-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPubSub-shipping-ingestion.py
167 lines (138 loc) · 6.32 KB
/
PubSub-shipping-ingestion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Databricks notebook source
# DBTITLE 1,Authentication Credential to read events from PubSub
client_id_secret = dbutils.secrets.get(scope = "gcp-pubsub", key = "client_id_1")
client_email_secret = dbutils.secrets.get(scope = "gcp-pubsub", key = "client_email_1")
private_key_secret = dbutils.secrets.get(scope = "gcp-pubsub", key = "private_key_1")
private_key_id_secret = dbutils.secrets.get(scope = "gcp-pubsub", key = "private_key_id_1")
authOptions = {"client_id": client_id_secret,
"client_email": client_email_secret,
"private_key": private_key_secret,
"private_key_id": private_key_id_secret}
# COMMAND ----------
# DBTITLE 1, Spark structured streaming ingestion from PubSub topic
from pyspark.sql.functions import *
from pyspark.sql.types import *
from pyspark.sql import *
shipingInputDF = spark.readStream.format("pubsub") \
.option("subscriptionId", "shipment_subscription") \
.option("topicId", "shipping-notification") \
.option("projectId", "datamesh-2") \
.option("numFetchPartitions", "3") \
.options(**authOptions) \
.load()
# COMMAND ----------
# DBTITLE 1,Schema for the shipping events
shipingDetailsSchema = (
StructType()
.add("shipmentId", "string")
.add("orderId", "string")
.add("paymentId", "string")
.add("userId", "string")
.add("firstName", "string")
.add("lastName", "string")
.add("address", "string")
.add("emailId", "string")
.add("mobileNumber", "string")
.add("productId", "string")
.add("brand", "string")
.add("quantity", "integer")
.add("basePrice", "float")
.add("subTotal", "float")
.add("total", "float")
.add("tax", "float")
.add("totalTax", "float")
)
# COMMAND ----------
# DBTITLE 1,Spark data frame for the input shipping event
shipingDetailDF = (
shipingInputDF
.select(
from_json(
col("payload").cast("string"),
shipingDetailsSchema
)
.alias("shipingdata")
)
.select(
"shipingdata.shipmentId",
"shipingdata.orderId",
"shipingdata.paymentId",
"shipingdata.userId",
"shipingdata.firstName",
"shipingdata.lastName",
"shipingdata.address",
"shipingdata.emailId",
"shipingdata.mobileNumber",
"shipingdata.productId",
"shipingdata.brand",
"shipingdata.quantity",
"shipingdata.basePrice",
"shipingdata.subTotal",
"shipingdata.total",
"shipingdata.tax",
"shipingdata.totalTax"
)
)
# COMMAND ----------
# DBTITLE 1,Writing streaming raw shipping data frame to the delta lake table (Bronze table)
shipingDetailDF.writeStream.format("delta") \
.outputMode("append") \
.partitionBy("brand") \
.option("checkpointLocation", "/dbfs/pubsub-shippment-checkpoint-38/") \
.trigger(processingTime = '3 seconds') \
.table("main.car_demo_data_lake.shipping_bronze")
# COMMAND ----------
# DBTITLE 1,Reading streaming shippment events from bronze table
silverDF = spark.readStream.table("main.car_demo_data_lake.shipping_bronze")
# COMMAND ----------
# DBTITLE 1,Creating encryption key
from cryptography.fernet import Fernet
encryptionKey = Fernet.generate_key()
# COMMAND ----------
# DBTITLE 1,Create Spark UDFs in python for encrypting a value
def encrypt_val(clear_text,MASTER_KEY):
from cryptography.fernet import Fernet
f = Fernet(MASTER_KEY)
clear_text_b=bytes(clear_text, 'utf-8')
cipher_text = f.encrypt(clear_text_b)
cipher_text = str(cipher_text.decode('ascii'))
return cipher_text
# COMMAND ----------
# DBTITLE 1,Use the UDF in a dataframe to encrypt a productid column
from pyspark.sql.functions import udf, lit, md5
from pyspark.sql.types import StringType
encrypt = udf(encrypt_val, StringType())
encryptedDF = silverDF.withColumn("userId", encrypt("userId",lit(encryptionKey))) \
.withColumn("firstName", encrypt("firstName",lit(encryptionKey))) \
.withColumn("lastName", encrypt("lastName",lit(encryptionKey))) \
.withColumn("address", encrypt("address",lit(encryptionKey))) \
.withColumn("emailId", encrypt("emailId",lit(encryptionKey))) \
.withColumn("mobileNumber", encrypt("mobileNumber",lit(encryptionKey)))
# COMMAND ----------
# DBTITLE 1,Writing transformed silver data frame to the silver table
encryptedDF.writeStream.format("delta") \
.outputMode("append") \
.option("checkpointLocation", "/dbfs/pubsub-shippment-sliver-checkpoint-38/") \
.partitionBy("brand") \
.trigger(processingTime = '2 seconds') \
.table("main.car_demo_data_lake.shipping_sliver")
# COMMAND ----------
# DBTITLE 1,Reading streaming data frame from silver table
goldDF = spark.readStream \
.table("main.car_demo_data_lake.shipping_sliver")
# COMMAND ----------
# DBTITLE 1,Aggregate cars quantity and price for each brands and years
group_cols = ["brand"]
vechileGoldDF = goldDF.groupBy(group_cols) \
.agg(sum("quantity").alias("total_quantity_shipped"), sum("subTotal").alias("total_selling_price_inr"))
# COMMAND ----------
# DBTITLE 1,Writing aggregated result to Gold table
(
vechileGoldDF.writeStream \
.format("delta") \
.outputMode("complete") \
.partitionBy("brand") \
.option("checkpointLocation", "/dbfs/pubsub-shipping-gold-38/") \
.trigger(processingTime = '1 seconds') \
.table("main.car_demo_all_brands.shipping_data_gold")
)