forked from NVIDIA/Megatron-LM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
compute_memory_usage.py
79 lines (66 loc) · 3.21 KB
/
compute_memory_usage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from megatron.initialize import initialize_megatron
from megatron import get_args
def compute_weight_and_optimizer_memory(args):
assert args.sequence_parallel
num_parameters_in_transformer_layers = (
10
* args.num_layers
* args.hidden_size
* args.hidden_size
* (
1
+ (args.num_query_groups / (5.0 * args.num_attention_heads))
+ (2 / (5 * args.hidden_size))
+ (1 / (5 * args.num_layers * args.hidden_size))
)
)
embedding_size = args.hidden_size * args.padded_vocab_size
if args.untie_embeddings_and_output_weights:
num_parameters_with_embeddings = num_parameters_in_transformer_layers + (2 * embedding_size)
else:
num_parameters_with_embeddings = num_parameters_in_transformer_layers + embedding_size
print(f"Number of parameters in billions: {num_parameters_with_embeddings / 10**9:.2f}")
# Most loaded model shard has (1/pp_size transformer layers + 1 embedding layer) / tp_size.
num_parameters_on_most_loaded_model_shard = (
(num_parameters_in_transformer_layers / args.pipeline_model_parallel_size) + embedding_size
) / args.tensor_model_parallel_size
# Other shards just have (1/pp_size transformer layers) / tp_size.
num_parameters_on_other_model_shards = num_parameters_in_transformer_layers / (
args.pipeline_model_parallel_size * args.tensor_model_parallel_size
)
print(
f"Number of parameters in most loaded shard in billions: {num_parameters_on_most_loaded_model_shard / 10**9:.4f}"
)
print(
f"Number of parameters in other shards in billions: {num_parameters_on_other_model_shards / 10**9:.4f}"
)
num_bytes_per_parameter = (
18 if not args.use_distributed_optimizer else 6 + (12 / args.data_parallel_size)
)
return num_parameters_on_most_loaded_model_shard * num_bytes_per_parameter
def compute_activation_memory(args):
# Using formula in Table 2 of https://arxiv.org/pdf/2205.05198.pdf.
assert args.recompute_granularity == 'selective'
activation_memory = (
args.seq_length * args.micro_batch_size * args.hidden_size * args.num_layers
) * 34
# Multiply by interleaved PP memory factor.
activation_memory *= 1 + (
(args.pipeline_model_parallel_size - 2)
/ (args.pipeline_model_parallel_size * args.virtual_pipeline_model_parallel_size)
)
return activation_memory / args.tensor_model_parallel_size
def compute_total_memory(args):
weight_and_optimizer_memory = compute_weight_and_optimizer_memory(args)
activation_memory = compute_activation_memory(args)
total_memory = weight_and_optimizer_memory + activation_memory
print(
f"(DP size, PP size, TP size) = {(args.data_parallel_size, args.pipeline_model_parallel_size, args.tensor_model_parallel_size)}, "
f"Weight and optimizer memory: {weight_and_optimizer_memory / (1024 * 1024):.2f} MB, "
f"Activation memory: {activation_memory / (1024 * 1024):.2f} MB, "
f"Total memory: {total_memory / (1024 * 1024):.2f} MB\n"
)
if __name__ == "__main__":
initialize_megatron(allow_no_cuda=True, skip_mpu_initialization=True)
args = get_args()
compute_total_memory(args)