yy+/6MQTT9Tzzz+vU045RX/5y19s/+2kn3/+WVOmTFEsFtN1110nadu6a7Ult0UuU6eTF+gXXHCBDjnkkBoX7B988IHKysrUu3fvGu/Nxunj0q5vvvlGTz31lHr06KF169ZZbqNHH31U0ra1wpIZRnafklhsTp4vpk6dqtLS0pyCoHa1aNFCTZs21eTJk+sEoHbeeefUFF+32T1OAPgLQSgAvjdkyBBt2rRJN910UypgMnz4cP3888/6v//7Px100EF1fqdBgwY1Lqw//fRTffLJJzryyCMtLwiaNWuWShv/5JNPNGfOHHXv3r1OZsQ555yjE044QXPnzrVcR8euTp06qXHjxnV+nsw8qb5YaXLRXrsLz9Y2Z84crVmzRmeddZZatmyZ+nmjRo00dOhQy99J/vyJJ56oU8+SkpIa2S6Z6ldVVaVhw4Zpjz320NChQy2n0bRp06bGejvJ9b/++te/1lgHomHDhrrvvvuyfd0ann/+ef38888aOHCgDjjggBqv3X333dptt91S77Fj8uTJmjNnjnr06KE+ffrUeO3aa6+tsx6UJI0aNUqrV69WLBazXL+spKTEMqhVDKNHj9Yvv/yigQMHaq+99qrx2n333ZdTUGbs2LFauXKlLrjgAh177LE1Xrv++uu1//77a8KECQWvB7V69Wpt3bo17+OhtnzaqJPyaR/JtcIuv/zyGj8/8cQTM2bppOP0cWKle/fulgEKqz4vnbVr1+rzzz/XYYcdlnFK3ogRI7RlyxYNHz5c+++/v0aPHm25gHI6yWlpxx9/vEpLtw+Vd955Z40cObLOujdJo0aNSt0w+eqrr3TVVVdp/vz5uvvuu21lhnTp0sXye2XaRscdd5y2bNmijz76yM5Xk7R9jadbbrlFpaWldYJQTZo00dVXX62qqiolEglbn1noecqu/fbbz3KKcNOmTdWwYUPLaYkTJ07U3Llz1a9fP51//vmaM2eO7e9VbE6eL5LT+h988EHtsccedV63+pldFRUV2rBhgzp37qydd9459fP69evr4YcfrjHWcFo+xwkAf2E6HgDfW7JkiR5//HFdf/31GjRokG677TbNnTtXl156qZ566inNnDlT77zzjubNm6cGDRpon332Uffu3bVixYoaF44XXnihEomE7rvvPp1zzjlKJBIqKSnRQQcdpJNPPlkdOnTQ999/L2nborUTJkzQSy+9pNdff11z5sxR+/btdfbZZ2vt2rW6+OKLC5oqddFFF+mKK67QpEmT9M0332j16tU64IADdOaZZ2rTpk166KGHUu+dMmWKNmzYoOuvv17NmzdP3XUcNmyYrSc9bdmyRQ8//LDuvPNOffbZZ3rttddUv3599e7dW0uWLLFc++nJJ59U9+7ddfHFF2v+/Pl6/fXXtWLFCu2xxx468cQT9dRTT2nw4MG26nf33Xfr8MMP11VXXaUzzzxTH3zwgRYvXqxWrVrpoIMOUrdu3fTXv/41lWUxefJkDR06VNddd52++uorvfLKK/rll1901llnafXq1ZZP+Unn+++/1/XXX69HH31Un376qV5++WWtWLFCPXr0UNeuXTV79uycsxT++Mc/asKECXr11Vc1ZswYff311zriiCPUq1cvvf3223UyOlatWqVzzz1Xr732mqZOnaqJEydq5syZMsZo7733VpcuXdS8efPU2i7F9O233+rOO+/Ufffdpy+++EIvvfSS1qxZo969e6tZs2apC347NmzYoEsvvVT//ve/9eGHH+rf//63Fi5cqM6dO+uUU07R0qVL6zy1LB8bNmzQtGnT1L17dz3//POaN2+eqqqqNG7cuLynr+TaRp2UT/sYNWqUbr75Zt122206/PDDNWvWLLVr106nnXaaXnvtNZ177rk51cGN46S2oUOHas8999Qnn3yi7777Tj///LM6d+6sXr166bvvvrO9jsurr76qo446SieeeKLGjx9v+Z5FixbprbfeSmVE5Jr1snz5cr344ou64IIL9Pnnn+u9997Tbrvtpt69e2vTpk367LPPUov6J/3pT39Snz599Morr6T+3vr16/W73/1OU6ZM0Ysvvqgjjjgi7Zo70rY1Dk888UR9/PHHWrBggdavX6+OHTvqtNNO06pVq+ospN24cWMdc8wxmjhxou2n/knbMt9WrVql1q1ba+3atTUegJAMSLVu3VrTp0+3PQWzvLxcVVVVuu+++3TIIYeksvXuuece2/Wy4/DDD9eYMWM0ffp0zZ49W0uWLFHLli111llnaYcddrB8+q20bVH6//u//5OktAuS+4GT54sJEybo7rvv1h133KHZs2dr7NixWrRokVq3bq3jjz9eU6dOTT2NNlfGGA0dOlS33nqrZsyYoddff1077LCDevbsqWbNmumDDz6o8aRFJ+V6nADwJ0OhUChel6R0r7dq1cqsX7/erF+/3rRq1Sr180MOOcSMGjXKfPfdd2bTpk1m5cqVZsaMGebxxx83PXv2rPM5zZo1M/fff7+ZM2eO2bhxo1m9erX57LPPzJAhQ8yOO+5Y473t2rUzzz77rFmyZIn5+eefzZIlS8xzzz1n2rVrV+dzY7GYMcaYHj161Hlt3333NcYYM2rUqNTPjjnmGPPoo4+azz//3KxcudJUVlaa+fPnm6eeesp07NixzmeccsopZvLkyWbdunWpbbXvvvtm/dvVy1/+8hfz9ddfm82bN5vvv//e/O1vfzM77rijWbBggVmwYIHl7/Tt29ckEgnz008/mY0bN5pvv/3WPP/88+bII4+0Xb9kufDCC837779vVq5caTZv3mx++OEH8/HHH5tbb73V7LXXXnX+9jXXXGNmzZplNm3aZBYvXmyGDx9uGjdunLG+6Urv3r3Nu+++a1atWmU2bdpk5s+fb/72t7+Z3Xbbrc57y8vLM7ZFSaZTp07m7bffNmvXrjVr1641EyZMMMcdd1zWdjBs2DAzb948s3HjRrNmzRoze/Zs8+yzz5qzzjqrxntHjRpluQ2TpUePHsYYY2KxmO269+vXzxhjTL9+/eq8duGFF5pPP/3UbNy40VRUVJjnnnvO7L777mbGjBlm9erVOW3ro446yowZM8ZUVFSk2tqjjz5qdt99d9vfI1s54IADzLhx48yPP/5oqqqqanyvbJ+Zqf3k2katSr77IJf2Icn86le/Mm+99ZZZu3atWbdunSkvLzcnnHBC2r9h57hx6jixqsN5551nRo8ebebNm2fWrVtn1qxZY2bMmGGGDBliWrRoYXvft2zZ0mzatMn861//yvi+Pn36GGOM+c9//pNT20qWHXfc0QwZMsTMnz/fbNy40SxcuNAMHz7cNGvWrM5379Spk9m0aZNZsGCB5bYaOHCgMcaY1157LeM26t27t3nqqafMzJkzzU8//WTWr19v5syZYx5++GGzzz771Pncyy+/3BhjLNtHtvLKK68YY4x5880367w2Z84cY4wx999/v+XvGmNMeXl5nZ//4Q9/MJ999pmprKysc07P1Kfl0g/sueee5p577jGTJk0yS5cuNZs2bTKLFi0y48ePN6eeemra32vSpInZsmWLqaysNM2aNbN8Tz59h9X5PdM+tnss5tofZCqnnXaaefvtt83KlSvNpk2bzMKFC82YMWNqjJHy+e716tUzN9xwg5k5c6aprKw0S5cuNc8++6zZZ599LPd3um2Va9vI9TihUCi+LJ5XgEKhUCgUis/KrrvuaiorK83kyZM9rwuFUr08/vjjZuPGjaZ169Zp35MMCF966aWe19etMn36dDN79mxTWlrqeV38XpLBjGeffdbzulAoFArF+wpQKBQKhULxqLRo0cLUr1+/xs/q1atnRowYYYwx5uabb/a8jhRK9dKqVSuzZs0aM3ToUMvXd9llF7N06VLz448/1slwDUs566yzjDHGnHHGGZ7XJQjlrbfeMsYYc8wxx3heFwqFQol6YU0oAAAi7JxzztFdd92l999/X4sWLVKzZs10wgknqH379vrss89Si9sCflFRUaELL7xQHTt2VElJSWp9vtNPP12dOnXSmWeeqTZt2ujGG2+0XKg6DHbccUddf/31euutt7yuim8dcsgh+vWvf63OnTvr9NNP1xtvvFFj/SsAgHc8j4RRKBQKhULxphxxxBHm1VdfNYsWLTKVlZWmsrLSzJw509x9991ml1128bx+FIrdklxbZunSpeaee+4xJSUlnteJ4l1Jrsn0008/mZdeesk0b97c8zpRKBQKRabk//8fAAAAAAAAwDWRno5XUVGRehw7AAAAAAAACrfvvvuqVatWdX4e6SDU999/r6OPPtrragAAAAAAAITG9OnTLX9eWuR6AAAAAAAAIIIIQgEAAAAAAMB1BKEAAAAAAADgOoJQAAAAAAAAcB1BKAAAAAAAALiOIBQAAAAAAABcRxAKAAAAAAAAriMIBQAAAAAAANcRhAIAAAAAAIDrCEIBAAAAAADAdQShAAAAAAAA4DqCUAAAAAAAAHAdQSgAAAAAAAC4jiAUAAAAAAAAXEcQCgAAAAAAAK4jCAUAAAAAAADXEYQCAAAAAACA6whCAQAAAAAAwHUEoQAAAAAAAOA6glAAAAAAAABwHUEoAAAAAAAAuI4gFAAAAAAAAFxHEAoAAAAAAACuIwgFAAAAAAAA1xGEAgAAAAAAgOsIQgEAAAAAAMB1BKEAAAAAAADgOoJQAAAAAAAAcB1BKAAAAAAAALjOsyBULBaTMaZGWbp0aZ33LF68WJWVlSovL9evfvWrGq83adJEzz77rH766Sf99NNPevbZZ7XbbrsV82sAAAAAAADABk8zoebMmaM2bdqkyqGHHpp6bdCgQbrxxhs1cOBAHX300aqoqNCECRO0yy67pN4zevRoderUSaeeeqpOPfVUderUSc8995wXXwUAAAAAAAAZ1Pfyj2/ZskXLly+3fO3666/X/fffrzFjxkiS+vXrp4qKCvXt21cjRoxQhw4ddNppp6lbt26aOnWqJOmKK67QpEmT1K5dO82bN69o3wOwEovF6vxs8ODBHtQEcAdtHAAA7/j5POznugHwVokk48UfjsViGjRokH766Sdt3rxZ06ZN02233aYFCxaobdu2+vbbb3X00Ufrv//9b+p33nzzTf3444/q37+/LrnkEj388MNq3Lhxjc9dt26dBg4cqKeffjprHaZPn66jjz7a6a8GSJKMqXtolZSUuPK3ONHDC8Vs4wAAoCY/n4e9qBvjYcBf0sVbPMuEmjZtmvr37685c+aoVatWuv322zV58mR17NhRbdq0kaQ6WVLLly/XnnvuKUlq06aNVqxYUedzKyoqUr9v5fLLL9eAAQMkSS1atHDq6wCeisfjdX7mxUmXkz8AAAC8wHgYCAbPglDvvPNOjX9PnTpV3377rfr165eaXueGkSNHauTIkZK2ReYAOMcvJ38AAADAC4yHgcw8XROqug0bNmjmzJk66KCDNHbsWElS69attWjRotR7WrdurWXLlkmSli1bppYtW9b5nFatWqXeA/hN8s4IJyKEFW0cAADnBCGrxqqO+f6e374bAOd5tiZUbQ0bNtSCBQv02GOP6e6779aSJUs0bNgw3XfffanXKyoqdPPNN6cWJp89e7a6du2qKVOmSJK6dOmiyZMnq3379rYWJmdNKLjJai58ktNz4v2yJoDb9WCw4i/FbONALugrAIRFprGVn8d/VmrXzen6W31e9aykYp0H/LJfAK+li7d4FoT6f//v/+mNN97QwoUL1apVK91xxx064YQTdOihh2rhwoUaNGiQbrvtNl1yySWaN2+ebr/9dp1wwglq37691q9fL0kaP3689tprr9QaTyNGjNB3332nPn362KoDQSi4KRaLqaysTGVlZXVeIwjlz89HbpIX+lZp5/F4nIt+eIa+AkAYxGIxy3Nssj/zS8A9XfCn9hg4kUjUqF8xglBOfXah9eAchCjyXRDqxRdf1AknnKAWLVpoxYoVmjp1qu644w7Nnj079Z5YLKYrrrhCTZs21bRp03TNNddo5syZqdebNGmiYcOGpYJO48aN07XXXqs1a9bYqgNBKLgt3cnQ6RORnwchBKHCr1jtHLCLvgJAGATl/Jquz83WF+fbV6cb91b/eabgnds4BwHb+C4I5QcEoeC2oAwe0sk1uOV2MIyTuj8FvZ0jfOgrAISB386v6cZ5xQ5C2fk9p88DuYxx/XJzGPAaQSgLYQ5C5dv50Wk6K116stPb1K395rcLOb/VB9tkmy4AFBt9BYAwKNY40q50fWuuwamkfMevXgShOK8AuSMIZSHMQSg37yzAvmJtT7f+jt/ag9/qg+3YN/AT2iOAMPBbX5ZrfbwcnxKEAryXLt5S34O6AEBerLJtgCghW9Ue+gog3OgLkUksFlMikajxs9r/BuAdMqHIhHLk92CtWIOkqGRCwb+4ICgOjkkAiE5f6Ldza67b3Y3621kCwI32EZU2B2t+OxaDgul4FghCOfd78BZBKCAawnhM+nFg58c6AdgujH1hEPhhu9tZJ8vpp+4V8pkIB/Z/fghCWSAI5dzvwVtu7TcuxAB/CWMf7cfv5Mc6AX5W7PECx6g3/DAudHM9qEy/54fvDu/Q5+SHIJSFMAeheDpetNAxAtEQxmPdj9/Jj3UC/KzYxwzHaHS5mQlFu0I6tI38sDB5xOQbOCLgFEwswgtEQ5COdW5qAHBLkPpCuK92ECrZPsrKylI/S56TOA8B3iMTKqSZUAAAeMnuXUM/3l30Y50AP+OYQbFYtTXJmfML7Rjp0DbyQyYUAMeQ4QAAAIAoYzwcHWRfOotMKDKh4KKwnpy4GwApvO07aPy6H+z2E36svx/rBPgZ4wLnhKX/cet7uJkJlWudafdAZixMboEgFNwW1pNTWL8XckM78Ae/7ge/1guA88ISOPGDsPSdbn2P8vLyGms9Zfpst7dlWPYV4Bam4wEhwCAPAAD4DWMRFItVAIqpUkCwEIQCAsTqJOvEwI/gFgCncVEAACiGdGPWdOchxr2At5iOx3Q8uMjpNF230n7dnjOPcCIN3R/YDwAQHtn69KCMweycm/L5Lk6c85w6bwZlXwBeYU0oCwSh4LawBqEAiXbjF+wHAAiPbH16UPp8O/XM57v4KQgFIDPWhAKQE+7uIBumW/kD+wEAwiMsfXpYvgcA55EJRSYUXBTkTCgr3CWCFQKWAAAURxCyeOyOC/L5Lk6MOYKwDYEwYDqeBYJQcJvTJzm3LvYLCUIRgACDOQDIH+dR5CII51y7dfTqu7j9dzmmgW0IQlkgCAW3BWGgIFmfLK3SqP00gIB/0AYAIH/0ochFENqL34NQbgaJYrGY7TE0EHYEoSwQhILbgjBQSMfvAwj4B20AAPJHH4pcBCHLxm6bzve7+HkbpJtdwDGNKGJhciAkinXiZUFJAAAAf/FLsMUJ+X6XdGPUMG0bIMzIhCITCi5y4+6m3+6Y+q0+KD7aAADkjz4UYeN2m/ZztpGf6wYUG5lQgAfIJkIU0M4BAEAS4wIAmRCEAlwUhbRgBhqIQjsHALdwHkXY+Hlc4MV6UhzjQE1Mx2M6HgLGiRRnPy/oCAAAAKST75S3Yjy5jjE2sB1Px7NAEApucfME5EQQKorrTzAocAfbtbjY3gAQPUHt++3WO9fvl28wifWagOIiCGWBIBTc4maQJ5cTdbr3RjEIFcXvXAxs1+JiewNA9AS177db73y+X7bfsRoDp5sWF4RtCQQRQSgLBKHglmIPFnINNgV1MFOIKH7nYmC7FhfbGwCiJ6h9v5tBqGw3ZdNlPVkJwrYEgogglAWCUHBLsQcLuQabcqlfUFPAawvqAM7v2K7FxfYGgOgJat/vZhAqn79tJR6P2xrXhmU8DBQTQSgLBKHgljAFoYI68KktLN/Db9iuxcX2BoDoCWrfH4QglN2/E9R9AHgpXbylvgd1gQeI3qM6HhULAAAAv0peuzh9vcIYGPAeQaiIsOpwCUK5x+8nuCjue7/vk6BiuxYX2xsAoieofb/deiffV/39yf/PZcxqddO9tiiOgQG/YTpeRKbjkUIaHPlkraXbv05kwNF2AAAAosOrGRSFjjntTMHLdwzLeBjIHWtCWSAIRcfpR248IcTp+pBZBwAAEE5eXTe4EYSqPWbNd7zKeBjIHUEoCwShCEL5kd/2lVWAy+qkS3sCACB3rNsJvwlTEKr27+d7vDEeBnJHEMpClIJQDHCCw2+ZUFb8FigDACCoOKfCb7xqk4WOZzNlKyU/x8nvxrELZEYQykKUglAIjnxOaMU+CXLSBQDAGZxT4TdBbZOZ1oRK1p8gFFA86eItPB0PQEZ2njQCAAAAeMnqKXtOYTwMOIdMKDKh4DOZUpHTvebmnRg7Txpx8u8BABAlZFPAb4qxzEOxH6pTaCYU42Egd0zHs0AQCsXi1Ik23Ymz2EEongaCJNabA4DCFHIOpw+OhqDu50z1LvbY1Y0gFONhBPXYLBaCUBYIQqFYnDrRpjsBuvl0Du7Qes/PJzjaBwAUppA+nj44GoK6n90IBtk5XjJ9dr7HW1D3AdxFu8iMIJQFglAoFqeeeJdujrubd2LoXL3n533g57oBQNjRB0dDUPdzsTKSav+eGzfvgroP4C7aRWYsTA4UkROLF+ayqKKbWTFuLO6IcIvFYr7J1AKq83NWIQBUx0LY+XOjXw/6eJjzH/yETCgyoeACO4sXZouS210A0c5nIdj8fJclXTv1S/2A6vx8LAH5oE2HV7ZxYBD2s1eZUKiL7eYOtmtmZEIBIZBu/ad8cVcEAArnt77Ub/UBgNq8zCyijwS8RSYUmVBwgZ0naGQ72RVjEXKi98Hg5/0Ui8VcXRgfcJJbx5LfjlG/1Qfu4WI6vLKNJYOwn93oi5z4zCj2kVH8zsVAH5wZC5NbIAgFt7h1grQSj8fz7uw4IQWD309wtCMEBUEoAEERhuPYje/gxJgol3r5fQxmVxjaE4KHIJQFglBwixMdvd2n4xVyAuGEBCfQjhAUUQ5CFXLDAkDx+a1fyYdfv0Mu9fLrd8hVWL4HgoU1oYAiKnSee7q7LkF/MgfCiXaJoIhyWyUIBQRLGNZMinKf6zfsC/gJmVBkQsGH0t2tcPouRlhSjAHAS37rS1mrDUAhvMyaKUZ/msvfIIMIyB/T8SwQhIJfFSsIBQAIJ84XAPLlZf/ht77Lb/UBgoTpeEDAWd21AQAAAIKOcS4QHQShgCIqJMWYudwAAACozm/Tge2qXW+/jnP9Wi8gyJiOx3Q8uMjOCdYqpdcq9TfdZwRhoAEAKK6gXpgCyI0b08Xcespz9T4o01i30L8NwB+Yjgd4IN+7J8nf4+4LACAfBJwA5MuJ8afVZzjZLxFoB4KLTCgyoeAiO3d5Mt3dsfv7nIgBAADc4edxll8Xzs5WLztj3GQgy2pbp/t8P+8rIGp4Op4FglBwQ/WTn507SZkGCnan8/l1AILwYpC3HdsCAMLdF3o5zspnWpsfxoBW9YrH46m6p3u9ukzthydJo1Bh7rP8giCUBYJQcEMuc9yl3E6MnHDhF7S57dgWABDuvtDL75ZPRpEftnu68XCyboXWmzExCkVbcR9rQgE+wTpPAAC4izvciIqgjivdqLfVcY9goM+OFjKhyISCw7KlFxfSoeZ714eOHU7j7tF2bIv80TfBLRyXxRfmbe7nTCi/isVitp8KnY9cZh64vUg6CudFOw/qsRUkTMezQBAKSU5eCBXaoWWqS7rXgpqqjeCiTW0Xtm1RzMBQ2LYd/IO2VXxh3uZRCUI53f+7WXeruuaSXRWWthkWBKHCiSCUBYJQSHKyE3JrjrtEEAr+QZvaLmzbopjfJ2zbDv5B2yq+MG9zL7M2g9wnFzuAZhWEisfjrmZkwRkEocKJNaGAIkl3F8aJAQzpxPCLoK5B4Qa2BQCEuy/0cqyVabv6fUpztjbhZP3T/a3BgweHum0if7QL75AJRSYUVJxIuN2/kel96V4L6uN7AfhPkO+6A0l+vzgHnBDkzCWn/166NVntzBiA9+izw4npeBYIQiEp6EEop/42ABCEAoBgIAhl77M41wDeYDoeEGGkmwLwI/omAECurLJmMuFcA/gLQShA/jo55VqX6ifidGmrpLMCsKuY/SF9E6KOKSjwEz+NhzOxW89YLKbBgwdzTAE+w3Q8puOhSJxIBbb6jEI+L4lBsPPYptuwHQD3cHwFH9OEUIigtx8nl5lw+il49K9A4VgTygJBKBSTEyezbEGo6iffXD7b60FMGE/0Xm/TYmFRfHghjH1GPji+go99iEIEvS/Mt/7pjptMi5PnimMTKBxBKAsEofIT9BNekFXf9tlSkXM5UXp9ovX677shjN/JSrbvGZXtgOKiXW3Ddgg+9iGQu1yCUMnXnPob2XCdBGxHEMoCQaj8MGDyh1yyopLSnQS93qde/303hPE7WUl319Hq/5PCuB1QXFE5vrJhOwQf+xDIXbpAT7YgVC4BIp5IDRSOIJQFglD5oXP1h2xBKCvp9pPX+9Trv++GMH4nK062Q8CuqBxf2bAdgo99CDgnWxAql+ONIBRQuHTxFp6OB8eQfuqu2ts3kUgokUhICs7TTAAAwHZunL8ZjyGKYrGYEomEysrKvK4KIo4+ODsyociEylku87CjGvl3o/PJtH3tZqNY7Y9YLFbnhJ1IJIraWYax7YTtBJRr6ntt+S6aHyVhazNuCmOfkQ/aDKxwfCCKMo1Hcs2EKmRszPEH2sB2TMezQBAqPwShsnNjW2T6TKsLEbtr8fhh4UUupPwvXTsppO2hpjD3oU4f4/QZQHph7kuAdDKtUZk8P9g9Ngo5hpx8Qh+CiT54O4JQFghC5SeXjIioHnDFDkIV8v5sC0v7dTFzFFcx1lGIujBvtzB/N8BvON4QRXbavd0buoXcTIvFYtyMizj64O0IQlkgCOUsDrjt/BCEspspkG06FYEGSLntb7JU8hPmY8qP3412irDy4/EGWHGyH7bT7jP9vXzHw/nWBeHF/t+OIJQFglDOYkC/nRudj1trNxGEgh3sb/eFeRv78bv5sU6AExiPISgK6Ydrt/OysrLUA3uScmn3BKHgFPrg7QhCWSAIBbe4dfIpVoaVnc/nBBst7G/3hXkb+/G7+bFOABAlTq+9VEgfThAKcF66eEt9D+oChJ4bj1x2S/W6BqneKC7ahvvYxkBuuNsM+F+Qj1POy/4V5HYFMqHIhEKgZLuzUmiHzLo/ANzgx/6CO9XBxz4EvGWnb890nPo9Eyrfz/PjOS9s6P+Dgel4FghCIWiydbiFdsicNAFEBQPY4GMfAt4q9Il0fgpCMQYOFvr/YGA6HoCs7J5sOVEDCDqmWQCAt/zUD+czjmU8DOSHTCgyoRAg2Z6QV6y7Atx9AAB4jXMR4K1CM6EKkQwAVR8XJ5+OV6xAEH2Qd9j2wcB0PAsEoRBE+aY1O3m3JgodP3e3EEa0a4QJ7Rnwlp3xoNvHqVUdqmdYudknRGE87Ff0/8FAEMoCQSgEUb5BKCdPlFE46UbhOyJ6aNcAAKf44ZxiVYfq3KyPH74/4GesCQUEDBF+AAAA+JXTazox9gWigSAU4FP5nNj9tMAjwotBIrxGGwQA7znd79odx+byd2OxGOcHwGeYjsd0PMdwUZBZrtsnW3pxdXZSf51MGY7CvibFOj22TXCFZd+F5XsAQKGCOiazqrfdIFT1/t7OeNmt80NQtz1QLKwJZYEglLO4KMgs1+2T7aSa66KL7J/csL3SY9sEV1j2XVi+BwAUKqj9YS43W2ur/v2qB4LSBbGsfk6wCHAfa0IBIZPrybNYU/XCcleIqY0II9o1ACBMao8xrc5zxQ5ChWUsDLiFTCgyoRwT1DsxxZLr9sl2Z8ev25Z2EH7sY3iNNggA2wS1P7Sqt90AUiEzCex8RqGCuk8ApzEdzwJBKGfR4WZWyPYJ0rYNUl2RH/YxvEYbBIBtgtof2q2308tZ2PmMQgV1nwBOYzpeSJHuGQ1Bn0LDk0nCJejtEcFHGwSAaMi1v7ebTVVsjIWB7ciECngmlJ8i7QTEMovC9onFYmlP9NwBAgAAcFZQx5fFrHexr5fSZWMxFkbUMB3PAkEowFmZUqBplwAAACi2YgfqCEIB2zAdDwAAAAAQKUHIDAOipNTrCgAAAAAAACD8yIQKOD8stAcAAAAAsMY1G7Ada0IFfE0owE9YEwoAAABRxpq9wDasCQXAdYlEQmVlZV5XAwAAoGiC+oQ6APACQSgAjiEABQAAosZqqhVBKGthD9hZfT8ANTEdj+l4gGOYjgc3hX3gCgAIJqZf2VfItvL7OCAWi6Vd+4n2gChKF28hCEUQCnAMQSi4iUE+AMCPOD/ZV8i28vt2ZhwM1MSaUAA8Y3VXyO93swAgKOhPAcD/6KuBbXyTCXXLLbfovvvu0/DhwzVw4MDUz2OxmAYMGKCmTZtq2rRpuuaaazRr1qzU602aNNHQoUPVp08fSdK4ceM0cOBArVmzJuvfJBMKsM/OiTPdHSCruz9+v5sF/6HNBA8D7uLg2AC8RV9nXxQzoeLxuAYPHuz7+gNOyxRvMV6XY4891nz77bfm888/N8OGDUv9fNCgQWbt2rXmt7/9renYsaN56aWXzOLFi80uu+ySes/48ePNV199ZY477jhz3HHHma+++sqMGzfO1t+dPn2659+dQglKsWLnPVbvs/t5FEr1QpsJXmGfsZ0pFAqleimkv/J7X5dOUOpPoThd0sVbPJ+O17hxY73wwgu69NJL69xFuP7663X//fdrzJgxkqR+/fqpoqJCffv21YgRI9ShQweddtpp6tatm6ZOnSpJuuKKKzRp0iS1a9dO8+bNK/r3gT9xhwoAAADInZPj6HQLdwOIDs+DUCNGjNArr7yiRCJRo4Nr27atdt99d7333nupn23atEkfffSRunbtqhEjRqhLly5at26dJk+enHrPJ598ovXr16tr166WQajLL79cAwYMkCS1aNHCxW8GP+HRuSg2Ap/OY+C6DW0LAFBMTo6jCzlfMQ4AwsHTINRll12mAw88UBdeeGGd19q0aSNJWr58eY2fL1++XHvuuWfqPStWrKjzuxUVFanfr23kyJEaOXKkpG1zFIEo42LWPQQ+ncf228artkV/AQDwEuccIBw8C0K1a9dO9957r44//nht2bLFq2oAkeb0xWwikVBZWVnefxuAfxFY9S/6UwDwP/pqYBvPglBdunRRy5YtNXPmzO2VqV9fJ5xwgq688kp17NhRktS6dWstWrQo9Z7WrVtr2bJlkqRly5apZcuWdT67VatWqfcAcIadE6fdAJTExasVMk0QNgy4i4N+Asgf514UC+0K2KZE21YoL7rddttNe+21V42fjRo1SvPnz9e9996rmTNnasmSJRo2bJjuu+8+SVLDhg1VUVGhm2++ObUw+ezZs9W1a1dNmTJF0rbg1uTJk9W+ffusC5NnemQgwoUBhjXj8KNirT6v0M8Mqny2rdP7A+HkVTuhfQIII/q27BhH2xOLxSxvvtCeEFWZ4i2eP7ovWcrLy82wYcNS/x40aJD56aefzG9+8xvTsWNH8+KLL5rFixebXXbZJfWe8ePHmy+//NIcd9xx5rjjjjNffvmlGTduXEGPDKRQolKcflRstkfTRqnksx3YdhQ7xat2QvukUChhLPRtFCcL7YlC2V7SxVs8fzpeJg888IB23HFHPfLII2ratKmmTZumk08+WevXr0+9p2/fvho2bJjeffddSdK4ceN07bXXelVlAJDENCS4h7YFAID/WGWMAajLs+l4fsB0PESd0+nVhul4BbHafmw7+AXTMQCEEedeOIVxMFBTungLQSiCUIBjOPkWhoEwACBK/BDc5twLpzAOBmpKF2/x9XQ8AOEQi8XImLCBaVYAgCixOu8Ve7zAuRcAiotMKDKhAMekuwMkcRfIDX64gwz4DccFEBxkISFMyIQCamI6ngWCUICzCEIVF4N3oC6OCyA4OF4RJgShgJrSxVtKPagLAAAAAAAAIoY1oQAAAABkxXRXAEChCEIBQARxIQEAyJXTC4mzKDgARA9BKACuY5DpDKvAUb788EQiAEA45Htjg/MOwi6RSHhdBcB3WJichckBx7Ago7ustm/tYJLdAT2LwSKsgpLlF5R6AtWlO3dwTnEX/UUwMA4GauLpeBYIQgHO4uTrLicH+VwwAN7iGEQQEYTyBts3GBgHAzWli7cwHQ+AY+LxOFPvAPgeWQVAfjjHAwAKRSYUmVCAo7hb5x4yoQBn+KH9+6EOgFNoz+5i+wYDmVBATWRCAXCdkwtnw13czQYAILiqj7nI5AQQJAShADgiFosR2HCZk9uXASvCgGl1gD9w/i++6tucfg/ZcL6EnzAdj+l4nqJDDL7kPsw0ACUNGYAb8p2i4oepLZz/ANhVvb+wGm8xzvJOtn0j+WP/+OG8h+jh6XgWCEJ5jw4xuOwEn5LYpwDcEOQgFADkg/7LP+zOAvDD/qHdwAusCQXAUXZT70nRB+A39EsAgEJxLgHyQxAKgGsSiQTTSwD4Dv0SgKAi8BEsiUTC6yoAvsN0PKbjeYrU0OBK9xja2tifANzCOQQA4JUgjYU5X8ILTMcDAAChQkYAAADZcb6EnxCEgqfoEAEA+WJaHQAA2XG+hJ8QhIKn6BABAAAAAIiGUq8rACCY4vE4mWwAAACIJMbBQH4IQgEAAAAAkANmdAD5YToe4LFYLFbnZ0E4qXH3B/BGUPsMAIXj+AcAf6A/zl+JJHvPlgyhdI8MBIopqI9MDdJjaYEwCWqfAaBwHP+Av9gZD3OMhhP9cXbp4i1kQgGAQ7gjAgAAAADpkQlFJhQ8FtQoOplQdQV1XyJYaGdAdHH8A/5CJlR00R9nly7ewsLkAAAAAAA4jDVUgbqYjgcAAAAAEcRSAgCKjSAU4DHukADIBX0GCsVFZ3Bx/MNpVm2K/sA58Xic7RlS9Mf5Y00o1oQC8sKaUHVxYQcgCFjHAkAS/UFhWBMKSI+n4wFwVDL6z12A7Qg4AQAARAfjYSB3ZEKRCQUUJNsdIO7+AIC/kPkAIIn+wBmZxsNsT0QVmVAAHFN92lkikUj9l7tAAAAAiIrkmDiRSKisrMzbygABQSYUmVBAztLdNeNuGgD4H301gCTWsywMa0IB6ZEJBddxEgMAwP/IWgWQxFgdQLERhIJjeMRrtFkFIQEA/sO5GV7ipiWihKA/UBfT8ZiO5xjS+6PDTupxEm0AAAB3BSmww3gRYZA85rIFmWjbiLJ08RaCUAShHBPmQUWQBnfFQBAKAAD/CNIYLEh1BdKxOxambSPKCEJZIAjlrDAPKsL83fJBEAoAAP8I0jglSHUF0iEIBWTHwuQAAACAi8icBoDwo68vDEEoOIaF91AbbQIAECU8pAVAEuPg8KKvLwxBKDiGAw+1O2TaBAAAqI4Lc4RZ9fbNOBiwRhAKQM7i8XjaQSQnXAAAiitIgR3GCQgz2jeQHQuTszA5bGDeb13pFmRkAUYAKAznnOBi0W0gGhgHRxt9vT0sTA4UgMG/fcmLJ7YZAOSHtSYK51UgL0gZSQDq4iZA8QVxm9PXF4ZMKDKhgLxkezQtdwMAID/cYS0c2xBAPuz2HWRCOYf+OrzSxVtKPagLAAAAAAAAIobpeAiVIKZzAgAAAAAQBUzHYzpeqJDOWTzZpuPF43ECgACQB85lhWMbAsgH0/GKj/46vFiYHL5E5lJ4EYQCEGRenp9Y8BQAAH/getV5ZEKRCeUppyPfRNKLJ1smlBSObc+JB2FCe7aP80mw0daBcCj2sWzn78VisbQ3CzhP5M7v/TXjgfyli7cQhCII5SmCUMGU6eRbXRi2PW0qd34fTEQZ7dk+thUAeM+PfXGmG7Fe1w3O82MbDAqCUBYIQnmPIFQw2cmCksKx7WlTuWOb+Rf7xj62FQB4z499MUGoaPFjGwwK1oRCJLCOBoqBTB9ESVDbe1DrDQAonBfnAK5DAHvIhCITylNEloMp3R2g2iffMFzwRSnryykc1/6Vz77xcn8WchFRaL1pxwDgvXz7Yjf7cJ6MFy2MB/JHJhR8iTsG4RKGoBMA/7A6R/CEOgAAUCyMB5xHEAqeImgRHtk66KBOjbH6XmE7GQV13yB3QWq7Vu2ymDgGAMB7fjxvJRIJlZWVeV0NFAnjAecxHY/peEDOgjalx2lh+i6S89+HoFa4eNXeC53uELbjFABgH9PxAO8xHQ9wWVQuvL3OTvADP96V85MwtvsoC2p7D2q9AQCF4xwA+BeZUGRCwSFRueue792fqGyfIGLfwI+40wwA8CPOT4A9ZEKhjqhk7gAAwoE72wAAAMFGJlSEM6HIfnBWVLYnmVDhw76BH9EuAQB+RCYUYA+ZUAA8FZQMhihmCAZl32C7KLRT2iUAAED4kAlFJlQNRPDzF5XtGfa7P0Hdj1EISmC7oLZTAACCLuxjYcApZEIBLiv0rn1QggjxeJwMBR+y2id+bD8A8hOUcwQAAEAmZEJFOBOKAa2/BCmzIUh1zVVQv1tQ6438sL+jh30OAP4Qi8Usb/7RJwM1pYu3EISKcBAK/hKkC4wg1TVXQf1uQa038sP+jh72OQD4B30ykB3T8QA4wiqDDgAA2Ec2OhBMjIPDi365eMiEilgmFAeXfwXljkrYF2MM6jGSa/sJ6vfENuy/6AnKOSLq7B6b7E8geNJNw0viGA42u/0yYzD7mI5nIYpBKAY9/hWUfRP2IFRQ5XpCDEp7A7ANx2ww2N1P7E8geNKNgZM4hoON/tt5TMcDfI4nzqEQ3IEBiq+Yd0M5RwAAgDAgE4pMqMhHbkmpzA2ZUOFAX5A7+grUxnGE2riTDoQXmVDhRv/tPKbjWSAItU3UDxq2SW4IQoUD7T53bDPURptAbawp4g62F/wgWxAqHo/TLgOMNf2cRxDKAkGobaJ+0LBNckMQKhxo97ljm6E22gRqo024g+0KP8gWhJJol1FAf2Qfa0JBEmtKANiGvgAAnFe7by0rK6tzd51MCX8i2wrZVD++GUdFF/u+cGRCRSwTyi/8dKInmp0bMqEQVfQVqI02gWxoI84oxnZkX8GuWCyWNhBBmwG2YzqeBYJQ3vHTid5PdQkCglDwK7eD2/QVqM1PN1TgT0HsN/zYrglCwU8yTcujzQDbEYSyQBDKO3460ftxsOVnYQxC0QbCwe1+JUjtJEh1BcLMT+Mdu/xYZ4JQ4RXE8xVBKMCenINQ3bt3z+sPffzxx3n9nheiGoTyQ2fPiT64whiEoj2GA/txO7YFgs4PYxUnBPFY9GOdi9Ee/Pi9oyCI250gVHj6aLgr5yBUVVWVrScA1Fa/fnDWOo9qEMoPnb0f6gB7ap9kwjgHnvYYDuzH7dgWCLqwtOEgXqiFZdvnKtO+CuJ+DAq/tzerfZ9pYWo/1d1Nft9v8Iecg1AXX3xxzTeWlGjgwIFq166dXnjhBc2aNUuS1LFjR11wwQWaN2+ehg8frmeeecb52ruEINR2BKGQjt1gdJD3H+0xHNiP27EtEHS0Ye+w7etim7jH79s216QMP9XdTX7fb/CHdPGWtGlLzz77bI1/X3fddWrZsqXat2+vpUuX1njt7rvv1pQpU7Trrrs6VF2EHY+2BJAv7kgDAACvxONxrmWAAthemHzevHl6+umnde+991q+/te//lUXX3yx2rdv72T9XEUm1HZErpEOmVDwm3T7i+DUdrRpBB1t2Dv0pXXRHt3j922brn5hXCM1F37fb/CHnDOhatt7771VWVmZ9vUNGzZo7733zq92AEIpKAPZYtzNCsq2CDK253bcoQWQL/pSFFOYzldh+i6Am2xnQs2aNUuVlZXq1q2bNm/eXOO1hg0basqUKWrUqJF+9atfuVFPV0Q1E4qLYeTC6k6H1UnWqg1xl2Q7toVz2JZA+DFWgZ9w3okuu+NgKVp9FH007Mh5YfLaLrvsMj3xxBOaOXOmHnnkEc2dO1eS1KFDB11zzTU6+OCDdeWVV+rJJ590tOJuimoQCshFIQMvBm3bsS2cw7YEABQTF9zRFfVpd0AhCp6O9+STT2rnnXfWkCFD9Oijj6YOyJKSEm3cuFE333xzoAJQADKzGnABfkC6OwCgmAg4RRNjYcAdtjOhkho3bqyTTz5Z+++/vyTp22+/1YQJE7RmzRo36ucqMqGA9DItSE4mVO7YFgAAAMHhxFgYiLKCM6GS1q5dq1deecWRSgEAAAAAACAacg5CAX7EXH1nOZV+zLSp7dgWAAAAAKIu7XS8iRMnyhijU045RVVVVZo4cWLWDzPG6KSTTnK6jq5hOl54MNXJGcngU7aACdsWAAAAYZZuOl48HudmN2BDztPx9t9/f23dujV1sbn//vtnnBcLIPiyBZ8SiYQSiURR6gIAAAD4DQEooDBpg1Bt27bN+G8A0VNWVqaePXt6XQ0AAAAAQACVel0BAAAAAACCwKm1U4GoIggFAAAAAIANPGwGKAxPx0MocDIAEEY8+RMAAABhQhAKocBFmTNqB/MI7gHesnMM0v85h6AfAACAu0okRfaRd+keGQhEXfJCzOoCOPnETPgDF83hZueptByTzrHa3mxfAIimTOdgzg1AduniLQShCEIBdXDSDQ4umsONIFRxcTwBQDAU4yYc42GgMAShLBCEAqxx0g0OLprDjSBUcXE8AUAwFKO/ZjwMFCZdvCWvNaF23HFHNW/e3PLgW7RoUT4fCQAAamGdNiC6mG4NAP5Bn+wc25lQJSUlGjRokAYOHKg2bdqkfV/9+sFZ65xMKMAad36Cg8yNaGF/u4vtCz+hPQLpkQmFYqNPzl3BmVD333+/brrpJs2cOVOvvvqqVq5c6WgFAQRDLBYj6g94hEwod7F9AcA5fskc8Us9AGxjOxNq8eLF+vzzz3XGGWc48oevvvpqXXHFFdpvv/0kSTNnztSQIUM0fvz41HtisZgGDBigpk2batq0abrmmms0a9as1OtNmjTR0KFD1adPH0nSuHHjNHDgQK1Zs8ZWHciEAqzFYrGMF2NE/f2DgRUAFM6PfSl33RF0brbhXD4733qUl5errKzM8jWOxeihT85dwQuTV1ZW6vrrr9eIESMcqVCfPn30888/a/78+SotLVW/fv00aNAgde7cWTNmzNCgQYN0++23q3///po7d67uvPNOHX/88Wrfvr3Wr18vSRo/frz22WcfXXbZZZKkJ598Ut9++20qKJUNQSggPVKQAQBRkcvFRbECVlzwIOjcbMO5HIf51oOxcLTVbmNWN+hpB5kVHISaNm2axo8f7+pdoZUrV+rWW2/ViBEjtGTJEg0fPlz33nuvJKlRo0aqqKjQTTfdpBEjRqhDhw6aPXu2unXrpsmTJ0uSunXrpkmTJql9+/aaN29e1r9HEApIjxNvYfx4Vx0AYK0YWRVu1gnwI7+0YYJQyAdPKC5cwWtCDR48WP/85z/1z3/+Uz/88IOjlSstLdV5552nXXbZRZMnT1bbtm21++6767333ku9Z9OmTfroo4/UtWtXjRgxQl26dNG6detSAShJ+uSTT7R+/Xp17drVVhAKANxidbeEIBQAwC7WKAMAf6ndL3PTOT+2g1CdO3fW999/r1mzZum1117TggULVFVVVeM9xhgNGTLE9h8/5JBDNGXKFDVq1Ejr16/Xb37zG3311Vfq0qWLJGn58uU13r98+XLtueeekqQ2bdpoxYoVdT6zoqIi49P7Lr/8cg0YMECS1KJFC9t1BSAlEgmvqwAAQCRwIYOg80sg1S/1QPDV7petsqXou7OzHYSqfvBeeOGFlu/JNQg1d+5cHXHEEdptt9107rnn6plnnkm7+JtTRo4cqZEjR0ralh4GwD63j08AAACEg18uxv1SDwDb2A5CtW3b1vE//ssvv+ibb76RJH366ac6+uijdcMNN+iee+6RJLVu3VqLFi1Kvb9169ZatmyZJGnZsmVq2bJlnc9s1apV6j0AAABANmRKAABQHLaDUAsXLnSzHpK2rQ3VsGFDLViwQEuXLlXv3r313//+V5LUsGFDde/eXTfffLMkacqUKdp1113VpUsXTZkyRZLUpUuX1LpSAAAAgB25ZEp4GbBi/RGgeBKJBLMAIixbX2/VH8Me20/Hq65Zs2apzKgFCxZo1apVOf/h++67T2+99ZYWLVqkXXfdVX379tVf/vIXnXHGGXrnnXc0aNAg3Xbbbbrkkks0b9483X777TrhhBPUvn17rV+/XpI0fvx47bXXXqk1nkaMGKHvvvtOffr0sVUHno4HpMcTQQrDhQIAwGl+edoYEAWMhZFJuvZB29guU7zF2C2HHXaYSSQSZsuWLTVKeXm5OfTQQ21/jiQzatQo891335lNmzaZ5cuXmwkTJpiTTz65xntisZhZsmSJ2bhxo0kkEqZjx441Xm/SpIl57rnnzJo1a8yaNWvMc889Z3bbbTfbdZg+fXpOdaZQolQy8bpuFAqFQqFEsXBOplCKVxgLUzIVK7FYzPN6+amki7fYzoTq2LFj6kl2b7zxhmbOnJn6+ZlnnqnKykp17dpVs2bNsvNxvkAmFJBeuuh+PB4nowcAAA+QCQUUD5lQyIT+OLt08Rbba0Lddddd+uWXX9StWzfNmDGjxmsdO3bURx99pLvuukvnnntu4bUF4FsEoAAAAAAA+Si1+8YTTjhBjzzySJ0AlCTNnDlTjz76qHr06OFo5QAAAAAAABAOtjOhdt55Zy1btizt60uXLtXOO+/sSKUAeIunPQAA4D9ePpkPALAd/XH+bK8J9dVXX2nhwoU6/fTTLV8fP3689tlnHx1yyCFO1s9VrAnlPp4QFkzMgQeCh/4WAADnMB4GClPw0/EGDRpkqqqqzAsvvGB+9atfmdLSUlNaWmo6duxonn/+ebNlyxZz0003eb4Cey6Fp+O5X3iaRDALTwOhUIJXOF4pFAqFQnGupFNeXu553SiUIJSCn45XWlqq0aNH67zzzpMxRlu3bk39vKSkRC+//LL69u2bMWLsN2RCuY+nBgQTd36A4KG/BQDAOYyHgcIU/HS8rVu36ve//72efPJJnX322Wrbtq0k6dtvv9XYsWM1ceJE52oLAAAAAIBH4vE46/4ALrCVCbXTTjvpxhtv1LRp0/Tee+8VoVrFQSaU+7gzH0yxWExlZWUqKyur8xr7L9hYNyi86G8BAHBWumwozq9AduniLban423cuFHXXnut/vnPfzpdN88QhHIfF0XBxUk3nDgmw4t9CwCAsxgPA/kreDreN998ozZt2jhaKYQfKawAUBz0t0B0kNUKuM/qOAOqoy/Oj+1MqKuvvlqDBg1Sp06dtGrVKperVRxkQgHpcecnnMiWAYDgoy8PNi5cgyHdWDgej7O/IIm+OJuCM6HWrVunVatWae7cuXrmmWc0f/58VVZW1nnfc889V1hNARQFAyAAUUBfB8BvrDJX6ZeCg30FFMZ2JlRVVVXW9xhjVL++7biW58iEQpRli9yTCRVO3LFB1NDm/YFgoLNo18HG/gsGxsLIhmM5s4IzoXr27OlohQAAxce6QQC8QOYHAACQcghCffTRR27WAwBQBFz0AUDwcUMBQURGJMKGvjg/tqfjhRHT8RBlTMcDEAWkyvsD+wHYLqrHQ9C+N2NhoDAFT8e74447sr7HGKMhQ4bkVjMACCnu+AEAgNrIngAQZY4sTG6MUUlJCQuTFxkXuChEtvbD3Z/CBe2OHxBGnCv9gf4QQND6gXRj4Xg8znkEsCFdvMV2EGqfffap87P69evrgAMO0A033KDddttN/fr109dff11wZYsl6EGooHXk8Kd0F2gEoQrHMQoA2xAMBODncZFVH5UpY80v9Qb8rOAgVDYfffSRPv74Y/31r3914uOKgiAUYN2O4vF42hMvbcw+jlEAAOCkIAd0/TwuSnfzNR2/1Bvws4LXhMrmlVde0c033xyoIBQQdVYDGYm1CoAgCvKFCZAv2j2ixmqMFpQ2H7TxZaabsgDy51gm1E033aS77rpLO+20kxMfVxRkQiHqcr3r45c58EG56AhKPREOnBMQRbR7RA1t3h3pZgZU/291bm9zxpAIA1en43Xu3Fljx45VRUWFOnfuXOjHFQ1BKERdUFOPaftAXRwXiCLaPaKGNu+OTGuherHN2c8Ig4Kn433zzTeWP2/WrJl23XVXbdmyRZdddln+NUTOSA+Fm2hf/sNdMQAAgOJiTAw4y3YmVHl5eZ2IrDFGq1at0rx58zRixAh9//33btTRNUHPhAIKlSkTys93W6J6dyiq3xv20D4QRbR7RA1t3h3pxsReLUXBfkYYFJwJ1bNnT0crBMC/EomEYrEYWTYAAAA+QlaO89I9qEfyz3qoQJg4tjB5EJEJhaiLxWIZBzN+veMS1btDUf3esIfpmogi2j2AQmVbI9WLsRZjPoRBwZlQklRaWqo//OEPOvnkk9W6dWsNGjRIn3/+uZo0aaIzzzxTEydO1JIlSxyrNOC1MA9uM9318TvuAgJ1haVvAnJBuwcQRox1EWa2M6F23HFHvffee+ratas2bNignXbaSb1791Z5eblKS0u1aNEiPfXUU7rjjjtcrrJzyIRCNmG+C2HnyXhh+a5hEeagKAAAgBf8mAkFhEHBmVDxeFxHHXWUfvOb32jy5Mlavnx56rWtW7dqzJgxOuWUUwIVhAKAICHgBAAAACDIbAehzjvvPI0YMULjxo1Ts2bN6rz+9ddf63e/+52jlQMAwA/IQgMAIHqYFgc4z3YQao899tAXX3yR9vXKykrtuuuujlQKgPc46QLbWR0PBKEAAAg3zvWA80rtvnHlypXac889077esWNHFiUHQiKRSHDSBQAAAAA4ynYm1MSJE3XJJZfo73//e53X9ttvP1166aV67rnnHK0cvMPUk23CnA0Uj8fTfr+ysrKi1gX+wHEPAAAAwE22n453wAEH6L///a8WL16sF198UYMHD9aDDz6oqqoqXXnllaqqqtKRRx6pH374weUqO4en46UX5qfCYbtMTwNhf0cPx316bBv4HUFkAMhdLBZLe1M2Ho/TjwIFSBdvsR2EkqROnTrpqaee0qGHHlrj51999ZUuuugiffnllwVXtJgIQqXHBVc0ZDrxsr+jh+M+PS7w4XccvwAkzle54oYs4B5HglBJHTt21MEHH6ySkhLNnz9fn3/+uQNVLD6CUOkxmI2OdCdf9nf0cNwDwcXxC0CiL8gVQSjAPeniLbbXhKpu5syZmjlzZsGVAgAAAAAAQDTkFYTacccd1bx5c8vo8KJFiwquFAAAAAAAAMLFdhCqpKREgwYN0sCBA9WmTZv0H1g/r7gWfCbMT4UDYI3jHsgPa7AAAADYYztidP/99+umm27SzJkz9eqrr2rlypVu1gseY/AcbYlEwusqwAMc90B+rAK4xT6eCCIDQO6SfSd9KFA8toNQF154od555x2dccYZbtYHgA+UlZUpFosRlABQFGQSFY7tBUAimJKrwYMHW56DALjH9tPxKisrdf3112vEiBEuV6l4eDoewFNBAHgv6E9zCnr9ASDKeFI04I508ZZSux8wY8YM7b777o5WCoC3uPMDAAAAACgW20GowYMH68orr9Ree+3lZn0AFBEp2wAAAACAYrG9JlTnzp31/fffa9asWXrttde0YMECVVVV1XiPMUZDhgxxvJIAAAB+RUAf8CfWmwMA/7G9JlTtgJMVY4zq17cd1/Ica0Ih6jKtByUxFx5AcbCmEhBcfg700LfADtaEAtyRLt5iO2LUtm1bRysEAAAgBSOTKNuFtp8vxAE3WR2/tH0EBeujAsVnOxMqjMiEQtSRCQUA9mTLqCDjAk4JWkDTz23fz3WDP2QaC8fjcV8fewieoPXvhUoXbyEIRRAKReLHTqe8vFySVFZWZvk6AzUA2IYgFIolaG3Jz/X1c93gD9yQRTFFrU8qeDoegML4MV09XfAJAAAg6IIw1RcAooYgFAAAAIDQ8fpmHwCgLoJQACxx9xAAAGTDeAEAkAuCUAAscfcQALbLdqHNhTiiivECgiwej9N/A0VGEAo1+HHxbBQfJ+Noox8A6sp2DHCMeCOM/RXnYKB4Bg8ezDFXJGHsr3NFW9uGp+PxdLwaorZifzH5seONxWKWnSGPpI02+gEAQUF/BaBQmZ6QR3/iHPrr6EkXb0kbhPrmm29y/iPGGB144IE5/55XCELVRecQPelOvOz36KIfABAU9FcACkUQqjjor6MnXbwl7XS8hQsX1mkoe+21lw444ACtXbtW3377rSRp//33V+PGjfXNN9/ohx9+cLjaAAAAAAAACIO0QaiePXvW+PeRRx6p999/X9dff70ef/xx/fLLL5KkBg0a6Oqrr9Ydd9yh3/3ud+7WFgAAAAAAAIFke02oiRMnat68ebrqqqssX3/88cd14IEH6qSTTnKyfq5iOl5dpElGD9PxUBv9AMLOj2v0IT9B6q9od4A/MR2vOILUX+eDPr6unKfj1XbMMcfo5ZdfTvv6Z599pr59++ZXO/gGK/YDoB9A2Fm18agPFIMqSP0V7Q5AlAWpv84Hfbx9tjOhKioq9Oabb+rSSy+1fP3pp5/W6aefrlatWjlZP1eRCQWQCQUgesJ+Nxb+RLsD/IlMKDiBPr6ugjOhxo4dq0svvVQLFizQP/7xD23YsEGStPPOO+vGG2/UhRdeqKeeesq5GgMAAN/zMv2c1HcAAIDgMXbKbrvtZqZNm2aqqqrM5s2bzXfffWe+++47s3nzZlNVVWWmT59udtttN1uf5Zcyffp0z+tAoXhZYrGYScfrulEolGAUL/uPfP82fR7Fi0K7o1D8WdKJxWKe140SnEIfX7eki7fYzoRas2aNunbtqksvvVRnnXWW9t9/f0nShAkT9Prrr2vUqFHasmWL3Y8D4ANhn5sNAFbo+3JH1lnhaHdAsNDHIRf08fbZXhMqjFgTClFnmAMPoEBW/Uix+g8v/3bUsK0BhFW68TB9HFCYgteEqm6HHXZQixYttGLFCv3yyy8FVw5A7ty8K00kP9jIWAAAAADgV7bn9B155JFm4sSJZvPmzWbLli2mZ8+eRpJp2bKlef/9902vXr08n3eYS2FNKEqQixPzjpkDH87CnHRKMYuX7Y22Ho39TKFQKG6WdLyuF4US9FLwmlCHH364Pv74Y/3444969tlndckll6ReW7FihXbccUf169dPEydOtPuRAHwqHo+TOQPAFi8zJ8naBAC4JRaLMR4GXGB7TajXX39dBx98sI488kg1atRIFRUVOumkk1ReXi5Juuuuu3T++eerQ4cObtbXUawJhSAzNtfnyDQ1y+ozMn0WgsFu2wAAu+hXcsO0aMB/0h2XjIcBdxS8JlT37t113333acOGDWrYsGGd1xcuXKg99tijsFoCcJxVpgADYQBALsg6yw3nXsBfYrEYxyXgE7aDUI0aNdKaNWvSvt64cWNHKgTAnkIuCJLpxfF4nAuLEGKfAnAaF2oAgoyxEeAftqfjzZgxQ5MnT9YVV1yhZs2aacWKFTWm47355ptq0aKFjjvuODfr6yim4yEK0qUYJ9OLs70OAAByw/RFwF8yjXeZjge4I128pdTuB4wePVoXXXSRevXqlfpZ8oD985//rFNPPVXPPfecA1UFUAxW8+KTuFsEAACAsEtO02PsCxSP7UyoBg0a6N1339UJJ5ygOXPmqEOHDpoxY4ZatmypNm3aaMKECTr99NMzRpL9hkwoREG2uzssngoAgLPIhAL8xU62E2NiwFnp4i22g1CSVK9ePQ0cOFB/+MMfdPDBB6ukpETz58/Xs88+q4cfflhVVVVO1tl1BKEQBaQYAwBQXFzMAv7CeBgovkzxFpOt7LDDDqZ79+7mwAMPzPreIJXp06d7XgcKxe1SXl5u0vG6bhQKhUKhUCgUitslFoulHQ/HYjHP60ehhLGki7fYyoSqV6+eNm7cqBtvvFHDhg3L9vbAIBMKUeDEnR/u6ALIF/0HAMAPyIYCiitdvKW+nV+uqqrSsmXLODiBiLJarJGLSAB20H8AALyW6YE8AIrL9tPx/v3vf+v8888nEAUAAAAACAyefgf4h61MKEl68skn1bNnT02YMEEPPfSQ5s+fr8rKyjrvW7RokaMVBKKOqSwAckGfAQAAAL+y/XS8qqoqGWNUUlKScT5t/fq241qeY00oBEGhj3lOd7zG43HbF6Y8ahoIDr8dr36rDwAgejJdv0qclwA3FLQmlCTdddddWQ9eAMFBZgQAAAAAoJhsB6G4YAWii3n0APJF/wEAAIAk29PxwojpeAgCt6bjkXYMhBPT35zFGltAcHH8IonpeEDxFTwdT5J22WUX3XDDDTr55JPVunVrXXzxxZo6daqaN2+uq6++Wi+//LLmzp3rWKUBkEUAIDf0Gc6y2p5cxALBwPELyToYmcQ5Eyg+25lQLVq00KRJk7T//vvr66+/Vrt27dS7d2+Vl5dLkr7++mu9/vrruvHGG92sr6PIhEIUkAkFAPkjswwILo5fSJmzoGgPgHsKzoQaMmSI2rRpo2OPPVYLFy5URUVFjddff/119erVq/CaAgAAAAgEprwBAHJhOwj161//Wo8++qg+++wzNWvWrM7r3377rfr37+9k3QAAAIDAiVJghilv7ohSGwKChuOzMLaDUC1atNDXX3+d9vWtW7eqUaNGjlQKgPtisRidJWCBgQWAQhGYQaFoQ4B/cXwWxnYQatmyZTrggAPSvn7kkUdq4cKFjlQKgPvi8TidJWCBgQWqY9FaILg4fpENN2UBbxg75dFHHzXLli0zbdq0Mc2aNTNVVVWmZ8+eRpI55phjzKZNm8z9999v67P8UqZPn+55HSgUt0smsVjM8/pRKH4rVryuE4VCCVaJUj8Spe/Kdg1micViGcfDXtePErxCO7JX0sVbbD8dr3Xr1vrf//6nevXqady4cfrjH/+o559/XjvssIN++9vfasmSJercubNWr15t5+N8gafjIQpisVjGO4E8FQRe8eu0N8PTlAAUKEr9iF/78qCLUhsqBqvtmcTsAOSK49OedPEW20EoSdprr700fPhwnXHGGSotLZW0bQeMHz9eV111lRYvXuxYhYuBIBSiItOJlw4TXvHrCdyv9QIQHPQjKBRtyFmZxsIS2xa54fi0J128xfaaUJL0ww8/6Oyzz9auu+6q9u3bq6SkRF9//XWgsp8AIOy4Kw0A3mItIhSKNuSseDzONoVjaEuFySkTKmzIhEJUkAkVLUG5O+PXehLEAwAgfBgPA8WVcybU3nvvndcfWrRoUV6/BwCAHxBwyh8BPCBcOKYBAE5LmwlVVVWVde6slfr1c5rh5ykyoRAV3PmJFr9mGNUWlHrCPvYpEC4c0wgTxsNAceWcCXXXXXfVOVD79OmjI444QhMmTNCsWbMkSR07dlSvXr30+eef64033nC42gAKYXUHszrmM9fFXd/iof0BhYt6n+Xm94/6tkV4RbFtpxsTMxapK0rtI0rf1U9srwl1wQUXaPjw4TrxxBP1xRdf1HjtyCOP1MSJE3X11VfrX//6lxv1dAWZUAg7ngSSuzDc9eWECq+E4fgJmqhvcze/f9S3rcQ2CKso7td0Y+J4PM4YqZYotY9if9eojdHTxVtsB6G++OILjR07Nm0U+e6771afPn10+OGHF1TRYiIIhbAjCJW7KJ14Aadx/BRf1Lc5QSh3sQ3CKYr7lal49kWpfRT7u0Zp20p5TMer7aCDDlJFRUXa15cvX66DDjoov9oBERC1yDeAwtBnAAAAIGxsZ0J98803+u6779SrV6+6H1JSog8++ED77ruv9t9/f6fr6BoyoVBMXkS+vc6ECuJFdNTuUMC/gtgWg3jMB10Q24mTyIRyF8d0OEWxbZMJZV+U2geZUO7KFG8xdsott9xiqqqqzLvvvmtOOeUUs99++5n99tvPnHrqqea9994zW7ZsMbfccoutz/JLmT59uud1oESnWPHibybFYrFQfuco1pkSzkJbpNgpUW8nbn7/qG9bSnhLFNt2Jl7XzW8lStuo2N81SttWSh9vsT0d7/7771fr1q01cOBAy2yoRx55RPfff7/djwNQBPF4PONTP2KxGHc0a+EpKQCCJOp9lpvfP+rbFuEVxbadbUyM7aK0naL0Xf3E9nS8pIMOOkhnnXVWatrdt99+q3HjxmnevHlu1M9VTMdDMRmP0i9jsVjGDtYvKaek/AM1edVnBAV9RnZsIwDYzuq8ytPxUExROy8X9HS8nXfeWUOHDtXbb7+tV155xZEK3XLLLfrtb3+r9u3ba/PmzZo6dapuvfVWzZw5s8b7YrGYBgwYoKZNm2ratGm65pprNGvWrNTrTZo00dChQ9WnTx9J0rhx4zRw4ECtWbMmax0IQqGYvOx0rE66SX4JQnHBDdQUtYFKrugzsmMboTr6FERduiCUxLEA74S5by54TagNGzaYSy+91LH5ge+8847p37+/6dixoznkkEPMmDFjzNKlS03Tpk1T7xk0aJBZu3at+e1vf2s6duxoXnrpJbN48WKzyy67pN4zfvx489VXX5njjjvOHHfccearr74y48aNK2iOIoUStuLVPPhc/l7U5khTKJTCCn0G24hCe6BQcilejYcplEwlzO2x4DWhZs2apf3228/u27M69dRTa/z7oosu0po1a9StWze9+eabkqTrr79e999/v8aMGSNJ6tevnyoqKtS3b1+NGDFCHTp00GmnnaZu3bpp6tSpkqQrrrhCkyZNUrt27QI5RRAIE+ZZAwAAwGtW2SYAvGMrinXeeeeZFStWmIMOOsiVKFmbNm2MMcZ069bNSDJt27Y1xhhz1FFH1Xjfm2++aZ5++mkjyVxyySVm7dq1dT5r3bp1pn///pZ/5/LLLzfTp08306dPNwsWLPA8OkihuF1isVgg7vz4uW4UCsV/hT6DbUShPVAodks2XtePEt0S5vZYcCZUhw4dtGjRIs2YMUNvvvmm5s+fr8rKyhrvMcZoyJAhdj+yhocfflifffaZpkyZIklq06aNJGn58uU13rd8+XLtueeeqfesWLGizmdVVFSkfr+2kSNHauTIkZK2zVEEwi5TNhKZSs4J83xuAAAAAHCC7SBU9YvV3/zmN5bvyTcI9eCDD+r444/X8ccfr61bt+b8+wDy46cgSdADYlb199P2BcIm6H1GMbCNoocbItHG/gcQBLaDUG3btnWlAv/4xz/0+9//Xj179tSCBQtSP1+2bJkkqXXr1lq0aFHq561bt069tmzZMrVs2bLOZ7Zq1Sr1HgDBwCAJQC7oM7JjG0VPphsiBCXDjxtiueO4gNei2gY9myP40EMPmaVLl5oOHTpYvr5kyRJz6623pv7dsGFDs2bNGjNgwAAjyXTo0MEYY0yXLl1S7+nSpYsxxph27drlPUeRQglTYf67d9vZ6zpRKBQKJVqFc1G0C/s/t23D9qFQ3C0FrwlVXbNmzVKZUQsWLNCqVaty/ozhw4froosu0tlnn63Vq1erdevWkqT169drw4YNkqSHHnpIt912m+bMmaN58+bp9ttv1/r16zV69GhJ0pw5c/T222/riSee0IABAyRJTzzxhN544w2ejAcAAAAAAOAjOQWhDjvsMA0dOlTHH398jZ9//PHHuu666zRjxgzbn3XNNddIkj744IMaP4/H46m00QceeEA77rijHnnkETVt2lTTpk3TySefrPXr16fe37dvXw0bNkzvvvuuJGncuHG69tprc/lakcAccQCAEzifADVxTFhju8AvrNoiwo8+yL9KtC0lKquOHTtqypQpatSokd544w3NnDkz9fMzzzxTlZWV6tq1q2bNmuVmfR01ffp0HX300V5XwzGZDrRt2aY1lZSUuF4neM9q3yfRBpxTjBMdJ1P4AecToCY/HRPUJdrY5tYYC0cTx4P30sVbbAehXn31VZWVlamsrKxOxlPHjh310Ucfqby8XOeee64jFS6GsAWhMh1oxTgIuUD2p3Qn3kQioZ49exa5NigEJ1P4Ae0QqMlPx4SfxmJ+2i5R4af97ycEoaKJPsh7BQehVqxYoccee0x33nmn5et33323rrzySsun1fkVQShnD0IOdH/ixBseHGPR5peLC9qh+/yyr2FP2I4Jp9pf2LYLgivTWLj6UjAIF/og7xUchKqsrNRNN92kRx991PL1q6++Wn//+9+10047FVTRYiIIRRAq7GKxWMbHfrJ/goVjLNr8sv/9Ug83+CX4E+ZtHEZh219OfZ+wbRcEV6YglES7DCv6IO+li7fYXpj822+/1a9//eu0Qahf//rX+vbbb/OvIVyVKRCB8Kh9AcV+B6LH7UBKmPsVq+/GHfLgKXYwMczHRCHYLvCDWCymRCKhsrIyr6uCIqMP8jdjpwwaNMhUVVWZF154wfzqV78ypaWlprS01HTs2NE8//zzZsuWLeamm26y9Vl+KdOnT/e8Dk4WK1H6+xTrfZCJ1/WlFL5/va4TxX/7n3bi/jaOSj2CWth+bD8KJVns8LqOFEpYS7p4i+1MqL///e/q1KmTfv/73+t3v/udtm7dKkkqLS1VSUmJXn75ZT344IN2Pw4uINrrDr9MzwA4xgEAALKzGr8D8Afba0IlnXTSSfrNb36j/fbbT9K2aXpjx47VxIkTXaieu8K2JpTX/B6sybd+pojziQvZhtnWf6ou+b4w7B8gKqz6ourHfPJ4KWafFTZ+2XZ+qUdQBWH7+fmcF4TtB2SSy5hYon0Dbil4YfIwIggVLfkOqoo5GCvkb1n9rhW/PgWEQS+QWfWLVqvBdTEfRBFWftl2fg5QBIFf9mMmfq4j7Q9Bl8uYWCqsfXO8AOk5GoQ64IAD1Lp1a3311Vdau3atE/XzBEGoaIlqECqRSCiRSKT+7dcTo58H5AivoA4eMx0vHEv5C2p7QE1BOAaCUEcgqLIFoZycEcCxDKRX8NPxJOmMM87Qww8/nJqK17t3b5WXl6tly5aaPHmybrnlFr366quOVBiAM8rKytSzZ0+vqwH4UhifhsbaYfkL+r73s2IG+DgGgOjKthaUX2cEAFFiOxOqR48emjBhgj7//HO98cYbisfjOumkk1ReXi5Jeuedd7Ru3Tqdd955btbXUWRCRUu+dyqKOXB2azpeEO7IcCcJXghquwtqvRFdtNma2B6AO7JlQTl9nHEsA+kVnAl155136osvvtCxxx6rpk2b1rnLNGXKFF188cUFVxTwG+6WAAAAAABQONtBqKOPPlp33nln2ujyDz/8oDZt2jhWMcBpQUjPD0Id3RLl7w7kiuMFCDaOYQBAVNkOQpWWlmrz5s1pX2/RooV+/vlnRyoFuCEIGU1BqKNbovzdgVxxvADBxjEMhAMBZSB3toNQs2fPVvfu3fXYY49Zvv7rX/9aX3zxhWMVQ7TwRKJwYD8iaBg8eof+AgAQdJy3gNzZXpj8yiuv1NChQ3XllVdq3LhxWr58uXr16qVp06bp/vvv1zXXXKOLL75Yo0ePdrnKzmFhcv9gUb/C+WFhcvYjALvoL6KFoCOAYij2wuQA0ssUbzF2y3PPPWeqqqrM6tWrzZYtW8zSpUvNzz//bKqqqsyTTz5p+3P8UqZPn+55HSjbihWv6xS0kk4sFmM/UigU3xX6CwqFQqE4WWKxWNrxMOcZCqX4JV28xXYmVNLZZ5+tCy+8UB06dFBJSYnmz5+vZ599VmPGjMnlY3yBTCj/4I544dLd+SnmdmQ/ArCL/gIA4KRsWVAS5xmgmNLFW2ytCdWoUSOdd955mjt3rsaOHauxY8c6XT8AAAAAAACEmK0g1ObNmzVy5Ej96U9/0n/+8x+36wTAISy6DAAAgChLJBJeVwFANbaCUMYYLVq0SI0bN3a7PogogiXhwH4EYBf9BQCgGMrKyryuAoBqbK8Jdfvtt+v888/XUUcdpZ9//tnlahUHa0IhTNLNg4/H4zyBCIHCU7QAAECuWBMK8Jd08RbbQagTTzxRf//739WoUSM9+uijmj9/viorK+u87+OPPy64ssVCEAphkunEywkXQcKC1QCihMA74IxYLJY1y5abs0iHvth5BQehqqqqavy79kVCSUmJjDGqX9/WDD9fIAiFMMkUhOKEiyAhCAUgSujzAOeQDYV80Rc7r6Cn40nSJZdc4miFABQPQSgAKAx3SAEAAApnOxMqjMiEQphku/NDJB9BwZ0o+BHtEm6hbQHOIRMK+aIvdl66eEupB3UBAAAAAMBRPHkV8L/gLOAEAIgEBpAAACBXVtOmAfgPQSgAgK+wzg6AKCHwDjjDzrHE8YZ0aBvFw5pQrAmFkGBNKABwjxtrRbDYOQA4h/WgAH8p+Ol4AIBo4MIYqMuNO6RWn8mxBiAMGEsASIdMKDKh4DCvTrpBzIRigOJPPB0EKA6ONSC6wj4G8qJ/IxMK8Jd08RaCUASh4DCvLiqCGITiAsyf2C9AcXCsAdEV9uOfIBQApuMBEZRIJJRIJLyuBgAAAAAABKFQHGFPOfarsrIy9ezZ0+tqAAAAAJ7gqWeAvxCEQlGw+CoAADVxYQQA7orH465ec3CjHcgdQSh4hk4b8CcujIHi4JwHIKyKPZawuq6Q3O9nvb7RzvUUgoiFyVmYvCjsLBQohWOxQL89Hc/P25QTJwAAiCLGQM7yahzs9QLzXv99IBOejmeBIFTxRCkI5ZUgBqHgXwyOAQBAUBCE8ubvA5kQhLJAEKp4rC5ordJX6TTzl+7km9zOfgggENgIDgY1AAAgKPwchHJz/OvWeI0xO5xAEMoCQShvcZHrrGzZZn7Ytuzz4GBfAQCAoPBzEMrNMZVbn804EE5IF29hYXIACDDuVLmD7QoAALLhYS5A7siEIhPKM1zkOSsWi2U8Efrh7kWY7qr4pf1yB8wdUf/+AKLFL+c0IB+ZxsB+OHe7OaZw69hlHFR8YeyHmY5ngSAUgiZb55RpSp4fThxhOqH55bsQhHJH1L8/gGihz0OQ1B4PcxPWeUGsc9CFcZszHQ8IuHR3eYIeIYc/kV4O2BPGO5cA4FfZMv8B+B9BKCAgCjnh+uVk7Zd6IDsuogF7uDkAwAkEtO3JZSzpl3GnX+qRiyDWGcHBdDym4yEg0k21i8fjqUFKurtDQU/l9CO/pMwyaHUH2xV2+aUvAApBO/Ye+yCz5HnZbnCk+vgYCIIw9gGsCWWBIBSCxO56T2HswPyI7QxAoi9AONCOvcc+yCzTONgK2w5BE8Y+gDWhgIggfbY42M4AgLDgnIagow0j6KLUhsmEIhMKAeH3J98BQBSF8c4lgOKjL8ks0ziYqXeAP5EJBdexhgoAIGqidOcSAACgUGRCkQnlGO7guItMKHc5FUQlGIsoot0DQGHoRzPLtiYUY2HAf1iY3AJBKGcRhHJPuqfeJbGdC+dU++U4QBTR7gEAbsk2DpY45wB+RBDKAkEoZ3ER4h7u/riPIFQwcKfYn2j3AAC32HkyHucc5zHmQqEIQlkgCOUsLkLcQxDKfQShgoHt60/sFwCAWwhCeYNzOwrFwuQAAAAAAOSAjCDAWQSh4BieEOSNRCLhdRUAAACAoivGONjqGocgFJA/glBwDJ2xN8rKyryuQihUH2Akt2n1O1+0byA9bkIAzvMy+4LMDwQF42B3WPUBKBx96zasCcWaUAgAno5XXIXMgWf+vLvYvgCiwsv+jr4WfuL1mlBRPB7SbfOwf2+3Ra0tsSYUEGCDBw8m0wAQGTdA2HBXGEA2yXM/YwBvsf3hFDKhyIRCQGS6CxTmCLoXCrlLwQUVANgXtbvCuSATCqjJq7FwFMd29AHuiNp2TRdvIQhFEAoBQRCqeKJ2ggAAr9DfpkcQCqiJsXDx0Ae4I2rblel4cF0U7xIAyA39BAAAABBdBKHgGB5f6p5YLKZEIsETQIqEOe/uoZ8AAHu8PBdxHoSf8KS24qMPcAfbdRum4zEdzzFRSy8spmxPBWE7R1uQsovoJwBUR58AIBuvn44HID9MxwOAkCK7CEBQcVcYAIBoIQgFAAAQMkHJkPRjnQAAgHsIQsEx3M0EkA39BIIqKEGdJDIkAQCAH7EmFGtCIQBYEwqZsKYK4L6gHWdBqy8ApMOaUEAwpYu3lHpQFwA5SiQSSiQSXlcDAAAAKKp4PM44GAgRpuMBAVBWVuZ1FeBjTHEDAABhNXjwYMY6QIgQhAICjpMyWOcFAAAAQBAQhAICjgAEAKA2blDUFLSF5QEUH/1EOLAf/Y+FyVmYHAGQaUFGFmIE7GFQgkLQfoKNhdqBYCvGQ3roJ8KB/egf6eItBKEIQiEACEIBhWNQAkQXxz8QbOXl5RnXSCUIhST2o3/wdDwAAAAAQODwkB4gPFgTCoHANAgAAAAAtbEGHhAsTMdjOl4gRD2tkul43iMQGnxR70eAKOP4DwbOtbASi8UyBpqcOpbpJ8KB/egfrAllgSBUcESlM0k3+CII5b2otMEwYx8C0UVwIxjop6Mtn3Gw5FwboZ8IB/ajfxCEskAQKjiiMiix+p7xeLwod3+QWVTaYJgxKAEAfwvquZbzizPS7f9iBaEAOIsglAWCUMER1EFJrrKdZK2EcTv4UVTaIAAAXgnquTao9fYbglBAuKSLt7AwOQKBBQfrYpugUNy5BQAAQcQ4GAguMqHIhIKP5JIJxV2f4grjXc4wficAQHAF9bwU1Hr7TS6ZUGxfwP/IhAICjjs+3ory9idjCgDgpuR5JpFIpH5W/f8RbVZjMMYmQHCRCUUmFHwk0yNo4/E4J1c4yu6dRe5AAkDuuEi2L+jnmaDX3y/SPaDH6rhhm6MQ9M/FwcLkFghCwY8yTcnj5AonEYQCAPfQd9oX9G3FBa0z0o2BGZvAabSf4mA6HgAAAAA4jIATANhHEAoAIirK61wBAAAAKD6CUIBPWKVyA26ye+eWYBUQDUwpglc4z3gnqMc9bQYILtaEYk0o+ESmtaCSmKsMAHALa2Q4i+2JIPBTO81lTSigEH5q92HGmlBAwHHHBwCA4OC8Db8IarZTUiwWC1R94X/0z94iE4pMKPhEtkwoovMAwiDoF0Nhxp1hIJwyHdt+Ou5jsVja4AB9ERA8ZEIBAADPWV1gEIQCAACIBoJQAADXkPUCAADsKMYUKcYlgPeYjsd0PPhEphRkiTRkBJOf0vzhD7QJ/+LiDAinoEzHy7Q0hVN18tP3BcIuXbyFIBRBKBTA6QF7MU6+QDEx2ENttAkAKK5M41U/9ckEoYBwIQhlgSAUCuX0iYwgFMKGwR5qo00AgH/4qU8mCAWECwuTAwEQj8d5ZCiAUKOPAwD/CEKfHIQ6ArCPTCgyoVAAN+6mpLsLFI/HWZsDgcMdRwAAYEe6MbCT4wbGJUDxkAkFBBxBKAQRdy8BAPAPPzyAINc6JN/vRD0ZlwDeIxOKTCgUwOm7KTwhD/AHPwzS4W+0EQBBk26cWezxZbrxc6Y1oZLvARAcLExugSAUCuXkRUi2AJTEyRfIV67HKun6yIY2AoRLFALLxZjulm89CEIB4UMQygJBKPhJthOvxMkXyFeuAQMCDMiGNgKESxSOaYJQAIopXbyl1IO6AAAAAAAAIGJYmByhEtZUahZRBAAAAAAEnadBqO7du+umm25S586dteeee6p///565plnarwnFotpwIABatq0qaZNm6ZrrrlGs2bNSr3epEkTDR06VH369JEkjRs3TgMHDtSaNWuK+l3gD1bBmjAEoaTwfA8AAAD4gxc3OvP5m9yQBcLD0yDULrvsoq+++krPPvusnn322TqvDxo0SDfeeKP69++vuXPn6s4779SECRPUvn17rV+/XpI0evRo7bPPPjr11FMlSU8++aSee+65VFAKCIN4PE4QCigiBrvIhjYCICisZgokeTG+zOdvMg4GwsM3C5OvW7dO1157bY1MqCVLlmj48OG69957JUmNGjVSRUWFbrrpJo0YMUIdOnTQ7Nmz1a1bN02ePFmS1K1bN02aNEnt27fXvHnzMv5NFiYPnyAvKpkcIKS7sAnK9wD8KKxTdQEAzgjzeSLTgt9+Gl8GpZ4A7EkXb/HtmlBt27bV7rvvrvfeey/1s02bNumjjz5S165dNWLECHXp0kXr1q1LBaAk6ZNPPtH69evVtWvXrEEowE+SAx3uriNfYR5AF4rtAACcJzJhO3gvkUiorKzM62oArqIf9nEQqk2bNpKk5cuX1/j58uXLteeee6bes2LFijq/W1FRkfr92i6//HINGDBAktSiRQsnqwwfIICDKAvzmmgAgMJxngiOKF6opgtAJRKJotYDcBP9sI+DUG4ZOXKkRo4cKWlbehjCJWoHMAAAAMKHC9XtyI4CwqXU6wqks2zZMklS69ata/y8devWqdeWLVumli1b1vndVq1apd4DAAAAANgukUgokUhkXLQcANzg2yDUggULtHTpUvXu3Tv1s4YNG6p79+6pNaCmTJmiXXfdVV26dEm9p0uXLtpll11qrBMFAAAAAFEUj8dTJamsrExlZWUsZQGg6DydjrfzzjvrwAMPlCSVlpZqn3320eGHH65Vq1Zp0aJFeuihh3Tbbbdpzpw5mjdvnm6//XatX79eo0ePliTNmTNHb7/9tp544onUOk9PPPGE3njjDRYlhy9FcX4/AAAAvFN9rEnQCYDXPA1CHXXUUTUWmrvrrrt011136emnn9Yll1yiBx54QDvuuKMeeeQRNW3aVNOmTdPJJ5+s9evXp36nb9++GjZsmN59911J0rhx43TttdcW+6sAtjC/H25iYAkAyITzBAB4i35YKpFkvK6EV6ZPn66jjz7a62ogQoype7iVlJRkfY/V+wAAABBObmXP2xmLeiXdGDgej3PTFgigdPGWyD0dDwAAAAD8zK2gS9CyMAhAAeFDJhSZUCgiMqEAAACAuvycpQUgd2RCAQFR++klSbFYjDtBAGADD4EAEBVB7u+s6g4g/MiEIhMKGTh9YrfzebFYLG2qNHeDAP8K8oVA2HA3HUBUBLm/S5f9X11QvguAutLFWwhChTQIxcWQM7w4sWc6IXMihl/Qx9QV5AuBsGFfAIiKIPd3BKGAcCMIZSHMQaggn5D8hCAUYI0+pi62iX+wLwBERVD7u0yZ/9UF4bsAsMaaUAAQImQiAQCAoLITgArak/wA2EMQCgiIRCLhdRXgI1YDM4JQwDZcuACIijD3d4xrgHBiOh7T8ZAB0/HgV14f417/fT9imwAAYA/rQQHhx3Q8IA/FvrsUi8WUSCRUVlZW1L8LZzFVLprCfDcaAACJMQ6AwpEJFdJMKE4QwZTtrhB3hILBaj8mAxROHYdeZ93QxwAAED1OjT/IhALCj6fjWQhzEArBRBAqHIoxpdLrIBQAAIgep8Yf1W9mpcskZlwDBBvT8QAgRJj6BQAAgqp69jRjGiBaCEIBHgjjVKYwfic/C/K2pa1Aoh0AQKGC3o9a1R9A+DEdj+l48EC6NYOy3QnyMi0520AniNPD3Bq8JT/Xan/6fZsUQxDbCvKT6RijHeQu6BecAJzlRT/qRD+UaZxUHecE53EeQTGxJpQFglDwip3FGK14eTLONtAJ4gWl23UO4jYpBrZLdGTa17SD3LHNAFQX1D7B7jg4CN8laILaZhBMrAkFAEUWxjUOuIMGAIDznDq/xmIxzssAfI1MKDKh4IF0d4CqBy38NpWLTChIzmwztnt0kAnlLLYZEF75HN/pxpN+7xfIhPIO5xEUE5lQQABw5woAAABu82tmcxizyAHURBAKKDK7TwIpZCDgxcCCQQPsoq1Aoh3kKmpPkfLrBTIQBMnjJ9MxY9UH++UY80s9kB19NfLBdDym46HIMqUgO5UO60aqbRhPMmH8Tm4jjRu54BhzTrqnqoZ1e9LXIGqcnI5n5/e9PMZisVjGGxEc6+5x+rxMX41MeDqeBYJQ8EJQg1CARFAB8ErU+vWofV8gn/NrUINQ6f6+F/VAYbxuR/A3glAWCELBCwShAAC5ilq/HrXvC+SDIBS85nU7gr+xMDkAwDNkUAEIK/o3eCUejwdyfb2orXGH4qNf9jcyociEQgZudGBkQiGKaJNAYdKtCVVbWAbZQeozglRXhEshayt5eZFeSAZXlPkxsOLX/s+v9YoapuNZIAiFbNzowIoRhPLjSQrRxmAAKIxVv2518RmW4ypI5zH6N3gl05gykUgokUj48rjJVO8wP3ChUH7sa/zaV/txW0URQSgLBKGQTVCDUIDfMBgAnMdx5Q/sB3glW0aR5M+2SBAqP/Q19rGt/IEglAWCUMiGIBTgDAYDyJdf77L6AceVP7Af4JUwBqEkf9bZD+hr7GNb+QMLkwMAPBPEhVPhD2Fe9wjhQP8G5CaoC6ojOGhf/kYmFJlQyIBMKADwFncz02PbANEW1EwoifFwPujzETRkQgF5KHYUPTnthLv8AGpjWhpq404vEG1BzSiyOp8huyDua8AKmVBkQqHIgnzXCoB3onoHNKrfGwDssOojqwcr/HizgjWhgGggEwoAALiOjC0A8F5Q+12yfYDwIxOKTCgUWSwWy3qC5Q4QgNqCkhHkdD0JagFAeumyipJjTT/2l6wHBUQDmVAAAM9FLaAQte/rBrYXAOTOz0EoANFGJhSZUCiybHesJAYMCK+gZPM4xcnvG5SAVtT2MQB4KYjrK2WaFeDH+gLIT7p4C0EoglAosnSDBU66iIKoBSii9n2laH5nAPBKEINQEuNhIArSxVtKPagLAAAAACCi0mVCWWX9AggX1oRCpAVlegsA79Ff2MOTjQAEGX29t+LxONsbCDmm4zEdL9K8mDZC+jGiLMhTtfKpe5C/LwBEUdD6bav6BmGdUZ6QB4QfT8cDAHii+l3lRCJR479hR1aQv5DhACBM0k1do18D4GdkQpEJFWlkQgHuC9pd5XTC8j2ijH2IMCK46qwg9RNBHlOSCeVv9CtwAk/Hs0AQCgShAPdlmyqQ5PfBTZAuTGCNfYgwol07K0jbs5AxpVNBhnw/hyCUvwXpOIB/EYSyQBAKXkT5rTr1RCKhnj17uvp3Aa9ke3x0kt8HN9wVDL6gDKppa+Hn5D4OSrsOiiAdf4UEoZxqN/l+DkEof4tivxKkYz8oCEJZIAgFL5AJhagJSxAKwReUQXVQ6on8ObmPaS/RRRAKbolivxLF7+w2FiYHAAvc9XBXukVT4SzaMQBEC+dXAEFFJhSZUCgyMqH8hbsedbk9TSSRSKisrKzOz6O+3QtBO7YnKME69mf4kQmFQmXKJIrH41n7Ni8zoWKxWManx9J+vRfFfiWK39ltTMezQBAKXiAI5S+ccOpy++Ionahv90LQjsOF/Rl+Tu7joARX4axs59ds7cnLIFShATS4L4r9Cude5zEdD46IYocEwF2Z7oa6if4MQBjQbyEfXp17MyEA5R/sB7iJIBRyEsTHqgdF8oKY7Ymo8arN05/Br/x4cQhnsY/hNc53QE30y8XDdDym4+WENMXCFZo+DWeRDVOXm9NErE7wXrX5MPVntGMAiBanxpOFnj+cno4X1PMwgLpYE8oCQajchemizSsEoeB3bh7nfupD/FQXAABy4dR4stBzIUEoAOmwJhSArMimgORuOjKpzgAARFs8Hmc8AEQYmVBkQuXEy8yBsARIysvLLR9Pn+TU9sxne5EZgiihvQOAu8IydvOjWCyWMZBTrEyofPcxT4sGwo/peBYIQuXOy8FEWC4YizUdz6n06CBuY/iPHy9E3KyTH78vABQb4wp3ZQpEFSsIlS+CUED4EYSyQBAqWMIykEl30k0OIpy6UCUIBT+JWtuK2vcFACu59IUE7/NTaDDHi/OVE8EzAP5HEMoCQahgCctFXbHu/BCEgp9ErW1F7fsCgJVc+kL6zfwUOq70IvjHwuRANLAwOYCsWCQSdnC3GgAA/54PcxnP+aG+SYxDgWggE4pMqMAIyx0yP2dCAXaQZZdd1L4vAFgJeyaUH+rshzrkivWggGggEwqBF/a7I7FYzNG7UWHfXgAAwN8Yi6A2q+wxANFCJhSZUCgy5sEj6PK56+rXKQtuidr3RTjRjlFMYcnoKWadY7GYysrKavwskUj4+jjN9IAeP9cbQO5YmNwCQSh4gSAUgs7uoJsLWCDYvL7ARrQE8Zzh9THi9d/PB1PxgOhgOh7gAVKOERVWbd1qGobfLygAAN7g/GBfEMeXQawzAHcQhAJcZHURHo/HWSMhBIJ4x9Yp1dtvchoAbRoAEDVun/vSjTWCdM5Nfocg1RmZRXkMDGcwHY/peHBRujRpUpGDL4gp8ElODh4yTS+1EpRtBCDY/RwQBrmOI5Ov+4ndcYLf6o30ODfALtaEskAQCm4jCBVeQT4BO1l3glBAeAW5nwPCgCAU/IhzA+xiTSigyHKd+06aMgDATzgvAf6TbnzJ8QogKMiEIhMKLsmU7cRc6uAL8l2gYmVCsTA5AAD5yyXb2K9jkEzfIZFIKJFISGJ8ECRBHgOjuMiEAnyiegCKEy7CKBl8on0D/sSNEAB+UFZWlgpCAYgOMqHIhIJL7Ny94q5BcAX5Is7tTCjaNeBvHLf+EOTzCIojlyfL+fUYjsViga4/6qLvgl0sTG6BIBTcRBAKfuX20/Hi8TiDEcDHCEL5A/sBdmUbU/r9vFteXq6ysrKM76HtA+FDEMoCQSi4iSAUwi7T3U3aNoIqCnd4CX74A/sBdmVbV6lnz55FrE3uGBMD0UQQygJBKLiJEy7CLkiPiAbsikJgIArfMQjYD7Ar25jS7+2GMTEQTSxMDgABEJQsjHSPiAYAAMXFQ28ABAmZUGRCwSXp7vpUn77EQAG1BeXOeNDvygLpBOUYLERQgt1hF4W2BmfYySRK8mMbCvqaVgDyw3Q8CwSh4KZ0J1w/Dg7gH0G5KCEIhbAKyjGI4CMYCLvCHoTyY50BFI7peACAoonFYlxMAUAG9JGwK5FISFLWJ8wBQBAQhAKKjItzRAGp9QiqdE98BHJBlhOcFPbgE2NjIFqYjsd0PLiEJ4chH0G5cKlez3QX7bRzAFHFtE44Kdt0tkQikcqW8uOYgafjAdHEmlAWCELBTQShEBWsfwYANRGEgpOCHsQJev0B5CddvKXUg7oAkcfj7QEAAAAAUUMQCvAAa44AAAAgm6DfuIzFYjWmCwIAC5MDABzHYBMAgMIF/cZl0OsPwHkEoQAAjgv7k3wAIBMuvAH7OF6AaCEIBQDIS3KKQCKRIOgEANX48QllCK+gB3E4XoBoIQgFAMhL0Ae9AAAEnZ+nvwd9PSsA7iiRlP2ZmSGV7pGBgBOyPY6WR9Ei6GjjAAC4K9u5NsmP59wg1x1A4dLFW8iEAjxABgmizuruKOn4AADUlBwzMnYEEBYEoQAPcLGNsMs2WLZ6neMCAABrrL8IICwIQgEuicfj3LVCZBFQAgCgcGEfS4b9+wGoiyAUioopOEB4EGgFAACF4DoAiB4WJmdh8qKyWqAwrIsRpluMMR6Pc8JFaFi1czttPEp9AQD4GTcI/S3b4t6JREKJRMKX+ywWi2W9WcW5HwivdPEWglAEoYoqShee6QYNYf2+iKZ0QSgp80UMFz3bsB0AeC1KY7MgsvOEOT/vL56kC0QXQSgLBKGKL0oDHYJQiIJMg0vaenZR6hMB+BP9kL8RhAIQVOniLaUe1AWINKvMBwAAACBqGBcD0UMmFJlQReXXu21uTIkhQwRRQDsvjF/7RADRQT/kb2HPhJL8XX8A+UsXb+HpeCgqvz5Jy6perMsCFI41jwAAAAAkEYRCUUXp4pPH1yPs7KTQRzXAS/ANQFB4OVahrwSA6GE6HtPxIPdS0VmcHGGWrn1XfzpeVKd52P3eXIABiLKoniNyEfTpbLFYLGug08/1B5A/no5ngSAUkghCAbnJNKis3r6jeoER1e/tVwT7AH+ir8wu6EEoiSfkAVFFEMoCQSgkEYQCcmN3QfKoXmBE9Xv7FfsD8CeOzewIQgEIKhYmBzJwej0EHjeLqEokEorFYmSZAABQIK/Gk2SPAnATmVBkQsEFxbrjwyABXrHbxqPaRrm77y/sj8JE9TiG+6yOzXg8Hvn2lTzmMt0krf6a09vL6T6TTCggmpiOZ4EgFNyS6WTr5OCKCyt4JZcBZRQvYKP4nf0sCH2ln9tMELYfvFNI2023vmDU25fXU/CKFYRKJBKSpJ49e+b92QD8iyCUBYJQcIvd9XLc+DtRH7ihOHIJQtFOUahCAzRBaIN+rqOf6wbvFdo+aF91ZTvHJhIJVwM3ZEIBcAJrQgE+4PTaU4BX4vE47RlFY9XWcglC0VYBhElZWZnXVQCAvIUmCHXVVVfp5ptv1u67766ZM2fq+uuv16RJk7yuFlCDX6ZWAECU0PciHT9PgwQyqd52nW6zBO4RRvT3/hGK6Xjnn3++nn/+eV199dWaNGmSrr76al1yySX61a9+pUWLFqX9PabjwS3p0o6dTjcmhR1eYToeiikKbcjP39HPdStUmL9bsTAdz3l21oSqzu/bi+l48AP6muIL9XS8P//5z3r66af15JNPSpKuu+46nXrqqbrqqqt02223eVw7YBs37ipxpwoA4DbONXAT7auu6tskDNuHKfwAqgt8JlSDBg1UWVmpCy64QK+88krq58OHD9chhxxSZ8705ZdfrgEDBkiSWrRoobZt2xazuogIIu0IO56Oh2KKQp/KceKNKLQtt9F23ZXuCYLVBaHNFuuhPUA69PfFF9qn4+2+++5asmSJTjjhBH388cepn99xxx36wx/+oA4dOqT9XabjwS10cgg7UutRTFzkwi2crxEEYTjnZgqmBaH+CD76++IL9XQ8AID3SLWHWwg4AYiyMEzPGzx4sGXdg/p9AOQv8EGoH3/8UVu2bFHr1q1r/Lx169ZatmyZR7VC1HFCRdhZtXECBQCChvM1giAs51fGDvAS/b1/BH46niRNnTpVX3zxha644orUz+bOnatXX30148LkTMcDAAAAAABwVqin4/3jH//Qc889p//85z/65JNPdOWVV2qPPfbQ448/7nXVAAAAAAAAoJAEoV5++WU1b95ct99+u3bffXd99dVXOv3007Vw4UKvqwYAAAAAAACFJAglSY899pgee+wxr6sBAAAAAAAAC6VeVwAAAAAAAADhRxAKAAAAAAAAriMIBQAAAAAAANcRhAIAAAAAAIDrCEIBAAAAAADAdQShAAAAAAAA4DqCUAAAAAAAAHAdQSgAAAAAAAC4jiAUAAAAAAAAXEcQCgAAAAAAAK4jCAUAAAAAAADXEYQCAAAAAACA6whCAQAAAAAAwHUEoQAAAAAAAOA6glAAAAAAAABwHUEoAAAAAAAAuI4gFAAAAAAAAFxHEAoAAAAAAACuIwgFAAAAAAAA1xGEAgAAAAAAgOsIQgEAAAAAAMB1BKEAAAAAAADgOoJQAAAAAAAAcB1BKAAAAAAAALiOIBQAAAAAAABcRxAKAAAAAAAAriMIBQAAAAAAANcRhAIAAAAAAIDrSiQZryvhlYqKCn3//fdeVwMB0qJFC/34449eVwNwFe0cYUcbRxTQzhEFtHOEXZDb+L777qtWrVrV+Xmkg1BArqZPn66jjz7a62oArqKdI+xo44gC2jmigHaOsAtjG2c6HgAAAAAAAFxHEAoAAAAAAACuIwgF5GDEiBFeVwFwHe0cYUcbRxTQzhEFtHOEXRjbOGtCAQAAAAAAwHVkQgEAAAAAAMB1BKEAAAAAAADgOoJQAAAAAAAAcB1BKETWLbfcImOMhg0blvrZb37zG73zzjuqqKiQMUY9evSo83s77LCDhg4dqhUrVmj9+vV6/fXXteeee9Z4z957761x48Zp/fr1WrFihR5++GE1aNDA9e8E1Fa7ndevX1/333+/vvjiC61fv15LlizRCy+8oL333rvG79HOERRWffldd92l2bNna/369Vq1apXef/99denSpcbv0cYRJFbtvLrHH39cxhjdeOONNX5OO0eQWLXzUaNGyRhTo0yZMqXG79HOERTp+vKDDjpIr776qlavXq0NGzbof//7nzp06JB6PWxtnCAUIunYY4/VgAED9MUXX9T4+c4776zJkyfrz3/+c9rffeihh3TOOefoggsuUPfu3dW4cWO9+eabKi3ddjiVlpbqrbfe0q677qru3bvrggsu0LnnnqsHH3zQ1e8E1GbVznfaaSd16tRJ99xzjzp16qSzzjpLe++9t9555x3Vq1cv9T7aOYIgXV8+d+5cXXPNNTr00EN1/PHHa8GCBXrnnXfUqlWr1Hto4wiKdO086ZxzztExxxyjxYsX13mNdo6gyNTOJ0yYoDZt2qTK6aefXuN12jmCIF0b32+//fTJJ59owYIFOvHEE3XIIYfo9ttv1/r161PvCWMbNxRKlErjxo3N119/bcrKykx5ebkZNmxYnfc0b97cGGNMjx496vzu5s2bTd++fVM/22uvvUxVVZU5+eSTjSRz6qmnmqqqKrPXXnul3vOHP/zBbNy40ey6666ef39KNIqddp4sBx98sDHGmEMOOST1u7Rzit9LLm181113NcaYVPuljVOCUrK183322cf88MMPpkOHDmbBggXmxhtvrPG7tHNKEEqmdj5q1CjzxhtvZPxd2jnF7yVTG3/hhRfM888/n/F3w9bGyYRC5IwYMUKvvPKKEolEzr/buXNn7bDDDnrvvfdSP/vhhx80e/Zsde3aVZLUpUsXzZ49Wz/88EPqPe+++64aNWqkzp07F1x/wI5c2nnjxo0lSatXr5ZEO0cw2G3jDRo00IABA7RmzRp9/vnnkmjjCI5M7bxevXp68cUXNWTIEM2ZM6fO67RzBEW2/vz444/X8uXLNXfuXI0YMUItW7ZMvUY7RxCka+MlJSU688wzNWvWLL399tuqqKjQf/7zH51//vmp94Sxjdf3ugJAMV122WU68MADdeGFF+b1+23atNGWLf9fe3cfU3X5/3H8JRDegBFJoiMTljodKWjN5Wo7TpA22dRabfmHO5m4tNK1VTNzzZVZpnajrVsrji4yGwPEaW4mpFlbViNRw5Z2cBy56yARN4oHen//6OcZRyhUfocD8nxsr4nX9fmc8z743mdweT7XaZPX6w0Yr6mp0ahRo/zH1NTUBMx7vV61tbX5jwGC6Wr6/IYbbtDrr7+uwsJC/60c9Dn6uivp8czMTH3++ecaNmyYqqqqNHv2bNXW1kqix9E/dNfnL774orxer95///0u5+lz9Afd9fm+ffuUl5cnt9utxMREvfzyyyoqKtKdd96pixcv0ufo8/6rx0eOHKnhw4fr+eef1wsvvKDnnntOs2bNUk5OjpqamrR3797rssdZhMKAMWHCBL3yyiu699571dbWFupygKC4mj4PDw/Xp59+qptuuklz587tpQqBnrnSHi8uLlZqaqri4uK0ZMkSffHFF5oxY4aqq6t7sVrg2nTX5w6HQ4888ohSU1N7vzjg/8mVXM937tzp//r48eP66aefdObMGWVmZio/P7+3SgWuSXc9fmlPp127dunNN9+UJB09elR33XWXnnzySe3du7dX6+0t3I6HAWPGjBm65ZZbdOLECfl8Pvl8Ps2cOVOPP/64fD6fIiMju32M6upqRUREKC4uLmA8Pj7e/4tNdXW14uPjA+bj4uIUERHBLz8Iuivt80u3cUyZMkVpaWk6d+6c/zHoc/RlV9rjLS0tOn36tL7//ntlZWXJ5/MpKytLEj2Ovq+7Pr/vvvs0evRoVVVV+ecTExP12muvqaKiQhJ9jr7vWn42r6qqksfj0fjx4yXR5+jbuuvxuro6+Xw+/fLLLwHnlZWV6bbbbpN0/fZ4yDemIqQ3EhMTY8nJyQE5cuSI5eTkWHJycsCx3W1MvmDBAv9YQkJClxvDJSQk+I9ZsGBBn90YjlxfuZI+j4iIsNzcXDt58qSNGjWq02PQ56Qv52qu5R1z6tQpW7t2rUn0OOn76a7PR44c2Wne4/HYxo0bbcKECSbR56Tv51qu5yNGjLDW1lZbuHChSfQ56du5kh7/9ttvbfv27QHnbd++3fbs2WPSddvjIS+AkJDl8k8niI2NtZSUFHM4HGZmtnjxYktJSbH4+Hj/Me+++65VVFRYWlqapaamWlFRkZWUlFhYWJhJsrCwMCstLbUDBw5YamqqpaWlmcfjsS1btoT89ZKBmY59Hh4ebvn5+ebxeGzq1KkWHx/vz5AhQ/zn0OekP6Vjjw8fPtzWrl1r06dPtzFjxti0adPs448/tgsXLtjkyZP959DjpL+lu0+BvPzT8ST6nPS/dOzzqKgo27hxo9199902duxYczgc9t1331lFRYVFR0f7z6HPSX/K5dfyefPmWWtrqy1ZssRuv/12y8rKsosXL9qcOXP8x1yHPR7yAggJWS6/CDidTuvKmjVr/MdERkbali1bzOv1WnNzsxUWFgZ8HKYkGzNmjO3evduam5vN6/Xa5s2bLTIyMuSvlwzMdOzzsWPHdtnjZmZOp9N/Dn1O+lM69vjQoUMtLy/Pzp49axcuXLCzZ89aQUGBTZ8+PeAcepz0t1zLIhR9TvpbOvb5kCFDbN++fVZTU2Otra1WXl5u2dnZnXqYPif9KV1dy51Op/3666/W0tJiR48etYcffjhg/nrr8UH/9wUAAAAAAAAQNGxMDgAAAAAAgKBjEQoAAAAAAABBxyIUAAAAAAAAgo5FKAAAAAAAAAQdi1AAAAAAAAAIOhahAAAAAAAAEHQsQgEAAHTB4XDIzOR0OkNdSpfMzJ/9+/eHrI6ysjJ/HW63O2R1AACAvi8i1AUAAACESkpKiubPny+Xy6UzZ86EupyrdujQIX344YeqqqoKWQ3PPvusYmJitHr1ag0dOjRkdQAAgL5vkCQLdREAAACh4HQ65XK5NHPmTB08eDBgbtCgQYqMjJTP59Pff/8dogr/nZnJ5XJp0aJFoS5FklRcXKzExEQlJSWFuhQAANBH8U4oAACALpiZWltbQ10GAADAdYM9oQAAwIC0Zs0auVwuSdLXX3/t39coOztbUtd7QnUcW7ZsmU6ePKnz58+rtLRUmZmZkqQ77rhDX375pRoaGuT1erV582ZFRHT+f79x48Zp+/btqqysVGtrq9xutzZs2KBhw4b1+LW53W4VFxdrypQp2r9/vxobG1VTU6NNmzYpPDxcgwcP1saNG+XxeHT+/HkdPHhQEydODHiMwYMHa82aNTp58qSam5tVX1+v0tJSbdiwocf1AQCAgYl3QgEAgAEpLy9Po0eP1mOPPaZ169aprKxMknT69Oluz33iiScUGxurjz76SBcuXNCKFSuUn5+vhx56SFu3btWOHTtUUFCgjIwMrVixQrW1tVq3bp3//GnTpqmoqEh//vmnPvjgA509e1YpKSlasWKF7rnnHjkcDrW1tfXo9d16663av3+/du7cqdzcXGVkZOjpp59WW1ubkpOTNXToUK1fv15xcXF65plnVFBQoEmTJsnsn50a3nnnHS1evFjbtm3TG2+8oYiICI0fP16zZs3qUV0AAGBgM0IIIYSQgRin02lmZg6Ho9Ocw+EwMzOn09lpzOPx2I033ugfnzx5spmZtbe32/333x/wOD/++KNVVlYGjP38889WVlZm0dHRAePz58/v9Jz/FjOz7OzsLufcbreZmT344IOdamlvb7eCgoKA8eXLl5uZWUZGhn+srq7O9uzZc8Xfy+LiYnO73SH/NyWEEEJI3w234wEAAFwll8ulv/76y//3Y8eOqaGhQZWVlcrPzw849vDhwxo9erSioqIk/XO7XkpKij777DMNHjxYI0aM8Ofw4cNqampSRkZGj2v0eDzKzc3tVEtYWJjefvvtgPFvvvlGkjR+/Hj/WENDg5KTk5WcnNzjWgAAACT2hAIAALhqv//+e6ex+vp6ud3uLsclacSIEZKkSZMmSZJeeukleb3egPzxxx+Kjo5WfHx8j2v8r1oun7u8Rkl66qmnFBsbq+PHj+vUqVPaunWr5s6dq0GDBvW4NgAAMDCxJxQAAMBVam9vv6pxSf7Fm0t/btq0Sfv27evy2EuLQj3xX7X821zHBabCwkIlJiZqzpw5cjgcSk9PV1ZWlg4dOqT09HT5fL4e1wgAAAYWFqEAAMCAdWkT7t7022+/SfpnIejAgQO9/vxXo76+Xjk5OcrJyZEkrV+/XitXrtS8efM63eoHAADQHW7HAwAAA1ZTU5Mk6eabb+615ywpKdGxY8e0dOlSJSUldZoPDw9XbGxsr9XTlbCwMMXExHQaLykpkdS73y8AAHD94J1QAABgwPrhhx/U3t6u1atXKzY2Vs3NzXK73Tpy5EhQn3fhwoUqKipSaWmpPvnkE504cULDhg3TuHHj9MADD2jVqlXatm1bUGv4L8OHD1dVVZUKCwtVUlKi2tpaJSUladmyZTp37px2794dstoAAED/xSIUAAAYsCoqKvToo49q5cqVeu+99xQZGSmXyxX0RaijR49q6tSpWrVqlebOnaulS5eqsbFR5eXlcrlcIb9Nr6WlRW+99ZbS0tKUnp6u6Oho/6LUq6++qqqqqpDWBwAA+qdBknp/MwQAAAD0iJlpx44dWr58uS5evKjGxsaQ1BETE6OIiAjt2rVLCQkJXd5iCAAAILEIBQAA0C913FT9q6++0uzZs0NSR1lZmSZOnChJKi8vZxEKAAD8K27HAwAA6IfS09P9X9fV1YWsjkWLFikqKkqSdP78+ZDVAQAA+j7eCQUAAAAAAICgCwt1AQAAAAAAALj+sQgFAAAAAACAoGMRCgAAAAAAAEHHIhQAAAAAAACCjkUoAAAAAAAABB2LUAAAAAAAAAi6/wGTsSgDkrbG0AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKEAAALaCAYAAADp8kAfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACpZklEQVR4nOzdd7gU5f3//9c5gGBDOtjFAhisYANEDiLWiCaWRKKCRrFiNCpRo+6iWOI35qOADYxYMRpFRMWCeFZFSkhsSFdRkHYQkHYA5XD//uC3yymzu7O7Mzvt+biu+1LO7tlz78w999zznvd9T4kkIwAAAAAAAMBFpV5XAAAAAAAAAOFHEAoAAAAAAACuIwgFAAAAAAAA1xGEAgAAAAAAgOsIQgEAAAAAAMB1BKEAAAAAAADgOoJQAIBAWbBggRYsWOB1NSzFYjEZY9SjRw9X/06PHj1kjFEsFnP17xTDgQceqDFjxmjp0qUyxmj16tUFfV6Ytg3SSyQS+vLLL1VSUuJ1VfLSr18/GWPUr1+/vH7/4Ycf1qpVq9S8eXOHa5adMUbl5eU5/c6oUaNkjNG+++7rUq2807p1az399NNatGiRtmzZImOMdtttt4L3cTEVo9/cd999ZYzRqFGjXPsbAIKBIBQAXzDG1ChbtmzRypUrVV5eHogBnJv8PpD1e/3gX6WlpRo7dqxOP/10vfnmm4rH47r//vsz/g4XMjjnnHPUo0ePVNA3iu699141bNhQ8Xjc66pIKl4A3o+efvppXXTRRfrwww81ZMgQxeNxbdq0yetqAYBv1fe6AgBQXXJA3aBBAx144IH6zW9+o7KyMh111FEaOHCgt5UDfOI///mPOnTooB9//NHrqhSkbdu26tixo0aMGKErrrjC6+ogIO655x7NnTtXr732mtdVydtrr72mqVOnaunSpXn9/vLly/X000/riiuu0AMPPKBFixY5XMP0OnTooMrKyqL9PT9r0KCBevfurffff18XXnhhjdcK3cdhs3jxYnXo0EFr1qzxuioAPEYQCoCvDB48uMa/u3btqo8++khXX321HnzwQX333XfeVAzwkY0bN2ru3LleV6Nge+yxhyRpyZIlHtcEQXHSSSepffv2uu2227yuSkHWrl2rtWvXFvQZzzzzjK6++moNGDBAd9xxh0M1yy4MfY9T2rRpo3r16ln2YU7s4zDZsmULbQdAiqFQKBSvS5LVa1999ZUxxphzzjmnzmvHHHOM+fe//22WLl1qNm/ebBYuXGgef/xxs/vuu1t+VtOmTc2QIUPMjBkzzIYNG8xPP/1kPv/8c3PfffeZnXbaqcZ7DzzwQPPMM8+YH374wWzevNksXrzYPPPMM+bAAw+s87mxWMwYY0yPHj3MOeecY6ZNm2Y2bNhgVq5caV588UWzxx571Pmdtm3bmieeeMLMnz/fVFZWmpUrV5ovv/zSPPbYY6ZZs2ZGkikvLzfp7LvvvnX+9gUXXGCmTp1q1q1bZxYsWGAkmR49ehhjjInFYpbbZMGCBan31i7nn3++ef/9983KlSvNxo0bzYIFC8zo0aNN586dbddPkqlXr5656qqrzJQpU8yaNWvMhg0bzKeffmquueYaU1JSYvm3r7nmGvPVV1+ZjRs3mh9++MEMGzbMNG7cOGN905UTTzzRvP3222blypVm06ZNZu7cuea+++4zjRs3rvPe5Hdq0KCBueOOO8ycOXPMpk2bzKhRo1Lv6dSpk3n77bfN2rVrzZo1a8yECRPMcccdV2Nf1P7c9u3bm1GjRpmFCxeazZs3m2XLlpkXXnjBtGvXrs57R40aZYwxpm3btubaa681X3zxhamsrDTl5eUZ92my7vXq1TO33nqrmTdvntm0aZNZuHChuf/++02DBg0st0/fvn3N//73P1NZWWmWL19unn32WbP77runPi+Xbd2pUyfzyiuvmOXLl5tNmzaZ7777zjzyyCOmTZs2lsd8benaafW2bqVfv351ts3hhx9u3nzzTbN69WqzYcMGk0gkTJcuXSw/O582alXy3Qe5tI9M+6Vfv341tkft43zXXXc1Dz74oFmwYIH5+eefa2zvfI6TXL7n8ccfb8aNG2cWLVpkNm3aZJYuXWqmTJli7rzzTtvb98UXXzTGGLP//vvX+PmAAQOMMSbtZ7Vu3dr8/PPP5ssvv7T1dw466CBz3333menTp5uKiopUW37iiSfMnnvuWeO9DRo0MP/5z3+MMcaceeaZdT7rmWeeMcYYc/vtt2fdT4ceeqgZPXq0WbBggdm0aZOpqKgw//vf/8z//d//mfr169f57G+//dYsXrzY1nc6+eSTjTHGDBkypMbPy8rKUsfRXnvtVeO1f/3rX6m+qPqxm+yLkm0rneR7kn3avvvuawYMGGC+/PJLs3HjRrNs2TLzxBNPWLaxdGWXXXYxt99+u5kxY4ZZs2aNWbt2rfn666/Nv/71L9OpU6fU8WSMMR988EHaz/nyyy/Nzz//nOqbcu070n3v5LmikGMxl/4gW+ndu7cZN25cqk9euHChGTt2rOnVq1fqPfn0m7vvvru54447zKRJk1JjsMWLF5sXXnjBHHzwwXXev++++9bYPoW0jVyPEwqF4q9CJhSAwPjll19q/PuSSy7RiBEjtHnzZo0bN06LFi3SQQcdpMsuu0xnnnmmjjvuuBpTFPbbbz+Vl5drv/3203//+1899thjKi0tVbt27XTDDTfo8ccf1/fffy9JOuqoo/T+++9r11131bhx4zRr1ix16NBBF154oc466yyddNJJ+u9//1unjldffbX69OmjcePG6cMPP9Sxxx6r3//+9zr88MN1xBFH6Oeff5a07e7p9OnT1bhxY40fP16vvvqqGjVqpLZt2+qiiy7S8OHDtWrVKj399NP66aefdPbZZ2vs2LH6/PPPU3/rp59+qvG3b7zxRvXu3VtvvPGGysvLtdtuuxW0vUeNGqX+/ftrxYoVGjNmjFasWKG99tpLPXv21Ny5c/W///3PVv3q16+vN954Q6eeeqrmzJmj0aNHa9OmTerZs6eGDx+uY489VhdffHGNv/3QQw/pT3/6k5YsWaIRI0bol19+0VlnnaVjjz1WO+ywQ2o72jFgwAA99thj2rBhg/7973+roqJCZWVluuWWW3TmmWeqW7dultMDXn31VR199NF6++23NXbsWFVUVEiSunTpovfff1877LCDxowZo6+//lpHHHGEEomEPvjgA8s6nHLKKRozZowaNGigN954Q19//bX22msv/fa3v9UZZ5yhnj176rPPPqvzew8//LC6d++ut956S+PHj1dVVZWt7zx69Gh1795db7/9ttauXavTTz9df/nLX9SqVStdeumlNd57880364EHHtCqVav0zDPPaM2aNerdu7c++eSTnKdNnHHGGXr11VdVUlKiV155Rd9//706d+6sq6++WmeddZaOP/74VDZjPB7Xfvvtp/79+yuRSCiRSEhS6r9WEomEHnroIV1//fX6/PPPNXbs2NRr1duetO0YHjRokKZMmaInn3xS++yzj8455xxNnDhRRxxxhObNm5d6bz5tNJtc9kG+7SNXO+ywgz744AM1a9ZM7733ntauXZta5D/f48Tu9zzllFP01ltvae3atRo3bpwWL16sZs2a6eCDD9bVV1+tu+66y9Z3OPHEE7V06VJ9++23NX7+wgsv6IEHHtAf//hHDRkyRFu3bq3x+qWXXqoGDRroiSeesPV3fvvb3+rKK69UeXm5Jk+erJ9//lkdO3ZMnV+OOuqoVPbLL7/8ot/97nf67LPPNGrUKB1xxBH64YcfJEn9+/fXxRdfrPfff1/33HNPxr956KGHatq0aTLGaNy4cVqwYIEaN26sAw88UFdffbVuv/12bdmypcbvfPLJJ7rwwgvVsWNHzZw5M+Pnf/zxx9q8ebN69eql22+/PfXzXr161fj/Z555JvXvnj17Zn0YxEMPPaSzzz5bZWVlevrppzNmLD/wwAM65ZRT9MYbb+i9995Tz549NWDAAB144IE16pHJO++8o27dumny5Ml68skntWXLltS56eOPP9ann36quXPn6oMPPtCJJ56ogw46SPPnz6/xGV26dNGhhx6qV155RcuWLavxmt2+46GHHtJ+++1Xpz+q3RdZyXQsOtkfxONxxWIxrVu3TmPHjtWiRYu0xx57qGvXrrrwwgs1ceLEvL67JJ1wwgm65ZZbVF5erldffVXr16/XQQcdpHPPPVd9+vRRt27d9OWXX9qqp2S/beRznADwH88jYRQKhVL7rmmydO/e3WzZssVs2rSpRibFQQcdZDZv3mzmz59fJ8voxBNPNFu2bDFjxoyp8fNPPvnEGGPMLbfcUufvNG/e3DRs2DD171mzZhljjOnbt2+N951//vnGGGNmz55dIzsimaGxZs0ac8ghh9T4nRdeeMEYY8x5552X+tm1115rjDHmuuuuq1OXnXbayTRq1Cj173R3U2v/7fXr15sjjjiizuv5ZEJdfvnlxhhjpk2bVucuZGlpaY19Ybd+Q4cONaWlpTU+58knnzTGGNOnT5/Uz7t06WKMMWb+/PmmadOmqZ83bNjQTJ482RhjbGdC7bPPPmbTpk1mzZo1pn379jVee+SRR4wxxjzxxBM1fp7M8Pjiiy9M8+bN63zm7Nmz69RZkrnuuutS7bh6JlSTJk3MqlWrzIoVK+rcHe7YsaNZt26d+d///lfj58k7wz/88IPZb7/9bO/TZN3/+9//1th2O+20k5k/f77ZsmWLad26dernbdu2NT///LOpqKiokwExevTotMelVdl5553Njz/+aLZs2WKOP/74Gq8NGjTIGGPMu+++m1PbtCrp7qbX/kyrNpnMlnnkkUcKaqOZSq77IJ/2kW8mlDHGTJgwoU7WZyHHid3v+corrxhjjDnssMPq1NnqOLMqyeyWcePGWb4+bNgwY4wxZ5xxRp3XvvnmG7N+/XrbGTd77LGH2WGHHer8vHfv3mbLli3m0UcfrfPaeeedZ4wx5qOPPjKlpaWmQ4cOZv369WbZsmU1tkW6/fT3v/89bVtr0qSJZUZest+56qqrbH2vDz/80Pzyyy81tsPkyZPN//73P7NixQrz7LPPpn5+2GGHGWOMefLJJ2t8hjE1M6GqH0NWWaDS9j7t+++/N3vvvXfq5/Xq1TMffvihMcaYo48+Omv9DznkEGOMqXN+l2RKSkpMkyZNUv8+55xzjDHG/L//9//S1uekk05K/SyfviNTf5TPsZhPf5Cu9O7d2xhjzDfffGOZjV09oy+f796yZUuzyy671Pncww47zKxbt86MHz/e1rbKtW3kc5xQKBR/FZ6OB8BXYrGYYrGYhgwZon/96196//33VVJSoptuuqnG3cqrrrpKO+ywQypbproPPvhA48aN05lnnqlddtlFktSpUyd17dpVn332mf72t7/V+bsrV67U5s2bJW1bh+rggw/W5MmTNXr06Brve/nll/Xxxx+rQ4cOOv744+t8ztChQ/XVV1/V+NnIkSMlScccc0yd92/cuLHOzyorK/N6ss6IESNs3YG1I7kI/BVXXFFnTYutW7fWuXOcTklJiQYOHKilS5fqhhtuqJGdsHXrVt14443aunWr/vCHP6R+fskll0jatvjw6tWrUz/fvHmzbr311py+x4UXXqiGDRtq+PDhddai+Otf/6q1a9fqoosu0g477FDnd++44w6tXLmyxs+6du2qDh066MMPP9S4ceNqvDZ8+HB9/fXXdT7n4osvVtOmTRWLxTR79uwar82cOVMjR45Up06ddPDBB9f53QceeCCvddD+8pe/1Nh2lZWVeuGFF1SvXj0dddRRqZ/37dtXDRo00LBhw1KZG0m33HJLTneTzzrrLDVv3lwvvfSSJk2aVOO1Bx98UAsWLNDJJ5+svffeO+fvk49JkybVyOiQpKeeekq//PJLjWMxnzZqh919UEj7yMeNN95YZ1HpQo4Tu98zyarPq32cpbPPPvtIUtqFnh977DFJqrPI/cknn6z9999fL730ku01epYsWWKZcTlhwgTNnDlTp5xySp3X/v3vf+vxxx9X9+7d9be//U0vv/yydtxxR1100UVavny5rb8rWW+jn376yfJJgMm+OLltspk4caLq16+feordLrvsoqOOOkoTJkxQeXm5TjzxxNR7k9kntbNlCnHXXXfVyFCuqqpKPenS6hyZjtU2MsbUyBAeO3aslixZov79+9dou7vttpvOP/98ff3113r//ffrfI7dvqNQVseik/1B8jx+4403Wq5ZtXjx4jo/y+W7r1ixQuvXr6/zGV9++aU++OAD9ezZU/Xr2590k2vbyOU4AeAvTMcD4Cu1Hze9detW/fGPf9TTTz9d4+ddunSRJPXo0UNHH310nc9p1aqV6tevr3bt2unTTz/VcccdJ0l69913sw5QOnXqJElpp1Z98MEH6t69u4488kh9/PHHNV6zmqKXHFQ1bdo09bNx48bp3nvv1SOPPKJTTjlF7777rj755BPNmjUrY90y+c9//pP371a300476dBDD9WyZcsKDmq1a9dOzZs317x582pM/6hu48aNNQbUye3/4Ycf1nnvpEmTcgqMZNqXP/30kz777DP16NFDHTp0qDNtwGp7Zqrb1q1bNWnSJB144IE1fp5sq4cffrhisVid32vXrp0k6eCDD65z0ZHvPrXbDo888khJqhM0kqSFCxdq0aJFatu2ra2/mWlbV1VV6aOPPlLbtm115JFHFuVJXlbbYMuWLVq+fHmNbZBPG83371vtg0LaR642btxoOT2mkOPE7vd84YUXdM4552jatGl66aWXVF5erk8++cTyQjid5s2bS1KNoFd1s2bN0ocffqjTTjtNe+21VyqwOmDAAEnS448/nnpvv379tN9++9X4/UQiUePY/sMf/qD+/fvr8MMPV9OmTWtcUCdvWtR2/fXXq2vXrrrpppskSffee68mTJhg6/u99NJL+tOf/qSxY8fqlVde0fvvv69PPvmkztTD6latWiVJatGiha2/8cEHH2jw4MHq1auX3njjDfXo0UMNGjTQxIkT9d133+m8885Thw4dNGfOnFRAKt25MB9220s6s2bN0meffaa+fftq33331euvv65Jkybpv//9b50p+1VVVRo5cqRisZjOOeccvfjii5Kkiy66SDvttJNGjBhhu45WfUch0h2LTvYHxx13nLZu3ap33nnHdr1y/e6nn366rrzySh111FFq0aKFGjRoUOP1Fi1a2L5pZbdt5HOcAPAXglAAfKWkpETStkBIly5d9M9//jO1VlN5eXnqfcmLkUGDBmX8vGQmVJMmTSRZ3/mrLbmWUrq77cmfJz+zutrrNElKBU3q1auX+tnChQt1zDHHKB6P69RTT9U555yT+vnf//53DRs2LGs9a7M70Msml22VTXI/tWvXrk6AsbrkfpK2b3+rzIGqqir9+OOPtv9+IfvSantmqlu630lug+SFcDrVt0Gmz7PDau0eq3aY7fssX77cdhCqkG3tBqtjUdq2Hapvg3zaqB1290Eh7SNXyXXNaitk39n9nq+99prOOOMM3Xjjjbr00kt15ZVXStp24XnrrbdaZqTUlsx8aNSoUdr3PProo+rRo4cuu+wyxeNxtW7dWn369NFnn32m6dOnp97Xv39/lZWV1fjdeDyeCkL94x//0A033KAlS5bo3Xff1eLFi1N/v3///nUCWEmbN2/WW2+9pcMOO0y//PKLHnnkkazfK2n69Onq3r27/vrXv+rcc89NrUM2Z84cDR48WP/617/q/M6OO+4oyTorxMrUqVO1fv36VJZTr169tHnzZk2aNCmVddmrVy/Nnz9fJ5xwgmbOnJlTFlc2ds+R6WzdulUnnnii7rzzTp177rl64IEHJG17Et0zzzyjW2+9VRs2bEi9f8SIEfrrX/+qK664IhWEGjBggDZv3pzKsrFTx2Q97dTRjnTHopP9QZMmTbR69eqcMqtz+e7XXXedHn74Ya1atUoTJkzQwoULVVlZKWOMzj77bB1xxBFq2LBhQX/bqm3kc5wA8BeCUAB8qbKyUhMnTtSZZ56pTz/9VM8884zat2+fGmgnL3waN26sdevWZf285OBmzz33zPre5Ge3adPG8vXdd9+9xvvyNWfOHP3+979XvXr1dPjhh+ukk07SwIEDNXToUG3YsEFPPfVUTp+XLsMrOb0oXVp8kyZNagz+ctlW2SS30ZgxY1KBNru/07p16zqL4darV08tWrSoM3Us22e1adPGMsss131ZvW5WrNpM8ncOO+wwzZgxw9bfSXJ7WkFyalLr1q0tt0+672mlWMeN0/Jpo278/VzaR/KYrlevXp3F6jMF+dK1J6ePk3TGjx+v8ePHa6eddtKxxx6rX//617rqqqv05ptv6sgjj8ya2ZG8cE9eqFsZM2aMli1bpj/+8Y+666670i5I3rNnz7Sf0bJlS1133XWaMWOGunbtWmfK0QUXXJD2d7t166abb75ZK1asUMuWLfXUU0/p1FNPzfi9qps6darOPPNM7bDDDurcubNOPfVUDRw4UC+++KJWrFhRZ2pcclukC2rUtmXLFk2aNEmnnnqqWrdurV69emnKlCnauHGj5s+fr0WLFumkk07Sp59+qsaNGzuaBeWUn376SX/+85/15z//WQcccIB69OihK664QgMHDlSTJk1qPERgyZIlGjdunH7729+qffv2atasmQ499FD961//yumGhtOyHYv5nC9q++mnn9S8eXM1atQoryn+mdSrV0/xeFxLly5Vp06d6twwSWZ0uSXX4wSAv7AmFABfmzFjhkaOHKm9995bN9xwQ+rnU6dOlSR1797d1uck33/KKaeksq3SST51pvZd8qTkxcunn35q629nU1VVpU8//VQPPPBA6uLm7LPPrvG6ZO8usZXk1BWrtXgOOOCAOhetlZWVmjFjhtq0aaMjjjjCVv3T1W/OnDlavXq1jjvuONtrQyS3a3LNkuqOP/74nNaYyLQvd9ttNx1xxBHauHGj7WlOmepWWlpquU5Yrm21mJLbx6re++yzT07rN2Xa1vXq1Ut9/0KPm0KPh9ryaaNOyqd9ZDqmrdZhysbp4ySbyspKlZeX68Ybb9S9996rhg0b6rTTTsv6ezNnztSWLVvUoUOHtO/ZsmWLnnzySe21114688wzddlll2ndunV64YUXbNdv//33V7169fTee+/VCUDtueee2n///S1/r1mzZnrxxRf1yy+/6MQTT9Tzzz+vU045RX/5y19s/+2kn3/+WVOmTFEsFtN1110nadu6a7Ult0UuU6eTF+gXXHCBDjnkkBoX7B988IHKysrUu3fvGu/Nxunj0q5vvvlGTz31lHr06KF169ZZbqNHH31U0ra1wpIZRnafklhsTp4vpk6dqtLS0pyCoHa1aNFCTZs21eTJk+sEoHbeeefUFF+32T1OAPgLQSgAvjdkyBBt2rRJN910UypgMnz4cP3888/6v//7Px100EF1fqdBgwY1Lqw//fRTffLJJzryyCMtLwiaNWuWShv/5JNPNGfOHHXv3r1OZsQ555yjE044QXPnzrVcR8euTp06qXHjxnV+nsw8qb5YaXLRXrsLz9Y2Z84crVmzRmeddZZatmyZ+nmjRo00dOhQy99J/vyJJ56oU8+SkpIa2S6Z6ldVVaVhw4Zpjz320NChQy2n0bRp06bGejvJ9b/++te/1lgHomHDhrrvvvuyfd0ann/+ef38888aOHCgDjjggBqv3X333dptt91S77Fj8uTJmjNnjnr06KE+ffrUeO3aa6+tsx6UJI0aNUqrV69WLBazXL+spKTEMqhVDKNHj9Yvv/yigQMHaq+99qrx2n333ZdTUGbs2LFauXKlLrjgAh177LE1Xrv++uu1//77a8KECQWvB7V69Wpt3bo17+OhtnzaqJPyaR/JtcIuv/zyGj8/8cQTM2bppOP0cWKle/fulgEKqz4vnbVr1+rzzz/XYYcdlnFK3ogRI7RlyxYNHz5c+++/v0aPHm25gHI6yWlpxx9/vEpLtw+Vd955Z40cObLOujdJo0aNSt0w+eqrr3TVVVdp/vz5uvvuu21lhnTp0sXye2XaRscdd5y2bNmijz76yM5Xk7R9jadbbrlFpaWldYJQTZo00dVXX62qqiolEglbn1noecqu/fbbz3KKcNOmTdWwYUPLaYkTJ07U3Llz1a9fP51//vmaM2eO7e9VbE6eL5LT+h988EHtsccedV63+pldFRUV2rBhgzp37qydd9459fP69evr4YcfrjHWcFo+xwkAf2E6HgDfW7JkiR5//HFdf/31GjRokG677TbNnTtXl156qZ566inNnDlT77zzjubNm6cGDRpon332Uffu3bVixYoaF44XXnihEomE7rvvPp1zzjlKJBIqKSnRQQcdpJNPPlkdOnTQ999/L2nborUTJkzQSy+9pNdff11z5sxR+/btdfbZZ2vt2rW6+OKLC5oqddFFF+mKK67QpEmT9M0332j16tU64IADdOaZZ2rTpk166KGHUu+dMmWKNmzYoOuvv17NmzdP3XUcNmyYrSc9bdmyRQ8//LDuvPNOffbZZ3rttddUv3599e7dW0uWLLFc++nJJ59U9+7ddfHFF2v+/Pl6/fXXtWLFCu2xxx468cQT9dRTT2nw4MG26nf33Xfr8MMP11VXXaUzzzxTH3zwgRYvXqxWrVrpoIMOUrdu3fTXv/41lWUxefJkDR06VNddd52++uorvfLKK/rll1901llnafXq1ZZP+Unn+++/1/XXX69HH31Un376qV5++WWtWLFCPXr0UNeuXTV79uycsxT++Mc/asKECXr11Vc1ZswYff311zriiCPUq1cvvf3223UyOlatWqVzzz1Xr732mqZOnaqJEydq5syZMsZo7733VpcuXdS8efPU2i7F9O233+rOO+/Ufffdpy+++EIvvfSS1qxZo969e6tZs2apC347NmzYoEsvvVT//ve/9eGHH+rf//63Fi5cqM6dO+uUU07R0qVL6zy1LB8bNmzQtGnT1L17dz3//POaN2+eqqqqNG7cuLynr+TaRp2UT/sYNWqUbr75Zt122206/PDDNWvWLLVr106nnXaaXnvtNZ177rk51cGN46S2oUOHas8999Qnn3yi7777Tj///LM6d+6sXr166bvvvrO9jsurr76qo446SieeeKLGjx9v+Z5FixbprbfeSmVE5Jr1snz5cr344ou64IIL9Pnnn+u9997Tbrvtpt69e2vTpk367LPPUov6J/3pT39Snz599Morr6T+3vr16/W73/1OU6ZM0Ysvvqgjjjgi7Zo70rY1Dk888UR9/PHHWrBggdavX6+OHTvqtNNO06pVq+ospN24cWMdc8wxmjhxou2n/knbMt9WrVql1q1ba+3atTUegJAMSLVu3VrTp0+3PQWzvLxcVVVVuu+++3TIIYeksvXuuece2/Wy4/DDD9eYMWM0ffp0zZ49W0uWLFHLli111llnaYcddrB8+q20bVH6//u//5OktAuS+4GT54sJEybo7rvv1h133KHZs2dr7NixWrRokVq3bq3jjz9eU6dOTT2NNlfGGA0dOlS33nqrZsyYoddff1077LCDevbsqWbNmumDDz6o8aRFJ+V6nADwJ0OhUChel6R0r7dq1cqsX7/erF+/3rRq1Sr180MOOcSMGjXKfPfdd2bTpk1m5cqVZsaMGebxxx83PXv2rPM5zZo1M/fff7+ZM2eO2bhxo1m9erX57LPPzJAhQ8yOO+5Y473t2rUzzz77rFmyZIn5+eefzZIlS8xzzz1n2rVrV+dzY7GYMcaYHj161Hlt3333NcYYM2rUqNTPjjnmGPPoo4+azz//3KxcudJUVlaa+fPnm6eeesp07NixzmeccsopZvLkyWbdunWpbbXvvvtm/dvVy1/+8hfz9ddfm82bN5vvv//e/O1vfzM77rijWbBggVmwYIHl7/Tt29ckEgnz008/mY0bN5pvv/3WPP/88+bII4+0Xb9kufDCC837779vVq5caTZv3mx++OEH8/HHH5tbb73V7LXXXnX+9jXXXGNmzZplNm3aZBYvXmyGDx9uGjdunLG+6Urv3r3Nu+++a1atWmU2bdpk5s+fb/72t7+Z3Xbbrc57y8vLM7ZFSaZTp07m7bffNmvXrjVr1641EyZMMMcdd1zWdjBs2DAzb948s3HjRrNmzRoze/Zs8+yzz5qzzjqrxntHjRpluQ2TpUePHsYYY2KxmO269+vXzxhjTL9+/eq8duGFF5pPP/3UbNy40VRUVJjnnnvO7L777mbGjBlm9erVOW3ro446yowZM8ZUVFSk2tqjjz5qdt99d9vfI1s54IADzLhx48yPP/5oqqqqanyvbJ+Zqf3k2katSr77IJf2Icn86le/Mm+99ZZZu3atWbdunSkvLzcnnHBC2r9h57hx6jixqsN5551nRo8ebebNm2fWrVtn1qxZY2bMmGGGDBliWrRoYXvft2zZ0mzatMn861//yvi+Pn36GGOM+c9//pNT20qWHXfc0QwZMsTMnz/fbNy40SxcuNAMHz7cNGvWrM5379Spk9m0aZNZsGCB5bYaOHCgMcaY1157LeM26t27t3nqqafMzJkzzU8//WTWr19v5syZYx5++GGzzz771Pncyy+/3BhjLNtHtvLKK68YY4x5880367w2Z84cY4wx999/v+XvGmNMeXl5nZ//4Q9/MJ999pmprKysc07P1Kfl0g/sueee5p577jGTJk0yS5cuNZs2bTKLFi0y48ePN6eeemra32vSpInZsmWLqaysNM2aNbN8Tz59h9X5PdM+tnss5tofZCqnnXaaefvtt83KlSvNpk2bzMKFC82YMWNqjJHy+e716tUzN9xwg5k5c6aprKw0S5cuNc8++6zZZ599LPd3um2Va9vI9TihUCi+LJ5XgEKhUCgUis/KrrvuaiorK83kyZM9rwuFUr08/vjjZuPGjaZ169Zp35MMCF966aWe19etMn36dDN79mxTWlrqeV38XpLBjGeffdbzulAoFArF+wpQKBQKhULxqLRo0cLUr1+/xs/q1atnRowYYYwx5uabb/a8jhRK9dKqVSuzZs0aM3ToUMvXd9llF7N06VLz448/1slwDUs566yzjDHGnHHGGZ7XJQjlrbfeMsYYc8wxx3heFwqFQol6YU0oAAAi7JxzztFdd92l999/X4sWLVKzZs10wgknqH379vrss89Si9sCflFRUaELL7xQHTt2VElJSWp9vtNPP12dOnXSmWeeqTZt2ujGG2+0XKg6DHbccUddf/31euutt7yuim8dcsgh+vWvf63OnTvr9NNP1xtvvFFj/SsAgHc8j4RRKBQKhULxphxxxBHm1VdfNYsWLTKVlZWmsrLSzJw509x9991ml1128bx+FIrdklxbZunSpeaee+4xJSUlnteJ4l1Jrsn0008/mZdeesk0b97c8zpRKBQKRabk//8fAAAAAAAAwDWRno5XUVGRehw7AAAAAAAACrfvvvuqVatWdX4e6SDU999/r6OPPtrragAAAAAAAITG9OnTLX9eWuR6AAAAAAAAIIIIQgEAAAAAAMB1BKEAAAAAAADgOoJQAAAAAAAAcB1BKAAAAAAAALiOIBQAAAAAAABcRxAKAAAAAAAAriMIBQAAAAAAANcRhAIAAAAAAIDrCEIBAAAAAADAdQShAAAAAAAA4DqCUAAAAAAAAHAdQSgAAAAAAAC4jiAUAAAAAAAAXEcQCgAAAAAAAK4jCAUAAAAAAADXEYQCAAAAAACA6whCAQAAAAAAwHUEoQAAAAAAAOA6glAAAAAAAABwHUEoAAAAAAAAuI4gFAAAAAAAAFxHEAoAAAAAAACuIwgFAAAAAAAA1xGEAgAAAAAAgOsIQgEAAAAAAMB1BKEAAAAAAADgOoJQAAAAAAAAcB1BKAAAAAAAALjOsyBULBaTMaZGWbp0aZ33LF68WJWVlSovL9evfvWrGq83adJEzz77rH766Sf99NNPevbZZ7XbbrsV82sAAAAAAADABk8zoebMmaM2bdqkyqGHHpp6bdCgQbrxxhs1cOBAHX300aqoqNCECRO0yy67pN4zevRoderUSaeeeqpOPfVUderUSc8995wXXwUAAAAAAAAZ1Pfyj2/ZskXLly+3fO3666/X/fffrzFjxkiS+vXrp4qKCvXt21cjRoxQhw4ddNppp6lbt26aOnWqJOmKK67QpEmT1K5dO82bN69o3wOwEovF6vxs8ODBHtQEcAdtHAAA7/j5POznugHwVokk48UfjsViGjRokH766Sdt3rxZ06ZN02233aYFCxaobdu2+vbbb3X00Ufrv//9b+p33nzzTf3444/q37+/LrnkEj388MNq3Lhxjc9dt26dBg4cqKeffjprHaZPn66jjz7a6a8GSJKMqXtolZSUuPK3ONHDC8Vs4wAAoCY/n4e9qBvjYcBf0sVbPMuEmjZtmvr37685c+aoVatWuv322zV58mR17NhRbdq0kaQ6WVLLly/XnnvuKUlq06aNVqxYUedzKyoqUr9v5fLLL9eAAQMkSS1atHDq6wCeisfjdX7mxUmXkz8AAAC8wHgYCAbPglDvvPNOjX9PnTpV3377rfr165eaXueGkSNHauTIkZK2ReYAOMcvJ38AAADAC4yHgcw8XROqug0bNmjmzJk66KCDNHbsWElS69attWjRotR7WrdurWXLlkmSli1bppYtW9b5nFatWqXeA/hN8s4IJyKEFW0cAADnBCGrxqqO+f6e374bAOd5tiZUbQ0bNtSCBQv02GOP6e6779aSJUs0bNgw3XfffanXKyoqdPPNN6cWJp89e7a6du2qKVOmSJK6dOmiyZMnq3379rYWJmdNKLjJai58ktNz4v2yJoDb9WCw4i/FbONALugrAIRFprGVn8d/VmrXzen6W31e9aykYp0H/LJfAK+li7d4FoT6f//v/+mNN97QwoUL1apVK91xxx064YQTdOihh2rhwoUaNGiQbrvtNl1yySWaN2+ebr/9dp1wwglq37691q9fL0kaP3689tprr9QaTyNGjNB3332nPn362KoDQSi4KRaLqaysTGVlZXVeIwjlz89HbpIX+lZp5/F4nIt+eIa+AkAYxGIxy3Nssj/zS8A9XfCn9hg4kUjUqF8xglBOfXah9eAchCjyXRDqxRdf1AknnKAWLVpoxYoVmjp1qu644w7Nnj079Z5YLKYrrrhCTZs21bRp03TNNddo5syZqdebNGmiYcOGpYJO48aN07XXXqs1a9bYqgNBKLgt3cnQ6RORnwchBKHCr1jtHLCLvgJAGATl/Jquz83WF+fbV6cb91b/eabgnds4BwHb+C4I5QcEoeC2oAwe0sk1uOV2MIyTuj8FvZ0jfOgrAISB386v6cZ5xQ5C2fk9p88DuYxx/XJzGPAaQSgLYQ5C5dv50Wk6K116stPb1K395rcLOb/VB9tkmy4AFBt9BYAwKNY40q50fWuuwamkfMevXgShOK8AuSMIZSHMQSg37yzAvmJtT7f+jt/ag9/qg+3YN/AT2iOAMPBbX5ZrfbwcnxKEAryXLt5S34O6AEBerLJtgCghW9Ue+gog3OgLkUksFlMikajxs9r/BuAdMqHIhHLk92CtWIOkqGRCwb+4ICgOjkkAiE5f6Ldza67b3Y3621kCwI32EZU2B2t+OxaDgul4FghCOfd78BZBKCAawnhM+nFg58c6AdgujH1hEPhhu9tZJ8vpp+4V8pkIB/Z/fghCWSAI5dzvwVtu7TcuxAB/CWMf7cfv5Mc6AX5W7PECx6g3/DAudHM9qEy/54fvDu/Q5+SHIJSFMAeheDpetNAxAtEQxmPdj9/Jj3UC/KzYxwzHaHS5mQlFu0I6tI38sDB5xOQbOCLgFEwswgtEQ5COdW5qAHBLkPpCuK92ECrZPsrKylI/S56TOA8B3iMTKqSZUAAAeMnuXUM/3l30Y50AP+OYQbFYtTXJmfML7Rjp0DbyQyYUAMeQ4QAAAIAoYzwcHWRfOotMKDKh4KKwnpy4GwApvO07aPy6H+z2E36svx/rBPgZ4wLnhKX/cet7uJkJlWudafdAZixMboEgFNwW1pNTWL8XckM78Ae/7ge/1guA88ISOPGDsPSdbn2P8vLyGms9Zfpst7dlWPYV4Bam4wEhwCAPAAD4DWMRFItVAIqpUkCwEIQCAsTqJOvEwI/gFgCncVEAACiGdGPWdOchxr2At5iOx3Q8uMjpNF230n7dnjOPcCIN3R/YDwAQHtn69KCMweycm/L5Lk6c85w6bwZlXwBeYU0oCwSh4LawBqEAiXbjF+wHAAiPbH16UPp8O/XM57v4KQgFIDPWhAKQE+7uIBumW/kD+wEAwiMsfXpYvgcA55EJRSYUXBTkTCgr3CWCFQKWAAAURxCyeOyOC/L5Lk6MOYKwDYEwYDqeBYJQcJvTJzm3LvYLCUIRgACDOQDIH+dR5CII51y7dfTqu7j9dzmmgW0IQlkgCAW3BWGgIFmfLK3SqP00gIB/0AYAIH/0ochFENqL34NQbgaJYrGY7TE0EHYEoSwQhILbgjBQSMfvAwj4B20AAPJHH4pcBCHLxm6bzve7+HkbpJtdwDGNKGJhciAkinXiZUFJAAAAf/FLsMUJ+X6XdGPUMG0bIMzIhCITCi5y4+6m3+6Y+q0+KD7aAADkjz4UYeN2m/ZztpGf6wYUG5lQgAfIJkIU0M4BAEAS4wIAmRCEAlwUhbRgBhqIQjsHALdwHkXY+Hlc4MV6UhzjQE1Mx2M6HgLGiRRnPy/oCAAAAKST75S3Yjy5jjE2sB1Px7NAEApucfME5EQQKorrTzAocAfbtbjY3gAQPUHt++3WO9fvl28wifWagOIiCGWBIBTc4maQJ5cTdbr3RjEIFcXvXAxs1+JiewNA9AS177db73y+X7bfsRoDp5sWF4RtCQQRQSgLBKHglmIPFnINNgV1MFOIKH7nYmC7FhfbGwCiJ6h9v5tBqGw3ZdNlPVkJwrYEgogglAWCUHBLsQcLuQabcqlfUFPAawvqAM7v2K7FxfYGgOgJat/vZhAqn79tJR6P2xrXhmU8DBQTQSgLBKHgljAFoYI68KktLN/Db9iuxcX2BoDoCWrfH4QglN2/E9R9AHgpXbylvgd1gQeI3qM6HhULAAAAv0peuzh9vcIYGPAeQaiIsOpwCUK5x+8nuCjue7/vk6BiuxYX2xsAoieofb/deiffV/39yf/PZcxqddO9tiiOgQG/YTpeRKbjkUIaHPlkraXbv05kwNF2AAAAosOrGRSFjjntTMHLdwzLeBjIHWtCWSAIRcfpR248IcTp+pBZBwAAEE5eXTe4EYSqPWbNd7zKeBjIHUEoCwShCEL5kd/2lVWAy+qkS3sCACB3rNsJvwlTEKr27+d7vDEeBnJHEMpClIJQDHCCw2+ZUFb8FigDACCoOKfCb7xqk4WOZzNlKyU/x8nvxrELZEYQykKUglAIjnxOaMU+CXLSBQDAGZxT4TdBbZOZ1oRK1p8gFFA86eItPB0PQEZ2njQCAAAAeMnqKXtOYTwMOIdMKDKh4DOZUpHTvebmnRg7Txpx8u8BABAlZFPAb4qxzEOxH6pTaCYU42Egd0zHs0AQCsXi1Ik23Ymz2EEongaCJNabA4DCFHIOpw+OhqDu50z1LvbY1Y0gFONhBPXYLBaCUBYIQqFYnDrRpjsBuvl0Du7Qes/PJzjaBwAUppA+nj44GoK6n90IBtk5XjJ9dr7HW1D3AdxFu8iMIJQFglAoFqeeeJdujrubd2LoXL3n533g57oBQNjRB0dDUPdzsTKSav+eGzfvgroP4C7aRWYsTA4UkROLF+ayqKKbWTFuLO6IcIvFYr7J1AKq83NWIQBUx0LY+XOjXw/6eJjzH/yETCgyoeACO4sXZouS210A0c5nIdj8fJclXTv1S/2A6vx8LAH5oE2HV7ZxYBD2s1eZUKiL7eYOtmtmZEIBIZBu/ad8cVcEAArnt77Ub/UBgNq8zCyijwS8RSYUmVBwgZ0naGQ72RVjEXKi98Hg5/0Ui8VcXRgfcJJbx5LfjlG/1Qfu4WI6vLKNJYOwn93oi5z4zCj2kVH8zsVAH5wZC5NbIAgFt7h1grQSj8fz7uw4IQWD309wtCMEBUEoAEERhuPYje/gxJgol3r5fQxmVxjaE4KHIJQFglBwixMdvd2n4xVyAuGEBCfQjhAUUQ5CFXLDAkDx+a1fyYdfv0Mu9fLrd8hVWL4HgoU1oYAiKnSee7q7LkF/MgfCiXaJoIhyWyUIBQRLGNZMinKf6zfsC/gJmVBkQsGH0t2tcPouRlhSjAHAS37rS1mrDUAhvMyaKUZ/msvfIIMIyB/T8SwQhIJfFSsIBQAIJ84XAPLlZf/ht77Lb/UBgoTpeEDAWd21AQAAAIKOcS4QHQShgCIqJMWYudwAAACozm/Tge2qXW+/jnP9Wi8gyJiOx3Q8uMjOCdYqpdcq9TfdZwRhoAEAKK6gXpgCyI0b08Xcespz9T4o01i30L8NwB+Yjgd4IN+7J8nf4+4LACAfBJwA5MuJ8afVZzjZLxFoB4KLTCgyoeAiO3d5Mt3dsfv7nIgBAADc4edxll8Xzs5WLztj3GQgy2pbp/t8P+8rIGp4Op4FglBwQ/WTn507SZkGCnan8/l1AILwYpC3HdsCAMLdF3o5zspnWpsfxoBW9YrH46m6p3u9ukzthydJo1Bh7rP8giCUBYJQcEMuc9yl3E6MnHDhF7S57dgWABDuvtDL75ZPRpEftnu68XCyboXWmzExCkVbcR9rQgE+wTpPAAC4izvciIqgjivdqLfVcY9goM+OFjKhyISCw7KlFxfSoeZ714eOHU7j7tF2bIv80TfBLRyXxRfmbe7nTCi/isVitp8KnY9cZh64vUg6CudFOw/qsRUkTMezQBAKSU5eCBXaoWWqS7rXgpqqjeCiTW0Xtm1RzMBQ2LYd/IO2VXxh3uZRCUI53f+7WXeruuaSXRWWthkWBKHCiSCUBYJQSHKyE3JrjrtEEAr+QZvaLmzbopjfJ2zbDv5B2yq+MG9zL7M2g9wnFzuAZhWEisfjrmZkwRkEocKJNaGAIkl3F8aJAQzpxPCLoK5B4Qa2BQCEuy/0cqyVabv6fUpztjbhZP3T/a3BgweHum0if7QL75AJRSYUVJxIuN2/kel96V4L6uN7AfhPkO+6A0l+vzgHnBDkzCWn/166NVntzBiA9+izw4npeBYIQiEp6EEop/42ABCEAoBgIAhl77M41wDeYDoeEGGkmwLwI/omAECurLJmMuFcA/gLQShA/jo55VqX6ifidGmrpLMCsKuY/SF9E6KOKSjwEz+NhzOxW89YLKbBgwdzTAE+w3Q8puOhSJxIBbb6jEI+L4lBsPPYptuwHQD3cHwFH9OEUIigtx8nl5lw+il49K9A4VgTygJBKBSTEyezbEGo6iffXD7b60FMGE/0Xm/TYmFRfHghjH1GPji+go99iEIEvS/Mt/7pjptMi5PnimMTKBxBKAsEofIT9BNekFXf9tlSkXM5UXp9ovX677shjN/JSrbvGZXtgOKiXW3Ddgg+9iGQu1yCUMnXnPob2XCdBGxHEMoCQaj8MGDyh1yyopLSnQS93qde/303hPE7WUl319Hq/5PCuB1QXFE5vrJhOwQf+xDIXbpAT7YgVC4BIp5IDRSOIJQFglD5oXP1h2xBKCvp9pPX+9Trv++GMH4nK062Q8CuqBxf2bAdgo99CDgnWxAql+ONIBRQuHTxFp6OB8eQfuqu2ts3kUgokUhICs7TTAAAwHZunL8ZjyGKYrGYEomEysrKvK4KIo4+ODsyociEylku87CjGvl3o/PJtH3tZqNY7Y9YLFbnhJ1IJIraWYax7YTtBJRr6ntt+S6aHyVhazNuCmOfkQ/aDKxwfCCKMo1Hcs2EKmRszPEH2sB2TMezQBAqPwShsnNjW2T6TKsLEbtr8fhh4UUupPwvXTsppO2hpjD3oU4f4/QZQHph7kuAdDKtUZk8P9g9Ngo5hpx8Qh+CiT54O4JQFghC5SeXjIioHnDFDkIV8v5sC0v7dTFzFFcx1lGIujBvtzB/N8BvON4QRXbavd0buoXcTIvFYtyMizj64O0IQlkgCOUsDrjt/BCEspspkG06FYEGSLntb7JU8hPmY8qP3412irDy4/EGWHGyH7bT7jP9vXzHw/nWBeHF/t+OIJQFglDOYkC/nRudj1trNxGEgh3sb/eFeRv78bv5sU6AExiPISgK6Ydrt/OysrLUA3uScmn3BKHgFPrg7QhCWSAIBbe4dfIpVoaVnc/nBBst7G/3hXkb+/G7+bFOABAlTq+9VEgfThAKcF66eEt9D+oChJ4bj1x2S/W6BqneKC7ahvvYxkBuuNsM+F+Qj1POy/4V5HYFMqHIhEKgZLuzUmiHzLo/ANzgx/6CO9XBxz4EvGWnb890nPo9Eyrfz/PjOS9s6P+Dgel4FghCIWiydbiFdsicNAFEBQPY4GMfAt4q9Il0fgpCMQYOFvr/YGA6HoCs7J5sOVEDCDqmWQCAt/zUD+czjmU8DOSHTCgyoRAg2Z6QV6y7Atx9AAB4jXMR4K1CM6EKkQwAVR8XJ5+OV6xAEH2Qd9j2wcB0PAsEoRBE+aY1O3m3JgodP3e3EEa0a4QJ7Rnwlp3xoNvHqVUdqmdYudknRGE87Ff0/8FAEMoCQSgEUb5BKCdPlFE46UbhOyJ6aNcAAKf44ZxiVYfq3KyPH74/4GesCQUEDBF+AAAA+JXTazox9gWigSAU4FP5nNj9tMAjwotBIrxGGwQA7znd79odx+byd2OxGOcHwGeYjsd0PMdwUZBZrtsnW3pxdXZSf51MGY7CvibFOj22TXCFZd+F5XsAQKGCOiazqrfdIFT1/t7OeNmt80NQtz1QLKwJZYEglLO4KMgs1+2T7aSa66KL7J/csL3SY9sEV1j2XVi+BwAUKqj9YS43W2ur/v2qB4LSBbGsfk6wCHAfa0IBIZPrybNYU/XCcleIqY0II9o1ACBMao8xrc5zxQ5ChWUsDLiFTCgyoRwT1DsxxZLr9sl2Z8ev25Z2EH7sY3iNNggA2wS1P7Sqt90AUiEzCex8RqGCuk8ApzEdzwJBKGfR4WZWyPYJ0rYNUl2RH/YxvEYbBIBtgtof2q2308tZ2PmMQgV1nwBOYzpeSJHuGQ1Bn0LDk0nCJejtEcFHGwSAaMi1v7ebTVVsjIWB7ciECngmlJ8i7QTEMovC9onFYmlP9NwBAgAAcFZQx5fFrHexr5fSZWMxFkbUMB3PAkEowFmZUqBplwAAACi2YgfqCEIB2zAdDwAAAAAQKUHIDAOipNTrCgAAAAAAACD8yIQKOD8stAcAAAAAsMY1G7Ada0IFfE0owE9YEwoAAABRxpq9wDasCQXAdYlEQmVlZV5XAwAAoGiC+oQ6APACQSgAjiEABQAAosZqqhVBKGthD9hZfT8ANTEdj+l4gGOYjgc3hX3gCgAIJqZf2VfItvL7OCAWi6Vd+4n2gChKF28hCEUQCnAMQSi4iUE+AMCPOD/ZV8i28vt2ZhwM1MSaUAA8Y3VXyO93swAgKOhPAcD/6KuBbXyTCXXLLbfovvvu0/DhwzVw4MDUz2OxmAYMGKCmTZtq2rRpuuaaazRr1qzU602aNNHQoUPVp08fSdK4ceM0cOBArVmzJuvfJBMKsM/OiTPdHSCruz9+v5sF/6HNBA8D7uLg2AC8RV9nXxQzoeLxuAYPHuz7+gNOyxRvMV6XY4891nz77bfm888/N8OGDUv9fNCgQWbt2rXmt7/9renYsaN56aWXzOLFi80uu+ySes/48ePNV199ZY477jhz3HHHma+++sqMGzfO1t+dPn2659+dQglKsWLnPVbvs/t5FEr1QpsJXmGfsZ0pFAqleimkv/J7X5dOUOpPoThd0sVbPJ+O17hxY73wwgu69NJL69xFuP7663X//fdrzJgxkqR+/fqpoqJCffv21YgRI9ShQweddtpp6tatm6ZOnSpJuuKKKzRp0iS1a9dO8+bNK/r3gT9xhwoAAADInZPj6HQLdwOIDs+DUCNGjNArr7yiRCJRo4Nr27atdt99d7333nupn23atEkfffSRunbtqhEjRqhLly5at26dJk+enHrPJ598ovXr16tr166WQajLL79cAwYMkCS1aNHCxW8GP+HRuSg2Ap/OY+C6DW0LAFBMTo6jCzlfMQ4AwsHTINRll12mAw88UBdeeGGd19q0aSNJWr58eY2fL1++XHvuuWfqPStWrKjzuxUVFanfr23kyJEaOXKkpG1zFIEo42LWPQQ+ncf228artkV/AQDwEuccIBw8C0K1a9dO9957r44//nht2bLFq2oAkeb0xWwikVBZWVnefxuAfxFY9S/6UwDwP/pqYBvPglBdunRRy5YtNXPmzO2VqV9fJ5xwgq688kp17NhRktS6dWstWrQo9Z7WrVtr2bJlkqRly5apZcuWdT67VatWqfcAcIadE6fdAJTExasVMk0QNgy4i4N+Asgf514UC+0K2KZE21YoL7rddttNe+21V42fjRo1SvPnz9e9996rmTNnasmSJRo2bJjuu+8+SVLDhg1VUVGhm2++ObUw+ezZs9W1a1dNmTJF0rbg1uTJk9W+ffusC5NnemQgwoUBhjXj8KNirT6v0M8Mqny2rdP7A+HkVTuhfQIII/q27BhH2xOLxSxvvtCeEFWZ4i2eP7ovWcrLy82wYcNS/x40aJD56aefzG9+8xvTsWNH8+KLL5rFixebXXbZJfWe8ePHmy+//NIcd9xx5rjjjjNffvmlGTduXEGPDKRQolKcflRstkfTRqnksx3YdhQ7xat2QvukUChhLPRtFCcL7YlC2V7SxVs8fzpeJg888IB23HFHPfLII2ratKmmTZumk08+WevXr0+9p2/fvho2bJjeffddSdK4ceN07bXXelVlAJDENCS4h7YFAID/WGWMAajLs+l4fsB0PESd0+nVhul4BbHafmw7+AXTMQCEEedeOIVxMFBTungLQSiCUIBjOPkWhoEwACBK/BDc5twLpzAOBmpKF2/x9XQ8AOEQi8XImLCBaVYAgCixOu8Ve7zAuRcAiotMKDKhAMekuwMkcRfIDX64gwz4DccFEBxkISFMyIQCamI6ngWCUICzCEIVF4N3oC6OCyA4OF4RJgShgJrSxVtKPagLAAAAAAAAIoY1oQAAAABkxXRXAEChCEIBQARxIQEAyJXTC4mzKDgARA9BKACuY5DpDKvAUb788EQiAEA45Htjg/MOwi6RSHhdBcB3WJichckBx7Ago7ustm/tYJLdAT2LwSKsgpLlF5R6AtWlO3dwTnEX/UUwMA4GauLpeBYIQgHO4uTrLicH+VwwAN7iGEQQEYTyBts3GBgHAzWli7cwHQ+AY+LxOFPvAPgeWQVAfjjHAwAKRSYUmVCAo7hb5x4yoQBn+KH9+6EOgFNoz+5i+wYDmVBATWRCAXCdkwtnw13czQYAILiqj7nI5AQQJAShADgiFosR2HCZk9uXASvCgGl1gD9w/i++6tucfg/ZcL6EnzAdj+l4nqJDDL7kPsw0ACUNGYAb8p2i4oepLZz/ANhVvb+wGm8xzvJOtn0j+WP/+OG8h+jh6XgWCEJ5jw4xuOwEn5LYpwDcEOQgFADkg/7LP+zOAvDD/qHdwAusCQXAUXZT70nRB+A39EsAgEJxLgHyQxAKgGsSiQTTSwD4Dv0SgKAi8BEsiUTC6yoAvsN0PKbjeYrU0OBK9xja2tifANzCOQQA4JUgjYU5X8ILTMcDAAChQkYAAADZcb6EnxCEgqfoEAEA+WJaHQAA2XG+hJ8QhIKn6BABAAAAAIiGUq8rACCY4vE4mWwAAACIJMbBQH4IQgEAAAAAkANmdAD5YToe4LFYLFbnZ0E4qXH3B/BGUPsMAIXj+AcAf6A/zl+JJHvPlgyhdI8MBIopqI9MDdJjaYEwCWqfAaBwHP+Av9gZD3OMhhP9cXbp4i1kQgGAQ7gjAgAAAADpkQlFJhQ8FtQoOplQdQV1XyJYaGdAdHH8A/5CJlR00R9nly7ewsLkAAAAAAA4jDVUgbqYjgcAAAAAEcRSAgCKjSAU4DHukADIBX0GCsVFZ3Bx/MNpVm2K/sA58Xic7RlS9Mf5Y00o1oQC8sKaUHVxYQcgCFjHAkAS/UFhWBMKSI+n4wFwVDL6z12A7Qg4AQAARAfjYSB3ZEKRCQUUJNsdIO7+AIC/kPkAIIn+wBmZxsNsT0QVmVAAHFN92lkikUj9l7tAAAAAiIrkmDiRSKisrMzbygABQSYUmVBAztLdNeNuGgD4H301gCTWsywMa0IB6ZEJBddxEgMAwP/IWgWQxFgdQLERhIJjeMRrtFkFIQEA/sO5GV7ipiWihKA/UBfT8ZiO5xjS+6PDTupxEm0AAAB3BSmww3gRYZA85rIFmWjbiLJ08RaCUAShHBPmQUWQBnfFQBAKAAD/CNIYLEh1BdKxOxambSPKCEJZIAjlrDAPKsL83fJBEAoAAP8I0jglSHUF0iEIBWTHwuQAAACAi8icBoDwo68vDEEoOIaF91AbbQIAECU8pAVAEuPg8KKvLwxBKDiGAw+1O2TaBAAAqI4Lc4RZ9fbNOBiwRhAKQM7i8XjaQSQnXAAAiitIgR3GCQgz2jeQHQuTszA5bGDeb13pFmRkAUYAKAznnOBi0W0gGhgHRxt9vT0sTA4UgMG/fcmLJ7YZAOSHtSYK51UgL0gZSQDq4iZA8QVxm9PXF4ZMKDKhgLxkezQtdwMAID/cYS0c2xBAPuz2HWRCOYf+OrzSxVtKPagLAAAAAAAAIobpeAiVIKZzAgAAAAAQBUzHYzpeqJDOWTzZpuPF43ECgACQB85lhWMbAsgH0/GKj/46vFiYHL5E5lJ4EYQCEGRenp9Y8BQAAH/getV5ZEKRCeUppyPfRNKLJ1smlBSObc+JB2FCe7aP80mw0daBcCj2sWzn78VisbQ3CzhP5M7v/TXjgfyli7cQhCII5SmCUMGU6eRbXRi2PW0qd34fTEQZ7dk+thUAeM+PfXGmG7Fe1w3O82MbDAqCUBYIQnmPIFQw2cmCksKx7WlTuWOb+Rf7xj62FQB4z499MUGoaPFjGwwK1oRCJLCOBoqBTB9ESVDbe1DrDQAonBfnAK5DAHvIhCITylNEloMp3R2g2iffMFzwRSnryykc1/6Vz77xcn8WchFRaL1pxwDgvXz7Yjf7cJ6MFy2MB/JHJhR8iTsG4RKGoBMA/7A6R/CEOgAAUCyMB5xHEAqeImgRHtk66KBOjbH6XmE7GQV13yB3QWq7Vu2ymDgGAMB7fjxvJRIJlZWVeV0NFAnjAecxHY/peEDOgjalx2lh+i6S89+HoFa4eNXeC53uELbjFABgH9PxAO8xHQ9wWVQuvL3OTvADP96V85MwtvsoC2p7D2q9AQCF4xwA+BeZUGRCwSFRueue792fqGyfIGLfwI+40wwA8CPOT4A9ZEKhjqhk7gAAwoE72wAAAMFGJlSEM6HIfnBWVLYnmVDhw76BH9EuAQB+RCYUYA+ZUAA8FZQMhihmCAZl32C7KLRT2iUAAED4kAlFJlQNRPDzF5XtGfa7P0Hdj1EISmC7oLZTAACCLuxjYcApZEIBLiv0rn1QggjxeJwMBR+y2id+bD8A8hOUcwQAAEAmZEJFOBOKAa2/BCmzIUh1zVVQv1tQ6438sL+jh30OAP4Qi8Usb/7RJwM1pYu3EISKcBAK/hKkC4wg1TVXQf1uQa038sP+jh72OQD4B30ykB3T8QA4wiqDDgAA2Ec2OhBMjIPDi365eMiEilgmFAeXfwXljkrYF2MM6jGSa/sJ6vfENuy/6AnKOSLq7B6b7E8geNJNw0viGA42u/0yYzD7mI5nIYpBKAY9/hWUfRP2IFRQ5XpCDEp7A7ANx2ww2N1P7E8geNKNgZM4hoON/tt5TMcDfI4nzqEQ3IEBiq+Yd0M5RwAAgDAgE4pMqMhHbkmpzA2ZUOFAX5A7+grUxnGE2riTDoQXmVDhRv/tPKbjWSAItU3UDxq2SW4IQoUD7T53bDPURptAbawp4g62F/wgWxAqHo/TLgOMNf2cRxDKAkGobaJ+0LBNckMQKhxo97ljm6E22gRqo024g+0KP8gWhJJol1FAf2Qfa0JBEmtKANiGvgAAnFe7by0rK6tzd51MCX8i2wrZVD++GUdFF/u+cGRCRSwTyi/8dKInmp0bMqEQVfQVqI02gWxoI84oxnZkX8GuWCyWNhBBmwG2YzqeBYJQ3vHTid5PdQkCglDwK7eD2/QVqM1PN1TgT0HsN/zYrglCwU8yTcujzQDbEYSyQBDKO3460ftxsOVnYQxC0QbCwe1+JUjtJEh1BcLMT+Mdu/xYZ4JQ4RXE8xVBKMCenINQ3bt3z+sPffzxx3n9nheiGoTyQ2fPiT64whiEoj2GA/txO7YFgs4PYxUnBPFY9GOdi9Ee/Pi9oyCI250gVHj6aLgr5yBUVVWVrScA1Fa/fnDWOo9qEMoPnb0f6gB7ap9kwjgHnvYYDuzH7dgWCLqwtOEgXqiFZdvnKtO+CuJ+DAq/tzerfZ9pYWo/1d1Nft9v8Iecg1AXX3xxzTeWlGjgwIFq166dXnjhBc2aNUuS1LFjR11wwQWaN2+ehg8frmeeecb52ruEINR2BKGQjt1gdJD3H+0xHNiP27EtEHS0Ye+w7etim7jH79s216QMP9XdTX7fb/CHdPGWtGlLzz77bI1/X3fddWrZsqXat2+vpUuX1njt7rvv1pQpU7Trrrs6VF2EHY+2BJAv7kgDAACvxONxrmWAAthemHzevHl6+umnde+991q+/te//lUXX3yx2rdv72T9XEUm1HZErpEOmVDwm3T7i+DUdrRpBB1t2Dv0pXXRHt3j922brn5hXCM1F37fb/CHnDOhatt7771VWVmZ9vUNGzZo7733zq92AEIpKAPZYtzNCsq2CDK253bcoQWQL/pSFFOYzldh+i6Am2xnQs2aNUuVlZXq1q2bNm/eXOO1hg0basqUKWrUqJF+9atfuVFPV0Q1E4qLYeTC6k6H1UnWqg1xl2Q7toVz2JZA+DFWgZ9w3okuu+NgKVp9FH007Mh5YfLaLrvsMj3xxBOaOXOmHnnkEc2dO1eS1KFDB11zzTU6+OCDdeWVV+rJJ590tOJuimoQCshFIQMvBm3bsS2cw7YEABQTF9zRFfVpd0AhCp6O9+STT2rnnXfWkCFD9Oijj6YOyJKSEm3cuFE333xzoAJQADKzGnABfkC6OwCgmAg4RRNjYcAdtjOhkho3bqyTTz5Z+++/vyTp22+/1YQJE7RmzRo36ucqMqGA9DItSE4mVO7YFgAAAMHhxFgYiLKCM6GS1q5dq1deecWRSgEAAAAAACAacg5CAX7EXH1nOZV+zLSp7dgWAAAAAKIu7XS8iRMnyhijU045RVVVVZo4cWLWDzPG6KSTTnK6jq5hOl54MNXJGcngU7aACdsWAAAAYZZuOl48HudmN2BDztPx9t9/f23dujV1sbn//vtnnBcLIPiyBZ8SiYQSiURR6gIAAAD4DQEooDBpg1Bt27bN+G8A0VNWVqaePXt6XQ0AAAAAQACVel0BAAAAAACCwKm1U4GoIggFAAAAAIANPGwGKAxPx0MocDIAEEY8+RMAAABhQhAKocBFmTNqB/MI7gHesnMM0v85h6AfAACAu0okRfaRd+keGQhEXfJCzOoCOPnETPgDF83hZueptByTzrHa3mxfAIimTOdgzg1AduniLQShCEIBdXDSDQ4umsONIFRxcTwBQDAU4yYc42GgMAShLBCEAqxx0g0OLprDjSBUcXE8AUAwFKO/ZjwMFCZdvCWvNaF23HFHNW/e3PLgW7RoUT4fCQAAamGdNiC6mG4NAP5Bn+wc25lQJSUlGjRokAYOHKg2bdqkfV/9+sFZ65xMKMAad36Cg8yNaGF/u4vtCz+hPQLpkQmFYqNPzl3BmVD333+/brrpJs2cOVOvvvqqVq5c6WgFAQRDLBYj6g94hEwod7F9AcA5fskc8Us9AGxjOxNq8eLF+vzzz3XGGWc48oevvvpqXXHFFdpvv/0kSTNnztSQIUM0fvz41HtisZgGDBigpk2batq0abrmmms0a9as1OtNmjTR0KFD1adPH0nSuHHjNHDgQK1Zs8ZWHciEAqzFYrGMF2NE/f2DgRUAFM6PfSl33RF0brbhXD4733qUl5errKzM8jWOxeihT85dwQuTV1ZW6vrrr9eIESMcqVCfPn30888/a/78+SotLVW/fv00aNAgde7cWTNmzNCgQYN0++23q3///po7d67uvPNOHX/88Wrfvr3Wr18vSRo/frz22WcfXXbZZZKkJ598Ut9++20qKJUNQSggPVKQAQBRkcvFRbECVlzwIOjcbMO5HIf51oOxcLTVbmNWN+hpB5kVHISaNm2axo8f7+pdoZUrV+rWW2/ViBEjtGTJEg0fPlz33nuvJKlRo0aqqKjQTTfdpBEjRqhDhw6aPXu2unXrpsmTJ0uSunXrpkmTJql9+/aaN29e1r9HEApIjxNvYfx4Vx0AYK0YWRVu1gnwI7+0YYJQyAdPKC5cwWtCDR48WP/85z/1z3/+Uz/88IOjlSstLdV5552nXXbZRZMnT1bbtm21++6767333ku9Z9OmTfroo4/UtWtXjRgxQl26dNG6detSAShJ+uSTT7R+/Xp17drVVhAKANxidbeEIBQAwC7WKAMAf6ndL3PTOT+2g1CdO3fW999/r1mzZum1117TggULVFVVVeM9xhgNGTLE9h8/5JBDNGXKFDVq1Ejr16/Xb37zG3311Vfq0qWLJGn58uU13r98+XLtueeekqQ2bdpoxYoVdT6zoqIi49P7Lr/8cg0YMECS1KJFC9t1BSAlEgmvqwAAQCRwIYOg80sg1S/1QPDV7petsqXou7OzHYSqfvBeeOGFlu/JNQg1d+5cHXHEEdptt9107rnn6plnnkm7+JtTRo4cqZEjR0ralh4GwD63j08AAACEg18uxv1SDwDb2A5CtW3b1vE//ssvv+ibb76RJH366ac6+uijdcMNN+iee+6RJLVu3VqLFi1Kvb9169ZatmyZJGnZsmVq2bJlnc9s1apV6j0AAABANmRKAABQHLaDUAsXLnSzHpK2rQ3VsGFDLViwQEuXLlXv3r313//+V5LUsGFDde/eXTfffLMkacqUKdp1113VpUsXTZkyRZLUpUuX1LpSAAAAgB25ZEp4GbBi/RGgeBKJBLMAIixbX2/VH8Me20/Hq65Zs2apzKgFCxZo1apVOf/h++67T2+99ZYWLVqkXXfdVX379tVf/vIXnXHGGXrnnXc0aNAg3Xbbbbrkkks0b9483X777TrhhBPUvn17rV+/XpI0fvx47bXXXqk1nkaMGKHvvvtOffr0sVUHno4HpMcTQQrDhQIAwGl+edoYEAWMhZFJuvZB29guU7zF2C2HHXaYSSQSZsuWLTVKeXm5OfTQQ21/jiQzatQo891335lNmzaZ5cuXmwkTJpiTTz65xntisZhZsmSJ2bhxo0kkEqZjx441Xm/SpIl57rnnzJo1a8yaNWvMc889Z3bbbTfbdZg+fXpOdaZQolQy8bpuFAqFQqFEsXBOplCKVxgLUzIVK7FYzPN6+amki7fYzoTq2LFj6kl2b7zxhmbOnJn6+ZlnnqnKykp17dpVs2bNsvNxvkAmFJBeuuh+PB4nowcAAA+QCQUUD5lQyIT+OLt08Rbba0Lddddd+uWXX9StWzfNmDGjxmsdO3bURx99pLvuukvnnntu4bUF4FsEoAAAAAAA+Si1+8YTTjhBjzzySJ0AlCTNnDlTjz76qHr06OFo5QAAAAAAABAOtjOhdt55Zy1btizt60uXLtXOO+/sSKUAeIunPQAA4D9ePpkPALAd/XH+bK8J9dVXX2nhwoU6/fTTLV8fP3689tlnHx1yyCFO1s9VrAnlPp4QFkzMgQeCh/4WAADnMB4GClPw0/EGDRpkqqqqzAsvvGB+9atfmdLSUlNaWmo6duxonn/+ebNlyxZz0003eb4Cey6Fp+O5X3iaRDALTwOhUIJXOF4pFAqFQnGupFNeXu553SiUIJSCn45XWlqq0aNH67zzzpMxRlu3bk39vKSkRC+//LL69u2bMWLsN2RCuY+nBgQTd36A4KG/BQDAOYyHgcIU/HS8rVu36ve//72efPJJnX322Wrbtq0k6dtvv9XYsWM1ceJE52oLAAAAAIBH4vE46/4ALrCVCbXTTjvpxhtv1LRp0/Tee+8VoVrFQSaU+7gzH0yxWExlZWUqKyur8xr7L9hYNyi86G8BAHBWumwozq9AduniLban423cuFHXXnut/vnPfzpdN88QhHIfF0XBxUk3nDgmw4t9CwCAsxgPA/kreDreN998ozZt2jhaKYQfKawAUBz0t0B0kNUKuM/qOAOqoy/Oj+1MqKuvvlqDBg1Sp06dtGrVKperVRxkQgHpcecnnMiWAYDgoy8PNi5cgyHdWDgej7O/IIm+OJuCM6HWrVunVatWae7cuXrmmWc0f/58VVZW1nnfc889V1hNARQFAyAAUUBfB8BvrDJX6ZeCg30FFMZ2JlRVVVXW9xhjVL++7biW58iEQpRli9yTCRVO3LFB1NDm/YFgoLNo18HG/gsGxsLIhmM5s4IzoXr27OlohQAAxce6QQC8QOYHAACQcghCffTRR27WAwBQBFz0AUDwcUMBQURGJMKGvjg/tqfjhRHT8RBlTMcDEAWkyvsD+wHYLqrHQ9C+N2NhoDAFT8e74447sr7HGKMhQ4bkVjMACCnu+AEAgNrIngAQZY4sTG6MUUlJCQuTFxkXuChEtvbD3Z/CBe2OHxBGnCv9gf4QQND6gXRj4Xg8znkEsCFdvMV2EGqfffap87P69evrgAMO0A033KDddttN/fr109dff11wZYsl6EGooHXk8Kd0F2gEoQrHMQoA2xAMBODncZFVH5UpY80v9Qb8rOAgVDYfffSRPv74Y/31r3914uOKgiAUYN2O4vF42hMvbcw+jlEAAOCkIAd0/TwuSnfzNR2/1Bvws4LXhMrmlVde0c033xyoIBQQdVYDGYm1CoAgCvKFCZAv2j2ixmqMFpQ2H7TxZaabsgDy51gm1E033aS77rpLO+20kxMfVxRkQiHqcr3r45c58EG56AhKPREOnBMQRbR7RA1t3h3pZgZU/291bm9zxpAIA1en43Xu3Fljx45VRUWFOnfuXOjHFQ1BKERdUFOPaftAXRwXiCLaPaKGNu+OTGuherHN2c8Ig4Kn433zzTeWP2/WrJl23XVXbdmyRZdddln+NUTOSA+Fm2hf/sNdMQAAgOJiTAw4y3YmVHl5eZ2IrDFGq1at0rx58zRixAh9//33btTRNUHPhAIKlSkTys93W6J6dyiq3xv20D4QRbR7RA1t3h3pxsReLUXBfkYYFJwJ1bNnT0crBMC/EomEYrEYWTYAAAA+QlaO89I9qEfyz3qoQJg4tjB5EJEJhaiLxWIZBzN+veMS1btDUf3esIfpmogi2j2AQmVbI9WLsRZjPoRBwZlQklRaWqo//OEPOvnkk9W6dWsNGjRIn3/+uZo0aaIzzzxTEydO1JIlSxyrNOC1MA9uM9318TvuAgJ1haVvAnJBuwcQRox1EWa2M6F23HFHvffee+ratas2bNignXbaSb1791Z5eblKS0u1aNEiPfXUU7rjjjtcrrJzyIRCNmG+C2HnyXhh+a5hEeagKAAAgBf8mAkFhEHBmVDxeFxHHXWUfvOb32jy5Mlavnx56rWtW7dqzJgxOuWUUwIVhAKAICHgBAAAACDIbAehzjvvPI0YMULjxo1Ts2bN6rz+9ddf63e/+52jlQMAwA/IQgMAIHqYFgc4z3YQao899tAXX3yR9vXKykrtuuuujlQKgPc46QLbWR0PBKEAAAg3zvWA80rtvnHlypXac889077esWNHFiUHQiKRSHDSBQAAAAA4ynYm1MSJE3XJJZfo73//e53X9ttvP1166aV67rnnHK0cvMPUk23CnA0Uj8fTfr+ysrKi1gX+wHEPAAAAwE22n453wAEH6L///a8WL16sF198UYMHD9aDDz6oqqoqXXnllaqqqtKRRx6pH374weUqO4en46UX5qfCYbtMTwNhf0cPx316bBv4HUFkAMhdLBZLe1M2Ho/TjwIFSBdvsR2EkqROnTrpqaee0qGHHlrj51999ZUuuugiffnllwVXtJgIQqXHBVc0ZDrxsr+jh+M+PS7w4XccvwAkzle54oYs4B5HglBJHTt21MEHH6ySkhLNnz9fn3/+uQNVLD6CUOkxmI2OdCdf9nf0cNwDwcXxC0CiL8gVQSjAPeniLbbXhKpu5syZmjlzZsGVAgAAAAAAQDTkFYTacccd1bx5c8vo8KJFiwquFAAAAAAAAMLFdhCqpKREgwYN0sCBA9WmTZv0H1g/r7gWfCbMT4UDYI3jHsgPa7AAAADYYztidP/99+umm27SzJkz9eqrr2rlypVu1gseY/AcbYlEwusqwAMc90B+rAK4xT6eCCIDQO6SfSd9KFA8toNQF154od555x2dccYZbtYHgA+UlZUpFosRlABQFGQSFY7tBUAimJKrwYMHW56DALjH9tPxKisrdf3112vEiBEuV6l4eDoewFNBAHgv6E9zCnr9ASDKeFI04I508ZZSux8wY8YM7b777o5WCoC3uPMDAAAAACgW20GowYMH68orr9Ree+3lZn0AFBEp2wAAAACAYrG9JlTnzp31/fffa9asWXrttde0YMECVVVV1XiPMUZDhgxxvJIAAAB+RUAf8CfWmwMA/7G9JlTtgJMVY4zq17cd1/Ica0Ih6jKtByUxFx5AcbCmEhBcfg700LfADtaEAtyRLt5iO2LUtm1bRysEAAAgBSOTKNuFtp8vxAE3WR2/tH0EBeujAsVnOxMqjMiEQtSRCQUA9mTLqCDjAk4JWkDTz23fz3WDP2QaC8fjcV8fewieoPXvhUoXbyEIRRAKReLHTqe8vFySVFZWZvk6AzUA2IYgFIolaG3Jz/X1c93gD9yQRTFFrU8qeDoegML4MV09XfAJAAAg6IIw1RcAooYgFAAAAIDQ8fpmHwCgLoJQACxx9xAAAGTDeAEAkAuCUAAscfcQALbLdqHNhTiiivECgiwej9N/A0VGEAo1+HHxbBQfJ+Noox8A6sp2DHCMeCOM/RXnYKB4Bg8ezDFXJGHsr3NFW9uGp+PxdLwaorZifzH5seONxWKWnSGPpI02+gEAQUF/BaBQmZ6QR3/iHPrr6EkXb0kbhPrmm29y/iPGGB144IE5/55XCELVRecQPelOvOz36KIfABAU9FcACkUQqjjor6MnXbwl7XS8hQsX1mkoe+21lw444ACtXbtW3377rSRp//33V+PGjfXNN9/ohx9+cLjaAAAAAAAACIO0QaiePXvW+PeRRx6p999/X9dff70ef/xx/fLLL5KkBg0a6Oqrr9Ydd9yh3/3ud+7WFgAAAAAAAIFke02oiRMnat68ebrqqqssX3/88cd14IEH6qSTTnKyfq5iOl5dpElGD9PxUBv9AMLOj2v0IT9B6q9od4A/MR2vOILUX+eDPr6unKfj1XbMMcfo5ZdfTvv6Z599pr59++ZXO/gGK/YDoB9A2Fm18agPFIMqSP0V7Q5AlAWpv84Hfbx9tjOhKioq9Oabb+rSSy+1fP3pp5/W6aefrlatWjlZP1eRCQWQCQUgesJ+Nxb+RLsD/IlMKDiBPr6ugjOhxo4dq0svvVQLFizQP/7xD23YsEGStPPOO+vGG2/UhRdeqKeeesq5GgMAAN/zMv2c1HcAAIDgMXbKbrvtZqZNm2aqqqrM5s2bzXfffWe+++47s3nzZlNVVWWmT59udtttN1uf5Zcyffp0z+tAoXhZYrGYScfrulEolGAUL/uPfP82fR7Fi0K7o1D8WdKJxWKe140SnEIfX7eki7fYzoRas2aNunbtqksvvVRnnXWW9t9/f0nShAkT9Prrr2vUqFHasmWL3Y8D4ANhn5sNAFbo+3JH1lnhaHdAsNDHIRf08fbZXhMqjFgTClFnmAMPoEBW/Uix+g8v/3bUsK0BhFW68TB9HFCYgteEqm6HHXZQixYttGLFCv3yyy8FVw5A7ty8K00kP9jIWAAAAADgV7bn9B155JFm4sSJZvPmzWbLli2mZ8+eRpJp2bKlef/9902vXr08n3eYS2FNKEqQixPzjpkDH87CnHRKMYuX7Y22Ho39TKFQKG6WdLyuF4US9FLwmlCHH364Pv74Y/3444969tlndckll6ReW7FihXbccUf169dPEydOtPuRAHwqHo+TOQPAFi8zJ8naBAC4JRaLMR4GXGB7TajXX39dBx98sI488kg1atRIFRUVOumkk1ReXi5Juuuuu3T++eerQ4cObtbXUawJhSAzNtfnyDQ1y+ozMn0WgsFu2wAAu+hXcsO0aMB/0h2XjIcBdxS8JlT37t113333acOGDWrYsGGd1xcuXKg99tijsFoCcJxVpgADYQBALsg6yw3nXsBfYrEYxyXgE7aDUI0aNdKaNWvSvt64cWNHKgTAnkIuCJLpxfF4nAuLEGKfAnAaF2oAgoyxEeAftqfjzZgxQ5MnT9YVV1yhZs2aacWKFTWm47355ptq0aKFjjvuODfr6yim4yEK0qUYJ9OLs70OAAByw/RFwF8yjXeZjge4I128pdTuB4wePVoXXXSRevXqlfpZ8oD985//rFNPPVXPPfecA1UFUAxW8+KTuFsEAACAsEtO02PsCxSP7UyoBg0a6N1339UJJ5ygOXPmqEOHDpoxY4ZatmypNm3aaMKECTr99NMzRpL9hkwoREG2uzssngoAgLPIhAL8xU62E2NiwFnp4i22g1CSVK9ePQ0cOFB/+MMfdPDBB6ukpETz58/Xs88+q4cfflhVVVVO1tl1BKEQBaQYAwBQXFzMAv7CeBgovkzxFpOt7LDDDqZ79+7mwAMPzPreIJXp06d7XgcKxe1SXl5u0vG6bhQKhUKhUCgUitslFoulHQ/HYjHP60ehhLGki7fYyoSqV6+eNm7cqBtvvFHDhg3L9vbAIBMKUeDEnR/u6ALIF/0HAMAPyIYCiitdvKW+nV+uqqrSsmXLODiBiLJarJGLSAB20H8AALyW6YE8AIrL9tPx/v3vf+v8888nEAUAAAAACAyefgf4h61MKEl68skn1bNnT02YMEEPPfSQ5s+fr8rKyjrvW7RokaMVBKKOqSwAckGfAQAAAL+y/XS8qqoqGWNUUlKScT5t/fq241qeY00oBEGhj3lOd7zG43HbF6Y8ahoIDr8dr36rDwAgejJdv0qclwA3FLQmlCTdddddWQ9eAMFBZgQAAAAAoJhsB6G4YAWii3n0APJF/wEAAIAk29PxwojpeAgCt6bjkXYMhBPT35zFGltAcHH8IonpeEDxFTwdT5J22WUX3XDDDTr55JPVunVrXXzxxZo6daqaN2+uq6++Wi+//LLmzp3rWKUBkEUAIDf0Gc6y2p5cxALBwPELyToYmcQ5Eyg+25lQLVq00KRJk7T//vvr66+/Vrt27dS7d2+Vl5dLkr7++mu9/vrruvHGG92sr6PIhEIUkAkFAPkjswwILo5fSJmzoGgPgHsKzoQaMmSI2rRpo2OPPVYLFy5URUVFjddff/119erVq/CaAgAAAAgEprwBAHJhOwj161//Wo8++qg+++wzNWvWrM7r3377rfr37+9k3QAAAIDAiVJghilv7ohSGwKChuOzMLaDUC1atNDXX3+d9vWtW7eqUaNGjlQKgPtisRidJWCBgQWAQhGYQaFoQ4B/cXwWxnYQatmyZTrggAPSvn7kkUdq4cKFjlQKgPvi8TidJWCBgQWqY9FaILg4fpENN2UBbxg75dFHHzXLli0zbdq0Mc2aNTNVVVWmZ8+eRpI55phjzKZNm8z9999v67P8UqZPn+55HSgUt0smsVjM8/pRKH4rVryuE4VCCVaJUj8Spe/Kdg1micViGcfDXtePErxCO7JX0sVbbD8dr3Xr1vrf//6nevXqady4cfrjH/+o559/XjvssIN++9vfasmSJercubNWr15t5+N8gafjIQpisVjGO4E8FQRe8eu0N8PTlAAUKEr9iF/78qCLUhsqBqvtmcTsAOSK49OedPEW20EoSdprr700fPhwnXHGGSotLZW0bQeMHz9eV111lRYvXuxYhYuBIBSiItOJlw4TXvHrCdyv9QIQHPQjKBRtyFmZxsIS2xa54fi0J128xfaaUJL0ww8/6Oyzz9auu+6q9u3bq6SkRF9//XWgsp8AIOy4Kw0A3mItIhSKNuSseDzONoVjaEuFySkTKmzIhEJUkAkVLUG5O+PXehLEAwAgfBgPA8WVcybU3nvvndcfWrRoUV6/BwCAHxBwyh8BPCBcOKYBAE5LmwlVVVWVde6slfr1c5rh5ykyoRAV3PmJFr9mGNUWlHrCPvYpEC4c0wgTxsNAceWcCXXXXXfVOVD79OmjI444QhMmTNCsWbMkSR07dlSvXr30+eef64033nC42gAKYXUHszrmM9fFXd/iof0BhYt6n+Xm94/6tkV4RbFtpxsTMxapK0rtI0rf1U9srwl1wQUXaPjw4TrxxBP1xRdf1HjtyCOP1MSJE3X11VfrX//6lxv1dAWZUAg7ngSSuzDc9eWECq+E4fgJmqhvcze/f9S3rcQ2CKso7td0Y+J4PM4YqZYotY9if9eojdHTxVtsB6G++OILjR07Nm0U+e6771afPn10+OGHF1TRYiIIhbAjCJW7KJ14Aadx/BRf1Lc5QSh3sQ3CKYr7lal49kWpfRT7u0Zp20p5TMer7aCDDlJFRUXa15cvX66DDjoov9oBERC1yDeAwtBnAAAAIGxsZ0J98803+u6779SrV6+6H1JSog8++ED77ruv9t9/f6fr6BoyoVBMXkS+vc6ECuJFdNTuUMC/gtgWg3jMB10Q24mTyIRyF8d0OEWxbZMJZV+U2geZUO7KFG8xdsott9xiqqqqzLvvvmtOOeUUs99++5n99tvPnHrqqea9994zW7ZsMbfccoutz/JLmT59uud1oESnWPHibybFYrFQfuco1pkSzkJbpNgpUW8nbn7/qG9bSnhLFNt2Jl7XzW8lStuo2N81SttWSh9vsT0d7/7771fr1q01cOBAy2yoRx55RPfff7/djwNQBPF4PONTP2KxGHc0a+EpKQCCJOp9lpvfP+rbFuEVxbadbUyM7aK0naL0Xf3E9nS8pIMOOkhnnXVWatrdt99+q3HjxmnevHlu1M9VTMdDMRmP0i9jsVjGDtYvKaek/AM1edVnBAV9RnZsIwDYzuq8ytPxUExROy8X9HS8nXfeWUOHDtXbb7+tV155xZEK3XLLLfrtb3+r9u3ba/PmzZo6dapuvfVWzZw5s8b7YrGYBgwYoKZNm2ratGm65pprNGvWrNTrTZo00dChQ9WnTx9J0rhx4zRw4ECtWbMmax0IQqGYvOx0rE66SX4JQnHBDdQUtYFKrugzsmMboTr6FERduiCUxLEA74S5by54TagNGzaYSy+91LH5ge+8847p37+/6dixoznkkEPMmDFjzNKlS03Tpk1T7xk0aJBZu3at+e1vf2s6duxoXnrpJbN48WKzyy67pN4zfvx489VXX5njjjvOHHfccearr74y48aNK2iOIoUStuLVPPhc/l7U5khTKJTCCn0G24hCe6BQcilejYcplEwlzO2x4DWhZs2apf3228/u27M69dRTa/z7oosu0po1a9StWze9+eabkqTrr79e999/v8aMGSNJ6tevnyoqKtS3b1+NGDFCHTp00GmnnaZu3bpp6tSpkqQrrrhCkyZNUrt27QI5RRAIE+ZZAwAAwGtW2SYAvGMrinXeeeeZFStWmIMOOsiVKFmbNm2MMcZ069bNSDJt27Y1xhhz1FFH1Xjfm2++aZ5++mkjyVxyySVm7dq1dT5r3bp1pn///pZ/5/LLLzfTp08306dPNwsWLPA8OkihuF1isVgg7vz4uW4UCsV/hT6DbUShPVAodks2XtePEt0S5vZYcCZUhw4dtGjRIs2YMUNvvvmm5s+fr8rKyhrvMcZoyJAhdj+yhocfflifffaZpkyZIklq06aNJGn58uU13rd8+XLtueeeqfesWLGizmdVVFSkfr+2kSNHauTIkZK2zVEEwi5TNhKZSs4J83xuAAAAAHCC7SBU9YvV3/zmN5bvyTcI9eCDD+r444/X8ccfr61bt+b8+wDy46cgSdADYlb199P2BcIm6H1GMbCNoocbItHG/gcQBLaDUG3btnWlAv/4xz/0+9//Xj179tSCBQtSP1+2bJkkqXXr1lq0aFHq561bt069tmzZMrVs2bLOZ7Zq1Sr1HgDBwCAJQC7oM7JjG0VPphsiBCXDjxtiueO4gNei2gY9myP40EMPmaVLl5oOHTpYvr5kyRJz6623pv7dsGFDs2bNGjNgwAAjyXTo0MEYY0yXLl1S7+nSpYsxxph27drlPUeRQglTYf67d9vZ6zpRKBQKJVqFc1G0C/s/t23D9qFQ3C0FrwlVXbNmzVKZUQsWLNCqVaty/ozhw4froosu0tlnn63Vq1erdevWkqT169drw4YNkqSHHnpIt912m+bMmaN58+bp9ttv1/r16zV69GhJ0pw5c/T222/riSee0IABAyRJTzzxhN544w2ejAcAAAAAAOAjOQWhDjvsMA0dOlTHH398jZ9//PHHuu666zRjxgzbn3XNNddIkj744IMaP4/H46m00QceeEA77rijHnnkETVt2lTTpk3TySefrPXr16fe37dvXw0bNkzvvvuuJGncuHG69tprc/lakcAccQCAEzifADVxTFhju8AvrNoiwo8+yL9KtC0lKquOHTtqypQpatSokd544w3NnDkz9fMzzzxTlZWV6tq1q2bNmuVmfR01ffp0HX300V5XwzGZDrRt2aY1lZSUuF4neM9q3yfRBpxTjBMdJ1P4AecToCY/HRPUJdrY5tYYC0cTx4P30sVbbAehXn31VZWVlamsrKxOxlPHjh310Ucfqby8XOeee64jFS6GsAWhMh1oxTgIuUD2p3Qn3kQioZ49exa5NigEJ1P4Ae0QqMlPx4SfxmJ+2i5R4af97ycEoaKJPsh7BQehVqxYoccee0x33nmn5et33323rrzySsun1fkVQShnD0IOdH/ixBseHGPR5peLC9qh+/yyr2FP2I4Jp9pf2LYLgivTWLj6UjAIF/og7xUchKqsrNRNN92kRx991PL1q6++Wn//+9+10047FVTRYiIIRRAq7GKxWMbHfrJ/goVjLNr8sv/9Ug83+CX4E+ZtHEZh219OfZ+wbRcEV6YglES7DCv6IO+li7fYXpj822+/1a9//eu0Qahf//rX+vbbb/OvIVyVKRCB8Kh9AcV+B6LH7UBKmPsVq+/GHfLgKXYwMczHRCHYLvCDWCymRCKhsrIyr6uCIqMP8jdjpwwaNMhUVVWZF154wfzqV78ypaWlprS01HTs2NE8//zzZsuWLeamm26y9Vl+KdOnT/e8Dk4WK1H6+xTrfZCJ1/WlFL5/va4TxX/7n3bi/jaOSj2CWth+bD8KJVns8LqOFEpYS7p4i+1MqL///e/q1KmTfv/73+t3v/udtm7dKkkqLS1VSUmJXn75ZT344IN2Pw4uINrrDr9MzwA4xgEAALKzGr8D8Afba0IlnXTSSfrNb36j/fbbT9K2aXpjx47VxIkTXaieu8K2JpTX/B6sybd+pojziQvZhtnWf6ou+b4w7B8gKqz6ourHfPJ4KWafFTZ+2XZ+qUdQBWH7+fmcF4TtB2SSy5hYon0Dbil4YfIwIggVLfkOqoo5GCvkb1n9rhW/PgWEQS+QWfWLVqvBdTEfRBFWftl2fg5QBIFf9mMmfq4j7Q9Bl8uYWCqsfXO8AOk5GoQ64IAD1Lp1a3311Vdau3atE/XzBEGoaIlqECqRSCiRSKT+7dcTo58H5AivoA4eMx0vHEv5C2p7QE1BOAaCUEcgqLIFoZycEcCxDKRX8NPxJOmMM87Qww8/nJqK17t3b5WXl6tly5aaPHmybrnlFr366quOVBiAM8rKytSzZ0+vqwH4UhifhsbaYfkL+r73s2IG+DgGgOjKthaUX2cEAFFiOxOqR48emjBhgj7//HO98cYbisfjOumkk1ReXi5Jeuedd7Ru3Tqdd955btbXUWRCRUu+dyqKOXB2azpeEO7IcCcJXghquwtqvRFdtNma2B6AO7JlQTl9nHEsA+kVnAl155136osvvtCxxx6rpk2b1rnLNGXKFF188cUFVxTwG+6WAAAAAABQONtBqKOPPlp33nln2ujyDz/8oDZt2jhWMcBpQUjPD0Id3RLl7w7kiuMFCDaOYQBAVNkOQpWWlmrz5s1pX2/RooV+/vlnRyoFuCEIGU1BqKNbovzdgVxxvADBxjEMhAMBZSB3toNQs2fPVvfu3fXYY49Zvv7rX/9aX3zxhWMVQ7TwRKJwYD8iaBg8eof+AgAQdJy3gNzZXpj8yiuv1NChQ3XllVdq3LhxWr58uXr16qVp06bp/vvv1zXXXKOLL75Yo0ePdrnKzmFhcv9gUb/C+WFhcvYjALvoL6KFoCOAYij2wuQA0ssUbzF2y3PPPWeqqqrM6tWrzZYtW8zSpUvNzz//bKqqqsyTTz5p+3P8UqZPn+55HSjbihWv6xS0kk4sFmM/UigU3xX6CwqFQqE4WWKxWNrxMOcZCqX4JV28xXYmVNLZZ5+tCy+8UB06dFBJSYnmz5+vZ599VmPGjMnlY3yBTCj/4I544dLd+SnmdmQ/ArCL/gIA4KRsWVAS5xmgmNLFW2ytCdWoUSOdd955mjt3rsaOHauxY8c6XT8AAAAAAACEmK0g1ObNmzVy5Ej96U9/0n/+8x+36wTAISy6DAAAgChLJBJeVwFANbaCUMYYLVq0SI0bN3a7PogogiXhwH4EYBf9BQCgGMrKyryuAoBqbK8Jdfvtt+v888/XUUcdpZ9//tnlahUHa0IhTNLNg4/H4zyBCIHCU7QAAECuWBMK8Jd08RbbQagTTzxRf//739WoUSM9+uijmj9/viorK+u87+OPPy64ssVCEAphkunEywkXQcKC1QCihMA74IxYLJY1y5abs0iHvth5BQehqqqqavy79kVCSUmJjDGqX9/WDD9fIAiFMMkUhOKEiyAhCAUgSujzAOeQDYV80Rc7r6Cn40nSJZdc4miFABQPQSgAKAx3SAEAAApnOxMqjMiEQphku/NDJB9BwZ0o+BHtEm6hbQHOIRMK+aIvdl66eEupB3UBAAAAAMBRPHkV8L/gLOAEAIgEBpAAACBXVtOmAfgPQSgAgK+wzg6AKCHwDjjDzrHE8YZ0aBvFw5pQrAmFkGBNKABwjxtrRbDYOQA4h/WgAH8p+Ol4AIBo4MIYqMuNO6RWn8mxBiAMGEsASIdMKDKh4DCvTrpBzIRigOJPPB0EKA6ONSC6wj4G8qJ/IxMK8Jd08RaCUASh4DCvLiqCGITiAsyf2C9AcXCsAdEV9uOfIBQApuMBEZRIJJRIJLyuBgAAAAAABKFQHGFPOfarsrIy9ezZ0+tqAAAAAJ7gqWeAvxCEQlGw+CoAADVxYQQA7orH465ec3CjHcgdQSh4hk4b8CcujIHi4JwHIKyKPZawuq6Q3O9nvb7RzvUUgoiFyVmYvCjsLBQohWOxQL89Hc/P25QTJwAAiCLGQM7yahzs9QLzXv99IBOejmeBIFTxRCkI5ZUgBqHgXwyOAQBAUBCE8ubvA5kQhLJAEKp4rC5ordJX6TTzl+7km9zOfgggENgIDgY1AAAgKPwchHJz/OvWeI0xO5xAEMoCQShvcZHrrGzZZn7Ytuzz4GBfAQCAoPBzEMrNMZVbn804EE5IF29hYXIACDDuVLmD7QoAALLhYS5A7siEIhPKM1zkOSsWi2U8Efrh7kWY7qr4pf1yB8wdUf/+AKLFL+c0IB+ZxsB+OHe7OaZw69hlHFR8YeyHmY5ngSAUgiZb55RpSp4fThxhOqH55bsQhHJH1L8/gGihz0OQ1B4PcxPWeUGsc9CFcZszHQ8IuHR3eYIeIYc/kV4O2BPGO5cA4FfZMv8B+B9BKCAgCjnh+uVk7Zd6IDsuogF7uDkAwAkEtO3JZSzpl3GnX+qRiyDWGcHBdDym4yEg0k21i8fjqUFKurtDQU/l9CO/pMwyaHUH2xV2+aUvAApBO/Ye+yCz5HnZbnCk+vgYCIIw9gGsCWWBIBSCxO56T2HswPyI7QxAoi9AONCOvcc+yCzTONgK2w5BE8Y+gDWhgIggfbY42M4AgLDgnIagow0j6KLUhsmEIhMKAeH3J98BQBSF8c4lgOKjL8ks0ziYqXeAP5EJBdexhgoAIGqidOcSAACgUGRCkQnlGO7guItMKHc5FUQlGIsoot0DQGHoRzPLtiYUY2HAf1iY3AJBKGcRhHJPuqfeJbGdC+dU++U4QBTR7gEAbsk2DpY45wB+RBDKAkEoZ3ER4h7u/riPIFQwcKfYn2j3AAC32HkyHucc5zHmQqEIQlkgCOUsLkLcQxDKfQShgoHt60/sFwCAWwhCeYNzOwrFwuQAAAAAAOSAjCDAWQSh4BieEOSNRCLhdRUAAACAoivGONjqGocgFJA/glBwDJ2xN8rKyryuQihUH2Akt2n1O1+0byA9bkIAzvMy+4LMDwQF42B3WPUBKBx96zasCcWaUAgAno5XXIXMgWf+vLvYvgCiwsv+jr4WfuL1mlBRPB7SbfOwf2+3Ra0tsSYUEGCDBw8m0wAQGTdA2HBXGEA2yXM/YwBvsf3hFDKhyIRCQGS6CxTmCLoXCrlLwQUVANgXtbvCuSATCqjJq7FwFMd29AHuiNp2TRdvIQhFEAoBQRCqeKJ2ggAAr9DfpkcQCqiJsXDx0Ae4I2rblel4cF0U7xIAyA39BAAAABBdBKHgGB5f6p5YLKZEIsETQIqEOe/uoZ8AAHu8PBdxHoSf8KS24qMPcAfbdRum4zEdzzFRSy8spmxPBWE7R1uQsovoJwBUR58AIBuvn44HID9MxwOAkCK7CEBQcVcYAIBoIQgFAAAQMkHJkPRjnQAAgHsIQsEx3M0EkA39BIIqKEGdJDIkAQCAH7EmFGtCIQBYEwqZsKYK4L6gHWdBqy8ApMOaUEAwpYu3lHpQFwA5SiQSSiQSXlcDAAAAKKp4PM44GAgRpuMBAVBWVuZ1FeBjTHEDAABhNXjwYMY6QIgQhAICjpMyWOcFAAAAQBAQhAICjgAEAKA2blDUFLSF5QEUH/1EOLAf/Y+FyVmYHAGQaUFGFmIE7GFQgkLQfoKNhdqBYCvGQ3roJ8KB/egf6eItBKEIQiEACEIBhWNQAkQXxz8QbOXl5RnXSCUIhST2o3/wdDwAAAAAQODwkB4gPFgTCoHANAgAAAAAtbEGHhAsTMdjOl4gRD2tkul43iMQGnxR70eAKOP4DwbOtbASi8UyBpqcOpbpJ8KB/egfrAllgSBUcESlM0k3+CII5b2otMEwYx8C0UVwIxjop6Mtn3Gw5FwboZ8IB/ajfxCEskAQKjiiMiix+p7xeLwod3+QWVTaYJgxKAEAfwvquZbzizPS7f9iBaEAOIsglAWCUMER1EFJrrKdZK2EcTv4UVTaIAAAXgnquTao9fYbglBAuKSLt7AwOQKBBQfrYpugUNy5BQAAQcQ4GAguMqHIhIKP5JIJxV2f4grjXc4wficAQHAF9bwU1Hr7TS6ZUGxfwP/IhAICjjs+3ory9idjCgDgpuR5JpFIpH5W/f8RbVZjMMYmQHCRCUUmFHwk0yNo4/E4J1c4yu6dRe5AAkDuuEi2L+jnmaDX3y/SPaDH6rhhm6MQ9M/FwcLkFghCwY8yTcnj5AonEYQCAPfQd9oX9G3FBa0z0o2BGZvAabSf4mA6HgAAAAA4jIATANhHEAoAIirK61wBAAAAKD6CUIBPWKVyA26ye+eWYBUQDUwpglc4z3gnqMc9bQYILtaEYk0o+ESmtaCSmKsMAHALa2Q4i+2JIPBTO81lTSigEH5q92HGmlBAwHHHBwCA4OC8Db8IarZTUiwWC1R94X/0z94iE4pMKPhEtkwoovMAwiDoF0Nhxp1hIJwyHdt+Ou5jsVja4AB9ERA8ZEIBAADPWV1gEIQCAACIBoJQAADXkPUCAADsKMYUKcYlgPeYjsd0PPhEphRkiTRkBJOf0vzhD7QJ/+LiDAinoEzHy7Q0hVN18tP3BcIuXbyFIBRBKBTA6QF7MU6+QDEx2ENttAkAKK5M41U/9ckEoYBwIQhlgSAUCuX0iYwgFMKGwR5qo00AgH/4qU8mCAWECwuTAwEQj8d5ZCiAUKOPAwD/CEKfHIQ6ArCPTCgyoVAAN+6mpLsLFI/HWZsDgcMdRwAAYEe6MbCT4wbGJUDxkAkFBBxBKAQRdy8BAPAPPzyAINc6JN/vRD0ZlwDeIxOKTCgUwOm7KTwhD/AHPwzS4W+0EQBBk26cWezxZbrxc6Y1oZLvARAcLExugSAUCuXkRUi2AJTEyRfIV67HKun6yIY2AoRLFALLxZjulm89CEIB4UMQygJBKPhJthOvxMkXyFeuAQMCDMiGNgKESxSOaYJQAIopXbyl1IO6AAAAAAAAIGJYmByhEtZUahZRBAAAAAAEnadBqO7du+umm25S586dteeee6p///565plnarwnFotpwIABatq0qaZNm6ZrrrlGs2bNSr3epEkTDR06VH369JEkjRs3TgMHDtSaNWuK+l3gD1bBmjAEoaTwfA8AAAD4gxc3OvP5m9yQBcLD0yDULrvsoq+++krPPvusnn322TqvDxo0SDfeeKP69++vuXPn6s4779SECRPUvn17rV+/XpI0evRo7bPPPjr11FMlSU8++aSee+65VFAKCIN4PE4QCigiBrvIhjYCICisZgokeTG+zOdvMg4GwsM3C5OvW7dO1157bY1MqCVLlmj48OG69957JUmNGjVSRUWFbrrpJo0YMUIdOnTQ7Nmz1a1bN02ePFmS1K1bN02aNEnt27fXvHnzMv5NFiYPnyAvKpkcIKS7sAnK9wD8KKxTdQEAzgjzeSLTgt9+Gl8GpZ4A7EkXb/HtmlBt27bV7rvvrvfeey/1s02bNumjjz5S165dNWLECHXp0kXr1q1LBaAk6ZNPPtH69evVtWvXrEEowE+SAx3uriNfYR5AF4rtAACcJzJhO3gvkUiorKzM62oArqIf9nEQqk2bNpKk5cuX1/j58uXLteeee6bes2LFijq/W1FRkfr92i6//HINGDBAktSiRQsnqwwfIICDKAvzmmgAgMJxngiOKF6opgtAJRKJotYDcBP9sI+DUG4ZOXKkRo4cKWlbehjCJWoHMAAAAMKHC9XtyI4CwqXU6wqks2zZMklS69ata/y8devWqdeWLVumli1b1vndVq1apd4DAAAAANgukUgokUhkXLQcANzg2yDUggULtHTpUvXu3Tv1s4YNG6p79+6pNaCmTJmiXXfdVV26dEm9p0uXLtpll11qrBMFAAAAAFEUj8dTJamsrExlZWUsZQGg6DydjrfzzjvrwAMPlCSVlpZqn3320eGHH65Vq1Zp0aJFeuihh3Tbbbdpzpw5mjdvnm6//XatX79eo0ePliTNmTNHb7/9tp544onUOk9PPPGE3njjDRYlhy9FcX4/AAAAvFN9rEnQCYDXPA1CHXXUUTUWmrvrrrt011136emnn9Yll1yiBx54QDvuuKMeeeQRNW3aVNOmTdPJJ5+s9evXp36nb9++GjZsmN59911J0rhx43TttdcW+6sAtjC/H25iYAkAyITzBAB4i35YKpFkvK6EV6ZPn66jjz7a62ogQoype7iVlJRkfY/V+wAAABBObmXP2xmLeiXdGDgej3PTFgigdPGWyD0dDwAAAAD8zK2gS9CyMAhAAeFDJhSZUCgiMqEAAACAuvycpQUgd2RCAQFR++klSbFYjDtBAGADD4EAEBVB7u+s6g4g/MiEIhMKGTh9YrfzebFYLG2qNHeDAP8K8oVA2HA3HUBUBLm/S5f9X11QvguAutLFWwhChTQIxcWQM7w4sWc6IXMihl/Qx9QV5AuBsGFfAIiKIPd3BKGAcCMIZSHMQaggn5D8hCAUYI0+pi62iX+wLwBERVD7u0yZ/9UF4bsAsMaaUAAQImQiAQCAoLITgArak/wA2EMQCgiIRCLhdRXgI1YDM4JQwDZcuACIijD3d4xrgHBiOh7T8ZAB0/HgV14f417/fT9imwAAYA/rQQHhx3Q8IA/FvrsUi8WUSCRUVlZW1L8LZzFVLprCfDcaAACJMQ6AwpEJFdJMKE4QwZTtrhB3hILBaj8mAxROHYdeZ93QxwAAED1OjT/IhALCj6fjWQhzEArBRBAqHIoxpdLrIBQAAIgep8Yf1W9mpcskZlwDBBvT8QAgRJj6BQAAgqp69jRjGiBaCEIBHgjjVKYwfic/C/K2pa1Aoh0AQKGC3o9a1R9A+DEdj+l48EC6NYOy3QnyMi0520AniNPD3Bq8JT/Xan/6fZsUQxDbCvKT6RijHeQu6BecAJzlRT/qRD+UaZxUHecE53EeQTGxJpQFglDwip3FGK14eTLONtAJ4gWl23UO4jYpBrZLdGTa17SD3LHNAFQX1D7B7jg4CN8laILaZhBMrAkFAEUWxjUOuIMGAIDznDq/xmIxzssAfI1MKDKh4IF0d4CqBy38NpWLTChIzmwztnt0kAnlLLYZEF75HN/pxpN+7xfIhPIO5xEUE5lQQABw5woAAABu82tmcxizyAHURBAKKDK7TwIpZCDgxcCCQQPsoq1Aoh3kKmpPkfLrBTIQBMnjJ9MxY9UH++UY80s9kB19NfLBdDym46HIMqUgO5UO60aqbRhPMmH8Tm4jjRu54BhzTrqnqoZ1e9LXIGqcnI5n5/e9PMZisVjGGxEc6+5x+rxMX41MeDqeBYJQ8EJQg1CARFAB8ErU+vWofV8gn/NrUINQ6f6+F/VAYbxuR/A3glAWCELBCwShAAC5ilq/HrXvC+SDIBS85nU7gr+xMDkAwDNkUAEIK/o3eCUejwdyfb2orXGH4qNf9jcyociEQgZudGBkQiGKaJNAYdKtCVVbWAbZQeozglRXhEshayt5eZFeSAZXlPkxsOLX/s+v9YoapuNZIAiFbNzowIoRhPLjSQrRxmAAKIxVv2518RmW4ypI5zH6N3gl05gykUgokUj48rjJVO8wP3ChUH7sa/zaV/txW0URQSgLBKGQTVCDUIDfMBgAnMdx5Q/sB3glW0aR5M+2SBAqP/Q19rGt/IEglAWCUMiGIBTgDAYDyJdf77L6AceVP7Af4JUwBqEkf9bZD+hr7GNb+QMLkwMAPBPEhVPhD2Fe9wjhQP8G5CaoC6ojOGhf/kYmFJlQyIBMKADwFncz02PbANEW1EwoifFwPujzETRkQgF5KHYUPTnthLv8AGpjWhpq404vEG1BzSiyOp8huyDua8AKmVBkQqHIgnzXCoB3onoHNKrfGwDssOojqwcr/HizgjWhgGggEwoAALiOjC0A8F5Q+12yfYDwIxOKTCgUWSwWy3qC5Q4QgNqCkhHkdD0JagFAeumyipJjTT/2l6wHBUQDmVAAAM9FLaAQte/rBrYXAOTOz0EoANFGJhSZUCiybHesJAYMCK+gZPM4xcnvG5SAVtT2MQB4KYjrK2WaFeDH+gLIT7p4C0EoglAosnSDBU66iIKoBSii9n2laH5nAPBKEINQEuNhIArSxVtKPagLAAAAACCi0mVCWWX9AggX1oRCpAVlegsA79Ff2MOTjQAEGX29t+LxONsbCDmm4zEdL9K8mDZC+jGiLMhTtfKpe5C/LwBEUdD6bav6BmGdUZ6QB4QfT8cDAHii+l3lRCJR479hR1aQv5DhACBM0k1do18D4GdkQpEJFWlkQgHuC9pd5XTC8j2ijH2IMCK46qwg9RNBHlOSCeVv9CtwAk/Hs0AQCgShAPdlmyqQ5PfBTZAuTGCNfYgwol07K0jbs5AxpVNBhnw/hyCUvwXpOIB/EYSyQBAKXkT5rTr1RCKhnj17uvp3Aa9ke3x0kt8HN9wVDL6gDKppa+Hn5D4OSrsOiiAdf4UEoZxqN/l+DkEof4tivxKkYz8oCEJZIAgFL5AJhagJSxAKwReUQXVQ6on8ObmPaS/RRRAKbolivxLF7+w2FiYHAAvc9XBXukVT4SzaMQBEC+dXAEFFJhSZUCgyMqH8hbsedbk9TSSRSKisrKzOz6O+3QtBO7YnKME69mf4kQmFQmXKJIrH41n7Ni8zoWKxWManx9J+vRfFfiWK39ltTMezQBAKXiAI5S+ccOpy++Ionahv90LQjsOF/Rl+Tu7joARX4axs59ds7cnLIFShATS4L4r9Cude5zEdD46IYocEwF2Z7oa6if4MQBjQbyEfXp17MyEA5R/sB7iJIBRyEsTHqgdF8oKY7Ymo8arN05/Br/x4cQhnsY/hNc53QE30y8XDdDym4+WENMXCFZo+DWeRDVOXm9NErE7wXrX5MPVntGMAiBanxpOFnj+cno4X1PMwgLpYE8oCQajchemizSsEoeB3bh7nfupD/FQXAABy4dR4stBzIUEoAOmwJhSArMimgORuOjKpzgAARFs8Hmc8AEQYmVBkQuXEy8yBsARIysvLLR9Pn+TU9sxne5EZgiihvQOAu8IydvOjWCyWMZBTrEyofPcxT4sGwo/peBYIQuXOy8FEWC4YizUdz6n06CBuY/iPHy9E3KyTH78vABQb4wp3ZQpEFSsIlS+CUED4EYSyQBAqWMIykEl30k0OIpy6UCUIBT+JWtuK2vcFACu59IUE7/NTaDDHi/OVE8EzAP5HEMoCQahgCctFXbHu/BCEgp9ErW1F7fsCgJVc+kL6zfwUOq70IvjHwuRANLAwOYCsWCQSdnC3GgAA/54PcxnP+aG+SYxDgWggE4pMqMAIyx0yP2dCAXaQZZdd1L4vAFgJeyaUH+rshzrkivWggGggEwqBF/a7I7FYzNG7UWHfXgAAwN8Yi6A2q+wxANFCJhSZUCgy5sEj6PK56+rXKQtuidr3RTjRjlFMYcnoKWadY7GYysrKavwskUj4+jjN9IAeP9cbQO5YmNwCQSh4gSAUgs7uoJsLWCDYvL7ARrQE8Zzh9THi9d/PB1PxgOhgOh7gAVKOERVWbd1qGobfLygAAN7g/GBfEMeXQawzAHcQhAJcZHURHo/HWSMhBIJ4x9Yp1dtvchoAbRoAEDVun/vSjTWCdM5Nfocg1RmZRXkMDGcwHY/peHBRujRpUpGDL4gp8ElODh4yTS+1EpRtBCDY/RwQBrmOI5Ov+4ndcYLf6o30ODfALtaEskAQCm4jCBVeQT4BO1l3glBAeAW5nwPCgCAU/IhzA+xiTSigyHKd+06aMgDATzgvAf6TbnzJ8QogKMiEIhMKLsmU7cRc6uAL8l2gYmVCsTA5AAD5yyXb2K9jkEzfIZFIKJFISGJ8ECRBHgOjuMiEAnyiegCKEy7CKBl8on0D/sSNEAB+UFZWlgpCAYgOMqHIhIJL7Ny94q5BcAX5Is7tTCjaNeBvHLf+EOTzCIojlyfL+fUYjsViga4/6qLvgl0sTG6BIBTcRBAKfuX20/Hi8TiDEcDHCEL5A/sBdmUbU/r9vFteXq6ysrKM76HtA+FDEMoCQSi4iSAUwi7T3U3aNoIqCnd4CX74A/sBdmVbV6lnz55FrE3uGBMD0UQQygJBKLiJEy7CLkiPiAbsikJgIArfMQjYD7Ar25jS7+2GMTEQTSxMDgABEJQsjHSPiAYAAMXFQ28ABAmZUGRCwSXp7vpUn77EQAG1BeXOeNDvygLpBOUYLERQgt1hF4W2BmfYySRK8mMbCvqaVgDyw3Q8CwSh4KZ0J1w/Dg7gH0G5KCEIhbAKyjGI4CMYCLvCHoTyY50BFI7peACAoonFYlxMAUAG9JGwK5FISFLWJ8wBQBAQhAKKjItzRAGp9QiqdE98BHJBlhOcFPbgE2NjIFqYjsd0PLiEJ4chH0G5cKlez3QX7bRzAFHFtE44Kdt0tkQikcqW8uOYgafjAdHEmlAWCELBTQShEBWsfwYANRGEgpOCHsQJev0B5CddvKXUg7oAkcfj7QEAAAAAUUMQCvAAa44AAAAgm6DfuIzFYjWmCwIAC5MDABzHYBMAgMIF/cZl0OsPwHkEoQAAjgv7k3wAIBMuvAH7OF6AaCEIBQDIS3KKQCKRIOgEANX48QllCK+gB3E4XoBoIQgFAMhL0Ae9AAAEnZ+nvwd9PSsA7iiRlP2ZmSGV7pGBgBOyPY6WR9Ei6GjjAAC4K9u5NsmP59wg1x1A4dLFW8iEAjxABgmizuruKOn4AADUlBwzMnYEEBYEoQAPcLGNsMs2WLZ6neMCAABrrL8IICwIQgEuicfj3LVCZBFQAgCgcGEfS4b9+wGoiyAUioopOEB4EGgFAACF4DoAiB4WJmdh8qKyWqAwrIsRpluMMR6Pc8JFaFi1czttPEp9AQD4GTcI/S3b4t6JREKJRMKX+ywWi2W9WcW5HwivdPEWglAEoYoqShee6QYNYf2+iKZ0QSgp80UMFz3bsB0AeC1KY7MgsvOEOT/vL56kC0QXQSgLBKGKL0oDHYJQiIJMg0vaenZR6hMB+BP9kL8RhAIQVOniLaUe1AWINKvMBwAAACBqGBcD0UMmFJlQReXXu21uTIkhQwRRQDsvjF/7RADRQT/kb2HPhJL8XX8A+UsXb+HpeCgqvz5Jy6perMsCFI41jwAAAAAkEYRCUUXp4pPH1yPs7KTQRzXAS/ANQFB4OVahrwSA6GE6HtPxIPdS0VmcHGGWrn1XfzpeVKd52P3eXIABiLKoniNyEfTpbLFYLGug08/1B5A/no5ngSAUkghCAbnJNKis3r6jeoER1e/tVwT7AH+ir8wu6EEoiSfkAVFFEMoCQSgkEYQCcmN3QfKoXmBE9Xv7FfsD8CeOzewIQgEIKhYmBzJwej0EHjeLqEokEorFYmSZAABQIK/Gk2SPAnATmVBkQsEFxbrjwyABXrHbxqPaRrm77y/sj8JE9TiG+6yOzXg8Hvn2lTzmMt0krf6a09vL6T6TTCggmpiOZ4EgFNyS6WTr5OCKCyt4JZcBZRQvYKP4nf0sCH2ln9tMELYfvFNI2023vmDU25fXU/CKFYRKJBKSpJ49e+b92QD8iyCUBYJQcIvd9XLc+DtRH7ihOHIJQtFOUahCAzRBaIN+rqOf6wbvFdo+aF91ZTvHJhIJVwM3ZEIBcAJrQgE+4PTaU4BX4vE47RlFY9XWcglC0VYBhElZWZnXVQCAvIUmCHXVVVfp5ptv1u67766ZM2fq+uuv16RJk7yuFlCDX6ZWAECU0PciHT9PgwQyqd52nW6zBO4RRvT3/hGK6Xjnn3++nn/+eV199dWaNGmSrr76al1yySX61a9+pUWLFqX9PabjwS3p0o6dTjcmhR1eYToeiikKbcjP39HPdStUmL9bsTAdz3l21oSqzu/bi+l48AP6muIL9XS8P//5z3r66af15JNPSpKuu+46nXrqqbrqqqt02223eVw7YBs37ipxpwoA4DbONXAT7auu6tskDNuHKfwAqgt8JlSDBg1UWVmpCy64QK+88krq58OHD9chhxxSZ8705ZdfrgEDBkiSWrRoobZt2xazuogIIu0IO56Oh2KKQp/KceKNKLQtt9F23ZXuCYLVBaHNFuuhPUA69PfFF9qn4+2+++5asmSJTjjhBH388cepn99xxx36wx/+oA4dOqT9XabjwS10cgg7UutRTFzkwi2crxEEYTjnZgqmBaH+CD76++IL9XQ8AID3SLWHWwg4AYiyMEzPGzx4sGXdg/p9AOQv8EGoH3/8UVu2bFHr1q1r/Lx169ZatmyZR7VC1HFCRdhZtXECBQCChvM1giAs51fGDvAS/b1/BH46niRNnTpVX3zxha644orUz+bOnatXX30148LkTMcDAAAAAABwVqin4/3jH//Qc889p//85z/65JNPdOWVV2qPPfbQ448/7nXVAAAAAAAAoJAEoV5++WU1b95ct99+u3bffXd99dVXOv3007Vw4UKvqwYAAAAAAACFJAglSY899pgee+wxr6sBAAAAAAAAC6VeVwAAAAAAAADhRxAKAAAAAAAAriMIBQAAAAAAANcRhAIAAAAAAIDrCEIBAAAAAADAdQShAAAAAAAA4DqCUAAAAAAAAHAdQSgAAAAAAAC4jiAUAAAAAAAAXEcQCgAAAAAAAK4jCAUAAAAAAADXEYQCAAAAAACA6whCAQAAAAAAwHUEoQAAAAAAAOA6glAAAAAAAABwHUEoAAAAAAAAuI4gFAAAAAAAAFxHEAoAAAAAAACuIwgFAAAAAAAA1xGEAgAAAAAAgOsIQgEAAAAAAMB1BKEAAAAAAADgOoJQAAAAAAAAcB1BKAAAAAAAALiOIBQAAAAAAABcRxAKAAAAAAAAriMIBQAAAAAAANcRhAIAAAAAAIDrSiQZryvhlYqKCn3//fdeVwMB0qJFC/34449eVwNwFe0cYUcbRxTQzhEFtHOEXZDb+L777qtWrVrV+Xmkg1BArqZPn66jjz7a62oArqKdI+xo44gC2jmigHaOsAtjG2c6HgAAAAAAAFxHEAoAAAAAAACuIwgF5GDEiBFeVwFwHe0cYUcbRxTQzhEFtHOEXRjbOGtCAQAAAAAAwHVkQgEAAAAAAMB1BKEAAAAAAADgOoJQAAAAAAAAcB1BKETWLbfcImOMhg0blvrZb37zG73zzjuqqKiQMUY9evSo83s77LCDhg4dqhUrVmj9+vV6/fXXteeee9Z4z957761x48Zp/fr1WrFihR5++GE1aNDA9e8E1Fa7ndevX1/333+/vvjiC61fv15LlizRCy+8oL333rvG79HOERRWffldd92l2bNna/369Vq1apXef/99denSpcbv0cYRJFbtvLrHH39cxhjdeOONNX5OO0eQWLXzUaNGyRhTo0yZMqXG79HOERTp+vKDDjpIr776qlavXq0NGzbof//7nzp06JB6PWxtnCAUIunYY4/VgAED9MUXX9T4+c4776zJkyfrz3/+c9rffeihh3TOOefoggsuUPfu3dW4cWO9+eabKi3ddjiVlpbqrbfe0q677qru3bvrggsu0LnnnqsHH3zQ1e8E1GbVznfaaSd16tRJ99xzjzp16qSzzjpLe++9t9555x3Vq1cv9T7aOYIgXV8+d+5cXXPNNTr00EN1/PHHa8GCBXrnnXfUqlWr1Hto4wiKdO086ZxzztExxxyjxYsX13mNdo6gyNTOJ0yYoDZt2qTK6aefXuN12jmCIF0b32+//fTJJ59owYIFOvHEE3XIIYfo9ttv1/r161PvCWMbNxRKlErjxo3N119/bcrKykx5ebkZNmxYnfc0b97cGGNMjx496vzu5s2bTd++fVM/22uvvUxVVZU5+eSTjSRz6qmnmqqqKrPXXnul3vOHP/zBbNy40ey6666ef39KNIqddp4sBx98sDHGmEMOOST1u7Rzit9LLm181113NcaYVPuljVOCUrK183322cf88MMPpkOHDmbBggXmxhtvrPG7tHNKEEqmdj5q1CjzxhtvZPxd2jnF7yVTG3/hhRfM888/n/F3w9bGyYRC5IwYMUKvvPKKEolEzr/buXNn7bDDDnrvvfdSP/vhhx80e/Zsde3aVZLUpUsXzZ49Wz/88EPqPe+++64aNWqkzp07F1x/wI5c2nnjxo0lSatXr5ZEO0cw2G3jDRo00IABA7RmzRp9/vnnkmjjCI5M7bxevXp68cUXNWTIEM2ZM6fO67RzBEW2/vz444/X8uXLNXfuXI0YMUItW7ZMvUY7RxCka+MlJSU688wzNWvWLL399tuqqKjQf/7zH51//vmp94Sxjdf3ugJAMV122WU68MADdeGFF+b1+23atNGWLf9fe3cfU3X5/3H8JRDegBFJoiMTljodKWjN5Wo7TpA22dRabfmHO5m4tNK1VTNzzZVZpnajrVsrji4yGwPEaW4mpFlbViNRw5Z2cBy56yARN4oHen//6OcZRyhUfocD8nxsr4nX9fmc8z743mdweT7XaZPX6w0Yr6mp0ahRo/zH1NTUBMx7vV61tbX5jwGC6Wr6/IYbbtDrr7+uwsJC/60c9Dn6uivp8czMTH3++ecaNmyYqqqqNHv2bNXW1kqix9E/dNfnL774orxer95///0u5+lz9Afd9fm+ffuUl5cnt9utxMREvfzyyyoqKtKdd96pixcv0ufo8/6rx0eOHKnhw4fr+eef1wsvvKDnnntOs2bNUk5OjpqamrR3797rssdZhMKAMWHCBL3yyiu699571dbWFupygKC4mj4PDw/Xp59+qptuuklz587tpQqBnrnSHi8uLlZqaqri4uK0ZMkSffHFF5oxY4aqq6t7sVrg2nTX5w6HQ4888ohSU1N7vzjg/8mVXM937tzp//r48eP66aefdObMGWVmZio/P7+3SgWuSXc9fmlPp127dunNN9+UJB09elR33XWXnnzySe3du7dX6+0t3I6HAWPGjBm65ZZbdOLECfl8Pvl8Ps2cOVOPP/64fD6fIiMju32M6upqRUREKC4uLmA8Pj7e/4tNdXW14uPjA+bj4uIUERHBLz8Iuivt80u3cUyZMkVpaWk6d+6c/zHoc/RlV9rjLS0tOn36tL7//ntlZWXJ5/MpKytLEj2Ovq+7Pr/vvvs0evRoVVVV+ecTExP12muvqaKiQhJ9jr7vWn42r6qqksfj0fjx4yXR5+jbuuvxuro6+Xw+/fLLLwHnlZWV6bbbbpN0/fZ4yDemIqQ3EhMTY8nJyQE5cuSI5eTkWHJycsCx3W1MvmDBAv9YQkJClxvDJSQk+I9ZsGBBn90YjlxfuZI+j4iIsNzcXDt58qSNGjWq02PQ56Qv52qu5R1z6tQpW7t2rUn0OOn76a7PR44c2Wne4/HYxo0bbcKECSbR56Tv51qu5yNGjLDW1lZbuHChSfQ56du5kh7/9ttvbfv27QHnbd++3fbs2WPSddvjIS+AkJDl8k8niI2NtZSUFHM4HGZmtnjxYktJSbH4+Hj/Me+++65VVFRYWlqapaamWlFRkZWUlFhYWJhJsrCwMCstLbUDBw5YamqqpaWlmcfjsS1btoT89ZKBmY59Hh4ebvn5+ebxeGzq1KkWHx/vz5AhQ/zn0OekP6Vjjw8fPtzWrl1r06dPtzFjxti0adPs448/tgsXLtjkyZP959DjpL+lu0+BvPzT8ST6nPS/dOzzqKgo27hxo9199902duxYczgc9t1331lFRYVFR0f7z6HPSX/K5dfyefPmWWtrqy1ZssRuv/12y8rKsosXL9qcOXP8x1yHPR7yAggJWS6/CDidTuvKmjVr/MdERkbali1bzOv1WnNzsxUWFgZ8HKYkGzNmjO3evduam5vN6/Xa5s2bLTIyMuSvlwzMdOzzsWPHdtnjZmZOp9N/Dn1O+lM69vjQoUMtLy/Pzp49axcuXLCzZ89aQUGBTZ8+PeAcepz0t1zLIhR9TvpbOvb5kCFDbN++fVZTU2Otra1WXl5u2dnZnXqYPif9KV1dy51Op/3666/W0tJiR48etYcffjhg/nrr8UH/9wUAAAAAAAAQNGxMDgAAAAAAgKBjEQoAAAAAAABBxyIUAAAAAAAAgo5FKAAAAAAAAAQdi1AAAAAAAAAIOhahAAAAAAAAEHQsQgEAAHTB4XDIzOR0OkNdSpfMzJ/9+/eHrI6ysjJ/HW63O2R1AACAvi8i1AUAAACESkpKiubPny+Xy6UzZ86EupyrdujQIX344YeqqqoKWQ3PPvusYmJitHr1ag0dOjRkdQAAgL5vkCQLdREAAACh4HQ65XK5NHPmTB08eDBgbtCgQYqMjJTP59Pff/8dogr/nZnJ5XJp0aJFoS5FklRcXKzExEQlJSWFuhQAANBH8U4oAACALpiZWltbQ10GAADAdYM9oQAAwIC0Zs0auVwuSdLXX3/t39coOztbUtd7QnUcW7ZsmU6ePKnz58+rtLRUmZmZkqQ77rhDX375pRoaGuT1erV582ZFRHT+f79x48Zp+/btqqysVGtrq9xutzZs2KBhw4b1+LW53W4VFxdrypQp2r9/vxobG1VTU6NNmzYpPDxcgwcP1saNG+XxeHT+/HkdPHhQEydODHiMwYMHa82aNTp58qSam5tVX1+v0tJSbdiwocf1AQCAgYl3QgEAgAEpLy9Po0eP1mOPPaZ169aprKxMknT69Oluz33iiScUGxurjz76SBcuXNCKFSuUn5+vhx56SFu3btWOHTtUUFCgjIwMrVixQrW1tVq3bp3//GnTpqmoqEh//vmnPvjgA509e1YpKSlasWKF7rnnHjkcDrW1tfXo9d16663av3+/du7cqdzcXGVkZOjpp59WW1ubkpOTNXToUK1fv15xcXF65plnVFBQoEmTJsnsn50a3nnnHS1evFjbtm3TG2+8oYiICI0fP16zZs3qUV0AAGBgM0IIIYSQgRin02lmZg6Ho9Ocw+EwMzOn09lpzOPx2I033ugfnzx5spmZtbe32/333x/wOD/++KNVVlYGjP38889WVlZm0dHRAePz58/v9Jz/FjOz7OzsLufcbreZmT344IOdamlvb7eCgoKA8eXLl5uZWUZGhn+srq7O9uzZc8Xfy+LiYnO73SH/NyWEEEJI3w234wEAAFwll8ulv/76y//3Y8eOqaGhQZWVlcrPzw849vDhwxo9erSioqIk/XO7XkpKij777DMNHjxYI0aM8Ofw4cNqampSRkZGj2v0eDzKzc3tVEtYWJjefvvtgPFvvvlGkjR+/Hj/WENDg5KTk5WcnNzjWgAAACT2hAIAALhqv//+e6ex+vp6ud3uLsclacSIEZKkSZMmSZJeeukleb3egPzxxx+Kjo5WfHx8j2v8r1oun7u8Rkl66qmnFBsbq+PHj+vUqVPaunWr5s6dq0GDBvW4NgAAMDCxJxQAAMBVam9vv6pxSf7Fm0t/btq0Sfv27evy2EuLQj3xX7X821zHBabCwkIlJiZqzpw5cjgcSk9PV1ZWlg4dOqT09HT5fL4e1wgAAAYWFqEAAMCAdWkT7t7022+/SfpnIejAgQO9/vxXo76+Xjk5OcrJyZEkrV+/XitXrtS8efM63eoHAADQHW7HAwAAA1ZTU5Mk6eabb+615ywpKdGxY8e0dOlSJSUldZoPDw9XbGxsr9XTlbCwMMXExHQaLykpkdS73y8AAHD94J1QAABgwPrhhx/U3t6u1atXKzY2Vs3NzXK73Tpy5EhQn3fhwoUqKipSaWmpPvnkE504cULDhg3TuHHj9MADD2jVqlXatm1bUGv4L8OHD1dVVZUKCwtVUlKi2tpaJSUladmyZTp37px2794dstoAAED/xSIUAAAYsCoqKvToo49q5cqVeu+99xQZGSmXyxX0RaijR49q6tSpWrVqlebOnaulS5eqsbFR5eXlcrlcIb9Nr6WlRW+99ZbS0tKUnp6u6Oho/6LUq6++qqqqqpDWBwAA+qdBknp/MwQAAAD0iJlpx44dWr58uS5evKjGxsaQ1BETE6OIiAjt2rVLCQkJXd5iCAAAILEIBQAA0C913FT9q6++0uzZs0NSR1lZmSZOnChJKi8vZxEKAAD8K27HAwAA6IfS09P9X9fV1YWsjkWLFikqKkqSdP78+ZDVAQAA+j7eCQUAAAAAAICgCwt1AQAAAAAAALj+sQgFAAAAAACAoGMRCgAAAAAAAEHHIhQAAAAAAACCjkUoAAAAAAAABB2LUAAAAAAAAAi6/wGTsSgDkrbG0AAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -509,7 +509,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKEAAALaCAYAAADp8kAfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACTKklEQVR4nO3deZgU1dn38d8MmwoIKDAYVMAIorjggmFEwiCLWwIu0deYxxcxirsxMRL1QbtJ4r4El7iAEdQQNSoqKqIGp0UWBeOKgrgMCsimwMCwg+f9g7fbWaq7q7ururbv57rOJXb3zJyqOnXq9F33OVUiyQgAAAAAAABwUanXFQAAAAAAAED4EYQCAAAAAACA6whCAQAAAAAAwHUEoQAAAAAAAOA6glAAAAAAAABwHUEoAAAAAAAAuI4gFAAgsM4991wZY9SrV6+i/+1YLCZjjPr161f0v+0nH3zwgaZPn+51NTLq1KmTjDEaP36863+rqqpKVVVVrv8dtzVu3FjxeFwLFy7U5s2bZYzR0KFDC/qdYdk3SM/LPtkpxhhVVlbm9bNHHHGEjDH67W9/63CtACA8CEIBQEQYY3Iqw4YN87rKGTVv3lw33XSTJk+erLlz53pdnci64YYb1LdvX51++uleVwUOuuqqqxSLxfTtt9/qjjvuUDwe14IFCzL+TGVlpYwxRaoh/IY+WXrvvff03HPP6S9/+YuaN2/udXUAwJcae10BAEBxxOPxBq9deeWVat26tcaMGaO1a9fWee+DDz4oSr3ydcUVV2ivvfbSLbfc4nVVIm3y5Mn69NNPdeONN+rZZ5/1ujqeGzBggNdVcMQvfvELrV+/XoMGDdK2bdu8rg4CICx9cvfu3bVx48a8f/7mm2/WnDlzdMUVV+jmm292sGYAEB6GQqFQKNEsVVVVxhhjOnXq5HldcimlpaXm66+/NgsWLPCsDrFYzBhjTL9+/TzfH16XkSNHGmOMGTBggOd1sSqdOnUyxhgzfvx4z+sSlPLll1+aqqqqnH6msrLSmJ2pUJalqqoq599JCUbxQ5/sp/Lpp5+aRYsWmZKSEs/rQqFQKH4rTMcDADSQnFbTpEkTXX/99VqwYIE2b96cWlMn03pImdbf2XXXXXXNNdfo/fffV01NjdavX69Zs2bprLPOyql+gwYN0r777qt///vfOf392ttWW79+/WSMUSwW02GHHaaXXnpJa9as0YYNG5RIJFReXm67bvvss4/mzZunLVu26H/+539SryfXw9ltt91022236euvv9bmzZv1+eefa+TIkWl/3xlnnKE333xTa9eu1caNG/XRRx/pmmuuUdOmTet8btasWdqyZYt22223Oq8nEgkZY/Twww/Xeb179+4yxujRRx9NvVb7uJ5++ul65513tGHDBn3//fd64okn9JOf/MSyjk8++aQk5bwOSocOHXTfffepqqpKW7Zs0cqVK/Xss8/qiCOOaPDZYcOGpaaJHn/88aqsrNTatWvrHMsWLVrozjvv1OLFi7Vp0ybNnz9fv//971Vamn64k0ubrN1OevXqpZdeeknff/+9jDHq1KmTJOt1j2rXvaKiQpWVlVq3bp2qq6v10ksvqXv37pZ169q1q5555hmtXr1aNTU1mjlzpk466aQ6v8+u3XffXTfddJMWLFigTZs2afXq1Zo6dWqDzK3x48fLGKP99ttPnTt3Tk3PzbSWU/Kcq6iokKQ603qt1tbJ9Rw4+uij9fTTT2vZsmXasmWLvvnmGz344IPaa6+9bG9/vscgl/aR7bhY7Y/a59yvf/1rvf3221q/fn2d/Z3veWJ3O9u3b6/bb79dCxYsUE1NjdasWaMFCxZo/Pjx6tKlS8b9mpSuT27durU2bNigL774Iu3PTp48WcYYHXnkkVn/TpMmTXTppZfq5Zdf1qJFi7R582Z9//33ev3113XCCSc0+PyVV14pY4yeeeaZBu8NGDBA27dv10cffaRddtkl9brVcWrRooVGjRqljz/+WNXV1Vq3bp2++OILPfnkk5bH4cknn1SnTp00aNCgrNsEAFHDdDwAQFrPPvusevXqpVdeeUXPP/+8Vq5cmffvatWqld544w0dccQR+u9//6tHHnlEpaWlOv744/XEE0+oR48euv766239roEDB0qSZsyYkXd9rBx11FEaOXKkZs+erYcfflj77ruvTj/9dE2bNk09e/bUwoULM/78oYceqilTpqhly5Y66aSTNG3atDrvN2nSRK+++qp+8pOf6JVXXtH27dt1yimn6NZbb9Uuu+yiP//5z3U+f+ONN+q6667TqlWr9K9//Us1NTU68cQTdfPNN+v444/X4MGDU1Olpk2bpvLycvXt21evvvqqpJ1foHv37i2p4TSx5P/Xr6MkXXLJJRoyZIgmT56sN998Uz/72c901lln6bDDDlPPnj21devWOp//5ptvtGTJktRxsaNz586aMWOGOnbsqGnTpumJJ57QPvvsozPOOEMnn3yyTj/9dL388ssNfu5Xv/qVTjjhBL3yyit68MEHU8Gfpk2batq0aTr66KP1wQcfaOLEiWrdurWuv/76tIvH59smy8vLde2112rGjBl65JFH1LZt2wb7xMovfvELDR06NFX3gw46SCeffLJ69eqlgw46SN9//33qswcccIBmzZqlPfbYQy+99JI++ugj7bfffnruuec0ZcoUu7s5tZ0zZ85Ujx49NGfOHI0ZM0Zt27bVmWeeqddee00XX3yxxo4dK0l6/vnntWjRIl155ZWSpDFjxkhSg+m6ta1du1bxeFznnnuuOnfuXGfq76JFi+p8NtdzYPjw4Ro7dqy2bNmiyZMna/HixeratavOP/98/fKXv1Tv3r21ePFi2/sil2PgZJ+VzVVXXaVBgwbpxRdfVGVlpVq1aiUp//PE7nbuuuuumjlzpvbff3+99tprevHFF1VSUqJOnTpp6NCheuaZZ2wtJp+uT167dq2efPJJnXfeeRo4cKD+85//1Hl/77331oknnqh3331X//3vf7P+nT322EN33323Zs2apddff12rVq3SXnvtpV/+8pd65ZVXdP755+sf//hH6vNjxozRcccdp9NPP10XX3yxHnjgAUlSWVmZ/vnPf2rz5s0688wztXnz5ox/d+rUqerTp49mzZqlhx9+WNu3b9fee++t/v3766233tJ7771X5/MzZ86UtDM499prr2XdLgCIGs/TsSgUCoXiTUk3HS85rebDDz80e+65Z4OfyzQVLd3Up/HjxxtjjLn66qvrvN6sWTPzyiuvmB07dpjDDjvMVr1nz55tjDFmjz32sP33629b7df69etnkoYNG1bnvREjRhhjjPn73/+ecR8MGDDArF271ixdutQceuihaff1yy+/bHbZZZfU6+3atTNr1qwxa9asMY0bN0693rt3b2OMMV9//bUpKytLvd6oUSMzefJkY4wx1157ber1/v37G2OMue2221KvDR482BhjzKuvvmqMMWa//fZLvTdp0iRjjDF77713g22qrq42Bx98cJ36T5w40RhjzBlnnGG5X5O/78ADD7R1DKdOnWqMMea6666r83p5ebnZtm2b+e6770zz5s1Trw8bNswYY8yOHTvM8ccf3+D3XXvttcYYY5555pk6U2A6d+5svv/+e0faZO12MmLEiLTnVP0pZ8m6b9u2zRx33HF13rvpppss6/Cf//zHGGPMRRddVOf1E044IW1bTVcefPBBY4wxDz74YJ3X999/f7N27VqzefPmBn1APlPn7EzHy+Uc6Nq1q9myZYv5/PPPzU9+8pM6v+u4444z27dvN5MmTbJVt3yOQa7tI/k30h0XY4yprKys81rynKupqTE9e/Z07Dyxu52/+MUvjDHG3HXXXQ3+dpMmTUyLFi1s7d9MffKRRx5pjDHm6aefbvBecvvPP/98W3+nadOmpmPHjg1e33333c3HH39svv/++zptS5LZY489zDfffGM2btxoDj30UFNSUmJef/11Y4wx5557btbjdPDBBxtjjGVbKykpMa1bt7asjzHGvPPOOzmdQxQKhRKR4nkFKBQKheJRyRaEGjJkiOXP5RqE2mOPPcy2bdvMnDlzLH/foYceaowx5tZbb7VV76VLl5otW7ZYvldIEOqtt95q8PnGjRubrVu3mrlz56bdB7/5zW/Mli1bzCeffGL22WefjPv6pz/9aYP3JkyYYIwxpkePHqnXxo4da4wx5oILLmjw+a5du5rt27ebL7/8MvVas2bNzMaNG81///vf1Gu33nqr2bp1ayqglfxdJSUlZvXq1eazzz6z3Ka//OUvDf5mRUWFMcaY22+/3XL77r//fmOMsQwQ1S8dO3Y0xhizaNGiOkGHZHnssceMMcacc845qdeSX67TBR0WLlxotm/fXifQVn+7Cm2TyXby3nvvZTyn0gWhHn/88Qaf79y5c4Mv6HvvvbcxxpiFCxdarinz2muvGWPsBaGaNGliampqzLp160ybNm0avP/nP//ZGGPM9ddfn3U7shW7QSi758Bdd91ljDHmpJNOsvx9kyZNMtu2bbMVKMn1GOTTPgoJQlkFgQo5T+xuZzIIdeONN+Z0rOuXTH2yJDNnzhyzdevWOgH10tJS880335jq6uo6gbR8y+9//3tjjDF9+/Zt8F6fPn3Mtm3bzPz5882NN96Ydh9ZHadkEGrixIk51Wfjxo1m2bJlBW8XhUKhhK0wHQ8AkNacOXMc+T29evVS48aNU+vp1NekSRNJ0oEHHmjr9+25555as2aNI3Wr7d13323w2vbt27VixQq1adPG8md+97vfaejQoZo5c6aGDBmSddrSl19+2eD15HSi2n8juc7IG2+80eDzn3/+uZYsWaL99ttPu+++u9atW6ctW7Zo1qxZ6t+/v/bYYw+tXr1axx13nObOnau3335by5cv14ABAzRu3DgdccQRatOmjZ566inb+8GqjrWtXr1aktS2bdu02590+OGHS5Leeustbd++vcH7b7zxhs455xwdfvjhevzxx+u8Z9UmW7Rooa5du+qbb77RV1991eD9RCLR4LVC2mS+54Xd/dqzZ09J0uzZsxusXybtnPJkd62ZAw44QM2bN9eMGTMsz5k33nhD119/feqYuC2XcyC5Flu/fv3Uq1evBj/Tvn17NW7cWN26dWswHSodu8fA6T4rG6s2Vch5Ync733zzTS1ZskTXXHONjjjiCE2ZMkUzZ87UBx98oB9++MF2/bP1yffff7/Gjx+v8847L/XEuJNOOkn77LOP7r//fm3YsEGSdNhhh+mUU06p87Nr167V3Xffnfr/gw46SFdffbV+/vOfa6+99tKuu+5a5/MdO3Zs8PdnzpypWCyWmuK8cOFCXXTRRba27dNPP9X777+vs88+W506ddILL7ygGTNm6N1338345MjVq1errKzM1t8AgCghCAUASGv58uWO/J4999xT0s4Fho8++ui0n2vRooWt37dp06Y6C8k6JV0Aafv27WrUqJHlez//+c9VWlqqadOmZQxAZfv9kur8jeSaMMuWLbP8mWXLlqlTp05q3bq11q1bJ2nn+k4DBgxQ//79NW3aNB1++OG66aabJO38wppctyXTelDp6mlVx9qSXwQ3bdpk+X5tdrZN2rmocX1WbTL5+1asWGH5+6x+ppA2me95YbVfd+zYIcn62KfbnnSvWylkX7shl3MgeYwyLVou2e830v19q2PgdJ+VTaZ2nc+xs7ud69evV+/evTV69GgNGTIktbj3qlWrdP/99+uvf/2rZQCsvmx98pNPPqk777xTF1xwgW655RYZYzRixAhJ0kMPPZT6XM+ePeusKSbtXFcsGYT62c9+pjfeeEONGzfWtGnTNHnyZK1bt04//PCDevbsqVNOOUXNmjWzrMOkSZP05z//WY0aNdLDDz+cCnxl88MPP+i4447TDTfcoF/96le67bbbJEnr1q3To48+qmuvvdbyd+266662+kMAiBqejgcAyFnyDnnjxg3vZVh9IaqurpYk3XXXXSopKUlbjjvuOFt/f+XKlWrVqpXl389Ut3T1K8Rvf/tbvf3224rH4xo9erRjvze5zzp06GD5fvLJYMnPST9mTQ0cOFD9+/dXo0aNUoGmN954Q+3bt9dhhx2mAQMG6IcffrB8clm+kl/a7Sxen8+2JVllBiU/ly7rwOrvFNImrergpGRQMd325JJdUci+9lqyTrvvvnvGYzR9+nTX/nYu7SNT35MMKKWTqV27feyWLl2q888/X+3bt1ePHj10+eWX6/vvv1csFtMNN9xg63dk6pMlafPmzZowYYK6dOmiwYMHpxYkf/vtt/XRRx+lPvfoo4822Me1n9A3atQo7bbbbho8eLBOOukk/f73v1csFtPo0aP1zjvvpK1fs2bN9MQTT0jamaF0ww03qFu3bra2TdoZ1PvDH/6gfffdV/vvv79++9vfasGCBbr88stTi53XVlJSotatWxf0MA8ACCuCUACAnCWnXeyzzz4N3jvqqKMavDZnzhzt2LFDffv2deTvJ7+0HHDAATnVrWXLljl98bBj7dq1GjRokKZPn64bbrhBt956qyO/9/3335ek1GPva/vpT3+qvffeW1999VWdL6Bz585VdXW1BgwYoOOOO04bN27U7NmzJf2Y9XTSSSepT58++uijj+o8CaxQ3bt3144dO/Txxx9n/Wxy24499ljLzKr+/ftLku0pVjU1Nfr888/VsWNH7bfffg3et9qHTrdJJ33wwQeSdk5HKykpafD+sccea/t3ffbZZ9qwYYMOO+wwy0BIrvs6k2SmTWmpM8PLt99+W5I8OUb5tI9c+8VsnD5P7Pj000913333paZ71p8al06mPjnpgQce0A8//KALL7xQv/3tb9W4ceM6WVB27L///vr+++/15ptvNngv3VMwpZ3BxJ49e+rmm2/WWWedpd12201PPfWUmjZtmtPfl6Qvv/xSjzzyiPr166f169dr6NChDT5zwAEHqLS0NHUuAwB+RBAKAJCz5Polw4cPr/PlaO+997a8c75q1SpNnDhRvXr10qhRoyy/pO63337q3Lmzrb+fXOOnd+/eDd6rqanR/Pnz1adPnzrrtZSWluquu+7SbrvtZutv5KKmpkYnnHCC/vOf/2jkyJGpx9oX4pFHHpG0885/7XWWSktLdccdd6hRo0Z1HkUu7czEmD59urp27aozzjhDM2bM0NatWyXtnNJSVVWl3/3ud2revLnlWlP5atq0qXr27Kn333/fVlbG0qVL9dprr6lLly668sor67x39NFH6+yzz9bq1av13HPP2a7D+PHj1ahRI9166611AjedO3fWFVdc0eDzTrdJJy1evFiVlZXq2rWrLrzwwjrvHX/88bbXg5Kkbdu2aeLEidp99931l7/8pc57++23n6644gpt3bq1wZpC+UgGNffdd9+Cf5ck3Xfffdq6dav+9re/qWvXrg3eb9KkSU4BuVzk0z7effdd7dixQ2effXaddYratGmTmsKVCzfOk/oOOuggtW/fvsHryWy7jRs32vo9mfrkpC+++ELTpk3TL37xC1100UVas2aNnnzyyZzqu2jRIu2555465JBD6rx+3nnnpaYS1nfaaafpkksu0YwZMxSLxfT666/rtttuU8+ePfW3v/0t69/s3LlznWyspDZt2qhZs2aWU+6S+8HJbFMACAvWhAIA5GzOnDl688031a9fP82ZM0dvvPGGysrK9Mtf/lKvvvqq5ZfQyy67TF27dtVf/vIXnXPOOZoxY4ZWrFihn/zkJzrwwAN19NFH66yzztKiRYuy/v0XXnhBY8aM0fHHH98gECNJt99+ux555BHNnDlTTz/9tDZv3qz+/furSZMm+uCDD1ILPztp06ZN+sUvfqFnn31Wv/vd77TLLrvYXvjWyuzZs3XrrbfqT3/6k+bNm6dnnnlGGzZs0IknnqhDDjlEb731lm6//fYGPzdt2jT98pe/VFlZWYM1n6ZNm6bzzz8/9W+nVFRUqFmzZnr22Wdt/8xFF12kmTNn6o477tDgwYP17rvvap999tEZZ5yhH374QcOHD1dNTY3t33fnnXfqlFNO0a9+9Su99957evXVV9W6dWudeeaZmj59umW2gpNt0mmXXnqpZs6cqQceeEAnnXSSPvroI+233346/fTT9fzzz+uUU06xvXD0Nddco759++ryyy9Xr169VFlZqbZt2+rMM89Uy5YtddlllzmyjdOmTdOZZ56pSZMmacqUKdq0aZO+/vpr/fOf/8zr93322Wc677zz9Mgjj+iTTz7R1KlTtXDhQjVp0kT77ruv+vbtq1WrVjm2OHh9ubaP5cuXa+LEifq///f/6oMPPtDLL7+s3XffXSeddJKmT5+eethALpw+T+obNGiQbr/9ds2ePVsLFy7UypUrtffee2vo0KHasWOHZR9jJVufnHT//fdr0KBB6tChg+655x5t3rw5p/qOGTNGJ5xwgmbMmKF///vfqq6u1lFHHaVjjz1WTz/9tM4444w6n+/UqZMefvhhrV69WmeffXbqnBk1apR+/vOf65JLLtG0adM0adKktH/zsMMO06RJkzR37lzNnz9f3377rdq1a6ehQ4eqadOmltmvgwcP1vbt2/XCCy/ktH0AEBWeP6KPQqFQKN6U5CPTO3XqVOf1bI9al2RatWplxo4da1asWGE2b95sPv74Y3PBBReYTp06GWOMGT9+fIOfadKkibn00kvNzJkzzdq1a83mzZvN119/bf7zn/+Y3/3ud2aPPfawXfdJkyaZTZs2mdatW1u+f95555l58+aZzZs3m2XLlpkHH3zQ7LHHHpbb1q9fP2OMMbFYLO1+qv+4+uSj1fv169dgG5999tnUPigpKUn7O7L9Lknm//yf/2Peeusts27dOrNp0yYzb948c91115lmzZpZ/q7k48SNMeaoo46q895ZZ51ljDFm69atlo+1z1SPTMd14sSJZvPmzaZdu3Y5tb+f/OQn5v777zeLFi0yW7ZsMatWrTLPPfdcg3pLPz56ftiwYWl/X8uWLc2dd95plixZYjZt2mTmz59v/vCHP5guXbo40iaztZN0xzlb3es/Ej5ZDjjgAPPss8+aNWvWmJqaGjNr1ixz0kknmauuusoYY8zQoUNt7+tWrVqZW265xSxcuNBs3rzZrFmzxrz22mtm0KBBtrcjWyktLTU33nij+fLLL83WrVsbbFe+58DBBx9sxo8fbxYtWmQ2b95svv/+e/Pxxx+bBx980PTv399W3fI9Brn2WU2bNjW33XabWbx4sdmyZYv5/PPPzTXXXGMaNWpk+Tcybbcb50n9OnTv3t3ceeedZu7cuWblypVm8+bNpqqqyjz99NOmvLw8p+OfrU9OtpGVK1caY4w56KCDcvr9yXLyySeb2bNnm3Xr1pk1a9aYV1991fTt27fBtjdu3NjMnj3bGGPMqaee2uD37Lvvvmb16tVm9erVda6B9fdRx44dzY033mhmzJhhli1bZjZv3mwWL15spkyZYk444YQGv3f33Xc3GzduNM8991xe20ehUCgRKJ5XgEKhUCiUnEt5ebkxxpgrr7zS87pEubRr185s2LDBjBs3zvO6RKX885//NMYY061bN8/rQqEki50+uUuXLmbHjh1m+vTpntfXrXLZZZcZY4zp06eP53WhUCgUnxbPK0ChUCgUSl7lqaeeMsuWLTO77rqr53WJavnb3/5m1q1bZzp06OB5XcJUSkpKTFlZWYPXjzvuOLNt2zYzb948z+tIodQv2frkv//978YYY84880zP6+pG2WWXXczSpUvN008/7XldKBQKxa+FNaEAAIH1xz/+Ueedd566dOmiTz/91OvqRNKyZct0zjnnaPny5V5XJVSaNm2aWqB8wYIF2r59u3r06KFBgwZp69atuvTSS72uItCAVZ+8zz776Oyzz1bXrl01fPhwffDBB3r66ac9rqk7OnfurLFjx2rChAleVwUAfKtEO6NRAAAA8InS0lKNGTNGxx13nPbee2/ttttu+u677zR9+nTdcsstPPodgdGvXz8lEglt2LBBM2bM0MUXX6yqqiqvqwUA8AhBKAAAAAAAALgu0tPxVq5cqa+//trragAAAAAAAIRGp06d1L59+wavRzoI9fXXX6tXr15eVwMAAAAAACA05s6da/l6aZHrAQAAAAAAgAgiCAUAAAAAAADXEYQCAAAAAACA6whCAQAAAAAAwHUEoQAAAAAAAOA6glAAAAAAAABwHUEoAAAAAAAAuI4gFAAAAAAAAFxHEAoAAAAAAACuIwgFAAAAAAAA1xGEAgAAAAAAgOsIQgEAAAAAAMB1BKEAAAAAAADgOoJQAAAAAAAAcB1BKAAAAAAAALiOIBQAAAAAAABcRxAKAAAAAAAAriMIBQAAAAAAANcRhAIAAAAAAIDrCEIBAAAAAADAdQShAAAAAAAA4DqCUAAAAAAAAHAdQSgAAAAAAAC4jiAUAAAAAAAAXEcQCgAAAAAAAK4jCAUAAAAAAADXEYQCAAAAAACA6whCAQAAAAAAwHUEoQAAAAAAAOA6z4JQsVhMxpg6ZdmyZQ0+s3TpUm3cuFGVlZU66KCD6rzfunVrPfbYY1q7dq3Wrl2rxx57TK1atSrmZgAAAAAAAMAGTzOhFixYoA4dOqTKIYccknpv5MiRuuqqq3T55ZerV69eWrlypV5//XW1aNEi9Zl//etfOuKII3TCCSfohBNO0BFHHKHHH3/ci00BAAAAAABABo29/OPbt2/XihUrLN+78sordcstt2jSpEmSpGHDhmnlypU6++yzNXbsWHXv3l0nnnii+vTpo7fffluSdOGFF2rGjBnq1q2bFi5cWLTtwE6xWKzBa6NHj/agJvAKbQAAAABRxDgYsMfTINR+++2npUuXasuWLXrnnXd03XXXqaqqSl26dNFee+2l1157LfXZzZs3a/r06TrmmGM0duxYlZeXa/369Zo1a1bqMzNnzlRNTY2OOeYYglAeiMfjDV6j440WqzYgRbMdMBCBW2hbAAD4D+NgwD7jRTnhhBPMGWecYQ455BAzYMAAU1lZaZYtW2b22GMPU15ebowxZp999qnzM//4xz/M1KlTjSRz7bXXmi+//LLB7/3yyy/NNddck/bvXnDBBWbu3Llm7ty5pqqqypNtD2ux4nWdKN63gai2A/YDxa1C26JQKBQKxX8lnVgs5nndKBQvyty5cy1f92xNqKlTp+rpp5/Wxx9/rGnTpukXv/iFSktLNWzYMFf/7rhx49SrVy/16tVL3333nat/CwAAAAAQXekypICo8nRh8to2bNigTz75RF27dtXy5cslSWVlZXU+U1ZWlnpv+fLlateuXYPf0759+9RnAPiD1fQhAAAAAEC0+CYI1axZM3Xv3l3Lli1TVVWVli1bpkGDBtV5v2/fvqk1oGbPnq2WLVuqvLw89Zny8nK1aNGizjpRALzHHSAAAAAAgGcLk99+++168cUX9c0336h9+/a6/vrr1bx5cz366KOSpDFjxui6667TggULtHDhQo0aNUo1NTX617/+JUlasGCBXnnlFT300EMaMWKEJOmhhx7Siy++yKLkHiHQgEQioYqKCq+rgZBiQW4AAKLL7+MAxsGAPSXauThU0T3xxBP6+c9/rrZt22rVqlV6++23df3112v+/Pmpz8RiMV144YVq06aN3nnnHV166aX65JNPUu+3bt1a9957r4YMGSJJmjx5si677DJVV1fbqsPcuXPVq1cvZzcMiLCd6yNbKykpKWJNvOf3gVIQWbWvqLUribYFAIgmv48DGAcDdaWLt3gWhPIDglCAs7j4wk1+H3wCAAD3+H0cwDgYqCtdvMWz6XgAooOpmu4gIwZoiPMCAADAv8iEIhMKcEy6O0Dc/XGH3+8IOi1q24v80E4AIJz83r+TCQXUlS7e4pun4wEAAAAAECbMCADqYjoecsZUBwBeYBAHAEB0BXUcwPckoC6m4zEdL2d+T4WFd5iOV1yci0BDnBdAcHBjE2HCOBioi6fjWSAIlR8G+Egn3cU3Ho8zqHQB5yLQEOcFEBycrwgTglBAXTwdD4BnCEK5I6hp6YCbOC8AAF6Ix+OW16BYLMY4GKiFTCgyoXLGXavwcDoNnqeCAOHFtBkATmNMibAhGwr4EdPxLBCEyg8DhvBw+lgShALCi74fgNPoVxA2BKGAHzEdD45hqgOcQFYFADiD/hQA/I++GtiJTCgyoRBhXmZCcfcTCBbOWf/i2CCo+FKOsMmUCUVfjaghEwqAZ8iecwaDdQCAH+V7feIaBgDRQyYUmVCIsGJlQln9Tu4G5Y59Bi/R/vyLYwOvRb0NcpMISWRCAT8iEwpAA05kKFkNvACEDxmNgDsIYASfVf/IMQQAa2RCkQkFFCTTOlBJVnd5GHTnjjtoAKzQnwZbGPr2MGxDIaK+/fhRpkwo+mpETbp4C0EoglBAQfINQiF3DHIBIHzC0LeHYRsKEfXtx49yWZoCCDum4wEAAIC78QAAwDMEoQC4KpFIeF2F0GBNHgBOYP0aOI3rE8A6qYBdTMdjOh5QEKbjAUDuvMxGYuqQv3A8gs/t85nsxWDINCbmnEYUsSaUBYJQQOFqD4zS3Qnlwus/DGgBb3kZeCDo4S/0x8iGczYY0gWh4vE45zQiiSCUBYJQgHNisRhBqABhQAt4iyAUooqgW+44Z/2PcTDQEEEoCwShAOeQghwsDGgBb3l5DhIEgJe4/uSOfeZ/ZEEBDRGEskAQCnAOQahgYUALeItzEFFF288d+8z/0o2DOU6IsnTxFp6OF3DczUQQxGIx2iUAAAAipfZ3NcbCwE5kQgU8E4o7I/CLbE/Jo136C30HoswPN3D8UAfAC1x/ckd/4X88LRpoiOl4FghCAc4hCBUsDGgRZVw7Ae9w/iGMCEIBDTEdD4Cr4vG4KioqVFFR4XVVYAMBJwCAF9I9QQz2cBPJn+LxOG0bsIlMKDKhAMewOHlhGFgCxcG1E0BS0K699F/+FYvFMgaiOE6IGqbjWQhDECpoF06EG0GowjCwBIqDcw1AUtD6g6DVt76wf3dJNxaOx+Oh2k7ADqbjhRSdGfzCalARNWEfWAFhwZQJAPCGVf8bhrFStnFwGLYRcAqZUAHPhAL8goXJC787GfS7mwAABE3Qrr1Bq299Qa9/OoyDgYbIhALgqFwyn8g6AKKNLEEAQFQlEgmvqwD4CplQZEIBebHzKNqkqNz9IRMKsEbbBuBXQeufnA7qF/smQdD2t11kQgENkQmFSOMuPIKAjDEAAIoraNdep8evdtZoYhwNwElkQpEJFQlhveviJTKhGqKdAdY4NwDAn+z0z0724WENaJEJBTREJhTgU2G9GEdR0O6mIpjoM4Do4vxH0IW1vcbjccaBEUN/nD8yociEigQ/34X3c90ysep40118g7A9QFAEsc9goAY4I4jnP/yt2JlQYZYuGyqRSKh///5Frg3cxnmRXbp4C0EoglCR4OdOws91y1W6i29QtwfwozD1GQByw/kPpxGEck6mKXnsr/DhvMiO6XgAAAAAgBSmkAEoNoJQiAQusAAAAEBddqZGM44G4CSm4zEdDx4LUyon0/EA94WpzwCQG85/wL+Yjhct9MfZMR0P8CnuLgHIBX0GEF2c/4B/JRIJVVRUeF0NFAn9cf7IhCITCnBELBbj6XgAioqn7gEA/CJdJlQ8Hvf82sT1El7g6XgWCEIBziEFGUCxkQoPAPALPwehuF7CC+niLaUe1AUAAAAAgNBj2hZQF0EoAAAAAAAAuI6FyQG4irs/AACEA+vKAAAKxZpQrAkFOCLdPHjmmwNwC2tcAMXFOQek5+f1UTl34YV08RYyoQDYku3uZzwet8x6isVi3CUFIsrtrAkyLQEAyI7rJfyETCgyoQBbrO6g1L+gpbvABflOC1MPECbFbs/ceQXChXMaxebHcVi6Ovn56XiAF9LFWwhCEYQCbMmUYpxNkAeoDLgRJsVuz5w/QLhwTqPY/Njm0t2YDePNWKAQ6eItPB0PAAAAAIA8Md0NsI81oQAAAABkxRdtAEChCEIBcEymVGQAABBsrGsDACgUQSgAttQOLmUKNCUSCct/A4gegtIAgKjh2gdkxsLkLEwO5MzuIuVhWIjRj09lAfJFewYABIkfr1uxWCxjoCkM41/ACTwdzwJBKNjlxwugl6IUhAIAAABqyzQWZvwL7EQQygJBKO8FJbjjx8fDeokgFAAAAKKKIBSQHUEoCwShvBeU4E5Q6lksBKEAAAAQVQShgOzSxVtKPagLAAAAAAAAIoan4wFwHE8FAQAAAADURxAKgOP8uK5XJkFZmwywizYNAAgCrldA9LAmFGtCecrptZbcupBxgawr25pQQZsLz5pfCBvaNAAgCIJ6vWJNKCC7dPEWMqHgKaenbVn9PieCRVEOOOWCaXgAAACIKsbCQHYEoeApgjsAAAAAgiQej6cNOMViMb7jABkwHY/peKES1JTeoGE6HuBvtGkAQBAE+XrFlDwgM6bjAQCAQGE9PgCAH1ldnwDYQxAqghjUA3Uxfx9hE5Y27dY6f/A/xipANAT1ehXUejuFPhqFYDpeBKfjBTntNRs6xOII23S8XNHOECVetvdCrlecp8EW5rEKAPe5fQ2I+liYPhp2pIu3EIQiCCWJTgO54cLLOYTo8LK9F/K3OU+DjeMHoBBu9yGMhemjkR1rQgFwVSKRSP2bp4IAALxEJhyAfBTSd0R9il6+6K+jh0woMqEkEblGbrLd/ZHC3aY4hxAlXrb3QgamnKfBVujxi9rx50scUFe+fYDdn4taH1Ofk9sf9X0ZZkzHs0AQ6kec6MgFQSjOIURHUNt7UOuNnQhC5SZq2wtkQxDKXQShYAfT8ZBCqigKwSNp4VdkAgDhwVjFO/SlALKhj0YhyISKYCYU3BGVQZudLCgp3HcwonKsg4Y7ae4IansPar3hjKj1B2QlAHXlew2w0/5jsZhlEIbzJD/0OeHFdDwLBKHgpKh0oASh4FdROQcBZBe1/oAgFOAMO+0/3Vg4GZjihkdu6HPCi+l4QBrcLXcOqbkIM/oKIDi4HgHIRyF9B0Go/NBfRw+ZUGRCRZ5T0feoRPEzZUKFcXsRHG6fg1E5x+E9Ap7IlZNthr4OyCzbrADOF2AnMqEAAKHGnTSEhVVbJgiFTJxsH37sSwnMAkB4kAlFJlTkkQmVGzKhEFVROcfhPdoaUBfnBPyETCjAHjKh0AB3lZzlxzuHbojH45HZVgAAAKC2RCKhiooKr6sBBBaZUBHOhOKu0k7sh9yluwPEfkOY0VegWGhrQF2cE/CTTJlQ8Xicm/rA/0cmFJAGWT3OSWbXcfFFGNFXAAAAAIUhE4pMqDq4qwQ7mAsPAO5hujxQF2NW+AnjYMAeMqEAn+NLBwBAsu77uUYgyshEBYDwIBMqwplQDGj9JSh3+WKxWNbBoB/rDQBOK+Z1NCjXCAAIu2xjYfpmYKd08RaCUBEOQsFfgvIFI1sKsuTPegOA04rZbwflGgEAUZBpPEzfDOzEdDxIIvsJwE70BQDgPPpWILyszm9ED/184ciEilgmFHdS/SsoxybTnZ9EIqFEIkFHHABBaW+An5EJhfo4TkB42ZkNEI/HGQeHHP28fWRCAXBdRUWF+vfv73U1AADwNe6kA+FDACrY6JeLh0woMqGI3PpEUDq+bHeBkgs1+rHu+BF9AVC4Yp5HQblGRJ3dNkEfDAQPY+Bwo/92HguTWyAItRMnDXJhJxVZol0VW65fUOkLgMIRGEJ9fIkBwosxcLjRfzuP6XiQpIyPEwUQ3C+VVud2pnrTFwRbUNtp2LDPUR99KxBe8Xiccxy0AQeQCRWxTCigUGG/CxTUuxtBrTfyw/EGgo1zGAgmO+NgzuVgol92Xrp4S6kHdQEAAAAAAEDEMB0PQE5IRQYAoDBcR4FgSp67mc7h5JR5pmwHC/1y8RCEgidYzyTc6MQBAEiPMQ8QTKNHj7b8HlMbT8kLJo5X8bAmFGtCeYI5t8EV9rnwQW2bBHajJajtFACAoAv7+qiAU3g6HgDYENQsLj8FnAiIuS+o7RQAAADRRiYUmVCe4C5+cIU9EwqF4/wGEFUE4YHwIxMK9PX2pIu3EIQiCOUJvqQGF0EoZMP5DSCq6P+A8CMIBfp6e5iOB8B1TBECAABAVDEWBrIjCAVP0EEHVyKRUEVFheV7pKECAFBX/WkbXCv9iek1sCsej6f9LkObAbJjOh7T8YCcZEpBJg0VEinKAKKLKevBxbULubBqL4lEQv379/egNig2+gt7mI4HACgKMh0BAEDUpJspAKAuglAAioI0d/9y+thwXOEE+gwEUf0gPEF5IHysrk+IFvr2wvhmOt4111yjm2++Wffdd58uv/zy1OuxWEwjRoxQmzZt9M477+jSSy/Vp59+mnq/devWuueeezRkyBBJ0uTJk3X55Zeruro6699kOp73+JIRPOmmGmRLQSZt1b84NvAjr9sl1yc4wet2DPs4VrCLpSmihfFA/jLFW4zX5Wc/+5n56quvzAcffGDuvffe1OsjR44069atM6eddprp0aOHeeqpp8zSpUtNixYtUp+ZMmWKmTdvnundu7fp3bu3mTdvnpk8ebKtvzt37lzPtz3qxYrXdaLkfszsHDuOtX8Lx4bix+J1u/T671PCUWhHwSkcK4rdkonXdaMU53h7XaeglHTxFs+n4+2+++6aOHGizjvvvAZRxiuvvFK33HKLJk2aJEkaNmyYVq5cqbPPPltjx45V9+7ddeKJJ6pPnz56++23JUkXXnihZsyYoW7dumnhwoVF3x4gTKwi/5meCAIAAH7E9TI4OFZIh+l3gLM8D0KNHTtWzzzzjBKJRJ0TvEuXLtprr7302muvpV7bvHmzpk+frmOOOUZjx45VeXm51q9fr1mzZqU+M3PmTNXU1OiYY46xDEJdcMEFGjFihCSpbdu2Lm4ZEHxWA7KSkhIGagAA2MCUjeDgWLkvaNOakvW1O+5lfAzY42kQ6vzzz9f++++v//mf/2nwXocOHSRJK1asqPP6ihUr1LFjx9RnVq1a1eBnV65cmfr5+saNG6dx48ZJ2jlHEYA17voAAJwStC+fAJxnFaTxcz+Qa1DJz9sC+IlnQahu3brppptu0rHHHqvt27d7VQ0AaWS68OYzJY+7Q/7FsYEf0S7DJWhfPgEAyIYbLPnxLAhVXl6udu3a6ZNPPvmxMo0b6+c//7kuuugi9ejRQ5JUVlamxYsXpz5TVlam5cuXS5KWL1+udu3aNfjd7du3T30G/saXjGDKp3OlQ/Yvjo1/RXlw4/V2cn0CAKTDNSI6st2Yr8/r8UtQeLJSeqtWrUyPHj3qlDlz5piJEyeaHj16GEnm22+/Nddee23qZ5o1a2aqq6vNiBEjjCTTvXt3Y4wx5eXlqc+Ul5cbY4zp1q1b3qu1UyiU9E/+8LpeFEqUCucgJSyFtkyhUILWD2Tidd0o/ii0jczFd0/Hq66uVnV1dZ3XNmzYoNWrV6eyo8aMGaPrrrtOCxYs0MKFCzVq1CjV1NToX//6lyRpwYIFeuWVV/TQQw+lFht/6KGH9OKLL/JkPAAAAAAAAB/x/Ol4mdx2223adddd9fe//11t2rTRO++8o8GDB6umpib1mbPPPlv33nuvXn31VUnS5MmTddlll3lVZSDQWIwcAAAAbgjaFLZ81kAFkF2JdqZERdLcuXPVq1cvr6sB+MbODNLM4vE4c52BIrE6J0tKSjyoCVCYKK9vBkSVX877QuqRbmzMtRgS47Rs0sVbCEIRhAJS7AShJDpXoFgY3AAAgsrNa1gugaVC6kEQCpn4JdDqVwShLBCEAuoiCAX4C4MbAEBQuRmEyuV3uxGEYmYAkB1BKAsEoYC6CEIBAOB/BKgRBEEPQsVisYxrQjEeBn1xZgShLBCEAuqq3ZFy0QUAwJ+YqosgCHoQKtvNWc450BdnRhDKAkEoIL1MF146VwAAvMMXHwQBQSiEHX1xZuniLY09qAsAwCOkDQMAgGLIlFVfTH6pB4CdyIQiEwqwRCZUOHHHBgAaClqAnr4cUVeMc5ZMKGRDX5wZmVAAHMHdJABA2Fhd2/wchAKizuvzk/EwkD+CUABy4vVFHwCAqOMLMOAtxsOQ6IvzxXQ8puMBltKlIMfjcS68AUbaMAA0RN+ITII2XRPOYGkKoDA8Hc8CQSggPS684cRAGgAaIgiFTGgf0cRYGCgMa0IBAAg4AQAAAPAMQSgAAABEGut6AABQHAShAFiKx+MMygEAkUCWKID6GAsD7ij1ugIA/IkBOQAAAKIq3Vg4kUhYrrEJwB4yoQAACAgWlncX+xeAFbJhoildoKmiokIVFRVcH4A88XQ8no4HWIrFYmkHXTwRBPAGT2hyF/sXAJCU6el4EtcHIJt08Ram4wGwxF0/AAAAAICTCEIBAAAAAADAdawJBQAAAADIiHXzADiBIBSAnDBNDwAAIHqsxoAEoQDkiiAUgJww2AC8QxDYXexfAEBSIpFQRUWF19UAQoen4/F0PMBSZWWl5YWXJ4HYQ8o6AAAIk6g9QZSn4wGFSRdvIRMKgCXu/BQmXUYFgSgAAAAAUUUQCgCKJB6PE4QCgIAj0xVRxZTlH7Evwo++3j1Mx2M6HmApXQoyqcf2sP8AIJyiNiUJiKpM0/E458OPvr5wTMcDAAAAAoK78ADgL/X7Zfrk/JAJRSYUYIlMnsKw/wAgnIp1d5y78IC3yISKtmwL00u0g2zIhALgiFgsZjvqH+W7uPF43HK9gNr7JCr7AgAAAAAkMqHIhAIsxGKxjAsu2o36R/0ubu2Ak9X+dGJfRDnQBwBeIBMKiAYyoaKNTKjCpYu3EIQiCAU0kK3TJQiVO7f2RRT3MYE3AF4qVh8Uxf4d8BOCUNFWv69364ZymDEdD6HGl1IgOqwGAZzvAIqlWP0Nj4AH/IlzMxoYW7qHTCgyoUKBu4XOIhPKeWRCOSeK2wwACA9ungYDD5kBCsN0PAsEocKDL6XOIgjlPIJQzoniNgMAwoPrWDAQhAIKw3Q8AEVHuvKP2BcAAADBl8uTogE0RCYUmVChwB2l3GVKBXcqEwrui2JKP+c7chHFcwSAv3EdCwYWJgcKw3Q8CwShwoOLee4y7TOCUPAzggrIBdcHAH5DvxQMBKGAwjAdD6HGVCdnxeNx9il8i4ATAABwWyKRUEVFhdfVAEKHTKgAZ0KRDYBCZLsLx90fAGFAxgEAv2EMHwyMhYHCMB3PQtCDUAysUQiCUACigGslACAfjIWBwqSLt5R6UBcAAAAAAABEDGtCwVWkG/sXaz4B4UJ/a42+DgAAwD+Yjsd0PFcFoY6wli4FOR6P88UW8CH6WwAAnMN0PKAwTMcDAAAAAMAGMmkBd5AJFeBMqCBMveDOfHBx9wcIFvpbAACcZXVtZVYAYA9Px7MQ9CBUEPClKJhisZgqKipUUVFh+T7HEPAf+lsAAJzFtRXIX7p4CwuTw1WksQYTxw0IHs5bAACcYzXrBEDhyIQiEwpoINNUPIk7QAAAAAi3dONhxsGAPWRCAQAAAAEWhPVAASAK6I/zRxAKiLhcU42Z8gOgNi8HYQwAETVW12DaPFA4pt4hV/TH+WM6HtPxEGGxWCznoBIpyABq83LRVr8sGOu3YJjf6gPn+KXNA0Fm1UfmMh7mnINEf2wHT8ezQBAKUZdurns8Hk97MaZzBVAbQSj/1CPJb/WBczi2QOGyrX2aSTweJ6gPSfTHdqSLt5R6UBcAAcVUPAAAAEQVASigcKwJBWQQ5ikNmea+J4NN9YNOYdl2AACCiJtBQPFwviET2kf+mI7HdDxkEOY0SzupyGHZVgDuYTqef+qR5Lf6AICf2J2OR78JFCZdvIVMKABpxWIxsp8AZOTlnUDuQgIAAAQLmVBkQiGDMN9N5i4QADijsrKywWv9+/f3oCY7hXkqOQAUqn4fycN4AHfwdDwLBKGQDUGo8GwvALglzNcKAAi7dGNi+nGgMDwdDwAAAACAWhKJhNdVACKFNaGADMK83kg8Hg/19gEIBj9OHfNjnQAA7qioqLB8nbVRAXcwHY/peIiwdOnHtYNTXHwBuMmPU9lyrZMftwEAYE+mJSroy4H88XQ8ALYReAIAAAAAOI0gFIAGklNRCEYBQHZMbUaUMX0VAJALpuMxHQ8Rlu0JeaQgA3CbH6ey+bFOgF9xviDomI4HuIPpeIDH/HinMJFIpF2MEQAAAAAAJxGEAorEarqG10EoAlAAvObHqWx+rBMAAEAYEIQCAACe8ToYb8WPdQIAFA83IwD3EIQCYImLLwAAyIbxAsIsFotxYwJwGAuTszA5isSPC3eyECMAAACijAf1AO5gYXIAOeHOD4Bi8eODGwAAAOA8MqHIhEKR+PFLFnd+APiBHzNFUZcfr2EA4ATGw4A70sVbCEIRhEKEBfWiy5chIFwIQvkfxwhAWPlxPMxYF2FAEMoCQShEXSwWy7igqF+/YPBlCAgXzunCuf2FhWMEIIyyjYUlb/o6+lyEAUEoCwShgGAuTs6FGQgXzunCub0POUbFQwYEUDzZsqDi8bgn5x99bjhFrX8nCGWBIBSQ/uLr1UXXDi7MQLhEbVDmBoJQ4cG+dg59C7Lx41Q8iX4grKJ2XAlCWSAIBaS/+Pq5Q4xaBw4A2RCECg/2tXPYl8iGIBSKKWrHNV28pbEHdQEAAECAZFszBUBxkN0FIOgIQgERl0gkVFFR4XU1csKXIQAoLr7kAv5gNQbi/AwfxroIM4JQQMQFLQAlMdgCgPr4wgIA9tTOJkskEpL8Nx5mrIswIwgFAAAQcHxhCQ8CioC7OMfgFdreTgShAAAAAJ8goOgcvvAB8BP6950IQgERZrW4JYCGWAgWAIInjP00gTUAQVciKfNzKUMs3SMDgajI9FjaMD8uFMhV1B6pCwBAWGUa/9bHtR7IX7p4C5lQAAAAWWTLhiNbDgAAIDsyociEQoSRCQXYQyYUsrUB2ggABEPtmwbZpjfSjwP5SxdvIQhFEAoRRhAqWMi08A4BBhCEAoDwyTY1j34cyB/T8QAg4Kzu1hGEAgAAcB6LwAPuIAgFRFg8HucC6xKylnYKy37gPIEfheX8AgC/qt3P0r8CzmA6HtPxEFBOfPmIxWJpv1yTflwYN6bm2P2dfvpiyhQlhIUfFybn/AKAwmQaC9dH/wrkhjWhLBCEQpA58eWDNaHc42UQyk9fTP1UFyBsOL8AoHDZ1oVKon8FcsOaUEAR+SkTBXACbdp97GMAAIqP5SmA4iITikwouKAYd6fJhPI3N9qA3SCFl1lYxahLWLGvkCvaDAAUzu6UPPpXIDdMx7NAECo97sgXhiAUvPxymO/fznTeE4RyH/sKuaLNAEDhmI4HuIPpeMgJj4KPNlKSCxfEfejGeR/E/QAEBecXABQH/S3gHIJQqMMqEwL+5MTFMN0ceAKOhfNyHzo5UCq0T6AtAe7h/CJzG0Bx0K8Ujv4aSUzHYzpeHUzPckaQOlmrYx6Px31bX7gn0/lPsNJ9Qeo3AL9gSiKAQqUb/9Qe+3A9Lhz9dfSwJpQFglANEYSKnnTHnOMdPZz/AIKGLzUACsVYuDjor6MnXbyl1IO6AAAAAADgWyxTAriDNaGQFQvxAdGQPNc55wEAQNSxPAXgDqbjMR2vDtIko4cUZNRHPwAgKOivABQqFoulvQFHf+Ic+uvoSRdvIRMKdZABET2JREIVFRVeVwM+Qj8AICjor4C6eMhF7kaPHk1fUgTsYySRCUUmFCKOTCgAAIBwINskP4yHAeeRCQUAACAyBeAN2h3gT+kWICdzB7mgj7ePTCgyoRBx3PkBEDVkCsALtDsUA+0sd4yF4QTOvYbSxVtKPagLAAAAAAAAIsaz6XiXXHKJLrzwQnXu3FmS9Mknn+ivf/2rpkyZkvpMLBbTiBEj1KZNG73zzju69NJL9emnn6beb926te655x4NGTJEkjR58mRdfvnlqq6uLuq2AEFF+jEQHqSBI4po9wAABItn0/GGDBmirVu36vPPP1dpaamGDRumkSNH6sgjj9THH3+skSNHatSoUTr33HP12Wef6YYbbtCxxx6rAw44QDU1NZKkKVOmaN9999X5558vSXr44Yf11VdfpYJS2TAdD1FH+jEQHqSB28e+Co8gHcsg1RXBRWA2d+nGw/F4nH0H2+jjG0oXb/HVmlDff/+9rr32Wo0dO1bffvut7rvvPt10002SpF122UUrV67UH//4R40dO1bdu3fX/Pnz1adPH82aNUuS1KdPH82YMUMHHHCAFi5cmPXvEYRClFgNStJlPEW9wwSCiMGPfeyr8AjSsQxSXYEwShegSxeEkjhHYR99fEO+fjpeaWmpzjjjDLVo0UKzZs1Sly5dtNdee+m1115LfWbz5s2aPn26jjnmGI0dO1bl5eVav359KgAlSTNnzlRNTY2OOeYYW0EoICpisRhT7ADg/6M/hBdod4C3rM5BMp3gFPp4+zwNQh188MGaPXu2dtllF9XU1OjUU0/VvHnzVF5eLklasWJFnc+vWLFCHTt2lCR16NBBq1atavA7V65cqQ4dOqT9mxdccIFGjBghSWrbtq1TmwL4WqGdIqndAPLlx/7D67+PaKLdAf4Uj8cJIKBg9PH2eRqE+uyzz9SzZ0+1atVKv/rVr/Too4+qoqLC1b85btw4jRs3TtLO9DAA2XHnCEC+6D8AAH42evRoglBAEXkahNq2bZu+/PJLSdJ7772nXr166fe//71uvPFGSVJZWZkWL16c+nxZWZmWL18uSVq+fLnatWvX4He2b98+9RkAmSUSCdcDvwCKgwE0ooh2D8AJZEMBxeOLNaGSSktL1axZM1VVVWnZsmUaNGiQ3n33XUlSs2bN1LdvX1199dWSpNmzZ6tly5YqLy/X7NmzJUnl5eWpdaUAZFc7AOXGhdeP03CAsOLcQhTR7gE4gb4EKB7Pno5388036+WXX9bixYvVsmVLnX322frTn/6kk08+WVOnTtXIkSN13XXXafjw4Vq4cKFGjRqln//85zrggANUU1MjSZoyZYr23nvv1BpPY8eO1aJFizRkyBBbdeDpeIiKTE/9SMr09IZ8n/YQpadEEHADrEWpHwAA+FO6h/RwPQLckyneYrwo48ePN4sWLTKbN282K1asMK+//roZPHhwnc/EYjHz7bffmk2bNplEImF69OhR5/3WrVubxx9/3FRXV5vq6mrz+OOPm1atWtmuw9y5cz3Zdgql2MWOXH8+37/r9b4o5j72uk4Uih8K5waFQqFQvC75jH8pFEphJV28xbPpeMOHD8/6mdGjR2fMJFi7dq3OOeccJ6sFhI5Vhk6umCMPIF/0HwAAAEjy1ZpQAJyX7QugnS+ITCsDkC/6DwCAl5y4IQvAOZ6tCeUHrAmFKDBZ1oNycy681d8O69z7KG0rAABAUGQaCzNWA9yTLt5CJhRQJFFcuJppOED+othnAAAAINzIhCITCkXiVaaMl5lQUULAAE4juw4AgMKRCQV4g0woAHWQpeQsAk5A7gjeAgAARAtBKCDC+LIHNERgpHisguHsawAAgPBiOh7T8VAkXk2ticViabOeSEEGGvLLNDi/1MNNUdhGoJgIokcbx98a0/EAb6SLtxCEIgiFIvFyYJDu4suFF2jIL4GRKHyZ8Mu+BsKCcyraOP7WCEIB3iAIZYEgFKKCIBRgH4P44mFfA87inIo2jr81glCAN1iYHAAAIEdRyEgDworzFwD8h0woMqEQAWRC5Y6Ba3SF+U6y39q13+pjJcztAeFDe60ravsjattbX7prCuujAt5gOp4FglCICoJQuYv6QC7KghAYyRftOnfsMwQJ7bWuqO2PqG1vfZm2n7EwUHw5T8fbsWNHxvmzVowxatKkSe61QyiE+YsbgOig3wIQVOmyPRANHH8AQZA2E2r8+PENglBHHnmkDj74YH322WeaP3++JOmggw5St27dNG/ePP33v//Veeed53qlnUImlLOifvfFz7j7kzvaM8LI7XYdxpsR9AWIsqCf05y/0ZLpeKebkkd7ANxT8HS8gQMHatKkSfrNb36jF198sc57Q4cO1eOPP65TTz1V06ZNc6TCxUAQyllc6P2LIFTuaM8II7fbdRjPm6B/CQcKEfRzmvM3WrK1V6v34/E4bQJwScFBqNmzZ2vGjBm6+uqrLd+/44471KdPH5WXlxdU0WIiCOWsoA9UwowgVO5ozwgjglAAcsE5jSDJJwhV/zMAnJPzmlD1HXrooXr00UfTvv/FF1/ooosuyq92AFxjdRcQ2bGuAsKIdg0ACKt8r3GxWIxsKKCIbGdCLVmyRHPmzNFpp51m+f7zzz+vXr16qWPHjk7Wz1VkQjmLu2X+k+mRtBLHB4Czgn4dYOoOUFfQz2kgiTExUHwFT8e77bbbdNVVV2n8+PG64447tHDhQklSt27ddPXVV2vYsGG66667NHLkSEcr7qawBaG8Hjx7/ffRULYnXHLBDRbOMfhd0L+wBr3+gNM4JxAWjImB4is4CNW0aVM9+eSTGjp0qIwx+uGHHyRJpaWlKikp0YsvvqgzzzxTW7dudbTibgpbEIqBAurjghsunOPwu6AHSjnHEGb5nJ9BP6eBJMbE8Ksw97MFB6GSBg0apKFDh2q//faTJH311Vd64YUX9PrrrztS0WIiCIUwy5Z2zNNAgico53iYL6YIt6CcY0A+aN+IMoJQ8Ksw982OBaHChCAUwoyLbfgE5RwPSj2B+mi7CDPaN6KMcTH8Ksx9c7p4S6kHdQEAAAAAAEDENE73xvXXXy9jjG688UYZY3T99ddn/WXGGP31r391tIIAAADFkO/jvQEAAGBP2ul4O3bskDFGu+66q7Zt26YdO3Zk/WXGGDVunDau5Tthm47HOiyoLVvacfLLFm0kOIJyjttNKw7K9gBAGIR5ygeQDdPx4Fdh7ptzXhNq3333lSR98803df4/m+TngyBsQSigtmwX26SwdHLwD7sX0zBfdAHAbwj8I8oIQsGvwtw3p4u3pE1bqh9MClJwCcCPmU4VFRWqqKjwtC6IFqY0AYD/uPWlJsxfoADAbVHsL3k6HplQCDnu/MCvyIQCgOCjL0cQMB4Gii/nTCgAAAAAuSM7CAAAa2RCkQmFkOPOD/yKu+cAwipK/VuUthXBxXgYKD4yoQA0kEgkvK4CIoy1owAAgJcSiQTjYaDIyIQiEwohx50fAACKK0rZQVHaVgRXpvEw7RVwB5lQAHyN9TMA5II+Izv2EYqBrFYEQTwep60CPkEmFJlQCLmgZEJxJ9U5fPFEFNBnZMc+8g77HvCfdGNizk3AHY5kQvXu3VuXXXaZunbtqj333LPBCWuM0f77719YTQEABbG600cQCgCKh4wLwF+sbtAB8IbtINQ555yj8ePHa9u2bVq4cKG++eYbN+sFoAgYJAMA4DwC/4C/pBvzsig5UHy2p+MtWLBAO3bs0MCBA7Vs2TKXq1UcTMdDFFRWVqqiosLyPT+lHzN1wTnsS0QB7Tw79hEA7MTC5EDxpYu3lNr9BZ06ddIDDzwQmgAUEBXpAlAAAAAAABST7el4S5YsUbNmzdysC4Ai8ttUPL/VB/AbFpyvK8x9hlPHOsz7CO6hrwEAuMn2dLyrrrpKv/nNb3TUUUfphx9+cLlaxcF0PEQBTwKJHr5AhBNTq6KDYx18Qe6HaX/+EOQ25EdMx4OTOD/tSRdvsR2Eqqio0E033aSmTZvq73//u6qqqrRjx44Gn3vrrbcKrmyxEIRCFBCEAsKBL4bRwbEOviAfwyDXPUw4Ds4iCAUncX7aky7eYns63rRp01L/fvjhhxvs+JKSEhlj1Lix7V8JwEOxWIyIPQAAAACgaGxHjIYPH+5mPQAUWTweJwgFAAAAACga20Goxx57zM16wGXMWwWAYPPLItNcT9znl2MNe6zOiSBzqv3RV8AvMp2j9LfhRR/kX7bXhAqjKK0JxbzV6GIOPAAncT0B6sp0na0taucJfUVh2H/OYSwcTW6eQ5yf9hS8JpQk7bbbbho5cqROPfVU7bfffpKkr776SpMmTdLtt9+ujRs3OlNbAI4I293ZYuCuCYAgiXqf5eb2F/K7ya5AodxsQ1HvN5BZlNpHvttKH18Y25lQbdq00VtvvaUDDzxQq1at0sKFCyVJ3bp1U7t27TR//nz17dtXa9ascbO+jiITimht2GW7O0sbaIhzBciMc8Rfon48/HCnu9A6hPULX9Tbpp9F7dhkGg+zRmpDYWkfdrYjLNvqV+niLbaDUPfee68uvvhiXX755XrooYf0ww8/SJJKS0s1YsQI3Xvvvbr//vv1u9/9ztGKu4kgFCdY2HHRzR3nCpAZ54i/RP14hCEIFdZjGNbtCoOoHRtuyuYmLO3Dj0GosN50SKfgINTXX3+tV155RRdddJHl+w899JBOOOEEderUqaCKFhNBqOB1JlFUSGfFHPjcca4g6Nwe4HCO+EvUjwdBKP8K63aFQdSOTbYgFDdm6wpL+/BjECos+9augteEKisr0/vvv5/2/ffee0/Dhg3Lr3ZwHfNWg8vq2KW7UNpdA4r2AIRXLn2GU78fyCbMd385J6yxX+AFq74mHo9nbI8EocKJPsi/bAehVqxYocMPPzzt+4cffrhWrFjhSKXgPDrWaLDb2XrVHoLwJYQLFpCZ387ZqAtKn+VWcNTN7ff7NdXv2C/+FZR+I1exWMxy22pnmnix7UEY/9YWj8dVUVFR57VYLObrOlthgXF/M3bKfffdZ7Zt22ZGjBhhSkpKUq+XlJSYCy64wGzdutXce++9tn6XX8rcuXM9rwOFkq1YyeWzufy8n7aFQqHkVzjPKH4stEv2DYXidrEz7vVibBzEczyIdQ5Cidp+TRdvsZ0JdcMNN2jQoEG6//77NXr0aH322WeSpAMOOEDt2rXTF198wePgAQCBErS7kwDChzvxgLv4jgr4i+2FySWpZcuW+tOf/qRTTjlFXbp0kSR99dVXev7553Xbbbdp/fr1btXTFVFamBzBZWwsYJe8uNodyHq1AJ6dbQGKKYxtMozbhOCjXSLIuGERDFb9TH3p1odiMeq6gljnIIhaX1LQwuRNmzbVz372My1btkyjRo3SqFGjHK8gAGt2AktOfQZA8HGuB0fUBqNAULn9wAcUD8cNXqL97WQrE6pRo0batGmTrrrqKt17771FqFZxkAmFsLBz58cPdy+4qwK/oU3CS1FqfwTcEGRROleDzK/j4SC2nyDWGf5TUCbUjh07tHz5choeEFB+yYzwSz0AAMVFwAmA29JNtfOaH+uUTRDrjOCwvSbUnXfeqZ/97Gfq27evrShzEJAJhbBId04mLyAM/gFrZGfAS9xpBoKBczU4sn1P5bgBxZMu3mI7CHXggQdq4sSJWr16tcaMGaPPP/9cGzdubPC5xYsXF1zZYiEIhbBId8HlQgsA/sUXWyAYOFeDgyAU4B8FTceTpHnz5skYo5KSElVUVKT9XOPGtn8lAAAAAPgaU5OCwSq7GYD/2I4Y/fnPfw7NNDwgKphqBAD+xRdbIBgYOwUDfSoQDLan44UR0/EQFrkEiElDBgAAQNj49el4QFQVPB0PwZJvBgyZMwAAAADChkwpwB9sZ0L17dvX1i986623CqlPUYU5EyrfBRRZeDGYyISC0whIAwCAIGFRcsBfCn463o4dO2x90Q3SwuQEoZz7OXiLIBScRl8AAACCxIsgFDftgPQKno43fPjwhj/cuLF++tOf6txzz9WiRYv00EMPFVZLAAAAAAACwGqKH0EoIDPbQajHHnss7Xu333673nvvPUcqBPhN0O9wMP8dAAAAUZRIJLyuAoB6HHs63nXXXaezzz5bBx98sBO/riiYjufcz4VZEPZJpvRjv9UVwRCEdg8AAJCUbTpePB53/EYy4yUgPdefjrdmzRrtt99+Tv06FCjf7BeyZoIpHo9H4tgFPSsNQHHQVwAA6nMjCAUgd45kQjVr1kyVlZXq0KFDoAJRYc6EgnOCcocj3d2fZHAqDBfdoByLMOBLPIKMvgIAosfOg3qcvhZwvQHSKzgT6h//+Ifl63vssYfKy8vVrl07XX311fnXEEDerAIGSWEKQqF4aC8AgoxAOhA9yfWfKioqivY3ozAToRjos6PFdibUjh07LF9fvXq1Fi5cqPvuu09PPPGEk3VzHZlQsCMInaIXd368wN0mAHbQV4A2AERPVMbDYUSfHU4FZ0I1atTI0QoBQeG3gBMAAAAAAEHk2MLkAAAAAHIThIxrIAwSiYRisRjnFyzRFxdPzguTd+rUSQMHDlRZWZkmTpyor7/+Wk2aNFGHDh20fPlybdu2zaWqOo/peAiLqKQfc3EAYAd9BYI0tSNIdQX8zM54WOL88iM/9IN+qEPYFDwdT5JuueUW/eEPf1CjRo1kjNHs2bP19ddfa5dddtGnn36qUaNG6e6773as0gg3viS4L2yLJdI+ANhBXwEA0ZLpIT1hxvcpBJHtTKgRI0bogQce0D333KOXXnpJr732mgYOHKjKykpJ0sSJE1VWVqaBAwe6WV9HkQnlrWJHm4PQSedbx3R3foIUvQ/C8QH8gvMFyMzv50jt+lndMArS9RvwA7tZUFK4zq+wZO/4oc8Oy770k0zxFmOnfPDBB+aZZ54xkswee+xhduzYYfr37596/09/+pNZvHixrd/llzJ37lzP6xDlYiVMf6+YdUzH6+0J2/GhUPxSOF8olGCXbLyuH4UStJKLWCzmeX3d3G6v6xTUwr50vqSLt9iejtetWzc98MADad9ftWqV2rZta/fXAQCAHEV1ugEQBWGbQu8mP2RNILji8TjtBQ3QBxeP7SDU5s2b1bx587Tvd+rUSWvXrnWiTgAAwAIDJCC8+FJsn1VfyP4DUAj6kOKxHYSaM2eOTj31VN11110N3mvWrJnOOecczZw509HKAQCAYCJTAQAAAPXZDkLdfvvtevXVV/XYY4/pkUcekSR16NBBgwcP1ujRo7X33nvr7LPPdq2iCB/u6Lsv+SWQL34Aio1MBQBAsSSvORUVFaqoqPC0LsXE9ykEke2n40nSBRdcoLvvvltNmzZVSUlJagX5rVu36uKLL9ajjz7qVj1dwdPxoiUId+Wdfjpekt+f7BCLxRoMGBKJhO+ODxoKwnkVJlbnenIA6rf9blVXp/oi2h2CjjZcGDf7FwRbtjFxEu0FcF+6eEtOQShJKisr0xlnnKHu3burpKREn3/+uf7973/r22+/daquRUMQCmER9CAUg8ng4tgVV5D2t5t1DdJ+AOA8+gBYicViWTOD/HrjBgijdPEW29PxklasWKH77rvPkUoBAAD7SLsHAPpCWLPTLgg+Ad7LOQgFAPAPpnS4w6/71Q91sIsviQDcEqS+EMVhdd1O4noE+EtO0/F69+6tyy67TF27dtWee+7ZIO3VGKP999/f6Tq6hul4CAum40WX1/vO67/vlrBuV1hwfAAAtWUaC3N9ALxR8HS8c845R+PHj9e2bdu0cOFCffPNN45WEIA7uPsDAAAAAPAD20Go//3f/9Vnn32mgQMHatmyZW7WCUCOkoGmoD4SnUBZcHHs4AXaHQDAjkQi4XUVANRjezrepk2bdPXVV4dqUXKm4yFs0j2+PQiBKOQnjNOS/LAeUxj3KwAAYZVpOh5PxAO8kS7eYjsI9fnnn+vBBx/UnXfe6XTdPEMQCmGS6bG0fHkOrzAGS/ywTX6oAwAAsCfb+qgS13Gg2ApeE+rBBx/Ub37zG/3tb3/TDz/84GjlgDDxKosjiNNT/JDxEnRBPO5BwH4FALiJMZCz4vE4124gIGxnQlVUVOimm25S06ZN9fe//11VVVXasWNHg8+99dZbTtfRNWRCwQ1eZVBkS0P248CGbBNYoV0AAMKOa53zgv60aCBsCp6OVz/gVP8kLykpkTFGjRvbTq7yHEEouMGPQahi1SFXDMBghXYBAAg7rnXOC+JYGAizgqfjDR8+3NEKAQAAAABQDLFYzJczA4CosR2Eeuyxx9ysBwAECms5uIc1HQCguLimIcis2q8Vvy5PAUjR6odtT8cLI6bjwQ1Mx7MvyKnoQa57NlG6CAIAwn1N86uw7/NijiXsPBkvKUz7GOESxj6h4Ol4AOwhi8M+9pU/WR0XglCIOoKzAJwU9jEQYwkA6ZAJRSYUAqr+F6JMgxnSj50XxrsVSWHeNiBfnBdwg1+Cm7RvOK2YbYpMKIRBGPvhgp+OF0YEoRBkXHC9FcYLRVKYtw3IF+cF3OCXduWXeiA8/BiESiQS6t+/vyt1AAoVxn44Xbyl1IO6AAAAAABQNBUVFV5XAYBYEwoItbCvN+Al9i0AICy4piHIku3Xi3bslym1CL4o9cNMx2M6HgLKTuoxa0EhHwyogIbCmCYP79GuEFZejCXsjI2dPr84h4H0WBPKAkEoBJnd+e9cCIFoIYjoDvZrcATpWPEFFnCOFzdoOYeB9AhCWSAIVTxBGhAGRe19mil9kwshEC0MiBF1QToHGB8BzqmsrJSUfe0nJ/uDIPU3QLERhLJAEKp4snXQDMIKE4vF0gaiinkh5DgC3gvKgJj+Am4JyjkAwFlezBKgvwHS810Q6pprrtFpp52mAw44QFu2bNHbb7+ta6+9Vp988kmdz8ViMY0YMUJt2rTRO++8o0svvVSffvpp6v3WrVvrnnvu0ZAhQyRJkydP1uWXX67q6uqsdSAIVTzZOmg68MKlu/AWcz9yHAHvBeU8DEo9ETy0LaA4/HYzwYsglN/2AeAnmeItxosydepUc+6555oePXqYgw8+2EyaNMksW7bMtGnTJvWZkSNHmnXr1pnTTjvN9OjRwzz11FNm6dKlpkWLFqnPTJkyxcybN8/07t3b9O7d28ybN89MnjzZVh3mzp3rybZHsVjJ5X1Kfvu42PvR679PoVCCcx4GpZ6U4BXaFoVSnOK3c80ur/cbhRKVki7e4pvpeM2bN1d1dbVOOeUUvfTSS5Kkb7/9Vvfdd59uuukmSdIuu+yilStX6o9//KPGjh2r7t27a/78+erTp49mzZolSerTp49mzJihAw44QAsXLsz4N8mEKh5DJpRj0t1xsdqHEplQQNQE5TwMSj0RPLQtoDi8OtdyHQvXR38AFEe6eEtjD+piqWXLlmrUqJHWrFkjSerSpYv22msvvfbaa6nPbN68WdOnT9cxxxyjsWPHqry8XOvXr08FoCRp5syZqqmp0THHHGMZhLrgggs0YsQISVLbtm1d3irAeVZrP5H2CyAp04MKgCjgHADCLdexMH0C4C++CULdfffdev/99zV79mxJUocOHSRJK1asqPO5FStWqGPHjqnPrFq1qsHvWrlyZern6xs3bpzGjRsnaWdkDsVB5+8Mqzs/AFAbQWlEHecAEE3xeJybtUAA+CIIdeedd+rYY4/Vscceqx9++MHr6sAF2Tp/glSZJYNPmfZTugtvMXn99wEEB/0FAMAOuzdhCTYBweB5EOquu+7SWWedpf79+6uqqir1+vLlyyVJZWVlWrx4cer1srKy1HvLly9Xu3btGvzO9u3bpz6DYOCikZmdL2t+2Id+qAOAYKC/AIBgK9bNhFz+DtcWIBg8Wy19zJgxZtmyZaZ79+6W73/77bfm2muvTf1/s2bNTHV1tRkxYoSRZLp3726MMaa8vDz1mfLycmOMMd26dct7tXYKxW8lk1gs5nn9KBQKhUKhUCgUNwpPvKNQglkyxFu8qdB9991nqqurTf/+/U1ZWVmqNG/ePPWZkSNHmrVr15pTTz3V9OjRwzzxxBNm6dKlpkWLFqnPTJkyxXz00Uemd+/epnfv3uajjz4ykydPLnSnUCi+Klx0KRQKhUKhUChRLAShKJRgFt8FoexmdcRiMfPtt9+aTZs2mUQiYXr06FHn/datW5vHH3/cVFdXm+rqavP444+bVq1aFbpTKBRfFS66FAqFQqFQKJQolmyYFUCh+LOki7eU/P9/RNLcuXPVq1cvr6sBZLUz1mQtHo8z/x0AAAChlGkcLEklJSVFqgmAXKSLt5R6UBcADuIJUwAAAAirbGNdu0/PA+APZEKRCYUASF5c012EuQMEAACAsKqsrJQkVVRUWL7PWBjwn3TxFoJQBKEQIOnSkbnwAgAAIKyYkgcET7p4S2MP6gIgR6QZAwAAIIoYBwPhQiYUmVAIAO7+AAAAIIqyjYMlxsKAH5EJBQAFsLoLx1MJAQBwDtdaAAg/MqHIhEIAkAnlPatjwH4HAMA5XGthJds4OJFIKJFIELAEfIZMKCCksj22FgBQODI0AMCfKioqVFFRQZ8MBASZUGRCIQAy3QHiDmFxcHcWiDb6AMB9nGewYmdNKIm2AvgNmVAAgEgjkwUAAADwFkEoALCBaY/BZ3UMCUIBgH9wrYWVZLvI1j7q32ziGg/4E9PxmI6HAGA6HlA4pnmgELQfAPCW3Wl5SfTRgLeYjgcAAIBIYjougGzoJ8KB4+h/ZEKRCYUAIBMKfhLUizuZLOHhRRsMarvHTpz/QDDV7ntzna6Z/Lzdvpp+Ihw4jv6RLt5CEIogFAKAIBT8JKgX96DWGw1xLJEr2oy7CNLCLXam4MXj8YwBKrvnOv1EOHAc/YMglAWCUAgKglDwk6Be3PmSFB5BbYPwDm3GXexfuMVOEKqkpMSRsTLtOBw4jv5BEMoCQSgERaYLazwe54s0ioqLO7xGG0SuaDPuYv/CLXYzoaz+nUQQKlo4jv7BwuRASBGEAgAgs1zXkgEQHPF4PBVkKORcp58IB46j/5EJRSYUAiDbXSCi+ygm7jDBa7RBwF84J+EWO5lQ0o/tjbYI+AeZUECAZVtwESgm2iK8RhsEgGhI9vfZ+v1YLKbRo0dzfQACgEwoMqEQECxODgAA/IgHP8BtdhcoB+AfZELBdQxA3EU2FAAA8CPGewAAu8iEIhPKMczBdl+6u0DsZwAAAIQVmVBA8KSLt5R6UBcAeSITCgAAAFGTnBGQaSwci8UsZ2YA8BcyociEcgyZUO6LxWKWF1/2MwAAAKKAp0YDwUAmFBACZEIBAAAAAIKKhcmBgCC9OBhYoB8AAMB5Xo2FGdsBzmI6HtPxHEMH7a5MqcekHfsH01IBAACcZ2dxcsn5cRdjOyA/6eItZEIBAAAAIcFNQURd8hyg3cML9MHZkQlFJpRjuEvgrnR3fxKJhPr371/k2iAdL84DLnYAgCTGYwgru5lQSU61e84p5IL28qN08RaCUAShHMMJ5y6m4wWDF+cB5x4AIIlrAsKKIBSCgPbyI6bjIdDI9EBQ8ARDAACA8GBsBziLTCgyoRzjZtSXiDKZUEiP8wMAkMQ1AWHlVSYUkAv64B+RCQUAABARZBADiIp4PE62EhAgBKHgGDp/BJlTX9j44ocoot37j9U1mWMSDYzHEDX0bfAT+uDsmI7HdLxAIK0xfQpyPB7n4usAq/1b+yJidx/zdDxEEX20/3BMgs/Lvp3rCvwo3ViYvs159AHuiNp+5el4FghCBQeDaS68bsu2zoDd/UxbRRRFud37dUAZ5WMSFl4eQ9oP/IixcPHQB7gjavuVNaEQaKQ1AgD8iGlvAOCtWCxGvwsECJlQZEIhIKwi54lEQolEgguvA8iEAvIX5Xbv1233a4ZWfUGppxfIhALq4knRxUMf4I6o7VcyoYAQqqioUEVFBQN2B9TOZigk846sPUQR7R75IpMMAIBoIROKTCgEBHd/iidqdykA5M+v/YVf61VfUOrpBTKhgLoYCxcPfYA7orZfyYSC60ipR1iQ1eEe+gkAsMfLaxHXQSDa6APcwX7diUwoMqEcE7XIbrHFYrG0HRf7GUFRaD9BEAt+49c2GZRrclDqCcA7yX420xd4+g3n+fX6huBIF28hCEUQyjEMJN3Ho2kRdIX2E/QzgD1BOVeCUk8A3sn28BiJfsMN9M8/IiCXH6bjAQFn1fkBABBkTE0AduJLbv7oR+A2HqLhLDKhyIRyDNFyd7EYI8KATCigOPhCCwQL17f0smVCJQME9HHOok3+iH2RHzKh4DruQngjkUh4XQW4LExfJukngOIIah8BALkiCAUEC5lQZEIhIMiEii7uvvyIfQEACCOub+nZWRNKYn85jTb5I/ZFfsiEAgAEHplUAABES+1rP+OA4mFfwy1kQpEJBZ9JN/WKTKjo4u4LAADhxrXe3vIDjIfhhTAtjVFM6eItBKEIQsFHYrGY5V2HkpKStO8l30d4MTAFACDcov4lN9MYuDaCUEBwEISyQBAKfpPuwpq8qGZ7H+FEEAoAABSLFwExu2PcdJ+Lx+ORCtoBQcCaUEBIMV87/Nw6xlG/6woAABqyGnf4ZXwQj8d9XT8A2ZEJRSYUfCTbXSCCBnASGVYAAIRfruNHL8YHuWQ4MR4GgoHpeBYIQsFvmG6HYiIIBQBA+OV6vfdTEKoYfxuAO9LFW0o9qAuAHFnd8QEAAAAAIEgIQgE+km7tH9Z9AgAAQFgx1gWig+l4TMeDzzAlD8XCdDwAAArn9zWKcr3ee7U9jIGBcGFNKAsEoeBHXIBRLH4fNAMAEAR+v6nj9/olMQYGwiVdvKWxB3UBkIdYLEaAAI6iPQEAEH5BmOrG+qdAdJAJRSYUfCJ58c00UOBOEJAfsr4AAJkUcp0ISqaRn6+FPB0PCB+m41kgCAU/yXTxTeIiDOQnKF8QAADeKOQ6EZRrjJ/rSRAKCJ908RaejgcAAAAAAADXsSYUIH+nJwNAMdEfAkBugrDmkh30/wCKgel4TMcLlXwvnn5IT2Y6HuAeP5zjQcG+AhBFUej7sm2jl/sg0zg4Ho8TDAMCiDWhLBCECp98L55+GHhku/hK3I0C8uWHczwo2FcAoigKfZ+fg1CxWIyH8wAhky7ewnQ8wCeSF16rCzDBJwSVX1L7wzJVAgDgjihcJ/y8jaNHjy5K/fwyLgGijEwoMqFCJciZUEl+qgtQKNpz8HDMACCavO7/i/GEPK+3EYgSno4HAAAAAAAAzzAdD5C/05OlH1OHSRcG4Da/94dAUDDtB0FD/4+ooH/2FtPxmI4XKmHoUIqRigwUC2nvAKKK/g9+5Iexcro6pBsDJxIJJRIJR+rJeQmJdlAsPB3PAkEo+BFBKIQJF3kAUUX/B7+oHfSxynbywxOhS0pKivKEPM5LSLSDYuHpeIDPWd0VAoKO1H4gOPyQIQHAedmuxfXPfa/O+2I8IY9xCeA9MqHIhIJPZMqASorH43whAAC4gjvDzmJ/wi/sjDFrc7udWtUnGRxyOxMKkOifi4VMKCAECEIBABAMZFwA9nG+oJhob94iE4pMKPiE3btUROkBAG7gzjAQTkHIhLKD/ggIFjKhAAAAAAC2pr+5/bezvZbL+wCCgyAUAAAAAIRU7QBORUWFZ/VIslpaIlOQieUogHAhCAX4hJd3pBA8PMUKgNO4/gDhVHt8kDzPawej/H7uM74BwoU1oVgTCj6TaZ48d4KCxc1AEWu3AACAXPl1/JBp/OuH+gHIXbp4C0EoglDwkVgsxqNpQ8TNgZ5fB5FANmTxAYB3rMYP9ceeXvTJ3IQFwocglAWCUPCbbE8LIcgQLAShgIZouwDgjWw3O5O86JMZAwPhky7eUupBXQAAAAAAReT3tZ8ARAMLkwMAAAAAJDFtGoC7CEIBQABxNxMAALjBaoxBEAqAUwhCAQUo5p0igg7B4+YxYzAIAADCIjlmYrwLhB8Lk7MwOQrg9AK7yaCW1QWYBRkBhAHTPADAG3aejJfutWKMQ9MtnM7T8YBg4ul4FghCoVC5BqHsfvni6VEAAABwkt/HoemekMcYGAimdPEWpuOFFHea/Yk59ggL+hgAAILF7nXaiylxVuMKAOFEJlRIM6HIpCmOXPez3c9z/OB3tFEAAOCUdFlQEuMLIKjIhAICgLtAgD+Q6YVsaCMAgoZ+C4AfkAlFJhQKkOvFPNtx4S4QgiLsfUzYtw+Fo40ACBo/91vpxsAsSg4EFwuTWyAIhWIjCIWwCHsfE/btQ+FoIwCCxs/9FouSA+HDdDzAB7xY6BEAAAAIolgsRiYUEDIEoUKKYIc/cRFFWNDHAAAAp8TjccuxBdPxgPAhCBVSdNbhw50g+EnY2yJBNmRDGwEQNPRbAPyANaFCuiYUginTmlAS8+IBAAAQPqyLCoQPa0IBAPLCI50BAG7iOoNc0WaA4CITikwoZFDsC1wsFsuYKs2dIHjBz0/T8RMGxACQH64zyDUTijYD+F+6eAtBKIJQyMCLCxzpyPAbBnr2sJ8AID/0nw1F7cZGuvFvIpFQIpFosO20GcD/CEJZIAiFbAhCAQz07GI/AUB+6D8bito+yXVd1KjtHyCIWBMKCACru15JPNEkOKJ29xIAAESDG2OcTONfAOFDEArwEQJN4WB1HIMchKJdAgDcxHUmONwY4+Rz/GkzQHAxHY/peMig2Km+uaYiw59IEY8mjjsAwCl+vaa4Ua9s418n/gaA4mM6HpAH7rIgSJgG6C36CwB+x3UCALxFP+xxJlTfvn31xz/+UUceeaQ6duyoc889V48++midz8RiMY0YMUJt2rTRO++8o0svvVSffvpp6v3WrVvrnnvu0ZAhQyRJkydP1uWXX67q6uqsfz9KmVA09mAgEyocvLp76de7pgAAf+A6ERx+Hbt7kQkVj8d9se2AE6LUD2eKtxivyoknnmhuvPFGc/rpp5sNGzaYYcOG1Xl/5MiRZt26dea0004zPXr0ME899ZRZunSpadGiReozU6ZMMfPmzTO9e/c2vXv3NvPmzTOTJ0+29ffnzp3r2bYXu1jxuk4Ue8eJYxa84tWxo81QKBQKJVPhOkEptLjRhjKJxWKebzOF4mSJUj+cLt7i6XS8V155Ra+88ookacKECQ3ev/LKK3XLLbdo0qRJkqRhw4Zp5cqVOvvsszV27Fh1795dJ554ovr06aO3335bknThhRdqxowZ6tatmxYuXFi0bUEweXWXKd3fTU7nYVpPsHH8wsmvd6UBAM4JWl9f7Po6NcapXe9EIiFJqqioaPA5P+97APnzPEImyaxfv75OJlSXLl2MMcYcddRRdT730ksvmQkTJhhJZvjw4WbdunWWv+vcc8/NOzIXxhKliGsQ9ku2Oz3cCaLkUzjP2b8UCoWSqdCPhW8fBa2+meod1G2hUHIpUWrnvsyEyqRDhw6SpBUrVtR5fcWKFerYsWPqM6tWrWrwsytXrkz9fH0XXHCBRowYIUlq27atk1UGCsJ8dxSKDCxgp6BlMgDFwnUCALxFPxzBp+ONGzdO48aNk7RzoSwgKAhSIRvaB7CT1QCP8wPgPAAAr9EP+zgItXz5cklSWVmZFi9enHq9rKws9d7y5cvVrl27Bj/bvn371GewUzEirtx5zsxq/wAAAAAAEBW+DUJVVVVp2bJlGjRokN59911JUrNmzdS3b19dffXVkqTZs2erZcuWKi8v1+zZsyVJ5eXlatGihWbNmuVZ3f2oGMEg7jxnlksgMB6Pk6oJAACA0Ml2Y5YxMBBungahmjdvrv3331+SVFpaqn333VeHHXaYVq9ercWLF2vMmDG67rrrtGDBAi1cuFCjRo1STU2N/vWvf0mSFixYoFdeeUUPPfRQap2nhx56SC+++CJPxoMtfr3I1X5SHgB/4JwEgPCjr3dftn3MTWwg3Eq0c4VyT/Tr1y/1SM7aJkyYoOHDh0vaGSm/8MIL1aZNG73zzju69NJL9cknn6Q+27p1a917770aMmSIJGny5Mm67LLLVF1dnfXvz507V7169XJmY6CdC/vXVVJS4kFN/Mlq/9RWf80n9if8iGm3CAL6TwBBk+/1NYj9XaYxMWugAuGRLt7iaRDKawShnBXEi2Ax5RqE4ss+/IjzHEFA/wkgaPK9vub7c172k5nGxIwpgPAgCGWBIJSzGPRnVllZmfp3RUWF5We48MLvCEIBAOC8fK6vsVjMcmqbm8ErJxCEAqKBIJQFglAopmyZUBIXXvgfQSgAAJyXz/U13diSIBQAP0gXbyn1oC4AAAAAgAhi8Xcg2jx9Oh4AILyYogsAAACgNoJQAADbcrl7afVZglBAcBBIBorHqeygIGQZBaGOANxDEAoAYBtfQIHoIJAcDAQLw6HYx8yvgaBYLEb79QH6FbiJhclZmBxFkuzMM130WYwRYcIi5kB+/DL45xx2j5PHmOMUXYUsTO6lbA/r8Xv9oyCK/Ypfrr1hwtPxLBCEghfsPBGEThBhEMUBDOAEv5w7fqlHGDm5bzlO0UUQCm6JYr8SxW12G0EoCwSh4AU7QSg6QYQB7RjIj1/OHb/UI4wIQsEJBKHglij2K1HcZreli7ewJhSQARlJQP78ut4EEBZcowAgOujzERZkQpEJlZOodX5uRMTT3f2Jx+OpfUkkHnBf1PozBIfda4Db1wrOEfeQCQUnBDUTKhaLsUZqHop5rkexX4niNruN6XgWCELlLmonpxvbm+7CW/v3Rm0/A17gPINf+SUIBfc4eewIFkaXVTtKJBJKJBKp//drW8hUd7/W2WvF7POj2K9wTXUeQSgLBKFyF7WT063ttfq9ZEIBxcV5Br+yO/inDQdXFL/gwXnZ1laS/NsnBDWLy0v0+e6iX3YeQSgLBKFyF7XOr5hBqNq/m04QcF/U+jOED20YYcLYJ3dBDUJlmo7nx/r6BX0+goaFyYE8eLWwMoMuAEA2LP6PMLFqz4yHwom+Kz/sN4QFmVBkQuWECLwzSEEGvEd/BgD+QZ+cu6BmQmWqtx/rCyA/ZELBEUTgC2eVbg6g+OjPAABBFo/HuZYBCBwyociEQpFx9wcA7GOdGCAayITKT7ZsKD/uQ8bCQDSQCQX4nJ07WXwZAxA1rBMDAAAQHmRCkQmFIitkPSjuEgKIGvo9IBq40ZafIGZCZXo6Xjwe57gDIZEu3kIQiiAUiqwYQSgGcgDCgiDUTlHr16O2vUC+rPrIRCKR+q9fzxum5IUDfTUyIQhlgSAUvFCMIBRf2gB4xekBKf3ZTlHbD1HbXiBfQQ3mBLXeqIu+GpkQhLJAEApeIAgFIMyc7n/oz3aK2n6I2vYC+QpqMCeo9UZd9NXIhIXJAQCeIV0b+eLx4/A7+jd4KZFIqKKiwutq5MTqnAGcRL/sb2RCkQmFIiskE8puh8pdCbgpnws7bTI6ONbuiNp+DdL2BqmucJYfvugGMaMoiIupw5pf+z+/1itqmI5ngSAUvJDuwuvk00DoeOGmfNoXbTI6ONbuiNp+DdL2BqmucJYfjn3QglCZnoyX5Md6w5ofzgErfq1X1DAdD/A5J4NQTF9BENS/g0yaNJBe1Pr1qG0v4LRs55BTWVy5/p5s9eLcDxaOF/JBJhSZUCiyoN2xSvJDyrnTwrhNxeBUJlSuvwPBUPu8Sq5TknxcuMQ5Vgj6LH/ijnt0eX3s02UV2bmx6VTdc/09TMXzVlSuI16fm9iJ6XgWCEKh2LKlIPu5cwxjZx7GbSqGfPZb/UGP1XnAvg8fzjFnsT/9KSpf6tCQ1+ek1d9PJBLq379/Xj9LECr8vG6zxUK/7A8EoSwQhEKxBfnCG8aLVhi3qRic2G/s+2jgODuL/Qn4i9fnZCEPuyEIFU1et1lEC2tCAQAcwfx/AADCdz1MZo+QMQLATWRCkQmFIgry3Z8w3jmx2iYnF4hH+nToMLYnL/k17Zzj7Cz2J4CkTEs85JsJlcvPZ/o9mX4+yEtThAHXERQT0/EsEIRCsRGE8pdC0thhT7p249egSVD59fz0a72Civ0JIKnQIFLyOlzoGo35XM+D+pCeMOA6gmJiOh7gc35P6fZ7/fIRj8dDuV1BQMApGvx8fgUxEOrn/QkgWJL9XaH9Sj79JuMv77Df4QdkQpEJhSLKlIKcfN3vX4LChjtC7mL/Fgf7OXfsMwBBlimbKJelBbzqC8lGB8KP6XgWCELBC0GekpdJELMKJL6Iui3dulv1BaGt+FkQ27HXfUYQ9xkAJDk1nvSqLyYIBYQfQSgLBKHghbAGoYL6hS6o9Q6KbO09iX1emCC2Y6/r7PXfB4BCBH08SRAKCD/WhAICIhaLkRVSRMyNd5fV/mWf5yfT3Wr2KQBES5DXVYrFYkokEqqoqPC6KgA8QCYUmVAosmyPppWCeReIrALYRVvJT9j2m9fb4/XfB4BCBfUpc0GtN4DckAkFeMwqiwEA4I2gZhA4wev1uADkhnMWQJiQCUUmFIrE7to4UjDvApFVgExqD6CtvvyHra248YUhbOdY2LYnSNj3QLCkO2eDmlEU1HoDyA2ZUABcFeWsgrBxI4Bi1T4SiUSd/4YJTwDMjj4DAAoT5HWhAEQXmVBkQgVG0FOR7WRCJQcSTmxX0PcXvONGlkTU7nq6sQ85p+EUMqFQLPRbzsh0zgbxKXNRGxMAUZUu3kIQiiBUYAR90JwtCBWPxx0dmOWzvxgsQiII5YSg91cIN9onioW25oyoBKESiYT69+9f5NoAcAtBKAsEoYIl6AOZbEEop7cln/0V9H0MZxCEKhznEvyM9olioa05IypBKMnf9QaQG9aEAjyWnGrH3H0AgJe4DgHBwjkLIEzIhCITKjDCcjetWHesyIRCvpxuB7FYTBUVFZKU+q9Tv9uvmNrqTxwXoLgYV7grFoulDVD5eT+TCQVEA9PxLBCECpawDGQIQsHvnP6ibtWuag+aCQKgWOjjgOLinHNPpgCUVLz9nM+YIajBMwC5YToeAo9U5Nywv5AvgkLOIfMGQJQxFnGPX/atVT2yXedGjx7tm/oDKD4yociEQhHU/iLq5zs/fGGGG4q9KL+fkAXgLxwPAEGTbmyW6drq9BOXM8nWr+Zaf/pkIDyYjmeBIBTcZCfwVPt9gj0IGrtBS4JQdYV5e/2O4wEgaNL1W35ZVyld/ZJjBKsxcKb60ycD4UEQygJBKLgp2xfv2rjgIojsfqEnCFVXmLfX7zgeAIImqEGobPUjCAWEH2tCAQBcl7zzWTsjqvZdUNaAgJdofwDgPqtMaQBIIhOKTCi4hEwohF0+d2GjlokSte0FsBNrLMIp6Z4wW1FRoYqKCsufKeZ1xqqt21mGIl39uUYC4UEmFOAz3JFHFEWt3UdtewHslM8TwwC7Ml1bin3dsWrXdoJQuf4MgPAgE4pMKLjEL08tAdxCGwcAa2RBwgmxWCyVLZQu66k+P7SzdOODRCKhRCKRdrFyAOHCwuQWCELBTZWVlb5IkwbckunJNxLtHEB0EYSCE7It7ZBIJOr8V/JHxl22m1QEoYBoYDoeUGR271gVgjUnAABu41oDN9G+GrK7sHdyrNm/f38Xa5O7dIGm5HsAoo1MKDKh4JJiPDqXO63wUrY7tLRFIBy41uSOfWYf+6qhXB5uI/lzf4VhGwAUhkwooIgy3cHiDhAA5IZMCQQN13ogO84TIJrIhCITCi4oRhZUur/DnSQUQywWyzp4pC3CKYX2dQSxCsO1Bm6ifTUUhiwixgkAWJjcAkEouIUgFMIu2wCZp+PBSYX2dfSVhWH/wU20r4bCEISSeIAJEHUEoSwQhIJbCEIh7FgPCsVEEMpb7D+4ifbVkJ0gVO0n4vltYfL60m1P1I8zEHasCQWEEHPpvcP0HgBRwbUGbqJ9NZTcJxUVFWmftlyMpzA7we6T/hAcjIFRKDKhyISCCzLNg+euTzhE/c4t0/FQTIUOeKN+vgIIJrvT8vzcn2XahuRYmfFCsHBNhV1Mx7NAEApuIvU43KJ+AbYzMI7S/oC/Rf18BRBMYQ9CJfm5/miIayrsYjoeAMAxybuXTKNAENBOgfSYWgMAKCYyociEgkvIhAo37gLtVKxF+AEA7uB65l9kQsGP6DNgV7p4S6kHdQFCj0UYAQAAAACoi+l4gAuY+hF+HGMAAOCmeDye8Ql5QZBIJAJdfzTEGBiFYjoe0/HggmxPAmGtBYRBpqdARr2ds8YKgKDwcmoNfWV2QZ/OFvT6A8gfT8ezQBAKbsl2weViizBgPaj0WC/Bn/jCCzTk5XlBX5le8rhkutmT5Nd+LNPNqto45u7j+gcvEISyQBAKbiEIhSggCJUeX6z8ieMC+AvnZHphGEuGYWH1sOBcgxdYmBwAAAAAQoCH4AAIKjKhyISCC8Jw9wrIhkyo9Ljj6E8cl3BheknwcU6mF4a1lMiE8o+wnWv0/8HAdDwLBKHgFoJQiAI7QaioDhLCNtgLC45LuHA8g49jmJ6dAE5yvSW/XlcJQvlH2M61sG1PWKWLtzT2oC4AAA85FRiy8+hoqwVJ/TpYdhKPLwaA7OgrCxOExcmzoQ0A0UMmFJlQcEG2p4EQqYeXnLx7ZPW7EomE+vfv7/jfAgoV1cy8sKJ/QZjV76+yBWv82PYrKysz3qiS/FnvMArb9Y/+PxiYjmeBIBTcEovFMmaI0EnCS24HoWr/PgYJANxC/4Kwqx04SI4pizG2dCpgkWk6XiKRUCKRCHQgBN6h/w8GglAWCELBLawJBT8jCAUgDOhfEHZ211SSnG37Tp1bjIfhFvr/YGBNKAAAAIQGa8kAwZbMuCIbCrmi/w82glCAw6xSmIGwsdvOozBICNs6C0BQcJ75C30hcuX3p/vBv5xoM/RZ3mE6HtPx4DA7qdOki8JLTlx0s7XzeDwemQt5ISnhDIAAhAXTY5wX9ul4hfxuoFD0We5jTSgLBKHgBr6coxBBCUoQbP1RIYMYBkAAwoL+zHl2rrWJRKLOf50YMxCEQhTQZ7mPIJQFglBwA4swohBBuSAShPoRQSgAoD9zQywWy3lauxP7vBhPx6uNdgIv0Ge5jyCUBYJQcANBKBQiKBdEglA/IggFAPRnbsllSp7kr31OEAp+Rp/lvnTxllIP6gIAAAAAAICI4el4gMPi8bgqKipUUVHhdVUAXwjKOlf5isITAOG+sJ8nCK9k202uSVT/3yhMcl8GcVwZj8e5RsK3aJveYToe0/Hggkzpx6R5IpOgpAbnsgB/ULbJC04EHghehAPnCYKKtuus+n26F2tCOSG5HcngWaYgml/qDMBZrAllgSAU3EIQyn+C8kU9SPXMNDCu3c75guIcq/ZhdRzYv8HDeYKgou06K9c1oJKS1wK/jBly2Q6r65hftgNA/ghCWSAIBbcQhPIfBsnOS9fOE4mEEokEmVAuYJHX8OI8QVDRdp2Vb/DGb0GbfINpSbQhIPjSxVtYEwoAkDOrjJyk5JpofhsQA0B9Qck+BTKhzQLZ0d/7B5lQZEJBzndKZEL5D3dqnWXnDmdy/3LRdw6ZUOHFeeINrg2Fo+06K58MIj+2WbvbkW7xcj9uE4KN/r74mI5ngSAUkpzulAhC+Q8XHmflEoSCcwhCAc7i2gC/iVoQqqSkhPMQRUE7Kz6m4wEAEEI8YhgAwqN+n26nj4/FYr7LPkuX4QQAZEKRCQWRCRUFTBdwFplQ3qAdA87izjj8LsgZsMlrVqZgVDweV0VFRer/E4mEJK5tcB79ffGRCQX4RPKCzMW1uNjfCAPaMYDaCEwj6OoHqPr37+9NRYA80Afnh0woMqEg5yPjdu78EHlHkNHGAYRB0L9AcGc//IKcCRWW9a0QDm709/TBmbEwuQWCUEhyaxDKtDyEHW0cALzDF6Dwq6ysrDNdLR0/HneCUAg7+uDMmI4HZBCku55AELAYKQAAhbMTgPL6mhv0jEIAxUUmFJlQcBFZIgi7dG2c9g0A7uMufPgF4UEg6dohmVAIO/rgzNLFW0o9qAsAIASs7nwCAIDi8ToLCgByxXQ8wAMMGBAGtGMAyJ8TU5joh+HnaW/J9kk7RVjRtvPDdDym48FFTFVCmDHdFGHE2iYoFqZxwI5sU9ri8bjnfVS2tlxZWSnJ3vpWnANAePB0PAsEoeA2glAIs0KCUHzRh18RGECx0NZgR5DXhMr0fjpebwsA5/B0PMBHYrEYX7gRWnZSk60+wzkBAEBdta+Xfp36U0i9/LpNANwTmkyoiy++WFdffbX22msvffLJJ7ryyis1Y8aMjD9DJlTxRSn7IRaLZbywcqcHQVdIph8ZAPAr2iaKhbYGO2qPndONK/3ebpi+D0RTqKfjnXnmmfrnP/+pSy65RDNmzNAll1yi4cOH66CDDtLixYvT/hxBqOKL0oArW+pxWLcb0UEQCmFE20Sx0NZgRxCm42VDEAqIplBPx/vDH/6gCRMm6OGHH5YkXXHFFTrhhBN08cUX67rrrvO4dgAQHaTVA4A99JcAgCgKfBCqSZMmOvLII3XHHXfUef21117TMccc0+DzF1xwgUaMGCFJatu2bVHqCABhxLpOCCMCAygW+ksAQBQFPgjVtm1bNW7cWCtWrKjz+ooVKzRw4MAGnx83bpzGjRsnaWd6GAAgP4V8geKLPvyKwAAAAIB7Ah+EAoKEL97ATnzRBwAgP2EYT4ZhGwDkJ/BBqO+++07bt29XWVlZndfLysq0fPlyj2qFdKJ0wWGqEgAAAAoRhvFkGLYBgHNC8XS8t99+Wx9++KEuvPDC1GufffaZnn322YwLk/N0PAAAAAAAAGeF+ul4d911lx5//HHNmTNHM2fO1EUXXaSf/OQnevDBB72uGgAAAAAAABSSINS///1v7bnnnho1apT22msvzZs3TyeddJK++eYbr6sGAAAAAAAAhSQIJUkPPPCAHnjgAa+rAQAAAAAAAAulXlcAAAAAAAAA4UcQCgAAAAAAAK4jCAUAAAAAAADXEYQCAAAAAACA6whCAQAAAAAAwHUEoQAAAAAAAOA6glAAAAAAAABwHUEoAAAAAAAAuI4gFAAAAAAAAFxHEAoAAAAAAACuIwgFAAAAAAAA1xGEAgAAAAAAgOsIQgEAAAAAAMB1BKEAAAAAAADgOoJQAAAAAAAAcB1BKAAAAAAAALiOIBQAAAAAAABcRxAKAAAAAAAAriMIBQAAAAAAANcRhAIAAAAAAIDrCEIBAAAAAADAdQShAAAAAAAA4DqCUAAAAAAAAHAdQSgAAAAAAAC4jiAUAAAAAAAAXEcQCgAAAAAAAK4jCAUAAAAAAADXEYQCAAAAAACA60okGa8r4ZWVK1fq66+/9roaCJC2bdvqu+++87oagKto5wg72jiigHaOKKCdI+yC3MY7deqk9u3bN3g90kEoIFdz585Vr169vK4G4CraOcKONo4ooJ0jCmjnCLswtnGm4wEAAAAAAMB1BKEAAAAAAADgOoJQQA7Gjh3rdRUA19HOEXa0cUQB7RxRQDtH2IWxjbMmFAAAAAAAAFxHJhQAAAAAAABcRxAKAAAAAAAAriMIBQAAAAAAANcRhEJkXXPNNTLG6N577029duqpp2rq1KlauXKljDHq169fg59r2rSp7rnnHq1atUo1NTV64YUX1LFjxzqf2WeffTR58mTV1NRo1apVuvvuu9WkSRPXtwmor347b9y4sW655RZ9+OGHqqmp0bfffquJEydqn332qfNztHMEhVVf/uc//1nz589XTU2NVq9erf/85z8qLy+v83O0cQSJVTuv7cEHH5QxRldddVWd12nnCBKrdj5+/HgZY+qU2bNn1/k52jmCIl1f3rVrVz377LNas2aNNmzYoP/+97/q3r176v2wtXGCUIikn/3sZxoxYoQ+/PDDOq83b95cs2bN0h/+8Ie0PztmzBidfvrp+vWvf62+fftq991310svvaTS0p2nU2lpqV5++WW1bNlSffv21a9//Wv96le/0p133unqNgH1WbXz3XbbTUcccYRuvPFGHXHEERo6dKj22WcfTZ06VY0aNUp9jnaOIEjXl3/22We69NJLdcghh+jYY49VVVWVpk6dqvbt26c+QxtHUKRr50mnn366jj76aC1durTBe7RzBEWmdv7666+rQ4cOqXLSSSfVeZ92jiBI18Y7d+6smTNnqqqqSscdd5wOPvhgjRo1SjU1NanPhLGNGwolSmX33Xc3X3zxhamoqDCVlZXm3nvvbfCZPffc0xhjTL9+/Rr87JYtW8zZZ5+dem3vvfc2O3bsMIMHDzaSzAknnGB27Nhh9t5779RnfvOb35hNmzaZli1ber79lGgUO+08WQ488EBjjDEHH3xw6mdp5xS/l1zaeMuWLY0xJtV+aeOUoJRs7Xzfffc1S5YsMd27dzdVVVXmqquuqvOztHNKEEqmdj5+/Hjz4osvZvxZ2jnF7yVTG584caL55z//mfFnw9bGyYRC5IwdO1bPPPOMEolEzj975JFHqmnTpnrttddSry1ZskTz58/XMcccI0kqLy/X/PnztWTJktRnXn31Ve2yyy468sgjC64/YEcu7Xz33XeXJK1Zs0YS7RzBYLeNN2nSRCNGjFB1dbU++OADSbRxBEemdt6oUSM98cQT+utf/6oFCxY0eJ92jqDI1p8fe+yxWrFihT777DONHTtW7dq1S71HO0cQpGvjJSUl+uUvf6lPP/1Ur7zyilauXKk5c+bozDPPTH0mjG28sdcVAIrp/PPP1/7776//+Z//yevnO3TooO3bt+u7776r8/qKFSvUoUOH1GdWrFhR5/3vvvtO27dvT30GcFMu7bxJkya68847NXny5NRUDto5/M5OGz/55JP15JNParfddtOyZcs0aNAgrVy5UhJtHMGQrZ2PHj1a3333nR588EHL92nnCIJs7Xzq1KmaNGmSqqqq1LlzZ/31r3/VG2+8oSOPPFJbt26lncP3MrXx9u3bq2XLlrruuut0/fXX65prrtFxxx2niRMnqqamRlOmTAllGycIhcjo1q2bbrrpJh177LHavn2719UBXJFLO2/UqJH++c9/qnXr1hoyZEiRaggUxm4br6ysVM+ePdW2bVtdcMEF+ve//63y8nItX768iLUF8pOtnffr10/nnnuuevbsWfzKAQ6x058/9dRTqX/PmzdP//3vf/X111/r5JNP1nPPPVesqgJ5ydbGk2s6vfDCC/rb3/4mSfrwww911FFH6bLLLtOUKVOKWt9iYToeIqO8vFzt2rXTJ598om3btmnbtm2qqKjQJZdcom3btqlp06ZZf8fy5cvVuHFjtW3bts7rZWVlqS82y5cvV1lZWZ3327Ztq8aNG/PlB66z286T0zgOPfRQDRgwQKtXr079Dto5/MxuG9+4caO+/PJLvfPOOzr//PO1bds2nX/++ZJo4/C/bO38+OOP11577aVly5al3u/cubNuvfVWLV68WBLtHP6Xz9h82bJlWrJkibp27SqJdg5/y9bGv//+e23btk2ffvppnZ+bP3++9t13X0nhbeOeL0xFoRSjtGrVyvTo0aNOmTNnjpk4caLp0aNHnc9mW5j817/+deq1jh07Wi4M17Fjx9Rnfv3rX/t2YThKuIqddt64cWPzzDPPmAULFpgOHTo0+B20c4qfSy59ee3yxRdfmL/85S9Goo1T/F+ytfP27ds3eH/JkiXm9ttvN926dTMS7Zzi/5JPf77nnnuaLVu2mHPOOcdItHOKv4udNj5z5kzz2GOP1fm5xx57zLz88stGCm0b97wCFIpnpf7TCdq0aWMOO+ww069fP2OMMb/97W/NYYcdZsrKylKfuf/++83ixYvNgAEDTM+ePc0bb7xh3n//fVNaWmokmdLSUvPRRx+ZadOmmZ49e5oBAwaYJUuWmHvuucfz7aVEs9Ru540aNTLPPfecWbJkiTn88MNNWVlZquyyyy6pn6GdU4JUarfxli1bmr/85S/m6KOPNvvss4854ogjzD/+8Q+zefNmc8ghh6R+hjZOCVrJ9hTI+k/Hk2jnlOCV2u28efPm5vbbbze9e/c2nTp1Mv369TOzZs0yixcvNi1atEj9DO2cEqRSvy8fOnSo2bJli7ngggvMT3/6U3P++eebrVu3mpNOOin1mRC2cc8rQKF4Vup3AsOGDTNWYrFY6jNNmzY199xzj/nuu+/Mhg0bzOTJk+s8DlOS2WeffcyLL75oNmzYYL777jtz9913m6ZNm3q+vZRoltrtvFOnTpZt3Bhjhg0blvoZ2jklSKV2G991113NpEmTzNKlS83mzZvN0qVLzfPPP2+OPvroOj9DG6cEreQThKKdU4JWarfzXXbZxUydOtWsWLHCbNmyxSxatMiMHz++QRumnVOCVKz68mHDhpnPPvvMbNy40Xz44YfmrLPOqvN+2Np4yf//BwAAAAAAAOAaFiYHAAAAAACA6whCAQAAAAAAwHUEoQAAAAAAAOA6glAAAAAAAABwHUEoAAAAAAAAuI4gFAAAAAAAAFxHEAoAAMBCv379ZIzRsGHDvK6KJWNMqrz++uue1WP+/PmpelRVVXlWDwAA4H+Nva4AAACAVw477DCdcsopmjBhgr7++muvq5Oz6dOna+zYsVq2bJlndbj66qvVqlUr/e///q923XVXz+oBAAD8r0SS8boSAAAAXhg2bJgmTJigiooKvfnmm3XeKykpUdOmTbVt2zb98MMPHtUwPWOMJkyYoOHDh3tdFUlSZWWlOnfurC5dunhdFQAA4FNkQgEAAFgwxmjLli1eVwMAACA0WBMKAABEUiwW04QJEyRJiUQita7R+PHjJVmvCVX7tYsvvlgLFizQpk2b9NFHH+nkk0+WJB188MF65ZVXVF1dre+++0533323GjdueN9v//3312OPPaZvv/1WW7ZsUVVVlW677TbttttuBW9bVVWVKisrdeihh+r111/X+vXrtWLFCt1xxx1q1KiRmjVrpttvv11LlizRpk2b9Oabb6p79+51fkezZs0Ui8W0YMECbdiwQWvWrNFHH32k2267reD6AQCAaCITCgAARNKkSZO011576cILL9SNN96o+fPnS5K+/PLLrD976aWXqk2bNnr44Ye1efNmXXHFFXruued0xhlnaNy4cXriiSf0/PPPa/Dgwbriiiu0cuVK3XjjjamfP+KII/TGG29o7dq1euihh7R06VIddthhuuKKK9SnTx/169dP27dvL2j79t57b73++ut66qmn9Mwzz2jw4MG66qqrtH37dvXo0UO77rqrbrnlFrVt21Z//OMf9fzzz+vAAw+UMTtXavj73/+u3/72t3r00Ud11113qXHjxuratauOO+64guoFAACizVAoFAqFQqFEsQwbNswYY0y/fv0avNevXz9jjDHDhg1r8NqSJUvM7rvvnnr9kEMOMcYYs2PHDnPqqafW+T3vvvuu+fbbb+u89sEHH5j58+ebFi1a1Hn9lFNOafA30xVjjBk/frzle1VVVcYYY371q181qMuOHTvM888/X+f1yy+/3BhjzODBg1Ovff/99+bll1+2vS8rKytNVVWV58eUQqFQKBSKfwvT8QAAAHI0YcIErVu3LvX/H3/8saqrq/Xtt9/queeeq/PZGTNmaK+99lLz5s0l7Zyud9hhh+lf//qXmjVrpj333DNVZsyYoZqaGg0ePLjgOi5ZskTPPPNMg7qUlpbq3nvvrfP6W2+9JUnq2rVr6rXq6mr16NFDPXr0KLguAAAAEmtCAQAA5Oyrr75q8NqaNWtUVVVl+bok7bnnnpKkAw88UJL05z//Wd99912dsmrVKrVo0UJlZWUF1zFTXeq/V7+OknTllVeqTZs2mjdvnr744guNGzdOQ4YMUUlJScF1AwAA0cSaUAAAADnasWNHTq9LSgVvkv+94447NHXqVMvPJoNChchUl3Tv1Q4wTZ48WZ07d9ZJJ52kfv36aeDAgTr//PM1ffp0DRw4UNu2bSu4jgAAIFoIQgEAgMhKLsJdTJ9//rmknYGgadOmFf3v52LNmjWaOHGiJk6cKEm65ZZb9Kc//UlDhw5tMNUPAAAgG6bjAQCAyKqpqZEk7bHHHkX7m++//74+/vhjXXTRRerSpUuD9xs1aqQ2bdoUrT5WSktL1apVqwavv//++5KKu78AAEB4kAkFAAAia+7cudqxY4f+93//V23atNGGDRtUVVWlOXPmuPp3zznnHL3xxhv66KOP9Mgjj+iTTz7Rbrvtpv3331+nnXaarr32Wj366KOu1iGTli1batmyZZo8ebLef/99rVy5Ul26dNHFF1+s1atX68UXX/SsbgAAILgIQgEAgMhavHixzjvvPP3pT3/SAw88oKZNm2rChAmuB6E+/PBDHX744br22ms1ZMgQXXTRRVq/fr0WLVqkCRMmeD5Nb+PGjRozZowGDBiggQMHqkWLFqmg1M0336xly5Z5Wj8AABBMJZKKvxgCAAAACmKM0RNPPKHLL79cW7du1fr16z2pR6tWrdS4cWO98MIL6tixo+UUQwAAAIkgFAAAQCDVXlT9P//5jwYNGuRJPebPn6/u3btLkhYtWkQQCgAApMV0PAAAgAAaOHBg6t/ff/+9Z/UYPny4mjdvLknatGmTZ/UAAAD+RyYUAAAAAAAAXFfqdQUAAAAAAAAQfgShAAAAAAAA4DqCUAAAAAAAAHAdQSgAAAAAAAC4jiAUAAAAAAAAXEcQCgAAAAAAAK77f/du4NAfpqDfAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKEAAALaCAYAAADp8kAfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACTKklEQVR4nO3deZgU1dn38d8MmwoIKDAYVMAIorjggmFEwiCLWwIu0deYxxcxirsxMRL1QbtJ4r4El7iAEdQQNSoqKqIGp0UWBeOKgrgMCsimwMCwg+f9g7fbWaq7q7ururbv57rOJXb3zJyqOnXq9F33OVUiyQgAAAAAAABwUanXFQAAAAAAAED4EYQCAAAAAACA6whCAQAAAAAAwHUEoQAAAAAAAOA6glAAAAAAAABwHUEoAAAAAAAAuI4gFAAgsM4991wZY9SrV6+i/+1YLCZjjPr161f0v+0nH3zwgaZPn+51NTLq1KmTjDEaP36863+rqqpKVVVVrv8dtzVu3FjxeFwLFy7U5s2bZYzR0KFDC/qdYdk3SM/LPtkpxhhVVlbm9bNHHHGEjDH67W9/63CtACA8CEIBQEQYY3Iqw4YN87rKGTVv3lw33XSTJk+erLlz53pdnci64YYb1LdvX51++uleVwUOuuqqqxSLxfTtt9/qjjvuUDwe14IFCzL+TGVlpYwxRaoh/IY+WXrvvff03HPP6S9/+YuaN2/udXUAwJcae10BAEBxxOPxBq9deeWVat26tcaMGaO1a9fWee+DDz4oSr3ydcUVV2ivvfbSLbfc4nVVIm3y5Mn69NNPdeONN+rZZ5/1ujqeGzBggNdVcMQvfvELrV+/XoMGDdK2bdu8rg4CICx9cvfu3bVx48a8f/7mm2/WnDlzdMUVV+jmm292sGYAEB6GQqFQKNEsVVVVxhhjOnXq5HldcimlpaXm66+/NgsWLPCsDrFYzBhjTL9+/TzfH16XkSNHGmOMGTBggOd1sSqdOnUyxhgzfvx4z+sSlPLll1+aqqqqnH6msrLSmJ2pUJalqqoq599JCUbxQ5/sp/Lpp5+aRYsWmZKSEs/rQqFQKH4rTMcDADSQnFbTpEkTXX/99VqwYIE2b96cWlMn03pImdbf2XXXXXXNNdfo/fffV01NjdavX69Zs2bprLPOyql+gwYN0r777qt///vfOf392ttWW79+/WSMUSwW02GHHaaXXnpJa9as0YYNG5RIJFReXm67bvvss4/mzZunLVu26H/+539SryfXw9ltt91022236euvv9bmzZv1+eefa+TIkWl/3xlnnKE333xTa9eu1caNG/XRRx/pmmuuUdOmTet8btasWdqyZYt22223Oq8nEgkZY/Twww/Xeb179+4yxujRRx9NvVb7uJ5++ul65513tGHDBn3//fd64okn9JOf/MSyjk8++aQk5bwOSocOHXTfffepqqpKW7Zs0cqVK/Xss8/qiCOOaPDZYcOGpaaJHn/88aqsrNTatWvrHMsWLVrozjvv1OLFi7Vp0ybNnz9fv//971Vamn64k0ubrN1OevXqpZdeeknff/+9jDHq1KmTJOt1j2rXvaKiQpWVlVq3bp2qq6v10ksvqXv37pZ169q1q5555hmtXr1aNTU1mjlzpk466aQ6v8+u3XffXTfddJMWLFigTZs2afXq1Zo6dWqDzK3x48fLGKP99ttPnTt3Tk3PzbSWU/Kcq6iokKQ603qt1tbJ9Rw4+uij9fTTT2vZsmXasmWLvvnmGz344IPaa6+9bG9/vscgl/aR7bhY7Y/a59yvf/1rvf3221q/fn2d/Z3veWJ3O9u3b6/bb79dCxYsUE1NjdasWaMFCxZo/Pjx6tKlS8b9mpSuT27durU2bNigL774Iu3PTp48WcYYHXnkkVn/TpMmTXTppZfq5Zdf1qJFi7R582Z9//33ev3113XCCSc0+PyVV14pY4yeeeaZBu8NGDBA27dv10cffaRddtkl9brVcWrRooVGjRqljz/+WNXV1Vq3bp2++OILPfnkk5bH4cknn1SnTp00aNCgrNsEAFHDdDwAQFrPPvusevXqpVdeeUXPP/+8Vq5cmffvatWqld544w0dccQR+u9//6tHHnlEpaWlOv744/XEE0+oR48euv766239roEDB0qSZsyYkXd9rBx11FEaOXKkZs+erYcfflj77ruvTj/9dE2bNk09e/bUwoULM/78oYceqilTpqhly5Y66aSTNG3atDrvN2nSRK+++qp+8pOf6JVXXtH27dt1yimn6NZbb9Uuu+yiP//5z3U+f+ONN+q6667TqlWr9K9//Us1NTU68cQTdfPNN+v444/X4MGDU1Olpk2bpvLycvXt21evvvqqpJ1foHv37i2p4TSx5P/Xr6MkXXLJJRoyZIgmT56sN998Uz/72c901lln6bDDDlPPnj21devWOp//5ptvtGTJktRxsaNz586aMWOGOnbsqGnTpumJJ57QPvvsozPOOEMnn3yyTj/9dL388ssNfu5Xv/qVTjjhBL3yyit68MEHU8Gfpk2batq0aTr66KP1wQcfaOLEiWrdurWuv/76tIvH59smy8vLde2112rGjBl65JFH1LZt2wb7xMovfvELDR06NFX3gw46SCeffLJ69eqlgw46SN9//33qswcccIBmzZqlPfbYQy+99JI++ugj7bfffnruuec0ZcoUu7s5tZ0zZ85Ujx49NGfOHI0ZM0Zt27bVmWeeqddee00XX3yxxo4dK0l6/vnntWjRIl155ZWSpDFjxkhSg+m6ta1du1bxeFznnnuuOnfuXGfq76JFi+p8NtdzYPjw4Ro7dqy2bNmiyZMna/HixeratavOP/98/fKXv1Tv3r21ePFi2/sil2PgZJ+VzVVXXaVBgwbpxRdfVGVlpVq1aiUp//PE7nbuuuuumjlzpvbff3+99tprevHFF1VSUqJOnTpp6NCheuaZZ2wtJp+uT167dq2efPJJnXfeeRo4cKD+85//1Hl/77331oknnqh3331X//3vf7P+nT322EN33323Zs2apddff12rVq3SXnvtpV/+8pd65ZVXdP755+sf//hH6vNjxozRcccdp9NPP10XX3yxHnjgAUlSWVmZ/vnPf2rz5s0688wztXnz5ox/d+rUqerTp49mzZqlhx9+WNu3b9fee++t/v3766233tJ7771X5/MzZ86UtDM499prr2XdLgCIGs/TsSgUCoXiTUk3HS85rebDDz80e+65Z4OfyzQVLd3Up/HjxxtjjLn66qvrvN6sWTPzyiuvmB07dpjDDjvMVr1nz55tjDFmjz32sP33629b7df69etnkoYNG1bnvREjRhhjjPn73/+ecR8MGDDArF271ixdutQceuihaff1yy+/bHbZZZfU6+3atTNr1qwxa9asMY0bN0693rt3b2OMMV9//bUpKytLvd6oUSMzefJkY4wx1157ber1/v37G2OMue2221KvDR482BhjzKuvvmqMMWa//fZLvTdp0iRjjDF77713g22qrq42Bx98cJ36T5w40RhjzBlnnGG5X5O/78ADD7R1DKdOnWqMMea6666r83p5ebnZtm2b+e6770zz5s1Trw8bNswYY8yOHTvM8ccf3+D3XXvttcYYY5555pk6U2A6d+5svv/+e0faZO12MmLEiLTnVP0pZ8m6b9u2zRx33HF13rvpppss6/Cf//zHGGPMRRddVOf1E044IW1bTVcefPBBY4wxDz74YJ3X999/f7N27VqzefPmBn1APlPn7EzHy+Uc6Nq1q9myZYv5/PPPzU9+8pM6v+u4444z27dvN5MmTbJVt3yOQa7tI/k30h0XY4yprKys81rynKupqTE9e/Z07Dyxu52/+MUvjDHG3HXXXQ3+dpMmTUyLFi1s7d9MffKRRx5pjDHm6aefbvBecvvPP/98W3+nadOmpmPHjg1e33333c3HH39svv/++zptS5LZY489zDfffGM2btxoDj30UFNSUmJef/11Y4wx5557btbjdPDBBxtjjGVbKykpMa1bt7asjzHGvPPOOzmdQxQKhRKR4nkFKBQKheJRyRaEGjJkiOXP5RqE2mOPPcy2bdvMnDlzLH/foYceaowx5tZbb7VV76VLl5otW7ZYvldIEOqtt95q8PnGjRubrVu3mrlz56bdB7/5zW/Mli1bzCeffGL22WefjPv6pz/9aYP3JkyYYIwxpkePHqnXxo4da4wx5oILLmjw+a5du5rt27ebL7/8MvVas2bNzMaNG81///vf1Gu33nqr2bp1ayqglfxdJSUlZvXq1eazzz6z3Ka//OUvDf5mRUWFMcaY22+/3XL77r//fmOMsQwQ1S8dO3Y0xhizaNGiOkGHZHnssceMMcacc845qdeSX67TBR0WLlxotm/fXifQVn+7Cm2TyXby3nvvZTyn0gWhHn/88Qaf79y5c4Mv6HvvvbcxxpiFCxdarinz2muvGWPsBaGaNGliampqzLp160ybNm0avP/nP//ZGGPM9ddfn3U7shW7QSi758Bdd91ljDHmpJNOsvx9kyZNMtu2bbMVKMn1GOTTPgoJQlkFgQo5T+xuZzIIdeONN+Z0rOuXTH2yJDNnzhyzdevWOgH10tJS880335jq6uo6gbR8y+9//3tjjDF9+/Zt8F6fPn3Mtm3bzPz5882NN96Ydh9ZHadkEGrixIk51Wfjxo1m2bJlBW8XhUKhhK0wHQ8AkNacOXMc+T29evVS48aNU+vp1NekSRNJ0oEHHmjr9+25555as2aNI3Wr7d13323w2vbt27VixQq1adPG8md+97vfaejQoZo5c6aGDBmSddrSl19+2eD15HSi2n8juc7IG2+80eDzn3/+uZYsWaL99ttPu+++u9atW6ctW7Zo1qxZ6t+/v/bYYw+tXr1axx13nObOnau3335by5cv14ABAzRu3DgdccQRatOmjZ566inb+8GqjrWtXr1aktS2bdu02590+OGHS5Leeustbd++vcH7b7zxhs455xwdfvjhevzxx+u8Z9UmW7Rooa5du+qbb77RV1991eD9RCLR4LVC2mS+54Xd/dqzZ09J0uzZsxusXybtnPJkd62ZAw44QM2bN9eMGTMsz5k33nhD119/feqYuC2XcyC5Flu/fv3Uq1evBj/Tvn17NW7cWN26dWswHSodu8fA6T4rG6s2Vch5Ync733zzTS1ZskTXXHONjjjiCE2ZMkUzZ87UBx98oB9++MF2/bP1yffff7/Gjx+v8847L/XEuJNOOkn77LOP7r//fm3YsEGSdNhhh+mUU06p87Nr167V3Xffnfr/gw46SFdffbV+/vOfa6+99tKuu+5a5/MdO3Zs8PdnzpypWCyWmuK8cOFCXXTRRba27dNPP9X777+vs88+W506ddILL7ygGTNm6N1338345MjVq1errKzM1t8AgCghCAUASGv58uWO/J4999xT0s4Fho8++ui0n2vRooWt37dp06Y6C8k6JV0Aafv27WrUqJHlez//+c9VWlqqadOmZQxAZfv9kur8jeSaMMuWLbP8mWXLlqlTp05q3bq11q1bJ2nn+k4DBgxQ//79NW3aNB1++OG66aabJO38wppctyXTelDp6mlVx9qSXwQ3bdpk+X5tdrZN2rmocX1WbTL5+1asWGH5+6x+ppA2me95YbVfd+zYIcn62KfbnnSvWylkX7shl3MgeYwyLVou2e830v19q2PgdJ+VTaZ2nc+xs7ud69evV+/evTV69GgNGTIktbj3qlWrdP/99+uvf/2rZQCsvmx98pNPPqk777xTF1xwgW655RYZYzRixAhJ0kMPPZT6XM+ePeusKSbtXFcsGYT62c9+pjfeeEONGzfWtGnTNHnyZK1bt04//PCDevbsqVNOOUXNmjWzrMOkSZP05z//WY0aNdLDDz+cCnxl88MPP+i4447TDTfcoF/96le67bbbJEnr1q3To48+qmuvvdbyd+266662+kMAiBqejgcAyFnyDnnjxg3vZVh9IaqurpYk3XXXXSopKUlbjjvuOFt/f+XKlWrVqpXl389Ut3T1K8Rvf/tbvf3224rH4xo9erRjvze5zzp06GD5fvLJYMnPST9mTQ0cOFD9+/dXo0aNUoGmN954Q+3bt9dhhx2mAQMG6IcffrB8clm+kl/a7Sxen8+2JVllBiU/ly7rwOrvFNImrergpGRQMd325JJdUci+9lqyTrvvvnvGYzR9+nTX/nYu7SNT35MMKKWTqV27feyWLl2q888/X+3bt1ePHj10+eWX6/vvv1csFtMNN9xg63dk6pMlafPmzZowYYK6dOmiwYMHpxYkf/vtt/XRRx+lPvfoo4822Me1n9A3atQo7bbbbho8eLBOOukk/f73v1csFtPo0aP1zjvvpK1fs2bN9MQTT0jamaF0ww03qFu3bra2TdoZ1PvDH/6gfffdV/vvv79++9vfasGCBbr88stTi53XVlJSotatWxf0MA8ACCuCUACAnCWnXeyzzz4N3jvqqKMavDZnzhzt2LFDffv2deTvJ7+0HHDAATnVrWXLljl98bBj7dq1GjRokKZPn64bbrhBt956qyO/9/3335ek1GPva/vpT3+qvffeW1999VWdL6Bz585VdXW1BgwYoOOOO04bN27U7NmzJf2Y9XTSSSepT58++uijj+o8CaxQ3bt3144dO/Txxx9n/Wxy24499ljLzKr+/ftLku0pVjU1Nfr888/VsWNH7bfffg3et9qHTrdJJ33wwQeSdk5HKykpafD+sccea/t3ffbZZ9qwYYMOO+wwy0BIrvs6k2SmTWmpM8PLt99+W5I8OUb5tI9c+8VsnD5P7Pj000913333paZ71p8al06mPjnpgQce0A8//KALL7xQv/3tb9W4ceM6WVB27L///vr+++/15ptvNngv3VMwpZ3BxJ49e+rmm2/WWWedpd12201PPfWUmjZtmtPfl6Qvv/xSjzzyiPr166f169dr6NChDT5zwAEHqLS0NHUuAwB+RBAKAJCz5Polw4cPr/PlaO+997a8c75q1SpNnDhRvXr10qhRoyy/pO63337q3Lmzrb+fXOOnd+/eDd6rqanR/Pnz1adPnzrrtZSWluquu+7SbrvtZutv5KKmpkYnnHCC/vOf/2jkyJGpx9oX4pFHHpG0885/7XWWSktLdccdd6hRo0Z1HkUu7czEmD59urp27aozzjhDM2bM0NatWyXtnNJSVVWl3/3ud2revLnlWlP5atq0qXr27Kn333/fVlbG0qVL9dprr6lLly668sor67x39NFH6+yzz9bq1av13HPP2a7D+PHj1ahRI9166611AjedO3fWFVdc0eDzTrdJJy1evFiVlZXq2rWrLrzwwjrvHX/88bbXg5Kkbdu2aeLEidp99931l7/8pc57++23n6644gpt3bq1wZpC+UgGNffdd9+Cf5ck3Xfffdq6dav+9re/qWvXrg3eb9KkSU4BuVzk0z7effdd7dixQ2effXaddYratGmTmsKVCzfOk/oOOuggtW/fvsHryWy7jRs32vo9mfrkpC+++ELTpk3TL37xC1100UVas2aNnnzyyZzqu2jRIu2555465JBD6rx+3nnnpaYS1nfaaafpkksu0YwZMxSLxfT666/rtttuU8+ePfW3v/0t69/s3LlznWyspDZt2qhZs2aWU+6S+8HJbFMACAvWhAIA5GzOnDl688031a9fP82ZM0dvvPGGysrK9Mtf/lKvvvqq5ZfQyy67TF27dtVf/vIXnXPOOZoxY4ZWrFihn/zkJzrwwAN19NFH66yzztKiRYuy/v0XXnhBY8aM0fHHH98gECNJt99+ux555BHNnDlTTz/9tDZv3qz+/furSZMm+uCDD1ILPztp06ZN+sUvfqFnn31Wv/vd77TLLrvYXvjWyuzZs3XrrbfqT3/6k+bNm6dnnnlGGzZs0IknnqhDDjlEb731lm6//fYGPzdt2jT98pe/VFlZWYM1n6ZNm6bzzz8/9W+nVFRUqFmzZnr22Wdt/8xFF12kmTNn6o477tDgwYP17rvvap999tEZZ5yhH374QcOHD1dNTY3t33fnnXfqlFNO0a9+9Su99957evXVV9W6dWudeeaZmj59umW2gpNt0mmXXnqpZs6cqQceeEAnnXSSPvroI+233346/fTT9fzzz+uUU06xvXD0Nddco759++ryyy9Xr169VFlZqbZt2+rMM89Uy5YtddlllzmyjdOmTdOZZ56pSZMmacqUKdq0aZO+/vpr/fOf/8zr93322Wc677zz9Mgjj+iTTz7R1KlTtXDhQjVp0kT77ruv+vbtq1WrVjm2OHh9ubaP5cuXa+LEifq///f/6oMPPtDLL7+s3XffXSeddJKmT5+eethALpw+T+obNGiQbr/9ds2ePVsLFy7UypUrtffee2vo0KHasWOHZR9jJVufnHT//fdr0KBB6tChg+655x5t3rw5p/qOGTNGJ5xwgmbMmKF///vfqq6u1lFHHaVjjz1WTz/9tM4444w6n+/UqZMefvhhrV69WmeffXbqnBk1apR+/vOf65JLLtG0adM0adKktH/zsMMO06RJkzR37lzNnz9f3377rdq1a6ehQ4eqadOmltmvgwcP1vbt2/XCCy/ktH0AEBWeP6KPQqFQKN6U5CPTO3XqVOf1bI9al2RatWplxo4da1asWGE2b95sPv74Y3PBBReYTp06GWOMGT9+fIOfadKkibn00kvNzJkzzdq1a83mzZvN119/bf7zn/+Y3/3ud2aPPfawXfdJkyaZTZs2mdatW1u+f95555l58+aZzZs3m2XLlpkHH3zQ7LHHHpbb1q9fP2OMMbFYLO1+qv+4+uSj1fv169dgG5999tnUPigpKUn7O7L9Lknm//yf/2Peeusts27dOrNp0yYzb948c91115lmzZpZ/q7k48SNMeaoo46q895ZZ51ljDFm69atlo+1z1SPTMd14sSJZvPmzaZdu3Y5tb+f/OQn5v777zeLFi0yW7ZsMatWrTLPPfdcg3pLPz56ftiwYWl/X8uWLc2dd95plixZYjZt2mTmz59v/vCHP5guXbo40iaztZN0xzlb3es/Ej5ZDjjgAPPss8+aNWvWmJqaGjNr1ixz0kknmauuusoYY8zQoUNt7+tWrVqZW265xSxcuNBs3rzZrFmzxrz22mtm0KBBtrcjWyktLTU33nij+fLLL83WrVsbbFe+58DBBx9sxo8fbxYtWmQ2b95svv/+e/Pxxx+bBx980PTv399W3fI9Brn2WU2bNjW33XabWbx4sdmyZYv5/PPPzTXXXGMaNWpk+Tcybbcb50n9OnTv3t3ceeedZu7cuWblypVm8+bNpqqqyjz99NOmvLw8p+OfrU9OtpGVK1caY4w56KCDcvr9yXLyySeb2bNnm3Xr1pk1a9aYV1991fTt27fBtjdu3NjMnj3bGGPMqaee2uD37Lvvvmb16tVm9erVda6B9fdRx44dzY033mhmzJhhli1bZjZv3mwWL15spkyZYk444YQGv3f33Xc3GzduNM8991xe20ehUCgRKJ5XgEKhUCiUnEt5ebkxxpgrr7zS87pEubRr185s2LDBjBs3zvO6RKX885//NMYY061bN8/rQqEki50+uUuXLmbHjh1m+vTpntfXrXLZZZcZY4zp06eP53WhUCgUnxbPK0ChUCgUSl7lqaeeMsuWLTO77rqr53WJavnb3/5m1q1bZzp06OB5XcJUSkpKTFlZWYPXjzvuOLNt2zYzb948z+tIodQv2frkv//978YYY84880zP6+pG2WWXXczSpUvN008/7XldKBQKxa+FNaEAAIH1xz/+Ueedd566dOmiTz/91OvqRNKyZct0zjnnaPny5V5XJVSaNm2aWqB8wYIF2r59u3r06KFBgwZp69atuvTSS72uItCAVZ+8zz776Oyzz1bXrl01fPhwffDBB3r66ac9rqk7OnfurLFjx2rChAleVwUAfKtEO6NRAAAA8InS0lKNGTNGxx13nPbee2/ttttu+u677zR9+nTdcsstPPodgdGvXz8lEglt2LBBM2bM0MUXX6yqqiqvqwUA8AhBKAAAAAAAALgu0tPxVq5cqa+//trragAAAAAAAIRGp06d1L59+wavRzoI9fXXX6tXr15eVwMAAAAAACA05s6da/l6aZHrAQAAAAAAgAgiCAUAAAAAAADXEYQCAAAAAACA6whCAQAAAAAAwHUEoQAAAAAAAOA6glAAAAAAAABwHUEoAAAAAAAAuI4gFAAAAAAAAFxHEAoAAAAAAACuIwgFAAAAAAAA1xGEAgAAAAAAgOsIQgEAAAAAAMB1BKEAAAAAAADgOoJQAAAAAAAAcB1BKAAAAAAAALiOIBQAAAAAAABcRxAKAAAAAAAAriMIBQAAAAAAANcRhAIAAAAAAIDrCEIBAAAAAADAdQShAAAAAAAA4DqCUAAAAAAAAHAdQSgAAAAAAAC4jiAUAAAAAAAAXEcQCgAAAAAAAK4jCAUAAAAAAADXEYQCAAAAAACA6whCAQAAAAAAwHUEoQAAAAAAAOA6z4JQsVhMxpg6ZdmyZQ0+s3TpUm3cuFGVlZU66KCD6rzfunVrPfbYY1q7dq3Wrl2rxx57TK1atSrmZgAAAAAAAMAGTzOhFixYoA4dOqTKIYccknpv5MiRuuqqq3T55ZerV69eWrlypV5//XW1aNEi9Zl//etfOuKII3TCCSfohBNO0BFHHKHHH3/ci00BAAAAAABABo29/OPbt2/XihUrLN+78sordcstt2jSpEmSpGHDhmnlypU6++yzNXbsWHXv3l0nnnii+vTpo7fffluSdOGFF2rGjBnq1q2bFi5cWLTtwE6xWKzBa6NHj/agJvAKbQAAAABRxDgYsMfTINR+++2npUuXasuWLXrnnXd03XXXqaqqSl26dNFee+2l1157LfXZzZs3a/r06TrmmGM0duxYlZeXa/369Zo1a1bqMzNnzlRNTY2OOeYYglAeiMfjDV6j440WqzYgRbMdMBCBW2hbAAD4D+NgwD7jRTnhhBPMGWecYQ455BAzYMAAU1lZaZYtW2b22GMPU15ebowxZp999qnzM//4xz/M1KlTjSRz7bXXmi+//LLB7/3yyy/NNddck/bvXnDBBWbu3Llm7ty5pqqqypNtD2ux4nWdKN63gai2A/YDxa1C26JQKBQKxX8lnVgs5nndKBQvyty5cy1f92xNqKlTp+rpp5/Wxx9/rGnTpukXv/iFSktLNWzYMFf/7rhx49SrVy/16tVL3333nat/CwAAAAAQXekypICo8nRh8to2bNigTz75RF27dtXy5cslSWVlZXU+U1ZWlnpv+fLlateuXYPf0759+9RnAPiD1fQhAAAAAEC0+CYI1axZM3Xv3l3Lli1TVVWVli1bpkGDBtV5v2/fvqk1oGbPnq2WLVuqvLw89Zny8nK1aNGizjpRALzHHSAAAAAAgGcLk99+++168cUX9c0336h9+/a6/vrr1bx5cz366KOSpDFjxui6667TggULtHDhQo0aNUo1NTX617/+JUlasGCBXnnlFT300EMaMWKEJOmhhx7Siy++yKLkHiHQgEQioYqKCq+rgZBiQW4AAKLL7+MAxsGAPSXauThU0T3xxBP6+c9/rrZt22rVqlV6++23df3112v+/Pmpz8RiMV144YVq06aN3nnnHV166aX65JNPUu+3bt1a9957r4YMGSJJmjx5si677DJVV1fbqsPcuXPVq1cvZzcMiLCd6yNbKykpKWJNvOf3gVIQWbWvqLUribYFAIgmv48DGAcDdaWLt3gWhPIDglCAs7j4wk1+H3wCAAD3+H0cwDgYqCtdvMWz6XgAooOpmu4gIwZoiPMCAADAv8iEIhMKcEy6O0Dc/XGH3+8IOi1q24v80E4AIJz83r+TCQXUlS7e4pun4wEAAAAAECbMCADqYjoecsZUBwBeYBAHAEB0BXUcwPckoC6m4zEdL2d+T4WFd5iOV1yci0BDnBdAcHBjE2HCOBioi6fjWSAIlR8G+Egn3cU3Ho8zqHQB5yLQEOcFEBycrwgTglBAXTwdD4BnCEK5I6hp6YCbOC8AAF6Ix+OW16BYLMY4GKiFTCgyoXLGXavwcDoNnqeCAOHFtBkATmNMibAhGwr4EdPxLBCEyg8DhvBw+lgShALCi74fgNPoVxA2BKGAHzEdD45hqgOcQFYFADiD/hQA/I++GtiJTCgyoRBhXmZCcfcTCBbOWf/i2CCo+FKOsMmUCUVfjaghEwqAZ8iecwaDdQCAH+V7feIaBgDRQyYUmVCIsGJlQln9Tu4G5Y59Bi/R/vyLYwOvRb0NcpMISWRCAT8iEwpAA05kKFkNvACEDxmNgDsIYASfVf/IMQQAa2RCkQkFFCTTOlBJVnd5GHTnjjtoAKzQnwZbGPr2MGxDIaK+/fhRpkwo+mpETbp4C0EoglBAQfINQiF3DHIBIHzC0LeHYRsKEfXtx49yWZoCCDum4wEAAIC78QAAwDMEoQC4KpFIeF2F0GBNHgBOYP0aOI3rE8A6qYBdTMdjOh5QEKbjAUDuvMxGYuqQv3A8gs/t85nsxWDINCbmnEYUsSaUBYJQQOFqD4zS3Qnlwus/DGgBb3kZeCDo4S/0x8iGczYY0gWh4vE45zQiiSCUBYJQgHNisRhBqABhQAt4iyAUooqgW+44Z/2PcTDQEEEoCwShAOeQghwsDGgBb3l5DhIEgJe4/uSOfeZ/ZEEBDRGEskAQCnAOQahgYUALeItzEFFF288d+8z/0o2DOU6IsnTxFp6OF3DczUQQxGIx2iUAAAAipfZ3NcbCwE5kQgU8E4o7I/CLbE/Jo136C30HoswPN3D8UAfAC1x/ckd/4X88LRpoiOl4FghCAc4hCBUsDGgRZVw7Ae9w/iGMCEIBDTEdD4Cr4vG4KioqVFFR4XVVYAMBJwCAF9I9QQz2cBPJn+LxOG0bsIlMKDKhAMewOHlhGFgCxcG1E0BS0K699F/+FYvFMgaiOE6IGqbjWQhDECpoF06EG0GowjCwBIqDcw1AUtD6g6DVt76wf3dJNxaOx+Oh2k7ADqbjhRSdGfzCalARNWEfWAFhwZQJAPCGVf8bhrFStnFwGLYRcAqZUAHPhAL8goXJC787GfS7mwAABE3Qrr1Bq299Qa9/OoyDgYbIhALgqFwyn8g6AKKNLEEAQFQlEgmvqwD4CplQZEIBebHzKNqkqNz9IRMKsEbbBuBXQeufnA7qF/smQdD2t11kQgENkQmFSOMuPIKAjDEAAIoraNdep8evdtZoYhwNwElkQpEJFQlhveviJTKhGqKdAdY4NwDAn+z0z0724WENaJEJBTREJhTgU2G9GEdR0O6mIpjoM4Do4vxH0IW1vcbjccaBEUN/nD8yociEigQ/34X3c90ysep40118g7A9QFAEsc9goAY4I4jnP/yt2JlQYZYuGyqRSKh///5Frg3cxnmRXbp4C0EoglCR4OdOws91y1W6i29QtwfwozD1GQByw/kPpxGEck6mKXnsr/DhvMiO6XgAAAAAgBSmkAEoNoJQiAQusAAAAEBddqZGM44G4CSm4zEdDx4LUyon0/EA94WpzwCQG85/wL+Yjhct9MfZMR0P8CnuLgHIBX0GEF2c/4B/JRIJVVRUeF0NFAn9cf7IhCITCnBELBbj6XgAioqn7gEA/CJdJlQ8Hvf82sT1El7g6XgWCEIBziEFGUCxkQoPAPALPwehuF7CC+niLaUe1AUAAAAAgNBj2hZQF0EoAAAAAAAAuI6FyQG4irs/AACEA+vKAAAKxZpQrAkFOCLdPHjmmwNwC2tcAMXFOQek5+f1UTl34YV08RYyoQDYku3uZzwet8x6isVi3CUFIsrtrAkyLQEAyI7rJfyETCgyoQBbrO6g1L+gpbvABflOC1MPECbFbs/ceQXChXMaxebHcVi6Ovn56XiAF9LFWwhCEYQCbMmUYpxNkAeoDLgRJsVuz5w/QLhwTqPY/Njm0t2YDePNWKAQ6eItPB0PAAAAAIA8Md0NsI81oQAAAABkxRdtAEChCEIBcEymVGQAABBsrGsDACgUQSgAttQOLmUKNCUSCct/A4gegtIAgKjh2gdkxsLkLEwO5MzuIuVhWIjRj09lAfJFewYABIkfr1uxWCxjoCkM41/ACTwdzwJBKNjlxwugl6IUhAIAAABqyzQWZvwL7EQQygJBKO8FJbjjx8fDeokgFAAAAKKKIBSQHUEoCwShvBeU4E5Q6lksBKEAAAAQVQShgOzSxVtKPagLAAAAAAAAIoan4wFwHE8FAQAAAADURxAKgOP8uK5XJkFZmwywizYNAAgCrldA9LAmFGtCecrptZbcupBxgawr25pQQZsLz5pfCBvaNAAgCIJ6vWJNKCC7dPEWMqHgKaenbVn9PieCRVEOOOWCaXgAAACIKsbCQHYEoeApgjsAAAAAgiQej6cNOMViMb7jABkwHY/peKES1JTeoGE6HuBvtGkAQBAE+XrFlDwgM6bjAQCAQGE9PgCAH1ldnwDYQxAqghjUA3Uxfx9hE5Y27dY6f/A/xipANAT1ehXUejuFPhqFYDpeBKfjBTntNRs6xOII23S8XNHOECVetvdCrlecp8EW5rEKAPe5fQ2I+liYPhp2pIu3EIQiCCWJTgO54cLLOYTo8LK9F/K3OU+DjeMHoBBu9yGMhemjkR1rQgFwVSKRSP2bp4IAALxEJhyAfBTSd0R9il6+6K+jh0woMqEkEblGbrLd/ZHC3aY4hxAlXrb3QgamnKfBVujxi9rx50scUFe+fYDdn4taH1Ofk9sf9X0ZZkzHs0AQ6kec6MgFQSjOIURHUNt7UOuNnQhC5SZq2wtkQxDKXQShYAfT8ZBCqigKwSNp4VdkAgDhwVjFO/SlALKhj0YhyISKYCYU3BGVQZudLCgp3HcwonKsg4Y7ae4IansPar3hjKj1B2QlAHXlew2w0/5jsZhlEIbzJD/0OeHFdDwLBKHgpKh0oASh4FdROQcBZBe1/oAgFOAMO+0/3Vg4GZjihkdu6HPCi+l4QBrcLXcOqbkIM/oKIDi4HgHIRyF9B0Go/NBfRw+ZUGRCRZ5T0feoRPEzZUKFcXsRHG6fg1E5x+E9Ap7IlZNthr4OyCzbrADOF2AnMqEAAKHGnTSEhVVbJgiFTJxsH37sSwnMAkB4kAlFJlTkkQmVGzKhEFVROcfhPdoaUBfnBPyETCjAHjKh0AB3lZzlxzuHbojH45HZVgAAAKC2RCKhiooKr6sBBBaZUBHOhOKu0k7sh9yluwPEfkOY0VegWGhrQF2cE/CTTJlQ8Xicm/rA/0cmFJAGWT3OSWbXcfFFGNFXAAAAAIUhE4pMqDq4qwQ7mAsPAO5hujxQF2NW+AnjYMAeMqEAn+NLBwBAsu77uUYgyshEBYDwIBMqwplQDGj9JSh3+WKxWNbBoB/rDQBOK+Z1NCjXCAAIu2xjYfpmYKd08RaCUBEOQsFfgvIFI1sKsuTPegOA04rZbwflGgEAUZBpPEzfDOzEdDxIIvsJwE70BQDgPPpWILyszm9ED/184ciEilgmFHdS/SsoxybTnZ9EIqFEIkFHHABBaW+An5EJhfo4TkB42ZkNEI/HGQeHHP28fWRCAXBdRUWF+vfv73U1AADwNe6kA+FDACrY6JeLh0woMqGI3PpEUDq+bHeBkgs1+rHu+BF9AVC4Yp5HQblGRJ3dNkEfDAQPY+Bwo/92HguTWyAItRMnDXJhJxVZol0VW65fUOkLgMIRGEJ9fIkBwosxcLjRfzuP6XiQpIyPEwUQ3C+VVud2pnrTFwRbUNtp2LDPUR99KxBe8Xiccxy0AQeQCRWxTCigUGG/CxTUuxtBrTfyw/EGgo1zGAgmO+NgzuVgol92Xrp4S6kHdQEAAAAAAEDEMB0PQE5IRQYAoDBcR4FgSp67mc7h5JR5pmwHC/1y8RCEgidYzyTc6MQBAEiPMQ8QTKNHj7b8HlMbT8kLJo5X8bAmFGtCeYI5t8EV9rnwQW2bBHajJajtFACAoAv7+qiAU3g6HgDYENQsLj8FnAiIuS+o7RQAAADRRiYUmVCe4C5+cIU9EwqF4/wGEFUE4YHwIxMK9PX2pIu3EIQiCOUJvqQGF0EoZMP5DSCq6P+A8CMIBfp6e5iOB8B1TBECAABAVDEWBrIjCAVP0EEHVyKRUEVFheV7pKECAFBX/WkbXCv9iek1sCsej6f9LkObAbJjOh7T8YCcZEpBJg0VEinKAKKLKevBxbULubBqL4lEQv379/egNig2+gt7mI4HACgKMh0BAEDUpJspAKAuglAAioI0d/9y+thwXOEE+gwEUf0gPEF5IHysrk+IFvr2wvhmOt4111yjm2++Wffdd58uv/zy1OuxWEwjRoxQmzZt9M477+jSSy/Vp59+mnq/devWuueeezRkyBBJ0uTJk3X55Zeruro6699kOp73+JIRPOmmGmRLQSZt1b84NvAjr9sl1yc4wet2DPs4VrCLpSmihfFA/jLFW4zX5Wc/+5n56quvzAcffGDuvffe1OsjR44069atM6eddprp0aOHeeqpp8zSpUtNixYtUp+ZMmWKmTdvnundu7fp3bu3mTdvnpk8ebKtvzt37lzPtz3qxYrXdaLkfszsHDuOtX8Lx4bix+J1u/T671PCUWhHwSkcK4rdkonXdaMU53h7XaeglHTxFs+n4+2+++6aOHGizjvvvAZRxiuvvFK33HKLJk2aJEkaNmyYVq5cqbPPPltjx45V9+7ddeKJJ6pPnz56++23JUkXXnihZsyYoW7dumnhwoVF3x4gTKwi/5meCAIAAH7E9TI4OFZIh+l3gLM8D0KNHTtWzzzzjBKJRJ0TvEuXLtprr7302muvpV7bvHmzpk+frmOOOUZjx45VeXm51q9fr1mzZqU+M3PmTNXU1OiYY46xDEJdcMEFGjFihCSpbdu2Lm4ZEHxWA7KSkhIGagAA2MCUjeDgWLkvaNOakvW1O+5lfAzY42kQ6vzzz9f++++v//mf/2nwXocOHSRJK1asqPP6ihUr1LFjx9RnVq1a1eBnV65cmfr5+saNG6dx48ZJ2jlHEYA17voAAJwStC+fAJxnFaTxcz+Qa1DJz9sC+IlnQahu3brppptu0rHHHqvt27d7VQ0AaWS68OYzJY+7Q/7FsYEf0S7DJWhfPgEAyIYbLPnxLAhVXl6udu3a6ZNPPvmxMo0b6+c//7kuuugi9ejRQ5JUVlamxYsXpz5TVlam5cuXS5KWL1+udu3aNfjd7du3T30G/saXjGDKp3OlQ/Yvjo1/RXlw4/V2cn0CAKTDNSI6st2Yr8/r8UtQeLJSeqtWrUyPHj3qlDlz5piJEyeaHj16GEnm22+/Nddee23qZ5o1a2aqq6vNiBEjjCTTvXt3Y4wx5eXlqc+Ul5cbY4zp1q1b3qu1UyiU9E/+8LpeFEqUCucgJSyFtkyhUILWD2Tidd0o/ii0jczFd0/Hq66uVnV1dZ3XNmzYoNWrV6eyo8aMGaPrrrtOCxYs0MKFCzVq1CjV1NToX//6lyRpwYIFeuWVV/TQQw+lFht/6KGH9OKLL/JkPAAAAAAAAB/x/Ol4mdx2223adddd9fe//11t2rTRO++8o8GDB6umpib1mbPPPlv33nuvXn31VUnS5MmTddlll3lVZSDQWIwcAAAAbgjaFLZ81kAFkF2JdqZERdLcuXPVq1cvr6sB+MbODNLM4vE4c52BIrE6J0tKSjyoCVCYKK9vBkSVX877QuqRbmzMtRgS47Rs0sVbCEIRhAJS7AShJDpXoFgY3AAAgsrNa1gugaVC6kEQCpn4JdDqVwShLBCEAuoiCAX4C4MbAEBQuRmEyuV3uxGEYmYAkB1BKAsEoYC6CEIBAOB/BKgRBEEPQsVisYxrQjEeBn1xZgShLBCEAuqq3ZFy0QUAwJ+YqosgCHoQKtvNWc450BdnRhDKAkEoIL1MF146VwAAvMMXHwQBQSiEHX1xZuniLY09qAsAwCOkDQMAgGLIlFVfTH6pB4CdyIQiEwqwRCZUOHHHBgAaClqAnr4cUVeMc5ZMKGRDX5wZmVAAHMHdJABA2Fhd2/wchAKizuvzk/EwkD+CUABy4vVFHwCAqOMLMOAtxsOQ6IvzxXQ8puMBltKlIMfjcS68AUbaMAA0RN+ITII2XRPOYGkKoDA8Hc8CQSggPS684cRAGgAaIgiFTGgf0cRYGCgMa0IBAAg4AQAAAPAMQSgAAABEGut6AABQHAShAFiKx+MMygEAkUCWKID6GAsD7ij1ugIA/IkBOQAAAKIq3Vg4kUhYrrEJwB4yoQAACAgWlncX+xeAFbJhoildoKmiokIVFRVcH4A88XQ8no4HWIrFYmkHXTwRBPAGT2hyF/sXAJCU6el4EtcHIJt08Ram4wGwxF0/AAAAAICTCEIBAAAAAADAdawJBQAAAADIiHXzADiBIBSAnDBNDwAAIHqsxoAEoQDkiiAUgJww2AC8QxDYXexfAEBSIpFQRUWF19UAQoen4/F0PMBSZWWl5YWXJ4HYQ8o6AAAIk6g9QZSn4wGFSRdvIRMKgCXu/BQmXUYFgSgAAAAAUUUQCgCKJB6PE4QCgIAj0xVRxZTlH7Evwo++3j1Mx2M6HmApXQoyqcf2sP8AIJyiNiUJiKpM0/E458OPvr5wTMcDAAAAAoK78ADgL/X7Zfrk/JAJRSYUYIlMnsKw/wAgnIp1d5y78IC3yISKtmwL00u0g2zIhALgiFgsZjvqH+W7uPF43HK9gNr7JCr7AgAAAAAkMqHIhAIsxGKxjAsu2o36R/0ubu2Ak9X+dGJfRDnQBwBeIBMKiAYyoaKNTKjCpYu3EIQiCAU0kK3TJQiVO7f2RRT3MYE3AF4qVh8Uxf4d8BOCUNFWv69364ZymDEdD6HGl1IgOqwGAZzvAIqlWP0Nj4AH/IlzMxoYW7qHTCgyoUKBu4XOIhPKeWRCOSeK2wwACA9ungYDD5kBCsN0PAsEocKDL6XOIgjlPIJQzoniNgMAwoPrWDAQhAIKw3Q8AEVHuvKP2BcAAADBl8uTogE0RCYUmVChwB2l3GVKBXcqEwrui2JKP+c7chHFcwSAv3EdCwYWJgcKw3Q8CwShwoOLee4y7TOCUPAzggrIBdcHAH5DvxQMBKGAwjAdD6HGVCdnxeNx9il8i4ATAABwWyKRUEVFhdfVAEKHTKgAZ0KRDYBCZLsLx90fAGFAxgEAv2EMHwyMhYHCMB3PQtCDUAysUQiCUACigGslACAfjIWBwqSLt5R6UBcAAAAAAABEDGtCwVWkG/sXaz4B4UJ/a42+DgAAwD+Yjsd0PFcFoY6wli4FOR6P88UW8CH6WwAAnMN0PKAwTMcDAAAAAMAGMmkBd5AJFeBMqCBMveDOfHBx9wcIFvpbAACcZXVtZVYAYA9Px7MQ9CBUEPClKJhisZgqKipUUVFh+T7HEPAf+lsAAJzFtRXIX7p4CwuTw1WksQYTxw0IHs5bAACcYzXrBEDhyIQiEwpoINNUPIk7QAAAAAi3dONhxsGAPWRCAQAAAAEWhPVAASAK6I/zRxAKiLhcU42Z8gOgNi8HYQwAETVW12DaPFA4pt4hV/TH+WM6HtPxEGGxWCznoBIpyABq83LRVr8sGOu3YJjf6gPn+KXNA0Fm1UfmMh7mnINEf2wHT8ezQBAKUZdurns8Hk97MaZzBVAbQSj/1CPJb/WBczi2QOGyrX2aSTweJ6gPSfTHdqSLt5R6UBcAAcVUPAAAAEQVASigcKwJBWQQ5ikNmea+J4NN9YNOYdl2AACCiJtBQPFwviET2kf+mI7HdDxkEOY0SzupyGHZVgDuYTqef+qR5Lf6AICf2J2OR78JFCZdvIVMKABpxWIxsp8AZOTlnUDuQgIAAAQLmVBkQiGDMN9N5i4QADijsrKywWv9+/f3oCY7hXkqOQAUqn4fycN4AHfwdDwLBKGQDUGo8GwvALglzNcKAAi7dGNi+nGgMDwdDwAAAACAWhKJhNdVACKFNaGADMK83kg8Hg/19gEIBj9OHfNjnQAA7qioqLB8nbVRAXcwHY/peIiwdOnHtYNTXHwBuMmPU9lyrZMftwEAYE+mJSroy4H88XQ8ALYReAIAAAAAOI0gFIAGklNRCEYBQHZMbUaUMX0VAJALpuMxHQ8Rlu0JeaQgA3CbH6ey+bFOgF9xviDomI4HuIPpeIDH/HinMJFIpF2MEQAAAAAAJxGEAorEarqG10EoAlAAvObHqWx+rBMAAEAYEIQCAACe8ToYb8WPdQIAFA83IwD3EIQCYImLLwAAyIbxAsIsFotxYwJwGAuTszA5isSPC3eyECMAAACijAf1AO5gYXIAOeHOD4Bi8eODGwAAAOA8MqHIhEKR+PFLFnd+APiBHzNFUZcfr2EA4ATGw4A70sVbCEIRhEKEBfWiy5chIFwIQvkfxwhAWPlxPMxYF2FAEMoCQShEXSwWy7igqF+/YPBlCAgXzunCuf2FhWMEIIyyjYUlb/o6+lyEAUEoCwShgGAuTs6FGQgXzunCub0POUbFQwYEUDzZsqDi8bgn5x99bjhFrX8nCGWBIBSQ/uLr1UXXDi7MQLhEbVDmBoJQ4cG+dg59C7Lx41Q8iX4grKJ2XAlCWSAIBaS/+Pq5Q4xaBw4A2RCECg/2tXPYl8iGIBSKKWrHNV28pbEHdQEAAECAZFszBUBxkN0FIOgIQgERl0gkVFFR4XU1csKXIQAoLr7kAv5gNQbi/AwfxroIM4JQQMQFLQAlMdgCgPr4wgIA9tTOJkskEpL8Nx5mrIswIwgFAAAQcHxhCQ8CioC7OMfgFdreTgShAAAAAJ8goOgcvvAB8BP6950IQgERZrW4JYCGWAgWAIInjP00gTUAQVciKfNzKUMs3SMDgajI9FjaMD8uFMhV1B6pCwBAWGUa/9bHtR7IX7p4C5lQAAAAWWTLhiNbDgAAIDsyociEQoSRCQXYQyYUsrUB2ggABEPtmwbZpjfSjwP5SxdvIQhFEAoRRhAqWMi08A4BBhCEAoDwyTY1j34cyB/T8QAg4Kzu1hGEAgAAcB6LwAPuIAgFRFg8HucC6xKylnYKy37gPIEfheX8AgC/qt3P0r8CzmA6HtPxEFBOfPmIxWJpv1yTflwYN6bm2P2dfvpiyhQlhIUfFybn/AKAwmQaC9dH/wrkhjWhLBCEQpA58eWDNaHc42UQyk9fTP1UFyBsOL8AoHDZ1oVKon8FcsOaUEAR+SkTBXACbdp97GMAAIqP5SmA4iITikwouKAYd6fJhPI3N9qA3SCFl1lYxahLWLGvkCvaDAAUzu6UPPpXIDdMx7NAECo97sgXhiAUvPxymO/fznTeE4RyH/sKuaLNAEDhmI4HuIPpeMgJj4KPNlKSCxfEfejGeR/E/QAEBecXABQH/S3gHIJQqMMqEwL+5MTFMN0ceAKOhfNyHzo5UCq0T6AtAe7h/CJzG0Bx0K8Ujv4aSUzHYzpeHUzPckaQOlmrYx6Px31bX7gn0/lPsNJ9Qeo3AL9gSiKAQqUb/9Qe+3A9Lhz9dfSwJpQFglANEYSKnnTHnOMdPZz/AIKGLzUACsVYuDjor6MnXbyl1IO6AAAAAADgWyxTAriDNaGQFQvxAdGQPNc55wEAQNSxPAXgDqbjMR2vDtIko4cUZNRHPwAgKOivABQqFoulvQFHf+Ic+uvoSRdvIRMKdZABET2JREIVFRVeVwM+Qj8AICjor4C6eMhF7kaPHk1fUgTsYySRCUUmFCKOTCgAAIBwINskP4yHAeeRCQUAACAyBeAN2h3gT+kWICdzB7mgj7ePTCgyoRBx3PkBEDVkCsALtDsUA+0sd4yF4QTOvYbSxVtKPagLAAAAAAAAIsaz6XiXXHKJLrzwQnXu3FmS9Mknn+ivf/2rpkyZkvpMLBbTiBEj1KZNG73zzju69NJL9emnn6beb926te655x4NGTJEkjR58mRdfvnlqq6uLuq2AEFF+jEQHqSBI4po9wAABItn0/GGDBmirVu36vPPP1dpaamGDRumkSNH6sgjj9THH3+skSNHatSoUTr33HP12Wef6YYbbtCxxx6rAw44QDU1NZKkKVOmaN9999X5558vSXr44Yf11VdfpYJS2TAdD1FH+jEQHqSB28e+Co8gHcsg1RXBRWA2d+nGw/F4nH0H2+jjG0oXb/HVmlDff/+9rr32Wo0dO1bffvut7rvvPt10002SpF122UUrV67UH//4R40dO1bdu3fX/Pnz1adPH82aNUuS1KdPH82YMUMHHHCAFi5cmPXvEYRClFgNStJlPEW9wwSCiMGPfeyr8AjSsQxSXYEwShegSxeEkjhHYR99fEO+fjpeaWmpzjjjDLVo0UKzZs1Sly5dtNdee+m1115LfWbz5s2aPn26jjnmGI0dO1bl5eVav359KgAlSTNnzlRNTY2OOeYYW0EoICpisRhT7ADg/6M/hBdod4C3rM5BMp3gFPp4+zwNQh188MGaPXu2dtllF9XU1OjUU0/VvHnzVF5eLklasWJFnc+vWLFCHTt2lCR16NBBq1atavA7V65cqQ4dOqT9mxdccIFGjBghSWrbtq1TmwL4WqGdIqndAPLlx/7D67+PaKLdAf4Uj8cJIKBg9PH2eRqE+uyzz9SzZ0+1atVKv/rVr/Too4+qoqLC1b85btw4jRs3TtLO9DAA2XHnCEC+6D8AAH42evRoglBAEXkahNq2bZu+/PJLSdJ7772nXr166fe//71uvPFGSVJZWZkWL16c+nxZWZmWL18uSVq+fLnatWvX4He2b98+9RkAmSUSCdcDvwCKgwE0ooh2D8AJZEMBxeOLNaGSSktL1axZM1VVVWnZsmUaNGiQ3n33XUlSs2bN1LdvX1199dWSpNmzZ6tly5YqLy/X7NmzJUnl5eWpdaUAZFc7AOXGhdeP03CAsOLcQhTR7gE4gb4EKB7Pno5388036+WXX9bixYvVsmVLnX322frTn/6kk08+WVOnTtXIkSN13XXXafjw4Vq4cKFGjRqln//85zrggANUU1MjSZoyZYr23nvv1BpPY8eO1aJFizRkyBBbdeDpeIiKTE/9SMr09IZ8n/YQpadEEHADrEWpHwAA+FO6h/RwPQLckyneYrwo48ePN4sWLTKbN282K1asMK+//roZPHhwnc/EYjHz7bffmk2bNplEImF69OhR5/3WrVubxx9/3FRXV5vq6mrz+OOPm1atWtmuw9y5cz3Zdgql2MWOXH8+37/r9b4o5j72uk4Uih8K5waFQqFQvC75jH8pFEphJV28xbPpeMOHD8/6mdGjR2fMJFi7dq3OOeccJ6sFhI5Vhk6umCMPIF/0HwAAAEjy1ZpQAJyX7QugnS+ITCsDkC/6DwCAl5y4IQvAOZ6tCeUHrAmFKDBZ1oNycy681d8O69z7KG0rAABAUGQaCzNWA9yTLt5CJhRQJFFcuJppOED+othnAAAAINzIhCITCkXiVaaMl5lQUULAAE4juw4AgMKRCQV4g0woAHWQpeQsAk5A7gjeAgAARAtBKCDC+LIHNERgpHisguHsawAAgPBiOh7T8VAkXk2ticViabOeSEEGGvLLNDi/1MNNUdhGoJgIokcbx98a0/EAb6SLtxCEIgiFIvFyYJDu4suFF2jIL4GRKHyZ8Mu+BsKCcyraOP7WCEIB3iAIZYEgFKKCIBRgH4P44mFfA87inIo2jr81glCAN1iYHAAAIEdRyEgDworzFwD8h0woMqEQAWRC5Y6Ba3SF+U6y39q13+pjJcztAeFDe60ravsjattbX7prCuujAt5gOp4FglCICoJQuYv6QC7KghAYyRftOnfsMwQJ7bWuqO2PqG1vfZm2n7EwUHw5T8fbsWNHxvmzVowxatKkSe61QyiE+YsbgOig3wIQVOmyPRANHH8AQZA2E2r8+PENglBHHnmkDj74YH322WeaP3++JOmggw5St27dNG/ePP33v//Veeed53qlnUImlLOifvfFz7j7kzvaM8LI7XYdxpsR9AWIsqCf05y/0ZLpeKebkkd7ANxT8HS8gQMHatKkSfrNb36jF198sc57Q4cO1eOPP65TTz1V06ZNc6TCxUAQyllc6P2LIFTuaM8II7fbdRjPm6B/CQcKEfRzmvM3WrK1V6v34/E4bQJwScFBqNmzZ2vGjBm6+uqrLd+/44471KdPH5WXlxdU0WIiCOWsoA9UwowgVO5ozwgjglAAcsE5jSDJJwhV/zMAnJPzmlD1HXrooXr00UfTvv/FF1/ooosuyq92AFxjdRcQ2bGuAsKIdg0ACKt8r3GxWIxsKKCIbGdCLVmyRHPmzNFpp51m+f7zzz+vXr16qWPHjk7Wz1VkQjmLu2X+k+mRtBLHB4Czgn4dYOoOUFfQz2kgiTExUHwFT8e77bbbdNVVV2n8+PG64447tHDhQklSt27ddPXVV2vYsGG66667NHLkSEcr7qawBaG8Hjx7/ffRULYnXHLBDRbOMfhd0L+wBr3+gNM4JxAWjImB4is4CNW0aVM9+eSTGjp0qIwx+uGHHyRJpaWlKikp0YsvvqgzzzxTW7dudbTibgpbEIqBAurjghsunOPwu6AHSjnHEGb5nJ9BP6eBJMbE8Ksw97MFB6GSBg0apKFDh2q//faTJH311Vd64YUX9PrrrztS0WIiCIUwy5Z2zNNAgico53iYL6YIt6CcY0A+aN+IMoJQ8Ksw982OBaHChCAUwoyLbfgE5RwPSj2B+mi7CDPaN6KMcTH8Ksx9c7p4S6kHdQEAAAAAAEDENE73xvXXXy9jjG688UYZY3T99ddn/WXGGP31r391tIIAAADFkO/jvQEAAGBP2ul4O3bskDFGu+66q7Zt26YdO3Zk/WXGGDVunDau5Tthm47HOiyoLVvacfLLFm0kOIJyjttNKw7K9gBAGIR5ygeQDdPx4Fdh7ptzXhNq3333lSR98803df4/m+TngyBsQSigtmwX26SwdHLwD7sX0zBfdAHAbwj8I8oIQsGvwtw3p4u3pE1bqh9MClJwCcCPmU4VFRWqqKjwtC6IFqY0AYD/uPWlJsxfoADAbVHsL3k6HplQCDnu/MCvyIQCgOCjL0cQMB4Gii/nTCgAAAAAuSM7CAAAa2RCkQmFkOPOD/yKu+cAwipK/VuUthXBxXgYKD4yoQA0kEgkvK4CIoy1owAAgJcSiQTjYaDIyIQiEwohx50fAACKK0rZQVHaVgRXpvEw7RVwB5lQAHyN9TMA5II+Izv2EYqBrFYEQTwep60CPkEmFJlQCLmgZEJxJ9U5fPFEFNBnZMc+8g77HvCfdGNizk3AHY5kQvXu3VuXXXaZunbtqj333LPBCWuM0f77719YTQEABbG600cQCgCKh4wLwF+sbtAB8IbtINQ555yj8ePHa9u2bVq4cKG++eYbN+sFoAgYJAMA4DwC/4C/pBvzsig5UHy2p+MtWLBAO3bs0MCBA7Vs2TKXq1UcTMdDFFRWVqqiosLyPT+lHzN1wTnsS0QB7Tw79hEA7MTC5EDxpYu3lNr9BZ06ddIDDzwQmgAUEBXpAlAAAAAAABST7el4S5YsUbNmzdysC4Ai8ttUPL/VB/AbFpyvK8x9hlPHOsz7CO6hrwEAuMn2dLyrrrpKv/nNb3TUUUfphx9+cLlaxcF0PEQBTwKJHr5AhBNTq6KDYx18Qe6HaX/+EOQ25EdMx4OTOD/tSRdvsR2Eqqio0E033aSmTZvq73//u6qqqrRjx44Gn3vrrbcKrmyxEIRCFBCEAsKBL4bRwbEOviAfwyDXPUw4Ds4iCAUncX7aky7eYns63rRp01L/fvjhhxvs+JKSEhlj1Lix7V8JwEOxWIyIPQAAAACgaGxHjIYPH+5mPQAUWTweJwgFAAAAACga20Goxx57zM16wGXMWwWAYPPLItNcT9znl2MNe6zOiSBzqv3RV8AvMp2j9LfhRR/kX7bXhAqjKK0JxbzV6GIOPAAncT0B6sp0na0taucJfUVh2H/OYSwcTW6eQ5yf9hS8JpQk7bbbbho5cqROPfVU7bfffpKkr776SpMmTdLtt9+ujRs3OlNbAI4I293ZYuCuCYAgiXqf5eb2F/K7ya5AodxsQ1HvN5BZlNpHvttKH18Y25lQbdq00VtvvaUDDzxQq1at0sKFCyVJ3bp1U7t27TR//nz17dtXa9ascbO+jiITimht2GW7O0sbaIhzBciMc8Rfon48/HCnu9A6hPULX9Tbpp9F7dhkGg+zRmpDYWkfdrYjLNvqV+niLbaDUPfee68uvvhiXX755XrooYf0ww8/SJJKS0s1YsQI3Xvvvbr//vv1u9/9ztGKu4kgFCdY2HHRzR3nCpAZ54i/RP14hCEIFdZjGNbtCoOoHRtuyuYmLO3Dj0GosN50SKfgINTXX3+tV155RRdddJHl+w899JBOOOEEderUqaCKFhNBqOB1JlFUSGfFHPjcca4g6Nwe4HCO+EvUjwdBKP8K63aFQdSOTbYgFDdm6wpL+/BjECos+9augteEKisr0/vvv5/2/ffee0/Dhg3Lr3ZwHfNWg8vq2KW7UNpdA4r2AIRXLn2GU78fyCbMd385J6yxX+AFq74mHo9nbI8EocKJPsi/bAehVqxYocMPPzzt+4cffrhWrFjhSKXgPDrWaLDb2XrVHoLwJYQLFpCZ387ZqAtKn+VWcNTN7ff7NdXv2C/+FZR+I1exWMxy22pnmnix7UEY/9YWj8dVUVFR57VYLObrOlthgXF/M3bKfffdZ7Zt22ZGjBhhSkpKUq+XlJSYCy64wGzdutXce++9tn6XX8rcuXM9rwOFkq1YyeWzufy8n7aFQqHkVzjPKH4stEv2DYXidrEz7vVibBzEczyIdQ5Cidp+TRdvsZ0JdcMNN2jQoEG6//77NXr0aH322WeSpAMOOEDt2rXTF198wePgAQCBErS7kwDChzvxgLv4jgr4i+2FySWpZcuW+tOf/qRTTjlFXbp0kSR99dVXev7553Xbbbdp/fr1btXTFVFamBzBZWwsYJe8uNodyHq1AJ6dbQGKKYxtMozbhOCjXSLIuGERDFb9TH3p1odiMeq6gljnIIhaX1LQwuRNmzbVz372My1btkyjRo3SqFGjHK8gAGt2AktOfQZA8HGuB0fUBqNAULn9wAcUD8cNXqL97WQrE6pRo0batGmTrrrqKt17771FqFZxkAmFsLBz58cPdy+4qwK/oU3CS1FqfwTcEGRROleDzK/j4SC2nyDWGf5TUCbUjh07tHz5choeEFB+yYzwSz0AAMVFwAmA29JNtfOaH+uUTRDrjOCwvSbUnXfeqZ/97Gfq27evrShzEJAJhbBId04mLyAM/gFrZGfAS9xpBoKBczU4sn1P5bgBxZMu3mI7CHXggQdq4sSJWr16tcaMGaPPP/9cGzdubPC5xYsXF1zZYiEIhbBId8HlQgsA/sUXWyAYOFeDgyAU4B8FTceTpHnz5skYo5KSElVUVKT9XOPGtn8lAAAAAPgaU5OCwSq7GYD/2I4Y/fnPfw7NNDwgKphqBAD+xRdbIBgYOwUDfSoQDLan44UR0/EQFrkEiElDBgAAQNj49el4QFQVPB0PwZJvBgyZMwAAAADChkwpwB9sZ0L17dvX1i986623CqlPUYU5EyrfBRRZeDGYyISC0whIAwCAIGFRcsBfCn463o4dO2x90Q3SwuQEoZz7OXiLIBScRl8AAACCxIsgFDftgPQKno43fPjwhj/cuLF++tOf6txzz9WiRYv00EMPFVZLAAAAAAACwGqKH0EoIDPbQajHHnss7Xu333673nvvPUcqBPhN0O9wMP8dAAAAUZRIJLyuAoB6HHs63nXXXaezzz5bBx98sBO/riiYjufcz4VZEPZJpvRjv9UVwRCEdg8AAJCUbTpePB53/EYy4yUgPdefjrdmzRrtt99+Tv06FCjf7BeyZoIpHo9H4tgFPSsNQHHQVwAA6nMjCAUgd45kQjVr1kyVlZXq0KFDoAJRYc6EgnOCcocj3d2fZHAqDBfdoByLMOBLPIKMvgIAosfOg3qcvhZwvQHSKzgT6h//+Ifl63vssYfKy8vVrl07XX311fnXEEDerAIGSWEKQqF4aC8AgoxAOhA9yfWfKioqivY3ozAToRjos6PFdibUjh07LF9fvXq1Fi5cqPvuu09PPPGEk3VzHZlQsCMInaIXd368wN0mAHbQV4A2AERPVMbDYUSfHU4FZ0I1atTI0QoBQeG3gBMAAAAAAEHk2MLkAAAAAHIThIxrIAwSiYRisRjnFyzRFxdPzguTd+rUSQMHDlRZWZkmTpyor7/+Wk2aNFGHDh20fPlybdu2zaWqOo/peAiLqKQfc3EAYAd9BYI0tSNIdQX8zM54WOL88iM/9IN+qEPYFDwdT5JuueUW/eEPf1CjRo1kjNHs2bP19ddfa5dddtGnn36qUaNG6e6773as0gg3viS4L2yLJdI+ANhBXwEA0ZLpIT1hxvcpBJHtTKgRI0bogQce0D333KOXXnpJr732mgYOHKjKykpJ0sSJE1VWVqaBAwe6WV9HkQnlrWJHm4PQSedbx3R3foIUvQ/C8QH8gvMFyMzv50jt+lndMArS9RvwA7tZUFK4zq+wZO/4oc8Oy770k0zxFmOnfPDBB+aZZ54xkswee+xhduzYYfr37596/09/+pNZvHixrd/llzJ37lzP6xDlYiVMf6+YdUzH6+0J2/GhUPxSOF8olGCXbLyuH4UStJKLWCzmeX3d3G6v6xTUwr50vqSLt9iejtetWzc98MADad9ftWqV2rZta/fXAQCAHEV1ugEQBWGbQu8mP2RNILji8TjtBQ3QBxeP7SDU5s2b1bx587Tvd+rUSWvXrnWiTgAAwAIDJCC8+FJsn1VfyP4DUAj6kOKxHYSaM2eOTj31VN11110N3mvWrJnOOecczZw509HKAQCAYCJTAQAAAPXZDkLdfvvtevXVV/XYY4/pkUcekSR16NBBgwcP1ujRo7X33nvr7LPPdq2iCB/u6Lsv+SWQL34Aio1MBQBAsSSvORUVFaqoqPC0LsXE9ykEke2n40nSBRdcoLvvvltNmzZVSUlJagX5rVu36uKLL9ajjz7qVj1dwdPxoiUId+Wdfjpekt+f7BCLxRoMGBKJhO+ODxoKwnkVJlbnenIA6rf9blVXp/oi2h2CjjZcGDf7FwRbtjFxEu0FcF+6eEtOQShJKisr0xlnnKHu3burpKREn3/+uf7973/r22+/daquRUMQCmER9CAUg8ng4tgVV5D2t5t1DdJ+AOA8+gBYicViWTOD/HrjBgijdPEW29PxklasWKH77rvPkUoBAAD7SLsHAPpCWLPTLgg+Ad7LOQgFAPAPpnS4w6/71Q91sIsviQDcEqS+EMVhdd1O4noE+EtO0/F69+6tyy67TF27dtWee+7ZIO3VGKP999/f6Tq6hul4CAum40WX1/vO67/vlrBuV1hwfAAAtWUaC3N9ALxR8HS8c845R+PHj9e2bdu0cOFCffPNN45WEIA7uPsDAAAAAPAD20Go//3f/9Vnn32mgQMHatmyZW7WCUCOkoGmoD4SnUBZcHHs4AXaHQDAjkQi4XUVANRjezrepk2bdPXVV4dqUXKm4yFs0j2+PQiBKOQnjNOS/LAeUxj3KwAAYZVpOh5PxAO8kS7eYjsI9fnnn+vBBx/UnXfe6XTdPEMQCmGS6bG0fHkOrzAGS/ywTX6oAwAAsCfb+qgS13Gg2ApeE+rBBx/Ub37zG/3tb3/TDz/84GjlgDDxKosjiNNT/JDxEnRBPO5BwH4FALiJMZCz4vE4124gIGxnQlVUVOimm25S06ZN9fe//11VVVXasWNHg8+99dZbTtfRNWRCwQ1eZVBkS0P248CGbBNYoV0AAMKOa53zgv60aCBsCp6OVz/gVP8kLykpkTFGjRvbTq7yHEEouMGPQahi1SFXDMBghXYBAAg7rnXOC+JYGAizgqfjDR8+3NEKAQAAAABQDLFYzJczA4CosR2Eeuyxx9ysBwAECms5uIc1HQCguLimIcis2q8Vvy5PAUjR6odtT8cLI6bjwQ1Mx7MvyKnoQa57NlG6CAIAwn1N86uw7/NijiXsPBkvKUz7GOESxj6h4Ol4AOwhi8M+9pU/WR0XglCIOoKzAJwU9jEQYwkA6ZAJRSYUAqr+F6JMgxnSj50XxrsVSWHeNiBfnBdwg1+Cm7RvOK2YbYpMKIRBGPvhgp+OF0YEoRBkXHC9FcYLRVKYtw3IF+cF3OCXduWXeiA8/BiESiQS6t+/vyt1AAoVxn44Xbyl1IO6AAAAAABQNBUVFV5XAYBYEwoItbCvN+Al9i0AICy4piHIku3Xi3bslym1CL4o9cNMx2M6HgLKTuoxa0EhHwyogIbCmCYP79GuEFZejCXsjI2dPr84h4H0WBPKAkEoBJnd+e9cCIFoIYjoDvZrcATpWPEFFnCOFzdoOYeB9AhCWSAIVTxBGhAGRe19mil9kwshEC0MiBF1QToHGB8BzqmsrJSUfe0nJ/uDIPU3QLERhLJAEKp4snXQDMIKE4vF0gaiinkh5DgC3gvKgJj+Am4JyjkAwFlezBKgvwHS810Q6pprrtFpp52mAw44QFu2bNHbb7+ta6+9Vp988kmdz8ViMY0YMUJt2rTRO++8o0svvVSffvpp6v3WrVvrnnvu0ZAhQyRJkydP1uWXX67q6uqsdSAIVTzZOmg68MKlu/AWcz9yHAHvBeU8DEo9ETy0LaA4/HYzwYsglN/2AeAnmeItxosydepUc+6555oePXqYgw8+2EyaNMksW7bMtGnTJvWZkSNHmnXr1pnTTjvN9OjRwzz11FNm6dKlpkWLFqnPTJkyxcybN8/07t3b9O7d28ybN89MnjzZVh3mzp3rybZHsVjJ5X1Kfvu42PvR679PoVCCcx4GpZ6U4BXaFoVSnOK3c80ur/cbhRKVki7e4pvpeM2bN1d1dbVOOeUUvfTSS5Kkb7/9Vvfdd59uuukmSdIuu+yilStX6o9//KPGjh2r7t27a/78+erTp49mzZolSerTp49mzJihAw44QAsXLsz4N8mEKh5DJpRj0t1xsdqHEplQQNQE5TwMSj0RPLQtoDi8OtdyHQvXR38AFEe6eEtjD+piqWXLlmrUqJHWrFkjSerSpYv22msvvfbaa6nPbN68WdOnT9cxxxyjsWPHqry8XOvXr08FoCRp5syZqqmp0THHHGMZhLrgggs0YsQISVLbtm1d3irAeVZrP5H2CyAp04MKgCjgHADCLdexMH0C4C++CULdfffdev/99zV79mxJUocOHSRJK1asqPO5FStWqGPHjqnPrFq1qsHvWrlyZern6xs3bpzGjRsnaWdkDsVB5+8Mqzs/AFAbQWlEHecAEE3xeJybtUAA+CIIdeedd+rYY4/Vscceqx9++MHr6sAF2Tp/glSZJYNPmfZTugtvMXn99wEEB/0FAMAOuzdhCTYBweB5EOquu+7SWWedpf79+6uqqir1+vLlyyVJZWVlWrx4cer1srKy1HvLly9Xu3btGvzO9u3bpz6DYOCikZmdL2t+2Id+qAOAYKC/AIBgK9bNhFz+DtcWIBg8Wy19zJgxZtmyZaZ79+6W73/77bfm2muvTf1/s2bNTHV1tRkxYoSRZLp3726MMaa8vDz1mfLycmOMMd26dct7tXYKxW8lk1gs5nn9KBQKhUKhUCgUNwpPvKNQglkyxFu8qdB9991nqqurTf/+/U1ZWVmqNG/ePPWZkSNHmrVr15pTTz3V9OjRwzzxxBNm6dKlpkWLFqnPTJkyxXz00Uemd+/epnfv3uajjz4ykydPLnSnUCi+Klx0KRQKhUKhUChRLAShKJRgFt8FoexmdcRiMfPtt9+aTZs2mUQiYXr06FHn/datW5vHH3/cVFdXm+rqavP444+bVq1aFbpTKBRfFS66FAqFQqFQKJQolmyYFUCh+LOki7eU/P9/RNLcuXPVq1cvr6sBZLUz1mQtHo8z/x0AAAChlGkcLEklJSVFqgmAXKSLt5R6UBcADuIJUwAAAAirbGNdu0/PA+APZEKRCYUASF5c012EuQMEAACAsKqsrJQkVVRUWL7PWBjwn3TxFoJQBKEQIOnSkbnwAgAAIKyYkgcET7p4S2MP6gIgR6QZAwAAIIoYBwPhQiYUmVAIAO7+AAAAIIqyjYMlxsKAH5EJBQAFsLoLx1MJAQBwDtdaAAg/MqHIhEIAkAnlPatjwH4HAMA5XGthJds4OJFIKJFIELAEfIZMKCCksj22FgBQODI0AMCfKioqVFFRQZ8MBASZUGRCIQAy3QHiDmFxcHcWiDb6AMB9nGewYmdNKIm2AvgNmVAAgEgjkwUAAADwFkEoALCBaY/BZ3UMCUIBgH9wrYWVZLvI1j7q32ziGg/4E9PxmI6HAGA6HlA4pnmgELQfAPCW3Wl5SfTRgLeYjgcAAIBIYjougGzoJ8KB4+h/ZEKRCYUAIBMKfhLUizuZLOHhRRsMarvHTpz/QDDV7ntzna6Z/Lzdvpp+Ihw4jv6RLt5CEIogFAKAIBT8JKgX96DWGw1xLJEr2oy7CNLCLXam4MXj8YwBKrvnOv1EOHAc/YMglAWCUAgKglDwk6Be3PmSFB5BbYPwDm3GXexfuMVOEKqkpMSRsTLtOBw4jv5BEMoCQSgERaYLazwe54s0ioqLO7xGG0SuaDPuYv/CLXYzoaz+nUQQKlo4jv7BwuRASBGEAgAgs1zXkgEQHPF4PBVkKORcp58IB46j/5EJRSYUAiDbXSCi+ygm7jDBa7RBwF84J+EWO5lQ0o/tjbYI+AeZUECAZVtwESgm2iK8RhsEgGhI9vfZ+v1YLKbRo0dzfQACgEwoMqEQECxODgAA/IgHP8BtdhcoB+AfZELBdQxA3EU2FAAA8CPGewAAu8iEIhPKMczBdl+6u0DsZwAAAIQVmVBA8KSLt5R6UBcAeSITCgAAAFGTnBGQaSwci8UsZ2YA8BcyociEcgyZUO6LxWKWF1/2MwAAAKKAp0YDwUAmFBACZEIBAAAAAIKKhcmBgCC9OBhYoB8AAMB5Xo2FGdsBzmI6HtPxHEMH7a5MqcekHfsH01IBAACcZ2dxcsn5cRdjOyA/6eItZEIBAAAAIcFNQURd8hyg3cML9MHZkQlFJpRjuEvgrnR3fxKJhPr371/k2iAdL84DLnYAgCTGYwgru5lQSU61e84p5IL28qN08RaCUAShHMMJ5y6m4wWDF+cB5x4AIIlrAsKKIBSCgPbyI6bjIdDI9EBQ8ARDAACA8GBsBziLTCgyoRzjZtSXiDKZUEiP8wMAkMQ1AWHlVSYUkAv64B+RCQUAABARZBADiIp4PE62EhAgBKHgGDp/BJlTX9j44ocoot37j9U1mWMSDYzHEDX0bfAT+uDsmI7HdLxAIK0xfQpyPB7n4usAq/1b+yJidx/zdDxEEX20/3BMgs/Lvp3rCvwo3ViYvs159AHuiNp+5el4FghCBQeDaS68bsu2zoDd/UxbRRRFud37dUAZ5WMSFl4eQ9oP/IixcPHQB7gjavuVNaEQaKQ1AgD8iGlvAOCtWCxGvwsECJlQZEIhIKwi54lEQolEgguvA8iEAvIX5Xbv1233a4ZWfUGppxfIhALq4knRxUMf4I6o7VcyoYAQqqioUEVFBQN2B9TOZigk846sPUQR7R75IpMMAIBoIROKTCgEBHd/iidqdykA5M+v/YVf61VfUOrpBTKhgLoYCxcPfYA7orZfyYSC60ipR1iQ1eEe+gkAsMfLaxHXQSDa6APcwX7diUwoMqEcE7XIbrHFYrG0HRf7GUFRaD9BEAt+49c2GZRrclDqCcA7yX420xd4+g3n+fX6huBIF28hCEUQyjEMJN3Ho2kRdIX2E/QzgD1BOVeCUk8A3sn28BiJfsMN9M8/IiCXH6bjAQFn1fkBABBkTE0AduJLbv7oR+A2HqLhLDKhyIRyDNFyd7EYI8KATCigOPhCCwQL17f0smVCJQME9HHOok3+iH2RHzKh4DruQngjkUh4XQW4LExfJukngOIIah8BALkiCAUEC5lQZEIhIMiEii7uvvyIfQEACCOub+nZWRNKYn85jTb5I/ZFfsiEAgAEHplUAABES+1rP+OA4mFfwy1kQpEJBZ9JN/WKTKjo4u4LAADhxrXe3vIDjIfhhTAtjVFM6eItBKEIQsFHYrGY5V2HkpKStO8l30d4MTAFACDcov4lN9MYuDaCUEBwEISyQBAKfpPuwpq8qGZ7H+FEEAoAABSLFwExu2PcdJ+Lx+ORCtoBQcCaUEBIMV87/Nw6xlG/6woAABqyGnf4ZXwQj8d9XT8A2ZEJRSYUfCTbXSCCBnASGVYAAIRfruNHL8YHuWQ4MR4GgoHpeBYIQsFvmG6HYiIIBQBA+OV6vfdTEKoYfxuAO9LFW0o9qAuAHFnd8QEAAAAAIEgIQgE+km7tH9Z9AgAAQFgx1gWig+l4TMeDzzAlD8XCdDwAAArn9zWKcr3ee7U9jIGBcGFNKAsEoeBHXIBRLH4fNAMAEAR+v6nj9/olMQYGwiVdvKWxB3UBkIdYLEaAAI6iPQEAEH5BmOrG+qdAdJAJRSYUfCJ58c00UOBOEJAfsr4AAJkUcp0ISqaRn6+FPB0PCB+m41kgCAU/yXTxTeIiDOQnKF8QAADeKOQ6EZRrjJ/rSRAKCJ908RaejgcAAAAAAADXsSYUIH+nJwNAMdEfAkBugrDmkh30/wCKgel4TMcLlXwvnn5IT2Y6HuAeP5zjQcG+AhBFUej7sm2jl/sg0zg4Ho8TDAMCiDWhLBCECp98L55+GHhku/hK3I0C8uWHczwo2FcAoigKfZ+fg1CxWIyH8wAhky7ewnQ8wCeSF16rCzDBJwSVX1L7wzJVAgDgjihcJ/y8jaNHjy5K/fwyLgGijEwoMqFCJciZUEl+qgtQKNpz8HDMACCavO7/i/GEPK+3EYgSno4HAAAAAAAAzzAdD5C/05OlH1OHSRcG4Da/94dAUDDtB0FD/4+ooH/2FtPxmI4XKmHoUIqRigwUC2nvAKKK/g9+5Iexcro6pBsDJxIJJRIJR+rJeQmJdlAsPB3PAkEo+BFBKIQJF3kAUUX/B7+oHfSxynbywxOhS0pKivKEPM5LSLSDYuHpeIDPWd0VAoKO1H4gOPyQIQHAedmuxfXPfa/O+2I8IY9xCeA9MqHIhIJPZMqASorH43whAAC4gjvDzmJ/wi/sjDFrc7udWtUnGRxyOxMKkOifi4VMKCAECEIBABAMZFwA9nG+oJhob94iE4pMKPiE3btUROkBAG7gzjAQTkHIhLKD/ggIFjKhAAAAAAC2pr+5/bezvZbL+wCCgyAUAAAAAIRU7QBORUWFZ/VIslpaIlOQieUogHAhCAX4hJd3pBA8PMUKgNO4/gDhVHt8kDzPawej/H7uM74BwoU1oVgTCj6TaZ48d4KCxc1AEWu3AACAXPl1/JBp/OuH+gHIXbp4C0EoglDwkVgsxqNpQ8TNgZ5fB5FANmTxAYB3rMYP9ceeXvTJ3IQFwocglAWCUPCbbE8LIcgQLAShgIZouwDgjWw3O5O86JMZAwPhky7eUupBXQAAAAAAReT3tZ8ARAMLkwMAAAAAJDFtGoC7CEIBQABxNxMAALjBaoxBEAqAUwhCAQUo5p0igg7B4+YxYzAIAADCIjlmYrwLhB8Lk7MwOQrg9AK7yaCW1QWYBRkBhAHTPADAG3aejJfutWKMQ9MtnM7T8YBg4ul4FghCoVC5BqHsfvni6VEAAABwkt/HoemekMcYGAimdPEWpuOFFHea/Yk59ggL+hgAAILF7nXaiylxVuMKAOFEJlRIM6HIpCmOXPez3c9z/OB3tFEAAOCUdFlQEuMLIKjIhAICgLtAgD+Q6YVsaCMAgoZ+C4AfkAlFJhQKkOvFPNtx4S4QgiLsfUzYtw+Fo40ACBo/91vpxsAsSg4EFwuTWyAIhWIjCIWwCHsfE/btQ+FoIwCCxs/9FouSA+HDdDzAB7xY6BEAAAAIolgsRiYUEDIEoUKKYIc/cRFFWNDHAAAAp8TjccuxBdPxgPAhCBVSdNbhw50g+EnY2yJBNmRDGwEQNPRbAPyANaFCuiYUginTmlAS8+IBAAAQPqyLCoQPa0IBAPLCI50BAG7iOoNc0WaA4CITikwoZFDsC1wsFsuYKs2dIHjBz0/T8RMGxACQH64zyDUTijYD+F+6eAtBKIJQyMCLCxzpyPAbBnr2sJ8AID/0nw1F7cZGuvFvIpFQIpFosO20GcD/CEJZIAiFbAhCAQz07GI/AUB+6D8bito+yXVd1KjtHyCIWBMKCACru15JPNEkOKJ29xIAAESDG2OcTONfAOFDEArwEQJN4WB1HIMchKJdAgDcxHUmONwY4+Rz/GkzQHAxHY/peMig2Km+uaYiw59IEY8mjjsAwCl+vaa4Ua9s418n/gaA4mM6HpAH7rIgSJgG6C36CwB+x3UCALxFP+xxJlTfvn31xz/+UUceeaQ6duyoc889V48++midz8RiMY0YMUJt2rTRO++8o0svvVSffvpp6v3WrVvrnnvu0ZAhQyRJkydP1uWXX67q6uqsfz9KmVA09mAgEyocvLp76de7pgAAf+A6ERx+Hbt7kQkVj8d9se2AE6LUD2eKtxivyoknnmhuvPFGc/rpp5sNGzaYYcOG1Xl/5MiRZt26dea0004zPXr0ME899ZRZunSpadGiReozU6ZMMfPmzTO9e/c2vXv3NvPmzTOTJ0+29ffnzp3r2bYXu1jxuk4Ue8eJYxa84tWxo81QKBQKJVPhOkEptLjRhjKJxWKebzOF4mSJUj+cLt7i6XS8V155Ra+88ookacKECQ3ev/LKK3XLLbdo0qRJkqRhw4Zp5cqVOvvsszV27Fh1795dJ554ovr06aO3335bknThhRdqxowZ6tatmxYuXFi0bUEweXWXKd3fTU7nYVpPsHH8wsmvd6UBAM4JWl9f7Po6NcapXe9EIiFJqqioaPA5P+97APnzPEImyaxfv75OJlSXLl2MMcYcddRRdT730ksvmQkTJhhJZvjw4WbdunWWv+vcc8/NOzIXxhKliGsQ9ku2Oz3cCaLkUzjP2b8UCoWSqdCPhW8fBa2+meod1G2hUHIpUWrnvsyEyqRDhw6SpBUrVtR5fcWKFerYsWPqM6tWrWrwsytXrkz9fH0XXHCBRowYIUlq27atk1UGCsJ8dxSKDCxgp6BlMgDFwnUCALxFPxzBp+ONGzdO48aNk7RzoSwgKAhSIRvaB7CT1QCP8wPgPAAAr9EP+zgItXz5cklSWVmZFi9enHq9rKws9d7y5cvVrl27Bj/bvn371GewUzEirtx5zsxq/wAAAAAAEBW+DUJVVVVp2bJlGjRokN59911JUrNmzdS3b19dffXVkqTZs2erZcuWKi8v1+zZsyVJ5eXlatGihWbNmuVZ3f2oGMEg7jxnlksgMB6Pk6oJAACA0Ml2Y5YxMBBungahmjdvrv3331+SVFpaqn333VeHHXaYVq9ercWLF2vMmDG67rrrtGDBAi1cuFCjRo1STU2N/vWvf0mSFixYoFdeeUUPPfRQap2nhx56SC+++CJPxoMtfr3I1X5SHgB/4JwEgPCjr3dftn3MTWwg3Eq0c4VyT/Tr1y/1SM7aJkyYoOHDh0vaGSm/8MIL1aZNG73zzju69NJL9cknn6Q+27p1a917770aMmSIJGny5Mm67LLLVF1dnfXvz507V7169XJmY6CdC/vXVVJS4kFN/Mlq/9RWf80n9if8iGm3CAL6TwBBk+/1NYj9XaYxMWugAuGRLt7iaRDKawShnBXEi2Ax5RqE4ss+/IjzHEFA/wkgaPK9vub7c172k5nGxIwpgPAgCGWBIJSzGPRnVllZmfp3RUWF5We48MLvCEIBAOC8fK6vsVjMcmqbm8ErJxCEAqKBIJQFglAopmyZUBIXXvgfQSgAAJyXz/U13diSIBQAP0gXbyn1oC4AAAAAgAhi8Xcg2jx9Oh4AILyYogsAAACgNoJQAADbcrl7afVZglBAcBBIBorHqeygIGQZBaGOANxDEAoAYBtfQIHoIJAcDAQLw6HYx8yvgaBYLEb79QH6FbiJhclZmBxFkuzMM130WYwRYcIi5kB+/DL45xx2j5PHmOMUXYUsTO6lbA/r8Xv9oyCK/Ypfrr1hwtPxLBCEghfsPBGEThBhEMUBDOAEv5w7fqlHGDm5bzlO0UUQCm6JYr8SxW12G0EoCwSh4AU7QSg6QYQB7RjIj1/OHb/UI4wIQsEJBKHglij2K1HcZreli7ewJhSQARlJQP78ut4EEBZcowAgOujzERZkQpEJlZOodX5uRMTT3f2Jx+OpfUkkHnBf1PozBIfda4Db1wrOEfeQCQUnBDUTKhaLsUZqHop5rkexX4niNruN6XgWCELlLmonpxvbm+7CW/v3Rm0/A17gPINf+SUIBfc4eewIFkaXVTtKJBJKJBKp//drW8hUd7/W2WvF7POj2K9wTXUeQSgLBKFyF7WT063ttfq9ZEIBxcV5Br+yO/inDQdXFL/gwXnZ1laS/NsnBDWLy0v0+e6iX3YeQSgLBKFyF7XOr5hBqNq/m04QcF/U+jOED20YYcLYJ3dBDUJlmo7nx/r6BX0+goaFyYE8eLWwMoMuAEA2LP6PMLFqz4yHwom+Kz/sN4QFmVBkQuWECLwzSEEGvEd/BgD+QZ+cu6BmQmWqtx/rCyA/ZELBEUTgC2eVbg6g+OjPAABBFo/HuZYBCBwyociEQpFx9wcA7GOdGCAayITKT7ZsKD/uQ8bCQDSQCQX4nJ07WXwZAxA1rBMDAAAQHmRCkQmFIitkPSjuEgKIGvo9IBq40ZafIGZCZXo6Xjwe57gDIZEu3kIQiiAUiqwYQSgGcgDCgiDUTlHr16O2vUC+rPrIRCKR+q9fzxum5IUDfTUyIQhlgSAUvFCMIBRf2gB4xekBKf3ZTlHbD1HbXiBfQQ3mBLXeqIu+GpkQhLJAEApeIAgFIMyc7n/oz3aK2n6I2vYC+QpqMCeo9UZd9NXIhIXJAQCeIV0b+eLx4/A7+jd4KZFIqKKiwutq5MTqnAGcRL/sb2RCkQmFIiskE8puh8pdCbgpnws7bTI6ONbuiNp+DdL2BqmucJYfvugGMaMoiIupw5pf+z+/1itqmI5ngSAUvJDuwuvk00DoeOGmfNoXbTI6ONbuiNp+DdL2BqmucJYfjn3QglCZnoyX5Md6w5ofzgErfq1X1DAdD/A5J4NQTF9BENS/g0yaNJBe1Pr1qG0v4LRs55BTWVy5/p5s9eLcDxaOF/JBJhSZUCiyoN2xSvJDyrnTwrhNxeBUJlSuvwPBUPu8Sq5TknxcuMQ5Vgj6LH/ijnt0eX3s02UV2bmx6VTdc/09TMXzVlSuI16fm9iJ6XgWCEKh2LKlIPu5cwxjZx7GbSqGfPZb/UGP1XnAvg8fzjFnsT/9KSpf6tCQ1+ek1d9PJBLq379/Xj9LECr8vG6zxUK/7A8EoSwQhEKxBfnCG8aLVhi3qRic2G/s+2jgODuL/Qn4i9fnZCEPuyEIFU1et1lEC2tCAQAcwfx/AADCdz1MZo+QMQLATWRCkQmFIgry3Z8w3jmx2iYnF4hH+nToMLYnL/k17Zzj7Cz2J4CkTEs85JsJlcvPZ/o9mX4+yEtThAHXERQT0/EsEIRCsRGE8pdC0thhT7p249egSVD59fz0a72Civ0JIKnQIFLyOlzoGo35XM+D+pCeMOA6gmJiOh7gc35P6fZ7/fIRj8dDuV1BQMApGvx8fgUxEOrn/QkgWJL9XaH9Sj79JuMv77Df4QdkQpEJhSLKlIKcfN3vX4LChjtC7mL/Fgf7OXfsMwBBlimbKJelBbzqC8lGB8KP6XgWCELBC0GekpdJELMKJL6Iui3dulv1BaGt+FkQ27HXfUYQ9xkAJDk1nvSqLyYIBYQfQSgLBKHghbAGoYL6hS6o9Q6KbO09iX1emCC2Y6/r7PXfB4BCBH08SRAKCD/WhAICIhaLkRVSRMyNd5fV/mWf5yfT3Wr2KQBES5DXVYrFYkokEqqoqPC6KgA8QCYUmVAosmyPppWCeReIrALYRVvJT9j2m9fb4/XfB4BCBfUpc0GtN4DckAkFeMwqiwEA4I2gZhA4wev1uADkhnMWQJiQCUUmFIrE7to4UjDvApFVgExqD6CtvvyHra248YUhbOdY2LYnSNj3QLCkO2eDmlEU1HoDyA2ZUABcFeWsgrBxI4Bi1T4SiUSd/4YJTwDMjj4DAAoT5HWhAEQXmVBkQgVG0FOR7WRCJQcSTmxX0PcXvONGlkTU7nq6sQ85p+EUMqFQLPRbzsh0zgbxKXNRGxMAUZUu3kIQiiBUYAR90JwtCBWPxx0dmOWzvxgsQiII5YSg91cIN9onioW25oyoBKESiYT69+9f5NoAcAtBKAsEoYIl6AOZbEEop7cln/0V9H0MZxCEKhznEvyM9olioa05IypBKMnf9QaQG9aEAjyWnGrH3H0AgJe4DgHBwjkLIEzIhCITKjDCcjetWHesyIRCvpxuB7FYTBUVFZKU+q9Tv9uvmNrqTxwXoLgYV7grFoulDVD5eT+TCQVEA9PxLBCECpawDGQIQsHvnP6ibtWuag+aCQKgWOjjgOLinHNPpgCUVLz9nM+YIajBMwC5YToeAo9U5Nywv5AvgkLOIfMGQJQxFnGPX/atVT2yXedGjx7tm/oDKD4yociEQhHU/iLq5zs/fGGGG4q9KL+fkAXgLxwPAEGTbmyW6drq9BOXM8nWr+Zaf/pkIDyYjmeBIBTcZCfwVPt9gj0IGrtBS4JQdYV5e/2O4wEgaNL1W35ZVyld/ZJjBKsxcKb60ycD4UEQygJBKLgp2xfv2rjgIojsfqEnCFVXmLfX7zgeAIImqEGobPUjCAWEH2tCAQBcl7zzWTsjqvZdUNaAgJdofwDgPqtMaQBIIhOKTCi4hEwohF0+d2GjlokSte0FsBNrLMIp6Z4wW1FRoYqKCsufKeZ1xqqt21mGIl39uUYC4UEmFOAz3JFHFEWt3UdtewHslM8TwwC7Ml1bin3dsWrXdoJQuf4MgPAgE4pMKLjEL08tAdxCGwcAa2RBwgmxWCyVLZQu66k+P7SzdOODRCKhRCKRdrFyAOHCwuQWCELBTZWVlb5IkwbckunJNxLtHEB0EYSCE7It7ZBIJOr8V/JHxl22m1QEoYBoYDoeUGR271gVgjUnAABu41oDN9G+GrK7sHdyrNm/f38Xa5O7dIGm5HsAoo1MKDKh4JJiPDqXO63wUrY7tLRFIBy41uSOfWYf+6qhXB5uI/lzf4VhGwAUhkwooIgy3cHiDhAA5IZMCQQN13ogO84TIJrIhCITCi4oRhZUur/DnSQUQywWyzp4pC3CKYX2dQSxCsO1Bm6ifTUUhiwixgkAWJjcAkEouIUgFMIu2wCZp+PBSYX2dfSVhWH/wU20r4bCEISSeIAJEHUEoSwQhIJbCEIh7FgPCsVEEMpb7D+4ifbVkJ0gVO0n4vltYfL60m1P1I8zEHasCQWEEHPpvcP0HgBRwbUGbqJ9NZTcJxUVFWmftlyMpzA7we6T/hAcjIFRKDKhyISCCzLNg+euTzhE/c4t0/FQTIUOeKN+vgIIJrvT8vzcn2XahuRYmfFCsHBNhV1Mx7NAEApuIvU43KJ+AbYzMI7S/oC/Rf18BRBMYQ9CJfm5/miIayrsYjoeAMAxybuXTKNAENBOgfSYWgMAKCYyociEgkvIhAo37gLtVKxF+AEA7uB65l9kQsGP6DNgV7p4S6kHdQFCj0UYAQAAAACoi+l4gAuY+hF+HGMAAOCmeDye8Ql5QZBIJAJdfzTEGBiFYjoe0/HggmxPAmGtBYRBpqdARr2ds8YKgKDwcmoNfWV2QZ/OFvT6A8gfT8ezQBAKbsl2weViizBgPaj0WC/Bn/jCCzTk5XlBX5le8rhkutmT5Nd+LNPNqto45u7j+gcvEISyQBAKbiEIhSggCJUeX6z8ieMC+AvnZHphGEuGYWH1sOBcgxdYmBwAAAAAQoCH4AAIKjKhyISCC8Jw9wrIhkyo9Ljj6E8cl3BheknwcU6mF4a1lMiE8o+wnWv0/8HAdDwLBKHgFoJQiAI7QaioDhLCNtgLC45LuHA8g49jmJ6dAE5yvSW/XlcJQvlH2M61sG1PWKWLtzT2oC4AAA85FRiy8+hoqwVJ/TpYdhKPLwaA7OgrCxOExcmzoQ0A0UMmFJlQcEG2p4EQqYeXnLx7ZPW7EomE+vfv7/jfAgoV1cy8sKJ/QZjV76+yBWv82PYrKysz3qiS/FnvMArb9Y/+PxiYjmeBIBTcEovFMmaI0EnCS24HoWr/PgYJANxC/4Kwqx04SI4pizG2dCpgkWk6XiKRUCKRCHQgBN6h/w8GglAWCELBLawJBT8jCAUgDOhfEHZ211SSnG37Tp1bjIfhFvr/YGBNKAAAAIQGa8kAwZbMuCIbCrmi/w82glCAw6xSmIGwsdvOozBICNs6C0BQcJ75C30hcuX3p/vBv5xoM/RZ3mE6HtPx4DA7qdOki8JLTlx0s7XzeDwemQt5ISnhDIAAhAXTY5wX9ul4hfxuoFD0We5jTSgLBKHgBr6coxBBCUoQbP1RIYMYBkAAwoL+zHl2rrWJRKLOf50YMxCEQhTQZ7mPIJQFglBwA4swohBBuSAShPoRQSgAoD9zQywWy3lauxP7vBhPx6uNdgIv0Ge5jyCUBYJQcANBKBQiKBdEglA/IggFAPRnbsllSp7kr31OEAp+Rp/lvnTxllIP6gIAAAAAAICI4el4gMPi8bgqKipUUVHhdVUAXwjKOlf5isITAOG+sJ8nCK9k202uSVT/3yhMcl8GcVwZj8e5RsK3aJveYToe0/Hggkzpx6R5IpOgpAbnsgB/ULbJC04EHghehAPnCYKKtuus+n26F2tCOSG5HcngWaYgml/qDMBZrAllgSAU3EIQyn+C8kU9SPXMNDCu3c75guIcq/ZhdRzYv8HDeYKgou06K9c1oJKS1wK/jBly2Q6r65hftgNA/ghCWSAIBbcQhPIfBsnOS9fOE4mEEokEmVAuYJHX8OI8QVDRdp2Vb/DGb0GbfINpSbQhIPjSxVtYEwoAkDOrjJyk5JpofhsQA0B9Qck+BTKhzQLZ0d/7B5lQZEJBzndKZEL5D3dqnWXnDmdy/3LRdw6ZUOHFeeINrg2Fo+06K58MIj+2WbvbkW7xcj9uE4KN/r74mI5ngSAUkpzulAhC+Q8XHmflEoSCcwhCAc7i2gC/iVoQqqSkhPMQRUE7Kz6m4wEAEEI8YhgAwqN+n26nj4/FYr7LPkuX4QQAZEKRCQWRCRUFTBdwFplQ3qAdA87izjj8LsgZsMlrVqZgVDweV0VFRer/E4mEJK5tcB79ffGRCQX4RPKCzMW1uNjfCAPaMYDaCEwj6OoHqPr37+9NRYA80Afnh0woMqEg5yPjdu78EHlHkNHGAYRB0L9AcGc//IKcCRWW9a0QDm709/TBmbEwuQWCUEhyaxDKtDyEHW0cALzDF6Dwq6ysrDNdLR0/HneCUAg7+uDMmI4HZBCku55AELAYKQAAhbMTgPL6mhv0jEIAxUUmFJlQcBFZIgi7dG2c9g0A7uMufPgF4UEg6dohmVAIO/rgzNLFW0o9qAsAIASs7nwCAIDi8ToLCgByxXQ8wAMMGBAGtGMAyJ8TU5joh+HnaW/J9kk7RVjRtvPDdDym48FFTFVCmDHdFGHE2iYoFqZxwI5sU9ri8bjnfVS2tlxZWSnJ3vpWnANAePB0PAsEoeA2glAIs0KCUHzRh18RGECx0NZgR5DXhMr0fjpebwsA5/B0PMBHYrEYX7gRWnZSk60+wzkBAEBdta+Xfp36U0i9/LpNANwTmkyoiy++WFdffbX22msvffLJJ7ryyis1Y8aMjD9DJlTxRSn7IRaLZbywcqcHQVdIph8ZAPAr2iaKhbYGO2qPndONK/3ebpi+D0RTqKfjnXnmmfrnP/+pSy65RDNmzNAll1yi4cOH66CDDtLixYvT/hxBqOKL0oArW+pxWLcb0UEQCmFE20Sx0NZgRxCm42VDEAqIplBPx/vDH/6gCRMm6OGHH5YkXXHFFTrhhBN08cUX67rrrvO4dgAQHaTVA4A99JcAgCgKfBCqSZMmOvLII3XHHXfUef21117TMccc0+DzF1xwgUaMGCFJatu2bVHqCABhxLpOCCMCAygW+ksAQBQFPgjVtm1bNW7cWCtWrKjz+ooVKzRw4MAGnx83bpzGjRsnaWd6GAAgP4V8geKLPvyKwAAAAIB7Ah+EAoKEL97ATnzRBwAgP2EYT4ZhGwDkJ/BBqO+++07bt29XWVlZndfLysq0fPlyj2qFdKJ0wWGqEgAAAAoRhvFkGLYBgHNC8XS8t99+Wx9++KEuvPDC1GufffaZnn322YwLk/N0PAAAAAAAAGeF+ul4d911lx5//HHNmTNHM2fO1EUXXaSf/OQnevDBB72uGgAAAAAAABSSINS///1v7bnnnho1apT22msvzZs3TyeddJK++eYbr6sGAAAAAAAAhSQIJUkPPPCAHnjgAa+rAQAAAAAAAAulXlcAAAAAAAAA4UcQCgAAAAAAAK4jCAUAAAAAAADXEYQCAAAAAACA6whCAQAAAAAAwHUEoQAAAAAAAOA6glAAAAAAAABwHUEoAAAAAAAAuI4gFAAAAAAAAFxHEAoAAAAAAACuIwgFAAAAAAAA1xGEAgAAAAAAgOsIQgEAAAAAAMB1BKEAAAAAAADgOoJQAAAAAAAAcB1BKAAAAAAAALiOIBQAAAAAAABcRxAKAAAAAAAAriMIBQAAAAAAANcRhAIAAAAAAIDrCEIBAAAAAADAdQShAAAAAAAA4DqCUAAAAAAAAHAdQSgAAAAAAAC4jiAUAAAAAAAAXEcQCgAAAAAAAK4jCAUAAAAAAADXEYQCAAAAAACA60okGa8r4ZWVK1fq66+/9roaCJC2bdvqu+++87oagKto5wg72jiigHaOKKCdI+yC3MY7deqk9u3bN3g90kEoIFdz585Vr169vK4G4CraOcKONo4ooJ0jCmjnCLswtnGm4wEAAAAAAMB1BKEAAAAAAADgOoJQQA7Gjh3rdRUA19HOEXa0cUQB7RxRQDtH2IWxjbMmFAAAAAAAAFxHJhQAAAAAAABcRxAKAAAAAAAAriMIBQAAAAAAANcRhEJkXXPNNTLG6N577029duqpp2rq1KlauXKljDHq169fg59r2rSp7rnnHq1atUo1NTV64YUX1LFjxzqf2WeffTR58mTV1NRo1apVuvvuu9WkSRPXtwmor347b9y4sW655RZ9+OGHqqmp0bfffquJEydqn332qfNztHMEhVVf/uc//1nz589XTU2NVq9erf/85z8qLy+v83O0cQSJVTuv7cEHH5QxRldddVWd12nnCBKrdj5+/HgZY+qU2bNn1/k52jmCIl1f3rVrVz377LNas2aNNmzYoP/+97/q3r176v2wtXGCUIikn/3sZxoxYoQ+/PDDOq83b95cs2bN0h/+8Ie0PztmzBidfvrp+vWvf62+fftq991310svvaTS0p2nU2lpqV5++WW1bNlSffv21a9//Wv96le/0p133unqNgH1WbXz3XbbTUcccYRuvPFGHXHEERo6dKj22WcfTZ06VY0aNUp9jnaOIEjXl3/22We69NJLdcghh+jYY49VVVWVpk6dqvbt26c+QxtHUKRr50mnn366jj76aC1durTBe7RzBEWmdv7666+rQ4cOqXLSSSfVeZ92jiBI18Y7d+6smTNnqqqqSscdd5wOPvhgjRo1SjU1NanPhLGNGwolSmX33Xc3X3zxhamoqDCVlZXm3nvvbfCZPffc0xhjTL9+/Rr87JYtW8zZZ5+dem3vvfc2O3bsMIMHDzaSzAknnGB27Nhh9t5779RnfvOb35hNmzaZli1ber79lGgUO+08WQ488EBjjDEHH3xw6mdp5xS/l1zaeMuWLY0xJtV+aeOUoJRs7Xzfffc1S5YsMd27dzdVVVXmqquuqvOztHNKEEqmdj5+/Hjz4osvZvxZ2jnF7yVTG584caL55z//mfFnw9bGyYRC5IwdO1bPPPOMEolEzj975JFHqmnTpnrttddSry1ZskTz58/XMcccI0kqLy/X/PnztWTJktRnXn31Ve2yyy468sgjC64/YEcu7Xz33XeXJK1Zs0YS7RzBYLeNN2nSRCNGjFB1dbU++OADSbRxBEemdt6oUSM98cQT+utf/6oFCxY0eJ92jqDI1p8fe+yxWrFihT777DONHTtW7dq1S71HO0cQpGvjJSUl+uUvf6lPP/1Ur7zyilauXKk5c+bozDPPTH0mjG28sdcVAIrp/PPP1/7776//+Z//yevnO3TooO3bt+u7776r8/qKFSvUoUOH1GdWrFhR5/3vvvtO27dvT30GcFMu7bxJkya68847NXny5NRUDto5/M5OGz/55JP15JNParfddtOyZcs0aNAgrVy5UhJtHMGQrZ2PHj1a3333nR588EHL92nnCIJs7Xzq1KmaNGmSqqqq1LlzZ/31r3/VG2+8oSOPPFJbt26lncP3MrXx9u3bq2XLlrruuut0/fXX65prrtFxxx2niRMnqqamRlOmTAllGycIhcjo1q2bbrrpJh177LHavn2719UBXJFLO2/UqJH++c9/qnXr1hoyZEiRaggUxm4br6ysVM+ePdW2bVtdcMEF+ve//63y8nItX768iLUF8pOtnffr10/nnnuuevbsWfzKAQ6x058/9dRTqX/PmzdP//3vf/X111/r5JNP1nPPPVesqgJ5ydbGk2s6vfDCC/rb3/4mSfrwww911FFH6bLLLtOUKVOKWt9iYToeIqO8vFzt2rXTJ598om3btmnbtm2qqKjQJZdcom3btqlp06ZZf8fy5cvVuHFjtW3bts7rZWVlqS82y5cvV1lZWZ3327Ztq8aNG/PlB66z286T0zgOPfRQDRgwQKtXr079Dto5/MxuG9+4caO+/PJLvfPOOzr//PO1bds2nX/++ZJo4/C/bO38+OOP11577aVly5al3u/cubNuvfVWLV68WBLtHP6Xz9h82bJlWrJkibp27SqJdg5/y9bGv//+e23btk2ffvppnZ+bP3++9t13X0nhbeOeL0xFoRSjtGrVyvTo0aNOmTNnjpk4caLp0aNHnc9mW5j817/+deq1jh07Wi4M17Fjx9Rnfv3rX/t2YThKuIqddt64cWPzzDPPmAULFpgOHTo0+B20c4qfSy59ee3yxRdfmL/85S9Goo1T/F+ytfP27ds3eH/JkiXm9ttvN926dTMS7Zzi/5JPf77nnnuaLVu2mHPOOcdItHOKv4udNj5z5kzz2GOP1fm5xx57zLz88stGCm0b97wCFIpnpf7TCdq0aWMOO+ww069fP2OMMb/97W/NYYcdZsrKylKfuf/++83ixYvNgAEDTM+ePc0bb7xh3n//fVNaWmokmdLSUvPRRx+ZadOmmZ49e5oBAwaYJUuWmHvuucfz7aVEs9Ru540aNTLPPfecWbJkiTn88MNNWVlZquyyyy6pn6GdU4JUarfxli1bmr/85S/m6KOPNvvss4854ogjzD/+8Q+zefNmc8ghh6R+hjZOCVrJ9hTI+k/Hk2jnlOCV2u28efPm5vbbbze9e/c2nTp1Mv369TOzZs0yixcvNi1atEj9DO2cEqRSvy8fOnSo2bJli7ngggvMT3/6U3P++eebrVu3mpNOOin1mRC2cc8rQKF4Vup3AsOGDTNWYrFY6jNNmzY199xzj/nuu+/Mhg0bzOTJk+s8DlOS2WeffcyLL75oNmzYYL777jtz9913m6ZNm3q+vZRoltrtvFOnTpZt3Bhjhg0blvoZ2jklSKV2G991113NpEmTzNKlS83mzZvN0qVLzfPPP2+OPvroOj9DG6cEreQThKKdU4JWarfzXXbZxUydOtWsWLHCbNmyxSxatMiMHz++QRumnVOCVKz68mHDhpnPPvvMbNy40Xz44YfmrLPOqvN+2Np4yf//BwAAAAAAAOAaFiYHAAAAAACA6whCAQAAAAAAwHUEoQAAAAAAAOA6glAAAAAAAABwHUEoAAAAAAAAuI4gFAAAAAAAAFxHEAoAAMBCv379ZIzRsGHDvK6KJWNMqrz++uue1WP+/PmpelRVVXlWDwAA4H+Nva4AAACAVw477DCdcsopmjBhgr7++muvq5Oz6dOna+zYsVq2bJlndbj66qvVqlUr/e///q923XVXz+oBAAD8r0SS8boSAAAAXhg2bJgmTJigiooKvfnmm3XeKykpUdOmTbVt2zb98MMPHtUwPWOMJkyYoOHDh3tdFUlSZWWlOnfurC5dunhdFQAA4FNkQgEAAFgwxmjLli1eVwMAACA0WBMKAABEUiwW04QJEyRJiUQita7R+PHjJVmvCVX7tYsvvlgLFizQpk2b9NFHH+nkk0+WJB188MF65ZVXVF1dre+++0533323GjdueN9v//3312OPPaZvv/1WW7ZsUVVVlW677TbttttuBW9bVVWVKisrdeihh+r111/X+vXrtWLFCt1xxx1q1KiRmjVrpttvv11LlizRpk2b9Oabb6p79+51fkezZs0Ui8W0YMECbdiwQWvWrNFHH32k2267reD6AQCAaCITCgAARNKkSZO011576cILL9SNN96o+fPnS5K+/PLLrD976aWXqk2bNnr44Ye1efNmXXHFFXruued0xhlnaNy4cXriiSf0/PPPa/Dgwbriiiu0cuVK3XjjjamfP+KII/TGG29o7dq1euihh7R06VIddthhuuKKK9SnTx/169dP27dvL2j79t57b73++ut66qmn9Mwzz2jw4MG66qqrtH37dvXo0UO77rqrbrnlFrVt21Z//OMf9fzzz+vAAw+UMTtXavj73/+u3/72t3r00Ud11113qXHjxuratauOO+64guoFAACizVAoFAqFQqFEsQwbNswYY0y/fv0avNevXz9jjDHDhg1r8NqSJUvM7rvvnnr9kEMOMcYYs2PHDnPqqafW+T3vvvuu+fbbb+u89sEHH5j58+ebFi1a1Hn9lFNOafA30xVjjBk/frzle1VVVcYYY371q181qMuOHTvM888/X+f1yy+/3BhjzODBg1Ovff/99+bll1+2vS8rKytNVVWV58eUQqFQKBSKfwvT8QAAAHI0YcIErVu3LvX/H3/8saqrq/Xtt9/queeeq/PZGTNmaK+99lLz5s0l7Zyud9hhh+lf//qXmjVrpj333DNVZsyYoZqaGg0ePLjgOi5ZskTPPPNMg7qUlpbq3nvvrfP6W2+9JUnq2rVr6rXq6mr16NFDPXr0KLguAAAAEmtCAQAA5Oyrr75q8NqaNWtUVVVl+bok7bnnnpKkAw88UJL05z//Wd99912dsmrVKrVo0UJlZWUF1zFTXeq/V7+OknTllVeqTZs2mjdvnr744guNGzdOQ4YMUUlJScF1AwAA0cSaUAAAADnasWNHTq9LSgVvkv+94447NHXqVMvPJoNChchUl3Tv1Q4wTZ48WZ07d9ZJJ52kfv36aeDAgTr//PM1ffp0DRw4UNu2bSu4jgAAIFoIQgEAgMhKLsJdTJ9//rmknYGgadOmFf3v52LNmjWaOHGiJk6cKEm65ZZb9Kc//UlDhw5tMNUPAAAgG6bjAQCAyKqpqZEk7bHHHkX7m++//74+/vhjXXTRRerSpUuD9xs1aqQ2bdoUrT5WSktL1apVqwavv//++5KKu78AAEB4kAkFAAAia+7cudqxY4f+93//V23atNGGDRtUVVWlOXPmuPp3zznnHL3xxhv66KOP9Mgjj+iTTz7Rbrvtpv3331+nnXaarr32Wj366KOu1iGTli1batmyZZo8ebLef/99rVy5Ul26dNHFF1+s1atX68UXX/SsbgAAILgIQgEAgMhavHixzjvvPP3pT3/SAw88oKZNm2rChAmuB6E+/PBDHX744br22ms1ZMgQXXTRRVq/fr0WLVqkCRMmeD5Nb+PGjRozZowGDBiggQMHqkWLFqmg1M0336xly5Z5Wj8AABBMJZKKvxgCAAAACmKM0RNPPKHLL79cW7du1fr16z2pR6tWrdS4cWO98MIL6tixo+UUQwAAAIkgFAAAQCDVXlT9P//5jwYNGuRJPebPn6/u3btLkhYtWkQQCgAApMV0PAAAgAAaOHBg6t/ff/+9Z/UYPny4mjdvLknatGmTZ/UAAAD+RyYUAAAAAAAAXFfqdQUAAAAAAAAQfgShAAAAAAAA4DqCUAAAAAAAAHAdQSgAAAAAAAC4jiAUAAAAAAAAXEcQCgAAAAAAAK77f/du4NAfpqDfAAAAAElFTkSuQmCC", "text/plain": [ "
" ] diff --git a/doc/tutorials/unitary_event_analysis.ipynb b/doc/tutorials/unitary_event_analysis.ipynb index 94d8d82d8..2b5c161f5 100644 --- a/doc/tutorials/unitary_event_analysis.ipynb +++ b/doc/tutorials/unitary_event_analysis.ipynb @@ -34,12 +34,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-07-18T08:56:30.663173Z", - "start_time": "2018-07-18T08:56:29.825521Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "import random\n", @@ -66,12 +61,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-07-18T08:56:32.142189Z", - "start_time": "2018-07-18T08:56:31.420462Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "# Download data\n", @@ -92,10 +82,6 @@ "cell_type": "code", "execution_count": null, "metadata": { - "ExecuteTime": { - "end_time": "2018-07-18T08:56:32.920355Z", - "start_time": "2018-07-18T08:56:32.611208Z" - }, "nbsphinx": "hidden" }, "outputs": [], @@ -459,12 +445,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-07-18T08:56:33.836628Z", - "start_time": "2018-07-18T08:56:33.647488Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "io = neo.io.NixIO(f\"{filepath}\",'ro')\n", @@ -486,12 +467,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "ExecuteTime": { - "end_time": "2018-07-18T08:56:37.042743Z", - "start_time": "2018-07-18T08:56:34.926673Z" - } - }, + "metadata": {}, "outputs": [], "source": [ "UE = ue.jointJ_window_analysis(\n", diff --git a/elephant/__init__.py b/elephant/__init__.py index f542a3ff0..1ceea64fb 100644 --- a/elephant/__init__.py +++ b/elephant/__init__.py @@ -2,7 +2,7 @@ """ Elephant is a package for the analysis of neurophysiology data, based on Neo. -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/asset/asset.py b/elephant/asset/asset.py index c4968d0a4..4f464d7ca 100644 --- a/elephant/asset/asset.py +++ b/elephant/asset/asset.py @@ -1126,10 +1126,9 @@ def compute(self, u): "the computed joint prob. matrix lie outside of the " f"valid [0, 1] interval:\n{outside_vals}\nIf you're " "using PyOpenCL backend, make sure you've disabled " - "GPU Hangcheck as described here https://" - "software.intel.com/content/www/us/en/develop/" - "documentation/get-started-with-intel-oneapi-" - "base-linux/top/before-you-begin.html\n" + "GPU Hangcheck as described here https://www.intel." + "com/content/www/us/en/docs/oneapi/installation-" + "guide-linux/2023-1/gpu-disable-hangcheck.html \n" "Clipping the output array to 0 and 1.") P_total = np.clip(P_total, a_min=0., a_max=1., out=P_total) @@ -2529,11 +2528,11 @@ def joint_probability_matrix(self, pmat, filter_shape, n_largest, When using PyOpenCL backend, make sure you've disabled GPU Hangcheck as described in the `Intel GPU developers documentation - `_. Do it with caution - using your built-in - Intel graphics card to perform computations may make the system - unresponsive until the compute program terminates. + `_. Do it with + caution -using your built-in Intel graphics card to perform + computations may make the system unresponsive until the compute + program terminates. """ l, w = filter_shape diff --git a/elephant/causality/granger.py b/elephant/causality/granger.py index ad351abe4..673161373 100644 --- a/elephant/causality/granger.py +++ b/elephant/causality/granger.py @@ -75,7 +75,7 @@ :target: https://mybinder.org/v2/gh/NeuralEnsemble/elephant/master ?filepath=doc/tutorials/granger_causality.ipynb -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/conversion.py b/elephant/conversion.py index 276da8ec3..f3686d643 100644 --- a/elephant/conversion.py +++ b/elephant/conversion.py @@ -70,7 +70,7 @@ >>> bst # doctest: +ELLIPSIS BinnedSpikeTrain(t_start=0.0 ms, t_stop=9000.0 ms, bin_size=1000.0 ms; ... -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: BSD, see LICENSE.txt for details. """ diff --git a/elephant/cubic.py b/elephant/cubic.py index baf5a70b5..ac117406e 100644 --- a/elephant/cubic.py +++ b/elephant/cubic.py @@ -39,7 +39,7 @@ >>> kappa # doctest: +SKIP [20.1, 22.656565656565657, 27.674706246134818] -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: BSD, see LICENSE.txt for details. """ diff --git a/elephant/functional_connectivity.py b/elephant/functional_connectivity.py index 11f7f14ef..9e7ea0b32 100644 --- a/elephant/functional_connectivity.py +++ b/elephant/functional_connectivity.py @@ -23,9 +23,9 @@ :license: Modified BSD, see LICENSE.txt for details. """ -from elephant.functional_connectivity_src.total_spiking_probability_edges import ( - total_spiking_probability_edges, -) +from elephant.functional_connectivity_src.total_spiking_probability_edges \ + import ( + total_spiking_probability_edges, + ) __all__ = ["total_spiking_probability_edges"] - diff --git a/elephant/functional_connectivity_src/total_spiking_probability_edges.py b/elephant/functional_connectivity_src/total_spiking_probability_edges.py index 0e6a1762f..054fd0e13 100644 --- a/elephant/functional_connectivity_src/total_spiking_probability_edges.py +++ b/elephant/functional_connectivity_src/total_spiking_probability_edges.py @@ -29,43 +29,41 @@ def total_spiking_probability_edges( The default window sizes and maximum delay were optimized using in-silico generated spike trains. - *Background:* + **Background:** - On an excitatory connection the spike rate increases and decreases again - due to the refractory period which results in local maxima in the - cross-correlogram followed by downwards slope. - + due to the refractory period which results in local maxima in the + cross-correlogram followed by downwards slope. - On an inhibitory connection the spike rate decreases and after refractory - period, increases again which results in local minima surrounded by high - values in the cross-correlogram. - + period, increases again which results in local minima surrounded by high + values in the cross-correlogram. - An edge filter can be used to interpret the cross-correlogram and - accentuate the local maxima and minima + accentuate the local maxima and minima - *Procedure:* + **Procedure:** - 1) Compute normalized cross-correlation :math:`NCC` of spike trains of all - neuron pairs. - 2) Convolve :math:`NCC` with edge filter :math:`g_{i}` to compute - :math:`SPE`. - 3) Convolve :math:`SPE` with corresponding running total filter - :math:`h_{i}` to account for different lengths after convolution with - edge filter. - 4) Compute :math:`TSPE` using the sum of all :math:`SPE` for all different - filter pairs. - 5) Compute the connectivity matrix by using the index of the TSPE values - with the highest absolute values. + 1. Compute normalized cross-correlation :math:`NCC` of spike trains of all + neuron pairs. + 2. Convolve :math:`NCC` with edge filter :math:`g_{i}` to compute + :math:`SPE`. + 3. Convolve :math:`SPE` with corresponding running total filter + :math:`h_{i}` to account for different lengths after convolution with + edge filter. + 4. Compute :math:`TSPE` using the sum of all :math:`SPE` for all different + filter pairs. + 5. Compute the connectivity matrix by using the index of the TSPE values + with the highest absolute values. - *Normalized Cross-Correlation:* + **Normalized Cross-Correlation:** - .. math :: + .. math:: NCC_{XY}(d) = \frac{1}{N} \sum_{i=-\infty}^{\infty}{ \frac{ (y_{(i)} - \bar{y}) \cdot (x_{(i-d)} - \bar{x}) }{ \sigma_x \cdot \sigma_y }} - *Edge Filter* + **Edge Filter** - .. math :: + .. math:: g_{(i)} = \begin{cases} - \frac{1}{a} & 0 \lt i \leq a \ \ @@ -79,14 +77,14 @@ def total_spiking_probability_edges( `crossover_window_size`. -*Spiking Probability Edges* +**Spiking Probability Edges** -.. math :: +.. math:: SPE_{X \rightarrow Y(d)} = NCC_{XY}(d) * g(i) *Total Spiking Probability Edges:* -.. math :: +.. math:: TSPE_{X \rightarrow Y}(d) = \sum_{n=1}^{N_a \cdot N_b \cdot N_c} {SPE_{X \rightarrow Y}^{(n)}(d) * h(i)^{(n)} } @@ -105,8 +103,8 @@ def total_spiking_probability_edges( observed_window_sizes : List[int] Array of window sizes for the observed area. This corresponds to parameter `b` of the edge filter and the length of the running filter - as defined in :cite:`functional_connectivity-de_blasi19_169`. Value is given - in units of the number of bins according to the binned spike trains + as defined in :cite:`functional_connectivity-de_blasi19_169`. Value is + given in units of the number of bins according to the binned spike trains `spike_trains`. Default: [2, 3, 4, 5, 6] crossover_window_sizes : List[int] diff --git a/elephant/gpfa/gpfa.py b/elephant/gpfa/gpfa.py index 025d03d35..79d490e0d 100644 --- a/elephant/gpfa/gpfa.py +++ b/elephant/gpfa/gpfa.py @@ -65,7 +65,7 @@ The original MATLAB code is available at Byron Yu's website: https://users.ece.cmu.edu/~byronyu/software.shtml -:copyright: Copyright 2014-2023 by the Elephant team, see AUTHORS.txt. +:copyright: Copyright 2014-2024 by the Elephant team, see AUTHORS.txt. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/gpfa/gpfa_core.py b/elephant/gpfa/gpfa_core.py index 6277a8903..dc3112954 100644 --- a/elephant/gpfa/gpfa_core.py +++ b/elephant/gpfa/gpfa_core.py @@ -2,7 +2,7 @@ """ GPFA core functionality. -:copyright: Copyright 2014-2023 by the Elephant team, see AUTHORS.txt. +:copyright: Copyright 2014-2024 by the Elephant team, see AUTHORS.txt. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/gpfa/gpfa_util.py b/elephant/gpfa/gpfa_util.py index d9ba84f5d..bc0e7ad8a 100644 --- a/elephant/gpfa/gpfa_util.py +++ b/elephant/gpfa/gpfa_util.py @@ -2,7 +2,7 @@ """ GPFA util functions. -:copyright: Copyright 2014-2023 by the Elephant team, see AUTHORS.txt. +:copyright: Copyright 2014-2024 by the Elephant team, see AUTHORS.txt. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/kernels.py b/elephant/kernels.py index 4cdfda4b7..8c305a58b 100644 --- a/elephant/kernels.py +++ b/elephant/kernels.py @@ -67,7 +67,7 @@ >>> kernel.icdf(0.5) array(1.18677054) * s -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/neo_tools.py b/elephant/neo_tools.py index 172398c01..53ab745e6 100644 --- a/elephant/neo_tools.py +++ b/elephant/neo_tools.py @@ -10,7 +10,7 @@ get_all_events get_all_epochs -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/parallel/__init__.py b/elephant/parallel/__init__.py index f0adcc1d8..370148c48 100644 --- a/elephant/parallel/__init__.py +++ b/elephant/parallel/__init__.py @@ -32,7 +32,7 @@ MPICommExecutor -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/phase_analysis.py b/elephant/phase_analysis.py index a7a785bd2..e74e9dee4 100644 --- a/elephant/phase_analysis.py +++ b/elephant/phase_analysis.py @@ -19,7 +19,7 @@ :keyprefix: phase- :style: unsrt -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/signal_processing.py b/elephant/signal_processing.py index 65c66e2a4..9a901b41a 100644 --- a/elephant/signal_processing.py +++ b/elephant/signal_processing.py @@ -14,7 +14,7 @@ rauc derivative -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/spade.py b/elephant/spade.py index 5284b1712..251fc6ecd 100644 --- a/elephant/spade.py +++ b/elephant/spade.py @@ -99,7 +99,7 @@ Refer to Viziphant documentation to check how to visualzie such patterns. -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: BSD, see LICENSE.txt for details. """ from __future__ import division, print_function, unicode_literals diff --git a/elephant/spectral.py b/elephant/spectral.py index 6c2e978bd..ca46033ad 100644 --- a/elephant/spectral.py +++ b/elephant/spectral.py @@ -14,7 +14,7 @@ multitaper_coherence -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/spike_train_correlation.py b/elephant/spike_train_correlation.py index 03b4d9acb..65ccf6800 100644 --- a/elephant/spike_train_correlation.py +++ b/elephant/spike_train_correlation.py @@ -11,7 +11,7 @@ spike_time_tiling_coefficient spike_train_timescale -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ from __future__ import division, print_function, unicode_literals diff --git a/elephant/spike_train_dissimilarity.py b/elephant/spike_train_dissimilarity.py index 6fa8f4f8e..3234f8916 100644 --- a/elephant/spike_train_dissimilarity.py +++ b/elephant/spike_train_dissimilarity.py @@ -16,7 +16,7 @@ victor_purpura_distance van_rossum_distance -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/spike_train_generation.py b/elephant/spike_train_generation.py index 2fd6c522a..1c279c61a 100644 --- a/elephant/spike_train_generation.py +++ b/elephant/spike_train_generation.py @@ -45,7 +45,7 @@ .. bibliography:: :keyprefix: generation- -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/spike_train_surrogates.py b/elephant/spike_train_surrogates.py index 22f028844..5d6cd4300 100644 --- a/elephant/spike_train_surrogates.py +++ b/elephant/spike_train_surrogates.py @@ -28,7 +28,7 @@ bin_shuffling trial_shifting -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/spike_train_synchrony.py b/elephant/spike_train_synchrony.py index 8eefc03da..946a24ae2 100644 --- a/elephant/spike_train_synchrony.py +++ b/elephant/spike_train_synchrony.py @@ -13,7 +13,7 @@ Synchrotool -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ from __future__ import division, print_function, unicode_literals diff --git a/elephant/sta.py b/elephant/sta.py index f41dd8761..aa2657059 100644 --- a/elephant/sta.py +++ b/elephant/sta.py @@ -9,7 +9,7 @@ spike_triggered_average spike_field_coherence -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/statistics.py b/elephant/statistics.py index 868b4b06d..0ab389572 100644 --- a/elephant/statistics.py +++ b/elephant/statistics.py @@ -58,7 +58,7 @@ :keyprefix: statistics- -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/test/test_asset.py b/elephant/test/test_asset.py index 5b7458114..e9309e4c2 100644 --- a/elephant/test/test_asset.py +++ b/elephant/test/test_asset.py @@ -2,7 +2,7 @@ """ Unit tests for the ASSET analysis. -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/test/test_causality.py b/elephant/test/test_causality.py index b7c3378f0..552fe2f05 100644 --- a/elephant/test/test_causality.py +++ b/elephant/test/test_causality.py @@ -2,7 +2,7 @@ """ Unit tests for the causality module. -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ from __future__ import division, print_function diff --git a/elephant/test/test_conversion.py b/elephant/test/test_conversion.py index a0f714a17..21e8a0b29 100644 --- a/elephant/test/test_conversion.py +++ b/elephant/test/test_conversion.py @@ -2,7 +2,7 @@ """ Unit tests for the conversion module. -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/test/test_cubic.py b/elephant/test/test_cubic.py index b7e42033f..fd6e44d7d 100644 --- a/elephant/test/test_cubic.py +++ b/elephant/test/test_cubic.py @@ -2,7 +2,7 @@ """ Unit tests for the CUBIC analysis. -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/test/test_gpfa.py b/elephant/test/test_gpfa.py index 32d468ef0..fcb231017 100644 --- a/elephant/test/test_gpfa.py +++ b/elephant/test/test_gpfa.py @@ -2,7 +2,7 @@ """ Unit tests for the GPFA analysis. -:copyright: Copyright 2014-2023 by the Elephant team, see AUTHORS.txt. +:copyright: Copyright 2014-2024 by the Elephant team, see AUTHORS.txt. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/test/test_kernels.py b/elephant/test/test_kernels.py index 0fa7ae865..c31f87600 100644 --- a/elephant/test/test_kernels.py +++ b/elephant/test/test_kernels.py @@ -2,7 +2,7 @@ """ Unit tests for the kernels module. -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/test/test_neo_tools.py b/elephant/test/test_neo_tools.py index 8bb88a141..dbb5d5aad 100644 --- a/elephant/test/test_neo_tools.py +++ b/elephant/test/test_neo_tools.py @@ -2,7 +2,7 @@ """ Unit tests for the neo_tools module. -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ import random diff --git a/elephant/test/test_phase_analysis.py b/elephant/test/test_phase_analysis.py index 50b4f340f..6b8218c99 100644 --- a/elephant/test/test_phase_analysis.py +++ b/elephant/test/test_phase_analysis.py @@ -2,7 +2,7 @@ """ Unit tests for the phase analysis module. -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ from __future__ import division, print_function diff --git a/elephant/test/test_signal_processing.py b/elephant/test/test_signal_processing.py index a0668a3b0..7633a7604 100644 --- a/elephant/test/test_signal_processing.py +++ b/elephant/test/test_signal_processing.py @@ -2,7 +2,7 @@ """ Unit tests for the signal_processing module. -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ from __future__ import division, print_function diff --git a/elephant/test/test_spade.py b/elephant/test/test_spade.py index a031b3928..4a9579393 100644 --- a/elephant/test/test_spade.py +++ b/elephant/test/test_spade.py @@ -1,7 +1,7 @@ """ Unit tests for the spade module. -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ import unittest diff --git a/elephant/test/test_spectral.py b/elephant/test/test_spectral.py index e5a6d1085..41244fb66 100644 --- a/elephant/test/test_spectral.py +++ b/elephant/test/test_spectral.py @@ -2,7 +2,7 @@ """ Unit tests for the spectral module. -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/test/test_spike_train_correlation.py b/elephant/test/test_spike_train_correlation.py index 1e7bb5948..cae01e479 100644 --- a/elephant/test/test_spike_train_correlation.py +++ b/elephant/test/test_spike_train_correlation.py @@ -2,7 +2,7 @@ """ Unit tests for the spike_train_correlation module. -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/test/test_spike_train_dissimilarity.py b/elephant/test/test_spike_train_dissimilarity.py index 7fa2e6cc9..6cab2858b 100644 --- a/elephant/test/test_spike_train_dissimilarity.py +++ b/elephant/test/test_spike_train_dissimilarity.py @@ -2,7 +2,7 @@ """ Tests for the spike train dissimilarity measures module. -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ import unittest diff --git a/elephant/test/test_spike_train_generation.py b/elephant/test/test_spike_train_generation.py index f21048e2f..3ea160c35 100644 --- a/elephant/test/test_spike_train_generation.py +++ b/elephant/test/test_spike_train_generation.py @@ -2,7 +2,7 @@ """ Unit tests for the spike_train_generation module. -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/test/test_spike_train_surrogates.py b/elephant/test/test_spike_train_surrogates.py index af961b39b..a518bdc4f 100644 --- a/elephant/test/test_spike_train_surrogates.py +++ b/elephant/test/test_spike_train_surrogates.py @@ -2,7 +2,7 @@ """ unittests for spike_train_surrogates module. -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/test/test_sta.py b/elephant/test/test_sta.py index e9d43e6a4..0b9c7c52e 100644 --- a/elephant/test/test_sta.py +++ b/elephant/test/test_sta.py @@ -2,7 +2,7 @@ """ Tests for the function sta module -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/test/test_statistics.py b/elephant/test/test_statistics.py index b5bf8be19..426111810 100644 --- a/elephant/test/test_statistics.py +++ b/elephant/test/test_statistics.py @@ -2,7 +2,7 @@ """ Unit tests for the statistics module. -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ from __future__ import division diff --git a/elephant/test/test_trials.py b/elephant/test/test_trials.py index 11138fef3..fb0ceab10 100644 --- a/elephant/test/test_trials.py +++ b/elephant/test/test_trials.py @@ -2,7 +2,7 @@ """ Unit tests for the trials objects. -:copyright: Copyright 2014-2023 by the Elephant team, see AUTHORS.txt. +:copyright: Copyright 2014-2024 by the Elephant team, see AUTHORS.txt. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/test/test_unitary_event_analysis.py b/elephant/test/test_unitary_event_analysis.py index 21e24fe5e..4d09836fc 100644 --- a/elephant/test/test_unitary_event_analysis.py +++ b/elephant/test/test_unitary_event_analysis.py @@ -1,7 +1,7 @@ """ Unit tests for the Unitary Events analysis -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/test/test_waveform_features.py b/elephant/test/test_waveform_features.py index bc88721ee..a4a50ffbf 100644 --- a/elephant/test/test_waveform_features.py +++ b/elephant/test/test_waveform_features.py @@ -1,7 +1,7 @@ """ Unit tests for the waveform_feature module. -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/trials.py b/elephant/trials.py index a81012d51..cd006addd 100644 --- a/elephant/trials.py +++ b/elephant/trials.py @@ -34,7 +34,7 @@ TrialsFromBlock TrialsFromLists -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/unitary_event_analysis.py b/elephant/unitary_event_analysis.py index e93e6f81d..6396905bc 100644 --- a/elephant/unitary_event_analysis.py +++ b/elephant/unitary_event_analysis.py @@ -45,7 +45,7 @@ jointJ_window_analysis -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/elephant/waveform_features.py b/elephant/waveform_features.py index 7910edcdf..e36a52f71 100644 --- a/elephant/waveform_features.py +++ b/elephant/waveform_features.py @@ -6,7 +6,7 @@ waveform_width waveform_snr -:copyright: Copyright 2014-2023 by the Elephant team, see `doc/authors.rst`. +:copyright: Copyright 2014-2024 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ diff --git a/requirements/environment.yml b/requirements/environment.yml index 9f6196b6e..fa8fb6e1d 100644 --- a/requirements/environment.yml +++ b/requirements/environment.yml @@ -6,7 +6,7 @@ channels: dependencies: - python>=3.8 - mpi4py - - numpy>=1.19.5 + - numpy>=1.19.5, <2 - scipy>=1.10.0 - tqdm - scikit-learn diff --git a/requirements/requirements.txt b/requirements/requirements.txt index 929268871..b3b9d6f98 100644 --- a/requirements/requirements.txt +++ b/requirements/requirements.txt @@ -1,5 +1,5 @@ neo>=0.10.0 -numpy>=1.19.5 +numpy>=1.19.5, <2 quantities>=0.14.1 scipy>=1.10.0 six>=1.10.0 From 15e8ef8e2a3b9853f9d7ca6bffd158c56cb545ba Mon Sep 17 00:00:00 2001 From: Moritz Kern <92092328+Moritz-Alexander-Kern@users.noreply.github.com> Date: Wed, 10 Apr 2024 14:25:04 +0200 Subject: [PATCH 2/9] Release 1.1.0 (#628) --- elephant/VERSION | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/elephant/VERSION b/elephant/VERSION index ab82f904d..9084fa2f7 100644 --- a/elephant/VERSION +++ b/elephant/VERSION @@ -1 +1 @@ -1.0.1b1 +1.1.0 From a4e601e1b70d8b7eef5dd555da4af20acc20ec01 Mon Sep 17 00:00:00 2001 From: Moritz Kern <92092328+Moritz-Alexander-Kern@users.noreply.github.com> Date: Fri, 12 Apr 2024 08:58:21 +0200 Subject: [PATCH 3/9] [Main] Bump Version number after release (#629) * bump version number after release --- elephant/VERSION | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/elephant/VERSION b/elephant/VERSION index 9084fa2f7..49669234c 100644 --- a/elephant/VERSION +++ b/elephant/VERSION @@ -1 +1 @@ -1.1.0 +1.1.0b1 From 24c32b748154c5da392952d3b2b216f66630f48c Mon Sep 17 00:00:00 2001 From: Moritz Kern <92092328+Moritz-Alexander-Kern@users.noreply.github.com> Date: Thu, 25 Apr 2024 14:12:16 +0200 Subject: [PATCH 4/9] [MAIN] Fix CI runner macOS (#631) * update mpi4py --- .github/workflows/CI.yml | 95 ++++++++++++++++++++-------------------- elephant/VERSION | 2 +- 2 files changed, 48 insertions(+), 49 deletions(-) diff --git a/.github/workflows/CI.yml b/.github/workflows/CI.yml index 8c3632b26..b22fc56ed 100644 --- a/.github/workflows/CI.yml +++ b/.github/workflows/CI.yml @@ -74,6 +74,11 @@ jobs: - name: Get current year-month id: date run: echo "date=$(date +'%Y-%m')" >> $GITHUB_OUTPUT + + - name: Get pip cache dir + id: pip-cache + run: | + echo "dir=$(pip cache dir)" >> $GITHUB_OUTPUT - uses: actions/checkout@v3 @@ -87,7 +92,7 @@ jobs: - name: Cache test_env uses: actions/cache@v3 with: - path: /home/runner/.cache/pip + path: ${{ steps.pip-cache.outputs.dir }} # Look to see if there is a cache hit for the corresponding requirements files # cache will be reset on changes to any requirements or every month key: ${{ runner.os }}-venv-${{ hashFiles('**/requirements.txt') }}-${{ hashFiles('**/requirements-tests.txt') }} @@ -98,10 +103,7 @@ jobs: run: | python -m pip install --upgrade pip pip install coveralls - pip install -r requirements/requirements-tests.txt - pip install -r requirements/requirements.txt - pip install -r requirements/requirements-extras.txt - pip install -e . + pip install -e .[extras,tests] - name: List packages run: | @@ -130,7 +132,7 @@ jobs: matrix: # OS [ubuntu-latest, macos-latest, windows-latest] os: [macos-11,macos-12] - python-version: [3.9] + python-version: [3.11] steps: - name: Get current year-month id: date @@ -158,9 +160,7 @@ jobs: shell: bash -l {0} run: | python --version - mamba install mpi4py openmpi - mamba install pytest - mamba install pytest-cov coveralls + mamba install pytest pytest-cov coveralls pip install -e .[extras] - name: List packages @@ -187,18 +187,9 @@ jobs: strategy: matrix: # python versions for elephant: [3.8, 3.9, 3.10, 3.11] - python-version: [3.8,] + python-version: [3.11,] # OS [ubuntu-latest, macos-latest, windows-latest] os: [windows-latest] - include: - # - os: ubuntu-latest - # path: ~/.cache/pip - # - os: macos-latest - # path: ~/Library/Caches/pip - - os: windows-latest - path: ~\AppData\Local\pip\Cache - # do not cancel all in-progress jobs if any matrix job fails - fail-fast: false steps: - name: Get current year-month @@ -206,6 +197,7 @@ jobs: run: echo "date=$(date +'%Y-%m')" >> $GITHUB_OUTPUT - uses: actions/checkout@v3 + - name: Set up Python ${{ matrix.python-version }} uses: actions/setup-python@v4 with: @@ -214,7 +206,7 @@ jobs: - name: Cache pip uses: actions/cache@v3 with: - path: ${{ matrix.path }} + path: ~\AppData\Local\pip\Cache # Look to see if there is a cache hit for the corresponding requirements files key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}-${{ hashFiles('**/requirements-tests.txt') }} -${{ hashFiles('**/requirements-extras.txt') }}-${{ hashFiles('setup.py') }} -${{ hashFiles('**/CI.yml') }}-${{ steps.date.outputs.date }} @@ -222,11 +214,8 @@ jobs: - name: Install dependencies run: | python -m pip install --upgrade pip - pip install -r requirements/requirements-tests.txt - pip install -r requirements/requirements.txt - pip install -r requirements/requirements-extras.txt pip install pytest-cov coveralls - pip install -e . + pip install -e .[extras,tests] - name: List packages run: | @@ -267,11 +256,16 @@ jobs: with: python-version: ${{ matrix.python-version }} + - name: Get pip cache dir + id: pip-cache + run: | + echo "dir=$(pip cache dir)" >> $GITHUB_OUTPUT + - name: Cache test_env uses: actions/cache@v3 with: - path: ~/.cache/pip - # Look to see if there is a cache hit for the corresponding requirements files + path: ${{ steps.pip-cache.outputs.dir }} + # look to see if there is a cache hit for the corresponding requirements files # cache will be reset on changes to any requirements or every month key: ${{ runner.os }}-venv-${{ hashFiles('**/requirements.txt') }}-${{ hashFiles('**/requirements-tests.txt') }} -${{ hashFiles('**/requirements-extras.txt') }}-${{ hashFiles('setup.py') }} -${{ hashFiles('**/CI.yml') }}-${{ steps.date.outputs.date }} @@ -283,12 +277,8 @@ jobs: python -m pip install --upgrade pip pip install mpi4py - pip install coveralls - pip install -r requirements/requirements-tests.txt - pip install -r requirements/requirements.txt - pip install -r requirements/requirements-extras.txt pip install pytest-cov coveralls - pip install -e . + pip install -e .[extras,tests] - name: List packages run: | @@ -313,6 +303,8 @@ jobs: runs-on: ${{ matrix.os }} strategy: matrix: + # python versions for elephant: [3.8, 3.9, 3.10, 3.11] + python-version: [3.11] # OS [ubuntu-latest, macos-latest, windows-latest] os: [ubuntu-latest] @@ -320,19 +312,28 @@ jobs: fail-fast: false steps: + - name: Get current year-month + id: date + run: echo "date=$(date +'%Y-%m')" >> $GITHUB_OUTPUT + - uses: actions/checkout@v3 + - name: Get pip cache dir + id: pip-cache + run: | + echo "dir=$(pip cache dir)" >> $GITHUB_OUTPUT + - name: Cache pip uses: actions/cache@v3 with: - path: ~/.cache/pip + path: ${{ steps.pip-cache.outputs.dir }} key: ${{ runner.os }}-pip-${{hashFiles('requirements/environment-tests.yml') }}-${{ hashFiles('**/CI.yml') }}-${{ steps.date.outputs.date }} - uses: conda-incubator/setup-miniconda@030178870c779d9e5e1b4e563269f3aa69b04081 # corresponds to v3.0.3 with: auto-update-conda: true - python-version: 3.11 + python-version: ${{ matrix.python-version }} mamba-version: "*" channels: conda-forge,defaults channel-priority: true @@ -344,8 +345,7 @@ jobs: run: | python --version conda install mpi4py openmpi - mamba install pytest - mamba install pytest-cov coveralls + mamba install pytest pytest-cov coveralls pip install -e . - name: List packages @@ -372,6 +372,8 @@ jobs: runs-on: ${{ matrix.os }} strategy: matrix: + # python versions for elephant: [3.8, 3.9, 3.10, 3.11, 3.12] + python-version: [3.12] # OS [ubuntu-latest, macos-latest, windows-latest] os: [ubuntu-latest] @@ -383,10 +385,15 @@ jobs: - uses: actions/checkout@v3 + - name: Get pip cache dir + id: pip-cache + run: | + echo "dir=$(pip cache dir)" >> $GITHUB_OUTPUT + - name: Cache pip uses: actions/cache@v3 with: - path: ~/.cache/pip + path: ${{ steps.pip-cache.outputs.dir }} # Look to see if there is a cache hit for the corresponding requirements files key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements-docs.txt') }}-${{ hashFiles('**/requirements-tutorials.txt') }}-${{ hashFiles('**/environment-docs.yml') }} -${{ hashFiles('**/CI.yml') }}-${{ steps.date.outputs.date }} @@ -394,7 +401,7 @@ jobs: - uses: conda-incubator/setup-miniconda@030178870c779d9e5e1b4e563269f3aa69b04081 # corresponds to v3.0.3 with: auto-update-conda: true - python-version: 3.11 + python-version: ${{ matrix.python-version }} mamba-version: "*" activate-environment: elephant environment-file: requirements/environment.yml @@ -408,9 +415,7 @@ jobs: conda install -c conda-forge openmpi pandoc libstdcxx-ng # fix libstdc++.so.6: version for new scipy versions > 1.9.1 mamba env update --file requirements/environment-docs.yml --name elephant python -m pip install --upgrade pip - pip install -r requirements/requirements-docs.txt - pip install -r requirements/requirements-tutorials.txt - pip install -e .[extras] + pip install -e .[extras,tutorials,docs] # run notebooks sed -i -E "s/nbsphinx_execute *=.*/nbsphinx_execute = 'always'/g" doc/conf.py @@ -438,9 +443,6 @@ jobs: # OS [ubuntu-latest, macos-latest, windows-latest] os: [ubuntu-latest] - # do not cancel all in-progress jobs if any matrix job fails - fail-fast: false - steps: # used to reset cache every month - name: Get current year-month @@ -449,7 +451,7 @@ jobs: - uses: actions/checkout@v3 - name: Set up Python ${{ matrix.python-version }} - uses: actions/setup-python@v2 + uses: actions/setup-python@v4 with: python-version: ${{ matrix.python-version }} @@ -472,11 +474,8 @@ jobs: python -m pip install --upgrade pip pip install mpi4py - pip install -r requirements/requirements-tests.txt - pip install -r requirements/requirements.txt - pip install -r requirements/requirements-extras.txt pip install pytest-cov coveralls - pip install -e . + pip install -e .[extras,tests] - name: List packages run: | diff --git a/elephant/VERSION b/elephant/VERSION index 49669234c..7f557f358 100644 --- a/elephant/VERSION +++ b/elephant/VERSION @@ -1 +1 @@ -1.1.0b1 +1.2.0b1 From 7d8584501828466acd8ab38786bae8816cc8b2f7 Mon Sep 17 00:00:00 2001 From: Andrew Davison Date: Thu, 25 Apr 2024 14:12:42 +0200 Subject: [PATCH 5/9] Fix date in codemeta.json (#632) * Fix date in codemeta.json --------- Co-authored-by: Moritz Kern <92092328+Moritz-Alexander-Kern@users.noreply.github.com> --- codemeta.json | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/codemeta.json b/codemeta.json index 9ef0752a1..ebd16d953 100644 --- a/codemeta.json +++ b/codemeta.json @@ -4,9 +4,9 @@ "license": "https://spdx.org/licenses/BSD-3-Clause", "codeRepository": "git+https://github.com/NeuralEnsemble/elephant.git", "contIntegration": "https://github.com/NeuralEnsemble/elephant/actions", - "dateCreated": "2013-17-15", + "dateCreated": "2022-03-14", "datePublished": "2015-04-08", - "dateModified": "2024-19-03", + "dateModified": "2024-03-19", "downloadUrl": "https://files.pythonhosted.org/packages/cb/b5/893fadd5505e638a4c8788bf0a2f5a211f59f45203f3dfa3919469e83ed4/elephant-1.0.0.tar.gz", "issueTracker": "https://github.com/NeuralEnsemble/elephant/issues", "name": "Elephant", From 6ce6558478ac97ac594262785e716e457b5aba38 Mon Sep 17 00:00:00 2001 From: Moritz Kern <92092328+Moritz-Alexander-Kern@users.noreply.github.com> Date: Tue, 11 Jun 2024 09:05:56 +0200 Subject: [PATCH 6/9] [Fix] Tests for Neo 0.13.1, add same object to list (#634) * fix tests for statistics and trials modules * fix tests in neo_tools --- elephant/test/test_neo_tools.py | 82 ++++++++++--------------- elephant/test/test_trials.py | 2 +- requirements/requirements-docs.txt | 2 +- requirements/requirements-tutorials.txt | 2 +- 4 files changed, 35 insertions(+), 53 deletions(-) diff --git a/elephant/test/test_neo_tools.py b/elephant/test/test_neo_tools.py index dbb5d5aad..3c8597e6e 100644 --- a/elephant/test/test_neo_tools.py +++ b/elephant/test/test_neo_tools.py @@ -1163,40 +1163,52 @@ def test__get_all_spiketrains__spiketrain(self): # assert_same_sub_schema(targ, res0) def test__get_all_spiketrains__segment(self): + # Generate a simple segment object containing one spike train, + # supporting objects of type Segment and SpikeTrain. obj = generate_one_simple_segment( - supported_objects=[neo.core.Segment, neo.core.SpikeTrain]) - targ = copy.deepcopy(obj) - obj.spiketrains.append(obj.spiketrains[0]) - + nb_spiketrain=1, + supported_objects=[neo.core.Segment, neo.core.SpikeTrain] + ) + # Append a deep copy of the first spike train in the segment's + # spike train list to itself. + obj.spiketrains.append(copy.deepcopy(obj.spiketrains[0])) + # Call the function get_all_spiketrains with the segment object res0 = nt.get_all_spiketrains(obj) - - targ = targ.spiketrains - - self.assertTrue(len(res0) > 0) - - self.assertEqual(len(targ), len(res0)) - - assert_same_sub_schema(targ, res0) + # Assert that the length of the result res0 is equal to 2. + # This checks if the function correctly returns two spike trains, + # including the original and its copy. + self.assertTrue(len(res0) == 2) def test__get_all_spiketrains__block(self): + # Generate a simple block with 3 segments obj = generate_one_simple_block( nb_segment=3, - supported_objects=[ - neo.core.Block, neo.core.Segment, neo.core.SpikeTrain]) + supported_objects=[neo.core.Block, + neo.core.Segment, + neo.core.SpikeTrain] + ) + + # Deep copy the generated block for comparison targ = copy.deepcopy(obj) - iobj1 = obj.segments[0] - obj.segments.append(iobj1) + # Manipulate the block by appending a spiketrain from one segment to + # another iobj2 = obj.segments[0].spiketrains[1] obj.segments[1].spiketrains.append(iobj2) + + # Get all spiketrains from the modified block res0 = nt.get_all_spiketrains(obj) + # Convert the target deep copy to a SpikeTrainList targ = SpikeTrainList(targ.list_children_by_class('SpikeTrain')) - self.assertTrue(len(res0) > 0) - - self.assertEqual(len(targ), len(res0)) - + # Perform assertions to validate the results + self.assertTrue( + len(res0) > 0, + "The result of get_all_spiketrains should not be empty.") + self.assertEqual( + len(targ), len(res0), + "The lengths of the SpikeTrainList and result should be equal.") assert_same_sub_schema(targ, res0) def test__get_all_spiketrains__list(self): @@ -1207,8 +1219,6 @@ def test__get_all_spiketrains__list(self): neo.core.Block, neo.core.Segment, neo.core.SpikeTrain]) for _ in range(3)] targ = copy.deepcopy(obj) - iobj1 = obj[2].segments[0] - obj[2].segments.append(iobj1) iobj2 = obj[1].segments[2].spiketrains[1] obj[2].segments[1].spiketrains.append(iobj2) obj.append(obj[-1]) @@ -1232,8 +1242,6 @@ def test__get_all_spiketrains__tuple(self): for _ in range(3)] targ = copy.deepcopy(obj) obj.append(obj[-1]) - iobj1 = obj[2].segments[0] - obj[2].segments.append(iobj1) iobj2 = obj[1].segments[2].spiketrains[1] obj[2].segments[1].spiketrains.append(iobj2) obj.append(obj[-1]) @@ -1256,8 +1264,6 @@ def test__get_all_spiketrains__iter(self): neo.core.Block, neo.core.Segment, neo.core.SpikeTrain]) for _ in range(3)] targ = copy.deepcopy(obj) - iobj1 = obj[2].segments[0] - obj[2].segments.append(iobj1) iobj2 = obj[1].segments[2].spiketrains[1] obj[2].segments[1].spiketrains.append(iobj2) obj.append(obj[-1]) @@ -1281,8 +1287,6 @@ def test__get_all_spiketrains__dict(self): neo.core.Block, neo.core.Segment, neo.core.SpikeTrain]) for _ in range(3)] targ = copy.deepcopy(obj) - iobj1 = obj[2].segments[0] - obj[2].segments.append(iobj1) iobj2 = obj[1].segments[2].spiketrains[1] obj[2].segments[1].spiketrains.append(iobj2) obj.append(obj[-1]) @@ -1333,8 +1337,6 @@ def test__get_all_events__block(self): neo.core.Block, neo.core.Segment, neo.core.Event]) targ = copy.deepcopy(obj) - iobj1 = obj.segments[0] - obj.segments.append(iobj1) iobj2 = obj.segments[0].events[1] obj.segments[1].events.append(iobj2) res0 = nt.get_all_events(obj) @@ -1356,8 +1358,6 @@ def test__get_all_events__list(self): for _ in range(3)] targ = copy.deepcopy(obj) obj.append(obj[-1]) - iobj1 = obj[2].segments[0] - obj[2].segments.append(iobj1) iobj2 = obj[1].segments[2].events[1] obj[2].segments[1].events.append(iobj2) obj.append(obj[-1]) @@ -1381,8 +1381,6 @@ def test__get_all_events__tuple(self): for _ in range(3)] targ = copy.deepcopy(obj) obj.append(obj[-1]) - iobj1 = obj[2].segments[0] - obj[2].segments.append(iobj1) iobj2 = obj[1].segments[2].events[1] obj[2].segments[1].events.append(iobj2) obj.append(obj[0]) @@ -1406,8 +1404,6 @@ def test__get_all_events__iter(self): for _ in range(3)] targ = copy.deepcopy(obj) obj.append(obj[-1]) - iobj1 = obj[2].segments[0] - obj[2].segments.append(iobj1) iobj2 = obj[1].segments[2].events[1] obj[2].segments[1].events.append(iobj2) obj.append(obj[0]) @@ -1431,8 +1427,6 @@ def test__get_all_events__dict(self): for _ in range(3)] targ = copy.deepcopy(obj) obj.append(obj[-1]) - iobj1 = obj[2].segments[0] - obj[2].segments.append(iobj1) iobj2 = obj[1].segments[2].events[1] obj[2].segments[1].events.append(iobj2) obj.append(obj[0]) @@ -1482,10 +1476,6 @@ def test__get_all_epochs__block(self): neo.core.Block, neo.core.Segment, neo.core.Epoch]) targ = copy.deepcopy(obj) - iobj1 = obj.segments[0] - obj.segments.append(iobj1) - iobj2 = obj.segments[0].epochs[1] - obj.segments[1].epochs.append(iobj2) res0 = nt.get_all_epochs(obj) targ = targ.list_children_by_class('Epoch') @@ -1505,8 +1495,6 @@ def test__get_all_epochs__list(self): for _ in range(3)] targ = copy.deepcopy(obj) obj.append(obj[-1]) - iobj1 = obj[2].segments[0] - obj[2].segments.append(iobj1) iobj2 = obj[1].segments[2].epochs[1] obj[2].segments[1].epochs.append(iobj2) obj.append(obj[-1]) @@ -1530,8 +1518,6 @@ def test__get_all_epochs__tuple(self): for _ in range(3)] targ = copy.deepcopy(obj) obj.append(obj[-1]) - iobj1 = obj[2].segments[0] - obj[2].segments.append(iobj1) iobj2 = obj[1].segments[2].epochs[1] obj[2].segments[1].epochs.append(iobj2) obj.append(obj[0]) @@ -1555,8 +1541,6 @@ def test__get_all_epochs__iter(self): for _ in range(3)] targ = copy.deepcopy(obj) obj.append(obj[-1]) - iobj1 = obj[2].segments[0] - obj[2].segments.append(iobj1) iobj2 = obj[1].segments[2].epochs[1] obj[2].segments[1].epochs.append(iobj2) obj.append(obj[0]) @@ -1580,8 +1564,6 @@ def test__get_all_epochs__dict(self): for _ in range(3)] targ = copy.deepcopy(obj) obj.append(obj[-1]) - iobj1 = obj[2].segments[0] - obj[2].segments.append(iobj1) iobj2 = obj[1].segments[2].epochs[1] obj[2].segments[1].epochs.append(iobj2) obj.append(obj[0]) diff --git a/elephant/test/test_trials.py b/elephant/test/test_trials.py index fb0ceab10..b472e7a8e 100644 --- a/elephant/test/test_trials.py +++ b/elephant/test/test_trials.py @@ -29,7 +29,7 @@ def _create_trials_block(n_trials: int = 0, n_spiketrains=n_spiketrains) analogsignals = [AnalogSignal(signal=[.01, 3.3, 9.3], units='uV', sampling_rate=1 * pq.Hz) - ] * n_analogsignals + for _ in range(n_analogsignals)] for spiketrain in spiketrains: segment.spiketrains.append(spiketrain) for analogsignal in analogsignals: diff --git a/requirements/requirements-docs.txt b/requirements/requirements-docs.txt index 72c42b6c3..e05df77a8 100644 --- a/requirements/requirements-docs.txt +++ b/requirements/requirements-docs.txt @@ -5,5 +5,5 @@ sphinx>=3.3.0 nbsphinx>=0.8.0 sphinxcontrib-bibtex>1.0.0 sphinx-tabs>=1.3.0 -matplotlib>=3.3.2 +matplotlib>=3.3.2, <3.9.0 # conda install -c conda-forge pandoc diff --git a/requirements/requirements-tutorials.txt b/requirements/requirements-tutorials.txt index 3ee70c3cd..5c142ab15 100644 --- a/requirements/requirements-tutorials.txt +++ b/requirements/requirements-tutorials.txt @@ -1,4 +1,4 @@ # Packages required to execute jupyter notebook tutorials -matplotlib>=3.3.2 +matplotlib>=3.3.2, <3.9.0 h5py>=3.1.0 nixio>=1.5.0 \ No newline at end of file From bdd98eefe99706621f5c840ce28134dac0e794af Mon Sep 17 00:00:00 2001 From: Moritz Kern <92092328+Moritz-Alexander-Kern@users.noreply.github.com> Date: Tue, 11 Jun 2024 09:07:00 +0200 Subject: [PATCH 7/9] [MAIN] add ruff for autoformatting (#630) * add github action for ruff autoformatting --- .github/workflows/ruff-formatting.yml | 38 +++++++++++++++++++++++++++ 1 file changed, 38 insertions(+) create mode 100644 .github/workflows/ruff-formatting.yml diff --git a/.github/workflows/ruff-formatting.yml b/.github/workflows/ruff-formatting.yml new file mode 100644 index 000000000..ffaeefecb --- /dev/null +++ b/.github/workflows/ruff-formatting.yml @@ -0,0 +1,38 @@ +name: Ruff formatting + +on: + workflow_dispatch: + schedule: + - cron: "0 12 * * 0" # Weekly at noon UTC on Sundays + + +jobs: + lint: + runs-on: ubuntu-latest + steps: + - name: Checkout repository + uses: actions/checkout@v4 + + - name: Check with Ruff + id: ruff-check + uses: chartboost/ruff-action@v1 + with: + src: './elephant' + args: 'format --check' + continue-on-error: true + + - name: Fix with Ruff + uses: chartboost/ruff-action@v1 + if : ${{ steps.ruff-check.outcome == 'failure' }} + with: + src: './elephant' + args: 'format --verbose' + + - name: Create PR + uses: peter-evans/create-pull-request@v5 + if : ${{ steps.ruff-check.outcome == 'failure' }} + with: + commit-message: ruff formatting + title: Ruff formatting + body: Reformatting code with ruff + branch: ruff-formatting From 32e119958fd6a8b4610b6b96ea44faf4b6d2bd3a Mon Sep 17 00:00:00 2001 From: Moritz Kern <92092328+Moritz-Alexander-Kern@users.noreply.github.com> Date: Wed, 17 Jul 2024 10:04:57 +0200 Subject: [PATCH 8/9] [Fix] #613 spike_train_generation module to handle multichannel AnalogSignal inputs (#614) * fix docstring add type annotations * fix input checks peak detection * add tests for peak_extraction * add handling of multichannel analogsignals to peak detection --- doc/conf.py | 2 +- elephant/spike_train_generation.py | 286 ++++++++++++++----- elephant/test/test_spike_train_generation.py | 171 +++++++++-- 3 files changed, 355 insertions(+), 104 deletions(-) diff --git a/doc/conf.py b/doc/conf.py index 67b766adb..907952f7f 100644 --- a/doc/conf.py +++ b/doc/conf.py @@ -351,7 +351,7 @@ intersphinx_mapping = { 'viziphant': ('https://viziphant.readthedocs.io/en/stable/', None), 'numpy': ('https://numpy.org/doc/stable', None), - 'neo': ('https://neo.readthedocs.io/en/stable/', None), + 'neo': ('https://neo.readthedocs.io/en/latest/', None), 'quantities': ('https://python-quantities.readthedocs.io/en/stable/', None), 'python': ('https://docs.python.org/3/', None), 'scipy': ('https://docs.scipy.org/doc/scipy/', None) diff --git a/elephant/spike_train_generation.py b/elephant/spike_train_generation.py index 1c279c61a..ecac8b41d 100644 --- a/elephant/spike_train_generation.py +++ b/elephant/spike_train_generation.py @@ -52,9 +52,10 @@ from __future__ import division, print_function, unicode_literals import warnings -from typing import List, Union, Optional +from typing import List, Literal, Union, Optional import neo +from neo.core.spiketrainlist import SpikeTrainList import numpy as np import quantities as pq from scipy import stats @@ -83,53 +84,21 @@ ] -def spike_extraction(signal, threshold=0.0 * pq.mV, sign='above', - time_stamps=None, interval=(-2 * pq.ms, 4 * pq.ms)): - """ - Return the peak times for all events that cross threshold and the - waveforms. Usually used for extracting spikes from a membrane - potential to calculate waveform properties. - - Parameters - ---------- - signal : neo.AnalogSignal - An analog input signal. - threshold : pq.Quantity, optional - Contains a value that must be reached for an event to be detected. - Default: 0.0 * pq.mV - sign : {'above', 'below'}, optional - Determines whether to count threshold crossings that cross above or - below the threshold. - Default: 'above' - time_stamps : pq.Quantity, optional - If `spike_train` is a `pq.Quantity` array, `time_stamps` provides the - time stamps around which the waveform is extracted. If it is None, the - function `peak_detection` is used to calculate the time_stamps - from signal. - Default: None - interval : tuple of pq.Quantity - Specifies the time interval around the `time_stamps` where the waveform - is extracted. - Default: (-2 * pq.ms, 4 * pq.ms) - - Returns - ------- - result_st : neo.SpikeTrain - Contains the time_stamps of each of the spikes and the waveforms in - `result_st.waveforms`. - - See Also - -------- - elephant.spike_train_generation.peak_detection - """ +def _spike_extraction_from_single_channel( + signal: neo.core.AnalogSignal, + threshold: pq.Quantity = 0.0 * pq.mV, + sign: Literal['above', 'below'] = 'above', + time_stamps: neo.core.SpikeTrain = None, + interval: tuple = (-2 * pq.ms, 4 * pq.ms) + ) -> neo.core.SpikeTrain: # Get spike time_stamps if time_stamps is None: time_stamps = peak_detection(signal, threshold, sign=sign) elif hasattr(time_stamps, 'times'): time_stamps = time_stamps.times - elif isinstance(time_stamps, pq.Quantity): - raise TypeError("time_stamps must be None, a pq.Quantity array or" + - " expose the.times interface") + else: + raise TypeError("time_stamps must be None, a `neo.core.SpikeTrain`" + " or expose the.times interface") if len(time_stamps) == 0: return neo.SpikeTrain(time_stamps, units=signal.times.units, @@ -139,6 +108,7 @@ def spike_extraction(signal, threshold=0.0 * pq.mV, sign='above', # Unpack the extraction interval from tuple or array extr_left, extr_right = interval + if extr_left > extr_right: raise ValueError("interval[0] must be < interval[1]") @@ -185,15 +155,23 @@ def spike_extraction(signal, threshold=0.0 * pq.mV, sign='above', left_sweep=extr_left) -def threshold_detection(signal, threshold=0.0 * pq.mV, sign='above'): +def spike_extraction( + signal: neo.core.AnalogSignal, + threshold: pq.Quantity = 0.0 * pq.mV, + sign: Literal['above', 'below'] = 'above', + time_stamps: neo.core.SpikeTrain = None, + interval: tuple = (-2 * pq.ms, 4 * pq.ms), + always_as_list: bool = False + ) -> Union[neo.core.SpikeTrain, SpikeTrainList]: """ - Returns the times when the analog signal crosses a threshold. - Usually used for extracting spike times from a membrane potential. + Return the peak times for all events that cross threshold and the + waveforms. Usually used for extracting spikes from a membrane + potential to calculate waveform properties. Parameters ---------- - signal : neo.AnalogSignal - An analog input signal. + signal : :class:`neo.core.AnalogSignal` + An analog input signal one or more channels. threshold : pq.Quantity, optional Contains a value that must be reached for an event to be detected. Default: 0.0 * pq.mV @@ -201,20 +179,66 @@ def threshold_detection(signal, threshold=0.0 * pq.mV, sign='above'): Determines whether to count threshold crossings that cross above or below the threshold. Default: 'above' + time_stamps : :class:`neo.core.SpikeTrain` , optional + Provides the time stamps around which the waveform is extracted. If it + is None, the function `peak_detection` is used to calculate the + `time_stamps` from signal. + Default: None + interval : tuple of :class:`pq.Quantity` + Specifies the time interval around the `time_stamps` where the waveform + is extracted. + Default: (-2 * pq.ms, 4 * pq.ms) + always_as_list: bool, optional + If True, :class:`neo.core.spiketrainslist.SpikeTrainList` is returned. + Default: False Returns - ------- - result_st : neo.SpikeTrain - Contains the spike times of each of the events (spikes) extracted from - the signal. - """ + ------- # noqa + result_st : :class:`neo.core.SpikeTrain`, :class:`neo.core.spiketrainslist.SpikeTrainList`. + Contains the time_stamps of each of the spikes and the waveforms in + `result_st.waveforms`. - if not isinstance(threshold, pq.Quantity): - raise ValueError('threshold must be a pq.Quantity') + See Also + -------- + :func:`elephant.spike_train_generation.peak_detection` + """ + if isinstance(signal, neo.core.AnalogSignal): + if signal.shape[1] == 1: + if always_as_list: + return SpikeTrainList(items=( + _spike_extraction_from_single_channel( + signal, + threshold=threshold, + time_stamps=time_stamps, + interval=interval, + sign=sign),)) + else: + return _spike_extraction_from_single_channel( + signal, threshold=threshold, time_stamps=time_stamps, + interval=interval, sign=sign) + elif signal.shape[1] > 1: + spiketrainlist = SpikeTrainList() + for channel in range(signal.shape[1]): + spiketrainlist.append( + _spike_extraction_from_single_channel( + neo.core.AnalogSignal( + signal[:, channel], + sampling_rate=signal.sampling_rate), + threshold=threshold, sign=sign, + time_stamps=time_stamps, + interval=interval, + )) + return spiketrainlist + else: + raise TypeError( + f"Signal must be AnalogSignal, provided: {type(signal)}") - if sign not in ('above', 'below'): - raise ValueError("sign should be 'above' or 'below'") +def _threshold_detection_from_single_channel( + signal: neo.core.AnalogSignal, + threshold: pq.Quantity = 0.0 * pq.mV, + sign: str = 'above' + ) -> neo.core.SpikeTrain: if sign == 'above': cutout = np.where(signal > threshold)[0] else: @@ -242,53 +266,88 @@ def threshold_detection(signal, threshold=0.0 * pq.mV, sign='above'): return result_st -def peak_detection(signal, threshold=0.0 * pq.mV, sign='above', - as_array=False): +def threshold_detection( + signal: neo.core.AnalogSignal, + threshold: pq.Quantity = 0.0 * pq.mV, + sign: Literal['above', 'below'] = 'above', + always_as_list: bool = False, + ) -> Union[neo.core.SpikeTrain, SpikeTrainList]: """ - Return the peak times for all events that cross threshold. + Returns the times when the analog signal crosses a threshold. Usually used for extracting spike times from a membrane potential. - Similar to spike_train_generation.threshold_detection. Parameters ---------- - signal : neo.AnalogSignal - An analog input signal. - threshold : pq.Quantity, optional + signal : :class:`neo.core.AnalogSignal` + An analog input signal with one or multiple channels. + threshold : :class:`pq.Quantity`, optional Contains a value that must be reached for an event to be detected. - Default: 0.*pq.mV + Default: 0.0 * pq.mV sign : {'above', 'below'}, optional Determines whether to count threshold crossings that cross above or below the threshold. Default: 'above' - as_array : bool, optional - If True, a NumPy array of the resulting peak times is returned instead - of a (default) `neo.SpikeTrain` object. + always_as_list: bool, optional + If True, a :class:`neo.core.spiketrainslist.SpikeTrainList`. Default: False Returns - ------- - result_st : neo.SpikeTrain + ------- # noqa + result_st : :class:`neo.core.SpikeTrain`, :class:`neo.core.spiketrainslist.SpikeTrainList` Contains the spike times of each of the events (spikes) extracted from - the signal. + the signal. If `signal` is an AnalogSignal with multiple channels, or + `always_return_list=True` , a + :class:`neo.core.spiketrainlist.SpikeTrainList` is returned. """ if not isinstance(threshold, pq.Quantity): - raise ValueError("threshold must be a pq.Quantity") + raise TypeError('threshold must be a pq.Quantity') if sign not in ('above', 'below'): raise ValueError("sign should be 'above' or 'below'") + if isinstance(signal, neo.core.AnalogSignal): + if signal.shape[1] == 1: + if always_as_list: + return SpikeTrainList(items=( + _threshold_detection_from_single_channel( + signal, threshold=threshold, sign=sign),)) + else: + return _threshold_detection_from_single_channel( + signal, threshold=threshold, sign=sign) + elif signal.shape[1] > 1: + spiketrainlist = SpikeTrainList() + for channel in range(signal.shape[1]): + spiketrainlist.append(_threshold_detection_from_single_channel( + neo.core.AnalogSignal(signal[:, channel], + sampling_rate=signal.sampling_rate), + threshold=threshold, sign=sign) + ) + return spiketrainlist + else: + raise TypeError( + f"Signal must be AnalogSignal, provided: {type(signal)}") + + +# legacy implementation of peak_detection +def _peak_detection_from_single_channel( + signal: neo.core.AnalogSignal, + threshold: pq.Quantity = 0.0 * pq.mV, + sign: str = 'above', + as_array: bool = False + ) -> neo.core.SpikeTrain: if sign == 'above': cutout = np.where(signal > threshold)[0] peak_func = np.argmax - else: - # sign == 'below' + elif sign == 'below': cutout = np.where(signal < threshold)[0] peak_func = np.argmin + else: + raise ValueError("sign should be 'above' or 'below'") if len(cutout) == 0: events_base = np.zeros(0) else: - # Select thr crossings lasting at least 2 dtps, np.diff(cutout) > 2 + # Select the crossings lasting at least 2 dtps, np.diff(cutout) > 2 # This avoids empty slices border_start = np.where(np.diff(cutout) > 1)[0] border_end = border_start + 1 @@ -327,6 +386,83 @@ def peak_detection(signal, threshold=0.0 * pq.mV, sign='above', return result_st +def peak_detection(signal: neo.core.AnalogSignal, + threshold: pq.Quantity = 0.0 * pq.mV, + sign: Literal['above', 'below'] = 'above', + as_array: bool = False, + always_as_list: bool = False + ) -> Union[neo.core.SpikeTrain, SpikeTrainList]: + """ + Return the peak times for all events that cross threshold. + Usually used for extracting spike times from a membrane potential. + Similar to spike_train_generation.threshold_detection. + + Parameters + ---------- + signal : :class:`neo.core.AnalogSignal` + An analog input signal or a list of analog input signals. + threshold : :class:`pq.Quantity`, optional + Contains a value that must be reached for an event to be detected. + Default: 0.*pq.mV + sign : {'above', 'below'}, optional + Determines whether to count threshold crossings that cross above or + below the threshold. + Default: 'above' + as_array : bool, optional + If True, a NumPy array of the resulting peak times is returned instead + of a (default) `neo.SpikeTrain` object. + Default: False + always_as_list: bool, optional + If True, a :class:`neo.core.spiketrainslist.SpikeTrainList` is returned. + Default: False + + Returns + ------- # noqa + result_st : :class:`neo.core.SpikeTrain`, :class:`neo.core.spiketrainslist.SpikeTrainList` + :class:`np.ndarrav`, List[:class:`np.ndarrav`] + Contains the spike times of each of the events (spikes) extracted from + the signal. + If `signal` is an AnalogSignal with multiple channels or + `always_return_list=True` a list is returned. + """ + if not isinstance(threshold, pq.Quantity): + raise TypeError( + f"threshold must be a pq.Quantity, provided: {type(threshold)}") + + if isinstance(signal, neo.core.AnalogSignal): + if signal.shape[1] == 1: + if always_as_list and not as_array: + return SpikeTrainList(items=( + _peak_detection_from_single_channel( + signal, threshold=threshold, sign=sign, + as_array=as_array),)) + elif always_as_list and as_array: + return [_peak_detection_from_single_channel( + signal, threshold=threshold, sign=sign, as_array=as_array)] + else: + return _peak_detection_from_single_channel( + signal, threshold=threshold, sign=sign, as_array=as_array) + elif signal.shape[1] > 1 and as_array: + return [_peak_detection_from_single_channel(neo.core.AnalogSignal( + signal[:, channel], sampling_rate=signal.sampling_rate), + threshold=threshold, + sign=sign, as_array=as_array + ) for channel in range(signal.shape[1])] + elif signal.shape[1] > 1 and not as_array: + spiketrainlist = SpikeTrainList() + for channel in range(signal.shape[1]): + spiketrainlist.append(_peak_detection_from_single_channel( + neo.core.AnalogSignal(signal[:, channel], + sampling_rate=signal.sampling_rate), + threshold=threshold, + sign=sign, as_array=as_array + )) + return spiketrainlist + else: + raise TypeError( + f"Signal must be AnalogSignal, provided: {type(signal)}") + + class AbstractPointProcess: """ Abstract point process to subclass from. diff --git a/elephant/test/test_spike_train_generation.py b/elephant/test/test_spike_train_generation.py index 3ea160c35..e1a43716d 100644 --- a/elephant/test/test_spike_train_generation.py +++ b/elephant/test/test_spike_train_generation.py @@ -13,6 +13,7 @@ import warnings import neo +from neo.core.spiketrainlist import SpikeTrainList import numpy as np from numpy.testing import assert_array_almost_equal, assert_allclose import quantities as pq @@ -37,9 +38,10 @@ def pdiff(a, b): return abs((a - b) / a) -class AnalogSignalThresholdDetectionTestCase(unittest.TestCase): +class ThresholdDetectionTestCase(unittest.TestCase): - def setUp(self): + @classmethod + def setUpClass(cls): # Load membrane potential simulated using Brian2 # according to make_spike_extraction_test_data.py. curr_dir = os.path.dirname(os.path.realpath(__file__)) @@ -49,10 +51,14 @@ def setUp(self): with open(raw_data_file_loc, 'r') as f: for x in f.readlines(): raw_data.append(float(x)) - self.vm = neo.AnalogSignal( + cls.vm = neo.AnalogSignal( raw_data, units=pq.V, sampling_period=0.1 * pq.ms) - self.true_time_stamps = [0.0123, 0.0354, 0.0712, 0.1191, 0.1694, - 0.2200, 0.2711] * pq.s + cls.vm_3d = neo.AnalogSignal(np.array([raw_data, + raw_data, + raw_data]).T, + units=pq.V, sampling_period=0.1 * pq.ms) + cls.true_time_stamps = [0.0123, 0.0354, 0.0712, 0.1191, 0.1694, + 0.2200, 0.2711] * pq.s def test_threshold_detection(self): # Test whether spikes are extracted at the correct times from @@ -81,15 +87,52 @@ def test_threshold_detection(self): except AttributeError: # If numpy version too old to have allclose self.assertTrue(np.array_equal(spike_train, self.true_time_stamps)) - def test_peak_detection_threshold(self): + def test_threshold_detection_threshold(self): # Test for empty SpikeTrain when threshold is too high result = threshold_detection(self.vm, threshold=30 * pq.mV) self.assertEqual(len(result), 0) + def test_threshold_raise_type_error(self): + with self.assertRaises(TypeError): + threshold_detection(self.vm, threshold=30) -class AnalogSignalPeakDetectionTestCase(unittest.TestCase): + def test_sign_raise_value_error(self): + with self.assertRaises(ValueError): + threshold_detection(self.vm, sign="wrong input") - def setUp(self): + def test_return_is_neo_spike_train(self): + self.assertIsInstance(threshold_detection(self.vm), + neo.core.SpikeTrain) + + def test_signal_raise_type_error(self): + with self.assertRaises(TypeError): + threshold_detection(self.vm.magnitude) + + def test_always_return_as_list(self): + self.assertIsInstance(threshold_detection(self.vm, + always_as_list=True), + SpikeTrainList) + + def test_analog_signal_multiple_channels(self): + list_of_spike_trains = threshold_detection(self.vm_3d) + self.assertEqual(len(list_of_spike_trains), 3) + for spike_train in list_of_spike_trains: + with self.subTest(value=spike_train): + self.assertIsInstance(spike_train, neo.SpikeTrain) + self.assertIsInstance(list_of_spike_trains, SpikeTrainList) + + def test_empty_analog_signal(self): + empty_analog_signal = neo.AnalogSignal([], units='V', + sampling_period=1*pq.ms) + self.assertEqual(empty_analog_signal.shape, (0, 1)) + self.assertIsInstance(threshold_detection(empty_analog_signal), + neo.core.SpikeTrain) + + +class PeakDetectionTestCase(unittest.TestCase): + + @classmethod + def setUpClass(cls): curr_dir = os.path.dirname(os.path.realpath(__file__)) raw_data_file_loc = os.path.join( curr_dir, 'spike_extraction_test_data.txt') @@ -97,16 +140,19 @@ def setUp(self): with open(raw_data_file_loc, 'r') as f: for x in f.readlines(): raw_data.append(float(x)) - self.vm = neo.AnalogSignal( + cls.vm = neo.AnalogSignal( raw_data, units=pq.V, sampling_period=0.1 * pq.ms) - self.true_time_stamps = [0.0124, 0.0354, 0.0713, 0.1192, 0.1695, - 0.2201, 0.2711] * pq.s - - def test_peak_detection_time_stamps(self): + cls.vm_3d = neo.AnalogSignal(np.array([raw_data, + raw_data, + raw_data]).T, + units=pq.V, sampling_period=0.1 * pq.ms) + cls.true_time_stamps = [0.0124, 0.0354, 0.0713, 0.1192, 0.1695, + 0.2201, 0.2711] * pq.s + + def test_peak_detection_validate_result(self): # Test with default arguments result = peak_detection(self.vm) self.assertEqual(len(self.true_time_stamps), len(result)) - self.assertIsInstance(result, neo.core.SpikeTrain) try: assert_array_almost_equal(result, self.true_time_stamps) @@ -118,10 +164,48 @@ def test_peak_detection_threshold(self): result = peak_detection(self.vm, threshold=30 * pq.mV) self.assertEqual(len(result), 0) + def test_threshold_raise_type_error(self): + with self.assertRaises(TypeError): + peak_detection(self.vm, threshold=30) -class AnalogSignalSpikeExtractionTestCase(unittest.TestCase): + def test_sign_raise_value_error(self): + with self.assertRaises(ValueError): + peak_detection(self.vm, sign="wrong input") - def setUp(self): + def test_return_is_neo_spike_train(self): + self.assertIsInstance(peak_detection(self.vm), neo.core.SpikeTrain) + + def test_signal_raise_type_error(self): + with self.assertRaises(TypeError): + peak_detection(self.vm.magnitude) + + def test_always_return_as_list(self): + self.assertIsInstance(peak_detection(self.vm, always_as_list=True), + SpikeTrainList) + + def test_analog_signal_multiple_channels(self): + list_of_spike_trains = peak_detection(self.vm_3d) + self.assertEqual(len(list_of_spike_trains), 3) + for spike_train in list_of_spike_trains: + with self.subTest(value=spike_train): + self.assertIsInstance(spike_train, neo.SpikeTrain) + + def test_analog_signal_multiple_channels_as_array(self): + list_of_spike_trains = peak_detection(self.vm_3d, as_array=True) + self.assertEqual(len(list_of_spike_trains), 3) + for spike_train in list_of_spike_trains: + with self.subTest(value=spike_train): + self.assertIsInstance(spike_train, np.ndarray) + + def test_analog_signal_single_channel_as_array(self): + array = peak_detection(self.vm, as_array=True) + self.assertIsInstance(array, np.ndarray) + self.assertEqual(array.ndim, 1) + + +class SpikeExtractionTestCase(unittest.TestCase): + @classmethod + def setUpClass(cls): curr_dir = os.path.dirname(os.path.realpath(__file__)) raw_data_file_loc = os.path.join( curr_dir, 'spike_extraction_test_data.txt') @@ -129,27 +213,58 @@ def setUp(self): with open(raw_data_file_loc, 'r') as f: for x in f.readlines(): raw_data.append(float(x)) - self.vm = neo.AnalogSignal( + cls.vm = neo.AnalogSignal( raw_data, units=pq.V, sampling_period=0.1 * pq.ms) - self.first_spike = np.array([-0.04084546, -0.03892033, -0.03664779, - -0.03392689, -0.03061474, -0.02650277, - -0.0212756, -0.01443531, -0.00515365, - 0.00803962, 0.02797951, -0.07, - -0.06974495, -0.06950466, -0.06927778, - -0.06906314, -0.06885969, -0.06866651, - -0.06848277, -0.06830773, -0.06814071, - -0.06798113, -0.06782843, -0.06768213, - -0.06754178, -0.06740699, -0.06727737, - -0.06715259, -0.06703235, -0.06691635]) + cls.vm_3d = neo.AnalogSignal(np.array([raw_data, + raw_data, + raw_data]).T, + units=pq.V, sampling_period=0.1 * pq.ms) + cls.first_spike = np.array([-0.04084546, -0.03892033, -0.03664779, + -0.03392689, -0.03061474, -0.02650277, + -0.0212756, -0.01443531, -0.00515365, + 0.00803962, 0.02797951, -0.07, + -0.06974495, -0.06950466, -0.06927778, + -0.06906314, -0.06885969, -0.06866651, + -0.06848277, -0.06830773, -0.06814071, + -0.06798113, -0.06782843, -0.06768213, + -0.06754178, -0.06740699, -0.06727737, + -0.06715259, -0.06703235, -0.06691635]) def test_spike_extraction_waveform(self): - spike_train = spike_extraction(self.vm.reshape(-1), + spike_train = spike_extraction(self.vm, interval=(-1 * pq.ms, 2 * pq.ms)) assert_array_almost_equal( spike_train.waveforms[0][0].magnitude.reshape(-1), self.first_spike) + def test_threshold_raise_type_error(self): + with self.assertRaises(TypeError): + spike_extraction(self.vm, threshold=30) + + def test_sign_raise_value_error(self): + with self.assertRaises(ValueError): + spike_extraction(self.vm, sign="wrong input") + + def test_return_is_neo_spike_train(self): + self.assertIsInstance(spike_extraction(self.vm), neo.core.SpikeTrain) + + def test_signal_raise_type_error(self): + with self.assertRaises(TypeError): + spike_extraction(self.vm.magnitude) + + def test_always_return_as_list(self): + self.assertIsInstance(spike_extraction(self.vm, always_as_list=True), + SpikeTrainList) + + def test_analog_signal_multiple_channels(self): + list_of_spike_trains = spike_extraction(self.vm_3d) + self.assertEqual(len(list_of_spike_trains), 3) + for spike_train in list_of_spike_trains: + with self.subTest(value=spike_train): + self.assertIsInstance(spike_train, neo.SpikeTrain) + self.assertIsInstance(list_of_spike_trains, SpikeTrainList) + class AbstractPointProcessTestCase(unittest.TestCase): def test_not_implemented_error(self): From 0984e19769b6bbe5d8495024949167a8a565c93f Mon Sep 17 00:00:00 2001 From: Moritz Kern <92092328+Moritz-Alexander-Kern@users.noreply.github.com> Date: Wed, 17 Jul 2024 10:05:29 +0200 Subject: [PATCH 9/9] [Fix] CuBIC, SPADE with scipy 1.14.0, deprecated `.A` attribute in `scipy.sparse` matrices` (#636) * fix deprecated .A attribute on coo_matrix * make precision for cubic explicit * ensure float64 precision for data when using scipy.stats.kstat --- .github/workflows/CI.yml | 6 +++--- elephant/cubic.py | 3 ++- elephant/spade.py | 2 +- 3 files changed, 6 insertions(+), 5 deletions(-) diff --git a/.github/workflows/CI.yml b/.github/workflows/CI.yml index b22fc56ed..91f42577d 100644 --- a/.github/workflows/CI.yml +++ b/.github/workflows/CI.yml @@ -131,14 +131,14 @@ jobs: fail-fast: false matrix: # OS [ubuntu-latest, macos-latest, windows-latest] - os: [macos-11,macos-12] + os: [macos-12,macos-13] python-version: [3.11] steps: - name: Get current year-month id: date run: echo "date=$(date +'%Y-%m')" >> $GITHUB_OUTPUT - - uses: actions/checkout@v3 + - uses: actions/checkout@v4.1.6 - name: Cache conda uses: actions/cache@v3 @@ -146,7 +146,7 @@ jobs: path: ~/conda_pkgs_dir key: ${{ runner.os }}-conda-${{hashFiles('requirements/environment.yml') }}-${{ hashFiles('**/CI.yml') }}-${{ steps.date.outputs.date }} - - uses: conda-incubator/setup-miniconda@030178870c779d9e5e1b4e563269f3aa69b04081 # corresponds to v3.0.3 + - uses: conda-incubator/setup-miniconda@a4260408e20b96e80095f42ff7f1a15b27dd94ca # corresponds to v3.0.4 with: auto-update-conda: true python-version: ${{ matrix.python-version }} diff --git a/elephant/cubic.py b/elephant/cubic.py index ac117406e..b32536b90 100644 --- a/elephant/cubic.py +++ b/elephant/cubic.py @@ -237,5 +237,6 @@ def _kstat(data): """ if len(data) == 0: raise ValueError('The input data must be a non-empty array') - moments = [scipy.stats.kstat(data, n=n) for n in [1, 2, 3]] + # Due to issues with precision, ensure float64 (default) is the precision of the data array. (scipy == 1.14.0) + moments = [scipy.stats.kstat(data.astype(np.float64), n=n) for n in [1, 2, 3]] return moments diff --git a/elephant/spade.py b/elephant/spade.py index 251fc6ecd..ddaf411cf 100644 --- a/elephant/spade.py +++ b/elephant/spade.py @@ -768,7 +768,7 @@ def _build_context(binary_matrix, winlen): (np.ones((len(windows_col)), dtype=bool), (windows_row, windows_col)), shape=(num_bins, winlen * num_neurons), - dtype=bool).A + dtype=bool).toarray() # Array containing all the possible attributes (each spike is indexed by # a number equal to neu idx*winlen + bin_idx) attributes = np.array(